

## **Features**

- Exceeds the LVDS Standard TIA/EIA-644 for High speed Data Interchange
- Low-Voltage Differential 100-Ω (typical) Line Receivers for Signaling Rates, Up to 400 Mbps, 200Mbps Clock
- 3.3-V Power Supply Design
- 6 ns Maximum Propagation Delay
- 0.1 ns Differential Skew (Typical)
- Accepts Small Swing (350 mV Typical) VID Supports Open, Short, and Terminated Input Fail-Safe
- Power Down High Impedance on LVDS Inputs
- Bus-Pin Protection: ±8 kV HBM model
- -40°C to 85°C Operation Temperature Range

### Multipoint-LVDS Line Driver and Receiver

### Description

The TPT9L484 is a 3.3V 4-CH Low-Voltage Differential (LVDS) line receivers, which can support 400 Mbps data rates. Receiver inputs are protected against ±8kV ESD strikes without latch-up.

The TPT9L484 can accept low voltage differential input signals as 350 mV typical, and translates them to 3.3V CMOS output levels. The receivers support a Tri-state function that may be used to multi-channel outputs. The receivers also support open, shorted, and terminated (100  $\Omega$ ) input Fail-safe, with holding output as HIGH level. The device is characterized for operation from –40°C to 85°C. The device is available in 16-lead TSSOP package.

## **Applications**

- Backplane Multipoint Data/Clock Transmission
- Cellular Base Stations
- Network Switches and Routers
- Industrial Control
- Communication Infrastructure

## **Simplified Schematic**





## **Revision History**

| Date       | Revision     | Notes                                  |
|------------|--------------|----------------------------------------|
| 2018/12/14 | Rev. Pre 0   | Definition Draft                       |
| 2019/02/26 | Rev. Pre 0.1 | Add package information                |
| 2019/06/06 | Rev. Pre 0.2 | Add Electrical data                    |
| 2019/08/12 | Rev. Pre 0.3 | Update Electrical data                 |
| 2019/08/23 | Rev. Pre 0.4 | Update Package information             |
| 2019/10/09 | Rev. 0       | Final version Rev. 0                   |
| 2020/1/4   | Rev. A       | Update block diagram and Pin Functions |

## **Order Information**

| Mode Name | Order Number     | Operating<br>Temperature Range | Package         | Marking<br>Information | MSL  | Transport Media,<br>Quantity |
|-----------|------------------|--------------------------------|-----------------|------------------------|------|------------------------------|
| TPT9L484  | TPT9L484L1-TSR-S | -40 to 85°C                    | 16-Pin<br>TSSOP | T9L484                 | MSL1 | Tape and Reel,<br>3000       |

Mark Definition:

Include symbol, part, date code (detail to how to read date code), filled by OP

# **Pin Configuration and Functions**





| Pin | Functions: |  |
|-----|------------|--|
|-----|------------|--|

| Pin No. | Pin Name | I/O       | Description                                        |
|---------|----------|-----------|----------------------------------------------------|
| 1       | RIN1–    | Bus Input | Inverting receiver input pin                       |
| 2       | RIN1+    | Bus Input | Noninverting receiver input pin                    |
| 3       | ROUT1    | Output    | Receiver output pin                                |
| 4       | EN       | Input     | Active high enable pin, see details in Truth Table |
| 5       | ROUT2    | Output    | Receiver output pin                                |
| 6       | RIN2+    | Bus Input | Noninverting receiver input pin                    |
| 7       | RIN2–    | Bus Input | Inverting receiver input pin                       |
| 8       | GND      | Ground    | Ground                                             |
| 9       | RIN3–    | Bus Input | Inverting receiver input pin                       |
| 10      | RIN3+    | Bus Input | Noninverting receiver input pin                    |
| 11      | ROUT3    | Output    | Receiver output pin                                |
| 12      | EN*      | Input     | Active low enable pin, see details in Truth Table  |
| 13      | ROUT4    | Output    | Receiver output pin                                |
| 14      | RIN4+    | Bus Input | Noninverting receiver input pin                    |
| 15      | RIN4–    | Bus Input | Inverting receiver input pin                       |
| 16      | vcc      | Power     | Power Supply                                       |

## **Function Table**

#### Truth Table

| Enal                               | ble                  | Inputs         | Outputs |
|------------------------------------|----------------------|----------------|---------|
| EN                                 | EN*                  | Rin+ - Rin-    | ROUT    |
| L                                  | н                    | х              | Z       |
|                                    |                      | VID ≥ 0.1 V    | н       |
| All other combinations of Enable i |                      | VID ≤ -0.1 V   | L       |
| L Full Fail-safe OPEN/S            | HORT or Terminated H | Full Fail-safe |         |
|                                    |                      | OPEN/SHORT or  | н       |
|                                    |                      | Terminated     |         |



# **Absolute Maximum Ratings**

|                                       |            | MIN  | МАХ                   | UNIT |
|---------------------------------------|------------|------|-----------------------|------|
| Supply voltage                        | Vcc        | -0.3 | 4                     | V    |
| Input voltage                         | RIN+, RIN- | -0.3 | 3.9                   | V    |
| Enable input voltage                  | EN, EN*    | -0.3 | V <sub>CC</sub> + 0.3 | V    |
| Output voltage                        | Rout       | -0.3 | V <sub>CC</sub> + 0.3 | V    |
| Lead temperature, soldering (4 s)     |            |      | 260                   | °C   |
| Maximum junction temperature, TJ      |            |      | 150                   | °C   |
| Storage temperature, T <sub>stg</sub> |            | -65  | 150                   | °C   |

## **ESD** Rating

|                                              |                        | Value | Unit |
|----------------------------------------------|------------------------|-------|------|
| Human Body Model, per ANSI/ESDA/JEDEC JS-001 | Bus Pin                | 8     | kV   |
| Human Body Model, per ANSI/ESDA/JEDEC 35-001 | All Pin Except Bus Pin | 4     | kV   |
| CDM, per ANSI/ESDA/JEDEC JS-002              | All Pin                | 1     | kV   |
| IEC-61000-4-4, EFT, Bus Pins                 | Bus Pin                | 2     | kV   |

# **Thermal Information**

| Package Type | θ <sub>JA</sub> | θ <sub>JC</sub> | Unit |
|--------------|-----------------|-----------------|------|
| 16-Pin TSSOP | 120             | 60              | °C/W |

## **Recommended Operation Conditions**

|                 |                                         | Min | Тур | Мах | Unit |
|-----------------|-----------------------------------------|-----|-----|-----|------|
| vcc             | Supply voltage                          | 3   | 3.3 | 3.6 | v    |
| V <sub>IH</sub> | High-level input voltage                | 2   |     | VCC | v    |
| VIL             | Low-level input voltage                 | GND |     | 0.8 | v    |
| V <sub>ID</sub> | Magnitude of differential input voltage | GND |     | VCC | v    |
| T <sub>A</sub>  | Operating free-air temperature          | -40 | 25  | 85  | °C   |



## **Electrical Characteristics – DC Parameter**

### All test condition is $V_{CC}$ = 3.0 to 3.6V, $T_A$ = -40°C to 85°C, unless otherwise noted.

| Symbol          | Parameter                         | Test Cond                                                  | Test Conditions                                                                           |      | Тур  | Max  | Unit |
|-----------------|-----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|------|------|------|
| Vтн             | Differential input high threshold |                                                            |                                                                                           |      | 25   | 100  | mV   |
| Vtl             | Differential input low threshold  | Vсм = 1.2 V, Rіn+, Rіn– pin                                | (2)                                                                                       | -100 | -25  |      | mV   |
| VCMR            | Common mode voltage range         | VID = 200 mV peak to pea                                   | VID = 200 mV peak to peak, $R_{IN+}$ , $R_{IN-}$ pin <sup>(3)</sup>                       |      |      | 2.3  | V    |
|                 |                                   | $V_{cc}$ = 3.6 V or 0 V,                                   | V <sub>IN</sub> = 2.8 V                                                                   | -15  |      | 15   | μA   |
| lin             | Input current                     | Rın+, Rın– pin                                             | V <sub>IN</sub> = 0 V                                                                     | -15  |      | 15   | μA   |
|                 |                                   | Vcc = 0 V, VIN = 3.6 V, RIN                                | +, Rın– pin                                                                               | -20  | 12.5 | 20   | μA   |
|                 |                                   | I <sub>OH</sub> = -0.4 mA, V <sub>ID</sub> = 200 m         | V, R <sub>out</sub> pin                                                                   | 2.7  | 3.3  |      | V    |
| Vон             | Output high voltage               | I <sub>он</sub> = –0.4 mA, input termin                    | $I_{OH}$ = -0.4 mA, input terminated, $R_{OUT}$ pin                                       |      | 3.3  |      | V    |
|                 |                                   | $I_{OH} = -0.4 \text{ mA}$ , input shorte                  | $I_{OH}$ = -0.4 mA, input shorted, $R_{OUT}$ pin                                          |      | 3.3  |      | V    |
| Vol             | Output low voltage                | $I_{OL}$ = 2 mA, $V_{ID}$ = -200 mV,                       | $I_{OL}$ = 2 mA, $V_{ID}$ = -200 mV, $R_{OUT}$ pin                                        |      | 0.1  | 0.25 | V    |
| los             | Output short-circuit current      | Enabled, Vout = 0 V, Rout                                  | Enabled, Vout = 0 V, Rout pin(4)                                                          |      | -80  | -120 | mA   |
| loz             | Output TRI-STATE current          | Disabled, $V_{OUT} = 0$ V or $V_{CH}$                      | Disabled, V <sub>OUT</sub> = 0 V or V <sub>CC</sub>                                       |      | ±0.1 | 10   | μA   |
| Vін             | Input high voltage                | EN, EN* pins                                               | EN, EN* pins                                                                              |      |      | VCC  | V    |
| V <sub>IL</sub> | Input low voltage                 | EN, EN* pins                                               |                                                                                           | GND  |      | 0.8  | V    |
| I <sub>I</sub>  | Input current                     | $V_{IN} = 0 V \text{ or } V_{CC}$ , other inputed EN* pins | $V_{IN} = 0 V \text{ or } V_{CC}$ , other input = $V_{CC} \text{ or } GND$ , EN, EN* pins |      |      | 10   | μA   |
| Vcl             | Input clamp voltage               | $I_{CL}$ = -18 mA, EN, EN* pins                            | I <sub>CL</sub> = -18 mA, EN, EN* pins                                                    |      | -0.8 |      | V    |
|                 | No load supply current            | EN, EN* = V <sub>CC</sub> or GND, inp                      | outs open, V <sub>cc</sub> pin                                                            |      | 15   | 20   | mA   |
| Icc             | Receivers enabled                 | EN, EN* = 2.4 V or 0.5 V, i                                | EN, EN* = 2.4 V or 0.5 V, inputs open, $V_{CC}$ pin                                       |      | 15   | 20   | mA   |
| lccz            | No load supply current            | Receivers disabled, EN = inputs open, V <sub>CC</sub> pin  | = GND, $EN^* = V_{CC}$ ,                                                                  |      | 6    | 10   | mA   |

## **Electrical Characteristics – AC Parameter**

All test condition is  $V_{CC}$  = 3.0 to 3.6V,  $T_A$  = -40°C to 85°C, unless otherwise noted.

| Symbol       | Parameter                                                     | Test Conditions          | Min | Тур | Max | Unit |
|--------------|---------------------------------------------------------------|--------------------------|-----|-----|-----|------|
| <b>t</b> PHL | Differential propagation delay,<br>high to low <sup>(1)</sup> | C <sub>L</sub> = 10 pF   | 3.2 | 4.5 | 6.2 | ns   |
| <b>t</b> PLH | Differential propagation delay,<br>low to high <sup>(1)</sup> | V <sub>ID</sub> = 200 mV | 3.0 | 4.5 | 6.2 | ns   |
| tskD1        | Differential pulse skew <sup>(1)</sup>                        |                          |     | 0.1 |     | ns   |



|       | tphld — tplhd                                       |                        |     |         |
|-------|-----------------------------------------------------|------------------------|-----|---------|
| tskd2 | Differential channel-to-channel skew <sup>(1)</sup> | Same device            | 0.1 | 2.0 ns  |
| tskd3 | Differential part-to-part skew <sup>(1)</sup>       | Different device       | 0.1 | 2.0 ns  |
| tт∟н  | Rise time                                           |                        | 1.0 | ns      |
| t⊤н∟  | Fall time                                           |                        | 1.0 | ns      |
| tрнz  | Disable time high to Z                              | $R_L = 2 k\Omega$      | 6   | ns      |
| tplz  | Disable time low to Z                               | C <sub>L</sub> = 10 pF | 6   | ns      |
| tрzн  | Enable time Z to high                               |                        | 6   | ns      |
| tPZL  | Enable time Z to low                                |                        | 4   | ns      |
| fмах  | Maximum operating frequency <sup>(7)</sup>          | All channels switching |     | 200 MHz |

Note:

(1): Spec limit is based on bench characterization and design simulation



# **Tape and Reel Information**



| Order<br>Number      | Package | D1  | W1   | A0      | В0      | K0      | P0      | WO       | Pin1<br>Quadrant |
|----------------------|---------|-----|------|---------|---------|---------|---------|----------|------------------|
| TPT9L484L1-<br>TSR-S | TSSOP16 | 330 | 17.6 | 6.8±0.1 | 5.4±0.1 | 1.3±0.1 | 8.0±0.1 | 12.0±0.1 | Q1               |



# Package Outline Dimensions

TSR (TSSOP16)





## **IMPORTANT NOTICE AND DISCLAIMER**

Copyright© 3PEAK 2012-2023. All rights reserved.

**Trademarks.** Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

**Performance Information.** Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

**Disclaimer.** 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.