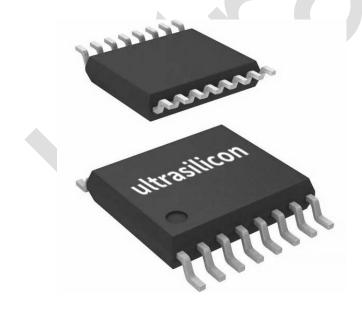


US5S108 1.8V, 2.5V, 3.3V LVCMOS Clock Buffer

Description


The US5S104, US5S106, US5S108, US5S110, US5S112 is a modular high-performance, low-skew, generalpurpose clock fanout buffer family. These clock buffers are designed with a modular approach in mind.

Five different fan-out variations, 1:4 to 1:12, are available. All of the devices are pin-compatible to each other for easy handling.

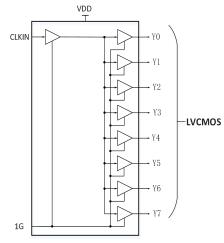
All family members share the same high performing characteristics such as low additive jitter, low skew, and wide operating temperature range.

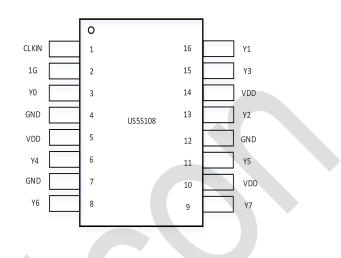
All family members support an asynchronous output enable control (1G) which switches the outputs into a low state when 1G is low.

Operates in a 1.8-V, 2.5-V and 3.3-V environment and are characterized for operation from -40° C to 125° C.

Features

- High-Performance 1:8 LVCMOS Clock Buffer
- Extremely low additive jitter < 25-fs nominal
- Output Skew < 55 ps (Typical)
- Very low propagation delay < 3 ns
- Synchronous Output Enable Is Available
- Outputs Operate up to 250 MHz for 3.3V
- Outputs Operate up to 200 MHz for 2.5V and 1.8V
- Supply voltage: 3.3V, 2.5V or 1.8V
- Industrial Temperature Range: -40°C to 125°C
- Available in 16-Pin TSSOP Package


Applications


 General-Purpose Communication, Industrial, and Consumer Applications

Device Information

Part Number	Package	Body Size(NOM)
US5S108	TSSOP-16	5.00mm x 4.40mm

Block Diagram

Pin Description and Function Table

Table 1: Pin Descriptions

Number	Name	Туре	Description	
1	CLKIN	Input	Single-ended clock input with internal 150-k Ω (typical) pulldown resistor to GND. Typical connected to a single-ended clock input.	
2	1G	Input	Global Output Enable with internal 50-kΩ (typical) pulldown resistor to GND. Typically connected to VDD with external pullup resistor. HIGH: outputs enabled LOW: outputs disabled	
3	Y0	Output	LVCMOS output 0. Typically connected to a receiver. Unused outputs can be left floating.	
4	GND	Power	Ground.	
5	VDD	Power	DC power supply, $1.8V - 3.6V$. Typically connected to a $3.3-V$, $2.5-V$, or $1.8-V$ supply. The VDD pin is typically connected to an external $0.1-\mu F$ capacitor near the pin.	
6	Y4	Output	LVCMOS output 4. Typically connected to a receiver. Unused outputs can be left floating.	
7	GND	Power	Ground.	
8	Y6	Output	LVCMOS output 6. Typically connected to a receiver. Unused outputs can be left floating.	
9	Y7	Output	LVCMOS output 7. Typically connected to a receiver. Unused outputs can be left floating.	
10	VDD	Power	DC power supply, $1.8V - 3.6V$. Typically connected to a $3.3-V$, $2.5-V$, or $1.8-V$ supply. The VDD pin is typically connected to an external $0.1-\mu F$ capacitor near the pin.	
11	Y5	Output	LVCMOS output 5. Typically connected to a receiver. Unused outputs can be left floating.	
12	GND	Power	Ground.	
13	Y2	Output	LVCMOS output 2. Typically connected to a receiver. Unused outputs can be left floating.	
14	VDD	Power	DC power supply, $1.8V - 3.6V$. Typically connected to a $3.3-V$, $2.5-V$, or $1.8-V$ supply. The VDD pin is typically connected to an external $0.1-\mu F$ capacitor near the pin.	
15	Y3	Output	LVCMOS output 3. Typically connected to a receiver. Unused outputs can be left floating.	
16	Y1	Output	LVCMOS output 1. Typically connected to a receiver. Unused outputs can be left floating.	

Absolute Maximum Ratings

Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of the product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied.

Item	Rating
V _{DD} : Supply voltage	
V _{CLKIN} : Input voltage (CLKIN)	0.5V to 3.6V
V _{IN} : Input voltage (1G)	
V _{Yn :} Output pins (Yn)	-0.5V to V _{DD} + 0.3 V
T _{STG} :Storage Temperature	-65°C to 150°C

ESD Ratings

		Max	Unit
	Human-body model (HBM), ANSI/ESDA/JEDEC JS-001-2017	±2500	
V(ESD) Electrostatic discharge	Machine model (MM), JEDEC Std. JESD22-A115-C	±250	V
	Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2018	±750	-

Latch up

		Мах	Unit
Leteb un	I-test, JEDEC STD JESD78E	±200	mA
Latch up	V-test, JEDEC STD JESD78E	4.6	V

Recommended Operating Conditions

Symbol	Parameter	Min	Тур	Мах	Unit
T _A	Ambient air temperature	-40	-	85	°C
TJ	Junction temperature		-	125	°C
		3.3-5%	3.3	3.3+5%	
V _{DD}	Power supply for Core and input Buffer blocks	2.5-5%	2.5	2.5+5%	V
		1.8-5%	1.8	1.8+5%	

Electrical Characteristics

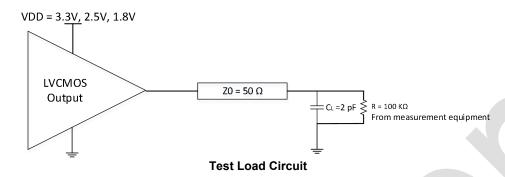
VDD = $3.3 \text{ V} \pm 5 \%$, $-40^{\circ}\text{C} \le T_{A} \le 125^{\circ}\text{C}$. Typical values are at VDD = 3.3 V, 25°C (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		All-outputs active, $f_{IN} = 100$ MHz, $C_L = 5pF$, $V_{DD} = 1.8$ V		20		
IDD	Core supply current	All-outputs active, $f_{IN} = 100$ MHz, $C_L = 5pF$, $V_{DD} = 2.5$ V All-outputs active, $f_{IN} = 100$ MHz, $C_L = 100$		27		mA
		All-outputs active, $IIN = 100$ MHz, $CL = 5pF$, $V_{DD} = 3.3$ V		37		
CLOCK IN	IPUT		1	L		
		V _{DD} = 3.3 V	0.1		250	
fin_se	Input frequency	VDD = 2.5 V and 1.8 V	0.1		200	- MHz
Viн	Input high voltage		0.7 x V _{DD}			v
VIL	Input low voltage				0.3 x Vdd	− v
dVın/dt	Input slew rate	20% - 80% of input swing	0.1			V/ns
lin_leak	Input leakage current		-50		50	uA
C_{IN_SE}	Input capacitance	at 25°C		7		pF
CLOCK O	UTPUT FOR ALL VDD					1
fout	Output frequency	VDD = 3.3 V	0.1		250	MHz
1001		VDD = 2.5 V and 1.8 V	0.1		200	
O _{DC}	Output duty cycle	With 50% duty cycle input	45		55	%
t start	Start-up time before output is active	See (1)			3	ms
t _{1G_ON}	Output enable time	See (2)			5	cycles
t _{1G_OFF}	Output disable time	See (3)			5	cycles
	UTPUT FOR VDD = 3.3					
Vон	Output high voltage	юн = -1 mA	2.8			v
V _{OL}	Output low voltage	IoL = 1 mA			0.2	
t _{RISE-FALL}	Output rise and fall time	20/80%, C∟= 5 pF, f _{IN} = 156.25 MHz		0.35	0.7	ns
t _{output-} skew	Output-output skew	See (4)		25	50	20
t _{PART-} SKEW	Part-to-part skew				450	– ps
tpropdela Y	Propagation delay	See (5)		1.5	2	ns
t _{JITTER-ADD}	Additive Jitter	fin = 100 MHz, Input slew rate = 2 V/ns, Integration range = 12 kHz - 20 MHz		20	35	fs, RMS
Rout	Output impedance			50		Ω
CLOCK C	OUTPUT FOR VDD = 2.5	5 V ± 5%				
V _{он}	Output high voltage	Iон = -1 mA	0.8 x Vdd			
Vol	Output low voltage	IOL = 1 mA			0.2 x Vdd	V
t _{RISE-FALL}	Output rise and fall time	20/80%, CL= 5 pF, fin = 156.25 MHz		0.33	0.8	ns
t _{output-} skew	Output-output skew	See (4			50	ne
t _{PART-} SKEW	Part-to-part skew				400	– ps
t _{PROP-} DELAY	Propagation delay	See (5)		1.5	2.5	ns
tjitter-add	Additive Jitter	f_{IN} = 100 MHz, Input slew rate = 2 V/ns, Integration range = 12 kHz - 20 MHz		25	45	fs, RMS
Rout	Output impedance			50		Ω

(1) Measured from VDD stable to output active, when 1G = HIGH.

(2) Measured from 1G rising edge crossing VIH to first rising edge of Yn.
(3) Measured from 1G falling edge crossing VIL to last falling edge of Yn.

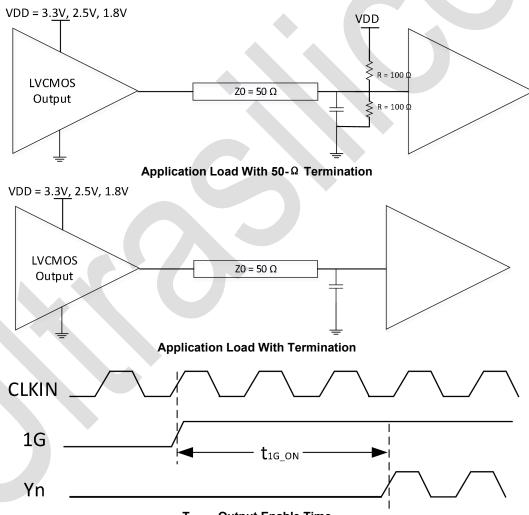
(4) Measured from rising edge of any Yn output to any other Ym output.

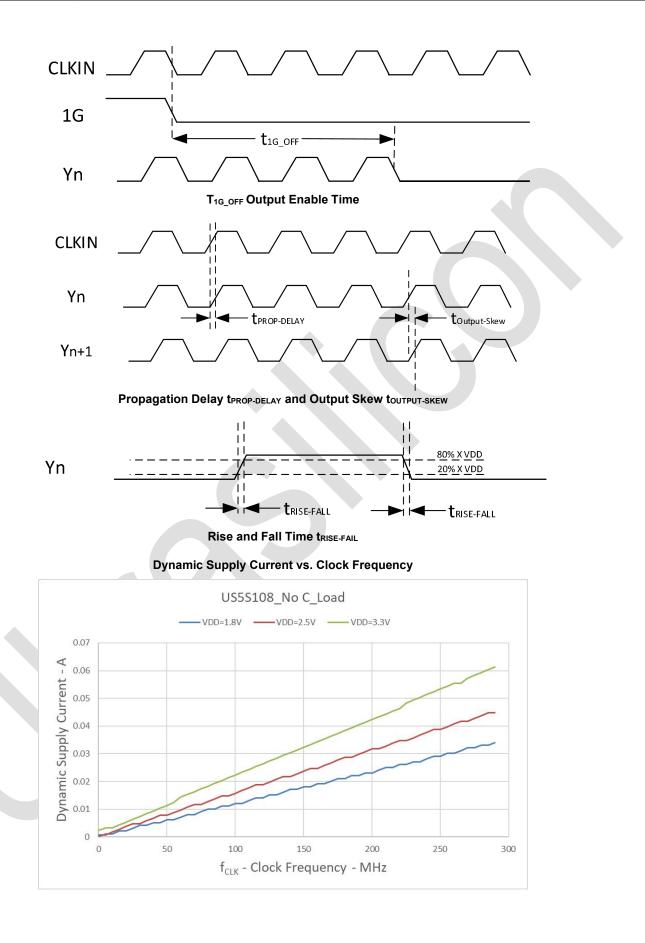

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
CLOCK OUTF	PUT FOR VDD = 1.8 V ± 5%		1		1	
Vон	Output high voltage	Іон = -1 mA	0.8 x Vdd			
Vol	Output low voltage	IoL = 1 mA			0.2 x VDD	- V
trise-fall	Output rise and fall time	20/80%, CL= 5 pF, fin = 156.25 MHz		0.38	1	ns
toutput-skew	Output-output skew	See (4)			50	ps
t PART-SKEW	Part-to-part skew				900	ps
t PROP-DELAY	Propagation delay	See (5)		1.5	3	ns
tjitter-add	Additive Jitter	fin = 100 MHz, Input slew rate = 2 V/ns, Integration range = 12 kHz - 20 MHz		55	85	fs, RMS
Rout	Output impedance			50		Ω
GENERAL PU	RPOSE INPUT (1G)		1			
VIH	High-level input voltage		0.7 x Vdd			
VIL	Low-level input voltage				0.3 x VDD	- V
Ін	Input high-level current	VIH = VDD_REF			67	
lı∟	Input low-level current	VIL = GND			1	μA

Timing Requirements

 $\mathsf{VDD} = 3.3 \; \mathsf{V} \pm 5 \; \%, \, -40^\circ\mathsf{C} \leq \mathsf{TA} \leq 125^\circ\mathsf{C}$

	Power Supply	Min	Тур	Мах	Unit
V/t_{RAMP}	V _{DD} ramp rate	0.1	-	50	V/rms


Parameter Measurement Information


Note:

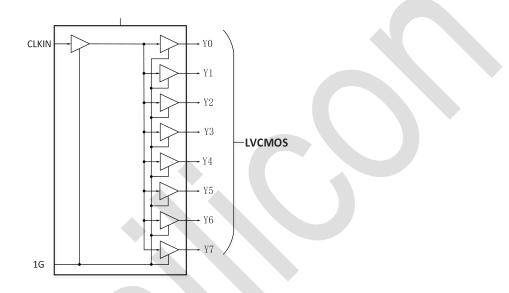
1. C_L include probe and jig capacitance.

2. All input pulses are supplied by generators having the following characteristics: Clock Frequency \leq 250MHz, Z₀ = 50 Ω , tr < 1.2ns, tf < 1.2ns

T_{1G_ON} Output Enable Time

Phase Noise Plot

极景微半导体


The additive phase jitter for this device was measured using the Wenzel 100MHz OCXO(19fs) as an input source with and Agilent E5052A phase noise analyzer. (VDD=3.3V)

Detailed Description

Overview

The US5S10x family of devices is part of a low-jitter and low-skew LVCMOS fan-out buffer solution. For best signal integrity, it is important to match the characteristic impedance of the US5S10x's output driver with that of the transmission line.

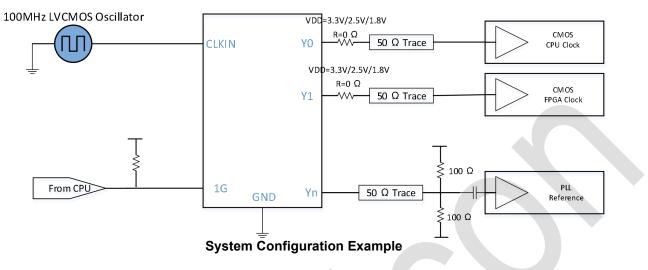
US5S108 Functional Block Diagram

Feature Description

The outputs of the US5S10x can be disabled by driving the synchronous output enable pin (1G) low. Unused output can be left floating to reduce overall system component cost. Supply and ground pins must be connected to VDD and GND, respectively.

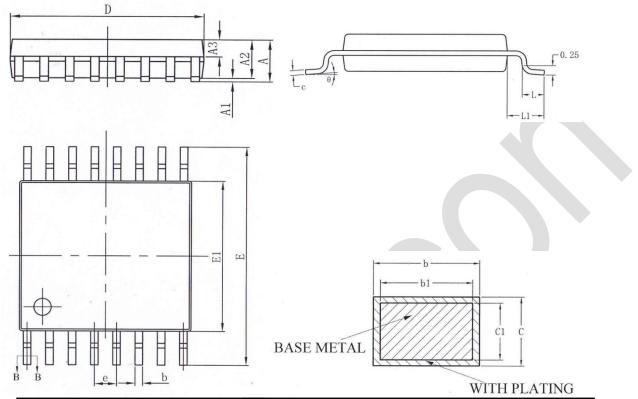
Device Functional Modes

The US5S10x operates from 1.8-V, 2.5-V, or 3.3-V supplies. Table 1 shows the output logics of the US5S10x.

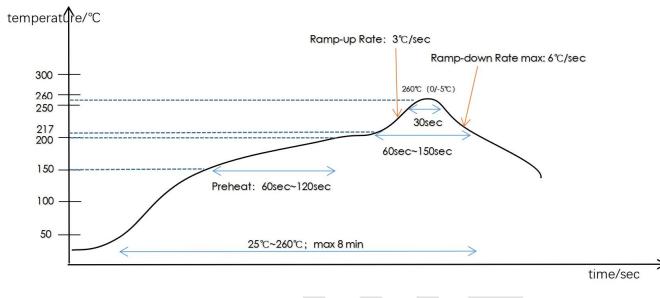

Table 1. Output Logic Table					
	Outputs				
CLKIN	1G	Yn			
Х	L	L			
	Н	L			
Н	Н	Н			
	CLKIN X L H	Inputs			

Application and Implementation

Application Information


The US5S10x family is a low additive jitter LVCMOS buffer solution that can operate up to 250-MHz at V_{DD} = 3.3 V and 200 MHz at V_{DD} = 2.5 V to 1.8 V. Low output skew as well as the ability for synchronous output enable is featured to simultaneously enable or disable buffered clock outputs as necessary in the application.

Typical Application


PACKAGE DIMENSIONS

SYMBOL		Millimeter	
SIMDUL	Min	Nom	Max
А	-	-	1.20
A1	0.05	-	0.15
A2	0.90	1.00	1.05
A3	0. 39	0.44	0.49
b	0.20	_	0.28
b1	0.19	0.22	0.25
С	0.13	_	0.17
c1	0.12	0.13	0.14
D	4.90	5.00	5.10
E1	4.30	4.40	4.50
Е	6.20	6.40	6.60
е		0.65BSC	
L	0.45	0.60	0.75
L1		1.00REF	
θ	0	_	8°

Reflow profile

Recommended Temperature(PB-Free)

Reflow Condition	Convection or IR/Convection
Average ramp-up rate (217 °C to Peak)	3 °C/second max.
Preheat temperature 175(± 25) °C	60-120 seconds
Temperature maintained above 217 °C	60-150 seconds
Time within 5 °C of actual peak temperature	30 seconds
Peak temperature range	260 +0/-5 °C
Ramp-down rate	6 °C/second max.
Time 25 °C to peak temperature	8 minutes max.
Maximum number of reflow cycles	≤ 3

Revision History

Date	Description of Change	Revision
2022.05.05	First Draft.	1.0
2023.02.10	Operating frequency range change。	1.5