

2.495V Programmable Shunt Voltage Reference

GENERAL DESCRIPTION

TS431 series integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient zener which is programmable from V_{REF} to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22 Ω .

The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5V reference makes it convenient to obtain a stable reference from 5.0V logic supplies, and since The TS431 series operates as a shunt regulator, it can be used as either a positive or negative stage reference.

T-23

FEATURES

- Precision Reference Voltage TS431 –2.495V ±2% TS431A – 2.495V ±1% TS431B – 2.495V ±0.5%
- Equivalent Full Range Temp. Coefficient: 50ppm/°C
- Programmable Output Voltage up to 36V
- Fast Turn-On Response
- Sink Current Capability of 1~100mA
- Low Dynamic Output Impedance: 0.2Ω
- Low Output Noise

APPLICATION

- SMPS
- Lighting
- Telecommunication
- Home appliance

SOP-8

NOHS HALOGEN

Pin Definition 1. Cathode

- 5. N/C 6. Anode
- 7. Anode
- 8. Reference

2. Anode

3. Anode

4. N/C

¹2₃^{*}
Notes:
1. Moisture sensitivity level: level 3. Per J-STD-020 (SOP-8)
2. Moisture sensitivity level: level 1. Per J-STD-020 (SOT-23)

Pin Definition:

1. Reference

2. Anode

3. Cathode

TYPICAL APPLICATIN CIRCUIT

TO-92

Pin Definition:

1. Reference 2. Cathode

3. Anode

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	LIMIT	UNIT		
Cathode Voltage ^(Note 1)		V _{KA}	37	V		
Continuous Cathode Current Range		Ι _κ	-100 ~ +150	mA		
Reference Input Current Range		I _{REF}	-0.05 ~ +10	mA		
	TO-92	P _D	0.625	W		
Power Dissipation	SOT-23		0.30			
	SOP-8		0.50			
Junction Temperature		TJ	+150	°C		
Operating Temperature Range		T _{OPER}	0 ~ +70	°C		
Storage Temperature Range		T _{STG}	-65 ~ +150	°C		

RECOMMEND OPERATING CONDITION				
PARAMETER	SYMBOL	LIMIT	UNIT	
Cathode Voltage	V _{KA}	Ref ~ 36	V	
Continuous Cathode Current Range	Ι _κ	1 ~ 100	mA	
	Y	N		

PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNIT
Reference voltage	TS431A		2.470	2.495	2.520	V
	TS431B	VŘÉF	2.483		2.507	
Deviation of reference	$V_{KA} = V_{REF}$, $I_{K} = 10mA$			3	17	m\/
input voltage	Ta= full range	∆ V REF		Ŭ	17	IIIV
Radio of change in Vref to I _{KA} =10mA,		۸٧		-1.4	-2.7	
change in cathode	V _{KA} = 10V to V _{REF}	$\Delta \mathbf{V}_{REF}$				mV/V
Voltage	$V_{KA} = 36V$ to 10V	/ A V KA		-1.0	-2.0	
	R1=10KΩ, R2=∞,	I _{REF}		0.7	4.0	uA
Reference Input current	I _{KA} =10mA					
	Ta= full range					
Deviation of reference	R1=10KΩ, R2=∞,	ΔI_{REF}		0.4	1.2	uA
input current over temp	I _{KA} =10mA					
input current, over temp.	Ta= full range					
Off-state Cathode Current	V_{REF} =0V , V_{KA} =36V				1.0	
	V _{REF} =0V , V _{KA} =36V	IKA (Off)			30	uA
	T _J =-25°C~125°C	·KA (011)				
	(Value is defined by design)					
Dynamic Output	f<1KHz, V _{KA} = V _{REF}			0.00	0.5	0
Impedance	I _{KA} =1mA to 100mA	Z KA		0.22	0.5	Ω
Minimum operating		l (min)		0.4	0.6	
cathode current	VKA – VREF	IKA (11111)		0.4	0.0	MA

Note :

1. Voltage values are with respect to the anode terminal unless otherwise noted.

ORDERING INFORMATION

PART NO.	PACKAGE	PACKING
TS431ACT B0G	TO-92	1,000pcs / Bulk
TS431BCT B0G	TO-92	1,000pcs / Bulk
TS431ACT A3G	TO-92	2,000pcs / Ammo
TS431BCT A3G	TO-92	2,000pcs / Ammo
TS431ACX RFG	SOT-23	3,000pcs / 7" Reel
TS431BCX RFG	SOT-23	3,000pcs / 7" Reel
TS431ACS RLG	SOP-8	2,500pcs / 13" Reel
TS431BCS RLG	SOP-8	2,500pcs / 13" Reel
TS431CS RLG	SOP-8	2,500pcs / 13" Reel

Note:

- 1. Compliant to RoHS Directive 2011/65/EU and in accordance to WEEE 2002/96/EC.
- 2. Halogen-free according to IEC 61249-2-21 definition.

BLOCK DIAGRAM

* The deviation parameters ΔV_{REF} and ΔI_{REF} are defined as difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.

Where: **T2-T1** = full temperature change.

 αV_{REF} can be positive or negative depending on whether the slope is positive or negative. Example: Maximum V_{REF}=2.496V at 30°C, minimum V_{REF} =2.492V at 0°C, V_{REF} =2.495V at 25°C, ΔT =70°C

αV_{REF} | = [4mV / 2495mV] * 10⁶ / 70°C \approx 23ppm/°C

Because minimum V_{REF} occurs at the lower temperature, the coefficient is positive.

* The dynamic impedance ZKA is defined as:

 $|Z_{KA}| = \Delta V_{KA} / \Delta I_{KA}$

* When the device operating with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is given by:

$$|Z_{KA}| = \Delta v / \Delta i | \approx Z_{KA} | * (1 + R1 / R2)$$

ADDITIONAL INFORMATION – STABILITY

When The TS431/431A/431B is used as a shunt regulator, there are two options for selection of C_L , are recommended for optional stability:

- A) No load capacitance across the device, decouple at the load.
- B) Large capacitance across the device, optional decoupling at the load.

The reason for this is that TS431/431A/431B exhibits instability with capacitances in the range of 10nF to 1uF (approx.) at light cathode current up to 3mA (typ). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA (approx.) with a 0.1uF capacitor across it, it will oscillate transiently during start up as the cathode current passes through the instability region. Select a very low capacitance, or alternatively a high capacitance (10uF) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start up phase.

Note: if the TS431/431A/431B is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be $\leq 1nF$ or $\geq 10uF$.

Figure 2. Output Control for Three Terminal Fixed Regulator

APPLICATIONS EXAMPLES (CONTINUE)

Figure 3. Shunt Regulator

APPLICATIONS EXAMPLES (CONTINUE)

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUE)

CHARACTERISTICS CURVES

Figure 18. Cathode Current vs. Cathode Voltage

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

L = Lot Code

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TAIWAN

ONDUCTOR

9

4.85 ±0.15 П 6.0 ±0.20 3.9 ±0.20 Н Н Н 1.27 (REF)-0.375 ±0.125 0.175 ±0.075 1.55 ±0.2 0°~8° 0.41 ±0.1 lende SUGGESTED PAD LAYOUT (Unit: Millimeters SAS SAS 3.861 1 270

MARKING DIAGRAM

AAAA	Y = Year Co	de		
TS431CS	M = Month C	ode for Halo	gen Free Pro	oduct
YML 똬	O =J	an P =Fe	b Q =Mar	R =Apr
	S =N	lay T =Ju	n U =Jul	V =Aug
#10 0 0 0	W =S	ер Х =Ос	t Y =Nov	Z =Dec
		•		

PACKAGE OUTLINE DIMENSIONS (Unit: Millimeters)

TAIWAN

CONDUCTOR

MARKING DIAGRAM

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.