

Top View with Cool White LED

TSQJ-WF5630-217B-K50QAR3

Top View with Cool White LED

Features

- Top view cool white LED
- PLCC-4
- · High luminous flux output/ high current capability
- · Wide viewing angle
- LM-80 Certified
- ANSI binning
- RoHS

M5630

Description

This LED has high efficacy, high CRI, low power consumption, wide viewing angle and a compact form factor. These features make this package an ideal LED for all lighting application.

Applications

- · Decorative and entertainment lighting
- Light pipe application
- · Indicator and backlight in office and family equipment
- · General use

Device Selection Guide

Part No.	Chi _l	Lens Color		
Fait No.	Material	Emitted Color	Lens Color	
TSQJ-WF5630-217B- K50QAR3	InGaN	Cool White	Water Clear	

TAITRON COMPONENTS INCORPORATED www.taitroncomponents.com

Rev. A/PG

Tel: (800)-TAITRON (800)-824-8766 (661)-257-6060 Fax: (800)-TAITFAX (800)-824-8329 (661)-257-6415

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit	
Forward Current	lF	180	mA	
Peak Forward Current (Duty 1/10@10ms)	IFP	300	mA	
Power Dissipation	Pd	630	mW	
Electrostatic Discharge(HBM)	ESD	2000	V	
Operating Temperature	Topr	-40 ~ +85	°C	
Storage Temperature	Tstg	-40 ~ +100	°C	
Junction Temperature	TJ	115	°C	
Thermal Resistance (Junction/Soldering point)	RthJ-S	26	K/W	
Soldering Temperature	Tsol	Reflow Soldering: 260°C for 10 seconds Hand Soldering: 350°C for 3 seconds		

Electro-Optical Characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous Flux	Фν	45		65	lm	
Viewing Angle	201/2		120		deg	
Forward Voltage	VF	2.8		3.5	٧	IF=150mA
Color Temperature	ССТ		5000		К	
Color Rending Index	CRI	80				
Reverse Current	İR			50	uA	VR=5V

Note: Tolerance of Luminous Flux: ±10%

Tolerance of Forward Voltage: ±0.1V
Tolerance of Color Rendering Index: ±2

Typical Electro-Optical Characteristics Curves (Ta=25°C)

Fig.1 Spectrum Distribution Relativa liminais intancity (%) Forward Current IF (mA) 500 600 Wavelength λp(nm)

Fig.2 Forward Current vs. Forward Voltage 150 120 90 30 Forward Voltage (V)

Fig.3 Luminous Flux vs. Soldering point Temperature

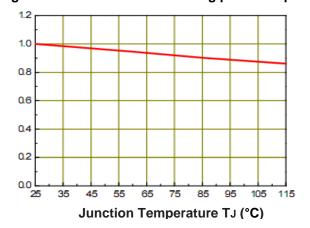


Fig.4 Luminous Flux vs. Forward Current

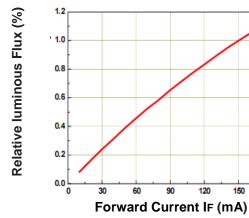
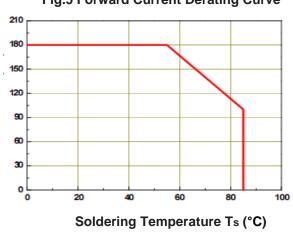
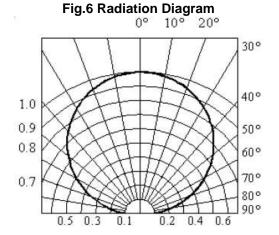
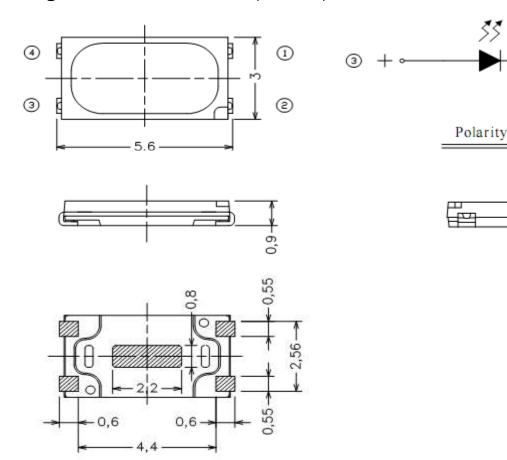
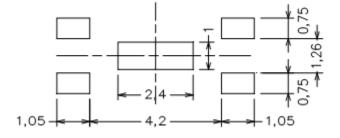




Fig.5 Forward Current Derating Curve

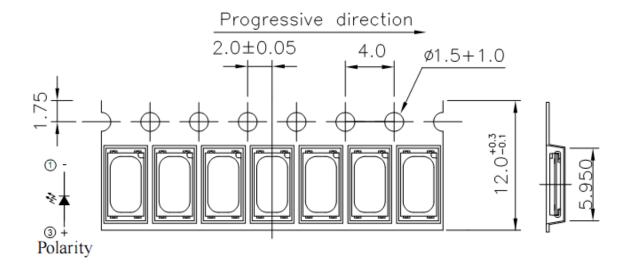

components incorporated

180

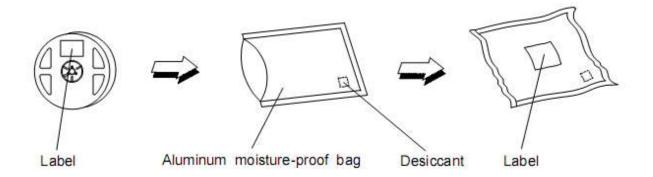

Relative luminous Flux (%)

Forward Current IF (mA)

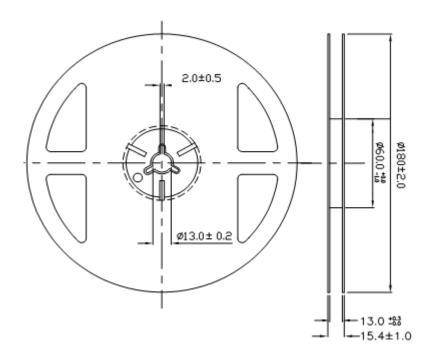
Package Outline Dimensions (Unit=mm)


Recommended Soldering Pad (Unit=mm)

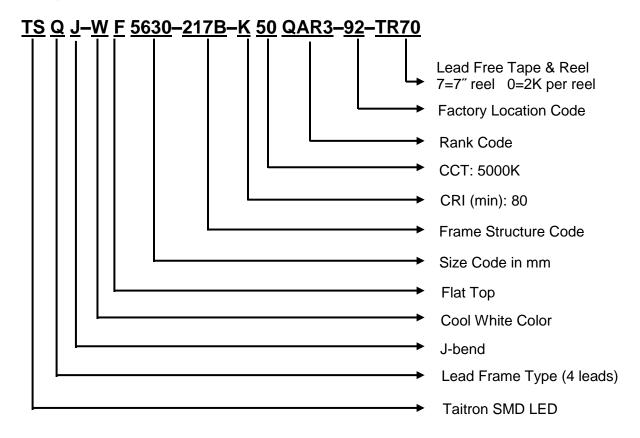
Note: The tolerances unless mentioned is ± 0.1 mm.



Carrier Tape Dimensions (Unit=mm): Loaded quantity 2000pcs per reel


Note: The tolerances unless mentioned is ± 0.1 mm.

Moisture Resistant Packaging


Reel Dimensions (Unit=mm):

Note: The tolerances unless mentioned is ± 0.1 mm.

Ordering Information

Rank Combinations

Bin Range of Luminous Flux

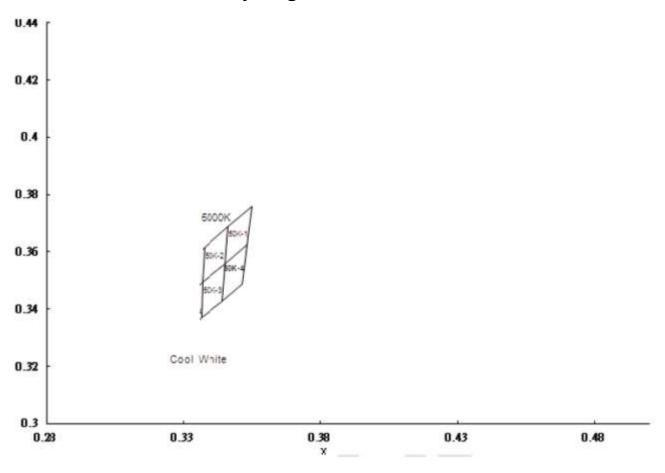
Bin Code	Min.	Max.	Unit	Condition
QA	45	50		IF=150mA
R1	50	55	lm	
R2	55	60		
R3	60	65		

Bin Range of Forward Voltage

Group Code	Bin Code	Min.	Max.	Unit	Condition
	35	2.8	2.9		
	36	2.9	3.0		
	37	3.0	3.1		
B42	38	3.1	3.2	V	IF=150mA
	39	3.2	3.3		
	40	3.3	3.4		
	41	3.4	3.5		

Note: Tolerance of Luminous Flux: ±10%

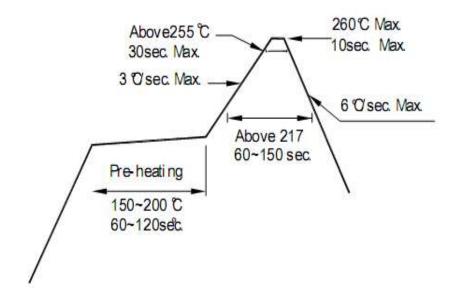
Tolerance of Forward Voltage: ±0.1V



Chromaticity Coordinate Specifications

ССТ	CIE Rank Code	CIE_x	CIE_y	Condition
	50K-1	0.3551	0.3760	
		0.3464	0.3688	
		0.3452	0.3558	
		0.3533	0.3624	
		0.3464	0.3688	
	50K-2	0.3376	0.3616	IF=150mA
		0.3371	0.3493	
5000K		0.3452	0.3558	
300010	50K-3	0.3452	0.3558	
		0.3371	0.3493	
		0.3366	0.3369	
		0.3441	0.3428	
	50K-4	0.3533	0.3624	
		0.3452	0.3558	
		0.3441	0.3428	
		0.3515	0.3487	

The C.I.E 1931 Chromaticity Diagram

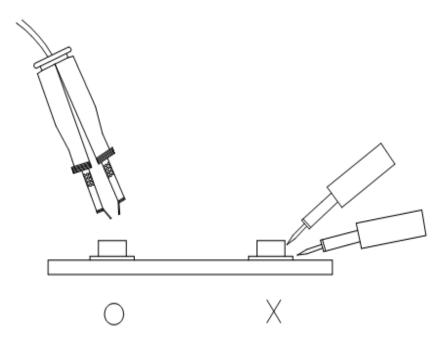


Note: Measurement uncertainty of the chromatic coordinates: ±0.01

Precautions for use

- 1. Over-current-proof
 - Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).
- 2 Storage
 - 2.1 Do not open moisture proof bag before the products are ready to use.
 - 2.2 Before opening the package: The LEDs should be kept at 30°C or less and 90%RH or less.
 - 2.3 After opening the package: The LED's floor life is 168 Hrs under 30°C or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.
 - 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.
 - Baking treatment: 60±5°C for 24 hours.
- 3. Soldering Condition
 - 3.1 Pb-free solder temperature profile

- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.



4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

How to contact us

US HEADQUARTERS

28040 WEST HARRISON PARKWAY, VALENCIA, CA 91355-4162
Tel: (800)-TAITRON (800)-824-8766 (661)-257-6060
Fax: (800)-TAITFAX (800)-824-8329 (661)-257-6415
Email: taitroncomponents.com
Http://www.taitroncomponents.com

TAITRON COMPONENTS INCORPORATED TAIWAN, TAIPEI

6F., No.190, Sec. 2, Zhongxing Rd., Xindian Dist., New Taipei City 23146, Taiwan R.O.C. Tel: 886-2-2913-6238
Fax: 886-2-2913-6239

TAITRON COMPONENT TECHNOLOGY, SHANGHAI CORPORATION

METROBANK PLAZA, 1160 WEST YAN'AN ROAD, SUITE 1503, SHANGHAI,200052, CHINA Tel: +86-21-5424-9942 Fax: +86-21-2302-5027

