NEC

NEC Electronics Inc.

Description

The NEC uPD7281 Image Pipelined Processor is a
high-speed digital signal processor specifically
designed for digital image processing such as
restoration, enhancement, compression, and pattern
recognition. The uPD7281 employs token-based data-
flow and pipelined architecture to achieve a very high
throughput rate. A high-speed on-chip multiplier
speeds calculations. More than one pyPD7281 can
easily be cascaded with a minimum amount of interface
hardware to increase the throughput rate even further.
The 4PD7281 is designed to be used as a peripheral
processor for minicomputers or microcomputers,
thereby relieving the host processor from the burden of
time-intensive computations. The uPD7281 has a very
powerful instruction set designed specifically for digital
image processing algorithms. The image Pipelined
Processor can also be used as either a general purpose
digital signal processor or a numeric processor.

Features

Token-based data-flow architecture

Internal pipelined ring architecture

Powerful instruction set for image processing
17 x 17-bit (including sign bits) fast multiplier:
200 ns

High-speed data 1/O handling

— Asynchronous two-wire handshaking protocols
— Separate data input and output pins

Easy multiple-processor configuration
Rewritable program stores

On-chip memories:

— Link Table (LT): 128 x 16 bits

— Function Table (FT): 64 x 40 bits

— Data Memory (DM): 512 x 18 bits

— Data Queue (DQ): 32 x 60 bits

— Generator Queue (GQ): 16 x 60 bits

— Output Queue (OQ): 8 x 32 bits

O NMOS technology

O Single +5 V power supply

0 40-pin DIP

Applications

Digital image restoration
Digital image enhancement
Pattern recognition

Digital image data compression
Radar and sonar processing
Fast Fourier Transforms (FFT)
Digital filtering

Speech processing

Numeric processing

O 0ogao

ooo

ogo0ooooggn

NECEL-000076

uPD7281
PROCESSOR
Pin Configuration
RESET Vee
TACK GACK
IREQ OREQ
1DBs ODBss
IDB1s 0DB1s
tDB43 00B13
IDB12 O0By2
IDB1q ODBy4
1DB1g ODB1g
tDBg ODBg
IDBg ODBg
108, ODBy
10Bg QDBg
|DBg ODBs
1DB, 0oD8,
([+1-1% 0oDB,
108, oD8;
1DB4 oDBy
10Bg ODBg
GND CLK
49-0C00E4A
Performance Benchmarks
Operation 1 uPD7281 3 ,PD7281s Note
Rotation 1.5sec 0.6sec 512 x 512 binary image
1/2 Shrinking 80 ms 30ms 512 x 512 binary image
Smoothing 1.1 sec 0.4sec 512 x 512 binary image
3x3 Convolution 3.0 sec 1.1sec  512x512 grey scaleimage
64-stage FIR e )
Filter 50 us 18 us 17-bit fixed point
¢0os(x) 40 us 15 us 33-bit fixed point

Ordering Information
Part Number
uPD7281D

Package Type

40-pin ceramic DIP

33-1



uPD7281

NEC

Pin Identification

At

No. Signal 170 RESET Description

1 RESET In System Reset: Alow signal on
this pin initializes uPD7281.
During the reset, a4-bit module
number should be placed on

IDB1s - IDB1p.

2 IACK Out High  Input Acknowledge: This
acknowledge signal is output
by the xPD7281 to notify the
external data source thata 16-
bit data transfer has been

completed.

Input Request: This input
signal requests a data transfer
from an external device to
©PD7281.

4-19  IDBy5-1DBg In 16-bit input data bus: 32-bit
input data tokens are input to
the Input Controller as two 16-

bit words.

20 GND Power ground

21 CLK in System clock input (10 MHz:

target spec)

22-37 0DBy5- 0DBy Out High  16-bit output data bus: 32-bit
Impedance output data tokens are output
by the Output Controller as

two 16-bit words.

38 OREQ Out  High Output Request: This signal
informs an external device that
a 16-bit data word is ready to

be transferred out of uPD7281.

39 0ACK In Output Acknowledge: This
acknowledge signal input by
the external data destination
notifies uPD7281 that a 16-bit

data transfer may occur.

40 Voe +5V power supply

Bﬂ -2

Architecture

The uPD7281 utilizes a token-based, data-flow
architecture. This novel architecture not only provides
multiprocessing capability without complex external
hardware, but also offers high computational efficiency
within each processor. Taking advantage of the muiti-
processing capability of data-flow architecture, almost
any processing speed requirements can be satisfied by
using as many uPD7281s as needed in the system.
Within each yPD7281, the data-flow architecture
provides high computational efficiency through
concurrent operations. For example, while the
Processing Unit (or ALU) spends its time for actual
computations only, the internal memory address
calculations, internal memory read and write
operations and input/output operations are all being
done concurrently. Furthermore, in contrast to
conventional von Neumann processors, a data-flow
processor doesn’t fetch instructions, perform
subroutine stack operations or do data transfers
between registers. Therefore, it does not spend the
time required for these operations.

The uPD7281 also utilizes an internally pipelined
architecture. Asshown in the block diagram, a circuiar
pipeline is formed by five functional blocks: the Link
Table (LT), the Function Table (FT), the Data Memory
(DM), the Queue (Q), and the Processing Unit (PU). A
token entered through the Input Controller (IC) is
passed on to the Link Table to be processed around the
pipelined ring as many times as needed. When a token
is finished being processed, it is queued into Output
Queue (OQ) and then output via the Output Controller
(OC).



E

uPD7281

Block Diagram

16
IDB:4 - 1DBp

16
i> 0DB15- 008

Ic ocC ——= OREQ
je————— DACK
32
oQ
b
128 PU
e 59
11
A2 80
Q
28
51
RC L AG & FC
a7 circular pipeline
9
DM
54
FT

IC: Inpul Controller. Controls input data tokens and determines whether or not an input data
token should be sent 10 the circular pipeline for processing.

OC: Output Controlier. Controis output data tokens.

LT: Link Table :128 words x 16 bits|. Stores instruction parameters.

FT: Function Table |64 words x 40 bits. Stores instruction parameters

DM: Data Memory (512 words x 18 bits). Stores constants or temporary dala

Q: Gueue |48 words x 60 bits]. FIFO queue. Data Queue: 32 words x 60 bits
Generalor Queue: 16 words x 60 bits

PU: Processing Unit. Executes logical. arithmetic and bit operations.

00: Outpul Queue (8 words x 32 bits). FIFO queue for Ihe output tokens.

AG/FC: Address Generator and Flow Controller. Generates addresses for DM and controls the
fiow of tokens.

RC: Relresh Coniroller. Generates refresh lokens for internal DRAMs

49-0001328
Absolute Maximum Ratings Capacitance
Ta = +25°C Tp =+25°C
Supply voltage, Vpp —05Vto+7.0V Limits Test
Input voltage, V) —05Vto+7.0V Parameter Symbol Min Max Unit Conditions
Output voitage, Vg —05Vto+70V CLK capacitance Ck 20 pF fc=1MHz
Operating temperature, Topry (2 m/s air flow) 0°C to +70°C Input capacitance C 10 pF (Al other pins
Operating temperature, Topro (No air flow) 0°C to +45°C Output capacitance Co 20 pF atoy)

Storage temperature, Tg1g

—65°C to +150°C

Comment: Exposing the device to stresses above those listed in
Absolute Maximum Ratings could cause permanent damage. The
device is not meant to be operated under conditions outside the
limits described in the operational sections of this specification.
Exposure to absolute maximum rating conditions for extended

periods may affect device reliability.

39



uPD7281

NEC

DC Characteristics
Ta =0°C to +70°C, Vpp =5V £10%

AC Characteristics (cont)
Ta =0°C to +70°C, Vpp =5V £10%

Limits Test Limits Test
Parameter Symbol Min Typ Max Unit Conditions Par y Min Typ Max Unit Conditions
Input low Viiy —05 07 v iREQ fall time tioF 10 ns
voltage 1 ;
FGET Data set up time tsip 40 ns
(RESET, 1DB15.0) (before IREQ up)
{I"Oﬂ:’;g“;%” Viy 20 Vop+05 V Datahold time  typ 0 ns
(RESET. DB15.0) (after IREQ up)
— OREQ delay time 1 tpgoy 15 35 ns
Input low Vie —05 0.45 v (from OACK down)
voltage 2
(IREQ, 0ACK, CLK) OREQ delay time 1 tpog. 15 45 ns
Input high Ve 35  Vpp+05 V (from OACK up)
voltage 2 Min time between tpgs 15 ns
(IREQ, OACK, CLK) transitions on
Output low VoL 045 V. lg=20mA OREQ and DACK
voltage OACK rise time t0AR 10 ns
Output high Vo 24 V. lgy =400 A OACK fall time toar 10 ns
voltage Data access time  tpgp 25 ns
Input leakage I 10 wA OVEVI=Vpp (after OREQ down)
current Data float time trop 10 35 ns
Output leakage Lo +10 uh OV <Vg<Vpp (after OREQ up)
current Pre RESET tRvRST  tCLK ns
Supply current lop 320 500 mA high time
P RESET fow tim t 6t
AC Characteristics WIme wesT Gk n
Ta =0°Cto +70°C, Vpp =5V +10% Module number  tpmp 2ok NS
— data setup time
Limits Test {after RESET down)
Par Symbol Min Typ Max Unit Conditions Module number tHMD 0 ns
CLK cycle time toik 100 500 ns Measured at data hold time
oy (after RESET up)
CLK pulse width  tyky 40 ns Reset delay toRsT (12Mcik rs
high from CLK down
CLK pulse width  twyL 40 ns Notes:
low (1) “Down"” = on falling edge
CLK rise time tyR 10 ns (2) "Up" = on rising edge
load it :1ACK, OREQ = F. ODB15.0 =
CLK fall time I 10 s (3) ?oLg;:::t oad capacitance: IACK, OREQ =50 p 15-0
IACK delay time 1 tpja1 20 50 ns
(from IREQ down)
(Note 1)
ﬁC—Kd_eI_ay time1 tpapy 20 55 ns
(from IREQ up)
(Note 2)
IACK delay time 2 tpja 20 70 ns
(from IREQ down)
TACK delay time 2 tpap 20 70 ns
{from {REQ up)
Min time between  tyig 15 ns
transitions on
IREQ and IACK
TREQ rise time tioR 10 ns

63~4



NEC 47281

Timing Waveforms

AC Test Input Voltage AC Test Output Voltage
JE— X 2.0 JR——
RESET, IDB :‘(;X > TestPoints <y X 08 OREQ, IACK, 0D8 :4‘:X:> Test Points <:X;::5
83-00"86EA
R — 35 3.5
CLK, IREQ, OACK :> Test Points < X
—:“5 : 248 Module Number and RESET Timing
83-001865A
tavasT—} twRST
s S
Clock Timing aEsE _)f_\ 1
[+tomMD+| HI—'HMD
IDB15-1DB12 B
!Dn51—>1 F—
83-001867A
CLK l | | | | |
R3.00"REZA
Input Handshake Timing
tioa tiar
—> - — -
REG \ 7 \ / N
!
‘ |
+—tHIQ—» ‘*‘HM}* -—tHio—» ‘«‘HIQ% ‘
IACK : }‘ 5 2 %
: i ' |
‘-—'lDIAU’—’j —-—tDIAHT—i +—toiaLz— +——tDlAH2 —> !
| | |
X XC X X
IDB15-1DBg :
%lsmﬂi -—-—-lgp —
— -+—tHID — 1444mp
Output Handshake Timing
1O GH———® GilDOQH‘bi lenoQL*b;

|
OREQ

OACK

N o SUUUI e GUUR




uPD7281

NEC

Functional Description

As shown in the block diagram, the uPD7281 consists
of 10 functional blocks. Before any processing occurs,
the host processor down-loads the object code into
the Link Table and the Function Table of the uPD7281
by using specially formatted input tokens. At this time,
constants may also be sent to the Data Memory to be
stored. The contents of the Link Table and the Function
Table are closely related to a computational graph.
When a computational process is represented
graphically, it usually forms adirected data-flow graph.
In such a graph, the arcs (or edges, links, etc.)
represent the entries in the Link Table and the nodes
represent the entries in the Function Table. An arc
between any two nodes has a data value, called a “token”,
and is identified by a corresponding entry in the Link
Table. A node in the directed data-flow graph signifies
an operation, and the type of operation is logged into
the Function Table along with the identification infor-
mation about the outgoing arc.

A minimal amount of interface hardware is required to
configure uPD7281s in a multiprocessor system. As
many as 14 yuPD7281s can be cascaded together, as

shown in figure 1. Each uPD7281 must be assigned a
Module Number (MN) during reset. Figure 2 shows the
timing diagram for assigning the module number.

When any token enters a uPD7281, regardless of the
total number of uPD7281s used in the system, the
Input Controller of that uPD7281 discerns whether or
not the entering token is to be processed by checking
the Module Number (MN) field of the token. If the
Module Number is not the same as the Module Number
assigned during reset, the token is passed to the
Output Controller so that it can be sent out via the
Output Data Bus. However, if the token has the same
Module Number, then the Input Controller strips off
the MN field and sends the remaining part of the token
to the Link Table for processing.

Once a token enters the circular pipeline by accessing
the Link Table, it requires seven pipeline clock cycles
for the token to fully circulate around the ring. One
pipeline clock cycle is needed for the Link Table, the
Function Table, or the Data Memory to process an
incoming token, and two pipeline clock cycles are
needed for the Queue or the Processing Unit to
process a token. The Queue requires one pipeline

Figure 1. Connecting Multiple uPD7281s

Output OACK 1ACK OACK IACK Input

Handshake | [~ Handshake

Lines OREC IREQ OREQ IREQ Lines
ODB1s D845 ODB1s 1DB1s

* o o ODB1s iDByg ODB1q 1DB14 « o
Output Data Bus— — Input Data Bus
0DBo DBy 0DBo 1D8g
Chip #N-1 Chip #N Chip sN-1

Figure 2. Timing Diagram for Assigning Module
Numbers During RESET

RESET
High i d:
ODB (16) WL
INR(4)*
MNR(4) Tigh Module Number y——

Impedance

MNR(4): IDB, ;- IDB,,

*From external hardware
49-0000654




NEC

uPD7281

clock cycle to write and one cycle to read. Similarly,
the Processing Unit requires one pipeline clock cycle
to execute and one clock cycie to output the result. In
other words, both the Processing Unit and the Queue
are made of two-stage pipelines. Therefore, when
seven tokens exist simultaneously in the circular
pipeline, the pipeline is full and full parallel processing
is achieved.

When a data token flows through each functional
block in a given uPD7281, the format of the token
changes significantly. The actual transitions of a token
format through different functional blocks are shown

Figure 3. Token Formats and Transitions

in figure 3. A data token flowing within the circular
pipeline must have at least a 7-bit Identifier (ID) field
and an 18-bit data field. The ID field is used as an
address to access the Link Table memory. When a
token accesses the LT memory, the ID field of the
tokenis replaced by anew ID (shown as ID' in figure 3)
previously stored in the LT memory. As a result, every
time a data token accesses LT memory, its ID field is
renewed. The data field of a token consists of a control
bit, a sign bit and a 16-bit data. A token may have up to
two data fields, as well as other fields (OP code, control,
etc.) if necessary.

4 1 7 4 16
170 Token [32] MN |O| [[»] I CYLFJ i DATA ]
LT Contents
1 7 4 16 \_ f 6 7 12 !
LT Token (28] [U{ D I CTLF ] DATA | 128 x 16[ FTA l D I ESEL
L JL I}
FTR
= T ¢
1 7/ a 2 1 5 f/’/‘s
FT Token [37) U [[> [ CTLF ]SELI ] FTA I DATA l
FTRC—F FT Coplems
r 14 16 10 1
64 x 40‘ FTL [ FTR J FTT -I
L 1
7 2 9 5 12 16
DM Token [54) |U{ 1D or ID” ISEL DM Address ’ FTL (Lower 12 bits] ] ‘ T DATA
\_: OM Contents
Internal Use [Specifies RD, WR, or REFRESH]| I 16 + }
5|2!18H5] DATA l
7 2 3 12 11 16 11 16
Q Token [61] IUI ID'orID” I ssLl PUF I FTL (Lower 12 bits) l I I DATAA I I I DATAg 1
Flsa [
7y —Ce
7 2 2 12 11 16 11 16
PU Token (60] Iul 1D’ or (D™ lssL lPUFI FTL{Lower 12 bits) ‘ 1 1 DATA, l I DATAg 1
T s, Lss
LCA L Ce
2 1 12 11 16 11 16
4 " ATA
0 Q Token [59] IU[ 1D’ or 1D’ lSELl l FTL [Lower 12 bits] J [ 1 DATAx 1 l ‘ D 8 I
[ - T
oo LC. Sa L 55
170 Token input or Cutput Token SEL SELection tield
LT Token A token accessing the Link Table FTRC Function Table Right tieid Control bit
FT Token A token accessing the Function Table FTL Function Table Left field
DM Token A token accessing the Data Memory FTR Function Table Right tieid
Q Token A token accessing the Queue FTT Function Table Temporary field
PU Token A token accessing the Processing Unil PUF Processing Unit Flags
OQ Token A token accessing the Output Queue Cc Control bit for a 16-bit data
Ca Control bit for a 16-bit data from A side
MN Modula Number cg Control bit for a 16-bit data from B side
10 Identitier for an input or ouiput token S Sign-bit for a 16-bil data
10’ Identifier tor a token which exits LT for the first time SA Sign-bit for a 16-bil data from A side
[ ldentifier for a token which exits LT for the second time s Sign-bit for a 16-bit data from B side
CTLF Control field DATAA  16-bit data from A side
DATA 16-bit data tield DATAB 16-bit data from B side
FTA Function Table Address
49.000°338




uPD7281

NEC

Input Controller [IC]

A 32-bit token is entered into a uPD7281 in two 16-bit
halves using a two-signal request/acknowledge hand-
shake method, as shown in figure 4. The input/output
token format is shown in figure 7. After a token is
accepted by the IC, the MN field of the token is
compared to the Module Number of uPD7281 which
was assigned at reset. If the Module Number of the
accepted token is not the same, the IC passes the
token directly to the Output Controller. If the MN field of
the accepted token is the same, then the IC strips off
the Module Number and sends the remaining part of
the token to the Link Table. The IC also monitors the
status of the Processing Unit. If it is busy, the IC delays
accepting another token until it is no longer busy. The
IC also accepts the refresh tokens from the Refresh
Controller (RC) and sends them to the Link Table.

Figure 4. Handshake Timing Waveforms

320 ns*

IREQ

IACK

IDBg - IDB15 { >

< High >

49-000069A

Input Token Timing

OREQ

OACK

ODBg - ODB1+s

‘lavgel spec

Output Token Timing

49-000070A

Output Controller [OC]

The OC outputs 32-bit tokens in two 16-bit halves
using a two-signal request/acknowledge handshake
method, as shown in figure 4. The types of tokens
output by the OC are as follows: output data tokens
from the Output Queue, error status data tokens
generated internally by OC, DUMP tokens, and passing
data tokens from the Input Controller.

Link Table [LT]

The LT is a 128 x 16-bit dynamic RAM. The ID field of
an incoming LT token is used to access the LT
memory. The contents of an LT memory location

33‘8

consist of a 6-bit Function Table Address (FTA), a 7-bit
ID, a 1-bit Function Table Right Field Control (FTRC),
and a 2-bit Selection (SEL) field. When a token
accesses LT memory, its ID field is replaced by the new
ID field contained in the memory location being
accessed. Therefore, every time a token accesses LT
memory, it is given a new ID. The FTA field is used to
access FT memory locations. The FTRC bit and the
SEL field are used to specity the type of instruction. By
using specially formatted tokens, the contents of the
LT can either be set during a program downioad or be
read during a diagnosis.

Function Table (FT]

The FT is a 64 x 40-bit dynamic RAM. As for the case of
the Link Table, the contents can either be set during a
program download or be read during a diagnosis by
using specially formatted tokens.

Each FT memory location consists of a 14-bit Function
Table Left field (FTL), a 16-bit Function Table Right
field (FTR), and a 10-bit Function Table Temporary
field (FTT). These fields contain control information
for different types of instructions.

Address Generator and Flow Controller [AG/FC]

The AG/FC generates the addresses to access the
Data Memory (DM) and controls the writing of data to
and the reading of data from the Data Memory. AG/FC
determines whether the incoming token contains a
one-operand instruction or atwo-operand instruction.
One-operand instruction tokens can be sent directly to
the Queue. However, if the token contains a two-
operand instruction, then both operands must be
available before they can be sent to the Queue. For a
two-operand instruction, the token which arrives at the
Data Memory first is temporarily stored until the
second operand token arrives. When the second
operand token exits the Function Table, the AG/FC
generates the Data Memory address which contains
the first operand. Then, the second operand token and
the first operand data read out from the Data Memory
are sent to the Queue together.

Data Memory [DM]

The DMisa512 x 18-bit dynamic RAM which is used to
queue the first operand for a two-operand instruction
until the second operand arrives. DM can also be used
as a temporary memory or as a buffer memory for I/O
data.

Queue [Q]

The Q is a FIFO memory configured with a 48 x 60-bit
dynamic RAM. The Q is used to temporarily store the
Processing Unit-bound and the Output Queue-bound
tokens. The Qis further divided into two different FIFO
memories: a 32 x 60-bit Data Queue (DQ) and a 16 x
60-bit Generator Queue (GQ). The DQ is used for the



NEC

vPD7281

PU, OUT and AG/FC instructions. The DQ temporarily
stores the PU and AG/FC tokens before they are sent
to the Processing Unit for processing. The DQ also
temporarily stores the QOutput Queue tokens before
they are sent to the Output Queue. The GQ is used for
Generate (GE) instructions only. The DQ will not
output tokens to the Output Queue if it is full, and the
DQ or GQ will not output tokens to the Processing Unit
if the Processing Unit is busy.

In orderto control the number of tokens in the circular
pipelineto prevent Q overflow, the Q is further restricted
by the following two situation rules: when the DQ has
eight or more tokens stored, the read from the GQ is
inhibited, and when the DQ has fewer than eight tokens
stored, the read from the GQ has a higher priority than
the read from the DQ. Since instructions stored in the
GQ generate tokens, restricting the number of GQ
tokens is important in order to keep the Q from
overflowing. In case the internal processing speed is
slower than the rate of incoming data tokens, the DQ
posseses a potential overflow condition. To prevent
overflow, the processor is put into restrict/inhibit mode
when the DQ reaches a level greater than 23.

Output Queue [0Q]

The OQis afirst-in first-out (FIFO) memory configured
in an 8 x 32-bit static RAM. The OQ is used to
temporarily store the output data tokens from the Data
Queue so that they can be output by the Output
Controller via the output data bus. When OQ is full, it
sends a signal to the Data Queue to delay accepting
further tokens.

Processing Unit [PU]

The PU executes two types of instructions: PU and GE.
PU instructionsinclude logical, arithmetic (add, subtract
and multiply), barrel-shift, compare, data-exchange,
bit-manipulation, bit-checking, data-conversion, double-
precision adjust, and other operations. The control
information for a PU instruction is contained in the
Function Table Left field of the PU token. The GE
instructions are used to generate a new token, multiple
copies of atoken, or block copies of a token. They can
also be used to set the Control field (CTLF) of a token
and to generate external memory addresses. If the
current PU operation cannot be completed within a
pipeline clock cycie, the PU sends a signal to the

Queue and the Input Controller to prevent them from
releasing any more tokens.

Refresh Controller [RC]

The RC automatically generates refresh tokens for the
dynamic RAMs used in the circular pipeline, i.e.the LT,
FT,DM, and Q. Each RC token, generated periodically,
is sent to the Input Controller and is propagated
through the LT, FT, DM and Q, in that order. The RC
tokens are deleted after reaching the Q.

Operation Modes

There are three different modes in which the uPD7281
can operate: Normal, Test, and Break (see figure 5).
After an external hardware reset, the uPD7281 is in the
Normal mode of operation. The uPD7281 can enter the
Test mode for program debugging by inputting a
SETBRK token (see figure 6) while the processor is in
the Normal mode. If an overflow occurs in the Data
Queue or the Generator Queue, the processor enters
into the Break mode so that the internal contents of the
processor can be examined; see table 1. Table 2
describes the effects of software and hardware resets.

Table 1. DUMPD Output Token Format

MN Z 1D CTLF DATA (16-bit field)

0000 0O 0000000 0111 xxxxx(5) GQ Size(5 bits) DQ Size(6 bits)
0000 0 0000001 0111 xxxx(4) u(1) 1D(7) CTLF(4)
0000 0 0000010 0111 DATA(16)

0000 0 0000011 0111 xxx (3) u(1) ID(7) x(1) Cg, Sg. Ca. Sa
0000 0 0000100 0111 xx(2) FTL (Lower 12 bits) xx(2)

0000 0 0000101 0111 DATAA(16)

0000 0 0000110 0111 DATAg(16)

0000 0 0000111 0111 xxxxxXXXX(9) 1D(7)

x: Don't care u: Unused

Table 2. Effects of Reset Operation

Hardware Reset Software Reset
MN uPD7281 reads in MN  No Change
High/Low Word Flip-flop  Reset No Change
Input Inhibit Control Reset (No constraint)  No Change
LT Break State Reset Reset
Internal Operation Stopped Stopped
DQ, GQ, and 0Q Pointers Setto 0 Setto 0




vPD7281

Figure 5. uPD7281 Operation Modes

Normal Mode

Run and PRGM
DOWNLOAD

SETBRK Token CBRK Token

Queue Overflow

Hardware Reset Hardware Reset

CRESET Token CRESET Token

Test Mode Break Mode

Qutputs Error Token

May Use DUMP
to Examine Contents

Program Debugging Mode Queue Overfiow
Sets Break Condition CBRK Token

Break Condition

48-000066A

Figure 6. SETBRK (Set Break Condition) and SETMD (Set Mode) Token Formats

SETBRK Token Format
15 12 11 10 43 0 15 i)
[ MN 1 0 I [[2] IO 11 U“ L) l COUNT

1 = Timer Count
0 = Event Count

Eveni Count: Breaks after the iD Link Table entry has been accessed a specified number of times.

Timer Count: Breaks after a specitied number of internal pipeline clock cycles.
49-000067A

SETMD  [Set Mode) Token Format
15 12 11 10 43 0 15 14 13 12 11 43 0
[_ MN I 0 I [1+] o 1 © 1” 0 I 0 I I I Refresh Count IIRSD

L[_H J |
N

Input Control

00 = No Input Restriction
01 = Input Inhibited

11 = Not Allowed

Retresh Count

To generate refresh cycles [2ms min] for LT, FT, DM and Q.
Relresh Counter must be adjusted for different externai clock frequencies.

Detault Value = 0AH [for 10MHz external clock]

1IRS D [Input Inhibit Register Set Data]

Every nth pipeline clock cycle, the input inhibit is released, were n = [IIRSD| x 8
49-000°248




NEC

uPD7281

Input/Output Tokens

The only way any external device can communicate
with the uPD7281 is by using the |/O tokens (see figure
7). Both the input and the output tokens have the same
format so that a token may flow through a series of
multiple processors without a format change. A 32-bit
1/0 token is divided into upper and lower 16-bit words
and input to or output from the uPD7281 a 16-bit word
at a time. Object code is down-loaded into the Link

Table and the Function Table using SETLT, SETFTR,
SETFTL and SETFTT input tokens. The contents of the
Function Table and the Link Table can also be read
using RDLT, RDFTR, RDFTL and RDFTT tokens. In
order to write or read a value to and from the Data
Memory, a program must be down-loaded and ex-
ecuted. Once object code is down-loaded into the
uPD7281, data tokens are input to the processor,
thereby initiating the processing. For a description of
the input and output tokens, see tables 3 and 4.

Figure 7. Input/Output Token Format

- High Word { Low Word ‘

15 12 1110 43 015 0

l MN r4 [} CTLF { Data —I

MN: Module Nujmber Z: Always Zero
1D: Identitier CTLF: Control Field
Table 3. Input Token Format
Input Token High Word (16) Low Word (16) Remarks
MN (4) Q1) 1D (7) CTLF (4) DATA (16)
15 12 11 10 4 3 0 15

SETLT MN 0 LT address 1100 Data to be setin LT Set LT
SETFTR MN 0 FT address 1101 Data to be setin FTR Set FT Right Field
SETFTL MN 0 FT address 1110 Data to be set in FTL Set FT Left Field
SETFTT MN 0 FT address 1111 Data to be setin FTT Set FT Temporary Field
RDLT MN 0 LT address 1000 Read LT
RDFTR MN 0 FT address 1001 Read FT Right Field
RDFTL MN 0 FT address 1010 Read FT Left Field
RDFTT MN 0 FT address 1011 Read FT Temporary Field
CRESET MN 0 0100 Command Reset
SETMD MN 0 0101 Mode set data Set Operation Mode
SETBRK MN 0 D 0110 M (1) Count (15) Set Break Condition
DUMP MN 0 xxxx(4) DUMP (3) 0111 Dump
CBRK 0000 0 0100 Command Break
VAN 1111 0 Vanish Data
PASS MN* 0 Pass Data
EXEC MN 0 D 00CS Data Normal Execution Data

* When MN is not the current module number

x: Don't care




1PD7281

NEC

Table 4. Output Token Format

Output Token Upper-Order Word (16) Lower-Order Word (16) Remarks
MN (4) ) 07 CTLF (4) DATA {16)

15 12 n 10 4 3 015 0
LTRDD 0000 0 LT address 1000 Data read from LT FT Read Data
FTRRDD 0000 0 FT address 1001 Data read from FTR FT Right Field Read Data
FTLRDD 0000 0 FT address 1010 Data read from FTL FT Left Field Read Data
FTTRDD 0000 0  FT address 1011 Data read from FTT FT Temporary Field Read Data
PASSD MN 0 D CTLFD Data Pass Data
ERR 0000 0 0000O0O0O 0100 MN(4)MODE(4) 0 0 0 STATUS(S) Error Data
DUMPD 0000 0 000 0 DUMPQ3) 0111 Dump data Dumped Data
ouTD MN 0 D 00CS Data Output Data

Instruction Set Summary
Tables 5 through 8 summarize the instruction set.
Table 5. AG/FC Instructions

Table 6. PU Instructions (cont)

Mnemonic Instruction Mnemonic instruction
QUEUE Queue MUL Multiply
RDCYCS Read cyclic short NOP No operation
RDCYCL Read cyclic long ADDSC Add and shift count
WRCYCS Write cyclic short SUBSC Subtract and shift count
WRCYCL Write cyclic long MULSC Multiply and shift count
RDWR Read/Write Data Memory NOPSC NOP and shift count
RDIDX Read Data Memory with index INC Increment
PICKUP Pickup data stream DEC Decrement
COUNT Count data stream SHR Shift right
CONVO Convolve SHL Shift left
CNTGE Count generation SHRBRV Shift right with bit reverse
DIVCYC Divide cyclic SHLBRV Shift left with bit reverse
DIV Divide CMPNOM Compare and normalize
DIST Distribute CMmP Compare
SAVE Save ID CMPXCH Compare and exchange
cut Cut data stream GET1 Get one bit
SET1 Set one bit
Table 6. PU Instructions
CLR1 Clear one bit
Mnemonic Instruction
- ANDMSK Mask a word with logical AND
OR Logical OR
- ORMSK Mask a word with logical OR
AND Logical AND
- CVT2AB Convert 2’s complement to sign-magnitude
XO0R Logical EXCLUSIVE-OR
- — CVTAB2 Convert sign-magnitude to 2's complement
ANDNOT Logical INVERT an operand then AND: (AeB)
ADJL Adjust long (for double precision numbers)
NOT Invert
ACC Accumulate
ADD Add
COPYC Copy control bit
SuB Subtract

212



NEC uPD7281

Table 7. GE Instructions AG/FC Instructions
Mnemonic Instruction There are 16 AG/FC instructions (see table 10). They
COPYBK Copy block can be grouped into three types: Address Generator
COPYM Copy multiple (AG), Flow Controller (FC), and AG/FC type.

- : R WR
SETCTL Set control field QSV\%{?;DTS)((:YCSY DCYCL, CYCS, WRCYCL,
Table 8. OUT Instructions FC type: PICKUP, COUNT, CUT, DIVCYC, DIV, DIST,
Mnemonic Instruction CONVO, SAVE, CNTGE
ouT1 Output 1 token AG/FC type: QUEUE
ouT2 Output 2 tokens A 4-bit OP code in the Function Table right field

specifies the instruction to be executed.
There are four different types of instructions which can

be specified by the SEL field of an FT token. See table 9.
15 14 13 1210 9 8 7 6 5 4 3 2 ) 0
Table 9. SEL Field of an FT Token :Tf{d{ OF code Varies with Instruction [
el
SEL Type Description
11 AG/FC  Executes instructions specified by the Function Table
Right field while monitoring the Function Table
Temporary field. QUEUE
01 PU Performs arithmetic, logical, barrel-shift, bit- For a two-operand instruction, a QUEUE instruction is
manipulation, data-conversion, etc. used to temporarily store the first operand token in the
10 GE Generates a block or multiple new tokens from a token. Data Memory until the second operand token arrives.
Sets the control field of a token. Increments or The maximum Queue size is 16. See figure 8.
decrements the data field of a token.
00 O0uT Outputs data tokens from the circular pipeline to the
Output Queue after the tokens are finished being
processed.
Figure 8. QUEUE Instruction
[, FTR - . - T -
15 121 413 0 9 . 8 v7 43 0
'i o 1 1] DM Base (x2') | QUEUE Size  |A/BIW/RI Read Counter  Write Counter
| 14
| 2
O
QUEUE

ADD

Note: See Data-fiow Graph Explanation [figure 27] for the explanation of figures.

49-0006724

%5-13



uPD7281

NEC

RDCYCS [Read Cyclic Short]

RDCYCS reads 18-bit data words from the Data
Memory cyclically (see figure 9). The first data to be
read is specified by the DM Base address. The last data
to be read is specified by the buffer size. The Read
Counter (RC) contains the offset address from Data
Memory Base (DMB) address. It is incremented each
time the Data Memory is accessed. The maximum
buffer size is 16.

Figure 9. RDCYCS Instruction Operation

|

DM

]
z
@
H
L3
.. Bufter Size

43-000074A

RDCYCS Instruction Field Format
FTR

FTT

43

o
-
0

s+

43

T
I
DM BASE [x 21] |
I
I

T
|
1
'
i

Buffer Size Read Counter

49-000073A

RDCYCL [Read Cyclic Long]

RDCYCL reads 18-bit data words from the Data Memory
inacyclic manner like RDCYCS but has alonger cyclic

range. The first data to be read is specified by the DM
Base address. The last data to be read is specified by
the buffer size. The maximum buffer size is 256.

RDCYCL instruction Field Format
I FTR

e

15 87

S+

87

o

1211
; T
t 0 o o;DMBne[lzs}[

L i

Buffer Size

Read Counter

49-000075A

WRCYCS [Write Cyclic Short]

WRCYCS writes 18-bit data words into the Data
Memory cyclically. The first the Data Memory address

is specified by the DM Base address. The last address
is specified by the buffer size. The maximum buffer
size is 16.

WRCYCS Instruction Field Format
FTR

FTT

43

. B

a3 (4]

T
DM Base [x 21] }
i
1

T T
|

Bulfer Size i Write Counter
I

43-0000764

WRCYCL [Write Cyclic Long]

WRCYCL writes 18-bit data words into the data memory
inacyclic manner similar to WRCYCS but has alonger

Za-14

cyclic range. The first DM address is specified by the
DM Base address. The last address is specified by the
buffer size. The maximum buffer size is 256.



NEC

WRCYCL instruction Field Format
IL FTR f“ FTT |
15 1211 87 09 87 1]
T T T
1 o 0o 1 : DM Base [x 25) ; Butter Size , Write Counter J
! H I 1
43 20LTTA

RDWR [Read/Write Data Memory}

RDWR is used to write or read data to and from the
Data Memory. This instruction reads/modifies/writes
the Data Memory with the Address Register as index.

If a token arriving at the instruction has FTRC bit = 0,
then the instruction performs a DM read operation. If it
has FTRC bit = 1, then the instruction performs a DM
write operation.

For a token with the FTRC bit = 0, the actual DM
address location to be read is determined by the sum of
the following three values: 8-bit Address Register (AR),

FTRC =0

the lower eight bits of the data field of the token, and
the DM Base address. After the read operation, the
lower eight bits of the token’s data field is added to the
value of AR. Additionally, the data field of the token is
replaced by the contents read from the Data Memory
location.

If atoken with FTRC bit=1is used along with RDWR, a
write operation is performed. The Data Memory address
location is determined by the sum of 8-bit AR and DM
Base address. The 18-bit data from the token is written
into the DM address calculated. After the write
operation, AR is reset to 00H.

FTRC=1

Betore Read Operation

8 7 [
Q AR —I
8 7 0
[ 0 I Lower 8 Bits of Data Field ]
8 1 0
_.H OM Base Address [ 0 ]
8 0
o2 Address
After Read Operation
7 0
L an ]
7 0
+L Lower 8 Bits of Data Field ]

Betore Write Operation

LT - N

OM Base Address

-|

[ DM Address -I

After Write Operation

43-000080A

C - N

49-000079A

RDWR Instruction Fieid Format

FTR B CFTT |
15 12 1 43 09 8 7 0
T T 1 T
o 1 o o DM Base ! - : Address Register
1 |
fx 21) | |
H | L

49-C300754A

394-15



uPD7281

NEC

RDIDX [Read Data Memory with Index]

RDIDX is used to read the contents of the Data
Memory. This instruction is most useful when a part of
the Data Memory is used as a look-up table. The
RDIDX instruction performs different operations
depending upon the FTRC bit of the token using the
instruction. If the FTRC bit = 0, then the instruction
reads a Data Memory location. The DM address
location to be read is determined by the sum of the
following three values: the 8-bit AR, the lower eight bits

of the token’s data field, and the DM Base address.
After the read operation, the data field of the token is
replaced by the contents of the Data Memory location
read. The value of AR is reset to zero after the
operation.

If the FTRC bit = 1, no operation is performed on the
Data Memory. However, the token’s AR contents are
replaced by the modulo-256 sum of the lower eight bits
of data field and the current contents of AR.

FTRC =0 FTRC =1

Betore Read Operation z g
g7 0 [ AR ]

L] B |
7 0
8 7 [ +[ Lower 8 Bits of Data Field ]

L [ I Lower 8 Bits ot Data Field ]
7 0

8 0
+| DM Base I 0 ] [ AR J

8 Q

I OM Address ]

After Read Operation

RDIDX Instruction Field Format

15 1211 43

FIT— - -

DM Base [x 21]

)

Address Register [AR]

29-3000EZA

24-16



NEC

uPD7281

PICKUP [Pickup Data Stream]

Thisinstruction picks up every (n+1)thtoken froma stream
ofincoming tokens and increments the (n+1)thtoken's ID
field by one. The number n is specified by the Count

Size (C8) of the Function Table Right field.
Figure 10 illustrates the PICKUP instruction with CS = 3.

Note: These figures use the data-flow graph convention. See figure
27, Data-flow Graph Explanation for the explanation of figures.

PICKUP Insiruction Field Format

87 1]

Count Size

4
-
o
L= |
‘

cs} -

Counter (C]

293000854

PICKUP

ouTH

49-000083A

43-3000844

COUNT [Count Data Stream]

COUNT copies every (n+1)th token from a stream of
incoming tokens and increments the copied token’s ID

field by one. The number n is specified by CS of the
Function Table Right field. Figure 11 illustrates the
COUNT instruction with CS = 3.

COUNT Instruction Field Format

o 4

Count Size [CS)

T
1 Counter [C]
I
.

49-3001368

33- 17




wPD7281 NEC

Figure 11. COUNT Instruction

cs=3

]
|
|

4/4 it/a

ouT2

ouT
439-000087 A SrlTlTzas
CONVO [Convolve] Figure 12. CONVO Instruction
CONVO instruction is used to perform cumulative
operations such as ZA; or I1A;. The CONVOQ instruction e mETT e
is best suited for convolving two sequences of the A B
same length. Figure 12 illustrates the CONVO instruc- J
tion by computing QUELE
n MUL
SUM = ZAi Bi~
i=1
Ci
The A sequence is input to IN1 while the B; sequence Gonvo
isinputto IN2. Together they are queued and multiplied '® 102 som- D a
to form the C; sequence. The Cy's arriving at CONVO -3 i
instruction are queued and added together to form the SUEVE
final answer SUM. The length of the summation, n, is
specified by the CS. ADD
CONVO Instruclion Field Format
| FTR | FTT
I~ |
15 12'11 8‘7 08 5T7 1' 0
T - Count Size [CS;] |- Counter [C: AJ
1 . i i

%3'18



NEC vPD7281

CNTGE [Count Generation] Figure 13. CNTGE Instruction

CNTGE is normally used with COPYBK (Copy Block)
to generate more than 16 copies of a single token (see
figure 13). This instruction has both the dead (inactive)
state and the wait (active) state. The instruction starts
in the dead state. The FTRC bit = 0 tokens that arrive 1
during the dead state of instruction are output to the ID
+ 2 token stream. It enters the wait state when a token
with FTRC bit =1 arrives and the token is output to ID CNTGE
token stream. Once the instruction is in the wait state, g: ::
itcounts the number of tokens arriving with FTRC bit= COPYBK
0, outputting them to the ID token stream, until the
number exceeds the number specified by CS. If Counter
(C) reaches the number specified by Count Size (CS),
the instruction automatically enters the dead state. {
GS - 3

Tokens with the FTRC bit=1arriving at CNTGE while
the instruction is in the wait state are deleted by the
instruction. Once the instruction enters the dead state,
itcan be reactivated by the arrival of a token with FTRC 6s= ,{
bit=1.

-

q
o
q

-
o e e

D

1D -1

1
gcs:z
1
%csm
1
cs=0

[[+}

CNTGE Instruction Field Format

T T T
. 1 I

1 1 1 0 - ! Count Size {CS] Iw/Di . Counler {C:} -l
i [
L "

25-19



vPD7281

NEC

DIVCYC [Divide Cyclic]

DIVCYC divides anincoming stream of tokens into two
streams of tokens: an ID token stream and an ID + 1
token stream. The pattern in which the incoming
tokens are divided is specified by the Divide Size (DS)
and Count Size (CS). The DS specifies cycle size
whereas CS specifies the number of consecutive
tokens to be in the ID stream. The first CS + 1 tokens
are output to the ID token stream. The following
consecutive (DS - CS) tokens are output to the ID + 1
token stream.

Figure 14 illustrates the DIVCYC instruction with
DS = 7 and CS = 2. Note that an incoming stream of
tokens is divided into a stream of ID tokens and a
stream of ID + 1 tokens with a cycle of 8 tokens. Since
CS = 2, the number of ID tokens in one cycle is 3, the
number of ID + 1 tokens in a cycle is 5.

Figure 14. DIVCYC Instruction

1D o -1

49-0000934

DIVCYC Instruction Field Format
|l FTR

o FTT

15 1211 87 43

09 87 43

T
Count Size [CS) ;DivideSize[DS} -
1

Counter {C] Counter (C]

o _Y

T
|
|
'
i

49-000092A

Sa- 20



NEC vPD7281

DIV [Divide] Figure 15. DIV Instruction
DIV with CS = n divides an incoming stream of tokens
with FTRC bit=0into two streams of tokens: ID tokens Fraeso Frme™t

and ID + 1tokens. Thefirst (n + 1) incoming tokens with
FTRC bit=0are outputas the ID tokens, and the rest of
the incoming tokens with FTRC bit = 0 are output as
ID + 1 tokens. An incoming token with FTRC bit =1 is
used to reinitialize the DIV instruction. The stream of
input tokens with FTRC bit = 0 after the reinitialization
isagain divided into astream of (n + 1) ID tokens followed
by ID + 1 tokens. A token with FTRC bit = 1 which
reinitializes the DIV instruction is deleted from the
output token stream. A DIV instruction with CS =3 is cs=3
illustrated in figure 15. The 10th and 16th input tokens
have FTRC bit = 1, so they reinitialize the DIV

(b 16

“NLAO NDO

instruction. & s
[D1a
13
CsS~1=4 12
"

9

8

7

6

— 5
4
_aiC3
CS-1=4 2
ROA

10 10 -1

Note: Tokens {10] and [16] are deleted

DIV Instruction Field Format

FTR | FTT |
) i h
15 121 87 09 8 7 0
T s T
Co
L1 ot 1 Count Size [CS] S/F -1 Counter [C!
; L
"

33' 21



uPD7281

NEC

DIST [Distribute]

DIST is used to divide a stream of incoming tokens
with the same ID into more than one stream of tokens
with different IDs (see figure 16). The AID size
determines the maximum number of output token
streams the instruction can have. AID is the value
added to an incoming token’s |D field to form the ID
field of the output token. The AID field is initially set to
zero, and it is incremented by one after a token with
FTRC bit = 1 passes through the instruction. However,
a token with FTRC bit = 0 has no effect on the value of
AlDfield. If the value of AID before being incremented
by a token with the FTRC bit = 1 is equal to the
contents of the AlD size field, the AID field will be reset
to zero.

Figure 16. DIST Instruction

Initial state: A ID =0
When AID Size = 3

FTRC=0 FTRC=1

—“-nwa

ID~3
ID-11D -2 24
DIST Instruction Field Format
1 FTR ] FTT |
I T !
15 121 43 09 43 0
£ 1D size - O 1D

F---

49-0001035




NEC

vPD7281

SAVE [Save ID]

SAVE is used to set the value of the ID field of a token.
The instruction performs two different operations

depending on whether the token's FTRC bit is 1 or 0. If’

thetoken’s FTRC bit =0, the instruction copies the lower
eight bits of the data field into the Identifier Stack
Register (IDSR) field. However, if the token’s FTRC bit
is 1, the instruction replaces the token’s ID field with
the contents of IDSR.

Figure 17 illustrates the use of the SAVE instruction.
Token 1 assigns an ID field value of 10H to tokens 2, 3,
4 and 5, token 6 assigns an ID field value of 20H to
tokens 7 and 8, and token 9 assigns an ID field value of
30H to tokens 10, 11 and 12. In this example, tokens 1,6
and 9 are deleted after SAVE instruction.

Figure 17. SAVE Instruction

FRTC =1 E

12
"
10

FTRC =0

9 D oata

6 (D oaTa

1) oaTa

304

10H

SAVE

SAVE

N

10H 20H 30H
43-000106A

SAVE Instruction Field Format
[ FTR »le F >
f TR T FTT. -
15 21 09 87 []

T T

]

0 1 1 o : ! 1D Stack Register [IDSR]
i 1

49-000105A

35 23



uPD7281

NEC

CUT [Cut Data Stream]}

CUT is used to delete unnecessary tokens from a
series ofincoming tokens. The first n tokens arriving at
the instruction are deleted, where n is the value
contained in the CS field of the instruction. Initially the
S/F bit and the Counter (C) are set to zero. When a
token with its FTRC bit =0 enters the instruction while
S/F bit is zero, the token increments the Counter by
one and the token itself is deleted. As the first (n + 1)
tokens are deleted by the instruction, the Counter has
the same value as n, the contents of CS field. This
condition sets the S/F bit to 1. When the S/F bitis 1, a
token with its FTRC bit = 0 can pass through the
instruction without being deleted. However, if a token
with its FTRC bit = 1 passes through the instruction, it
resets the S/F bitto 0, thereby reinitializing the instruc-
tion. The token with its FTRC bit = 1 is also deleted
after reinitializing the instruction. Figure 18 illustrates
the use of CUT to delete tokens 7 and 12 and the three
tokens following them.

Figure 18. CUT Instruction

FTRC 0 FTRC 1

ey

49-000708A

CUT Instruction Field Format

FTT

: -+

¥

Count Size [CS]

Counter (C]

=
(.
'

49-0001G7A




NEC

1PD7281

Table 10. AG and FC Instructions

Mnemonic FTR (16) FTT(10) FTRC Operation
15141312{11109876543210{9 8 7 6 5 43 2 1 0 | (1)
DM Base Queue | A |W{Read Write
QUEUE |0 0 1 1|(x21 Size /| 1| Counter Counter Synchronize two tokens
(8) @ B|R|(4) {4
DM ?ase Buffer Read 0 DATA — (DMB + RC), RC — RC + 1
x2 Size Counter
RDCYCS {0 0 0 0 :DMB)) (8S) (6) (RC) DATA - (DMB + RC), RC — RC + 1, when BS = RC,
(8) @) (4) 1 copy with 1D + 1
DM Base Read 0 DATA — (DMB + RC), RC — RC + 1
RDCYCL | 1 0 0 0 (x25) Butfer Size ((2) | Counter 1 DATA — (DMB + RC), RC — RC + 1,vwhen BS =RC,
4 (8) (8) copy with ID +1
Base Buffer Write 0 (DMB + WC) — DATA, WC — WC + 1, delete token
WRCYCS | 0 0 0 1| (x21) Size (6) Counter 1 (DMB + WC) — DATA, WC — WC + 1, when BS = WC,
(8) (4) (WC) (4) token not deleted
DM Base Write 0 (DMB + WC) — DATA, WC — WC + 1, delete token
WRCYCL [ 1 0 0 1| (x25) Buffer Size ((2) | Counter 1 (DMB + WC) - DATA, WC — WC + 1, when BS = wc'“ )
(4) (8) 8) token not deleted
DM Base Address Register 0 DATA — (DMB + AR + DATA), AR — AR + DATA
RDWR 0100 1 4) 2) o
(x21) (8) (AR) (8) 1 (DMB + AR) — DATA, AR — 0
i 0 DATA — (DMB + AR + DATA), AR —0
RDIDX 10 10 1|PM ?ase @ 2 Address Register ( )
(x21) (8) (8) 1 AR — AR + DATA
Count Size Counter (C) | 0 When CS#C, C—C+1; when CS=C, distribute, C--0
PICKUP (1 10 0| (4) 2 s
(CS) (8) (8) 1 C — C + DATA, token deleted
Count Si Counte 0 When CS # C, C —C + 1; when CS = C, token,
COUNT |11 0 1| @ ount Size @ ounter A _eg when copy token
8) [C:) 1 S B
1 C — C + DATA, token deleted
S When S/F =0and C < CS, C— C + 1, delete token;
cuT 011 1]@ Count Size 7 Counter 0 when S/F =0 and C > CS, or when S/F =1, C — C+1,
(8) F (8) token not deleted
1 S/F -0, C - 0, token deleted
Count| Divide Counter Counter 0 When C = CS, C — C + 1, when C> CS, distribute,
DIVCYC (1 0 1 0| (4) Size | Size |[(2) 4) 4) C—C+1,C—C. WhenC=0DS,C-0
(4) (4) 1 C - C + DATA, token deleted
S 0 When S/F=0and C<CS,C -~ C+1; when S/F=0
DIV 101 1((4) Count Size 111 Counter and C > CS, or when S/F = 1, distribute, C —C + 1,
(8) F (8) 1 S/F -0, C— 0, token deleted
AlD 0 1D — (I0 + AlD) modulo AID size
DIST 0010)(8 Size (6) AlD 1| When AID  AID size, ID—(ID+AID) modulo AlD size,
(4) 4) AID — AID + 1. When AID = AlD size, AID — 0
Count Size Counter When CS#C,ID — D+ C (modulo 2),C~C+ 1,
CONVO 11 1 111 1 @ @ | when CS = C, ID—1D +2,C ~ 0
ID Stack Register 0 IDSR — Lower 8-bit of DATA
SAVE 0110 (12) 2)
(8) (IDSR) 1 ID — IDSR
Count w Counter 0 When dead, 1D ~ 1D + 2; when wait, if C=CS, C -0,
CNTGE |1 1 10| Size /(1) (8) W/D = 0; when wait, if C> CS, C—C + 1
(8) D 1 When dead, initialization; when wait, delete token

33, 25



wPD7281

NEC

PU Instructions

11211 109 87 6 54 3 2 1
BTC
out [r| Y
cle

X
FTL field |F/L: C PNZ

F/L: Full/Left
XCH: Exchange
OUT:Output
BRC: Branch Control
CNOP: C-Bit NOP
PNZ: Positive, Negative, or Zero
OP: Op code
49-0001994

PU instructions (see table 20) are stored in the Function
Table Left field of the Function Table memory. The bits
0 through 11 are used as control information for the
Processing Unit. The bits 12 and 13 are deleted before
the token arrives at the Processing Unit. Two operands
from the A and B sides are operated on by the
Processing Unit and the result is output to the Xand Y
sides (see figure 19).

Figure 19. The Processing Unit

A side B side

Ca Sa DATAa Cs Sp DATAp

Cy Sy DATAy
Cx Sx DATAx

Bit Assignments

F/L [Full/Left}: F/L bit = 0 indicates that the PU
instruction is a one-operand instruction, and only the
Function Table Left field is meaningful. F/L bit = 1
indicates that the PU instruction is a two-operand
instruction, and both the Function Table Left field and
the Function Table Rightfield are meaningful. Therefore,
when F/L bit = 1, the PU instruction is used in
conjunction with an AG/FC instruction.

XCH [Exchange]: This bit controls the exchange
operation. Operands will be exchanged just before the
two tokens enter the QUEUE when XCH = 1.

OUT [Output]: There are four different PU output
token formats. The two OUT bits specify the output
token format. See table 11.

Table 11. OUT Bits
First Output Second Output
OUT Bits No. of Qutputs ID DATA,C,S ID DATACS
00 1 D X1
01 1 D Y2
10 2 1D X ID+1 X
11 2 1D X D +1 Y

Notes: 1. This is the 18-bit result of the operation output to the X

side. It includes the Cy and Sy bits.

2. This is the 18-bit result of the operation output to the Y

side. It includes the Cy and Sy bits.
BRC [Branch Control]: The BRC bit controls the flow
of the PU output data token. The output data token
may be output to either the ID token stream or the
ID + 1 token stream. When the BRC bit is set to 1 and
the C bit of the PU output data tokenis also 1, the output
datatokenissenttothe |ID + 1 token stream. But when
the BRC bit is set to 1 and the C bit of the output data
token is 0, the token is sent to the ID token stream.
Therefore, using the BRC bitimplements a conditional
branch on C.
CNOP Bit: This bitinforms the Processing Unit whether
or not the incoming token should be processed. If the
CNOP bitis set, and the Cp bitis notequal to the Cg bit,
then the token passes through the Processing Unit
with no operation performed. See table 12.

Table 12. CNOP Bit

Ca Cg PU Operation

0 0 Processing specified by the OP code is
performed.

0 1 Token passes through the Processing Unit as
NOP.

1 0 Token passes through the Processing Unit as
NOP.

1 1 Processing specified by the OP code is
performed.

PNZ [Positive, Negative, Zero] Field: The PNZ field is
used to test the resulting condition of the PU operation.
If the resulting condition matches the condition set by
the PNZ field, then the C bit of the output data token is
set to 1. See table 13.



NEC uPD7281

Table 13. PNZ Field OP Code Field: This 5-bit OP code field specifies the PU
Assembier operations to be performed. See table 14
P N2 Condition Cx Oy Description Table 14. OP Code Field
0 0 0 No condition set Ca Cp Instruction Mnemonic Opcode
0 0 1 Resultofoperation=0 1 1 EQ Logical OR 00000
Result of operation=<0 0 0 AND 00001
0 1 0 Resultof operation<0 1 1 LT XOR 00010
Result of operation=0 0 0 ANDNOT 00011
0 1 1 Resultofoperation=0 1 1 LE NOT 01100
Result of operation>0 0 0 Arithmetic ADD 11000
1 0 O Resultof operation>0 1 1 GT ADDSC 11100
Result of operation<0 0 0 Sus 11001
1 0 1 Result of operation=0 1 1 GE SUBSC 11101
Result of operation<0 0 0 MUL 11010
1 1 0 Result of operation=¢ 1 1 NE MULSC 11110
Result of operation=0 0 0 NOP 101
1 1 1 Overflow generated 1 1 OVF NOPSC 11111
No overflow generated 0 0 INC 01010
DEC 0101
Shift SHL 00100
SHLBRV 00101
SHR 00110
SHRBRV 00111
Compare CMPNOM 01000
CMP 01001
CMPXCH 10001
Bit maniputation GET1 10101
SET1 10110
CLR1 10111
Bit check ANDMSK 01101
ORMSK 10000
Data conversion CVT2AB 01110
CVTAB2 0111
Double precision adjust ADJL 10100
Accumulative addition ACC 10010
C bit copy COPYC 10011

33* 27



uPD7281

NEC

Logical Instructions

These instructions perform 16-bit logical operations
on DATAA and DATAg. Usually there are no changes
in C and S bits between the input token and the output
token, however C bits can be affected by PNZ condition
when specified.

OR, AND, XOR: These instructions perform 16-bit
logical OR, AND, and XOR operations using input data
tokens from the A and B sides of the Processing Unit.
The 16 bit result is output to the X side.

ANDNOT: This instruction first complements DATA,
and then performs logical AND operation with DATAg.
The 16-bit result is output to the X side.

NOT: This is aone-operand instruction which requires
16-bit data input from the A side only. The B side input
is ignored. This instruction complements the 16-bit
input data from the A side. The 16-bit resultis output to
the X side.

Arithmetic Instructions

These instructions perform 17-bit (including the sign
bit) arithmetic operations on DATA 5 and DATAg. When
a PNZ condition is specified, the C bits of output data,
Cyx and Cy, reflect the setting. However, if no PNZ
condition is specified (i.e., PNZ = 000), then Cx <~ Ca
and Cy - Cg.

ADD, SUB: These instructions perform addition or
subtraction on DATA, and DATAg along with the sign
bits, Sp and Sg. The result is output to the X side.
DATAy is normally 0000H. However, if an overflow
occurs, then DATAy is equal to +0001H (Sy = 0). If an
underflow occcurs, then the DATAy is equal to — 0001H
(Sy =1).

MUL: This instruction multiplies DATA and DATAg.
The correct sign bit for the product is determined from
Sa and Sg. The 33-bit result including a sign bit is
output as two 17-bit words, Sy and DATAY, followed by
Sy and DATAy. DATAy is the upper 16-bit word and
DATAy is the lower 16-bit word. Sy holds the resulting
sign bit, and Sy is a mere duplicate of Sy.

NOP: This instruction performs no operation on the
input token. The input data from A and B sides are
output to the X and Y sides, respectively, without any
change in their contents. If any control other than the
OP code (such as PNZ control, BRC control, etc.) has
been specified, the output complies with the control.

Shift Count Instructions

These four Shift Count (SC) instructions first perform
the normal operations, then count the number of
leading zeros in DATAy of the result, and finally output

53' 28

the number of zeros as DATAy (see table 15). These
instructions are provided for easy floating point
processing.

ADDSC, SUBSC,NOPSC: These instructions perform
addition, subtraction, or no operation. The number of
preceding zeros in DATAy of the result is output as
DATAy. ifan overflow or an underflow occurs as aresult
of an operation, DATAy contains + 0001H (Sy = 0) or
—0001H (Sy = 1), respectively.

MULSC: This instruction performs a normal multi-
plication operation using the two 17-bit data. The
upper order 16-bit data and its sign bit are output as
DATAy and Sy, but the lower 16-bit data is not output as
DATAy. Instead, the number of preceding zeros in
DATAy are counted and output as DATAy. The Sy bitis
always zero.

Table 15. Shift Count Operation
DATAy After Operation
1514 13 12 11 10 9 8

SC Output (Y)
Y Data

54321

[’J
-

X X 2 OO0 00O OOOOOCODOO
WK I MK KKK NN A2 ODOODOO

XK KK XXX NN TOOOO

*

76
00
00
00
00
00
00
01
1 x
X X
X X
X X
X X
X X
X X
X X
X X
X X

=X R-E-E-R-F-N-N -]
X tO0O0O00CO0COCOoCO0OO O
XX 40000000000
XX NN 2 DODOODOCOOODO
XX XXX TO00O0O00CO0OO O
XX XXX D OOOODODOOOO D
KHXXXXXX A OO0
MM KN K NNX K AODOOODODO OO
MR OK KKK KX NNXNN OO
MO X M XK KX XN KKK XX ADO
MM XK XK KK KX XXX XKXXX OO
COO0OCCCODOOOOODOODO
OO
OO0 OOOCODOOOO
OO0~
O N WA NP WOOMTMO
ITITIIIIXTIIIITIIIXITITT

>
>
>

Notes: * When an overflow or underflow has occurred
x don't care

Increment and Decrement Instructions

INC, DEC: These instructionsincrement or decrement
the 17-bit data from the A side (Sa and DATA,), and
outputs the result to X side as Sy and DATAx. The Sy
and DATAy are normally zero. However, if an overflow
oran underflow occurs, then the Y side outputs +0001H
(Sy =0) or — 0001H (Sy = 1), respectively.

Shift Instructions

SHR [Shift Right], SHL [Shift Left]: SHR or SHL
instructions perform a barrel-shifting operation on the
16-bit data, DATAA. The actual number of shifts and
the direction is further specified by the lower five bits
of DATAg and Sg, respectively. See figure 20 for
detailed operation explanations.



NEC

uPD7281

Figure 20. SHR and SHL

Right Shift {SHR execution|

Left Shift [SHL execution}

Lower 5 bits' Lower 5 bits
Sg| “(:l [;,A;A:lgsy DATAx DATAy Sa. (:LIIZ’A:":?” DATAx DATAy
of v0000 | [ AwAw Ao ] 1 [ 0.0 ] of sovoo [ A5 Ara A1 Ag [ 0.0 ]
o| oooo1 lo[ ArsAraAr T Bl [} ] of o001 | Ave- A o[ 0.0
of sooro | [oo] At Az BREES 0.0 | ol eooro | [ AvaA foo} | 0.0 A
of 0oo11 [o“.o [ Ars..Az ] (A‘j'Aul 0..0 _] of 00011 [ Av2..Ag [ o...uj L 0.0 l‘,‘; ‘H
of 00100 | [om0 [ Avs.. A | | [2o-20] 0.0 ] of a0100 | [ ArrAo Joo ] [[ oo [ais#1q]
ol o010t | [ oo | v, As | | [reto [ 0.0 ] of ooros | Avo.Ro [ o0 ]| 0.0 {5 An
of co110 Ln.,.o ] Avs..Ag ] [ As..Ao [ 0.0 | o|cot10 r Ag..Ag ] 6.0 [ | 0.0 T Ars... Arg ]
ofoortir |[ o0 | as.ar | [ As-m0 | 0.0 | ojoortr | [ aa | wo [I[ o0 [ A |
of 01000 r 0.0 J Ars.Ag ‘] L A7 Ag ] 0.0 J of 01000 L Az..Ag ] 0.0 j [ 0.0 ] Ars...Ag j
of 01001 L 0.0 ] Ars-As | [ Ag..Ag [ oo 1 ol o100t | [ AcAs | 0.0 ] [o0 [ asar ]
ol ototo || 0.0 [ asan | { [ Asao [ o] o 01010 | [ as.as | 0.0 j [ 0.0 | A5 As T
o a1011 L 0.0 ]Aﬁ...n,‘] L Arg..-Ag [ 0.0 ] ol 01011 LA....A‘, ] 0.0 REIEEN Ars.. As ]
o| 01100 [ 0.0 IA|5--A|;] L Ary... Ap l 0.0 ] o| a1100 [A;...Ao[ 0.0 ] [ 0.0 [ Ars... A j
of 01101 L 0.0 [%H L Az Ao W of 01101 E,--Aol 0.0 j [ 0.0 [ Ats... Ay ]
XL | ECR— | —r— P E I | | —era—
oforr1r | ] 0.0 Wi Ave Ao G| o 01111 @» 0.0 ]| [f Ars.Ar ]
of 1xxxx I 0.0 ] [ Ars..A1 Ao ] o] 1xxxx r 0.0 J [ Ars...Ag T
1| o000 | [ A5 Ata-Ar Ag 1 [ 0.0 | 1} 00000 | ArsAreA1Ag HisE 0.0 J
1| 00001 L Arg.. R0 o | [ 0.0 A 1| 00001 hL ArsAtan A ] ’3] 0.0 ]
1) gooto | [ Avs..Ag oo | [ 0.0 AR 1| 000t | [oo] Brs A2 ]t 53] 0.0 ]
1] 00011 | ] ArzAg [o.0] | [ 0.0 [4:4) 1| eoot1 | [oa] Ars A3 ] | [aaad] 0.0 ]
1] 60100 | [ Arr...Ao [oo ]| [ 0..0 Jaisas) 1| 00100 | [oo | AroAs | | [Ash0 o
1] o010 | [ A0 Ao [ o0 ]| 0.0 [Arsan] tloot0r [ oo Ars. As V| [#e-t0 | 0.0 ]
1] 00110 ‘ Ag..Ap l 0.0 | [ 0.0 | A‘S...Aw] 1] 00110 L 0.0 1 AvsAs | LAS___AU [ 0.0 1
tjoo1nr | [ apae [ oo [ oo [ A | Hoeorrt | [To0 | A As...A 0.0
1] 01000 [ A7..Ag | 0.0 —l [ 0..0 J A15U.Agj 1| 01000 [ 0.0 1 Avs. Ag J [ Ar Ao ] 0.0 J
1| 01001 r As.Ag | 0.0 j [ o0 [ asar ] 101001 [ 2.0 [ At ] r A5 Ao I 0.0 1
101010 | [ asa | 0.0 ] [o0 ] A ] totero ] 0.0 [awan || [ At [ oo ]
v{orors | [Aca | 0.0 IRNIEER A5 Ay | vjerern | [ o0 [asan] | [ Ao Ao T o0 ]
1] 01100 | [as.a] 0.0 J | o0 ] Auhs tletreo f 0 Tasang] | [ PV o0 ]
101101 M 0..0 ] [o..o [ Avs...Ag ] 1101101 L 0.0 I“‘é'ﬂ L Az Ro ] o.v.ﬂ
tlorrro |34 0..0 IR Ars... Az ] tlorrre | [ 0.0 B 2raAo Joe
101111 @7 0.0 11 e Ass... Ay | ertn | [T 0.0 B Ava Ag To]
oo | [ 0.0 R Ays--Ao ] T oo | [C 0.0 11 Ars.Ar Ag ]

000TITC 43-000738C



1PD7281

NEC

SHRBRV [Shift Right with Bit Reverse], SHLBRV
[Shift Left with Bit Reverse]: SHRBRV or SHLBRYV first
reverses the order of the bits in DATAA and then
performs anormal SHR or SHL operation, respectively.
See figure 21.

Compare Instructions

The Compare instructions (see table 16) are different
from other PU instructions in that PNZ conditions
must be specified along with the instructions. When a
compare instruction is used along with a specified
PNZ field, the Processing Unit performs a subtract
operation. This subtract operation produces a set of
PNZ flags, which are compared against the PNZ field
specified by the instruction. When these two PNZ
fields coincide, the specified PNZ conditions are said
to be true. When they do not coincide, the specified
PNZ conditions are said to be false (see table 17). The
output data from the Processing Unit differs signifi-
cantly depending on the PNZ conditions. The following
three instructions compare the 17-bit data (S5 and
DATA,) from the A side against the 17-bit data (Sgand
DATAg) from the B side.

CMPNOM [Compare and normalize]: If the specified
PNZ conditions are false, then the control bits, sign
bits and data for both the X and Y sides are set to zero.
I1f the PNZ conditions are true, then Cyx and Cy are set
to one, Sx and Sy are set to zero, DATAy is set to
0001H, and DATAy is set to 0000H.

CMP [Compare]: This instruction outputs the 17-bit
data words from the A and B sides to the X and Y sides
without any change in their contents. It only alters the
control bits. If the specified PNZ conditions are true,
then Cxand Cy are setto one. If the PNZ conditions are
false, then Cy is set to one and Cy is set to zero.

CMPXCH [Compare and exchange]: If the specified
PNZ conditions are true, then both the input data from
the A side and B side are unchanged and output to the X
side and Y side, respectively, including their sign bits
and the control bits. However, if the PNZ conditions
are false, then the input data from the A side is
exchanged with the input data from the B side, in-
cluding the control and sign bits.

Table 16. Compare Instructions

Figure 21. Bit Reversal Operations in SHRBRV and
SHLBRY
MSB LSB
As 1 w1z 1m0 9 8 75 s a3 21 Ao Betore
mMsB__ LSB
|A012345570'mnl:1314A|sJ After

Table 17. PNZ Field Conditions for Compare

Instructions
True/

PNZ Condition False Function Maemonic
0 0 1S5 DATA, =SgDATAg  True Equal EQ

Sp DATAp + Sg DATAg  False Not equal
0 1 0 Sp DATAp < Sg DATAg True Less than LT

Sp DATA, = Sg DATAg  False Greater or equal
0 1 1S5 DATA,=Sg DATAg  True Less or equal LE

False Greater than
Greater than GT
False Less or equal

Sp DATA, > Sg DATAR
1 0 05p DATAp > Sg DATAg
Sa DATA, < Sg DATAg
1 0 154 DATA = Sg DATAg
Sp DATAp < Sg DATAg
1 1 05p DATAp # Sg DATAg
Sp DATAL = Sg DATAg

Note: The significance of the PNZ bits when Compare instructions
are executed differs from that of other instructions. Here, the
use of PNZ = 111 or 000 is prohibited.

True

True Greater or equal GE

False Less than
Not equal NE
False Equai

True

input

Mnemonic Notes
Cp Sa DATAp Cg Sg DATAR Gx Sx DATAx Cy Sy DATAy

CMPNOM Ca Sa A Cg Sp B 0 0 0000H 0 0 0000H When PNZ is Faise
Cao Sa A Cg  Sg B 1 0 0001H 1 0 0000H When PNZ is true

cMP Ca Sa A Cg Sg B 0 Sa A 0 S B When PNZ is false
Can Sa A Cg Sg B 1 Sa A 1 Sg B8 When PNZ is true

PNZ i

CMPXCH CA Sa A Cg Sp B Ca Sa A Cg Sg B When PNZ is true

Can Sa A Cg Sp B Cg Sp A Ca Sg A When PNZ is false

%’ 30



NEC

vPD7281

Bit Manipulation Instructions

GET1 [Get one bit]: This instruction is used to read a
particular bit from DATA, (seetable 18). A bitof DATA,
specified by the lower 4 bits of DATAg is output as the
least significant bit of DATAx. Ali other bits of DATAx
are set to zero. DATAYy is also set to zero. The control
bits and the sign bits of DATAx and DATAy are as
follows: Cx~ CA, Cy - CB, Sx < Sa, Sy < 0.

SET1 [Set one bit]: This instruction is used to set a
particular bit of DATAA. The bit of DATAA to be set is
specified by the lower 4 bits of DATARg. After the bit is
set, the 16-bit result is output as DATAy. DATAy is
always output as zero. The control bits and the sign bits
of DATAx and DATAy are as follows: Cx — Cp, Cy < Cg,
Sx —~ Sa, Sy —0.

CLR1 [Clear one bit]: This instruction is used to reset a
particular bit of DATAa. The bit of DATA, to be reset is
specified by the lower 4 bits of DATARg. After the bit is
reset (cleared), the 16-bit result is output as DATAy.
DATAy is always output as zero. The control bits and
the sign bits of DATAx and DATAy are as follows: Cx —
CA, CY - CB, Sx e SA, SY - 0.

Table 18. Bit Addressing

of DATA, are ANDed together to set or reset the
control bits, Cx and Cy. If the result of the AND
operation is 1, then both the Cx and Cy are setto 1. If
the result of the operation is 0, then the both Cxand Cy
are set to 0. The rest of the output data fields are the
following: Sx — Sa, Sy — Sg, DATAx —DATA,, DATAy —
DATAg.

ORMSK [Mask a word with logical OR]: This instruction
tests certain bits in DATAp. The bits in DATA, to be
tested are first masked with a bit pattern in DATAg.
Only those bits in DATAA corresponding to the one bits
of DATAg are considered. Then only those masked bits
of DATA, are ORed together to set or reset the control
bits, Cx and Cy. If the result of the OR operation is 1,
then both Cx and Cy are set to 1. If the result of the
operation is 0, then the both Cxand Cy are setto 0. The
rest of the output data fields are the following: Sy — Sa,
Sy — Sg, DATAx — DATA,, DATAy — DATAR.

Data Conversion Instructions

CVT2AB [Converttwo’s complement to sign-magnitude):
This instruction converts a 16-bit number in two's
complement form to a 17-bitnumber in sign-magnitude
form. The sign of the two’'s complement number is
output as the Sy bit.

DATAg Bit CVTAB2 [Convert sign-magnitude to two’s comple-
3 2 1 0 DATA, Bit Position ment]: This instruction converts a 17-bit number
0 0 0 0 0 in sign-magnitude form to a 16-bit number in two's
0 0 0 ] ] complement form. This operation has the potential
danger of an overflow or an underflow. If an overflow or
0 0 ! 0 2 an underflow occurs, the Cx bit is set to 1.
0 0 ! ! $ Double Precision Adjustment Instruction
0 1 4 . L L .
0 0 ADJL [Adjustlong]: This instruction is used to adjust a
0 ! 0 ! 5 double precision number, in which the sign bits of the
0 1 1 0 6 upper and lower words are different. This situation may
0 1 9 1 7 occur after a double precision arithmetic operation.
The examples in table 19 illustrate the adjustments of
1 0 0 0 8 .
double precision numbers.
1 0 0 1 ]
1 0 1 0 10 Table 19. Double Precision Adjustment Examples
1 0 1 1 11 Input/Output Sign Data
1 1 0 0 12 Input High (A data) 0 1234H
1 1 0 1 13 Low (B data) 0 5678H
Output High (X data} 0 1234H
1 1 1 0 14 Low (Y data) 0 5678H
1 1 1 1 15 Input High (A data) 0 1234H
Low (B data) 1 5678H
Bit Check Instructions Output High (X data) 0 1233H
ANDMSK [Mask a word with logical AND]: This instruc- Low (Y data) 0 ASBBH
tion tests certain bits in DATA,. The bitsin DATA4 to be Input r'gh (é&ddata) (‘) 15(25%:
tested are first masked with a bit pattern in DATAg. Output H?;;]((X dztt?) 1 1233H
Only those bits in DATA corresponding to the one bits Low (Y data) 9 A988H

of DATAg are considered. Then only those masked bits

33*31



vPD7281

NEC

Accumulative Addition Instruction

ACC [Accumulate]: This instruction (see figure 22)
performs cumulative additions of incoming tokens’
data fields. The incoming tokens are classified into
type 1and type 2 tokens. A type 1token is deleted after
the ACC operation, but atype 2 tokenis not. Moreover,
a type 2 token reads the contents of the ACC register,
which contains the accumulated sum of tokens. When
atype 2 token reads the contents of the ACC register,
the ID field of the token is unchanged. However, if an
overflow has occurred prior to the arrival of a type 2
token, the 1D field is incremented by one. Only the
following three tokens qualify as type 2 tokens.

1. If the ACC instruction is used along with RDCYCS
instruction, and the token’s FTRC bit = 1, and the
Buffer Size and Read Counter of RDCYCS instruction
are equal.

2. If the ACC instruction is used along with RDCYCL
instruction, and the token’s FTRC bit = 1, and the
Buffer size and Read Counter of RDCYCL instruction
are equal.

3. If the ACC instruction is used along with COUNT
instruction, and the token's FTRC bit = 0, and the
Count Size and Counter of COUNT instruction are
equal.

C Bit Copy Instruction

COPYC [Copy control bit]: This instruction copies the

control bit of the A side and outputs it as Cy.

C)( han CA, Sx b SA, DATAX e DATAA, CY has CA,

Sy — Sg, DATAy — DATAg.

20 32

Figure 22. ACC Instruction

All Type 1 Tokens

No Outgoing Tokens 4% A

«——Type 2 Token

n Tokens
Type 1 Tokens

COUNT

CS=n
ACC

+]=—1t an overflow occurs

n
Sum = Z[DATA,J;
i=1

D ID-1

49-0001124




NEC

uPD7281
Table 20. PU Instruction (Sheet 1 of 3)
Input Output
Mnemonic  OP Code Ca Sy DATA, Cp S8p DATAg GCx Sy DATAy Gy SY DATAy Notes
Logical Operations
0R 00000 Cy Sa A Cg Sg B Cx Sn AORB Cy 0 0000H
AND 00001 Cy Sy A Cp Sg B Cx Sa AANDB Cy O 0000H
XOR 00010 Ca Sa A Cg Sg B Cx Sa AXORB Cy 0 0000H
ANDNOT 00011 Ca Sa A Cg Sg B Cx Sa AANDB Cy 0 0000H
NOT 01100 Ca Sa A Cx Sa A Cy 0 0000H
Arithmetic Operations
Ca 0 A Cg O B C 0 A+B Cy 0 E
Ca 0 A Cg 1 B C 0 A-B Cy 0 0000H WhenA=B Sy=0
ADD 11000 Cx 1 B—A Cy 1 0000H WhenA<B Sx=1
Ca 1 A Cg 0 B Cx 0 B-A Gy 0 0000H WhenA<B,Sx =0
Cx 1 A—B Gy 1 0000H WhenA>B, Sy =
Ca 1 A Cg 1 B C 1 A+B Cy 1 .
Ca 0 A Cg 0 B Cx 0 A+B Cy Sg No. of
shifts +
Ca 0 A Cg 1 B Cy 0 B Cy Ss * When A=B, Sy =0
Cx 1 B—A Cy Ss  Noof WhenA<B, Sy=1
ADDSC 11100 shifts +
Ca 1 A C O B C 0 B-A Cy Ss . When A < B, Sx =0
Ck 1 A-B Cy Sg  Noof WhenA=B,Sy=1
shifts +
Ca 1 A Cp 1 B Cx 1 A+B Oy Sg No. of
shifts+
Ca 0 A Cg O B C 0 A-B Cy O 0000H When A>B, Sy =0
Cx 1 B-A GOy 1 0000H WhenA<B Sy=1
suBs 11001 Ca 0 A Cg 1 B Cx 0 A+B Cy 0 *
Ca 1 A C O B C 1 A+B Cy 1 .
Ca 1 A Cg 1 B C 0 B-A Cy O 0000H When A <B,Sx=0
Cx 1 A-B Cy 1 0000H When A>B, Sy =1
Ca 0 A Cg 0 B Cx O A-B Cy Sg  No.of WhenA=B Sy=0
shifts +
Ck 1 B-A Cy Sg  Noof WhenA<B Syx=1
shifts +
Ca 0 A Cg 1 B C 0 A+B Cy Ss  Noof
SuUBSC 11101 shifts +
Ca 1 A Cg O B C 1 A+B Cy Ss  No.of
shifts +
Ca 1 A Cg 1 B C 0 B—A Cy Sg No.of WhenA<B, Sx=0
shifts +
Ck 1 A-B Cy Ss Noof WhenA=BSx=1
shifts +
MUL 11010 €, Sa A Cg Sg B C Sx AxB Cy Sy AxB  Sx=5a0RSg
High Low (logical OR)
MULSC 11110 C, Sz A Cs Sg B Cx Sx AxB Cy Sg  Noof Sx=SqORSg
High shifts +  (logical OR)

Bo- 33



uPD7281 NEC

Table 20. PU Instruction (Sheet 2 of 3)

Input Output
Mnemonic OPcode C, S, DATA, Cg Sg DATAg GCy Sy  DATAy Gy sY DATAy Notes
Arithmetic Operations
NOP 11011 Cp Sa A Cg Sg B Cx Sa A Cy Sg B
NOPSC 11111 Cp Sa A Cg  Sp B Cx Sa A Cy Sg No. of
shifts +
Ca 0 A Cx 0 A+1 Cy 0 *
INC 01010 Cp 1 A Cx 0 1 Cy 0 0000H WhenA=0,Sx=0
Cx 1 A-1 Gy 1 0000H WhenA=1,8x=1
DEC 01011 Gy 0 A Cx 0 A—1 Gy 0 0000H WhenA=0, Sx=0
Cx 1 1 Cy 1 0000H WhenA=0,S¢x=1
Ca 1 A Cx 1 A+1 Cy 1 *
Shift
SHL 00100 Cp Sp A Cg 0 No.of Cx Sa Shift A Cy Sa Shift A
shifts left left
Ca Sa A Cg 1 No.of Oy Sa Shift A Cy Sa Shift A
shifts right right
SHLBRV 0010t Can Sa A Cs 0 No.of Cx Sp Reverse Cy Sa Reverse
shifts A and A and
shift shift
left left
Can  Sa A Cg t  No.of Cyx Sp Reverse Cy Sa Reverse
shifts A and A and
shift shift
right right
SHR 00110 Cap Sp A Cg 0 No.of Cy Sp  ShiftA  Cy Sa Shift A
shifts right right
Ca Sa A Cg 1 No.of Oy Sa Shift A Cy Sa Shift A
shifts left left
SHRBRV 00111 Cp Sa A Cg 0 No.of Cyx Sp  Reverse Cy Sa Reverse
shifts A and A and
shift shift
right right
Car  Sa A Cg 1 No.of Cyx Sp  Reverse Cy Sa Reverse
shifts A and A and
shift shift
left left
Comparison
CMPNOM 01000 GCp Sa A Cg Sp B 0 0 0000H 0 0 0000H  When PNZ is false
Ca Sa A Cg Sg B 1 0 0001H 1 0 0000H  When PNZ is true
CMP 01001 Cp Sp A Cs Sg B 0 Sa A 0 Sp B When PNZ is false
Can  Sa A Cg Sg B 1 Sa A 1 Sg B When PNZ is true
CMPXCH 10001 Cp Sp A Cg Sg B Ca Sa A Cp Sg B When PNZ is true
Can  Sa A Cg Sp B Cp S B Ca Sa A When PNZ is false
Accumulative Addition
ACC 10010 Cp Sa A Cg Sg B Cx Sx A Used as a pair with
AG & FC instruction
COUNT
G Bit Copy
COPYC 10011 Cap Sap A Cg S B Ca Sa A Ca Sg B

ij 34



NEC

uPD7281
Table 20. PU Instruction (Sheet 3 of 3)
Input Output
Mnemonic  OP code Ca Sy DATA, Cg Sp DATAg GCx Sx DATAy Gy SY DATAy Notes
Bit Operations
GET1 10101 Ca Sa A Cg  Sg Bit Cx Sa 0000H Cy 0 0000H  When the bit specified
position by the lower 4 bits of
DATAg is 0
Ca Sa A Cg Sg Bit Cx Sa 0001H Cy 0 0000H  When the bit
position specified by the lower
4 bits of DATAg is 1
SET1 10110 Ca Sa A Cg Sg Bit Cx Sa Abitin Cy 0 0000H  Bit specification by
position DATAp the lower 4 bits of
is set DATAg
CLR1 10111 Ca Sa A Cg Sg Bit Cx Sa Abitin Cy 0 0000H  Bit specification by
position DATApis the lower 4 bits of
cleared DATAR
Bit Check
ANDMSK 01101 Ca Sa A Cg Sg B 0 Sa A 0 Sg B 1f ANDMSK =0
Ca Sa A Cg Sg B 1 Sa A 1 Sg B 1f ANDMSK = 1
ORMSK 10000 Ca Sa A Cg Sp B 0 Sa A 0 Sg B I1f ORMSK =0
Ca Sa A Cg Sg B 1 Sa A 1 Sg B If ORMSK =1
Data Gonversion
CVI2AB 01110 Ca Sa A Cg  Sp B Cx Sy Conver- Cy 0 0000H  Absolute value
ted A - twos
data complement
CVIAB2 01111 Ca Sa A Cg Sg B Cx Sx Conver- Cy 0 0000H  Twos complement
ted A - absolute
data value
Adjustment of Double Precision Numbers
ADJL 10100 Ca 0 A Cg 1 B Cx 0 A-1 OCy 0 0000H-B A#0ANDB#0
Ca 1 A Cg 0 B Cx 1 A-1 Gy 1 0000H-B A=0ANDB =0
Ca 0 A Cg 1 0000H Cy 0 A Cy 0 0000H
Ca 0 0000H Cg 1 B Cx 1 0000H Cy 1 B B#0
Ca 1 A Cs 0 0000H Cy 1 A Cy 1 0000H
Ca 1 0000H Cg 0 B Cx 0 0000H Cy 0 B B+#0
Ca 0 A Cp 0 B Cy 0 A Cy 0 B
Ca 1 A Cg 1 B Cy 1 A Cy 1 B

Notes: * If an overflow occurs as the result of A + B, DATAy = 0001H and if no overfiow, DATAy = 0000H.
t This indicates the number of consecutive zeros from the MSB of DATAy. This number is used to caiculate the number of shifts to be

performed by subsequent processing.



uPD7281

NEC

GE Instructions

FTL Format

13 12 11 109 65 43 1]

X
F/L|C| OP GS Lo CTLFD
H

490001134

Bit Assignments

F/L [Full/Left]: F/L bit = 0 indicates that the GE
instruction is used alone, whereas F/L bit = 1 indicates
that the GE instruction is used in conjunction with an
AG/FC instruction.

XCH [Exchange]: XCH bit = 1 indicates that the data
from A side and B side are to be exchanged before the
two data tokens enter the Queue.

OP [OP code]: These two bits select an operation to
be performed. See table 21.

Table 21. OP Bits
opP Operation
00 COPYBK (Copy block)
01 COPYM (Copy multiple)

1 SETCTL (Set control field)

GS [Generation Size]: These four bits determine the
number of copies of a token to be made. A minimum of
2 and amaximum of 17 copies can be made using a GE
instruction.

CTLFD {Control Field]: This field is used with Set
Control Field (SETCTL) instruction. The datain CTLFD
field further specifies the types of operations to be
performed by the SETCTL instruction.

COPYBK [Copy Block]

COPYBK is used to duplicate a block of tokens from a
single token. These duplicated tokens have exactly the
same ID as the original token except the token copied
last which has the original token's ID plus one. The
number of tokens to be generated is specified by the
GS field, and the COPYBK instruction generates
exactly GS + 2 tokens. The data fields of the tokens
being duplicated can also be incremented or
decremented in a systematic manner. The incremental
(or decremental) step value is contained in DATAg.
The tokens generated are sent to the Link Table. The
series of LT tokens output by the instruction is shown
in figure 23.

COPYBK FTL Format

13 12 11 1089 65 0
Tx [ I J
FiLyc| 00 | GS .
Ln | i
Figure 23. COPYBK Instruction Output
[DATAx]i = DATAA + [DATAg] xi[fori=10,1,2,..,G8 ~ 1}
u 1D {7] CTLF [4] DATA {6]
{D[ [ 10 0 Ca le DATAA Ii:lJ
i [} l iD 10 0 Ca le DATAA - DATAg J i-1
1
LT Tokens~
i 0 l 1D [0 0 Ca le DATAL -~ GSxDATAp ]i’GS
[ ] [ 1D+1 10 L] Ca le DATAA ~ [GS ~ 1] x DATAg ]i—GS‘1

’)3~ 36



NEC

uPD7281

COPYM [Copy Mulitiple]

COPYM is used to generate multiple tokens from a
single token. Each generated token has a different ID

generated tokens are sent to the Link Table as LT
tokens. The series of LT tokens output by the COPYM
instruction is shown in figure 24.

value. The number of tokens generated from the
original token is GS + 2. The data field of the tokens COPYM FTL Format
being generated can also be incremented or decre- 13 ‘i 11109 &5 9
mented in a systematic manner. The incremental (or m‘ﬂ 01 Gs ‘ - J
decremental) step value is contained in DATAg. The 000054
Figure 24. COPYM Instruction Output Tokens
2
49-0001°7A
v 1D {7} CTLF (4] DATA [16]
LO l D I 0 0 Ca Sx l DATAA ]l 0
[0 [ 1D -1 l 0 0 Ca Sx I DATAs . DATAp ll 1
LT Tokens+
B { ID - GS [ 0 0 Ca Sx ] DATAA - GS x DATAg ]i' GS
0 ID -GS+ 1 l 0 0 CaSx l DATAL - [GS - 1] x DATAg |i GS -1
Doyl =D +i
[DATA ], = DATA,, + [DATA, - i] fori=0.1.2....GS +i.
« :multiplication
49

%3" 37



>,

uPD7281

NEC

SETCTL [Set Control Field]

OUT Instructions

SETCTL FTL Format
13_12 11 1089 85 43

X
FiLjc| 11
H

Q
CTLFD 1

-]

49-000"19A

OUT FTL Format
13 12 11 10 43

X T
F/L| C jOP D2 | MN
H

|

43-000° 204

SETCTL is used toread and rewrite the contents of the
Link Table and the Function Table. Since it can change
the contents of the Link Table and the Function Table,
this instruction can be used to write a self-modifying
code. The type of operation to be performed is further
specified by the contents of CTLFD field, as shown in
table 22.

Table 22. SETCTL Instruction Control Field

Operation
GTLFD Operation

0 0 C S Normaldata.Operationisexactly the same as COPYM.

1 1 0 0 Thedata field of this token is used to set a location in
the Link Table memory (C and S bits are notincluded.)
After the data is set, the token is deleted.

1 1 0 1 Thedatafield of this token is used to set a location in
the Function Table Right field. After the data is set, the
token is deleted.

1 1 1 0 Thelower 14 bits of the data field of this token are used
to set a location in the Function Table Left field (higher
bits are ignored.) After the data is set, the token is
deleted.

1 1 1 1 Thelower 10bits of the data field of this token are used
to set a location in the Function Table Temporary field
(higher bits are ignored.) After the data is set, the
token is deleted.

1 0 0 0 This token reads the LT address indicated by the ID
field and outputs the contents.

1 0 0 1 Thistokenreads the Function Table Rightfield address
indicated by the ID field and outputs the contents.

1 0 1 0 Thistoken reads the Function Table Left field address
indicated by the 1D field and outputs the contents.

1 0 1 1 This token reads the Function Table Temporary field
address indicated by the ID field and outputs the
contents.

0 1 0 0 These tokens should not be generated by the
Processing

0 1 0 1 Unit. They are operating-mode-related tokens.

01 1 0

01 1t 1

Note: The set or write operation is performed at the address
indicated by the ID field of the token.

-38

Bit Assignments

F/L [Full/Left]: F/L bit = 0 indicates that the OUT
instruction is to be used alone. F/L bit = 1 indicates
that the OUT instruction is to be used in conjunction
with an AG/FC instruction.

XCH [Exchange]: If XCH bit = 1, the output data tokens
from the A side are exchanged with those from the B
side before they go to the Output Queue. If XCH bit=0,
no exchange operation is performed.

OP [OP Code]: This bit is used to further specify the
OUT instruction. If OP = 0, then OUT1 instruction is
performed, whereas if OP = 1, OUT2 instruction is
performed.

ID2 [Second ID]: This field is used only by the OUT2
instruction. 1D2 is the ID of the second output data
token.

MN [Module Number]: This field indicates the
destination module of the output data token.

ouT1

OUT1 FTL Format
13 12 1t 10 43 ]
T

e

This instruction outputs a 32-bit data token via the
Output Data Bus (ODB). Since the size of the ODB is
16 bits, a 32-bit output data token is divided into two
16-bit words and output one 16-bit word at a time. The
format of an output data token is shown in figure 24.

T
1
FiL|
L

IOx




E uPD7281

Figure 25. OUT1 Output Token Format

}« High Word } Low Word ~———-i

15 12 11 10 43 21 0 15 9

T T T T T
i ]
MN Lo 13 lo U:CA1C5” DATAL
] ] ] I I

MN: Determined by the lower 4 bits of FTL contents
1D 7-bit 1D comes from the contents of LT reterenced by the OUT1 instruction
Ca, Sa: Control bit and sign bit of DATA
DATA,: 16-bit output data
4900072

OouT2
This instruction outputs two 32-bit data tokens via OUT2 FTL Format
ODB. Since the ODB is 16 bits wide, each 32-bit token ‘i 1110 3 9
is divided into two 16-bit words and output one 16-bit Fafcii ’ 102 J MN 7
word atatime. This instruction is useful when a double
precision number is to be output. The formats of two
output data tokens are shown in figure 25.
Figure 26. OUT2 Output Tokens Format
}«—— oo High Word —— ‘r LowWord— - =
15 12 11 10 43 .21 0 15 0
T T T T
‘ MN 0! o 00 :c,\lcsﬂ DATA,
L i [
>— Same Module Numbers
15 12 11 10 4‘3 21 ]0 15
MN i o 3 102 oo :Ca‘;ca; DATAg
L It Ll
Note: First and second tokens must have the same module numbers
MN Determined by the lower four bits of the FTL contents.
1D 7-bit 1D coming from the contents of the Link Table referenced by the OUT2 instruction.
1D2: 7-bit ID comes from the FTL fieid of lhe OUT2 instruction
CA.SA: Control bit and sign bit of DATAA.
DATAA: First 16-bit oulput data.
Cg. Sg: Control bil and sign bit of DATAB
DATAg: Second 16-bit outpul data

3- 39



uPD7281 NEC

Figure 27. Data-Flow Graph Explanation

Merge [Two streams of tokens are merged together]

PICKUP

[>] 1D+1
49-000124A

Input/Qutput

5 -«— An input token with FTRC bit = 1

No s

Div cs=2

4
3

=N

N

iD - 1 Token Stream

Input tokens with the FTRC bit = 0
FTRC = 1 token siream marker

10 Token Stream

49-0001254

33—40



vPD7281

Figure 27. Data-Flow Graph Explanation (cont)

DUST [Incoming tokens are deleted]
QUEUE
Two instructions
are used together C)
CMP
DUST
Y Side Oulput Marker
~ 49-000°27A
X Side Output Token Y Side Output Token
49-0001264
Exchange
{DATAz] [DATA;]
(DATA4) [DATA,]
QUEUE QUEVE
XCH -~ 0 XCH -1
sus sus
DATA; - DATAy- DATA; DATA; - DATA2 - DATA;
49-000128¢ 43-000° 584
Conditional Operation
Branch |
| 2
Queue two tokens.
1 Subtract and test PNZ conditions. 1
1f TRUE, the result is output
to ID - 1stream.
QUEUE QUEUE It the control bits of Token 1
and Token 2 are the same,
i | logical OR operation
sue: GT i OR : is performed.
1
L — —
D ID -1 T
49-000130A i
| -




