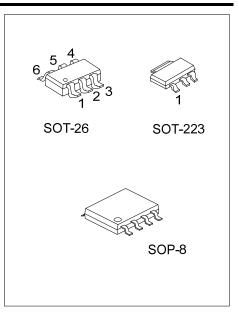
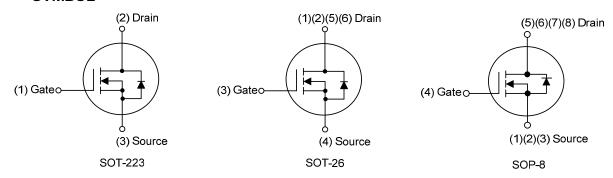
UNISONIC TECHNOLOGIES CO., LTD

UT2N15 POWER MOSFET

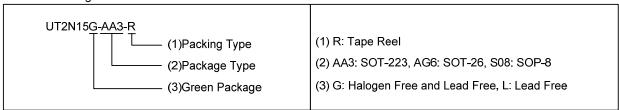

2.0A, 150V N-CHANNEL **POWER MOSFET**

DESCRIPTION


The UTC UT2N15 is a high voltage power MOSFET combines advanced trench MOSFET designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and high rugged avalanche characteristics. This power MOSFET is usually used in high speed switching applications of switching power supplies and adaptors.

FEATURES

- * $R_{DS(ON)} \le 0.3 \Omega @ V_{GS} = 10V, I_D = 1.0A$
- * Fast switching capability
- * Avalanche energy tested
- * Improved dv/dt capability, high ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Daakana	Pin Assignment							Daaldaa	
Lead Free	Halogen Free	Package	1	2	3	4	5	6	7	8	Packing
UT2N15L-AA3-R	UT2N15G-AA3-R	SOT-223	G	D	ഗ	-	-	-	-	-	Tape Reel
UT2N15L-AG6-R	UT2N15G-AG6-R	SOT-26	D	Δ	G	S	D	D	-	-	Tape Reel
UT2N15L-S08-R	UT2N15G-S08-R	SOP-8	S	S	S	G	D	D	D	D	Tape Reel

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 7 **UT2N15**

■ MARKING

PACKAGE	MARKING					
SOT-223	UT2N15 ☐ L: Lead Free → G: Halogen Free → Date Code					
SOT-26	6 5 4					
SOP-8	B 7 6 5 UTC DDD Date Code L: Lead Free UT2N15 D G: Halogen Free Lot Code					

UT2N15 Power MOSFET

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	150	V
Gate-Source Voltage		V_{GSS}	±20	V
	Continuous	I_D	2	Α
Drain Current	Pulsed	I _{DM}	4	А
Avalanche Energy	rgy Single Pulsed (Note 4)		1.2	mJ
Peak Diode Recovery dv/dt (Note 5)		dv/dt	1.2	V/ns
	SOT-223		1.2	W
Power Dissipation (Note 3)	SOT-26	P_{D}	0.4	W
	SOP-8		1	W
Junction Temperature		TJ	+150	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

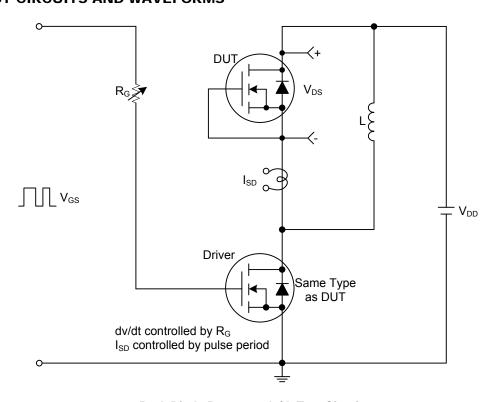
- 2. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3. Surface mounted on 1 in² copper pad of FR-4 board. 270°C/W when mounted on minimum copper pad.
- 4. L=0.1mH, I_{AS} =4.8A, V_{DD} =20V, R_{G} =25 Ω , Starting T_{J} = 25°C
- 5. $I_{SD} \le 1.5A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

■ THERMAL DATA

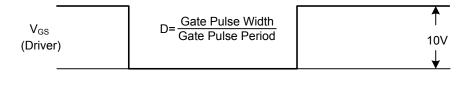
PARAMETER		SYMBOL	RATINGS	UNIT	
	SOT-223		104	°C/W	
Junction to Ambient	SOT-26	θ_{JA}	350	°C/W	
	SOP-8		125	°C/W	

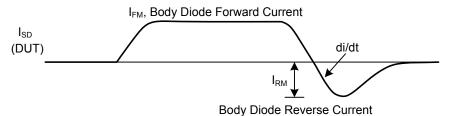
Note: Surface mounted on 1 in² copper pad of FR-4 board. 270°C/W when mounted on minimum copper pad.

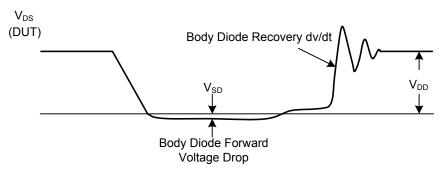
UT2N15


■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

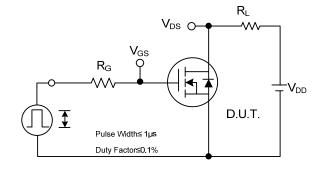
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV_{DSS}	I _D =250μA, V _{GS} =0V	150			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =150V, V _{GS} =0V			10	μΑ		
Gate-Source Leakage Current	Forward	I_{GSS}	V _{GS} =+20V, V _{DS} =0V			+100	nA	
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_D=250\mu A$	2.0		4.0	V		
Static Drain-Source On-State Resist	tance	R _{DS(ON)}	V _{GS} =10V, I _D =1.0A			0.3	Ω	
DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}			400		pF	
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		40		pF	
Reverse Transfer Capacitance		C_{RSS}			22		pF	
SWITCHING PARAMETERS								
Total Gate Charge (Note 1)	Q_G	V _{DS} =120V, V _{GS} =10V, I _D =2.0A		14		nC		
Gate to Source Charge		Q_GS	$V_{DS} = 120V$, $V_{GS} = 10V$, $I_D = 2.0A$		3		nC	
Gate to Drain Charge		Q_{GD}	(1006 1, 2)		1.4		nC	
Turn-on Delay Time (Note 1)		$t_{D(ON)}$			6		ns	
Rise Time		t_R	V_{DD} =100V, V_{GS} =10V, I_{D} =2.0A,		18		ns	
Turn-off Delay Time		$t_{D(OFF)}$	$R_G = 25\Omega$ (Note 1, 2)		33		ns	
Fall-Time		t_{F}			24		ns	
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Maximum Body-Diode Continuous C	Is				2	Α		
Maximum Body-Diode Pulsed Curre	I _{SM}				4	Α		
Drain-Source Diode Forward Voltag	V_{SD}	I _S =2.0A, V _{GS} =0V			1.0	V		
Reverse Recovery Time		t _{rr}	I _S =2.0A, V _{GS} =0V,		54		ns	
Reverse Recovery Charge	Q_{rr}	d _{IF} /d _t =100A/μs		188		nC		

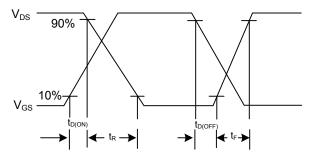

Notes: 1. Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2%.


^{2.} Essentially independent of operating temperature.


■ TEST CIRCUITS AND WAVEFORMS

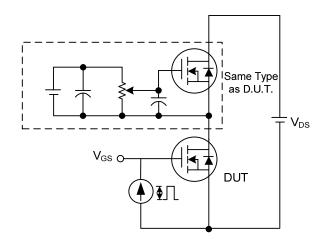
Peak Diode Recovery dv/dt Test Circuit

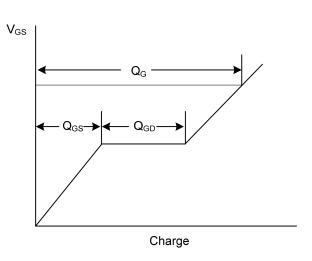




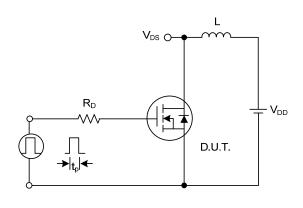
Peak Diode Recovery dv/dt Test Circuit and Waveforms

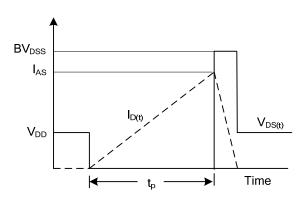
Peak Diode Recovery dv/dt Waveforms


■ TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit


Switching Waveforms



Gate Charge Test Circuit

Gate Charge Waveform

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.