
Datasheet

Description

United Silicon Carbide, Inc offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{DS(ON)}$) and gate charge (Q_G) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(ON)}$ at V_{GS} = 0 V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Part Number	Package	Marking			
UJ3N120035K3S	TO-247-3L	UJ3N120035K3S			

Features

- Typical on-resistance $R_{DS(on),typ}$ of $35m\Omega$
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant

Typical Applications

- Over current protection circuits
- DC-AC inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units	
Drain-source voltage	V _{DS}		1200	V	
	.,	DC	-20 to +3		
Gate-source voltage	V _{GS}	AC (1)	-20 to +20	V	
Continuous drain current (2)		T _C = 25°C	63	А	
	l l _D	T _C = 100°C	46	Α	
Pulsed drain current ⁽³⁾	I _{DM}	T _C = 25°C	185	А	
Power dissipation	P _{tot}	T _C =25°C	429	W	
Maximum junction temperature	T _{J,max}		175	°C	
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C	
Max. lead temperature for soldering, 1/8" from case for 5 seconds	T _L		250	°C	

- (1) +20V AC rating applies for turn-on pulses <200ns applied with external $R_G > 1\Omega$.
- (2) Limited by T_{J,max}
- (3) Pulse width t_p limited by T_{J,max}

Datasheet

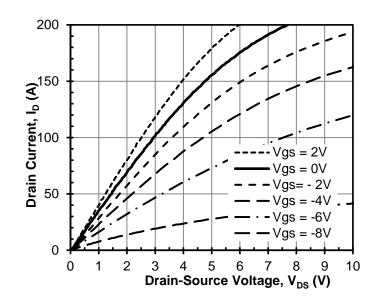
Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Darameter	Symbol	Test Conditions	Value			Units
Parameter	Syllibol	Symbol Test Conditions		Тур	Max	Ullits
Drain-source breakdown voltage	BV _{DS}	V_{GS} = - 20V, I_D =1mA	1200			V
Total drain leakage current	I _D	$V_{DS} = 1200V,$ $V_{GS} = -20V, T_{J} = 25^{\circ}C$		10	60	- μΑ
		$V_{DS} = 1200V,$ $V_{GS} = -20V, T_{J} = 175^{\circ}C$		35		
Total gate leakage current	I _G	V _{GS} =-20V, T _j =25°C		12	100	μА
Total gate leakage current		V _{GS} =-20V, T _j =175°C		50		
Drain-source on-resistance	R _{DS(on)}	$V_{GS}=2V, I_{D}=20A,$ $T_{J}=25^{\circ}C$		31		mΩ
		V_{GS} =0V, I_D =20A, T_J = 25°C		35	45	
		$V_{GS}=2V, I_{D}=20A,$ $T_{J}=175^{\circ}C$		68		
		V_{GS} =0V, I_{D} =20A, T_{J} = 175°C		76		
Gate threshold voltage	V _{G(th)}	$V_{DS} = 5V, I_{D} = 70mA$	-14	-11.5	-6	V
Gate resistance	R_{G}	f = 1MHz, open drain		2.4		Ω

Datasheet

Typical Performance - Dynamic


Parameter	symbol	Test Conditions	Value			Units		
Parameter	Syllibol	Test Conditions	Min	Тур	Max	Ullits		
Input capacitance	C _{iss}	V _{DS} = 100V,		2145				
Output capacitance	C _{oss}	V _{GS} = -20V,		180		pF		
Reverse transfer capacitance	C _{rss}	f = 100kHz		172				
Effective output capacitance, energy related	C _{oss(er)}	$V_{DS} = 0V \text{ to } 800V,$ $V_{GS} = -20V$		105		pF		
Total gate charge	Q_{G}	V 000V I 40A		235				
Gate-drain charge	Q_{GD}	V_{DS} =800V, I_{D} = 40A, V_{GS} =-18V to 0V		130		nC		
Gate-source charge	Q_{GS}	V _{GS} 18V tO OV		25				
Turn-on delay time	t _{d(on)}	V _{DS} =800V, I _D =40A, Gate Driver =-18V to 0V,		25		ns		
Rise time	t _r			37				
Turn-off delay time	t _{d(off)}			48				
Fall time	t _f	$R_{G,EXT} = 1\Omega,$ Inductive Load,		39				
Turn-on energy	E _{ON}	FWD: UJ3D1220KSD		935		μͿ		
Turn-off energy	E _{OFF}	T _J = 25°C		828				
Total switching energy	E _{TOTAL}			1763				
Turn-on delay time	t _{d(on)}			24				
Rise time	t _r	$V_{DS}=800V,\ I_{D}=40A,$ Gate Driver =-18V to 0V, $R_{G,EXT}=1\Omega,$ Inductive Load, $FWD:\ UJ3D1220KSD$ $T_{J}=150^{\circ}C$		35		ns		
Turn-off delay time	t _{d(off)}			43				
Fall time	t _f			37				
Turn-on energy	E _{ON}			880				
Turn-off energy	E _{OFF}			800		μЈ		
Total switching energy	E _{TOTAL}			1680				

Thermal Characteristics

Parameter	symbol	Test Conditions	Value			Units
raranieter			Min	Тур	Max	Offics
Thermal resistance, junction-to-case	$R_{ heta$ JC			0.27	0.35	°C/W

Typical Performance Diagrams

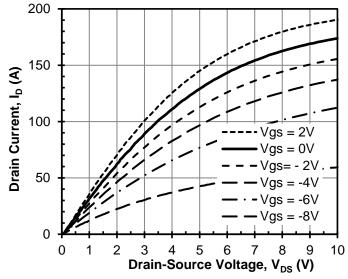
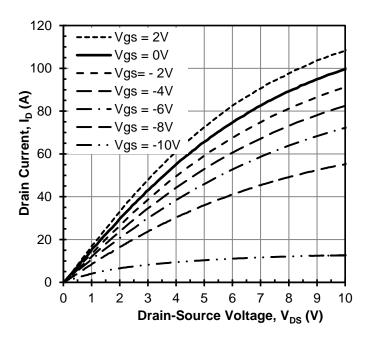
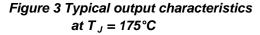




Figure 1 Typical output characteristics at $T_J = -55$ °C

Figure 2 Typical output characteristics at $T_J = 25$ °C

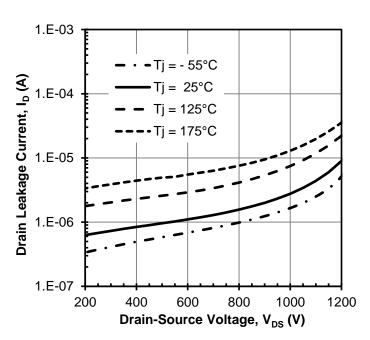


Figure 4 Typical drain-source leakage at $V_{GS} = -20V$

Datasheet

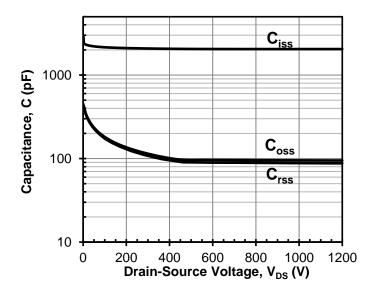


Figure 5 Typical capacitances at 100kHz and $V_{GS} = -20V$

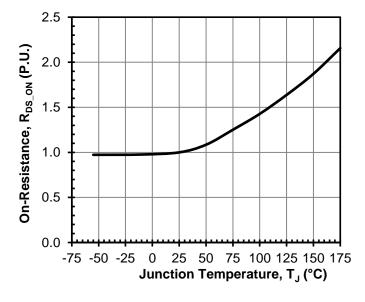


Figure 7 Normalized on-resistance vs. temperature at $V_{GS} = 0V$ and $I_D = 20A$

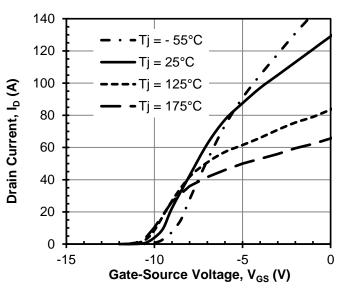


Figure 6 Typical transfer characteristics at $V_{DS} = 5V$

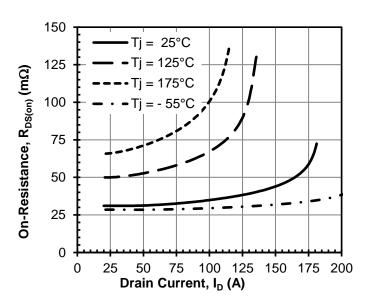


Figure 8 Typical drain-source on-resistance at $V_{GS} = 0V$

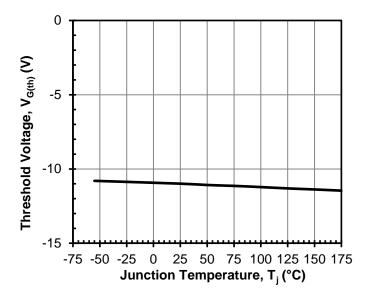


Figure 9 Threshold voltage vs. Tj at $V_{DS} = 5V$ and $I_D = 70mA$

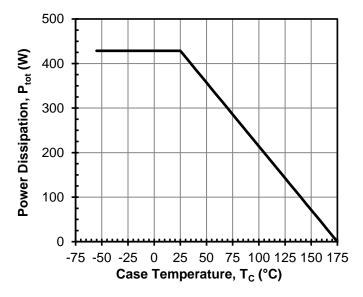


Figure 11 Total power Dissipation

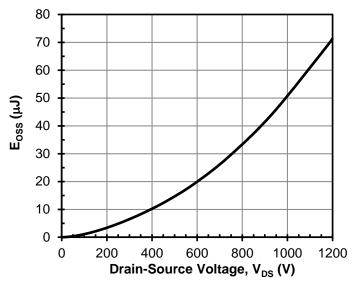


Figure 10 Typical stored energy in C_{OSS} at $V_{GS} = -20V$

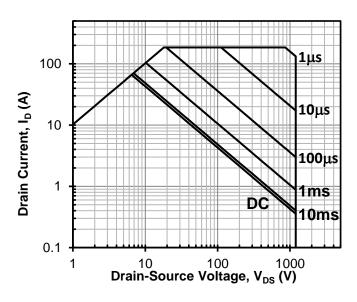


Figure 12 Safe operation area $T_c = 25$ °C, Parameter t_p

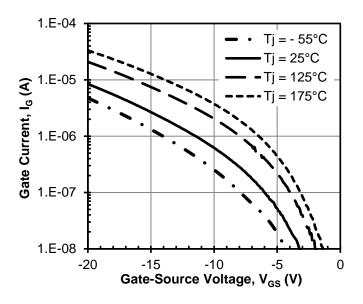


Figure 13 Typical gate leakage current at $V_{DS} = 0V$

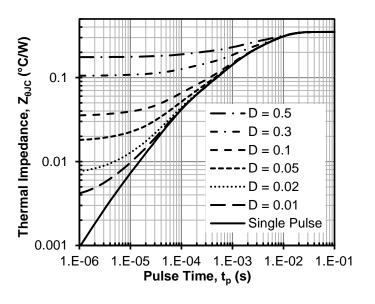


Figure 15 Maximum transient thermal impedance

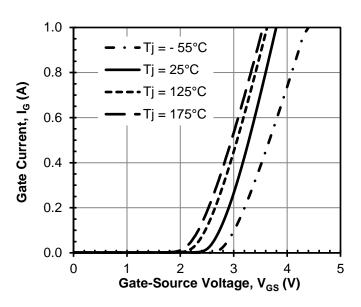


Figure 14 Typical gate forward current at $V_{DS} = 0V$

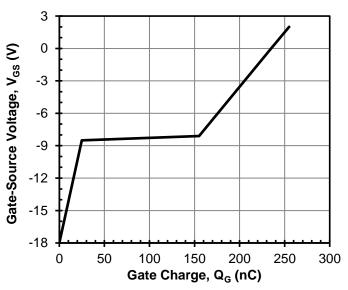
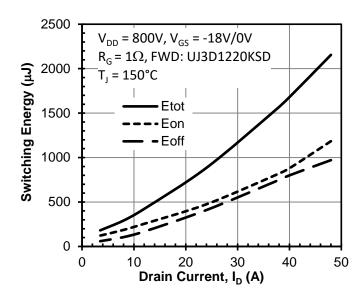



Figure 16 Typical gate charge at $V_{DS} = 800V$ and $I_D = 40A$

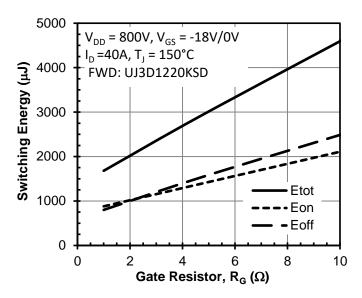


Figure 17 Clamped inductive switching energy vs. drain current at $T_J = 150$ °C

Figure 18 Clamped inductive switching energy vs. gate resistor R_G

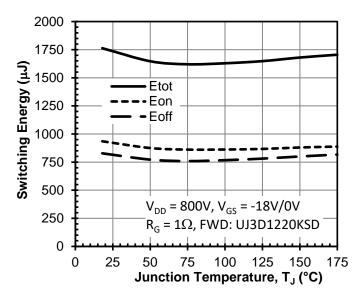
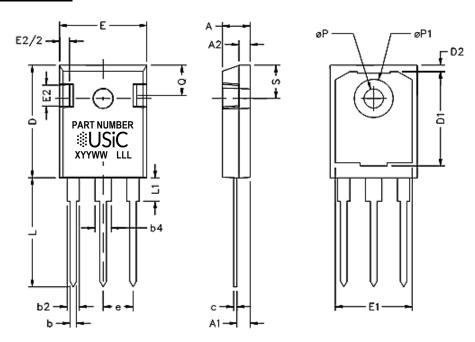


Figure 19 Clamped inductive switching energy vs. junction temperature at $I_D = 40A$

Datasheet

Disclaimer

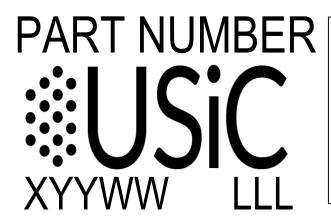
United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.


Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

TO-247-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKAGE OUTLINE



SYM	INC	HES	MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	0.185	0.209	4.699	5.309	
A1	0.087	0.102	2.21	2.61	
A2	0.059	0.098	1.499	2.489	
b	0.039	0.055	0.991	1.397	
b2	0.065	0.094	1.651	2.388	
b4	0.102	0.135	2.591	3.429	
С	0.015	0.035	0.381	0.889	
D	0.819	0.845	20.803	21.463	
D1	0.515	-	13.081	-	
D2	0.02	0.053	0.508	1.346	
E	0.61	0.64	15.494	16.256	
е	0.214	4 BSC	5.44	BSC	
E1	0.53	-	13.462	-	
E2	0.135	0.157	3.429	3.988	
L	0.78	0.8	19.812	20.32	
L1	ı	0.177	ī	4.496	
ØΡ	0.14	0.144	3.556	3.658	
ØP1	0.278	0.291	7.061	7.391	
Q	0.212	0.244	5.385	6.198	
S	0.243	3 BSC	BSC		

TO-247-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PART MARKING

PART NUMBER = REFER TO
DS PN DECODER FOR DETAILS

X = ASSEMBLY SITE

YY = YEAR

WW = WORK WEEK

LLL = LOT ID

PACKING TYPE

ANTI-STATIC TUBE

QUANTITY /TUBE: 30 UNITS

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales