

Date; Sep. 18, 2007

TECHNICAL DATA

TX36D88VC1CAA

CONTENTS

No.	Item	Sheet No.	Page
	COVER	DPBCL0001618-1	1-1/1
_	RECORD OF REVISION	DPBCL0001618-1	2-1/1
_	APPLICATIONS	DPBCL0001618-1	3-1/1
1	ABSOLUTE MAXIMUM RATINGS	DPBCL0001618-1	4-1/2 - 2/2
2	OPTICAL CHARACTERISTICS	DPBCL0001618-1	5-1/2 - 2/2
3	ELECTRICAL CHARACTERISTICS	DPBCL0001618-1	6-1/1
4	BLOCK DIAGRAM	DPBCL0001618-1	7-1/1
5	INTERFACE PIN CONNECTION	DPBCL0001618-1	8-1/4 - 4/4
6	INTERFACE TIMING	DPBCL0001618-1	9-1/4 - 4/4
7	DIMENSIONAL OUTLINE	DPBCL0001618-1	10-1/1
8	DESIGNATION OF LOT MARK	DPBCL0001618-1	11-1/2 - 2/2
9	COSMETIC SPECIFICATIONS	DPBCL0001618-1	12-1/3 - 3/3
10	PRECAUTIONS	DPBCL0001618-1	13-1/4 - 4/4

Hitachi Displays, Ltd. DPBCL0001618-1 Page 1-1/1
--

RECORD OF REVISION The upper section: Before revision The lower section : After revision Date Summary Sheet No. Page

Hitachi Displays, Ltd. Date Sep. 18, 2007 DPBCL0001618-1 Page 2-1/1

<u>APPLICATIONS</u>

This specification is applied to the following TFT Liquid Crystal Display Module with Back-light unit and LVDS (Low Voltage Differential Signaling) Interface.

Note: Inverter device for Back-light is not built in and so it needs to

be prepared on your side.

Type name : TX36D88VC1CAA

Display Area : $(H)285.7 \times (V)214.3 \text{ [mm]}$

Display Pixels : $(H)1,024 \times (V)768$ pixels (Display Dots) : $(H(1024 \times 3) \times V768$ [dots])

Power Supply Voltage : 3.3 V

Pixel Pitch : $(H)0.279 \times (V)0.279 \text{ [mm]}$

Color Pixel Arrangement : R•G•B Vertical Stripe

Display Mode : Transmissive &

Normally White Mode

Color Number : 262k Colors

Direction with Wider

Viewing Angle

: Lower side of 6 o'clock (Azimuth $\phi = 270^{\circ}$)

Dimensions Outlines : $(H)298.5 \times (V)225.5 \text{ typ.} \times (t)6.0 \text{max [mm]}$

Weight : 480typ. [g]

Interface : 1ch-LVDS

Back-light : One Cold Cathode Fluorescent Lamp

(Lower side)

Back-light inverter is not contained in Module.

1. ABSOLUTE MAXIMUM RATINGS

1.1 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS

Item	Operating		Storage		Unit	Note
Tuem	Min.	Max.	Min.	Max.	Ollit	Note
Ambient Temperature	0	40	-20	60	°C	1)
Humidity	2)		2)		%RH	1)
Vibration	_	4.9 (0.5G)	ı	19.6 (2G)	m/s^2	3), 5)
Shock	_	29.4 (3G)	1	490 (50G)	m/s^2	4), 5)
Corrosive Gas	Not Acceptable		Not Acceptable		_	
Illumination at		50,000		50,000	1	
LCD Surface	_	50,000	_	50,000	lx	

Notes 1) Environmental temperature and humidity of this unit, not of system installed with this unit.

At low temperature the brightness of CFL drop and the life time of CFL become to be short.

2) Ambient temp. Ta $\leq 40^{\circ} C \, : 85\% RH$ MAX. without condensation.

 $Ta > 40^{\circ}\mathrm{C}$: Absolute humidity must be lower than the saturated vapor of

85% RH at $40^{\circ}C.$ Without condensation.

3) Vibration frequency $20\sim50$ Hz. (Except resonance frequency) 3min/cyc

4) 7ms of pulse width.

5) With mounting protective spacer (ref. page 4-2/2)

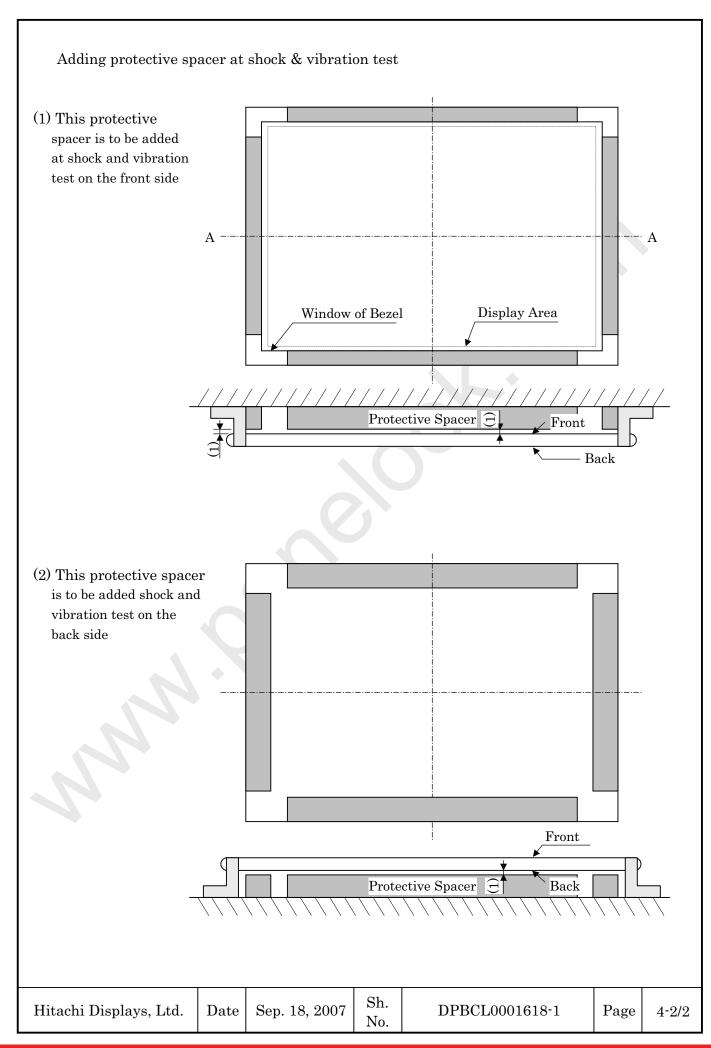
1.2 ELECTRICAL ABSOLUTE MAXIMUM RATINGS

(1) TFT Liquid Crystal Display Module

Vss=0V

GND=0V

Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	$V_{ m DD}$	0	4.0	V	
Electrostatic Durability	$ m V_{ESD0}$	±100		V	1), 2)
Electrostatic Durability	$ m V_{ESD1}$	±	kV	1), 3)	


Notes 1) Discharge circuit: $200 pF-250 \Omega$, Surrounding: $25 ^{\circ}C-70 \% RH$.

- 2) The specification is applicable to I/F Connector pins.
- 3) The specification is applicable to metal bezel and LCD glass.

(2) Back Light unit

ITEM	Symbol	Min.	Max.	Unit
Lamp Current	$ m I_L$	0	7.0	mArms
Lamp Voltage	$ m V_L$	0	2,000	Vrms

Hitachi Displays, Ltd.	Date	Sep. 18, 2007		DPBCL0001618-1	Page	4-1/2
------------------------	------	---------------	--	----------------	------	-------

2. OPTICAL CHARACTERISTICS

The following items are measured on the conditions that this unit operation (TFT panel and Back-light) and measuring systems are stable. (more than 30minites' operation) The ambient light excluding The Back-light unit is nothing.

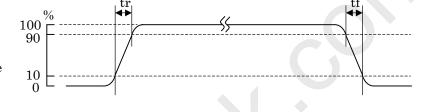
 \bullet Measuring equipment \div TOPCON BM-7, Prichard 1980A, or equivalent

• Measuring point : Active area center

Temperature of LCD=25°C, V_{DD} =3.3V, f_V =60Hz, I_L =6.0mA

Item		Symbol	Min.	Тур.	Max.	Unit	Note
Contrast I	Ratio	CR		150	ı	-	1)
Response	Rise	tr	_	50	-	ma	2)
Time	Fall	tf		30	ı	ms	2)
Brightness ((white)	Bwh	_	150	-	cd/m ²	
Red	X	-	0.58	ı			
	Green	У	_	0.33	-		
		X	_	0.30	-		
Color of CIE		у	-	0.56	_	_	
Blue	X	-	0.15	_			
	Diue	У	-	0.14	_		
	White	X	_	0.32	_		
	willte	у	-	0.33	_		

Notes 1) Definition of Contrast Ratio (CR)


CR = Brightness when displaying White raster
Brightness when displaying Black raster

These Brightness is measured on the center of screen.

* Measurement in the darkroom.

2) Definition of Response Time $\,$

Optical Response Relative luminance

Hitachi Displays, Ltd.

Date

Sep. 18, 2007

Sh. No.

DPBCL0001618-1

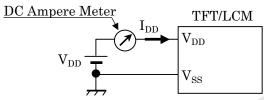
Page

5-2/2

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LIQUID CRYSTAL DISPLAY MODULE

Ta=25°C, Vss=0V


Item		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		$V_{ m DD}$	3.0	3.3	3.6	V	
Differential Input Voltage	Hi	V_{IH}	-	_	+100	mV	1)
for LVDS Receiver Threshold	Lo	$ m V_{IL}$	-100	_	-	III V	1)
Power Supply Current		${ m I}_{ m DD}$	1	300	600	mA	2), 3)
Vsync Frequency		f_V	1	60	65	Hz	4)
Hsync Frequency		$ m f_H$	1	48.5	52.4	kHz	4)
DCLK Frequency		$ m f_{CLK}$	_	65	67	MHz	4)

Notes 1) VCM=+1.25V

2) fv=60Hz, f_{CLK}=65MHz, V_{DD} =3.3V, DC Current.

Typical value is measured when displaying vertical 64 gray scale.

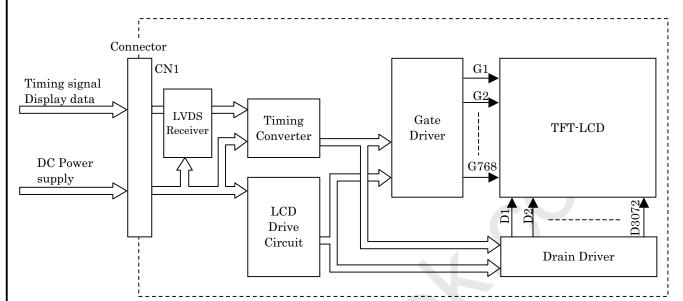
Maximum is measured when displaying Vertical-stripe (Black-Gray 7).

- 3) Current capacity for V_{DD} power source should be larger than 2A.
- 4) For LVDS Transmitter Input

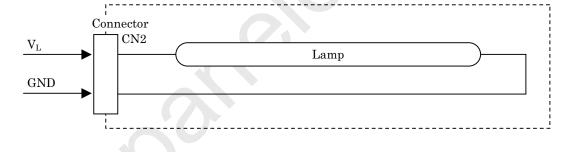
3.2 BACK-LIGHT UNIT

Ta=25°C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Current	${ m I_L}$	3.5	5.0	6.0	mArms	1), 2), 6)
Lamp Current	1L	_	-	11	mA0-peak	1), 2), 6)
Lamp Voltage	$ m V_L$	_	650	-	Vrms	
Frequency	$ m f_{L}$	50	ı	70	kHz	3)
Starting Lamp Voltage	Vs	1100	ı	ı	Vrms	4)
Starting Lamp Voltage	VS	1400	_	_	VIIIIS	4), 5), 7)


Notes 1) Higher IL cause the short life time of CFL.

- 2) DC current cause irregular fluorescence and the short life of CFL.
- 3) Lamp frequency may produce interference with Hsync frequency, causing beat or flicker on the display. There fore lamp frequency shall be as different as possible from Hsync frequency, to avoid interference.
- 4) Starting Lamp Voltage applied be more than Vs (Min).
- 5) Ta=10°C
- 6) Reducing Lamp current increases Lamp voltage and generally increases Lamp frequency. So all the parameters of an inverter should be carefully designed so as not to produce to much leakage current from high-voltage output of the inverter.
- 7) Must be high considering to the loss of the ballast capacitor in the inverter.


Hitachi Displays, Ltd. Date Sep. 18, 200	Sh. No.	DPBCL0001618-1	Page	6-1/1
--	------------	----------------	------	-------

$4.1~\rm TFT~LIQUID~CRYSTAL~DISPLAY~MODULE$

4.2 BACK-LIGHT UNIT

Hitachi Displays, Ltd. Date Sep. 18, 2007 Sh. No. DPBCL0001618-1 Page 7-1/1

5. INTERFACE PIN CONNECTION

5.1 TFT LIQUID CRYSTAL DISPLAY MODULE

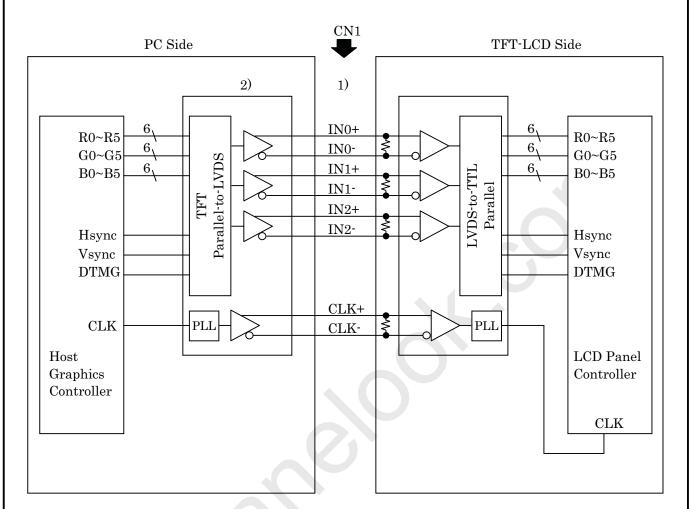
CN1 <<JAE FI-SEB20P-HF13 or equivalent>>

Pin No.	Symbol	Function
1	VDD	Power Supply 3.3V nominal
2	VDD	Power Supply 3.3V nominal
3	VSS	Ground
4	VSS	Ground
5	Rin0-	Receiver Signal (-)
6	Rin0+	Receiver Signal (+)
7	VSS	Ground
8	Rin1-	Receiver Signal (-)
9	Rin1+	Receiver Signal (+)
10	VSS	Ground
11	Rin2-	Receiver Signal (-)
12	Rin2+	Receiver Signal (+)
13	VSS	Ground
14	CLK-	Clock Signal (-)
15	CLK+	Clock Signal (+)
16	VSS	Ground
17	_	NC
18		NC
19	VSS	Ground
20	VSS	Ground

Notes 1) All VSS pins should be connected to GND (0V).

Metal bezel is connected internally to VSS.

- 2) All VDD pins should be connected to +3.3V.
- 3) All NC pins should be kept Open.

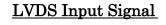

5.2 BACK-LIGHT UNIT

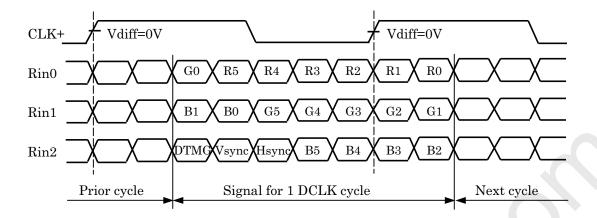
CN2 <<JST BHSR-02VS-1>>

Pin No.	Symbol	Function
1	VL	Power Supply
2	GND	GND (0V)

Hitachi Displays, Ltd.	Date	Sep. 18, 2007	DPBCL0001618-1	Page	8-1/4	
		_				

LVDS INTERFACE




Notes 1) LVDS cable impedance is 100 ohms per signal line when two are used differentially...

2) Transmitter: TI SN75LVDS84, or equivalent.

 $Transmitter\ is\ not\ contained\ in\ Module.$

Hitachi Displays, Ltd. Date Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	8-2/4	
---	------------	----------------	------	-------	--

Pin connection in case of using TI SN75LVDS84

	INPUT	Transmitter	Interface con	necter (CN1)
	SIGNAL		PC	Module
	R0	IN0(44)		
	R1	IN1(45)	OUT0+	IN0+
L	R2	IN2(47)		
V	R3	IN3(48)		
D	R4	IN4(1)		
S	R5	IN5(3)	OUT0-	IN0-
	G0	IN6(4)	•	
	G1	IN7(6)		
	G2	IN8(7)	OUT1+	IN1+
	G3	IN9(9)		
	G4	IN10(10)		
	G5	IN11(12)		
.40	B0	IN12(13)	OUT1-	IN1-
	B1	IN13(15)		
	B2	IN14(16)		
	B3	IN15(18)	OUT2+	IN2+
	B4	IN16(19)		
	B5	IN17(20)		
	HSYNC	IN18(22)		
	VSYNC	IN19(23)	OUT2-	IN2-
	DTMG	IN20(25)		
	DCLK	CLK IN(26)	CLK OUT+	CLK IN+
			CLK OUT-	CLK IN-

Note 1) The () valve of the transmitter show IC pin No.

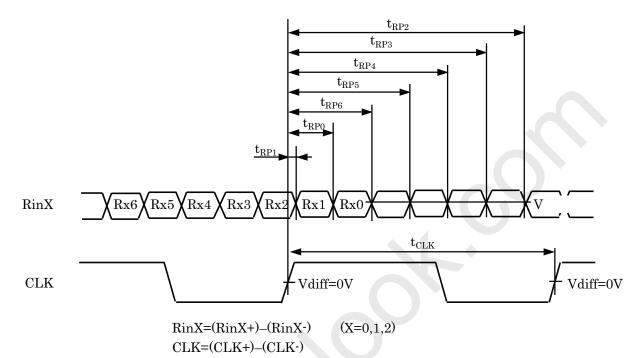
Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	8-3/4

RELATIONSHIP BETWEEN DISPLAY COLORS AND INPUT DATA

	Input data			RD	ata					G D	ata					ΒD	ata		
/		R 5	R4	R3	R2	R1	R0	G_5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
Color		MSB					LSB	MSB					LSB	MSB					LSB
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	:		:	:	:	:	:		:	:					:	:	:	:	:
Rea	:		:	:	:	:	:		:					::	:	:	:	÷	÷
	Red (61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
C	:		:	:	•		÷	/ :	:				:	::	:	:	:	÷	:
Green	:		::	÷			:		::				:	::	:	:	:	:	:
	Green (61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
D1		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	÷
Blue		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	÷
	Blue (61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Notes 1) Definition of gray scale:

 $Color \ (n) --- \ number \ in \ parenthesis \ indicates \ gray \ scale \ level.$

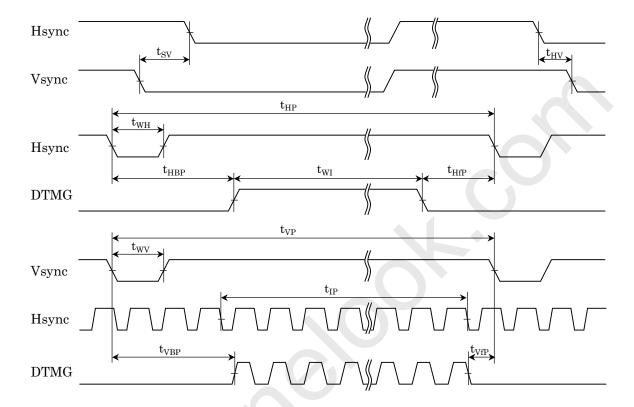

Larger number corresponds to brighter level.

2) Data Signal: 1: High, 0: Low

Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	8-4/4	
------------------------	------	---------------	------------	----------------	------	-------	--

6. INTERFACE TIMING

6.1 LVDS RECEIVER TIMING (Interface of TFT module)



	Item	Symbol	Min.	Typ.	Max.	Unit	Note
DCLK	FREQUENCY	$1/t_{ m CLK}$	60	65	68	MHz	
RinX	0 data position	$ m t_{PR1}$	-0.49	0	+0.49		
(X=0,1,2)	1st data position	$ m t_{PR0}$	$1/7t_{\rm CLK}\!\!-\!\!0.49$	$1/7t_{\rm CLK}$	$1/7t_{\rm CLK}\text{+}0.49$		
	2nd data position	$ m t_{PR6}$	$2/7t_{CLK}$ – 0.49	$2/7t_{\rm CLK}$	$2/7 t_{\rm CLK} + 0.49$		
	3rd data position	$ m t_{PR5}$	$3/7t_{\rm CLK}\!\!-\!\!0.49$	$3/7t_{\rm CLK}$	$3/7t_{CLK}$ +0.49	ns	
	4th data position	$ m t_{PR4}$	$4/7t_{CLK}$ – 0.49	$4/7t_{\rm CLK}$	$4/7t_{\rm CLK} + 0.49$		
	5th data position	$ m t_{PR3}$	$5/7t_{CLK}$ – 0.49	$5/7t_{\rm CLK}$	$5/7t_{CLK}$ +0.49		
	6th data position	$ m t_{PR2}$	$6/7t_{CLK}$ -0.49	$6/7t_{\rm CLK}$	$6/7t_{\rm CLK}\text{+}0.49$		
	oth data position	ι_{PR2}	0/11 _{CLK} -0.49	or ruclk	0/7t _{CLK} +0.49		

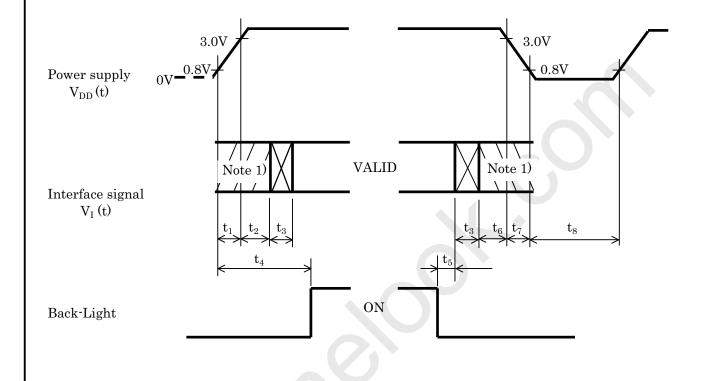
No. Dibelious in the last sept 10, 2007 No. Dibelious in the last sept 10, 2007 No.	Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	9-1/4
---	------------------------	------	---------------	------------	----------------	------	-------

6.2 TIMING CONVERTER TIMING

(Input timing for transmitter)

The timings except mentioned above are referred to the specifications of your transmitter.

Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	9-2/4
------------------------	------	---------------	------------	----------------	------	-------


	Item	Symbol	Min.	Typ.	Max.	Unit	Note
Hsync	Period	$\mathrm{t_{HP}}$	1,142	1,344	2,400	$ m t_{CLK}$	
Hisync	Width-Active	$\mathrm{t_{WH}}$	8	136	160	CLK	
	Setup time	$ m t_{SV}$	-2		-	$ m t_{CLK}$	For Hsync
Vsync	Hold time	$\mathrm{t_{HV}}$	0	_	-	CLK	For Hsylic
VSync	Period	$\mathrm{t_{VP}}$	771	806	1,000	t	
	Width-Active	${ m t_{WV}}$	1	6	120	$ m t_{HP}$	
	Display lines	$ m t_{IP}$	768	768	768	$\mathrm{t_{HP}}$	
	Display clocks	$\mathrm{t_{WI}}$	1,024	1,024	1,024	${ m t_{CLK}}$	
DTMG	Horizontal Back Porch	$\mathrm{t_{HBP}}$	32	1	416	t	
	Horizontal Front Porch	$\mathrm{t_{HFP}}$	4	1	ı	${ m t_{CLK}}$	
	Vertical Back Porch	$\mathrm{t_{VBP}}$	0	1	-	$ m t_{HP}$	1)
	Vertical Front Porch	$\mathrm{t_{VFP}}$	1	_		чнР	1/

Note 1) $t_{VBP} + t_{VFP} \ge 3t_{HP}$

Hitachi Displays, Ltd. Date Sep. 18, 2007 DPBCL0001618-1 Page 9-3/4

6.3 TIMING BETWEEN INTERFACE SIGNAL AND POWER SUPPLY

POWER ON $t_1\!\leq 15ms$ $0 < t_2 \le 45 ms$ $0 < t_3 \le 5 ms$ $0.1s \le t_4$

POWER OFF

Notes 1) t2: Hi-Z(Hi-impedace)state

2) t3: Signal transition time from Hi-Z state to Valid state specified by 3-1, 6-1 and 6-2.

3) Recommended value

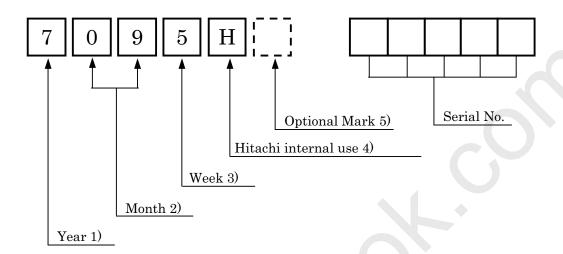
Hitachi Displays, Ltd. Date Sep. 18, 2007	Sh. No. DPBCL0001618-1 Page	9-4/4
---	-----------------------------	-------

屏库:全球液晶屏交易中心 Global LCD Panel Exchange Center www.panelook.com | / | - 0 | Page -4-M2.0 3),5) DP=3.0 max 6.0 max DPBCL0001618-1 38.171 2.655 Sh. No. 35.111 2.2 518.3(OPENING) Sep.18,2007 S ± 0 Þ (4.2) 214.3(ACTIVE AREA CENTER) 3±58 Date Hitachi Displays, Ltd. -ACTIVE AREA CENTER NOTE

1) Interface connector (CNI)

JAE:FI-SEB20P-HF-A or equivalent
2) CCFL cable connector (CN2)

JST:BHSR-02VS-I or equivalent
3) Hole in mounting panel
4) The unspecified tolerance: ±0.5


5) Maximum torque for the screw in mounting panel: 0.147 N·m 298.5 285.7(ACTIVE AREA CENTER) 150.05 289. (30.5) 7. DIMENSIONAL OUTLINE (35) 69.86 162.65

8. DESIGNATION OF LOT MARK

$8.1\ \mathrm{LOT}\ \mathrm{MARK}$

Lot Mark is consisted of 4 digits for production lot and 7 digits for production control.

Notes

1)	Year	Mark
	2006	6
	2007	7
	2008	8
	2009	9
	2010	0

2)	Month	Mark	Month	Mark
	1	01	7	07
	2	02	8	08
	3	03	9	09
	4	04	10	10
	5	05	11	11
	6	06	12	12
,				

Week (Days)	Mark
1~7	1
8~14	2
15~21	3
22~28	4
29~31	5
	· · · · · · · · · · · · · · · · · · ·

4)	Н	Made in JAPAN
	C	Made in CHINA

5) Optional Mark for Hitachi.

8.2 SERIAL NO.

Serial No. is consisted of 5 digits number (00001 \sim 99999).

Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	11-1/2

8.3 LOCATION OF LOT MARK

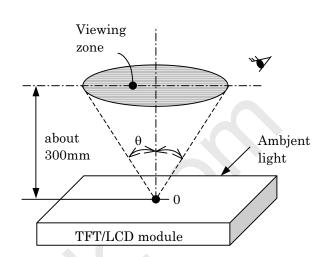
Label is attached on the back side of module.

8.4 REV.

8.4.1 Made in JAPAN

8.4.2 Made in CHINA

Hitachi Displays, Ltd. Date Sep. 18, 2007 Sh. No. DPBCL0001618-1 Page 11-2/2



9. COSMETIC SPECIFICATIONS

9.1 CONDITIONS FOR COSMETIC INSPECTION

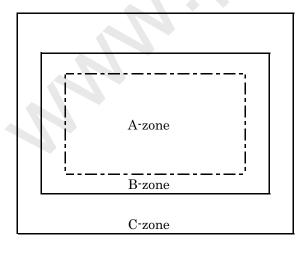
(1) Viewing zone

- The figure shows the correspondence between eyes (of inspector) and TFT/LCD module.
 - $\theta \leq 45^{\circ}$ when non-operating inspection
 - • $\theta \le 5$ ° when operating inspection
- ii) Inspection should be executed only from front side, and only A-zone.Cosmetic of B-zone and C-zone are ignored.(refer to 9.2 DEFINITION OF ZONE)

(2) Environmental

i) Temperature : 25°C

When operating inspection, surface temperature of LCD panel


is 25°C.

ii) Ambient light : More than 800 [lx] and non-directive.

iii) Back-light : When non-operating inspection, Back-light should be off.

(3) Operating inspection
Operating inspection should be done with 8 color mode (without gray scale).

9.2 DEFINITION OF ZONE

•A-zone : Display area (pixel area).

• B-zone : Area between A-zone and C-zone.

• C-zone : Metal bezel area.

(Include I/F connector)

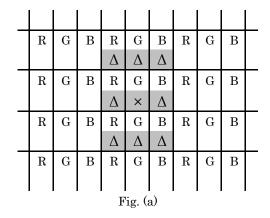
Hitachi Displays, Ltd. Date Sep. 18, 2007 Sh. No. DPBCL0001618-1 Page	12-1/3	
---	--------	--

$9.3\; COSMETIC\; SPECIFICATIONS$

When displaying condition is not stable (ex. at turn on or off), the following specifications are not applied.

No.			Item		Maximum accept	Maximum acceptable number		
INO.			rtem		A-zone	Unit	Note	
1	Dot Defect		1dot		10	pcs	1), 2) 4)	
		Sparkle	2dots		4	unita	1) 2) 5)	
		mode	3dots		0	units	1), 2), 5)	
			density		1	pcs/\phi10	1), 2), 6)	
			1dot		10	pcs	1), 3), 4)	
		Black	2dots		4	units	1), 3), 5)	
		mode	3dots		0	units	1), 3), 3)	
			density		1	pcs/\phi5	1), 3), 6)	
			Total		10	pcs	1)	
2	Line Defect				Serious one			
3	Uneven Brigh	ntness			is no good.	_	_	
4	Stain Inclusio	on	W < 0.05	L: Ignore	Ignore			
	Line shape		W ≥ 0.05	L ≤ 3.0	10	nag	7)	
	W: width (n	nm)	< 0.08	L \(\) 3.0	10	pcs	''	
	L: length (n	nm) J	0.08 ≤ W	3.0 < L	0			
5	Stain Inclusio	on	D <	< 0.22	Ignore			
	Dot shape	Ì	$0.22 \le D < 0.50$		5	pcs	7)	
	D: average	dia.(mm)	0.5	$0 \le D$	0			
6	Scratch on po	larizer	W < 0.05	L: Ignore	Ignore			
	Line shape		$W \ge 0.05$	$L \le 3.0$	4		8)	
	W: width (n	W: width (mm)		3.0 < L	0	pcs	0)	
	L: length (mm)		0.10 ≤ W		0	1		
7	Polarizer Der	nt/Bubble	D	≤ 0.3	Ignore			
	/Peeling	/Peeling		D ≤ 0.5	10	pcs	8)	
	D: average	D: average dia.(mm)		D ≤ 1.0	5			
		139	1.0 < D		0			
8	Wrinkles on Polarizer				Serious one			
					is no good.	_	_	

Hitachi Displays, Ltd. Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	12-2/3	
-----------------------------	---------------	------------	----------------	------	--------	--



Notes 1) Dot Defect : Defect area > 1/2 dot

2) Sparkle mode : Brightness of dot is more than 30% at Black raster. (Visible to eye)
3) Black mode : Brightness of dot is less than 70% at white raster. (Visible to eye)

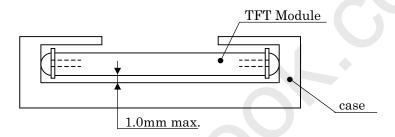
4) 1 dot : defect dot is isolated, not attached to other defect dot.

5) N dots : N defect dots are consecutive. (N means the number of defect dots. $(N \ge 2)$)

The combination of the defect dot \times and other defects (Δ) as shown in Fig. (a) are considered as consecutive defect dots.

 Δ : Directory adjacent to \times

- 6) Density : Number of defect dots inside of specified diameter.
- $7)\ {\it Those}$ stains which can be wiped out easily are acceptable.
- 8) Polarizer area inside of B-zone is not applied.


Hitachi Displays, Ltd. Date Sep. 18, 2007 DPBCL0001618-1 Page 12-3/3

10. PRECAUTIONS

Please pay attention to the followings when you use this TFT/LCD module with Back-light unit.

10.1 MOUNTING PRECAUTION

- (1) You must mount Module using mounting holes (4 holes at side of Module) tightly.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to Module.
 - And the case which Module is mounted should have sufficient strength so that external force is not transmitted directly to Module.
- (3) To improve the strength of module against the mechanical shock the space between module and the case should be less than 1.0mm.

- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case should not be used. Because the former generate corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub by dusty clothes with chemical treatment.
 - Do not touch the surface of polarizer with bare hand or greasy close. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton. IPA (Isopropyl Alcohol) is recommended for cleaning the adhesives used to attach front/rear polarizers. Don't use acetone, toluene, and alcohol because they cause chemical damage to polarizer
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits have not sufficient strength.
- (10) Use fingerstalls of soft gloves in order to keep clean display quality, when you handle the device for incoming inspection and assembly.
- (11) Do not pull or do not fold the CFL cable.

Hitachi Displays, Ltd.	Date	Sep. 18, 2007	Sh. No.	DPBCL0001618-1	Page	13-1/4	
------------------------	------	---------------	------------	----------------	------	--------	--

10.2 OPERATING PRECAUTION

- (1) Response time depends on the temperature. (In lower temperature, it becomes longer). And also Transmittance and Color depend on the temperature.
- (2) Brightness depends on the temperature. (In lower temperature, it becomes lower). And in lower temperature, response time (required time that brightness is stable after turn on) becomes longer.
- (3) Optical characteristics (eg. Luminance, uniformity, color coordinate etc.) gradually change by operating condition, especially low temperature change faster, because LCD module has Cold Cathode Fluorescent Lamp.
- (4) Be careful for condensation at sudden temperature change.

 Condensation make damage to polarizer or electrical contact part.

 And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed at long times, afterimage is likely to occur.
- (6) The Module have high frequency circuit. If you need to shield the electromagnetic noise, please do in yours.
- (7) When Back-light unit is operating, it sounds. If you need to shield the noise, please do in yours.
- (8) Please connect the Back-light connector to the inverter circuit directly. The long cable between CFL and the inverter may cause the brightness drop of CFL and may cause the rise of starting lamp Voltage (VS).
- (9) Do not connect or remove the module from main system with power applied.

10.3 ELECTROSTATIC DISCHARGE CONTROL

- (1) Since Module is composed with electronic circuit, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through list band etc.. And don't touch I/F pin directly.
- (2) When the polarizer protection film is peeled off, electrostatic discharge occurs. Please peel it of slowly.

10.4 PRECAUTION FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

10.5 STORAGE

When storing Module as spares for long time, the following precautions are necessary.

- (1) Store them in a dark place; do not expose then to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

10.6 HANDLING PRECAUTIONS FOR PROTECTIVE FILM

- (1) When the protective film is peeled off, static electricity is generated between the film and the polarizer.
 This film should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protective film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protective film against the polarizer during the time you peel off the film, the glue is apt to remain more on the polarizer. So please carefully peel off the protective film without rubbing it against the polarizer.
- (3) When the Module with protective film attached is stored for long time, sometimes there remains a very small amount of glue, still on the polarizer after the protective film is peeled off.

 Please refrain from storing the Module at the high temperature and high humidity for glue is apt to remain in these condition.
- (4) The Glue may be taken for the Modules failure, but you can remove the Glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material soaked with IPA (Isopropyl Alcohol).

Hitachi Displays, Ltd. Date Sep. 18, 2007 DPBCL0001618-1 Page 13-3/4

10.7 SAFETY

- (1) If Module is broken, be careful to handle not to injure. (TFT/LCD and Lamp are made of glass.)
 - Please wash hands sufficiently when you touch the liquid crystal coming out from broken LCDs.
- (2) As Back-light unit has high voltage circuit internal, do not open the case and do not insert foreign materials in the case.
- (3) The LCD Modules include Cold Cathode Fluorescent Lamp (CFL). CFL contains a small amount of mercury. Please follow local ordinances or regulations for disposal.
- (4) The CFL inverter should be designed to include the function of output shutdown in case the output over current happens due to any backlight trouble. The shutdown function should be assured to work in abnormal condition at the actual system.

Hitachi Displays, Ltd. Date Sep. 18, 2007 DPBCL0001618-1 Page 13-4/4