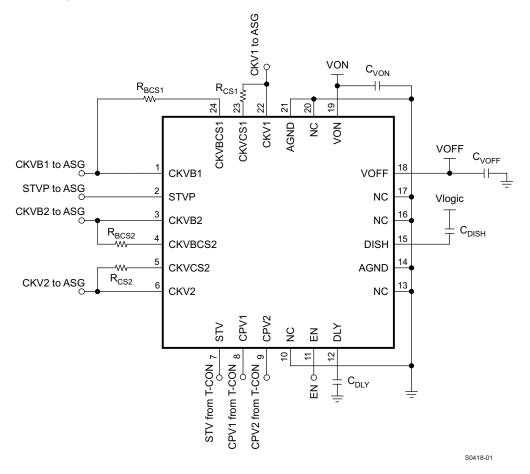


Dual High-Voltage Scan Driver for TFT-LCD

Check for Samples: TPS65193

FEATURES


- Dual High-Voltage Scan Driver
- Scan Driver Output Charge Share
- High Output-Voltage Level: Up to 35 V
- Low Output-Voltage Level: Down to –28 V
- Logic-Level Inputs
- 24-Pin 4-mm × 4-mm QFN package

APPLICATIONS

• TFT LCD Using Amorphous Silicon Gate (ASG) Technology

DESCRIPTION

The TPS65193 is dual high-voltage scan driver to drive an amorphous-silicon-gate (ASG) circuit on TFT glass. Each single high-voltage scan driver receives logic-level inputs of CPVx and generates two high-voltage outputs of CKVx and CKVBx. The device receives a logic-level input of STV and generates a high-voltage output of STVP. These outputs are swings from Voff (–28 V) to Von (35 V) and are used to drive the ASG circuit and charge/discharge the capacitive loads of the TFT LCD. In order to reduce the power dissipation of the device, a charge-share function is implemented. The device features a discharge function, which shorts Voff to GND in order to shut down the panel faster when the LCD is turned off.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

T _A	T _A ORDERING P/N		PACKAGE MARKING	
-40°C to 85°C TPS65193RGE		24-Pin 4-mm x 4-mm QFN	TPS65193	

⁽¹⁾ The RGE package is available taped and reeled and shipped in quantities of 2500 devices per reel.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

	VALUE	UNIT
Voltage on pins CPVx, STV	-0.3 to 5.5	V
Voltage on pins EN	-0.3 to 5.5	V
Input voltage on VON ⁽²⁾	40	V
Input voltage on VOFF ⁽²⁾	-30	V
Voltage on CKVx, CKVBx, CKVCSx, CKVBCSx	-30 to 40	V
VON-VOFF	62	V
Voltage on STVP	-30 to 40	V
Voltage on DISH	-3.6 to 5.5	V
ESD rating HBM	2	kV
ESD rating MM	200	V
ESD rating CDM	700	V
ontinuous power dissipation See Dissipation Rating		
Operating junction temperature range	-40 to 150	°C
Storage temperature range	-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATINGS

PACKAGE	$R_{ heta JA}$	T _A ≤ 25°C POWER RATING	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
24-pin 4-mm x 4-mm QFN	88°C/W (Low-K board)	1.13 W	0.62 W	0.45 W

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
VON	Positive high-voltage range	15		35	V
VOFF	Negative low-voltage range	-28		-3	V
VON-VOFF	VON to VOFF voltage range			60	V
f _{CPV}	CPV input frequency			150	kHz
T _A	Operating ambient temperature	-40		85	°C
TJ	Operating junction temperature	-0		125	°C

⁽²⁾ All voltage values are with respect to network ground terminal.

ELECTRICAL CHARACTERISTICS

VOFF = -10 V, VON = 30 V, EN = 3.3 V, $T_A = -40$ °C to 85°C, typical values are at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT						
	Quiescent current into VON	CPVx = GND, STV = 3.3 V		600	800	800	
I _{QIN}	Quiescent current out of VOFF			120	200	μА	
I _{SD}	Shutdown current into VON	CPVx = GND, STV = 3.3 V EN = GND		520	800	μА	
-	Shutdown current out of VOFF			260	400	·	
UNDERV	OLTAGE LOCKOUT						
\/	I Indonvoltage legicant threehold on VON	VON rising	10		13	V	
V_{UVLO}	Undervoltage lockout threshold on VON	Hysteresis		250		mV	
LOGIC S	IGNALS EN, CPVx, STV						
V _{IH}	High-level input voltage of CPVx, STV, EN		2			V	
V _{IL}	Low-level input voltage of CPVx, STV, EN				0.5	V	
OUTPUT	CKVx, CKVBx, STVP, CKVCSx				•		
\/	Output high voltage of CKVx, CKVBx	1 10 m/s	VON - 0.3			V	
V _{OH}	Output high voltage of STVP	I _{OH} = 10 mA	VON - 0.8			V	
	Output low voltage of CKVx, CKVBx	10 0			VOFF + 0.2	V	
V_{OL}	Output low voltage of STVP	$I_{OL} = -10 \text{ mA}$			VOFF + 0.4	V	
R _{CHSH}	Charge-sharing on-resistance	I _{CHSH} = 10 mA		120		Ω	
DISCHAF	RGING CIRCUIT						
R _{DSCHG}	Discharging resistance	DISH = -2 V		1.5		kΩ	
R _{BIAS}	Resistance DISH to GND			100		kΩ	
CONTRO	L DELAY	<u> </u>					
V _{DLYREF}	Reference voltage for comparator			2.9		٧	
I _{DLYREF}	Delay charge current			15		μΑ	
R _{DLY}	Delay resistor		140	200	260	kΩ	

ELECTRICAL CHARACTERISTICS (continued)

VOFF = -10 V, VON = 30 V, EN = 3.3 V, $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$, typical values are at $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
AC CHA	RACTERISTICS		L		,	
Slew-	Slew rate, Slew- STVP		30	55		V/μs
Slew+	Slew rate, Slew+ STVP		20	35		Vμs
t _{pf}	Propagation delay, t _{pf-STVP}	Load = 4.7 nF (See Figure 1)		40	100	ns
t _{pr}	Propagation delay, t _{pr-STVP}			30	100	ns

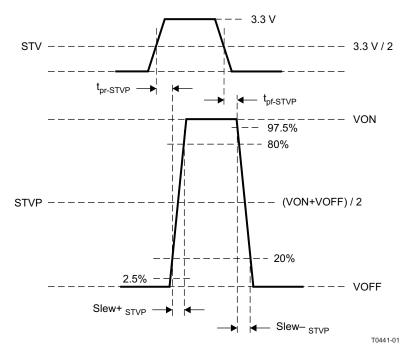


Figure 1. Switching Characteristics of STVP

CKVx, CKVBx SWITCHING CHARACTERISTICS

VOFF = -10 V, VON = 30 V, EN = 3.3 V, $T_A = -40 ^{\circ}\text{C}$ to $85 ^{\circ}\text{C}$, typical values are at $T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{csf}	$t_{csf\text{-}CPVx_CKVx}, t_{csf\text{-}CPVx_CKVBx}$			80	150	ns
t _{csr}	t _{csr-CPVx_CKVx} , t _{csr-CPVx_CKVBx}	f _{CPVx} = 85 kHz, STV = GND,		80	150	ns
t _f	t _{f-CPVx_CKVx} , t _{f-CPVx_CKVBx}	See Figure 2, load = 4.7 nF, $R_{CS1} = R_{RCS1} = R_{CS2} = R_{RCS2} = 50 \Omega$		40	100	ns
t _r	t _{r-CPVx_CKVx} , t _{r-CPVx_CKVBx}	3001 3001		30	100	ns

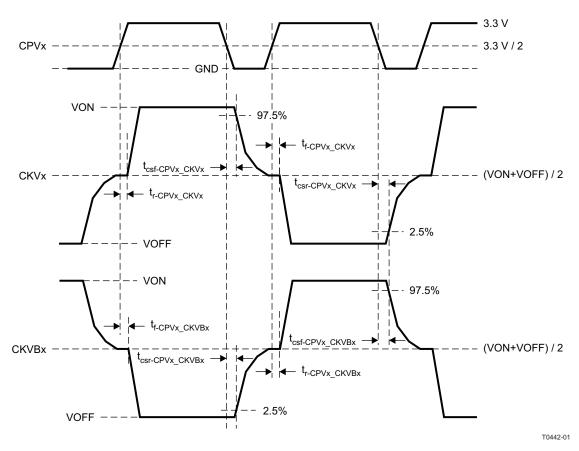


Figure 2. Switching Characteristics of CKVx, CKVBx (STV = GND)

CKVx, CKVBx SWITCHING CHARACTERISTICS (Continued)

VOFF = -10 V, VON = 30 V, EN = 3.3 V, $T_A = -40$ °C to 85°C, typical values are at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Slew+	Slew+ _{CKVx} , Slew+ _{CKVBx}	f_{CPVx} = 85 kHz, STV = 3.3 V, See Figure 3, load = 4.7 nF, R_{CSx} = R_{BCSx} = 50 Ω	50	100		V/μs
Slew-	Slew- _{CKVx} , Slew- _{CKVBx}	$f_{CPVx} = 85 \text{ kHz}, STV = 3.3 \text{ V}, See Figure 3, load = 4.7 nF, R_{CSx} = R_{BCSx} = 50 \Omega$	70	130		V/μs

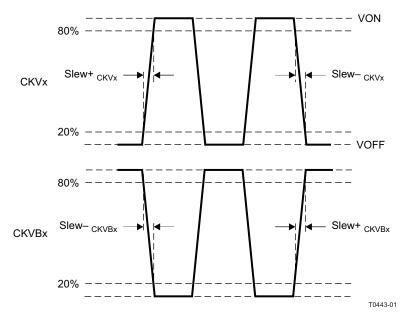
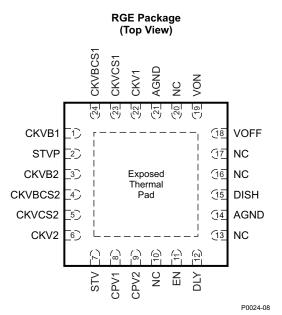



Figure 3. CKVx, CKVBx Output Rise and Fall Times (STV = 3.3 V)

DEVICE INFORMATION

Exposed thermal pad and NC pins are recommended to be connected with ground on the PCB for better thermal dissipation.

PIN FUNCTIONS

PIN		I/O	DESCRIPTION
NAME	NO.		
CKV1	22	0	Output vertical-scan clock 1 for ASG
CKV2	6	0	Output vertical-scan clock 2 for ASG
CKVB1	1	0	Inverted-output vertical-scan clock 1 for ASG
CKVB2	3	0	Inverted-output vertical-scan clock 2 for ASG
CKVBCS1	24	I	Charge-share input for CKVB1
CKVBCS2	4	ı	Charge-share input for CKVB2
CKVCS1	23	ı	Charge-share input for CKV1
CKVCS2	5	ı	Charge-share input for CKV2
CPV1	8	ı	Input vertical-scan clock 1
CPV2	9	I	Input vertical-scan clock 2
DISH	15	ı	VOFF discharge control
DLY	12	0	Connecting a capacitor from this pin to GND allows the setting of the start-up delay.
EN	11	I	Enable pin of device. When this pin is pulled high, the device starts up after a delay time set by DLY has passed.
GND	14, 21	-	Ground
NC	10, 13, 16, 17, 20	ı	Not connected
STV	7	I	Input vertical-scan start signal
STVP	2	0	Output vertical-scan start signal
VOFF	18	I	Negative low-supply voltage
VON	19	1	Positive high-supply voltage
Thermal pad		-	Not connected

TYPICAL CHARACTERISTICS

TABLE OF GRAPHS

		FIGURE
SYSTEM PERFORMANCE		1
Start un acquence CIVIV	EN = HIGH after UVLO, C _{DLY} = 10 nF, STV = LOW	Figure 4
Start-up sequence CKVx	EN = HIGH before UVLO, C _{DLY} = 10 nF, STV = LOW	Figure 5
Charit un acquience CTV/D	EN = HIGH after UVLO, C _{DLY} = 10 nF, CPVx = LOW	Figure 6
Start-up sequence STVP	EN = HIGH before UVLO, C _{DLY} = 10 nF, CPVx = LOW	Figure 7
OUTPUT CKVx, CKVBx, and STVP		
Disc time / propagation delay of CIV/y	STV = HIGH, load = 4.7 nF	Figure 8
Rise time / propagation delay of CKVx	STV = LOW, load = 4.7 nF	Figure 9
	STV = HIGH, load = 4.7 nF	Figure 10
Fall time / propagation delay of CKVx	STV = LOW, load = 4.7 nF	Figure 11
Rise time / propagation delay of STVP	CPV1 = LOW, load = 4.7 nF	Figure 12
Fall time / propagation delay of STVP	CPV1 = LOW, load = 4.7 nF	Figure 13
CT\/D output	CPV1 = HIGH	Figure 14
STVP output	CPV1 = LOW	Figure 15
CIA/w CIA/Dw autouta	STV = HIGH	Figure 16
CKVx, CKVBx outputs	STV = LOW	Figure 17

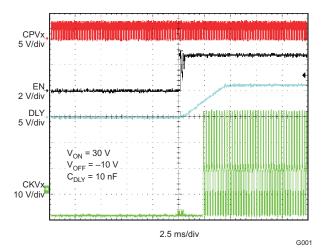


Figure 4. Start-Up Sequence CKVx, EN = HIGH After UVLO

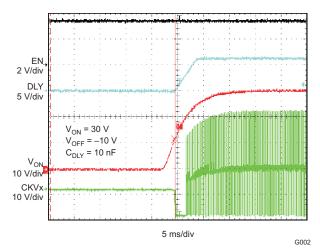


Figure 5. Start-Up Sequence CKVx, EN = HIGH Before UVLO

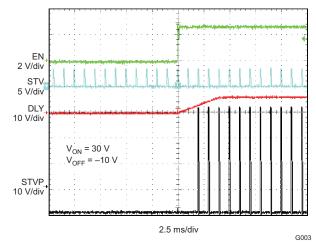


Figure 6. Start-Up Sequence STVP, EN = HIGH After UVLO

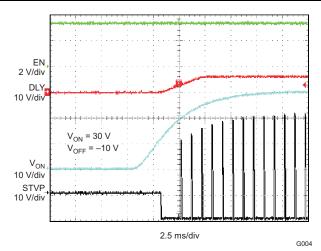


Figure 7. Start-Up Sequence STVP, EN = HIGH After UVLO

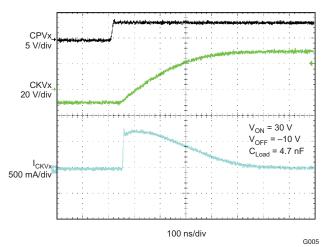


Figure 8. Rise Time / Propagation Delay of CKVx, STV = HIGH

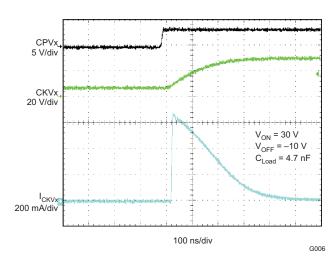


Figure 9. Rise Time / Propagation Delay of CKVx, STV = LOW

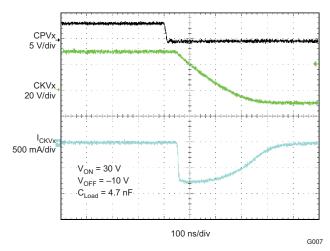


Figure 10. Fall Time / Propagation Delay of CKVx, STV = HIGH

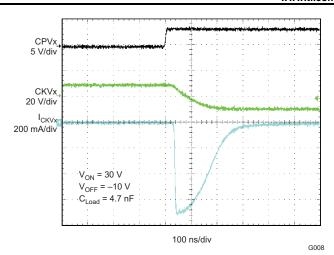


Figure 11. Fall Time / Propagation Delay of CKVx, STV = LOW

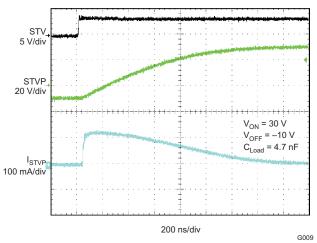


Figure 12. Rise Time / Propagation Delay of STVP, CPV1 = LOW

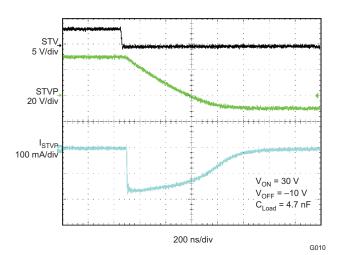


Figure 13. Fall Time / Propagation Delay of STVP, CPV1 = LOW

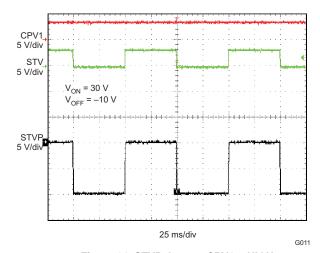


Figure 14. STVP Output, CPV1 = HIGH

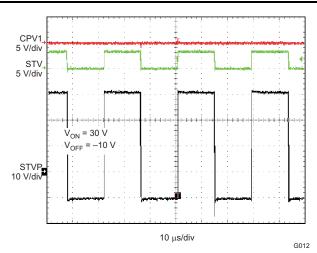


Figure 15. STVP Output, CPV1 = LOW

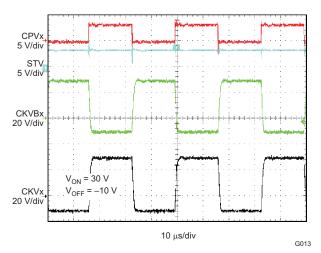


Figure 16. CKVx, CKVBx Outputs, STV = HIGH

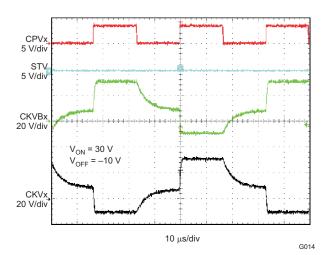
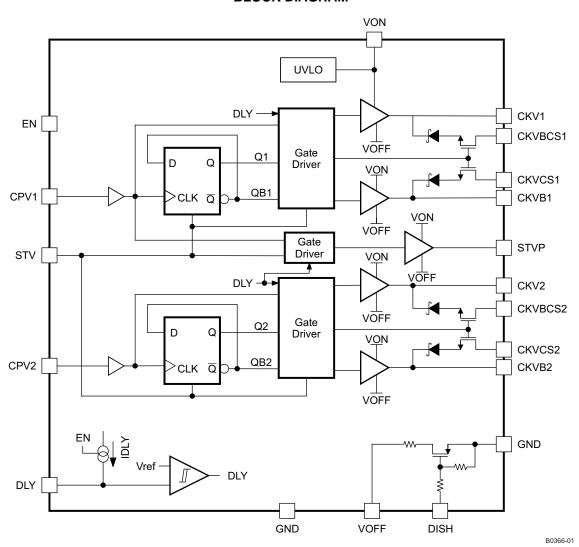



Figure 17. CKVx, CKVBx Outputs, STV = LOW

BLOCK DIAGRAM

DETAILED DESCRIPTION

UNDERVOLTAGE LOCKOUT

The device has an undervoltage lockout feature to avoid improper operation of the device when input voltage VON is low. When VON is lower than 10 V, the device shuts down, and outputs CKVx, CKVBx, and STVP enter the high-impedance state.

INPUT SIGNALS

The timing controller in the system provides input signals to the TPS65193. STV is the synchronous signal for picture frames, and its frequency depends on the frame rate. CPVx are the synchronous signals for horizontal lines, and their frequency depends on the frame rate and vertical resolution.

OUTPUT SIGNALS

The STVP, CKVx, and CKVBx scan-driver outputs are generated with internal switches. Table 1 and Table 2 show the logic diagrams of the scan-driver outputs.

INPUT		OUTPUT
STV	CPV1	STVP
LOW	Don't care	VOFF
HIGH	LOW	VON
HIGH	HIGH	High impedance

Table 2. CKVx, CKVBx, and Output Charge-Share Logic

INI	PUT	OUTPUT						
STV	CPVx	CKVx	CHARGE SHARE					
LOW	LOW	High impedance	High impedance	Enable				
LOW	Rising edge	Toggle state	Toggle state	Disable				
LOW	HIGH	Previous state	Previous state	Disable				
HIGH	LOW	VOFF	VON	Disable				
HIGH	HIGH	VON	VOFF	Disable				

OUTPUT CHARGE SHARE

Power dissipation can be reduced by the output charge share. Figure 18 shows the current flows when the charge share is enabled. CKVCSx and CKVBCSx are charge-share inputs. When the charge share is enabled, the charge that is in the capacitor of the positive voltage line is transferred to the capacitor of the negative voltage line. Charge-sharing resistors RCSx and RBCSx reduce the peak current into the charge-share inputs, CKVCSx and CKVBCSx, during the output charge share. These resistors also control the slope of the output charge-share waveform. The smaller RCSx and RBCSx, the bigger the peak current into the charge-share inputs and the steeper the slope of output charge-share waveform. The power dissipation in charge-sharing resistors should be taken into consideration. With 0603 size resistors, the power rating of two in parallel is good for most applications.

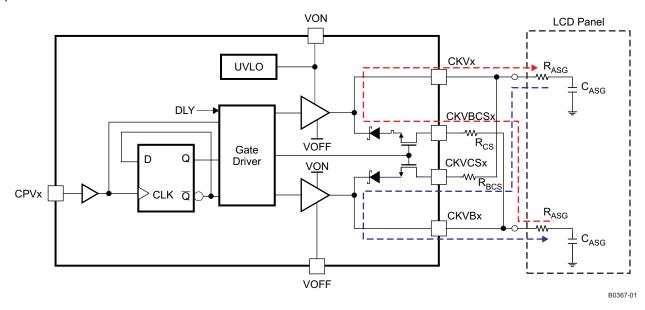


Figure 18. Single-Scan Driver Block Diagram

START-UP SEQUENCE (EN, DLY)

The TPS65193 has adjustable start-up sequencing that is set by EN and DLY. When VON is below the UVLO threshold, all outputs are at high impedance. When EN is pulled LOW after the UVLO threshold is reached, all

outputs follow VOFF. Pulling EN high enables the device after a delay time set by the capacitor connected to DLY, and the delay time starts with EN = HIGH. If EN is pulled high before the UVLO threshold is reached, the delay starts when VON reaches the UVLO threshold. Pulling EN low disables the device and outputs CKVx, CKVBx, and STVP follow VOFF as long as VON is higher than the UVLO threshold. For the typical start-up sequence, see Figure 19 and Figure 20.

SETTING THE DELAY TIME (DLY)

Connecting an external capacitor to the DLY pin sets the delay time. If no delay time is required, the DLY pin can be left floating. The external capacitor is charged with a constant-current source of typically 15 μ A. The delay time is terminated when the capacitor voltage reaches the internal reference voltage of 2.9 V, and the final DLY voltage on an external capacitor is maximum 8 V. The voltage rating of the external capacitor must be higher than 8 V.

The external delay capacitor is calculated using the following formula:

$$C_{DLY} = \frac{\text{Delay time}}{R_{DLY}} = \frac{\text{Delay time}}{200 \text{ k}\Omega}$$
(1)

Example for setting a delay time of 10 ms:

$$C_{DLY} = \frac{10 \text{ ms}}{200 \text{ k}\Omega} = 50 \text{ nF} \approx 47 \text{ nF}$$
 (2)

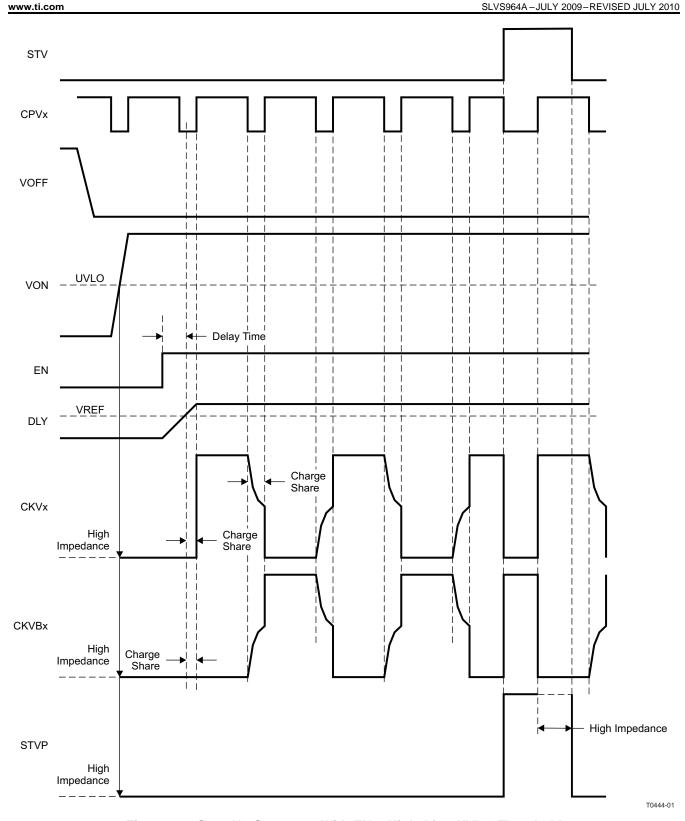


Figure 19. Start-Up Sequence With EN = High After UVLO Threshold

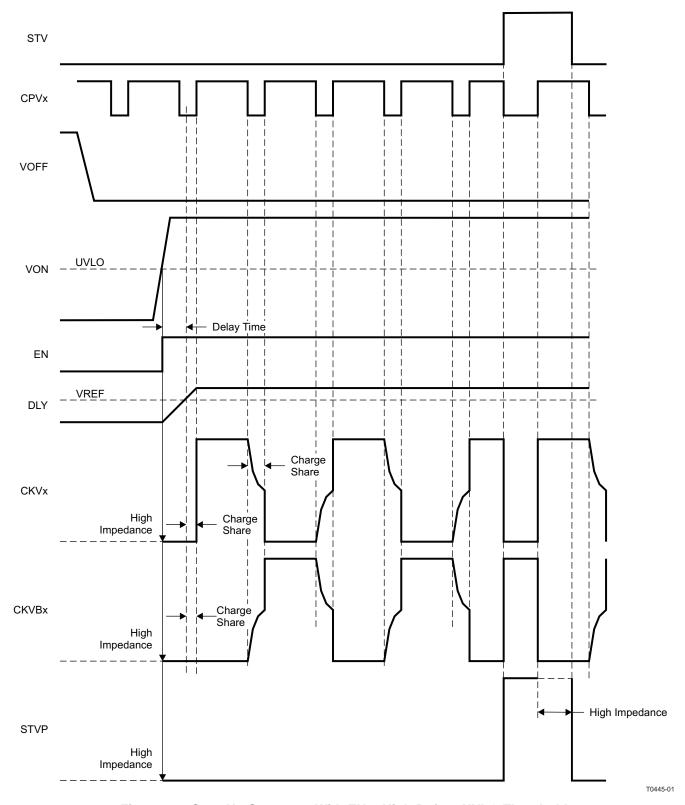


Figure 20. Start-Up Sequence With EN = High Before UVLO Threshold

TIMING DIAGRAM OF SCAN DRIVER

Figure 21 shows the typical timing diagram of the TPS65193.

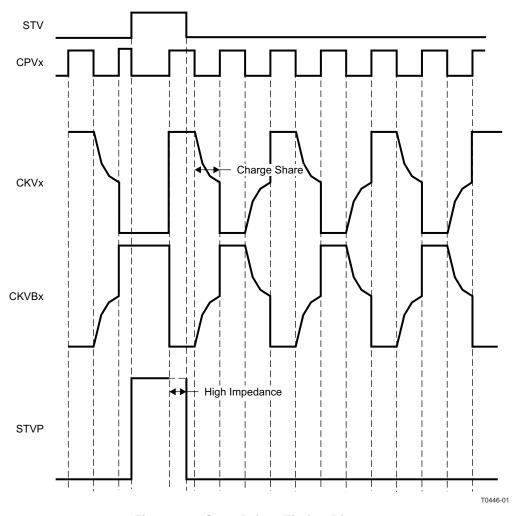


Figure 21. Scan Driver Timing Diagram

SUPPLY VOLTAGE, VON and VOFF

The TPS65193 drives the capacitive load. The high peak currents should be supplied from VON on the rising edges of the outputs and VOFF on the falling edges of the outputs, respectively. Bypass capacitors of 1 μ F must be placed as close as possible on both VON and VOFF supplies. Depending on the peak current that the TPS65193 must deliver, the bypass capacitor can be bigger than 1 μ F.

VOFF DISCHARGE

DISH controls the VOFF discharging time during the system power off. Figure 22 shows a typical application for VOFF discharge. DISH is connected to the system logic voltage through a capacitor. During power off, the system logic voltage falls, and the voltage on DISH falls below ground level. An internal switch turns on when DISH is below -0.6 V and VOFF is connected to ground through 1 k Ω , which helps VOFF discharge. A 1- μ F DISH capacitor is good for most applications. Figure 23 shows the typical power-off sequence of VOFF discharging. VOFF discharge can be disabled by connecting DISH to GND directly.

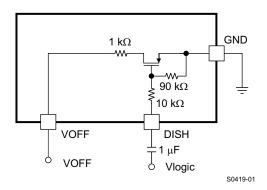


Figure 22. Typical Application for VOFF Discharge

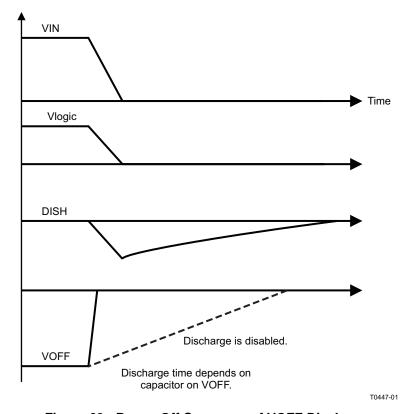


Figure 23. Power-Off Sequence of VOFF Discharge

TYPICAL APPLICATION

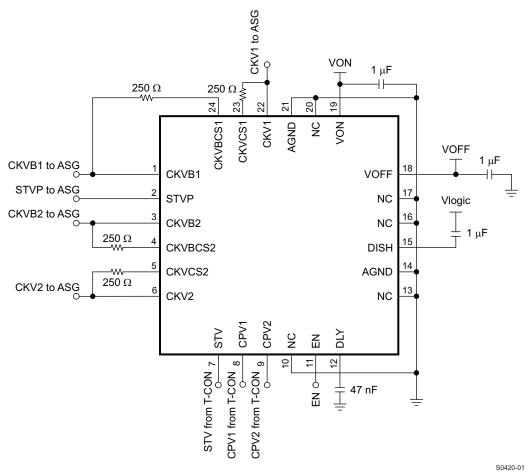


Figure 24. Typical Application With VOFF Discharge Enabled

30420-01

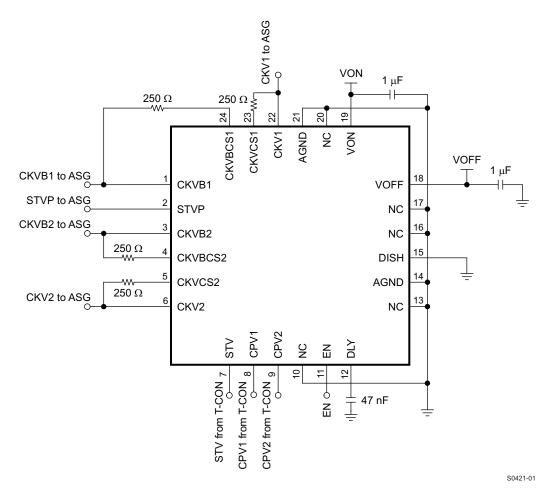


Figure 25. Typical Application With VOFF Discharge Disabled

PACKAGE OPTION ADDENDUM

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	0 11 0		Lead/Ball Finish	MSL Peak Temp Op Temp (°C)		Top-Side Markings	Samples				
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPS65193RGER	ACTIVE	VQFN	RGE	24	3000	Green (RoHS	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	TPS	Samples
						& no Sb/Br)				65193	bantiples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

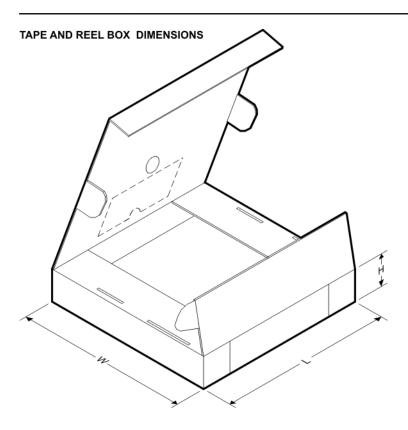
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

TAPE AND REEL INFORMATION

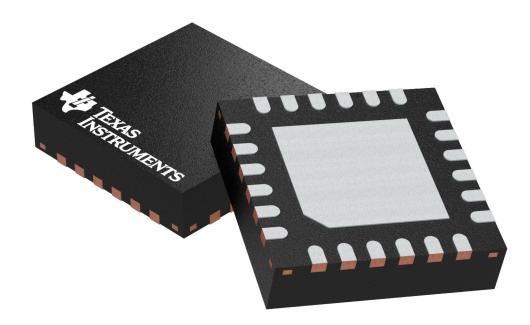
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

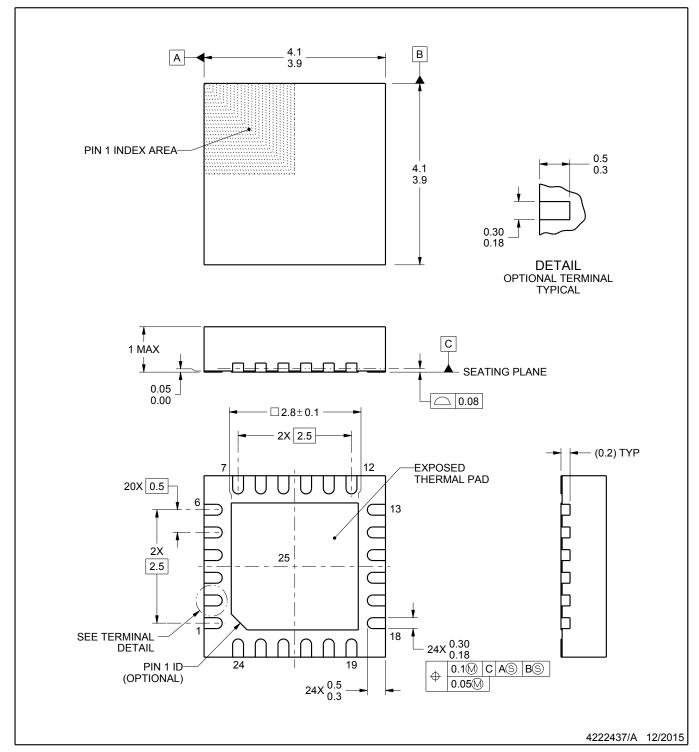
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS65193RGER	VQFN	RGE	24	3000	330.0	12.4	4.25	4.25	1.15	8.0	12.0	Q2


PACKAGE MATERIALS INFORMATION

www.ti.com 3-Aug-2017

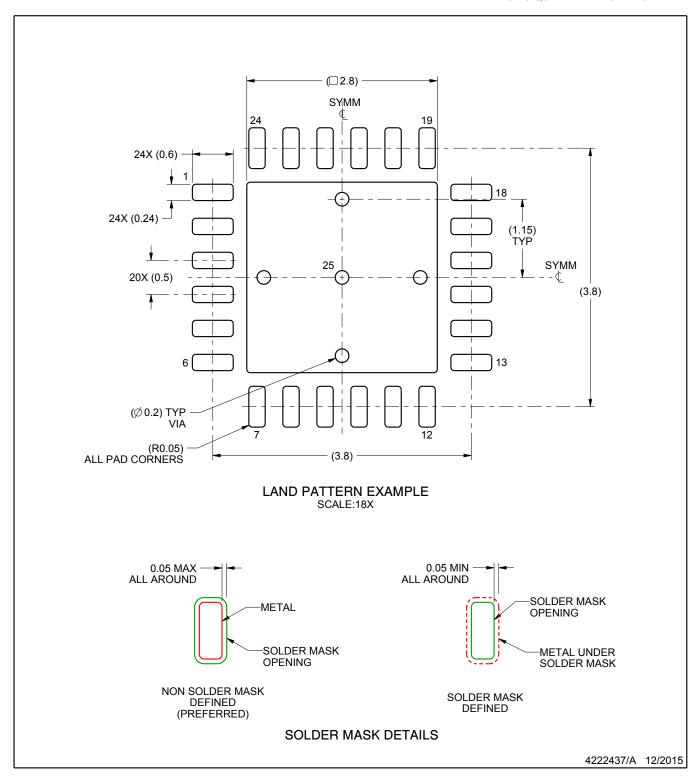
*All dimensions are nominal

Device	Device Package Type		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPS65193RGER	VQFN	RGE	24	3000	367.0	367.0	35.0	



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

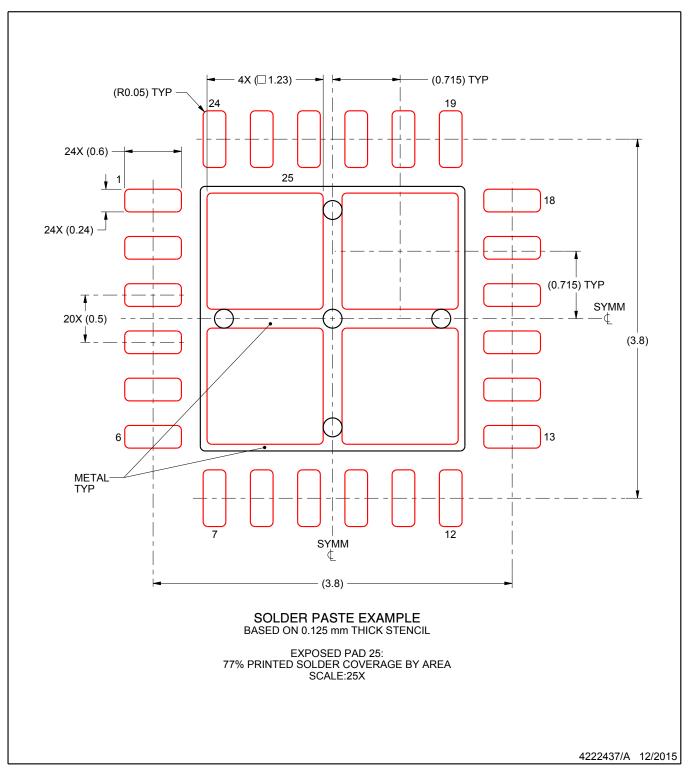
4204104/H


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

 4. Reference JEDEC registration MO-220.



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 6. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.