

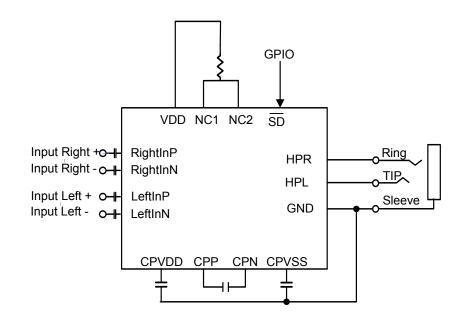
DATA SHEET

HIGH-FIDELITY HEADPHONE AMPLIFIER

TSDP1xx

DESCRIPTION

The TSDP1xx is a Cap less Direct Connect[™] Ground-Referenced Output Headphone amplifier with independent left/right volume and GPIO control. It provides high quality audio fidelity with SNR of 105dB and output power of 180mW per channel. The differential inputs allow for flexible input configuration that maximizes noise rejection for best in class CMRR.


TARGET APPLICATIONS

- Tablets
- Mobile Phones
- Stereo Audio Headsets
- Notebook Computers
- High Fidelity Audio Applications

FEATURES

- The Class H TSDP1xx Capless DirectConnect™ Feature
 - Eliminates Large Output DC Blocking Capacitors
 - Reduces Board Area
 - Reduces Component Height and Cost
 - Full Bass Response Without Attenuation
 - No Pop on start-up or power-down
 - SNR of 105dB
 - Reduced BOM Cost
 - Class H reduces power consumption by as much as 45% at typical listening levels
 - Low Quiescent Current
 - 180mW Per Channel into 16Ω
 - Charge-pump allows for true ground centered outputs
- Independent Left/Right Volume and Mute Control
- Power Supply Voltage Range: 2.5 V to 5.5 V
- High Power Supply Rejection Ratio (>100 dB PSRR)
- Differential Inputs for Maximum Noise Rejection Ratio (90 dB CMRR)
- Optional register controlled High-Impedance
 Outputs When Disabled
- GPIO Control for Hardware Shutdown
- Advanced Finer Control via Register control
- 20 Pin, 4 mm x 4 mm QFN RoHS Package

	BLOCK DIAGRAMS DESCRIPTION	
J. I. IIICIIIdi	Oscillator	
	3.1.0.1. Oscillator Control Register	
	3.1.0.2. Oscillator Control Register	
	one/ DirectConnect™	
	Headphone Amplifiers	
4.1.2.	Volume Control	
	4.1.2.1. Volume Control Register	
	Current Limiter	
4.1.4.	Anti-pop Circuit	
	4.1.4.1. Click and Pop	
	4.1.4.2. Anti Pop Control Register	
	Short-Circuit Protection	
	Pump	
	of Operation	
	tection and Configuration Algorithm	
	Shutdown	
4.5.1.	Thermal Shutdown Registers	
	4.5.1.1. Temp Sensor Control/Status	
	4.5.1.2. Headphone Thermal Shutdown Control Register	
4.6. Asynchr	onous I2C	
4.6.1.	I2C, 2-Wire Control Interface	
	4.6.1.1. Register Write Cycle	
	4.6.1.2. Register Burst Write Cycle	
	4.6.1.3. Register Read Cycle	
	4.6.1.4. Page Register Burst Read Cycle	
. REGISTERS	3	
	5.0.0.1. Control Register	
	5.0.0.2. Control Register	
	5.0.0.3. Control Register	
	5.0.0.4. Control Register	
	5.0.0.5. Control Register	
	5.0.0.6. Control Register	
	5.0.0.7. Control Register	
	5.0.0.8. Control Register	
	5.0.0.9. Control Register	
	5.0.0.10. Control Register	
5.1. Register	r Map	
	Register Map Summary Table	
	URATION AND DESCRIPTION	
	QFN TSCS10XX	
	QFN TSCS11XX	
	le for pin QFN package	
	NCTION	
	RISTICS	
CHARACIE	idelity	
	al Specifications	
7.1. Audio Fi	Absolute Maximum Ratings:	
7.1. Audio Fi 7.2. Electrica		
7.1. Audio Fi 7.2. Electrica 7.2.1.		
7.1. Audio Fi 7.2. Electrica 7.2.1. 7.3. Recomn	nended Operating Conditions	
7.1. Audio Fi 7.2. Electrica 7.2.1. 7.3. Recomn 7.4. Characte	nended Operating Conditions	
7.1. Audio Fi 7.2. Electrica 7.2.1. 7.3. Recomn 7.4. Charact 7.5. Low Pov	nended Operating Conditions eristics wer Mode Power Consumption	
7.1. Audio Fi 7.2. Electrica 7.2.1. 7.3. Recomn 7.4. Charact 7.5. Low Pov 8. APPLICATIO	nended Operating Conditions eristics wer Mode Power Consumption DN NOTES	
7.1. Audio Fi 7.2. Electrica 7.2.1. 7.3. Recomm 7.4. Charact 7.5. Low Pov 6. APPLICATIO	nended Operating Conditions eristics wer Mode Power Consumption	

Figure 1. Block Diagram	5
Figure 2. conventional headphone amplifier connection to the headphone jack and output signal diagram	
Figure 3. Page Register Write -2 Wire Serial Control Interface	14
Figure 4. Page Register Burst Write Cycle	15
Figure 5. Page Register Single Byte Read Cycle	15
Figure 6. Page Register Burst Multi-byte Read Cycle	16
Figure 7. 20-Pin TSDP1xxQFN	23
Figure 8. 20-Pin TSDP11XX QFN	24

1. PRODUCT OVERVIEW

The TSDP1xx stereo Class H Capless DirectConnect[™] headphone amplifier is optimally designed for portable applications. The GPIO control allows the device to be put in a low power shutdown mode. The TSDP1xx is a high fidelity amplifier with SNR of 104dB. With a PSRR greater than 90dB. The TSDP1xx can be connected directly to a battery without compromising the listening experience. The output noise of 6.3µVrms (typical *A-weighted*) provides a minimal noise background during periods of silence. Configurable differential inputs and high CMRR allow for maximum noise rejection in the noisy mobile environment.TSDP1xx is available in a 4x4mm QFN package. The TSDP1xx stereo headphone DirectConnect[™] architecture eliminates the large output coupling capacitors typically required for single-supply headphone drivers. The device consists of two 210mW Class AB headphone drivers, supply controlled with Class H charge-pump, shutdown control, and comprehensive click-and-pop suppression circuitry. The charge pump uses VREG to create a positive supply (CPVDD) and inverts VREG to create a negative supply (CPVSS). The headphone drivers operate from these bipolar supplies with their outputs biased around GND. The drivers have almost twice the supply range compared to other 3V/5V single-supply drivers, increasing the available output power. Additionally, by being biased around physical GND, the typical power-on pops and clicks are eliminated.

The benefit of this GND bias is that the driver outputs do not have the typical VDD/2 DC component. The large DC-blocking capacitors are unnecessary, thus improving frequency response while conserving board space and system cost. Each channel has independent left/right, software controlled gain and mute, this makes it possible to optimize power savings and click-and-pop suppression in mixed-mode operation, mono/stereo click-and-pop suppression that eliminates audible transients on startup and shutdown. Additionally, the TSDP1xxfeatures thermal overload and short-circuit protection.

2. DETAILED BLOCK DIAGRAMS

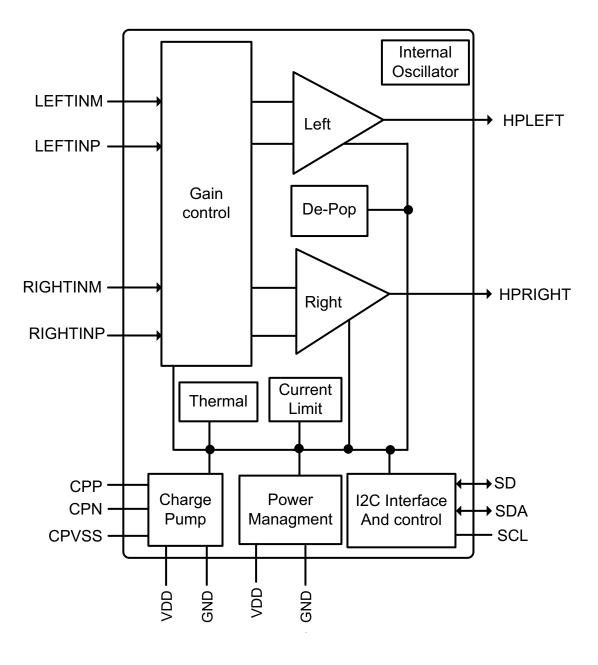


Figure 1. Block Diagram

3. FUNCTION DESCRIPTION

3.1. Internal Oscillator

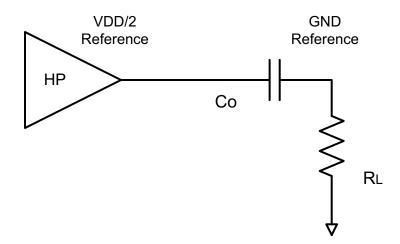
The TSDP1xx uses an internal oscillator to generate a master reference clock. This clock is used to run the charge pump, anti-pop circuitry monitor the chip temperature sensor and shutdown circuitry. The oscillator runs at 830kHz(typical). The internal oscillator can be varied with register control. The adjustment of frequency can be done with registers if needed.

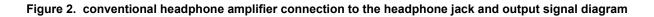
Register Address	Bit	Label	Туре	Default	Description			
Reg 22 SELF_OSC_CTRL1 (15Ch)	7:6	SELFOSC_DIV CLK_SEL	RW	0h	Selects the initial divider from the selfosc input clock to be used for the chopping clock & apopclock setting			
	5:4	SELFOSC_VC HP_SEL	RW	0h	Selects the divider from the selfosc input clock to be used for the Charge Pump clock setting			
	3:0	SELFOSC_FRE Q_SEL	RW	5h	Selects the desired output frequency setting			

3.1.0.1. Oscillator Control Register

3.1.0.2.	Oscillator Control Register
----------	-----------------------------

Register Address	Bit	Label	Туре	Default	Description
	7:5	RESERVED	RO	0h	Reserved
	4	SELFOSC_PW D	RW	0h	Powers down (i.e. when high) the self oscillator circuitry
Reg 23 SELF_OSC_CTRL2	3	SELFOSC_RST B	RW	1h	resets (i.e. when low) the dflops in the divider circuitry
(16h)	2	SELFOSC_CH PRCLK_PWDB	RW	0h	Powers down (i.e. when low) the chopping clock output
	1	SELFOSC_AP OPCLK_PWDB	RW	1h	Powers down (i.e. when low) the antipop clock output (i.e. also used for tempsensor)
	0	SELFOSC_AP OPCLK_SEL	RW	0h	Selects the desired output frequency for the apopclock setting


4. AUDIO INPUTS


The TSDP1xx provides differential audio analog inputs

4.1. Headphone/ DirectConnect™

Single-supply headphone drivers traditionally have their outputs biased about a half the nominal DC voltage for maximum dynamic range. In other words, to block the DC bias, large capacitors are needed to couple the signal to the headphone driver. Without these capacitors, wasted large DC current will unnecessarily flow to the headphone speaker, and possibly damage both headphone driver and/or speaker. The Capless DirectConnect[™] architecture uses charge pump to create an internal negative supply. This allows the outputs of the TSDP1xx to be centered around GND. In addition, the creation of the negative internal supply doubles the dynamic range while operating from a single supply. With the ground (GND) reference, there is no need for the large DC-blocking capacitors. Instead of two large very linear capacitors that can be as much as 220µF (often tantalum capacitors for linearity), the TSDP1xx charge pump requires four small value capacitors. This reduces board space and BOM cost, while improving the frequency response of the headphone driver.

The HPR/HPL pins can drive a 16Ω , 32Ω headphone load or line output load up to $10K\Omega$ without any external components. The signal volume of the headphone amplifier volume can be independently adjusted under software control by writing to HPVOL_L and HPVOL_R. Also setting the volume to 00000 will power down amp. The amplifier can be set to mute by enabling the mute register or setting the volume to 00010. The output remains at ground, so that no click noise is produced when muting or un-muting. Gains above 0dB run the risk of clipping large signals.

4.1.1. Headphone Amplifiers

Single-supply headphone amplifiers typically require dc-blocking capacitors. The capacitors are required because most headphone amplifiers have a dc bias on the outputs pin. If the dc bias is not removed, the output signal is severely clipped, and large amounts of dc current rush through the headphones, potentially damaging them. The functional diagram shown above illustrates the conventional headphone amplifier connection to the headphone jack and output signal. DC blocking capacitors are typically large in value to avoid attenuation of Bass (or low frequency) content. The headphone speakers (typical resistive values of 16Ω or 32Ω) combine with the dc blocking capacitors to form a high-pass filter. Equation 1 shows the relationship between

the load impedance (RL), the capacitor (CO), and the pass frequency (fC).

$$F_{c} = \frac{1}{2\pi * R_{L} * C_{0}}$$
(1)
Co can be determined from (1), where the load impedance and the cutoff frequency are known thus:

$$C_0 = \frac{1}{2\pi * R_L * F_c}$$

If fc is low, the capacitor must then have a large value because the load resistance is small. Large capacitance values require large package sizes. Large package sizes consume PCB area, stand high above the PCB, increase cost of assembly, and can reduce the fidelity of the audio output signal.

(2)

4.1.2. Volume Control

The TSDP1xx features two independent controls for left/right volume ranging from +6dB to -22dB and mute. Changes in volume are walked automatically to the new target volume using an advanced pop suppression circuitry which eliminates unwanted audio pops and clicks at the output.

Channel volume can be controlled across a gain and attenuation range of -22dB to +6dB (1.0dB steps). The level of attenuation is specified by 5-bit code 'VOL_x', where 'x' is L, or R. The value 00010" indicates mute; other values describe the number of 1.0dB steps above -22dB.

4.1.2.1. Volume Control Register							
Register Address	Bit	Label	Туре	Default	Description		
	7	RESERVED	RW	0	Reserved		
	6	HP_DISCHOP_AN TIPOP	RW	1	Disables the chopping for antipop when high. Only turns chopping at power up/down (i.e. code 1) on when both d2a_dischop_antipop low and d2a_dischop_amp is high.		
Reg 19 HDPH_CTR2((12h)	5	HP_DISCHOP_AM P	RW	1	Will enable chopping always when low and disable chopping when high.		
	4:0	HP_CNT_TARGET _L	RW	10	Sets the left channel final target gain for the anti-pop ramping circuitry (00000==> pwd,00010==> mute,00011==> -22.8919dB, 10000b==> 0dB, 10100b ==> +2dB, 11001b ==> +4dB, 11111b ==> +6dB)		
	7	RESERVED	RW	0	Reserved		
	6	RESERVED	RW	0	Reserved		
Reg 20	5	RESERVED	RW	0	Reserved		
HDPH_CTRL3(13h)	4:0	HP_CNT_TARGET _R	RW	10	Sets the right channel final target gain for the anti-pop ramping circuitry (10000b==> 0dB, 10100b ==> +2dB, 11001b ==> +4dB, 11111b ==> +6dB)		

4.1.3. Current Limiter

Advanced short-circuit protection protects amplifier outputs from shorting conditions

To avoid damage to the outputs if a short circuit condition should occur, the headphone amplifier implements a current limiter protection circuits. The headphone output amplifier will detect the load current and limit its output if in an over current state.

Register Address	Bit	Label	Туре	Default	Description
	7:6	HP_ILIM	RW	3h	Sets the current output limit for the headphones (i.e. 00b ==> powerdown, 01b ==> ~ 100mA, 10b ==> ~150mA, 11b ==> ~200mA)
	5	HPL_PWD	RW	0h	Left Headphone power down
	4	HPR_PWD	RW	0h	Right Headphone power down
Reg 18 HDPH CTRL1(11h)	3	RESERVED	RW	0h	Reserved.
	2	RESERVED	RW	0h	Reserved.
	1	HPL_MUTE	RW	0h	Left Headphone mute (sets ampfiier to unity gain with postive differential input set to GNDA)
	0	HPR_MUTE	RW	0h	Right Headphone mute (sets ampfiier to unity gain with postive differential input set to GNDA)

4.1.4. Anti-pop Circuit

Advanced anti-pop circuit prevents amplifier outputs from creating audible pop conditions

4.1.4.1. Click and Pop

Due to the nature of power management and audio path configurability, many situations will introduce undesirable sounds. It is not possible to prevent loud pops in all situations, but it is desired to prevent pops under many situations. The headphone should be fully powered down prior to removal of VDD

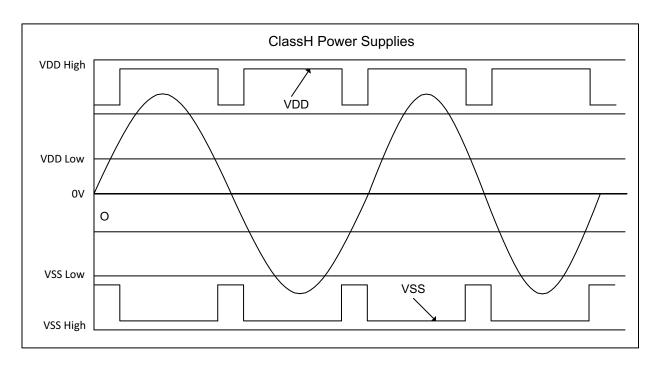
State Change	Description	Desired (dBV Awt)
Application of VDD	Headphone Output 10K-ohm load	-65
Application of VDD	Headphone Output 32-ohm load	-65
Removal of VDD	Headphone Output 10K-ohm load	-65
Removal of VDD	Headphone Output 32-ohm load	-65

Table 1.

4.1.4.2.	Anti Pop Control Register
----------	---------------------------

Register Address	Bit	Label	Туре	Default	Description
	7	RESERVED	RW	0h	Reserved
	6	RESERVED	RW	0h	Reserved
	5	RESERVED	RW	1h	Reserved
	4	HP_OUTGND_ REG	RW	0h	Register used to control the headphone output grounding switch when d2a_hp_outgnd_ovrd is set high
Reg 21 HDPH_CTRL4(14h)	3	HP_OUTGND_ OVRD	RW	0h	Over rides (i.e. when high) the antipop ramping control of the headphone output grounding switch with value from "d2a_hp_outgnd_reg"
	2	RESERVED	RW	0h	Reserved
	1	RESERVED	RW	0h	Reserved
	0	HP_CONNECT _GND_VAG	RW	1h	Turns on switches (i.e. when high) at the differential inputs to reference inputs to ground (i.e. DC blocking caps cause inputs to need reference). This was mainly added incase we needed to tristate inputs for Global Headset functionality.

4.1.5. Short-Circuit Protection


The right channel and left channel audio outputs have independent current limit detection circuits with common register control settings. The current limit can be set to ~100mA , ~150mA, ~200mA, or the protection circuit can be disabled.

The current limiting allows limiting the power delivered to the load without disabling the amplifiers. The lowest setting allows limiting the power delivered to the load to just above 1VRMS into a 16 ohm load while still protecting against a short circuit event. The highest setting protects against a short circuit event while still delivering the maximum power into a 16 ohm load.

4.2. Charge Pump

Charge Pump Class H

The TSDP1xx features 830kHz switching low-noise charge pump architecture. The architecture features controlled switching that minimizes noise generated by turn-on and turn-off transients. The switching frequency is well beyond the audio range, and does not interfere with the audio signals. By controlling the Clocking of the switches, the impulse current noise caused by the parasitic bond wire and trace inductance is minimized or completely eliminated. Although not typically required, additional high-frequency noise attenuation can be achieved by increasing the size of the capacitor at CPVSS to CPGND, CPVDD to CPGND as well as CFLY (fly cap) between CPFP and CPFN. The TSDP1xxclass H amplifier employs a class AB output stage with power-supply voltages that are adjusted based on the output signal level. The output stage senses the output voltage level and adjusts the charge pump supply voltage dynamically. As indicated in the figure below, the adjustment is made on a cycle by cycle basis. Thus when the music level is small, the charge pump supply voltage is correspondingly decreased; and when the music level is high, the charge pump voltage is increased. For typical listening level, this feature can lower the power used in playback mode by almost 45% thus extending battery life by several hours or alternatively the designer could save BOM cost and board space by using smaller battery.

Charge Pump Capacitors

The VREG output (i.e. pin14) should have a 10uF capacitor to ensure both stability and reduced ripple on the LDO output while supplying power to create the class H output supplies. The charge pump outputs CPVDD (pin 12), CPVSS (pin 9) are the class H output supplies providing power to the headphone amplifiers and should each be decoupled to ground with 5uF capacitors. The generated supply voltage across these capacitors will change dependent on the combination of the two headphone output signal levels. A 5uF capacitance should also be placed across the CPFP (pin 13) and CPFN (pin 10) nodes. This capacitor helps create the positive (CPVDD) and negative (CPVSS) supply voltages via charge sharing. Providing a 10uF to the VDD (pin 15) will help to reduce instantaneous demands from the power supply when providing

power to the LDO. It should be noted that using a 0.1uF ceramic capacitor in parallel with the larger Tantalum capacitors at all supply pins can help to reduce unwanted high frequency noise on the supplies at the pins.

Short-Circuit Protection

The Charge Pump also has short circuit detection circuitry which will disable the Charge Pump if a short circuit causes too large a current demand. The Charge Pump will be disabled for 511 charge pump clock cycles and then re-enabled for 63 charge pump clock cycles to see if the short circuit event has been removed. This algorithm will continue until the short circuit event has been removed.

Register Address	Bit	Label	Туре	Default	Description
	7:4	0]	RO	0	Reserved.
Reg14	3	RESVERED	RW	1	resets (i.e. when low)the dflop used to latch the output of the comparator detecting Charge Pump Short Circuit event and resets the LSFR used to time the short circuit event checking
CP_SCUR_CTRL1 (0Dh)	2	VCHP_SC_PW D	RW	0	Powers down the Charge Pumpe Short Circuit block
	1	VCHP_SC_BYP S	RW	0	Bypasses the Short Circuit Event and forces Charge Pump to keep running
	0	RESVERED	RW	0	Reserved

4.3. Modes of Operation

HiZ is enabled, when the headphone amplifiers are powered down, by writing logic 1 in register 14 (i.e. HDPH_CTRL4), bit 3 and ensuring that register 14 bits 4 and 0 are set to logic 0. Place logic 0 in register 14, bit 3 and logic 1 in register 14 bit 0 to disable the HiZ state of the outputs. The HiZ state puts the headphone outputs into a state of high impedance. Use this configuration when the outputs of the TSDP1xxshare traces with other devices whose outputs may be active.

4.4. Jack Detection and Configuration Algorithm

The "SD" pin of the TSDP1xxcan be utilized to effect a Jack Detection and power up the chip when a plug is in inserted in to the Jack. The Jack pin connected to the SD pin should be default ground prior to inserting the plug and pulled to VDDA when the plug is inserted into the JACK

4.5. Thermal Shutdown

There are 2 trip points, "high" and "low". The "high" trip point should always be set to a higher value than the "low" trip point. If the temperature of the chip increases above the "high" trip point, the headphone outputs will be powered down which will cause the output volumes to be decreased from the current volume toward mute and then the amplifiers will be powered down. The amplifiers will not be powered back up until the temperature on the chip has reduced to the "low" trip point. When the temperature drops below the "low" trip point, the amplifiers will be allowed to power back up and ramp back to the original volume setting. With proper settings on the clock division multiplexers, the "high" and "low" trip points are polled every ~1.5msec or ~3msec.

4.5.1. Thermal Shutdown Registers

4.5.1.1. Temp Sensor Control/Status

The temperature sensor circuit is configured and monitored using the Temp Sensor Control/Status Register

Register Address	Bit	Label	Туре	Default	Description
Reg 28- TEMP_SENSE_CT RL1(1Bh) Temp Sensor Control/Status	7:5	HI_TEMP_SEL	RW	3	Temp sensor block hi trip points (000b==>110C, 001b==>125C, 010b==>140C, 011b==>155C, 100b==>170C, 101b==>185C, 110b==>200C,111b==>215C)
	4:2	LO_TEMP_SEL]	RW	2	Temp sensor block low trip points (000b==>110C, 001b==>125C, 010b==>140C, 011b==>155C, 100b==>170C, 101b==>185C, 110b==>200C,111b==>215C)
	1:0	VBG_TRIM_SE L	RW	1	Adjusts the VBG voltage in the Tempsensor by 8mV increments (i.e. 00 ==> 1.215V, , 01b ==> 1.223V, 10b ==> 1.2318V, 11b ==> 1.24V)

4.5.1.2. Headphone Thermal Shutdown Control Register

The thermal shutdown algorithm is configured using the Speaker Thermal Algorithm Control Register

Register Address	Bit	Label	Туре	Default	Description
	7:3	RESERVED	RO	0	Reserved
Reg 29 TEMP_SENSE_CT	2	RESERVED	RW	0	Reserved
RL2(1Ch) Speaker Thermal Shutdown Control	1	TEMPSENSE_ PWD	RW	0	Temp sensor power down 1b=power down
Chataown Control	0	TEMPSENSE_ RSTB	RW	1	Temp sensor reset-0b, reset the tempsense logic

4.6. Asynchronous I2C

4.6.1. *I*²C, 2-Wire Control Interface

The TSDP1xx device includes a 2-Wire I^2C compatible interface for communicating with an external controller. This interface supports communication to external micro-controller or other I^2C compatible peripheral chips. The I^2C interface supports normal and fast mode operation.

Device Address Register 0

Register Address	Bit	Label	Туре	Default	Description
Reg 1	7:1	DEV_ADD0[6:0]	RW	68	Register I2C Device Address
DEVADD0((00h)	0	RSVD	R	0	Reserved

TSDP1xx

Headphone Amplifier

Device Identification Register

Register Address	Bit	Label	Туре	Default	Description
Reg 2 DEVID(01h)	7:0	DEV_ID[7:0]	R	01000x xxb	8-bit device identification number. The least significant three bits reflect the state of the Bond-Out pins.

Device Revision Register

Register Address	Bit	Label	Туре	Default	Description
Reg 3	7:4	MAJ_REV[3:0]	R	0001	4-bit major revision number (all layer) currently = 1 (1st release) MMMM.mmmm currently = 1.0
DEVREV(02h)	3:0	MIN_REV[3:0]	R	0000	4-bit minor revision number (metal revision) currently = 0 (no revisions-initial release)

4.6.1.1. Register Write Cycle

The controller indicates the start of data transfer with a high to low transition on SDA while SCL remains high, signalling that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the address of the TSDP1xx and the R/W bit is '0', indicating a write, then the TSDP1xx responds by pulling SDA low on the next clock pulse (ACK); otherwise, the TSDP1xx returns to the idle condition to wait for a new start condition and valid address.

Once the TSDP1xx has acknowledged a correct device address, the controller sends the TSDP1xx register address. The TSDP1xx acknowledges the register address by pulling SDA low for one clock pulse (ACK). The controller then sends a byte of data (B7 to B0), and the TSDP1xx acknowledges again by pulling SDA low.

When there is a low to high transition on SDA while SCL is high, the transfer is complete. After receiving a complete address and data sequence the TSDP1xx returns to the idle state. If a start or stop condition is detected out of sequence, the device returns to the idle condition.

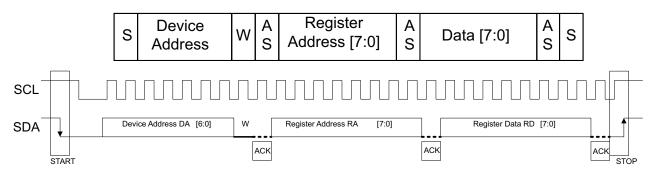
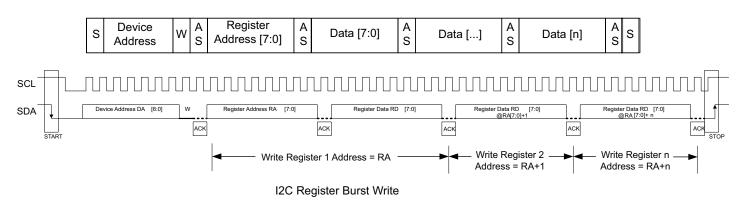
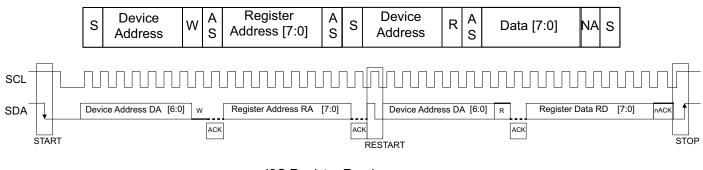


Figure 3. Page Register Write -2 Wire Serial Control Interface

4.6.1.2. Register Burst Write Cycle

The controller may write more than one register within a single write cycle. To write additional registers, the controller will not generate a stop or start (repeated start) command after receiving the acknowledge for the second byte of information (register address and data). Instead the controller will continue to send bytes of data. After each byte of data is received, the register address is incremented.




Figure 4. Page Register Burst Write Cycle

4.6.1.3. Register Read Cycle

The controller indicates the start of data transfer with a high to low transition on SDA while SCL remains high, signalling that a device address and data will follow. If the device address received matches the address of the TSDP1xx and the R/W bit is '0', indicating a write, then the TSDP1xx responds by pulling SDA low on the next clock pulse (ACK); otherwise, the TSDP1xx returns to the idle condition to wait for a new start condition and valid address.

Once the TSDP1xx has acknowledged a correct address, the controller sends a restart command (high to low transition on SDA while SCL remains high). The controller then re-sends the devices address with the R/W bit set to '1' to indicate a read cycle. The TSDP1xx acknowledges by pulling SDA low for one clock pulse. The controller then receives a byte of register data (B7 to B0).

For a single byte transfer, the host controller will not acknowledge (high on data line) the data byte and generate a low to high transition on SDA while SCL is high, completing the transfer. If a start or stop condition is detected out of sequence, the device returns to the idle condition.

I2C Register Read

Figure 5. Page Register Single Byte Read Cycle

4.6.1.4. Page Register Burst Read Cycle

The controller may read more than one register within a single read cycle. To read additional registers, the controller will not generate a stop or start (repeated start) command after sending the acknowledge for the byte of data. Instead the controller will continue to provide clocks and acknowledge after each byte of received data. The TSDP1xx will automatically increment the internal register address after each register has had its data successfully read (ACK from host) but will not increment the register address if the data is not received correctly by the host (nACK from host) or if the bus cycle is terminated

unexpectedly. By automatically incrementing the internal register address after each byte is read, all the internal registers of the TSDP1xx may be read in a single read cycle.

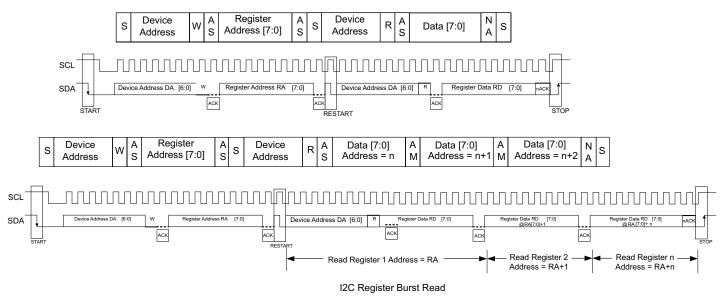


Figure 6. Page Register Burst Multi-byte Read Cycle

5. REGISTERS

Register Address	Bit	Label	Туре	Default	Description
	7	VREG_SC_DE T	RO	0h	Short Circuit Detected on LDO output when high(Requires vreg_sc_rstb in Reg8(07h) to be toggled)
	6	VDDA_BELOW _3P1V	RO	0h	Detects VDDA supply level for 2.5V operation (i.e. trip ~3.1V)
	5	SUPPLY_OSC	RO	0h	Detects VDDA supply level for 3.3 to 5V operation (i.e. trip ~4.16V)
Reg 4 STATUS0(03h)	4	RESERVED	RO	0h	Reserved
	3	RESERVED	RO	0h	Reserved
	2	TEMP_OVERH EAT	RO	0h	Temp sensor statemachine overheat output.
	1	OVERHEAT_HI GH	RO	0h	Temp sensor high overheat indicator.
	0	OVERHEAT_L OW	RO	0h	Temp sensor low overheat indicator.

5.0.0.1. Control Register

5.0.0.2. Control Register

Register Address	Bit	Label	Туре	Default	Description
	7:2	RESERVED	RO	0h	Reserved
Reg 5 STATUS1(04h)	1	SD	RO	0h	Input signal Shutdown from Pin.
	0	VCHP_SC_DET	RO	0h	Short Circuit Detected on Charge Pump VPOS or VNEG output when high(Will automatically reset)

Register Address	Bit	Label	Туре	Default	Description					
	7	DELAY_MODE	RW	0h	Reserved					
	6	MODE_DELAY _BYPS	RW	1h	Reserved					
Reg 6 CP_CTRL1(05h)	5:3	VCHP_CLKSEL	RW	1h	Reserved					
	2	VCHP_HIZ_VP OS_OVRD	RW	0h	Reserved					
	1	VCHP_HIZ	RW	0h	Reserved					
	0	VCHP_PWD	RW	0h	Powers down the Charge Pump					

5.0.0.3. Control Register

5.0.0.4. Control Register

Register Address	Bit	Label	Туре	Default	Description
	7:4	RESERVED	RO	0h	Reserved
Reg 7 CP_CTRL2(06h)	3	AB_OVR_MOD E	RW	0h	When "d2a_ab_ovr_en" is high, this bit will select the mode of operation (i.e. 0==> Split Mode, 1 ==> Invert Mode)
	2	AB_OVR_EN	RW		Enables the over riding of the automatic Class H operation when high
	1:0	DROP_SEL	RW	0h	Timing options for delaying the change from Invert to Split

5.0.0.5. Control Register

Register Address	Bit	Label	Туре	Default	Description
	7	RESERVED	RO	0h	Reserved
	6:5	VREG_SEL	RW	2h	Selects the output voltage setting for the LDO (i.e. 00b => 2.395V, 01b ==> 2.592V, 10b ==> 2.793V, 11b ==> 3.076V)
Reg 8 VREG_CTRL(07h)	4	VREG_SC_RST B	RW	1h	Resets the Short Circuit detection latched output
	3	RESERVED	RW	0h	Reserved
	2	RESERVED	RW	0h	Reserved
-	1	RESERVED	RW	0h	Reserved
	0	VREG_PWD	RW	0h	Powers down the LDO output and pulls the LDO output to ground.

Register Address	Bit	Label	Туре	Default	Description				
	7	RESERVED	RO	0h	Reserved				
	6	RESERVED	RW	1h	Reserved				
Reg 9	5	RESERVED	RW	0h	Reserved				
VDDA_SENSE_CT	4	RESERVED	RW	0h	Reserved				
RL(08h)	3	VDDSENSE_P WD	RW	0h	Powers down the vddsense block				
	2	RESERVED	RW	1h	Reserved				
	1:0	RESERVED	RW	0h	Reserved				

5.0.0.6. Control Register

5.0.0.7. Control Register

Register Address	Bit	Label	Туре	Default	Description
Reg 25	7:1	RESERVED	RO	0h	Reserved
BIASG_CTRL2(18 h)	0	POR	RW	0h	This signal is Ored with the POR output to generate "a2d_por_5v"

5.0.0.8. Control Register

Register Address	Bit	Label	Туре	Default	Description
	7:4	RESERVED	RO	0h	Reserved
Reg 26 REF_SUP_CTRL(19	3	REFSUPPLY DET_PWD	RW	0h	Powers down the refsupply detection amplifier.
h)	2	RESERVED	RW	0h	Reserved
	1	RESERVED	RW	0h	Reserved
	0	RESERVED	RW	0h	Reserved

Register Address	Bit	Label	Туре	Default	Description		
	7	SD_B_PUB	RW	1h	SD pin pull up resistor, 1 is off		
	6	SD_B_PD	RW	1h	SD pin pull down resistor, 1 is on		
	5	I2C_DATA_PU B	RW	0h	I2C data pin pull up resistor, 0 is on		
Reg 30	4	I2C_DATA_PD	RW	0h	I2C data pin pull down resistor,0 is off		
PAD_CTRLTATUS0 (1Dh)	3	I2C_CLK_PUB	RW	0h	i2c clock pin pull up resistor, 0 is on		
	2	I2C_CLK_PD	RW	0h	i2c clock pin pull down resistor, 0 is off		
	1	CLK_DEGLITC H_BYPS	RW	0h	Bypasses the deglitch circuitry in the I2C CLK pad		
	0	DATA_DEGLIT CH_BYPS	RW	0h	Bypasses the deglitch circuitry in the I2C DATA pad		

5.0.0.9. Control Register

5.0.0.10. Control Register

Register Address	Bit	Label	Туре	Default	Description
Dog 21	7:1	RESERVED	RO	0h	Reserved
Reg 31 SHUTDOWN(1Eh)	0	SHOUTDOWN_ B	RW	1h	Software Controlled Shutdown

5.1. Register Map

5.1.1. Register Map Summary Table

Table 2. Register Map

Register	Name	Remarks	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	Default
R1 (00h)	DEVADD0	Device Address 0		DEV_ADD0[6:0]					RSVD	68h	
R2 (01h)	DEVID	Device iD				DEV_AD	DD1[6:0]				40h
R3 (02h)	DEVREV	Device Revision		MAJ_R	EV[3:0]			MIN_REV[3:0]			10h
R4 (03h)	STATUS	Status	VREG_SC _DET	VDDA_BEL OW_3P1V	SUPPLY_O SC			TEMP_OVE RHEAT	OVERHEA T_HIGH	OVERHEA T_LOW	00h
R5 (04h)	STATUS	Status							SD	VCHIP_SC _DET	00h
R6 (05h)	CP_CTRL1L	Control	DELAY MODE	MODE_DELAY _BYPAS	v	CHP_CLKSE	EL	VCHP_HIZ_V POS_OVRD]	VCHP_HIZ	VCHP_PWD	48h
R7(06h)	CP_CTRL2	Control					AB_OVER_ MODE	AB_OVER_ EN	DRO	P_SEL	0h
R8 0(7h)	VREG_CTRL	REG Control		VREG_SEL	VREG_SEL	VREG_RST B	VREGHA LFCUR	VREG_GND SHRT	VREG_BYP AS	VREG_PW D	50h
R9(08h)	VDAA_SENS E_CTRL	SENSE Control		VDDSENSE_ VREG_SEL_ OV	VDDSENSE _MODE_OV RD	VDDSENSE _HALFCUR	VDDSENSE _PWD	VDDSENSE _RSTB	VDD_T	RP_SEL	44
R10(09h)	CLSH_SENS E_CTRL1			RESE	RVED		REFN_SEL _PWD	REFP_SEL _PWD	HPSENSE_ HALFCUR	HPSENSE_ PWD	0h
R11(OAh)	CLSH_SENS E_CTRL2		HP_RE	FNS_SEL	HP_RE	FNI_SEL	HP_REF	PS_SEL	HP_RE	FPI_SEL	0h
R12(0Bh)	HI_CUR_CTR L1				SW1_SW4_ KILL_EN	SW_INVER T_KILL_EN	SW1_WEA K_STRONG B		STARTUP_ CNT_64_32 B	STARTUP_ SW_EN	37h
R13(0Ch)	HI_CUR_CTR L2					I	SW_REF	NS_SEL	SW_RE	FPI_SEL	0h
R14(0Dh)	CP_SCUR_C TRL1						VCHP_SC_ RSTB	VCHP_SC_ PWD	VCHP_SC_ BYPS	VCHP_SC_ HALFCUR	08h
R15(0Eh)	CP_SCUR_C TRL2		SC_RE	FPI_SEL	SC_REF	PS_SEL	SC_REI	FNI_SEL	SC_REF	NS_SEL	80h
R16(0Fh)	CP_REG_CT RL1				I		CLKREG_R STB	CLKREG_P WD	CLKREG_B YPS	CLKREG_H ALFCUR	08h
R17(10h)	CP_REG_CT RL2				CLKREG_	REFP_SEL	CLKREG_F	REFNI_SEL	CLKREG_F	REFNS_SEL	0h
R18(11h)	HDPH_CTRL 1		HP_	_ILIM	HPL_PWD	HPR_PWD	HP_PWD_O VRD	HP_ANTIP OP_BYPAS S	HPL_MUTE	HPR_MUTE	C0h
R19(12h)	HDPH_CTRL 2		BST_HP_G AIN	HP_DISCHO P_ANTIPOP	HP_DISCH OP_AMP		HP_	_CNT_TARGE	T_L		10h
R20(13h)	HDPH_CTRL			REDUCE_HP _IBAT	HP_D3		HP_	_CNT_TARGE	T_R		10h
R21(14h)	HDPH_CTRL 4		HP_ANTIP OP_CNT_L OAD	HP_ANTIPO P_CNT_HOL D	HP_ANTIP OP_RSTB	HP_OUTGN D_REG	HPOUTGN D_OVRD	HP_AMPIN _GND_REG	—	HP_CONNE CT_GND_V AG	21h
R22(15h)	SELF_OSC_ CTRL1		SELFOSC_	DIVCLK_SEL	SEL	FOSC_VCHP	_SEL	SEL	FOSC_FERQ	_SEL	05h
R23(16h)	SELF_OSC_ CTRL2				1	SELFOSC_ PWD	SELFOSC_ RSTB	SELFOSC_ CHPCLK_P WDB	SELFOSC_ AOPCLK_P WDB	SELFOSC_ APOPCLK_ SEL	0Ah

Register	Name	Remarks	Bit[7]	Bit[6]	Bit[5]	Bit[4]	Bit[3]	Bit[2]	Bit[1]	Bit[0]	Default
R24(17h)	BIASG_CTRL 1			IBIAS_NONDAC				IBIAS_GEN _MUX	0h		
R25(18h)	BIASG_CTRL 2									POR	0h
R26(19h)	REF_SUP_C TRL						REFSUPPL Y_PWD	SUPOVR_V AL	SUPOVR_E N	INVERT_SU PPLY_OSC	0h
R27(1Ah)	BANGAP_CT RL			BGCORE_BYPS				BGCORE_I BIAS_MUX	0h		
R28(1Bh)	TEMP_SENS E_CTRL1	TEMPATURE Control	I	HI_TEMP_SEL	-		IO_TEMP_SEI	_	VBG_TF	RIM_SEL	69h
R29(1Ch)	TEMP_SENS E_CTRL2							TS_TEST_ MODE	TEMPSENS E_PWD	TEMPSENS E_RSTB	01h
R30(1Dh)	PAD_CTRL		SD_B_PUB	SD_B_PD	I2C_DATA_ PUB	I2C_DATA_ PD	I2C_CLK_P UB	I2C_CLK_P D	CLK_DEGLI TCH_BYPS	_	C0h
R31(1Eh)	SHUTDOWN									SHUTDOW N_B	01h
R32(1Fh)	SPARE2		TST					0h			
R33(1Gh)	SPARE2			TST					0h		

Notes:

1 Registers not described in this map should be considered "reserved".

6.PIN CONFIGURATION AND DESCRIPTION

6.1. 20-Pin QFN TSCS10XX

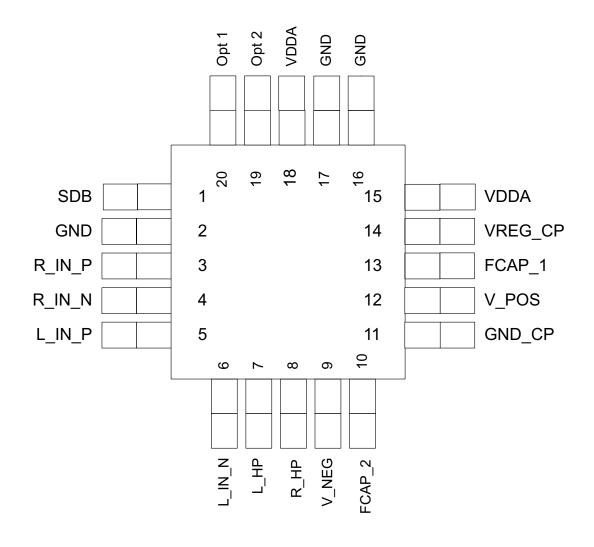


Figure 7. 20-Pin TSDP1xxQFN

TSDP1XX

6.2. 20-Pin QFN TSCS11XX

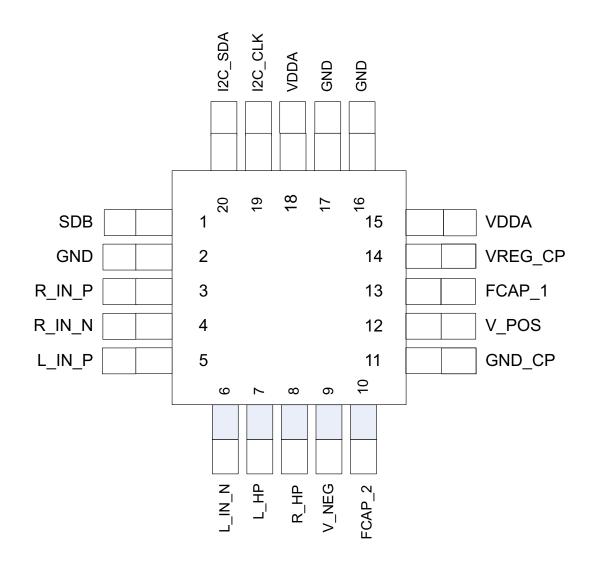


Figure 8. 20-Pin TSDP11XX QFN

6.3. Pin Table for pin QFN package

POWER

Pin Name	Pin Function	I/O	Internal Pull-up Pull-down	20 pin location
VDDA	Positive supply	I(Power)	-	18,15
GND	Ground supply	I(Power)	-	2,16,17
V_POS	Charge pump positive supply	I(Power)	-	12
V_NEG	Charge pump negative supply	I(Power)	-	9
FCAP_1	Flying cap	I/O(Power)	-	13
FCAP_2	Flying cap	I/O(Power)	-	10
VREG_CP	LDO filter CAP	I/O(Power)		14

ANALOG INPUT

Pin Name	Pin Function	I/O	Internal Pull-up Pull-down	20 pin location
L_IN_P	Left Audio Positive Input	I(Analog)	None	5
L_IN_N	Left Audio Negative Input	I(Analog)	None	6
R_IN_P	Right Audio Positive Input	I(Analog)	None	3
R_IN_N	Right Audio Negative Input	I(Analog)	None	4

ANALOG OUTPUT

Pin Name	Pin Function	I/O	Internal Pull-up Pull-down	20 pin location
L_HP	Audio Headphone Output Left - ground referenced	O(Analog)	None	7
R_HP	Audio Headphone Output Right - ground referenced	O(Analog)	None	8

10 pins DATA and CONTROL

Pin Name	Pin Function	I/O	Internal Pull-up Pull-down	20 pin location
I2C_CLK	I ² C shift clock for serial control port	I(Digital)	Pull-Up	19
I2C_SDA	I ² C shift data for serial control port	I/O(Digital)	Pull-Up	20
SD	Shutdown Control for chip	I(Digital)	Pull-Down	

6.4. PIN FUNCTION

			1
PIN		INPUT/OUTPUT	
QFN	NAME		DESCRIPTION
		POWER	Shutdown SD is active low SD turns the IC on and off When
1	SD	I (DIG)	 Shutdown. SD is active low. SD turns the IC on and off. When SD is low, the device is in shutdown mode and the jack insertion detect circuitry is active. SD has to be high to turn on the device and run the jack configuration detect algorithm. Typically, SD is held low until the system gets an interrupt from the IC, indicating that a jack has been inserted. The system then pulls SD high. 0 = The IC is in shutdown mode with jack detection circuitry active. 1 = The IC is active. The jack configuration algorithm runs
2	GND	P (GND)	immediately after a load has been detected. Headphone Ground Reference. This need to be very clean ground for best results.
3	R INP	I (ANA)	Headphone Right Positive Differential Input
4	R IN N	I (ANA)	Headphone Right Negative Differential Input
5	L IN P	I (ANA)	Headphone Left Positive Differential Input
6		I (ANA)	Headphone Left Negative Differential Input
7	L HP	O (ANA)	Headphone Left Output
8	R HP	O (ANA)	Headphone Right Output
9	V_NEG	P	Charge Pump Negative Power Output. Connect one side of 5µF capacitor to CPNEG and the other side to CPGND.
10	FCAP_2	Р	Charge Pump Negative Fly Cap. Connect one side of 5µF capacitor to CPFP (pin 13)and the other side to CPFN (pin 10) with wide traces.
11	CP GND	P (GND)	Charge Pump Output Ground Reference
12	V_POS	P	Charge Pump Positive Power Output. Connect one side of 5 μ F capacitor to CPPOS and the other side to CPGND (pin 11).
13	FCAP_1	Р	Charge Pump Positive Fly Cap. Connect one side of 5μ F capacitor to CPFN (pin 10) and the other side to CPFP (pin 13) with wide traces.
14	VREG_CP	Р	Regulator Positive Power Output. Connect 10uF cap to GND (pin 16)
15	VDDA	P (VDD)	Regulator Input Positive Power . Connect 10uF cap to GND (pin 16)
16	GND	P (GND)	Regulator Input Ground Reference
17	GND	P (GND)	Clean Analog Ground
18	VDD	P (VDD)	Clean Analog Power—Battery or regulated supply. A separate 1µF decoupling cap must be connected directly from VDD (pin18) to GND (pin 17).
19	I2C_CLK	I (DIG)	I2C Serial Clock Input For Register Read/Write
20	I2C_SDA	I/O (DIG)	Serial Data I/O. Register Interface

ELECTRICAL CHARACTERISTICS VDD=5V, GND=0, etc

PARAMETER	SYMB OL	CONDITIONS	MIN	TYP	MAX	UNI TS
Supply Voltage Range	Vdd		2.5		5.5	V
Quiescent Supply Current		One channel enabled Two channels enabled		4 7	9	mA
Shutdown Supply Current				10		μA
Shutdown Threshold		V _{IH} V _{IL}		0.7X VDD 0.3X		- V
Shutdown Input Leakage Current				VDD		μA
Shutdown to full Operation		No pop/click start-up		30		ms
CHARGE PUMP						
Oscillator Frequency	Fosc			830	970	kHz
AMPLIFIERS						
Input Offset Voltage	Vos			0.1		μV
DC Power supply rejection ratio	PSSR			-90		dB
Power supply rejection ratio	CMRR			-101		dB
Output Power	Роит	RL=16Ω RL=32Ω		210 105		mW
		RL=10KΩ		.333		

OPERATING CHARATERISTICS

 V_{DD} =5V, T_A =25C, R_L = 16 Ω (unless otherwise noted)

Parameter	Symbol	CONDITIONS	MIN	ТҮР	MAX	Units
Signal-to-Noise Ratio	SNR	A-weighted; OdB gain		104		dB
Total Harmonia Distortion + Noise	THD+N	RL=32Ω, Ρουτ=25mW		0.008		0/
Total Harmonic Distortion + Noise		RL=16Ω, Ρουτ=50mW		0.008		%
Slew Rate	SR			TBD		V/µs
Maximum Capacitive Load	CL	No sustained oscillations		300		pF
Crosstalk				90		dB

7. CHARACTERISTICS

7.1. Audio Fidelity

SNR: >100dB, A-Weighted, 5.0V

7.2. Electrical Specifications

7.2.1. Absolute Maximum Ratings:

Voltage on any pin relative to Ground	Vss - 0.3V TO Vdd + 0.5V
Industrial Temperature	-40 °C TO 85 °C
Storage Temperature	-65 °C TO +150 °C
Soldering Temperature	260 °C
Headphone Output Current	230mA
Maximum Supply Voltage	5.5 Volts = VDD

Table 3.

7.3. Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Power Supplies				
VDD	2.5	5.0	5.5	V
Industrial Temperature	-40	25	85	°C
Tj			150	°C

Table 4. Recommended Operating Conditions

Note: **ESD:** The TSDP1xx is an ESD (Electrostatic discharge) sensitive device. Even though the TSDP1xx family implements internal ESD protection circuitry, proper ESD precautions should be followed to avoid damaging the functionality or performance.

7.4. Characteristics

Test Conditions

Unless stated otherwise, VDD=5.0V, TA=+25C, 997Hz signal, Input Signal=0.44VRMS,

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Analog Inputs (L _{INP} , L _{INN,} R _{INP} , R _{IN}	N)					
Full Scale Input Voltage	V _{FSIV}	L/R _{INx} Differential Mic		1.0 0		Vrms dBV
Input Impedance				50	??	KΩ
Input Capacitance				10		pF
Volume Control		- <u>-</u>	<u> </u>		<u> </u>	
Programmable Gain Min				0		dB
Programmable Gain Max				6		dB
Programmable Gain Step Size				2		dB
Headphone Outputs (HPL, HPR)		- <u>-</u>	<u> </u>		<u> </u>	
Full Scale Output Level		RL = 10KΩ		??		Vrms
	V _{FSOV}	R _L = 16Ω		1.84		Vrms
Output Power	P _O	997Hz full scale signal, $R_L = 16\Omega$		35		mW (avg)
Signal to Noise Ratio	SNR	A-weighted, $R_L = 16\Omega$		101		dB
Total Harmonic Distortion +Noise		R _L = 16Ω, -3dBFS		-72		dB
	THD+N	R _L = 16Ω, -6dBFS		-78		dB
		R _L = 32Ω, -3dBFS		-75		dB
		R _L = 32Ω, -6dBFS		-80		dB
Digital Input/Output						
Input Capacitance				5		pF
Input Leakage			-0.9		0.9	uA
DC Characteristics for SD						
Input High Level	VIH		0.7x DVDD_IO			V
Input LOW Level	VIL				0.3x DVDD_IO	V
DC Characteristics for SCL and	SDA					
Input High Level	VIH		0.7x DVDD_IO			V
Input LOW Level	VIL				0.3x DVDD_IO	V
Output Low Level	VOL	<u>IOL = 1mA</u>		0.1xDVDD_IO		V
ESD / Latchup						
IEC1000-4-2			1			Level
JESD22-A114-B			2			Class
JESD22-C101			4			Class

7.5. Low Power Mode Power Consumption

Mode	VDD (V)	I _{VDD} (mA)	P _{TOTAL} (mW)	Notes	
Headphone enabled	5.0	??	??	Full scale 1Vrms/10KΩ,	
Headphone enabled	5.0	??	??	Full scale 0.1Vrms/10K Ω ,	
Headphone enabled	5.0	??	??	Full scale 1Vrms/16Ω,	
Headphone enabled	5.0	??	??	Full scale 0.1 Vrms/32 Ω ,	

8. APPLICATION NOTES

Power Supply Bypass Capacitor

The power-supply bypass capacitor lowers the power supply impedance and provides instantaneous current to the TSDP10XX. Describe capacitor values and why

Layout and Grounding Recommendations

Proper layout and grounding are essential for optimum performance of the TSDP10XX. DESCRIBE Connections

9. ORDERING GUIDE

TSDP10xx1NLGXyyX	FIXED FUNCTION
TSDP11xx1NLGXyyX	WITH I2C CONTROL

Please contact an TSI Sales Representative for more information.

10. DISCLAIMER

While the information presented herein has been checked for both accuracy and reliability, manufacturer assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements, are not recommended without additional processing by manufacturer. Manufacturer reserves the right to change any circuitry or specifications without notice. Manufacturer does not authorize warrantee any product for use in life support devices or critical medical instruments

11. REVISION HISTORY

Rev	Date	Description of changes		
0.3	4/20/2015	Initial Release		
0.9	8/17/2015	Updated Description and Register		
0.95	8/24/2016	Updated pinout		
0.99	12/5/2016	Updated diagrams and format		
1.0	1/12/2017	updated year and removed confidential		

www.temposemi.com 8627 N. MoPac Expwy Suite 130 Austin, Texas 78759

DISCLAIMER Tempo Semiconductor, Inc. (TSI) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at TSI's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of TSI's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of TSI or any third parties.

TSI's products are not intended for use in life support systems or similar devices where the failure or malfunction of an TSI product can be reasonably expected to significantly affect the health or safety of users. Anyone using an TSI product in such a manner does so at their own risk, absent an express, written agreement by TSI.

Tempo Semiconductor, TSI and the TSI logo are registered trademarks of TSI. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of TSI or their respective third party owners.