

0.5Ω Ultra Low On-Resistance Dual SPDT Analog Switch UM5223 QFN10 1.8×1.4

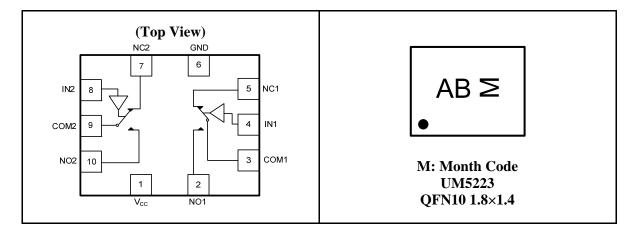
General Description

The UM5223 is a low on-resistance ($R_{\rm ON}$), dual single-pole/double-throw (SPDT) analog switch operates from a single +1.65V to +4.5V supply. The device's targeted applications include battery powered equipment that benefit from its low on-resistance.

The UM5223 features two 0.5Ω R_{ON}(max) SPDT switches with 0.15Ω flatness and 0.05Ω matching between channels. The switch offers break-before-make switching (1ns) with t_{ON}<60ns and t_{OFF}<40ns at +2.7V.

The switch is available in Pb-free QFN10 package.

Applications


- Cell Phone Audio Block
- Speaker and Earphone Switching
- Portable Instrumentation
- Battery-Operated Equipment
- Modems
- Medical Equipment
- Computer Peripherals
- Ring-Tone Chip/Amplifier Switching

Features

- Ultra-Low $R_{ON} < 0.5\Omega$ at $V_{CC} = 3.0 \pm 0.3 V$
- R_{ON} Flatness of 0.15Ω
- Single-Supply Operation from +1.65V to +4.5V
- Interfaces with 2.8V Chipset
- Full 0-Vcc Signal Handing Capability
- Power Off Protection: When V_{CC}=0V, Input Signal can Tolerate up to 4.5V
- High Off-Isolation: -78dB (100kHz)
- Low Crosstalk: -92dB (100kHz)
- Low Distortion: 0.12%
- High Continuous Current Capability:
 ±300mA through Each Switch
- Lead (Pb)-Free QFN10 Package

Pin Configurations

Top View

Pin Description

Pin	Name	Function			
1	V_{CC}	Positive Supply Voltage			
2	NO1	Analog Switch 1-Normally Open Terminal			
3	COM1	Analog Switch 1-Common Terminal			
4	IN1	Analog Switch 1-Digital Control Input			
5	NC1	Analog Switch 1-Normally Closed Terminal			
6	GND	Ground Connection			
7	NC2	Analog Switch 2-Normally Closed Terminal			
8	IN2	Analog Switch 2-Digital Control Input			
9	COM2	Analog Switch 2-Common Terminal			
10	NO2	Analog Switch 2-Normally Open Terminal			

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty		
UM5223	QFN10 1.8×1.4	AB	3000pcs/7 Inch Tape & Reel		

Function Table

IN_	NO_	NC_
0	OFF	ON
1	ON	OFF

Absolute Maximum Ratings

Symbol	Parameter	Limit	Unit	
V_{+}	Supply Voltage	-0.3 to +5.5	V	
$V_{\rm S}$	DC Switch Voltage (Note 1)	-0.3 to $(V_{+}+0.3)$		
IN_	DC IN Voltage	-0.3 to +5.5		
Io	Continuous Current (COM_, NO_, NC_)	±300	т Л	
I_P	Peak Current (Pulsed at 1ms, 10% Duty Cycle)	±500	mA	
To	Operating Temperature Range	-40 to +85		
T_{J}	Junction Temperature	+150	°C	
T_{STG}	Storage Temperature Range	-65 to +150	C	
$T_{ m L}$	Junction Lead Temperature (Soldering, 10 Seconds)	+300		
ESD	ESD Method 3015.7	>2000	V	

Note 1: Signals on COM_, NO_, or NC_ exceeding V₊ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

DC Electrical Characteristics

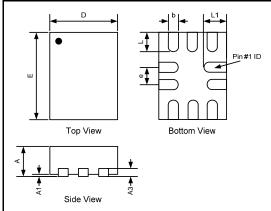
Symbol	Parameter	Test Conditions	V _{CC} (V)	Temp	Limits (-40°C to 85°C)			Unit
	T ut utilicites	1 est conditions	, ((,)		Min	Тур	Max	CIII
I _{IN}	Input Leakage Current	V _{IN} =3.6V or GND	3.6	Room Full	-0.1 -1.0		0.1 1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} =3.6V or GND	0	Room Full	-0.5 -2.0		0.5 2.0	μΑ
I _{COM(ON)}	COM ON Leakage Current	$V_{IN}=V_{IL}$ or V_{IH} V_{NO} 0.3V or 3.3V with V_{NC} Floating or V_{NC} 0.3V or 3.3V with V_{NO} Floating $V_{COM}=0.3$ V or 3.3V	3.6	Room Full	-0.01 -0.1		0.01 0.1	μΑ
I _{NO/NC(OFF)}	OFF State Leakage Current	$V_{IN}=V_{IL}$ or V_{IH} V_{NO} or $V_{NC}=0.3V$ $V_{COM}=3.3V$	3.6	Room Full	-0.3		0.3	μΑ
I_{CC}	Quiescent Supply Current	Select V _{IS} =V _{CC} or GND	1.65 to 3.6	Room Full	-1.0 -2.0		1.0 2.0	μΑ
$ m V_{IH}$	Input High Voltage		3.0	Full	1.4			V
. 111			3.6		1.7			
$V_{ m IL}$	Input Low Voltage		3.0	Full			0.7	V
D	On-Resistance (Note 2)	$V_{IN}=V_{IL}$ or V_{IH} $V_{IS}=V_{CC}$ to GND $I_{COM}=100$ mA	3.0	Room Full		0.5 0.6		Ω
R_{ON}			3.6	Room Full		0.5 0.6		22
$\Delta R_{ m ON}$	On Resistance Match Between Channels	V_{IS} =1.5V I_{COM} =100mA;	3.0	Room Full			0.05 0.05	Ω
ΔN _{ON}	(Note 2,3,4)	V_{IS} =1.8V I_{COM} =100mA	3.6	Room Full			0.05 0.05	22
D	On Resistance Flatness	$V_{IS}=V_{CC}$ to GND	3.0	Room Full			0.15 0.15	Ω
$ m R_{FLAT}$	(Note 2,3,5)	$I_{COM}=100 \text{mA}$	3.6	Room Full			0.15 0.15	22

- Note 2: Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
- Note 3: Parameter is characterized but not tested in production.
- Note 4: $\Delta R_{ON} = R_{ON (B0)} R_{ON(B1)}$ measured at identical V_{CC} , temperature and voltage levels. Note 5: Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.

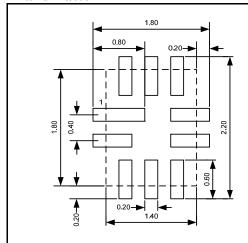
AC Electrical Characteristics

Symbol	Parameter	Test Conditions	V _{CC} (V)	Temp	Limits (-40°C to 85°C)			Unit
Symbol	1 urumovor	Test Conditions	, cc (,)		Min	Тур	Max	
t _{ON}	Turn On Time	$V_{IS}=1.5V$ $R_L=50\Omega$, $C_L=35pF$	2.3 to 3.6	Room Full		50 60		ns
t_{OFF}	Turn Off Time	$V_{IS}=1.5V$ $R_L=50\Omega$, $C_L=35pF$	2.3 to 3.6	Room Full		30 40		ns
$t_{ m BBM}$	Break Before Make Time (Note 6)	V_{IS} =3.0V R_L =50 Ω , C_L =35pF	3.0	Room Full	2	15		ns
Q _{INJ}	Charge Injection (Note 6)	C_L =1.0nF, V_{GEN} =0V, R_{GEN} =0 Ω	1.65 to 3.6	Room		38		pC
$V_{\rm ISO}$	Off Isolation (Note 7)	C_L =5.0pF, f=100kHz	1.65 to 3.6	Room		-78		dB
VCT	Crosstalk	R_L =50 Ω , C_L =5.0pF, f=100kHz	1.65 to 3.6	Room		-92		dB
BW	-3dB Bandwidth		1.65 to 3.6	Room		75		MHz
THD	Total Harmonic Distortion (Note 6)	$\begin{array}{c} f_{IS}\text{=-}20\text{Hz to }20\text{kHz,} \\ R_L\text{=-}R_{GEN}\text{=-}600\Omega \\ C_L\text{=-}50\text{pF,} \\ V_{IS}\text{=-}2.0\text{V RMS} \end{array}$	3.0	Room		0.12		%
Capacita	Capacitance							
C_{IN}	IN Pin Input Capacitance (Note 8)	V _{CC} =3.6V				4.5		pF
C _{NO/NC}	NO/NC Port Off Capacitance (Note 8)	V _{CC} =3.6V				20		pF
C_{COM}	COM Port Capacitance when Switch is Enabled (Note 8)	V _{CC} =3.6V				55		pF

Note 6: Guaranteed by design.

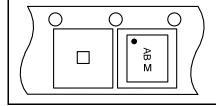

Note 7: Off Isolation=20 log10 [$V_{COM}/V_{NO/NC}$]. Note 8: T_A =+25°C, f=1MHz, Capacitance is characterized but not tested in production.

Package Information


UM5223 QFN10 1.8×1.4

Outline Drawing

DIMENSIONS								
Camala al	MILLIMETERS			INCHES				
Symbol	Min	Тур	Max	Min	Тур	Max		
A	0.50	0.55	0.60	0.020	0.022	0.024		
A1	0.00	-	0.05	0.000	0.000 -			
A3	0.15REF			0.006REF				
b	0.15	0.20	0.25	0.006	0.008	0.010		
D	1.35	1.40	1.45	0.053	0.055	0.057		
Е	1.75	1.80	1.85	0.069	0.071	0.073		
e	0.40BSC			0	.016BS0	\Box		
L	0.30	0.40	0.50	0.012	0.016	0.020		
L1	0.40	0.50	0.60	0.016	0.020	0.024		


Land Pattern

NOTES:

- 1. Compound dimension: 1.80×1.40;
- 2. Unit: mm
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: Unit 606, No.570 Shengxia Road, Shanghai 201210

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com