UC4601 cmos ic

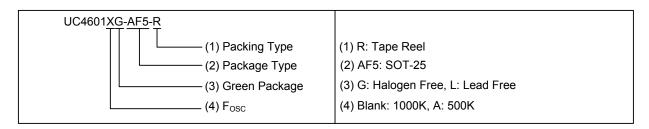
PWM STEP-DOWN DC-DC CONTROLLER

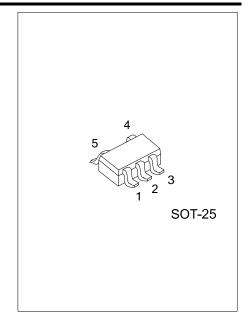
■ DESCRIPTION

The UTC **UC4601** is a PWM step-down DC/DC controller. It has a low supply current. The step-down DC/DC converter with low ripple, high efficiency performance is conveniently configured with additional external components, such as a power-transistor, an inductor, a diode and capacitors. The output voltage can be adjusted with external components.

The UTC **UC4601** contains a high precision band-gap voltage reference, a PWM control circuit, a soft-start circuit, a protection circuit, an oscillator, an error amplifier with built-in compensation network and input/output voltage detection circuits.

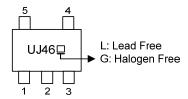
The UTC **UC4601** based DC/DC converter can performance well when maintaining stability, which is due to its built-in state-of-art control algorithm. Further, if the term of maximum duty cycle retains on a certain time, the embedded protection circuits restart the operation with soft-start and repeat until the maximum duty cycle condition is released. Finally, the internal UVLO function blocks potentially unstable output when the input voltage reaches the UVLO threshold or less. This is aiming at making this circuit standby for low power consumption.

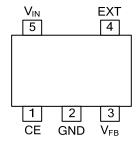

The UTC **UC4601** can be applied in battery-powered equipment, hand-held communication equipment, cameras, video instruments such as VCRs, camcorders, household electrical appliances.



- * Input voltage varies from 2.3V to 15V
- * Low temperature coefficient of output voltage: Typ. ±100ppm/°C
- * Internal soft-start and protection function
- * High efficiency up to 90% (TYP.)
- * High output voltage accuracy: ±2%
- * Standly current: 0.1µA (TYP.)
- * CMOS output capability

■ ORDERING INFORMATION


Ordering Number		Dookogo	Dealine		
Lead Free	Halogen Free	Package	Packing		
UC4601XL-AF5-R	UC4601XG-AF5-R	SOT-25	Tape Reel		



UC4601 cmos ic

MARKING

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	DESCRIPTION	
1	CE	Chip Enable. Active with "H"	
2	GND	Ground	
3	V_{FB}	Feedback Voltage	
4	EXT	External Transistor Driver Pin (CMOS output)	
5	V _{IN}	Power input voltage	

UC4601 cmos ic

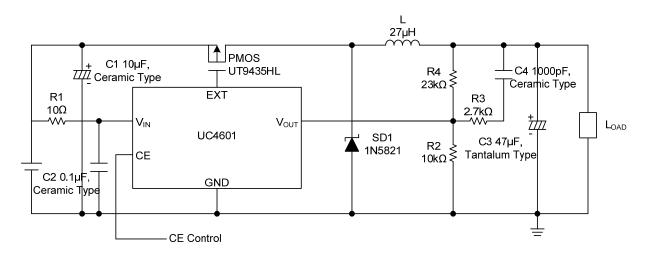
■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} Supply Voltage	V _{IN}	15	V
Ext Pin Output Voltage	V_{EXT}	V_{IN}	V
CE Pin Input Voltage	V_{CE}	V_{IN}	V
V _{OUT} /V _{FB} Pin Input Voltage	V_{OUT}/V_{FB}	6	V
Ext Pin Output Current	I _{EXT}	±50	mA
Power Dissipation	P _D	+250	mW
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ OPERATING RANGE

PARAMETER	ARAMETER SYMBOL RATINGS		UNIT
V _{IN} Supply Voltage	V_{IN}	2.5 ~ 15	V
Ext Pin Output Voltage	V_{EXT}	V _{IN}	V
CE Pin Input Voltage	V_{CE}	V _{IN}	V
V _{OUT} /V _{FB} Pin Input Voltage	V_{OUT}/V_{FB}	5.5	V
Ext Pin Output Current	I _{EXT}	±50	mA


■ **ELECTRICAL CHARACTERISTICS** (T_{OPR}=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADJUSTABLE OUTPUT VOLTAGE TYPE						
Operating Voltage	V_{IN}		2.3		15	V
Feedback Voltage	V_{FB}	V _{IN} =V _{CE} =8V, I _{LOAD} =350mA	0.98	1.00	1.02	V
Feedback Voltage Temperature coefficient	$\Delta V_{FB}/\Delta T$	-40°C <t<sub>OPR<85°C</t<sub>		±100		ppm/°C
Supply Current	I_{Q1}	$V_{IN}=V_{CE}=12V, V_{FB}=2V$		40	80	μΑ
Shutdown Current	I_{Q2}	V_{IN} =12V, V_{CE} = V_{FB} =0V		0.1	1	μΑ
UC4601 Oscillator Frequency	f _{OSC1}	$V_{IN}=V_{CE}=8V$, $I_{LOAD}=350$ mA	800	1000	1200	kH_Z
UC4601A Oscillator Frequency	f _{OSC2}	$V_{IN}=V_{CE}=8V$, $I_{LOAD}=350$ mA	400	500	600	kH_Z
Maximum Duty Cycle	D_{MAX}		100			%
Minimum Duty Cycle	D_{MIN}				0	%
EXT "H" Output Current	I _{EXTH}	$V_{IN}=V_{CE}=8V$, $V_{EXT}=7.9V$, $V_{FB}=3V$		-17	-10	mA
EXT "L" Output Current	I _{EXTL}	$V_{IN}=V_{CE}=8V$, $V_{EXT}=0.1V$, $V_{FB}=0V$	20	30		mA
CE "H" Output Current	I _{CEH}	$V_{IN}=V_{CE}=V_{OUT}=12V$		0	0.5	μΑ
CE "L" Output Current	I _{CEL}	V _{IN} =V _{OUT} =12V, V _{CE} =0V	-0.3	0		μΑ
CE "H" Input Voltage	V_{CEH}	V _{IN} =8V, V _{FB} =0V	1.8			V
CE "L" Input Voltage	V_{CEL}	V _{IN} =8V, V _{FB} =0V			0.3	V
UVLO Voltage	V_{UVLO1}	V _{IN} =V _{CE} =2.5V≥1.5V, V _{FB} =0V	1.75	2.0	2.25	V
UVLO Release Voltage	V_{UVLO2}	V _{IN} =V _{CE} =1.5V≥2.5V, V _{FB} =0V		V _{UVLO1} +0.1	2.4	V
Delay Time by Soft-Start	T_{SST}	V _{IN} =8V, I _{LOAD} =10mA, V _{CE} =0V≥2.5V	5	10	20	ms
Delay Time by Protection	T_{PROT}	V _{IN} =V _{CE} =2.5V, V _{FB} =2.5V≥0V	5	15	30	ms

UC4601

■ TYPICAL APPLICATION CIRCUIT

Adjustable Output Voltage Type. For example, Output Voltage=3.3V

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

CMOS IC