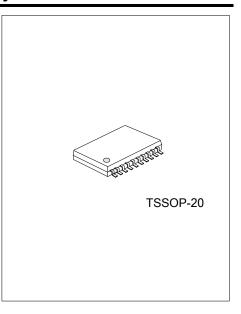


U74CBTLV3245

Preliminary

CMOS IC

LOW-VOLTAGE OCTAL FET BUS SWITCH

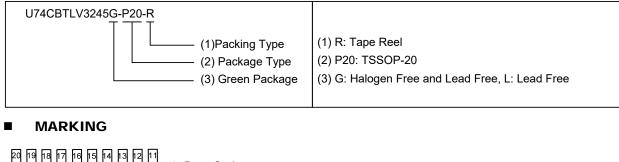

DESCRIPTION

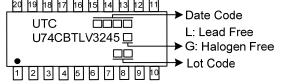
The **U74CBTLV3245** provides eight bits of high-speed bus switching in a standard '245 device pinout. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The device is organized as one 8-bit switch. When output enable (\overline{OE}) is low, the 8-bit bus switch is on, and port A is connected to port B. When \overline{OE} is high, the switch is open, and the high-impedance state exists between the two ports.

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.




FEATURES

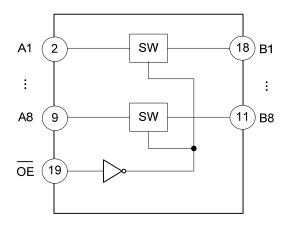
- * 5Ω Switch Connection Between Two Ports
- * Standard '245-Type Pinout
- * Isolation Under Power-Off Conditions
- * Rail-to-Rail Switching on Data I/O Ports
- * IOFF Supports Partial-Power-Down Mode Operation

ORDERING INFORMATION


Ordering	Number	Deskere	Dealing		
Lead Free	Halogen Free	Package	Packing		
U74CBTLV3245L-P20-R	U74CBTLV3245G-P20-R	TSSOP-20	Tape Reel		

U74CBTLV3245

■ PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION
1	NC		No connection
2-9	An	I/O	Input/output An
10	GND		Ground
11 ~18	Bn	I/O	Input/output Bn
19	ŌĒ	Ι	Pull OE low, An=Bn
20	Vcc		Supply Voltage $1.65V \le V_{CCB} \le 5.5V$

■ **FUNCTION TABLE** (each bus switch)

INPUT (OE)	FUNCTION
L	A port = B port
Н	Disconnect

LOGIC DIAGRAM (positive logic)

Preliminary

ABSOLUTE MAXIMUM RATING (unless otherwise specified)(Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5 ~ 4.6	V
Input Voltage (Note 2)	VI	-0.5 ~ 4.6	V
Continuous channel current		128	mA
Input Clamp Current (V _{I/O} <0)	l _{iK}	-50	mA
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

RECOMMENDED OPERATING COMDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		2.3		3.6	V
	N/	V _{CC} =2.3V~2.7V	1.7			V
High-control input voltage	VIH	V _{CC} =2.7V~3.6V	2			V
	N/	V _{CC} =2.3V~2.7V			0.7	V
Low-control input voltage	VIL	V _{CC} =2.7V~3.6V			0.8	V
Operating Temperature	T _A		-40		+85	°C

Note: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

STATIC CHARACTERISTICS

PARAM	ETER	SYMBOL	TEST C	ONDITIONS	6	MIN	TYP (Note 1)	MAX	UNIT
0 1	Control Inputs	V _{IK}	V _{cc} =3V, I _I =-18mA				-1.2	V	
Diode Voltage	Data Inputs							-0.8	V
Input Leakage Cu	rrent	Ц	V_{CC} =3.6V, V_{I} = V_{CC} or	r GND				±60	μA
Power off Leakage	e Current	I _{OFF}	$V_{CC}=0$, V_{I} or $V_{O}=0$ to	9.6V				40	μA
Quiosceut Supply	Current	I _{CC}	V_{CC} =3.6V, V_{I} = V_{CC} or GND, I_{O} =0				20	μA	
Additional Quiescent Supply Current (Note 2)	Control Inputs	ΔI _{CC}	V_{CC} =3.6V, One input at 3V, Other inputs at V_{CC} or GND				300	μA	
Control input Capacitance	Control Inputs	Cı	V ₀ =3V or 0				4		pF
I/O Capacitance C)FF	C _{IO(OFF)}	$V_0=3V \text{ or } 0, \overline{OE} = V_{CC}$			9		pF	
		R _{ON}	V _{CC} =2.3V Typ. at V _{CC} =2.5V	V-0	l₀=64mA		5	8	Ω
				V _I =0	I ₀ =24mA		5	8	Ω
Resistor between two ports	V _I =1.7V, I _O =-15mA				27	40	Ω		
(Note 3)					I ₀ =64mA		5	7	Ω
			V _{CC} =3V	VI=0V	I ₀ =24mA		5	7	Ω
	V _I =2.4		VI=2.4V, IC	=-15mA		10	15	Ω	

Notes: 1. All typical values are at V_{CC} =3.3V, T_A =25°C, unless otherwise Specified.

2. This is the increase in supply current for each input that is at the specified voltage level, rather than V_{CC} or GND.

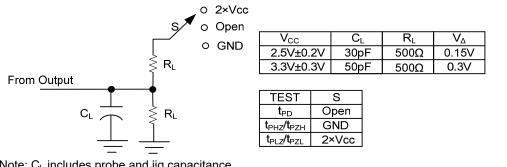
3. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

Preliminary

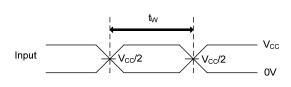
■ DYNAMIC CHARACTERISTICS

Over recommended operating free-air temperature range, unless otherwise specified. (See Figure. 1)

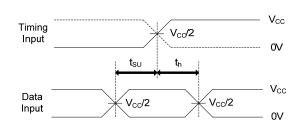
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
From input (A or B) to output (B or A)	t _{nd} (tpi u/tpui)	V _{CC} =2.5V±0.2V			0.15	ns
		V _{CC} =3.3V±0.3V			0.25	ns
From input (\overline{OE}) to output (A or B)	t _{en} (t _{PZL} /t _{PZH})	V _{CC} =2.5V±0.2V	1.0		6.0	ns
		V _{CC} =3.3V±0.3V	1.0		4.7	ns
From input (\overline{OE}) to output (A or B)	t _{dis} (t _{PLZ} /t _{PHZ})	V _{CC} =2.5V±0.2V	1.0		6.1	ns
		V _{CC} =3.3V±0.3V	1.0		6.4	ns

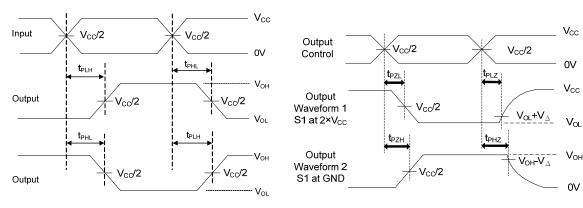


U74CBTLV3245


Preliminary

CMOS IC


TEST CIRCUIT AND WAVEFORMS


Note: C_L includes probe and jig capacitance. t_{PLZ} and t_{PHZ} are the same as t_{dis} . t_{PZL} and t_{PZH} are the same as t_{en} . t_{PLH} and t_{PHL} are the same as t_{PD} .

SETUP AND HOLD TIMES

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

Note: All input pulses are supplied by generators having the following characteristics: t_r, t_f ≤ 2ns; $P_{RR} \le 10$ MHz; Z_0 =50 Ω .

Figure. 1 Load circuitry and voltage waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

