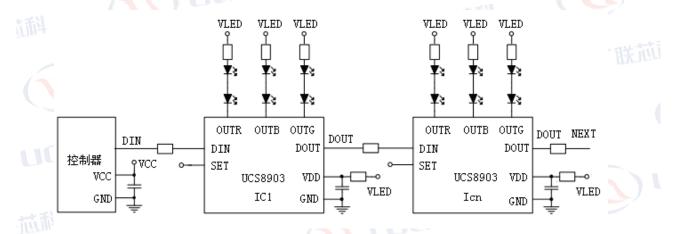


UCS8903

产品概述

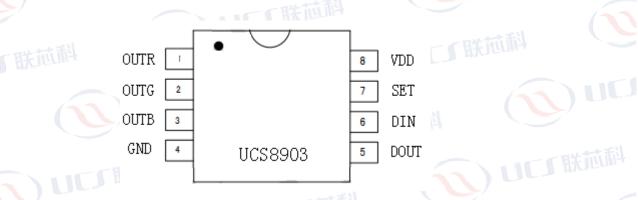
UCS8903 是 3 通道 LED 高阶灰度级联驱动控制专用电路,通过外围 MCU 控制实现户外大屏高阶灰度的全彩效果。采用多种专利技术,在强化性能指标的同时加强了对高压冲击及静电的防护,同时还增加了多种抗干扰技术,非常适用与对稳定性要求较高的工程。

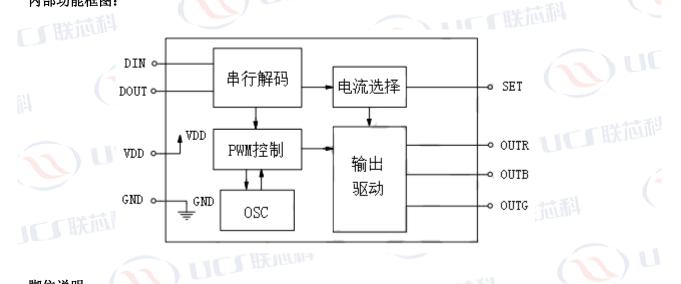

主要特点

- 单线数据传输,可无限级联
- 整形转发强化技术,两点间传输距离超过20米
- 65536 级真灰度,采用高阶灰度实现技术,端口时钟可达 100M,端口扫描频率 1KHz/S
- 数据传输速率 800K/S,可实现画面刷新帧频 30 帧(550 点),60 帧(270 点)
- 芯片 VDD 内置 5V 稳压管,输出端口耐压大于 24V
- 采用预置 18mA/通道恒流模式。高恒流精度,片内误差《1.5%,片间误差《3%。
- 上电自检亮蓝灯功能
- S-AI 单线传输抗干扰专利技术,可大幅降低及滤除辐射干扰和传导干扰
- 静电及浪涌防护增强技术

应用领域

点光源 线条灯 软灯条 户内外屏等


典型应用图



UCS8903

内部功能框图:

脚位说明:

77 12 70 731		Billing				
	UCS8903					
序号	符号	功 能 描 述				
1	OUTR	Red(红) PWM 控制输出				
2	OUTG	Green(绿) PWM 控制输出				
3 10	OUTB	Blue(蓝) PWM 控制输出				
4	GND TERM	接地				
115	DOUT	显示数据级联输出(800K)				
6	DIN	显示数据输入(800K)				
7	SET	悬空时 RGB 输出端口为 18mA,接 VDD 为 32mA				
8	VDD	电源一直接通知				
ucs	拼流消	UCS BETTE				

UCS8903

最大额定值 (如无特殊说明, $T_A=25\,^{\circ}\mathrm{C}$, $V_{\mathrm{SS}}=0\,\mathrm{V}$)

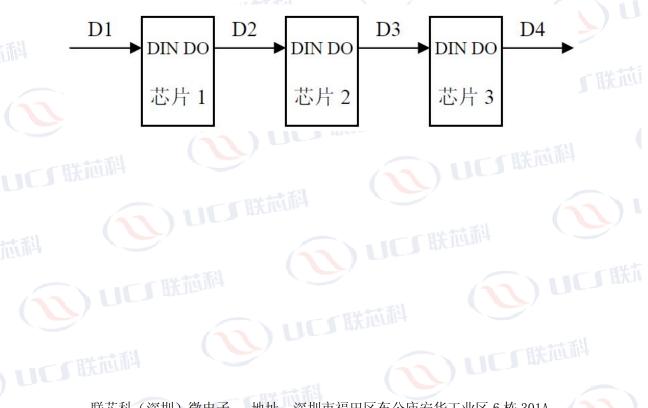
- (参数	符号	范围	单位
	逻辑电源电压	Vdd	6.5	V
	输出端口耐压	Vout	30	V
	逻辑输入电压	Vi	-0.5 \sim Vdd $+$ 0.5	V
Ī	工作温度	Topt	- 40∼ + 85	\mathbb{C}
	储存温度	Tstg	$-55 \sim +150$	${\mathbb C}$
	抗静电	ESD	8000	V
Ī	额定输出功率	Pd	400	mW
	J. H. J. Lilling			

推荐工作范围 (如无特殊说明, Ta=-40~ +85℃, Vss=0V)

	参数	符号	最小	典型	最大	单位	测试条件
Y.	逻辑电源电压	Vdd	(5)	5. 5	ETERNIA	V	-
	高电平输入电压	Vih	0.7 Vdd	_	Vdd	V	一联证前
-	低电平输入电压	Vil	0		0.3 Vdd	V	_
4.	输出端口耐压	Vout	24	00114		V	(4

低电平输出电流	B (SET 悬空 = 0.4V, Dout D _{IN} , SET
输入电流 Ii - - ±1 μA 高电平输入电压 Vih 0.7Vdd - V 低电平输入电压 Vil - - 0.3Vdd V 滞后电压 Vh - 0.35 - V 电流偏移量(通道间) dIout ±1.5 ±3.0 % Vds= 电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	CERTA
高电平输入电压 Vih 0.7Vdd - V 低电平输入电压 Vil - 0.3Vdd V 滞后电压 Vh - 0.35 - V 电流偏移量(通道间) dIout ±1.5 ±3.0 % Vds= 电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	D. SET
低电平输入电压 Vi1 - - 0.3 Vdd V 滞后电压 Vh - 0.35 - V 电流偏移量(通道间) dIout ±1.5 ±3.0 % Vds= 电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	D _{vv} SET
滞后电压 Vh - 0.35 - V 电流偏移量(通道间) dIout ±1.5 ±3.0 % Vds= 电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	DIN, OLI
滞后电压 Vh - 0.35 - V 电流偏移量(通道间) dIout ±1.5 ±3.0 % Vds= 电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	D _{IN} , SET
电流偏移量(芯片间) dIout ±3.0 ±5.0 % Vds= 电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	D _{IN} , SET
电流偏移量 VS-Vds %dVds ±0.1 ±0.5 %/V	1V, Iout=17m
	1V, Iout=17m
THE TAX I CONTRACT OF THE PARTY	1V <vds<3v< td=""></vds<3v<>
电流偏移量 VS-Vdd	5V <vdd<5. 5v<="" td=""></vdd<5.>
动态电流损耗 IDDdyn 无负载 1	mA HEI
消耗功率 PD (Ta=25℃) 250	mW
热阻値 Rth(j-a) 80 190 190 1151	°C/W

UCS8903


开关特性 (如无特殊说明, Ta= -40 \sim +85°C, Vss=0V, Vdd= 4.5 \sim 5.5V)

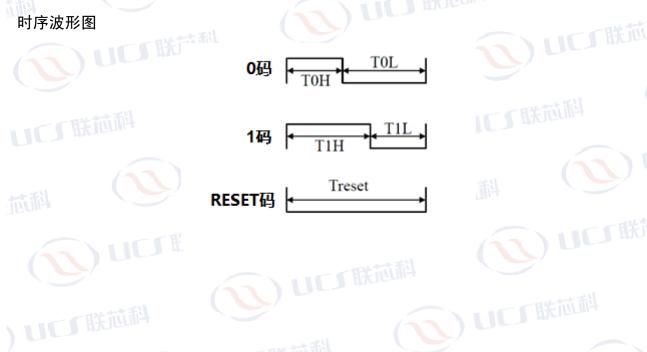
	参数	符号	最小	典型	最大	单位	测试条件
	振荡频率	Fosc1		800	- /	KHz	Vdd =5V
	派初州平	F0SC2	CHIT	100		MHz	Vdd =5V
	传输延迟时间	Tflz	-	-	300	ns	$C1 = 15 \mathrm{pF}, \; D_{\text{IN}} \rightarrow D_{\text{OUT}}, \; R1 \; = 10 \mathrm{k}\Omega$
	下降时间	Tthz	1	153	120	μs	$C1 = 300 \mathrm{pF}$, $OUTR/OUTG/OUTB$
	数据传输率	Fd	800	(-	_	Kbps	占空比50%
1	输入电容	Ci	-	_	15	pF	

功能说明

芯片采用单线通讯方式,采用归零码的方式发送信号。芯片在上电复位以后,接受 DIN 端打来的数据,接受够 48bit 后,DO 端口开始转发数据,供下一个芯片提供输入数据。在转发之前,DO 口一直拉低。此时芯片将不接受新的数据,芯片 OUTR、OUTG、OUTB 三个 PWM 输出口根据接受到的 48bit 数据,发出相应的不同占空比的信号,该信号周期约 1 ms。如果 DIN 端输入信号为 RESET 信号,芯片将接收到的数据送显示,芯片将在该信号结束后重新接受新的数据,在接受完开始的 48bit 数据后,通过 DO 口转发数据,芯片在没有接受到 RESET 码前,OUTR、OUTG、OUTB 管脚原输出保持不变,当接受到 1.5ms 以上低电平 RESET 码后,芯片将刚才接收到的 48bit PWM 数据脉宽输出到 OUTR、OUTG、OUTB 引脚上。

1) 芯片级联方法

UCS8903



注: 其中 D1 为 MCU 端发送的数据, D2、D3 为级联电路自动整形转发的数据。

3) 48bit 数据结构

R15	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	RO
G15	G14	G13	G12	G11	G10	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO
B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	B5	B4	В3	В2	В1	BO

注: 左边高位先发, 按照 RGB 的顺序发送数据

UCS8903

芯片内部再生信号标准

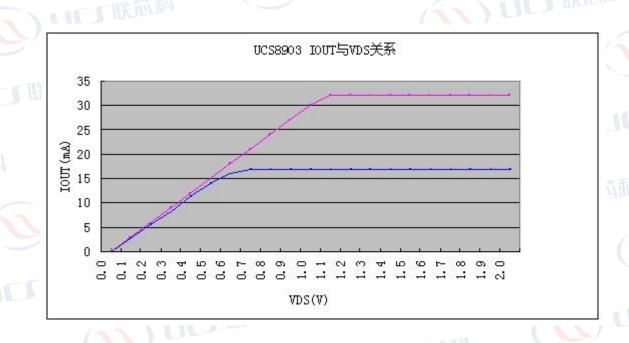
名称	描述	典型值	误差范围
ТОН	0码,高电平时间	0.4µs	± 40 ns
T1H	1码,高电平时间	0.8µs	±80ns
TOL	0码,低电平时间	0.8µs	
T1L	1码,低电平时间	0.4µs	
Treset	RESET 码	» 1 m s	

- 注: 1. IC 主要根据高电平时间判断"0"码和"1"码, IC 收到高电平的前 30ns 不计(特为抗干扰设计)。 高电平时间 < 0.55 us, IC 判断为 "0"码, 高电平时间 > 0.68 uS, 判断为 "1"码. "0"码和 "1"码的低 电平代表此码结束,准备接收下一数据码。
 - 2. 低电平复位时间最小为 0. 1ms, 最高为 1ms, IC 在收到大于 0. 1ms 小于 1ms 的低电平信号时都有 可能认为是RESET码,所以一帧数据传输过程中不要中断超过0.1ms,否则可能会被IC认为是reset 码。但在 0.1ms 低电平时间之内,控制器可以进行其他操作。同时控制器发 reset 码时不要低于 1ms,以保证所有 IC 都能确认为 reset 码
- 3. 控制器输出码形周期务必要大于 1. 25us, 控制器码形请参照下表发送, 可保证有较大的传输数 据变形空间

控制器发码建议值

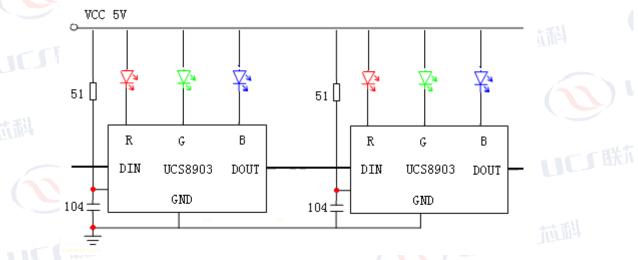
控制器发码建设	义值	工联范科	
名称	描述	典型值	
ТОН	0码,高电平时间	0. 4us	
TIH	1码,高电平时间	0.85s	間話話話
TOL	0码,低电平时间	» 0.85µs	(5)
TIL TIL	1码,低电平时间	» 0. 4us	
T	"0"码或"1"码周期	» 1.25us	UCSEKT
Treset	Reset 码,低电平时间	» 1ms	

48bit数据发送时高位先发,按照RGB的顺序发送数据。48位可拆分成6个8位数据来发送,注意字节与



UCS8903

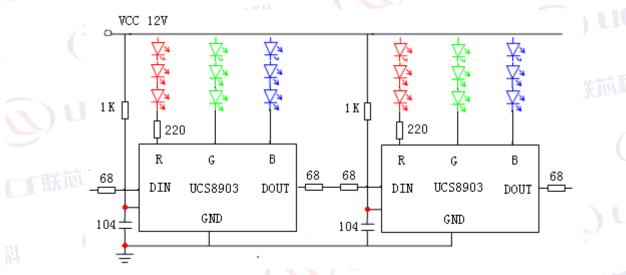
字节之间的低电平时间不要超过RESET信号时间,否则芯片会复位,复位后又重新接收数据,则无法 实现数据传输。


UCS8903 恒流特性优异,通道间甚至芯片间的电流差异极小。 (1): 通道间的电流误差 + 4 5 % 一一一一一

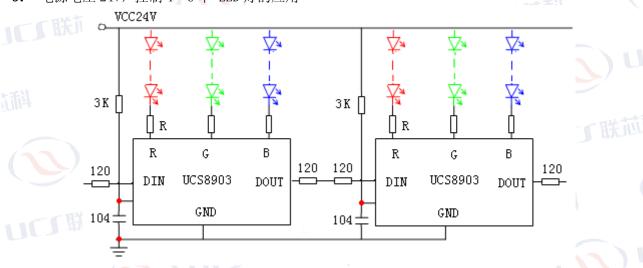
- (1): 通道间的电流误差±1.5%, 而芯片间的电流误差±3%。
- (2): 当负载端电压发生变化时, UCS8903输出电流不受影响,
- (3): 如下图UCS8903输出端口的电流lout越小,在恒流状态下需要的Vds 也越小。当lout为18mA时, Vds为0.6V

应用线路图

1. 电源电压 5V, 带单颗



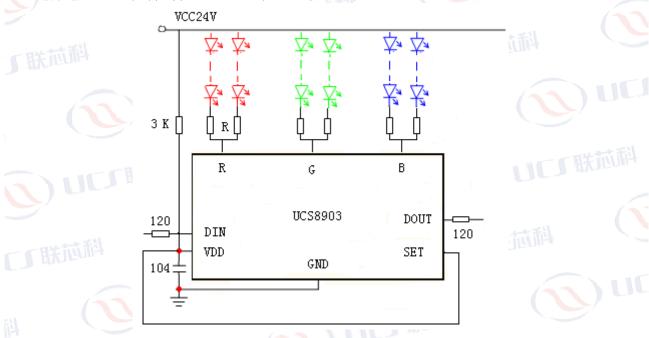
UCS8903


采用恒流方式可以在电压不断下降的同时达到亮度及色温保持不变的理想效果。

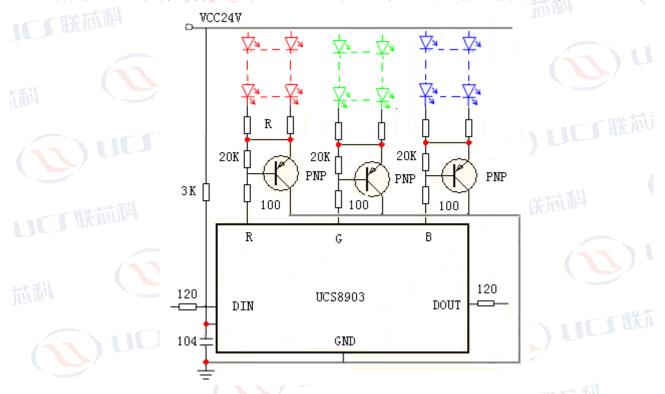
2. 电源电压 12V, 每路串 3 颗 LED 的应用图

12V 供电时建议在 IC 的信号输入及输出端各串一个 68 的电阻防止带电拔插或电源和信号线反接等情况下损坏 IC 输入及输出端。

3. 电源电压 24V, 控制 4~6 串 LED 灯的应用



24V 供电时建议在 IC 的信号输入及输出端各串一个 120 的电阻防止带电拔插或电源和信号线错接等情况下损坏 IC 输入及输出端。


UCS8903

4. 电源电压 24V, 控制 2 并× (4~6) 串 LED 灯的应用

24V 供电时建议在 IC 的信号输入及输出端各串一个 120 的电阻防止带电拔插或电源和信号线错接等情况下损坏 IC 输入及输出端。

5. 电源电压 24V, 控制 $(3 并及以上) \times (4\sim6)$ 串 LED 灯以上的应用图 (1+1) :

注: 三极管选用 PNP, 可选用常规的 9012, 8550 等。

24V 供电时建议在 IC 的信号输入及输出端各串一个 120 的电阻防止带电拔插或电源和信号线错接等情

UCS8903

况下损坏 IC 输入及输出端

稳压特性

UCS 8903 可以配置成 $6 \sim 24V$ 电压供电,电源与地之间的 104P 电容尽量靠近 IC 本体,并且回路最近。IC 内置稳压管,但根据输入电压不同,应配置不同的电源电阻 R,该阻值列表如下:

		0.00
	电源电压	建议电源接口与 VDD 间连接电阻
	5 V	33 欧
	12 V	1K
i	24V	3K

分压电阻

UCS8903 芯片 OUT 输出端口上的电阻可以根据其串接的 LED 数来自行调节,经电阻和 LED 灯串接降压后,OUT 端口处的电压应不超过 4V,这样能降低芯片的功耗,减少发热量。UCS8903 输出端能保持恒流是依靠 IC 输出端(OUTRGB)电压能随电源电压变化或负载变化进行自动调节,以保持输出电流不变。UCS8903 输出端电压的自动调节是有一定范围的,最低可到(0.6V/18mA),最高调节上限没有多大限制,但会受 IC 最大功耗 PD 的限制。UCS8903 PD 为 400mW. 长时间较大功耗工作时不要超过 250mW,否则可能导致 IC 损坏

1. 以应用图 3 6 珠串联应用时,端口(OUTRGB)电流设定 18mA,端口(OUTRGB)电压设计取值 4V 为例, 先说明 IC 端口功耗情况(3 通道同时输出,亮白光)

OUTR 端口功耗: 18mA*4V=72mW

OUTG 端口功耗: 18mA*4V=72mW

OUTB 端口功耗: 18mA*4V=72mW

合计: 216mW 未超过 IC 最大功耗。正常画面功耗一般不超过全白光的 2/3

以下分压电阻的取值计算:

Rr=(24V-4V-6*1.9V)/18mA=477 电源电压 24V, 6串, 红灯开启电压以 1.9V 计

Rg=(24V-4V-6*3.1V)/18mA=77 电源电压 24V ,6 串,绿灯开启电压以 3.1V 计

Rb=(24V-4V-6*3.1V)/18mA=77 电源电压 24V , 6 串, 蓝灯开启电压以 3.1V 计

在此种情况下, 电源电压由 24V 下跌 3.4V (4V-0.6V) 至 20.6V 时还能保持恒流状态。

2. 以应用图 4 为例: LED 6 串 2 并,端口(OUTRGB)电流设定 36mA,端口(OUTRGB)电压设计取值 2.5V 为例,先说明 IC 端口功耗情况(3 通道同时输出,亮白光)

OUTR 端口功耗: 32mA*3V=96mW

OUTG 端口功耗: 32mA*3V=96mW

OUTB 端口功耗: 32mA*3V=96mW

UCS8903

合计: 288mW 已达 IC 最大功耗。正常画面功耗一般不超过全白光的 2/3

以下分压电阻的取值计算:

Rr=(24V-3V-6*1.9V)/32mA=300 电源电压 24V , 6 串 2 并, 红灯开启电压以 1.9V 计

Rg=(24V-3V-6*3.1V)/32mA=75 电源电压 24V , 6 串 2 并, 绿灯开启电压以 3.1V 计

Rb=(24V-3V-6*3.1V)/32mA=75 电源电压 24V, 6 串 2 并, 蓝灯开启电压以 3.1V 计

UCS8903 分压电阻选值表

电源电压	灯珠数目	分压电阻(欧姆)	封装类型
	1 串(18mA)	R-340 B, G-270	R, G, B—0805
CHILLIFE	2 串(18mA)	R-235 B, G-100	R, G, B—0805
	3 串(18mA)	R-220	0805
12 1/1	1 串 2 并 (32mA)	R-220 B, G-180	R, B, G—0805
(2 串 2 并 (32mA)	R-160 B, G-87	R, G, B-0805
	3 串 2 并 (32mA)	R-100 B, G-10	R, G, B-0805
	4 串	R-690 B, G-420	R, G, B-1206
3) U	5 串	R-580 B, G-250	R-1206, B, G-0805
24.44	6 串	R-477 B, G-77	R-1206, B, G-0805
24 //	4 串 2 并 (32mA)	R-420 B, G-270	R—1206 G, B-0805
- CHI	5 串 2 并 (32mA)	R-360 B, G-170	R-1206, B, G-0805
	6串2并(32mA)	R-300, B, G-75	R, B, G—0805
	电源电压 12 伏 24 伏	1 串 (18mA) 2 串 (18mA) 3 串 (18mA) 1 串 2 并 (32mA) 2 串 2 并 (32mA) 3 串 2 并 (32mA) 4 串 5 串 6 串 4 串 2 并 (32mA) 5 串 2 并 (32mA)	1 串 (18mA) R-340 B, G-270 2 串 (18mA) R-235 B, G-100 3 串 (18mA) R-220 1 串 2 并 (32mA) R-220 B, G-180 2 串 2 并 (32mA) R-160 B, G-87 3 串 2 并 (32mA) R-100 B, G-10 4 串 R-690 B, G-420 5 串 R-580 B, G-250 6 串 R-477 B, G-77 4 串 2 并 (32mA) R-420 B, G-270 5 串 2 并 (32mA) R-360 B, G-170

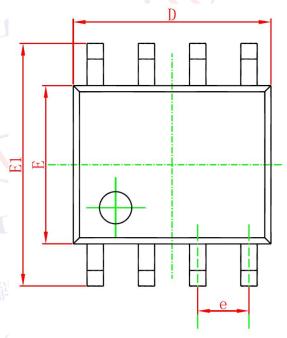
注: 上表 2 组并联情况下分压电阻取值以每组 LED 各串一分压电阻为前提

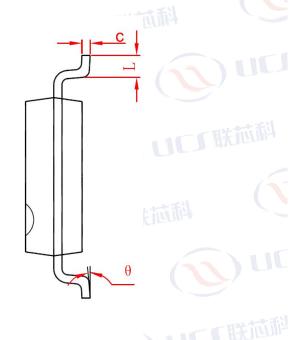
UCS8903

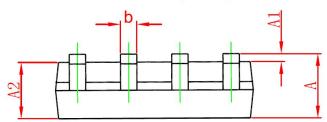
应用注意事项

IC 能正常和稳定的工作与正确的应用息息相关,正确良好的外围元件和产品设计是 IC 稳定工作的基础。基于以上出发点,建议客户在生产过程中严格按照以下建议进行,以保证产品的稳定可靠。

- 1. 在级联应用时,点与点之间有效共地才能保证信号正常传输。
- 2. 应用在点光源时,最好采用 2 芯 (24V 正,24V 负) +2 芯 (D,GND) 的连接方式。若采用单 3 或 4 芯头连接时,务必注意连接头中 24V+和数据线 D 都在一个接头里,要避免连接头密封不良漏水(或安装时未插紧)以及防水头非对位强行接插,以上情况会造成 24+和数据线 D 短路,可能会烧毁 IC。
- 3. 24V供电时每个 IC 的 DIN 输入及 DOUT 输出都务必串接 120 欧以上的保护电阻, 并且电阻位置应最靠近 IC 输入输出端。12V供电时信号输入输出端务必各串接 68 欧以上电阻。
- 4. UCS8903 VDD 端内置稳压管,不用再加 78L05,但要注意的是,在 24V(24V 供电时)及 VDD 端之间 务必要串接一个电阻,此电阻取值为 3K,电阻功率选 1/4W 即可。12V 供电时此电阻选 1K。
- 5. 应用 UCS8903 在画板时要注意信号地(GND)线,地线应尽量画粗,过细的地线可能会由于电流瞬间冲击可能造成较大干扰,引起信号数据误判,出现抖动等非正常现象。
- 6. 在板上布线时,关键走线,如信号线(DIN, DOUT), 5V 和 GND 线相互间及与其它走线间应保持较大的距离,以尽量减少因制板工艺腐蚀不良问题造成暗连线时出现传输不稳定现象。
- 7. 在板上布线时,关键过孔,如信号线(DIN,DOUT),5V 和 GND 线上的过孔,孔径务必大于 0.6mm以上,并且至少并打 2 个以上过孔,以减少线路板过孔沉铜工艺不良时出现传输不稳定现象。
- 8. 为减少高频干扰,每个 IC 的电源与地之间都要并联一个 104 电容,104 应该最靠近 IC 的电源和地, 并且要求电源线应该先经过 104 再到 IC。
- 9. UCS8903 是恒流输出,务必注意 RGB 输出端上串联的分压电阻的选用。恒流 IC 选用分压电阻和恒压输出 IC 选用限流电阻的取值方式完全不同。选值不当可以损坏 IC。






UCS8903

封装外形图和尺寸

SOP8

and the second s				THE RESERVE AND ADDRESS OF THE PARTY OF THE		
前前	符号	m	m	inc	inches	
	19 5	最小值	最大值	最小值	最大值	
(53)1	AXIEUR	1.350	1.750	0.053	0.069	
	A1	0.100	0.250	0.004	0.010	
	A2	1.350	1.550	0.053	0.061	
一个用类证	i間 b	0.330	0.510	0.013	0.020	
UCS联	С	0.170	0.250	0.006	0.010	
	D	4.700	5.100	0.185	0.200	
	(E	3.800	4.000	0.150	0.157	
植植	E1	5.800	6.200	0.228	0.244	
	е	1.270	(BSC)	0.050	(BSC)	
(53)	IICI BUD	0.400	1.270	0.016	0.050	
	θ	0°	8°	0°	8°	

UCS8903

岴	4	\Box
ਜ਼⊽	∕4	亏

版本	发行日期	修订简介
VER1.0	2012-6-25	第一版
VER1.1	2012-10-25	内容修改
	- (NT (/

