TOSHIBA

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA7792P, TA7792F

AM/FM 1 CHIP TUNER SYSTEM IC (1.5V USE)

The TA7792P, TA7792F are AM/FM 1 chip tuner system (FM FRONT END + AM/FM IF) ICs, which are designed for low voltage operation (1.5V, 3.0V). Those are especially suitable for stereo headphone radio and radio cassette recorder equipments. These item can realize the low power dissipation and few external parts.

FEATURES

- AM detector coil-less
- FM mixer coil-less
- Switchover between AM / FM mode is possible with onemake switch.
- Operating supply voltage range V_{CC} (opr) = 0.95~5V (Ta = 25°C)
- Excellent low supply current (V_{CC} = 1.5V, Ta = 25°C) I_{CC} (AM) = 1.2mA (Typ.) I_{CC} (FM) = 4.0mA (Typ.)

BLOCK DIAGRAM

⁹⁶¹⁰⁰¹EBA2

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

APPLICATION NOTE

<FM SECTION>

• RF amplifier (See Fig.1)

This stage is composed of the emitter-grounded and cascade connection amplifier.

The input impedance of pin ${\rm l}{\rm b}$ is about 260 $\Omega,$ which is determined by D1.

• Mixer amplifier (See Fig.2)

The amplified RF signal is transformed into IF signal by the mixer circuit which is composed of a differential amplifier.

The amplified IF signal is appeared through the emitter follower circuit at pin (). The output impedance of pin () is about 300 Ω , due to match the impedance of the ceramic filter.

(Note)

The spurious characteristic is determined by the characteristic of the ceramic filter (10.7MHz), because the mixer coil is dispensable. It is possible to improve the spurious characteristic that the two ceramic filters of different characteristics are connected in series.

IF limiter amplifier (See Fig.3)

The IF limiter amplifier is composed of six emittergrounded amplifiers and a differential amplifier. The basis composition of the emitter-grounded amplifiers is shown as Fig.3.

• Detector circuit

This stage is composed of the quadrature detector circuit, which has double balanced.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. The information contained herein is subject to change without notice. <AM SECTION>

• RF amplifier (See Fig.4)

This stage is composed of emitter-grounded amplifier, the input impedance of which has about $7.3k\Omega$. It is necessary to connect as Fig.4, because the condenser, C₁ is available to the audio by-pass of the RF-AGC, the noise of low frequency.

Mixer circuit

The amplified RF signal is transformed into IF signal by the mixer circuit, which is composed of a differential amplifier.

IF amplifier

This stage is composed of four emitter-grounded amplifiers and the two differential amplifiers. The input impedance is rather high, because it is changed by the amplitude of input signal (AGC level). So the input terminal of the IF amplifier must be matched with the impedance of ceramic filter.

<COMMON SECTION>

• AM/FM mode switchover

Switchover between AM/FM mode is possible with one-make switch. In case of the opened, this IC has AM mode.

Another in case that the terminal is connected to V_{CC} directly, that has FM mode. And the terminal of pin⁽²⁾ is V_{CC} terminal of FM FRONT END section, too.

• Output circuit (See Fig.5)

Both of the AM/FM detector signal is appeared through the pin[®]. Those output are chosen by the mode switchover. At

the same time, the output impedance is changed as follow at AM/FM mode, due to cut the AM carrier signal and pass the FM composite signal smoothly, with only one condenser.

 $R_{out}(AM) = 8k\Omega$ (Typ.) $R_{out}(FM) = 1.4k\Omega$ (Typ.)

MAXIMUM RATINGS (Ta = 25°C)

CHARACTER	ISTIC	SYMBOL	RATING	UNIT	
Supply Voltage		V _{CC}	5	V	
Power Dissipation	TA7792P	P _D (Note)	750	mW	
	TA7792F	-D (Note)	350	11174	
Operating Temperating	ature	T _{opr}	- 25~75	°C	
Storage Temperatu	ire	T _{stg}	- 55~150	°C	

(Note) Derated above $Ta = 25^{\circ}C$ in the proportion of $6mW/^{\circ}C$ for TA7792P, and of 2.8mW/°C for TA7792F.

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Ta = 25°C, V_{CC} = 1.5V FM : V_{in} = 60dB μ V EMF, f = 83MHz, f_m = 1kHz, Δ f = ±22.5kHz AM : V_{in} = 60dB μ V EMF, f = 1MHz, f_m = 1kHz, MOD = 30%

CHARACTERISTIC			SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Sup	Supply Current		ICC (FM)	1	V _{in} =0	_	4.0	5.2	mA	
Sup			I _{CC} (AM)	1	V _{in} = 0	_	1.2	1.8	ma	
	Input Limiting Voltag	e	Vin (lim)	1	– 3dB limiting	_	10	16	dB μ V EMF	
	Total Harmonic Distor	rtion	THD (FM)	1		_	0.25	—	%	
	Signal To Noise Ratio		S / N (FM)	1			62		dB	
	Quiescent Sensitivity		Qs	1	S / N = 30dB	_	12	—	$dB\muV$ EMF	
FM	AM Rejection Ratio		AMR	1	MOD = 30%		30		dB	
	Oscillator Voltage	V _{osc}	2	f = 60MHz	53	90	135	mV _{rms}		
	Oscillator Stop Supply Voltage	V _{stop} (FM)	1	V_{in} < – 20dB μ V EMF	_	0.85	0.95	v		
	Recovered Output Vo	V _{OD} (FM)	1		28	45	68	mV _{rms}		
	Voltage Gain Recovered Output Voltage		GV	1	$V_{in} = 30 dB \mu V EMF$	14	25	50	mV _{rms}	
			V _{OD} (AM)	1		25	40	60	mV _{rms}	
	Total Harmonic Distortion		THD (AM)	1		—	1.5	—	%	
AM	Signal To Noise Ratio		S / N (AM)	1		_	40	_	dB	
	Oscillator Stop Supply Voltage		V _{stop} (AM)	1	V_{in} < – 20dB μ V EMF	_	0.85	0.95	v	
0	Output Resistance Pin® FM AM		R _o (FM)	1	f = 1kHz		1.4		kO	
			R _o (AM)	1	f = 1kHz		8		kΩ	

※ Vin : Open Display

<u>TOSHIBA</u>

			-		-							
	PIN No.	SYMBOL	TYP.		UNIT	PIN No.		SYMBOL	TYP.		UNIT	
	PIN NAME	••••••	AM	FM	•••••	PIN NAME		••••••	AM	FM	0.111	
1	FM RF OUT	V ₁	_	1.5	V	9	FM DET	Vg	1.5	1.5	V	
2	V _{CC1}	V2		1.5	V	10	V _{CC2}	V ₁₀	1.5	1.5	V	
3	FM OSC	V ₃		1.5	V	11	GND2	V ₁₁	0	0	V	
4	AM OSC	V4	1.5	1.5	V	12	FM IF IN	V ₁₂	_	0.7	V	
5	AM MIX OUT	V5	1.5	1.5	V	13	AM RF IN	V ₁₃	0.7		V	
6	AM AGC	V6	0.8	_	V	14	FM MIX OUT	V ₁₄		0.8	V	
7	AM IF IN	V7	1.4	1.5	V	15	GND1	V ₁₅	0	0	V	
8	AF OUT	V8	0.6	0.6	V	16	FM RF IN	V16		0.7	V	

TERMINAL VOLTAGE : Terminal voltage at no signal with test circuit ($V_{CC} = 1.5V$, Ta = 25°C)

TEST CIRCUIT 1

TOSHIBA

TEST CIRCUIT 2

COIL DATA (Test circuit)

 \circledast : SUMIDA ELECTRIC Co., Ltd.

COIL STAGE	TEST	L (µH)	C ₀ (pF)	Q ₀		TU	RN		WIRE	REFERENCE	
	FREQUENCY				1-2	2-3	1-3	4-6	$(mm\phi)$		
L ₁ FM RF	100MHz	0.053		100	_	_	$1\frac{3}{4}$		0.5UEW	© 0258-000-020	
L ₂ FM OSC	100MHz	0.065		100	_	_	$2\frac{1}{4}$		0.5UEW	© 0258-000-021	
T ₁ AM OSC	796kHz	288		115	13	73	_	l	0.08UEW	S 4147-1356-038	
T ₂ AM IFT	455kHz		180	120	_	_	180	15	0.06UEW	© 2150-2162-165	
T ₃ FM DET	10.7MHz	_	82	110	_	_	13	_	0.12UEW	S 4152-4095-015	

TOSHIBA

CHARACTERISTICS CURVES

OUTLINE DRAWING DIP16-P-300-2.54A

Unit : mm

Weight : 0.14g (Typ.)