U430 SERIES

N-Channel JFET Pairs

The U430 Series are pairs of matched JFETs assembled in one TO-78 package. They feature high gain, low noise and low gate leakage and are intended for high performance, high slew rate, mixing and differential amplification. Additionally, these devices offer good power gain even as frequencies are increased beyond 250 MHz. The TO-78 package may be processed for military applications. (See Section 1.)

For additional design information please consult performance curves NZB which are located in Section 7.

SIMILAR PRODUCTS

- Low-Noise, See U401 Series
- High-Gain, See 2N5911 Series
- Low-Leakage, See U421 Series
- Chips, Order U43XCHP

PART NUMBER	V _(BR) GSS MIN (V)	g fs MIN (mS)	I _G TYP (pA)	V _{GS1} - V _{GS2} TYP (mV)
U430	-25	10	-15	25
U431	-25	10	-15	25

4 CASE

5 DRAIN 2

6 GATE 2 7 SOURCE 2

TO--78

BOTTOM VIEW

PARAMETERS/TEST CONDITIONS		SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage		V _{GD}	-25		
Gate-Source Voltage		V _{GS}	-25		
Forward Current		۱ _G	10	mA	
Power Dissipation	Per Side Total	PD	300 500	mW	
Power Derating Per Side Total			2.4 4	mW/°C	
Operating Junction Temperature		Тj	–55 to 150		
Storage Temperature		T _{stg}	-65 to 200	°C	
Lead Temperature (1/16" from case for 10 seconds)		ΤL	300		

U430 SERIES

ELECTRICAL CHARACTERISTICS ¹			LIMITS							
					U430		U431			
PARAMETER	SYMBOL	TEST CON	DITIONS	TYP ²	MIN	мах	MIN	мах	UNIT	
STATIC										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	Ι _G = -1μΑ, V _{DS} = 0 V		-35	-25		-25		v	
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D = 1 nA			-1	-4	-2	-6		
Saturation Drain Current ³	IDSS	V_{DS} = 10 V, V_{GS} = 0 V			12	30	24	60	mA	
Gate Reverse Current	I _{GSS}	V _{GS} = -15 V V _{DS} = 0 V	T -150°C	-5		-150		-150	pA	
			14-130 0	-10		-150		-150		
Gate Operating Current	۱ _G	$V_{DG} = 10 V$ $I_D = 5 mA$	T _A =150°C	-10					nA	
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA, V _{DS} = 0 V		0.8		1		1	v	
DYNAMIC										
Common-Source Forward Transconductance	g _{fs}	V _{DS} = 10 V, I _D = 10 mA f = 1 kHz		15	10		10		mS	
Common-Source Output Conductance	g _{os}			100		250		250	дS	
Common-Source Input Capacitance	C _{iss}	V _{GS} = -10 V, V _{DS} = 0 V f = 1 MHz		4.5		5		5	рF	
Common-Source Reverse Transfer Capacitance	C _{rss}			2		2.5		2.5		
Equivalent Input Noise Voltage	ēn	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ mA}$ f = 100 Hz		6					nV∫ _{Hz}	
HIGH FREQUENCY										
Common-Source Forward Transconductance	g _{fs}	V _{DS} = 10 V, I _D = 10 mA f = 100 MHz		14					mS	
Common-Source Output Conductance	g _{os}			0.13						
Power-Match Source Admittance	g _{ig}			12						
MATCHING										
Differential Gate-Source Voltage	V _{GS1} -V _{GS2}	V _{DG} = 10 V, I _I	_D = 10 mA	25					mV	
Saturation Drain ⁴ Current Ratio	I _{DSS1} I _{DSS2}	V_{DS} = 10 V, V_{GS} = 0 V		0.95	0.9	1	0.9	1		
Transconductance ⁴ Ratio	<u>g _{fs1}</u> g _{fs2}	V _{DS} = 10 V, I _D = 10 mA f = 1 kHz		0.95	0.9	1	0.9	1		
Gate-Source Cutoff Voltage Ratio	$\frac{V_{GS(OFF)1}}{V_{GS(OFF)2}}$	V _{DS} = 10 V, I _D = 1 nA		0.95	0.9	1	0.9	1		
Differential Gate Current	_{G1} - _{G2}	V _{DG} = 10 V, I _D = 5 mA		-2					pА	
Common Mode Rejection Ratio	CMRR	V _{DD} = 5 to 10 V, I _D = 10 mA		75					dB	

NOTES: 1. T_A = 25 °C unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = 300 µs, duty cycle ≤ 3%.
4. Assumes smaller value in the numerator.

4