

SOT-23

Pin Definition:

- 1. Reference
- 2. Cathode
- 3. Anode

General Description

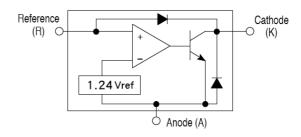
The TS432AI/TS432BI is a three-terminal adjustable shunt regulator with specified thermal stability. The output voltage may be set to any value between V_{REF} (approximately 1.24V) and 18V with two external resistors. The TS432AI/TS432BI has a typical output impedance of 0.05Ω . Active output circuitry provides a very sharp turn-on characteristic, making the TS432AI/TS432BI excellent replacement for zener diode in many applications.

Features

- Precision Reference Voltage TS432AI – 1.24V±1% TS432BI – 1.24V±0.5%
- Minimum Cathode Current for Regulation: 20µA(typ.)
- Equivalent Full Range Temp. Coefficient: 50ppm/ °C
- Programmable Output Voltage up to 18V
- Fast Turn-On Response
- Sink Current Capability of 80µA to 100mA
- Low Dynamic Output Impedance: 0.2Ω
- Low Output Noise

Application

- Voltage Monitor
- Delay Timmer
- Constant Current Source/Sink
- High-Current Shunt Regulator
- Crow Bar
- Over-Voltage / Under-Voltage Protection


Ordering Information

Part No.	Package	Packing
TS432xIX RF	SOT-23	3kpcs / 7" Reel
TS432xIX RFG	SOT-23	3kpcs / 7" Reel
TS432xIX RK	SOT-23	10kpcs / 13" Reel
TS432xIX RKG	SOT-23	10kpcs / 13" Reel

Note: "G" denote for Halogen Free Product **Note:** Where **xx** denotes voltage tolerance

A: ±1%, B: ±0.5%

Block Diagram

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

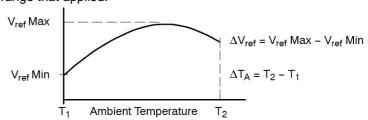
Parameter		Symbol	Limit	Unit	
Cathode Voltage (Note 1)		V_{KA}	18	V	
Continuous Cathode Current Range		I _K	100	mA	
Reference Input Current Range		I _{REF}	3	mA	
Power Dissipation	TO-92	P _D	0.625	W	
	SOT-23		0.35		
Junction Temperature		T _J	+150	°C	
Operation Temperature Range		T _{OPER}	-40 ~ +105	°C	
Storage Temperature Range		T _{STG}	-65 ~ +150	°C	

Note 1: Voltage values are with respect to the anode terminal unless otherwise noted.

Note 2: Rating apply to ambient temperature at 25°C

Recommend Operating Condition

Parameter	Symbol	Limit	Unit
Cathode Voltage (Note 1)	V_{KA}	18	V
Continuous Cathode Current Range	I _K	100	mA


Recommend Operating Condition

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Reference	TS432AI	.,	$V_{KA} = V_{REF}$, $I_{K} = 10$ mA (Figure 1)	1.227	1.240	1.252	V
voltage	TS432BI	V_{REF}	Ta=25°C	1.233	1.240	1.246	V
Deviation of reference voltage	nce input	ΔV_{REF}	V _{KA} =V _{REF} , I _K =10mA Ta= full range (Figure 1)		10	25	mV
Radio of change in change in cathode		$\Delta V_{REF}/\Delta V_{KA}$	I_{KA} =10mA, V_{KA} = 18V to V_{REF} (Figure 2)		-1.0	-2.7	mV/V
Reference Input cu	rrent	I _{REF}	R1=10KΩ, R2= ∞, I _{KA} =10mA Ta= full range (Figure 2)		0.25	0.5	μΑ
Deviation of reference current, over temp.	•	ΔI_{REF}	R1=10KΩ, R2= ∞, I _{KA} =10mA Ta= full range (Figure 2)		0.04	0.08	μΑ
Off-state Cathode (Current	I _{KA(off)}	V _{REF} =0V (Figure 3), V _{KA} =18V		0.125	0.5	μΑ
Dynamic Output Im	pedance	Z _{KA}	f<1KHz, $V_{KA}=V_{REF}$ $I_{KA}=1$ mA to 100mA (Figure 1)		0.2	0.4	Ω
Minimum operating current	cathode	I _{KA(min)}	V _{KA} =V _{REF} (Figure 1)		60	80	μΑ

^{*} The deviation parameters ΔV_{REF} and ΔI_{REF} are defined as difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

* The average temperature coefficient of the reference input voltage, αV_{REF} is defined as:

$$\alpha V_{ref} \; \left(\frac{ppm}{^{\circ}C}\right) = \frac{\left(\frac{(\Delta V_{ref})}{V_{ref} \; (T_{A} = 25^{\circ}C)} \times 10^{6}\right)}{\Delta T_{A}}$$

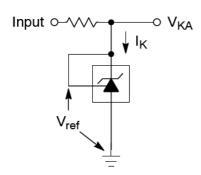
Where: **T2-T1** = full temperature change.

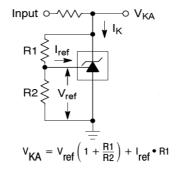
 αV_{REF} can be positive or negative depending on whether V_{REF} Min. or V_{REF} Max occurs at the lower ambient temperature. Example: ΔV_{REF} =7.2mV and the slope is positive, V_{REF} =1.241V at 25°C, ΔT =125°C

$$\alpha V_{ref} \left(\frac{ppm}{{}^{\circ}C} \right) = \frac{\frac{0.0072}{1.241} \times 10^{6}}{125} = 46 \text{ ppm}/{}^{\circ}C$$

* The dynamic impedance ZKA is defined as:

$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$


* When the device operating with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is given by:


$$|Z_{KA}'| = |Z_{KA}| \times \left(1 + \frac{R1}{R2}\right)$$

Test Circuits

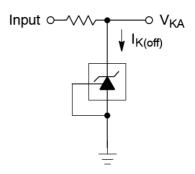


Figure 1: $V_{KA} = V_{REF}$

Figure 2: $V_{KA} > V_{REF}$

Figure 3: Off-State Current

Additional Information - Stability

When The TS432AI/432BI is used as a shunt regulator, there are two options for selection of C_L , are recommended for optional stability:

- A) No load capacitance across the device, decouple at the load.
- B) Large capacitance across the device, optional decoupling at the load.

The reason for this is that TS432Al/432Bl exhibits instability with capacitances in the range of 10nF to 1µF (approx.) at light cathode current up to 3mA(typ). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA (approx.) with a 0.1µF capacitor across it, it will oscillate transiently during start up as the cathode current passes through the instability region. Select a very low capacitance, or alternatively a high capacitance (10µF) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start up phase.

Note: if the TS432Al/432Bl is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be $\leq 1nF$ or $\geq 10\mu F$.

Applications Examples

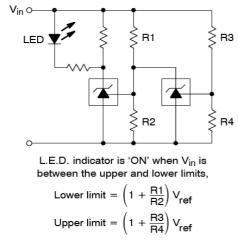


Figure 4: Voltage Monitor

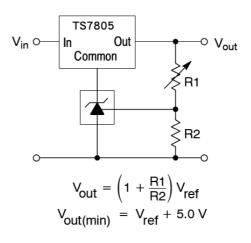


Figure 5: Output Control for Three Terminal Fixed Regulator

Applications Examples (Continue)

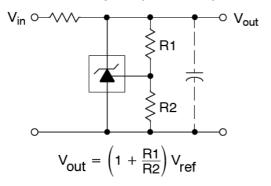


Figure 6: Shunt Regulator

Figure 8: Series Pass Regulator

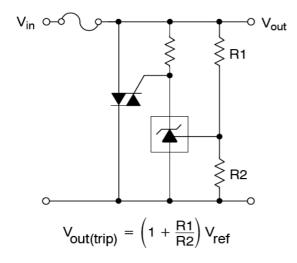
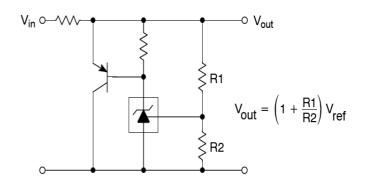
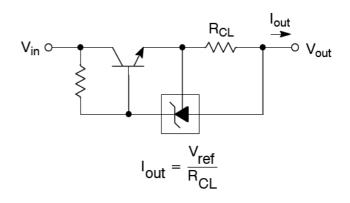




Figure 10: TRIAC Crowbar

Figure 7: High Current Shunt Regulator

Figure 9: Constant Current Source

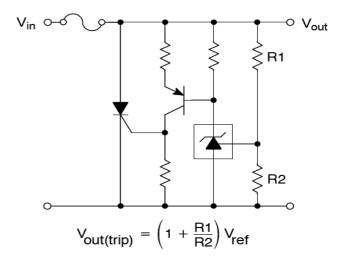
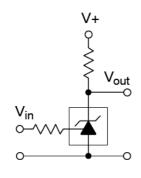



Figure 11: SCR Crowbar

Applications Examples (Continue)

V _{IN}	V _{out}
<V _{REF}	V+
>V _{REF}	≈0.74V

Figure 12: Single-Supply

Comparator with Temperature-Compensated Threshold

 V_{in} I_{sink} I_{sink} I_{sink} I_{sink}

Figure 13: Constant Current Sink

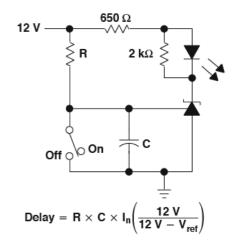


Figure 14: Delay Timer

Typical Performance Characteristics

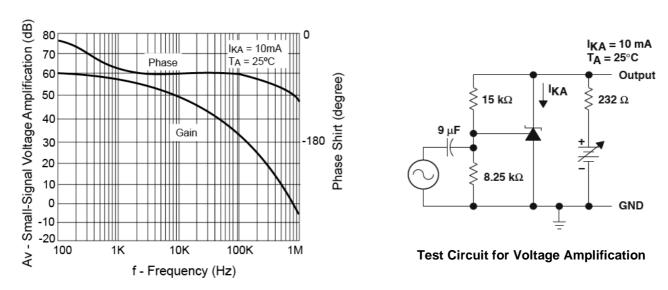


Figure 15: Small-Signal Voltage Gain and Phase Shift vs. Frequency

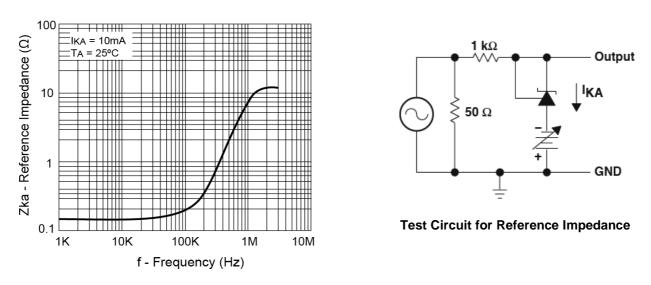
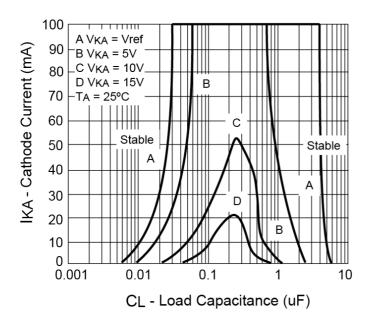
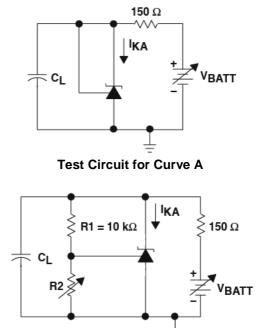
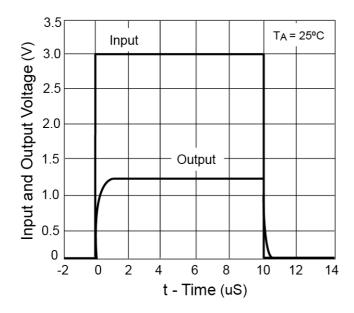
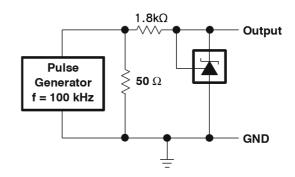



Figure 16: Reference Impedance vs. Frequency



Typical Performance Characteristics




The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial VKA and IKA conditions with CL=0. VBATT and CL then were adjusted to determine the ranges of stability.

Test Circuit for Curve B, C and D

Figure 17: Stability Boundary Condition

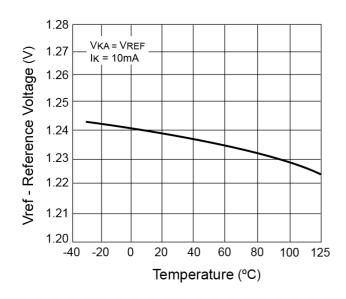

Test Circuit for Pulse Response, Ik=1mA

Figure 18: Pulse Response

Electrical Characteristics

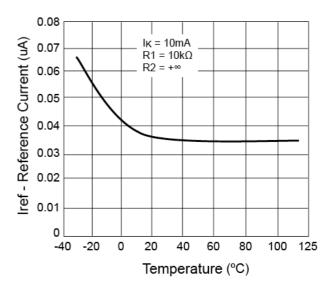
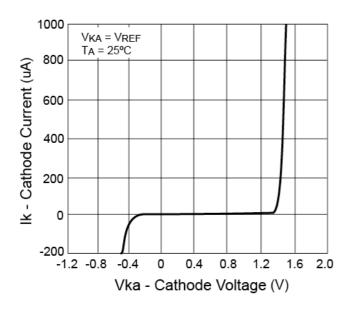
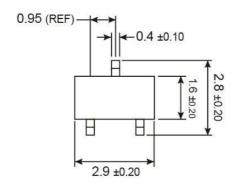
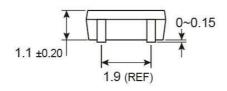
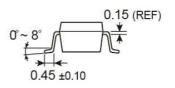


Figure 19: Reference Voltage vs. Temperature

Figure 20: Reference Current vs. Temperature


Figure 21: Cathode Current vs. Cathode Voltage



SOT-23 Mechanical Drawing

Unit: Millimeters

Marking Diagram

X = Device Code

 $(\mathbf{D} = \mathsf{TS432AI}, \mathbf{E} = \mathsf{TS432BI})$

3 = SOT-23 package

Y = Year Code

M = Month Code

(A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)

= Month Code for Halogen Free Product

(O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)

L = Lot Code

TS432I

Adjustable Precision Shunt Regulator

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in9 such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.