The TPL910A series products are 1-A high-current, $4.5-\mu V_{RMS}$ low-noise, high-PSRR, high-accuracy linear

regulators with only 500-mV maximum ultra-low dropout

voltage at 1-A load current. The TPL910A series supports

adjustable output voltage ranging from 0.8 V to 6 V with an

Ultra-low noise, high PSRR, and high output current

capability make the TPL910A series the ideal power

supply for noise-sensitive applications, such as high-

speed communication facilities, and high-definition imaging equipment. Accurate output voltage tolerance, excellent

transient response, and adjustable soft-start control ensure

the TPL910A series products optimal power supply for

large-scale processors or digital loads, such as ASIC,

The TPL910A series products provide a small DFN3X3-8

package with guaranteed operating temperature ranging

1-A Output, High-PSRR, Low-Noise Low-Dropout Linear Regulator

Description

external resistor divider.

FPGA, CPLD, and DSP.

from -40°C to +125°C.

Features

- Input Voltage Range: 2.2 V to 6.5 V
- Output Voltage Options:
 - Adjustable Output: 0.8 V to 6 V
- ±3% Accuracy over Line Regulation, Load Regulation, and Operating Temperature Range
- 1-A Maximum Output Current
- Low Dropout Voltage: 500 mV Maximum at 1 A
- High PSRR:
 - 80 dB at 1 kHz
 - 50 dB at 1 MHz
- 4.5-µV_{RMS} Output Voltage Noise (100 Hz to 100 kHz)
- Excellent Transient Response
- Stable with a 4.7-µF or Larger Ceramic Output Capacitor
- Over-Current Protection and Over-Temperature Protection
- Package: DFN3X3-8

Applications

- Communication: CPU, ASIC, FPGA, CPLD, DSP
- High-Performance Analog: ADC, DAC, LVDS, VCO
- Noise-Sensitive Imaging: CMOS Sensors, Video ASICs

CIN VIN VOUT VIN VOUT CFF Соит R1 Digital I/O ΕN **TPL910A** or VIN FB Adjustable Output R2 NR GND CNR

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	8
Detailed Description	. 10
Overview	.10
Functional Block Diagram	.10
Feature Description	. 10
Application and Implementation	. 13
Application Information	. 13
Typical Application	.13
Layout	. 15
Layout Guideline	.15
Tape and Reel Information	.16
Package Outline Dimensions	. 17
DFN3X3-8	.17
Order Information	. 18
IMPORTANT NOTICE AND DISCLAIMER	. 19

Product Family Table

Order Number	Output Voltage (V)	Package
TPL910GADJA-DF6R-S	Adjustable	DFN3X3-8

Revision History

Date	Revision	Notes
2020-12-31	Rev.Pre.0	Preliminary Version
2021-08-31	Rev.A.0	Initial Release
2022-02-22	Rev.A.1	 Added tolerance of VFB voltage Updated typical value of load regulation
2022-10-14 Rev.A.2		 Updated the format of Package Outline Dimensions Removed Fixed Output Options from Features, Description and Overview

Pin Configuration and Functions

Table 1. Pin Functions: TPL910A-S

Р	in	1/0	Description
No.	Name	I/O	Description
5	EN	I	Regulator enable pin. Drive EN high to turn on the regulator; drive EN low to turn off the regulator. For automatic startup, connect EN to IN directly. The EN pin must not be left floating.
3	FB	I	Output voltage feedback pin. Connect to an external resistor divider to adjust the output voltage. A 10-nF feed-forward capacitor from FB to OUT (as close as possible to FB pin) is recommended to maximize regulator ac performance.
4	GND	_	Ground reference pin. Connect GND pin to PCB ground plane directly.
7, 8	IN	I	Input voltage pin. Suggest connecting a $10-\mu$ F or larger ceramic capacitor from IN to ground (as close as possible to IN pin) to reduce the jitter from the previous-stage power supply.
6	NR/SS	I	Noise-reduction and soft-start pin. A 10-nF or larger capacitor from NR/SS to GND (as close as possible to NR/SS pin) is recommended to maximize ac performance.
1, 2	OUT	0	Regulated output voltage pin. A 4.7-µF or larger ceramic capacitor from OUT to ground (as close as possible to OUT pin) is required to ensure regulator stability.
_	Exposed Pad	_	Exposed PAD must be connected to a large-area ground plane to maximize the thermal performance.

Specifications

Absolute Maximum Ratings ⁽¹⁾

	Parameter	Min	Мах	Unit
IN, EN		-0.3	7	V
OUT		-0.3	V _{IN} + 0.3	V
FB, NR		-0.3	3.6	V
TJ	Junction Temperature Range	-40	150	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) All voltage values are with respect to GND.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Тур	Мах	Unit
IN	Input Voltage	2.2		6.5	V
EN	Enable Voltage	0		6.5	V
OUT	Output Voltage	0.8		6	V
OUT	Output Current	0		1	А
COUT	Output Capacitor	4.7			μF
CFF	Feed-forward Capacitor		10		nF
C _{NR}	NR Capacitor		10		nF
TJ	Junction Temperature Range	-40		125	°C

Thermal Information

Package Type	θ _{JA}	θյς	Unit
DFN3×3-8	69.3	8.16	°C/W

Electrical Characteristics

All test conditions: $T_J = -40^{\circ}C$ to +125°C (typical value at $T_J = +25^{\circ}C$), $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2.2 V, whichever is greater; $V_{EN} = 2.2$ V, $I_{OUT} = 1$ mA, $C_{IN} = 4.7$ µF, $C_{OUT} = 4.7$ µF, $C_{NR} = 10$ nF, $C_{FF} = open$, unless otherwise noted.

	Parameter	Conditions	Min	Тур	Мах	Unit
Supply I	nput Voltage and Currer	nt				
Vin	Supply Voltage Range ⁽¹⁾		2.2		6.5	V
	Input Supply UVLO	V_{IN} rising, R _L = 1 k Ω			2.1	V
UVLO	Hysteresis			70		mV
		V _{IN} = 6.5 V, I _{OUT} = 1 mA		130	190	μA
IGND	GND Pin Current	V _{IN} = 6.5 V, I _{OUT} = 1 A		5.4	8	mA
I _{SD}	Shutdown Current	V _{IN} = 6.5 V, V _{EN} = 0 V		2.2	10	μA
Device E	nable					
Vih(en)	EN High-level Input Voltage	Device enable	1.2		6.5	V
V _{IL(EN)}	EN Low-level Input Voltage	Device disable	0		0.4	V
IEN	EN Leakage Current	$V_{IN} = 6.5 V$, $V_{EN} = 0 V$ to $6.5 V$		0.1	1	μA
Regulate	d Output Voltage and C	Gurrent	1	1		
V _{FB}	Feedback Voltage ⁽²⁾		0.8 × 98%	0.8	0.8 × 102%	v
I _{FB}	FB Pin Leakage Current ⁽²⁾	V_{IN} = 6.5 V, stress V_{FB} = 0.8 V		0.1	1	μA
V _{NR/SS}	NR/SS Pin Voltage			0.8		V
I _{NR/SS}	NR/SS Pin Charging Current	V _{IN} = 6.5 V, V _{NR} = GND		6.2	9	μA
\ <i>\</i>	Quita 1 A	$V_{IN} = V_{OUT(NOM)} + 0.5 V \text{ or } 2.2 V \text{ to } 6.5 V,$ $V_{OUT} = 0.8 V \text{ to } 6 V, I_{OUT} = 100 \text{ mA to } 500 \text{ mA}$	-2%		2%	
Vout	Output Accuracy ⁽³⁾	$V_{IN} = V_{OUT(NOM)} + 0.5 V \text{ or } 2.2 V \text{ to } 6.5 V,$ $V_{OUT} = 0.8 V \text{ to } 6 V, I_{OUT} = 100 \text{ mA to } 1 \text{ A}$	-3%		3%	
ΔVουτ	Line Regulation	$V_{IN} = V_{OUT(NOM)} + 0.5 V \text{ or } 2.2 V \text{ to } 6.5 V,$ $I_{OUT} = 100 \text{ mA}$		0.03		mV/V
	Load Regulation	I _{OUT} = 100 mA to 1 A		0.07		mV/A
Regulate	d Output Voltage and C	current				
		$\label{eq:VIN} \begin{split} V_{\text{IN}} &= V_{\text{OUT}(\text{NOM})} + 0.5 \text{ V or } 2.2 \text{ V to } 6.5 \text{ V}, \\ I_{\text{OUT}} &= 500 \text{ mA}, \text{ V}_{\text{FB}} = \text{GND or } \text{V}_{\text{SNS}} = \text{GND} \end{split}$			250	mV
VDO	Dropout Voltage (4)	$\label{eq:VIN} \begin{array}{l} V_{\text{IN}} = V_{\text{OUT}(\text{NOM})} + 0.5 \text{ V or } 2.2 \text{ V to } 6.5 \text{ V}, \\ I_{\text{OUT}} = 750 \text{ mA}, \text{ V}_{\text{FB}} = \text{GND or } \text{V}_{\text{SNS}} = \text{GND} \end{array}$			350	mV
		$V_{\text{IN}} = V_{\text{OUT(NOM)}} + 0.5 \text{ V or } 2.2 \text{ V to } 6.5 \text{ V},$ $I_{\text{OUT}} = 1 \text{ A}, V_{\text{FB}} = \text{GND or } V_{\text{SNS}} = \text{GND}$			500	mV

	Parameter	Conditions		Min	Тур	Мах	Unit
ILIM	Output Current Limit	V _{OUT} is forced at 0.9 × V _{OUT(NOP}	V_{OUT} is forced at 0.9 × $V_{OUT(NOM)}$, $V_{IN} \ge 3.3$ V		1.6		Α
I _{SC}	Short Circuit to Ground Current Limit	V_{OUT} is forced to ground, $T_A = 2$	25°C		0.6		A
tstr	Start-up Time		V _{OUT(NOM)} = 3.3 V, V _{OUT} = 0% to 90% × V _{OUT(NOM)} , R _L = 3.3 kΩ, C _{OUT} = 10 μ F, C _{NR} = 470 nF		80		ms
PSRR ar	nd Noise						
	Power Supply Ripple Iout = 1 A. Cout = 4	V _{IN} = 4.3 V, V _{OUT} = 3.3 V,	f = 1 kHz		80		dB
		I _{OUT} = 1 A, C _{OUT} = 4.7μF,	f = 10 kHz		65		dB
PSRR	Rejection		f = 100 kHz		54		dB
		C _{FF} = 470 nF	f = 1 MHz		45		dB
VN	Output Noise Voltage		BW = 100 Hz to 100 kHz, V _{IN} = 3.8 V, V _{OUT} = 3.3 V, I _{OUT} = 1 A, C _{OUT} = 4.7 μF, C _{NR} = 470 nF, C _{FF} = 470 nF		4.5		µVrмs
Tempera	ture Range						
T _{SD}	Thermal Shutdown Threshold	Temperature increasing			165		°C
	Hysteresis				20		°C

(1) Minimum $V_{IN} = V_{OUT(NOM)} + V_{DO}$ or 2.2 V, whichever is greater.

(2) For adjustable output voltage version only.

(3) Resistor tolerance is not included. Output accuracy is not tested at this condition: V_{OUT} = 0.8 V, 4.5 V ≤ V_{IN} ≤ 5.5 V, and 750 mA ≤ I_{OUT} ≤ 1 A, because the power dissipation is out of package limitation.

(4) Dropout voltage is the minimum input-to-output voltage differential needed to maintain regulation at a specified output current and measure for V_{OUT(NOM)} ≥ 2.2 V. In dropout mode, the output voltage will be equal to V_{IN} – V_{DO}.

Typical Performance Characteristics

All test conditions: $T_J = -40^{\circ}C$ to +125°C (typical value at $T_J = +25^{\circ}C$), $V_{IN} = V_{OUT(NOM)} + 0.5$ V or 2.2 V, whichever is greater; $V_{EN} = 2.2$ V, $I_{OUT} = 1$ mA, $C_{IN} = 4.7$ µF, $C_{OUT} = 4.7$ µF, $C_{NR} = 10$ nF, $C_{FF} = open$, unless otherwise noted.

Detailed Description

Overview

The TPL910A series products are 1-A high-current, $4.5-\mu V_{RMS}$ low-noise, high-PSRR, and high-accuracy linear regulators with only 500-mV maximum ultra-low dropout voltage at 1-A load current. The TPL910A series supports adjustable output voltage ranging from 0.8 V to 6 V with an external resistor divider.

Ultra-low noise, high PSRR, and high output current capability make the TPL910A series the ideal power supply for noisesensitive applications, such as high-speed communication facilities, and high-definition imaging equipment. Accurate output voltage tolerance, excellent transient response, and adjustable soft-start control ensure the TPL910A series products optimal power supply for large-scale processors or digital loads, such as ASIC, FPGA, CPLD, and DSP.

Functional Block Diagram

Figure 13. Functional Block Diagram

Feature Description

Enable (EN)

The TPL910A series provide a device enable pin (EN) to enable or disable the device. Connect this pin to the GPIO of an external digital logic control circuit to control the device. When the V_{EN} voltage falls below $V_{IL(EN)}$, the LDO device turns off, and when the V_{EN} ramps above $V_{IH(EN)}$, the LDO device turns on.

Under-Voltage Lockout (IN and UVLO)

The TPL910A series use an under-voltage lockout circuit to keep the output shut off until the internal circuitry operates properly. Refer to the Electrical Characteristics table for UVLO threshold and hysteresis.

Adjustable Output Voltage (OUT and FB)

The TPL910A series are also available in adjustable voltage versions of 0.8 V to 5 V. Using external resistors divider, the output voltage of the TPL910A series is determined by the value of the resistor R1 and R2 in Figure 15. Use Equation 1 to calculate the output voltage.

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right)$$

(1)

Where the feedback voltage V_{FB} is 0.8 V.

Table 2 provides a list of recommended resistor combinations to achieve the common output voltage values.

	External Res	sistors Divider	Calculated Output Voltage
Target Output Voltage (V)	R1 (kΩ)	R2 (kΩ)	(V)
0.80	0	Open	0.800
0.81	2	160	0.810
0.82	4.02	160	0.820
0.83	6.04	160	0.830
0.84	8.06	160	0.840
0.85	10	160	0.850
0.86	12	160	0.860
0.87	12.4	143	0.869
0.88	12.4	124	0.880
0.89	12	107	0.890
0.90	12.4	100	0.899
0.95	12.4	66.5	0.949
1.00	12.4	49.9	0.999
1.10	12.4	33.2	1.099
1.20	12.4	24.9	1.198
1.50	12.4	14.3	1.494
1.80	12.4	10	1.792
1.90	12.1	8.87	1.891
2.50	12.4	5.9	2.481
2.85	12.1	4.75	2.838
3.00	12.1	4.42	2.990
3.30	11.8	3.74	3.324
3.60	12.1	3.48	3.582
4.50	11.8	2.55	4.502
5.00	12.4	2.37	4.986

Table 2. External Resistor Combinations

Programmable Soft Start

The TPL910A series integrates a programmable soft-start function to control the output voltage ramp-up slew rate and start-up time. By selecting the external capacitor at the NR/SS pin, the output start-up time can be calculated with Equation 2.

$$t_{\text{Start-up}} = 1.25 \times \left(\frac{V_{\text{NR/SS}} \times C_{\text{NR/SS}}}{I_{\text{NR/SS}}}\right)$$
(2)

Where, the typical value of $V_{NR/SS}$ is 0.8 V, the typical value of $I_{NR/SS}$ is 6.2 μ A, and $C_{NR/SS}$ is the external capacitor at the NR/SS pin.

Over-Current Protection

The TPL910A series integrates an internal current limit that helps to protect the regulator during fault conditions.

- When the output voltage is pulled down below the regulated voltage, over-current protection starts to work and limits the output current to I_{LIM}.
- When the output voltage is pulled down below the short-to-ground threshold (about 140 mV), or shorted to the ground directly, short-to-ground protection starts to work and limits the output current to I_{SC}.
- During startup, the output current is limited to I_{SC} before the output voltage ramps higher than the short-to-ground threshold.

Under the over-current conditions, the internal junction temperature ramps up quickly. When the junction temperature is high enough, it will cause the over-temperature protection.

Over-Temperature Protection

The over-temperature protection starts to work when the junction temperature exceeds the thermal shutdown (TSD) threshold, which turns off the regulator immediately. Until when the device cools down and the junction temperature falls below the thermal shutdown threshold minus thermal shutdown hysteresis, the regulator turns on again.

The junction temperature range should be limited according to the Recommended Operating Conditions table, continuously operating above the junction temperature range will reduce the device lifetime.

Figure 14. Over-Temperature Protection

Application and Implementation

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Note

Application Information

The TPL910A series products are 1-A high-current, $4.5-\mu V_{RMS}$ low-noise, high-PSRR, high-accuracy linear regulators with only 500-mV maximum ultra-low dropout voltage. The following application schematic shows a typical usage of the TPL910A series.

Typical Application

Figure 15 shows the typical application schematic.

Figure 15. Typical Application Circuit

Input Capacitor and Output Capacitor

The TPL910A series is designed to be stable with low equivalent series resistance (ESR) ceramic capacitors at the input, output, and noise-reduction pin (NR/SS). It is recommended to use ceramic capacitors with X7R-, X5R-, and COG-rated dielectric materials to get good capacitive stability across temperature.

3PEAK recommends adding a 10 μ F or greater capacitor with a 0.1 μ F bypass capacitor in parallel at IN pin to keep the input voltage stable. The voltage rating of the capacitors must be greater than the maximum input voltage.

To ensure loop stability, the TPL910A series requires a minimum 4.7 µF low ESR output capacitor. 3PEAK recommends selecting an X7R-type 10-µF ceramic capacitor with low ESR over temperature.

Both input capacitors and output capacitors must be placed as close to the device pins as possible.

Power Dissipation

During normal operation, the LDO junction temperature should meet the requirement in the Recommended Operating Conditions table. Using below equations to calculate the power dissipation and estimate the junction temperature.

The power dissipation can be calculated using Equation 3

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT} + V_{IN} \times I_{GND}$$
(3)
The junction temperature can be estimated using Equation 4 . θ_{JA} is the junction-to-ambient thermal resistance.

$$T_{J} = T_{A} + P_{D} \times \theta_{JA}$$

(4)

Layout

Layout Guideline

- Both input capacitors and output capacitors must be placed as close to the device pins as possible, and vias between capacitors and device power pins must be avoided.
- It is recommended to bypass the input pin to ground with a 0.1-µF bypass capacitor. The loop area formed by the bypass capacitor connection, the IN pin, and the GND pin of the system must be as small as possible.
- It is recommended to use wide trace lengths or thick copper weight to minimize I×R drop and heat dissipation.

Tape and Reel Information

-DF6R-S

Package Outline Dimensions

DFN3X3-8

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPL910GADJA-DF6R-S	–40°C to +125°C	DFN3X3-8	L910A	MSL3	Tape and Reel, 4,000	Green

(1) For future products, contact the 3PEAK factory for more information and sample.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

TPL910A-S Series

1-A Output, High-PSRR, Low-Noise Low-Dropout Linear Regulator

This page intentionally left blank