

Description

The μ PD6307 can directly drive any multiplexed LCD organized with up to 32 rows. It is easily cascaded to 128 rows.

Features

- ☐ High voltage output 21 V maximum
- □ Directly controllable by the µPD72030
- ☐ CMOS technology
- ☐ Single 5 V ±10% power supply

www.datasheethu.com

Ordering Information

Part Number	Package Type		
μPD6307G-F	54-pin plastic miniflat		
μPD6307G-R	54-pin plastic miniflat (inverted leads)		

Pin Configuration

Pin Identification

No.	Symbol	Function		
1-19, R ₀ -R ₃₁ 21-23		Row drive output		
20	Vcc	Positive power supply		
34	SBY	Standby input		
35	FRM	Frame input		
36	STB	Strobe input		
37	RST	Reset input		
38	EOT	End of transfer input		
39	ĪOW	I/O write input		
40, 41	RS ₀ , RS ₁	Row select input		
42-44	V _{LC1} , V _{LC4} , V _{LC5}	LCD drive supply		
45	V _{SS}	Ground		
46	V _{CC} (= V _{LCO})	Positive power supply and LCD drive supply		
47-54	CS ₇ -CS ₀	Chip select output		

Pin Functions

R₀-R₃₁ (Row Drive Output)

LCD row drive output.

CS₀·CS₇ (Chip Select)

Column driver chip select. These outputs are generated by the CS counter and RSn-RS1.

V_{LC1}, V_{LC4}, V_{LC5} (LCD Drive Supply)

Reference voltages used to drive R₀-R₃₁.

RS₀, RS₁ (Row Select)

This input selects the row driver cascade connection. It enables expansion to 128 row drive outputs and 32 CS outputs, as shown in table 1.

FRM (Frame)

A high level input to this pin displays a positive frame and a low level input displays a negative frame. At the falling or rising edge of the signal, the row counter is cleared and the row driver is started from R₀.

STB (Strobe)

Row drive strobe input. One STB pulse input at the timing interval causes the display of the next row.

IOW (I/O Write)

This input increments the CS counter signal following 10 low level IOW pulses.

EOT (End of Transfer)

This input clears the CS counter when it goes active low.

RST (Reset)

This is the row driver reset input. A low input clears the internal counter and row outputs R₀-R₃₁, and sets the CS0-CS7 outputs to a high level.

SBY (Standby)

This is the standby input. A low level input to this pin sets the row outputs R₀-R₃₁ to V_{LC0}. Before entering standby mode, set all column driver display data to high level.

V_{CC} (= V_{LC0}) (Power Supply and LCD Drive Supply)

Connect the 5 V power supply between V_{CC} and V_{SS} for logic circuit operation. This pin is also used for the row drive voltage output.

V_{SS} (Ground)

Ground.

Block Diagram

Functional Description

Timing Control Circuit

This circuit controls the timing for each internal block. FRM, RS_0 , RS_1 , \overline{RST} , and \overline{SBY} are sampled at the leading edge of STB, and then supplied to other internal circuits.

Row Counter Decoder/Select Circuit

As shown in figure 1, this circuit consists of a 7-bit counter, a comparator, and a 5 to 32 decoder. The 7-bit counter can accommodate 128 rows. The comparator acts to clear $R_0\text{-}R_{31}$ if the upper two bits of the counter do not match RS_0 and RS_1 . If they match, one of $R_0\text{-}R_{31}$, indicated by the lower five bits of the row counter, is selected and the rest are cleared. RS_0 and RS_1 allow for cascading as shown in table 1. Table 2 shows the row select logic.

Figure 1. Row Counter Decoder/Select Circuit

Table 1. RS₀ and RS₁ Row Cascading

RS ₀	RS ₁	Row Signal	Chip Select	
0 0		R ₀ -R ₃₁	CS₀-CS ₇	
0	1	R ₃₂ -R ₆₃	<u>CS</u> ₈ - <u>CS</u> ₁₅	
1	0	R ₆₄ -R ₉₅	<u>CS</u> ₁₆ - <u>CS</u> ₂₃	
1	1	R ₉₆ -R ₁₂₇	CS ₂₄ -CS ₃₁	

Table 2. Row Select Logic

EN	E	D	C	В	A	Selected Row Signal
1	0	0	0	0	0	R ₀
1	0	0	0	0	1	R ₁
1	↓	1	+	+	+	Rn
1	1	1	1	1	0	R ₃₀
1	1	1	1	1	1	R ₃₁
0	Χ	Х	X	X	X	None

Voltage Control Driver Circuit

This circuit generates the row signals for AC drive of the LCD panel. A low level \overline{RST} clears the output. A low level \overline{SBY} sets the output V_{LC0} . Table 2 shows the R_0 - R_{31} output levels.

Table 2. Ro-R31 Outputs Levels

Function	+ (FRM = 1)	- (FRM = 0)
Select	V _{LC5}	V_{LCO}
Clear	V _{LC4}	V _{LC1}

Chip Select Counter/Decoder Circuit

This circuit, shown in figure 2, generates the column driver \overline{CS} signal. This circuit has a 5-bit counter to generate up to 32 \overline{CS} signals. The 5-bit counter is incremented once for every 10 \overline{IOW} (active low) pulses. If the upper two bits of the chip select counter do not match RS₀ and RS₁, all the $\overline{CS_0}$ - $\overline{CS_7}$ outputs are set to high level. If they match, one of $\overline{CS_0}$ - $\overline{CS_7}$ (indicated by the lower three bits of the chip select counter) goes low. If \overline{RST} is low, $\overline{CS_0}$ - $\overline{CS_7}$ become high level. Table 3 shows the chip select logic.

Figure 2. Chip Select Counter/Decoder Circuit

Table 3. Chip Select Logic

EN	C	b	8	Chip Select
1	0	0	0	ĊS₀
1	0	0	1	CS₁
1	0	1	0	ĊS₂
1	0	1	1	Ċ\$3
1	1	0	0	ĈS₄
1	1	0	1	ĈŜ₅
1	1	1	0	CS ₆
1	1	1	1	CS ₇
0	Х	Х	Х	Disabled