## SGS-THOMSON MICROELECTRONICS

# TS59C11

## 1K BIT SERIAL CMOS EEPROM

- HIGHLY RELIABLE CMOS FLOATING GATE TECHNOLOGY.
- SINGLE 5-VOLT SUPPLY
- EIGHT PIN PACKAGE.
- 64 × 16 OR 128 × 8 USER SELECTABLE SERIAL MEMORY
- COMPATIBLE WITH GENERAL INSTRUMENT GI 5911
- SELF TIMED PROGRAMMING CYCLE
- WORD AND CHIP ERASABLE
- 10,000 ERASE/WRITE CYCLES.
- TEN YEARS DATA RETENTION
- POWER-ON DATA PROTECTION

### PIN NAMES

| CS  | CHIP SELECT        |
|-----|--------------------|
| CLK | CLOCK INPUT        |
| DI  | SERIAL DATA INPUT  |
| DO  | SERIAL DATA OUTPUT |
| ORG | ORGANIZATION INPUT |
| R/B | READY/BUSY OUTPUT  |
| Vcc | + 5V POWER SUPPLY  |
| GND | GROUND             |





### PIN DESCRIPTION

| Name     | No | Description                                                                                                                                                                                                                                                                                                                   |
|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS       | 1  | Chip Select                                                                                                                                                                                                                                                                                                                   |
| CLK      | 2  | Clock Input                                                                                                                                                                                                                                                                                                                   |
| DI       | 3  | Serial Data Input                                                                                                                                                                                                                                                                                                             |
| DO       | 4  | Serial Data Output                                                                                                                                                                                                                                                                                                            |
| GND      | 5  | Ground                                                                                                                                                                                                                                                                                                                        |
| ORG      | 6  | Memory Array Organization Selection Input. When the ORG pin is connected to $+5$ , the 64 $\times$ 16 organization is selected. When it is connected to ground, the 128 $\times$ 8 organization is selected. If the ORG pin is left unconnected, then an internal pull up device will select the 64 $\times$ 16 organization. |
| RDY/BUSY | 7  | Status Output                                                                                                                                                                                                                                                                                                                 |
| Vcc      | 8  | + 5V Power Supply                                                                                                                                                                                                                                                                                                             |

June 1988

1/8

## BLOCK DIAGRAM



#### INSTRUCTION SET

| Instruction |           |           | Address                        |                                | Data  |                                 | _                                              |
|-------------|-----------|-----------|--------------------------------|--------------------------------|-------|---------------------------------|------------------------------------------------|
|             | Start bit | it Opcode | 128 × 8                        | 64 × 16                        | 128×8 | 64 × 16                         | Comments                                       |
| READ        | 1         | 1000      | A <sub>6</sub> -A <sub>0</sub> | A <sub>5</sub> -A <sub>0</sub> |       |                                 | Read Address AN-AO                             |
| PROGRAM     | 1         | × 100     | A <sub>6</sub> -A <sub>0</sub> | A5-A0                          | D7-D0 | D <sub>15</sub> -D <sub>0</sub> | Program Address A <sub>N</sub> -A <sub>0</sub> |
| PEN         | 1         | 0011      | 0000000                        | 000000                         |       |                                 | Program Enable                                 |
| PDS         | 1         | 0000      | 0000000                        | 000000                         |       |                                 | Program Disable                                |
| ERAL        | 1         | 0010      | 0000000                        | 000000                         |       |                                 | Erase All Addresses                            |
| WRAL        | 1         | 0001      | 0000000                        | 000000                         | D7-D0 | D15-D0                          | Program All Addresses                          |

DI/DO: It is possible to connect the Data In and Data Out pins together. However, with this configuration it si possible for a "bus conflict" to occur during the "dummy zero" that precedes the read operation, if A<sub>0</sub> is a logic high level. Under such a condition the voltage level seen at Data Out is undefined and will depend upon the relative impedances of Data Out and the signal source driving A<sub>0</sub>. The higher the current sourcing capability of A<sub>0</sub>, the higher the voltage at the Data Out pin.

POWER-ON DATA PROTECTION CIRCUITRY: During power-up all modes of operation are inhibited until V<sub>CC</sub> has reached a level of between 2.8 and 3.5 volts. During power-down the source data protection circuitry acts to inhibit all modes when V<sub>CC</sub> has fallen below the voltage range of 2.8 to 3.5 volts.

## **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                | Value                            | Unit |
|------------------|------------------------------------------|----------------------------------|------|
| Vcc              | Supply voltage                           | +7                               | v    |
|                  | Voltage on any input pin                 | GND - 0.3 to +7                  | v    |
|                  | Voltage or any output pin                | V <sub>CC</sub> +0.3<br>GND -0.3 | v    |
| T <sub>STG</sub> | Storage temperature range                | -65 to +150                      | °C   |
| -3               | Lead temperature (Soldering: 10 seconds) | + 300                            | °C   |

2/8



240

## READ OPERATION

#### DC CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$  to 70°C for CP,  $T_{amb} = -40$  to  $+85^{\circ}C$  for VP,  $V_{CC} = 5V \pm 10\%$  (Unless otherwise specified)

| Symbol | Parameter              | Test Conditions                                                      |       |      |                    |      |
|--------|------------------------|----------------------------------------------------------------------|-------|------|--------------------|------|
|        |                        |                                                                      | Min.  | Тур. | Max.               | Unit |
| Vcc    | Operating voltage      |                                                                      | 4.5   |      | 5.5                | v    |
| ICC1   | Operating current      | V <sub>CC</sub> = 5.5V, CS = V <sub>IH</sub><br>CP range<br>VP range |       |      | 4 4                | mA   |
| ICC2   | Standby current        | $V_{CC} = 5.5V, CS = DI =$<br>SK = GND + 0.1V)                       |       |      | 100                | μA   |
| VIL    | Input low voltage      |                                                                      | - 0.1 |      | 0.8                | V    |
| VIH    | Input high voltage     |                                                                      | 2.0   |      | V <sub>CC</sub> +1 | v    |
| VOL    | Output low voltage     | I <sub>OL</sub> = 2.1mA                                              |       |      | 0.4                | V    |
| VOH    | Output high voltage    | i <sub>OH</sub> = - 400µА                                            | 2.4   |      |                    | V    |
| ILI    | Input leakage current  | V <sub>in</sub> = 5.5V                                               |       |      | 10                 | μA   |
| LO     | Output leakage current | $V_{out} = 5.5V, CS = 0$                                             |       |      | 10                 | μA   |

## AC CHARACTERISTICS

 $(T_{amb} = 0^{\circ} \text{ to } 70^{\circ}\text{C} \text{ for CP}, T_{amb} = -40 \text{ to } + 85^{\circ}\text{C} \text{ for VP}, V_{CC} = 5V \pm 10\%$  (Unless otherwise specified)

| <b>.</b>                             |                                       | Test Conditions                                                                                                                           | Values |      |            |      |
|--------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------------|------|
| Symbol                               | Parameter                             |                                                                                                                                           | Min.   | Тур. | Max.       | Unit |
|                                      | SK max (Maximum frequency)            |                                                                                                                                           |        |      | 250        | KHz  |
|                                      | SK duty cycle                         |                                                                                                                                           | 25     | 50   | 75         | %    |
| T <sub>CSS</sub>                     | CS setup time                         |                                                                                                                                           | 0.2    |      |            | μS   |
| TCSH                                 | CS hold time                          |                                                                                                                                           | 0      |      |            | μS   |
| TDIS                                 | DI Setup time                         |                                                                                                                                           | 0.4    |      |            | μS   |
| тон                                  | Data input hold time                  |                                                                                                                                           | 0.4    |      |            | μS   |
| T <sub>CPW</sub>                     | CLK pulse width                       |                                                                                                                                           | 2.0    |      |            | μS   |
| T <sub>PD1</sub><br>T <sub>PD0</sub> | Data output delay                     | $\label{eq:CL} \begin{array}{l} CL = 100 p F, \ V_{OL} = 0.8 V, \\ V_{OH} = 2.0 V \ and \\ V_{IH} = 2.4 V, \ V_{IL} = 0.45 V \end{array}$ |        |      | 2.0<br>2.0 | μS   |
| tpR                                  | Status low time<br>(programming time) |                                                                                                                                           |        |      | 10         | ms   |



### FIG. 1 - SYNCHRONOUS DATA TIMINGS



FIG. 2 - READ MODE



This Material Copyrighted By Its Respective Manufacturer

The READ instruction is the only instruction which outputs serial data on the DO pin. After a READ isntruction is received, the instruction and address are decoded, followed by data transfer from the memory register into a serial-out shift register. A dummy bit (logical "0") precedes the data output string. The output data changes during the high states of the system clock.

| Organization | A <sub>N</sub> | D <sub>N</sub>  |
|--------------|----------------|-----------------|
| 128×8        | A <sub>6</sub> | D <sub>7</sub>  |
| 64×16        | A5             | D <sub>15</sub> |





The PROGRAM instruction is followed by either eight or sixteen bits of data, which are to be written into the specified address.

After the last data bit (DO) has been shifted into the data register the contents of the specified address will be erased and the new data written to the same address.

During the automatic erase/write sequence the RDY/BUSY output will go low for the duration of the automatic programming cycle as indicated by tp.

During a program cycle the internal erase and write operations occur automatically and are self-timed on the device. A single memory location may also be erased by programming that address with all "1's".

| Organization | A <sub>N</sub> | D <sub>N</sub>  |
|--------------|----------------|-----------------|
| 128×8        | A <sub>6</sub> | D7              |
| 64 × 16      | A5             | D <sub>15</sub> |





FIG. 4 - PEN (Program enable) AND PDS (Program Disable)

Programming must be preceded once by a programming enable (PEN) instruction. Programming remains enabled until a programming disable (PDS) instruction is executed.

The programming disable instruction is provided to protect against accidental data disturb. Execution of a READ instruction is independent of both PEN and PDS instructions.

FIG. 5a - ERAL (Erase all) MODE for 128 × 8 Organization



FIG. 5b - ERAL (Erase all) MODE for 64 × 16 Organization cs וליו רו ריו ו CLK Г ר ר ר D1 D 0 0 0 0 0 0 0 0 ROY/BUSY 5 - 10639

Entire chip erasing is provided for ease of clearing the whole memory and is implemented with the ERAL (erase all registers) instruction. Erasing the chip means that all registers in the memory array have each bit set to a 1.





The WRAL instruction is followed by either eight or sixteen bits of data. After the last data bit  $(D_0)$  has been shifted into the data register the contents of all adresses will be erased an the new data written to all adresses. The pre-erasing and writing of new data occur automatically and are self-timed on-chip.

During the automatic erase/write sequence the

RDY/DUSY output will low for the duration of the automatic programming cycle as indicated by tp.

| Organization | AN-AO   | D <sub>N</sub>  |
|--------------|---------|-----------------|
| 128 × 8      | 0000000 | D7              |
| 64 × 16      | 000000  | D <sub>15</sub> |



7/8

## TS59C11

## ORDERING INFORMATION

| Part Number | Max Frequency | Supply Voltage | Temp. Range  | Package |
|-------------|---------------|----------------|--------------|---------|
| TS59C11CP   | 250 KHz       | 5V ± 10%       | 0 to +70°C   | DIP-8   |
| TS59C11VP   | 250 KHz       | 5V ± 10%       | −40 to +85°C | DIP-8   |

## PACKAGE MECHANICAL DATA



