

Features

- Wide Input Voltage Range: 2.5 V to 20 V
- Adjustable Output Voltage Range: 1.2 V to 15 V
- ±2% Accuracy over Line Regulation, Load Regulation, and Operating Temperature Range
- 200-mA Maximum Output Current
- Low Dropout Voltage: 400 mV Max at 200 mA
- Ultra-High PSRR:
 - 110 dB at 1 kHz
 - 80 dB at 1 MHz
- Ultra-Low Output Noise:
 - 1 μV_{RMS} from 10 Hz to 100 kHz
 - 2 nV/sqrt (Hz) at 10 kHz
- Excellent Transient Response
- Precision Enable Threshold
- Adjustable Current Limit with External Resistor
- Open-Drain Power Good Indication
- Adjustable Power-Good Threshold
- Stable with a minimum 4.7-µF Output Capacitor
- Integrated Protection
 - Over-Current Protection
 - Over-Temperature Protection
- Package Options:
 - DFN3X3-10

Applications

- Low-Noise Power Supplies
- Analog Supply: PLL, VCO, Mixer, LNA, ADC
- Low-Noise Instrumentation
- ATE Test Equipment

Description

The TPL8033 is a 20-V 200-mA high-performance lowdropout linear regulator with 1- μ V_{RMS} ultra-low noise and 110-dB ultra-high PSRR. The TPL8033 supports adjustable output from 1.2 V to 15 V with a single resistor and is stable with 4.7 μ F to 100 μ F.

The TPL8033 implements a precision current reference and a high-performance voltage buffer. With an external capacitor connecting to the current reference, the output voltage noise can be further reduced.

The TPL8033 features adjustable output current limit with a single external resistor and adjustable powergood threshold with an external resistors divider. The TPL8033 also integrates over-current protection and overtemperature protection to enhance system reliability.

The TPL8033 provides thermal-enhanced 10-pin DFN3X3 and EMSOP packages with guaranteed operating temperature ranging from -40° C to $+125^{\circ}$ C.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	10
Detailed Description	16
Overview	16
Functional Block Diagram	16
Feature Description	16
Application and Implementation	19
Application Information	19
Typical Application	19
Layout	20
Layout Guideline	20
Layout Example	20
Tape and Reel Information	21
Package Outline Dimensions	22
DFN3X3-10	22
Order Information	23
IMPORTANT NOTICE AND DISCLAIMER	24

Product Family Table

Order Number	Output Voltage (V)	Output Current	Package
TPL8033AD-DF8R	Adjustable	200 mA	DFN3X3-10

Revision History

Date	Revision	Notes
2022-09-10	Rev.Pre.0	Preliminary Revision.
2023-02-28	Rev.A.0	Initial Released.

20-V 200-mA Ultra-Low Noise Ultra-High PSRR Low Dropout Linear Regulator

Pin Configuration and Functions

Table 1. Pin Functions: TPL8033

Pin	Nama	1/0	Description
DFN3X3	Name	I/O	Description
3	EN/UV	I	Enable/UVLO pin. Drive EN/UV high to turn on the regulator; drive EN/UV low to turn off the regulator. Connecting an external resistor divider from IN, EN/UV to GND to set the UVLO threshold. For automatic startup, connect EN to IN directly.
8	GND	-	Ground reference pin. Connect GND to PCB ground plane directly.
5	ILIM	0	Current limit adjustment pin. Connect a resistor from ILIM to GND to set an accurate output current limit value.
1, 2	IN	I	Input voltage pin. A 10- μ F or larger ceramic capacitor from IN to GND (as close as possible to IN pin) is required to reduce the jitter from the previous-stage power supply.
10	OUT	0	Regulated output voltage pin. A 4.7 - μ F or larger ceramic capacitor from OUT to GND (as close as possible to OUT pin) is required to ensure the regulator stability.
9	OUTS	I	Output voltage sense input pin. Kelvin connect OUTS to the output capacitor and the load.
4	PG	0	Open-drain power-good output pin. Leave PG open if not used.
6	PGFB	I	Power-good threshold-setup pin. Connecting an external resistor divider from OUT, PGFB to GND to set the programmable power good threshold. Tie PGFB to IN directly if power good and fast start-up functionalities are not used.
7	SET	0	Output voltage setup pin. Connect a resistor from SET to GND to set the output voltage. A capacitor from SET to GND is recommended to improve output noise, PSRR and transient response performance.

(1) The exposed Pad MUST be connected to a large-area ground plane directly to maximize the thermal performance.

Specifications

Absolute Maximum Ratings (1)

	Parameter			Unit
IN, EN/UV		-0.3	22	V
OUT, OUT	S, SET	-0.3	16	V
PG, PGFB		-0.3	22	V
OUT - OUTS		-1.2	1.2	V
ILIM	ILIM		1	V
TJ	Maximum Junction Temperature	-40	150	°C
T _{STG}	T _{STG} Storage Temperature Range		150	°C
T∟	Lead Temperature (Soldering 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) All voltage values are with respect to ground.

ESD, Electrostatic Discharge Protection

	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±3000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Мах	Unit
VIN		2.5	20	V
V _{EN/UV}		0	20	V
V _{OUT} , V _{OUTS}		1.2	15	V
VSET		0	15	V
V _{PG} , V _{PGFB}		0	20	V
VILIM		0	0.3	V
Іоит		0	200	mA
Соит		4.7	100	μF
TJ	Junction Temperature Range	-40	125	°C

Thermal Information

Package Type	θ _{JA}	θ _{JB}	Ө ЈС,ВОТТОМ	Unit
DFN3X3-10	58	15	32	°C/W

Electrical Characteristics

All test conditions: $V_{IN} = V_{OUT(NOM)} + 1 \text{ V or } 2.5 \text{ V}$, whichever is greater; OUTS ties directly to OUT, $C_{IN} = C_{OUT} = 4.7 \mu\text{F}$, $C_{SET} = 4.7 \mu\text{F}$, $V_{EN/UV} = 5 \text{ V}$, $I_{OUT} = 1 \text{ mA}$, $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$, unless otherwise noted.

Paramete	r	Conditions	Min	Тур	Max	Unit
Supply Vo	oltage and Current					
V _{IN} ⁽¹⁾	Input Supply Voltage		Vin, min		20	V
V	Input Voltage Under-Voltage	V _{IN} rising		1.9	2.4	V
Vin,uvlo	Lockout Threshold	Hysteresis		100		mV
		Ιουτ = 10 μΑ, Τ _J = 25°C		2.2		mA
l _Q ⁽²⁾	Quiescent Current	I _{OUT} = 1 mA		2.8		mA
IQ (=/		I _{OUT} = 50 mA		3.6		mA
		I _{ОUT} = 100 mA		5.1		mA
I _{SD}	Shutdown Current	V _{EN/UV} = 0 V		4		μA
Enable ar	nd Power Good					
V	EN/UV Din Voltage Threshold	V _{EN/UV} rising		1.23		V
V _{EN/UV}	EN/UV Pin Voltage Threshold	Hysteresis		120		mV
		V _{IN} = 20 V, V _{EN/UV} = 0 V	-1		1	μA
Ien/uv	EN/UV Pin Current	V _{IN} = 20 V, V _{EN/UV} = 1.24 V, T _J = 25°C		0.15		μA
		V _{IN} = 0 V, V _{EN/UV} = 20 V		0.5		μA
\ <i>\</i>		V _{PGFB} rising		300		mV
Vpgfb	PGFB Pin Voltage Threshold	Hysteresis		8		mV
I PGFB	PGFB Pin Current	V _{IN} = 2 V, V _{PGFB} = 300 mV		1.5		nA
V _{OL(PG)}	PG Pin Low-Level Output Voltage	V _{OUT} < V _{PG} , source 0.1 mA to PG pin		57	100	mV
IPG	PG Pin Leakage Current	V _{OUT} > V _{PG} , apply 20 V at PG pin			1	μΑ
Output Vo	oltage and Current					
		V _{IN} = 2.5 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA, T _J = 25°C		100		μA
ISET	SET Pin Current	$V_{IN} = 2.5 V \text{ to } 20 V, V_{OUT} = 1.2 V$ to 15 V, I _{OUT} = 1 mA to 200 mA		100		μΑ
	Fast Startup SET Pin Current	V_{IN} = 2.8 V, V_{OUT} = 1.3 V, V_{PGFB} = 289 mV, T_J = 25°C		2		mA
A 1	0	V _{IN} = 20 V, I _{OUT} = 1 mA, V _{SET} = 1.3 V to 15 V		30		nA
ΔI _{SET}	Change in Iset with Vset	V _{IN} = 20 V, I _{OUT} = 1 mA, V _{SET} = 1.2 V to 15 V		30		nA

	Parameter	Conditions	Min	Туре	Max	Unit
Output V	/oltage and Current	·				1
Al	SET Pin Current Line Regulation	V _{IN} = 2.5 V to 20 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA		2		nA/V
ΔI _{SET}	SET Pin Current Load Regulation	V _{IN} = 2.5 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA to 200 mA		3		nA
	Output Voltage Offset, V _{OUT} –	V _{IN} = 2.5 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA, T _J = 25°C		1		mV
Vos	Vset	V_{IN} = 2.5 V to 20 V, V_{OUT} = 1.2 V to 15 V, I_{OUT} = 1 mA to 200mA		2		mV
	Change in V_{OS} with V_{SET}	V _{IN} = 20 V, I _{OUT} = 1 mA, V _{SET} = 1.2 V to 15 V		30		μV/V
ΔV _{OS}	Vos Voltage Line Regulation	V _{IN} = 2.5 V to 20 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA		0.03		mV
	Vos Voltage Load Regulation	V _{IN} = 2.5 V, V _{OUT} = 1.2 V, I _{OUT} = 1 mA to 200 mA		0.3		mV
		I _{OUT} = 1 mA, T _J = 25°C		250		mV
V _{DO} ⁽³⁾	Dropout Voltage	I _{OUT} = 50 mA		250		mV
V DO (°)		I _{OUT} = 150 mA		250		mV
		I _{OUT} = 200 mA		250		mV
		V _{IN} = 2.5 V, V _{OUT} = 0 V		320		mA
	Internal Current Limit	V _{IN} = 12 V, V _{OUT} = 0 V, T _J = 25°C		320		mA
		V _{IN} = 20 V, V _{OUT} = 0 V		320		mA
I _{CL}		Current limit ratio		125		mA×kΩ
	Adjustable Current Limit	$V_{\text{IN}} = 2.5 \text{ V}, V_{\text{OUT}} = 0 \text{ V}, \text{ R}_{\text{LIM}} = 625 \Omega$		200		mA
		$V_{IN} = 2.5 V, V_{OUT} = 0 V, R_{LIM} = 2.5 k\Omega$		50		mA
		V _{IN} = 6 V, V _{OUT} = 5 V, I _{LOAD} = 200 mA, C _{SET} = 0.47 µF, V _{PGFB} = 6 V		55		ms
t _{STR}	Start-Up Time	$V_{\text{IN}} = 6 \text{ V}, V_{\text{OUT}} = 5 \text{ V}, I_{\text{LOAD}} = 200 \text{ mA}, C_{\text{SET}} = 4.7 \mu\text{F}, V_{\text{PGFB}} = 6 \text{ V}$		550		ms
				10		ms

	Parameter	Conditions	Min	Туре	Max	Unit
PRSS an	d Output Noise					
		$I_{OUT} = 200 \text{ mA}, V_{Ripple} = 500$ mV_PP, f = 120 Hz, C_{OUT} = 4.7 μ F, C_{SET} = 4.7 μ F		110		dB
		$I_{OUT} = 200 \text{ mA}, V_{Ripple} = 150$ mV_PP, f = 10 kHz, C_{OUT} = 4.7 μ F, C_{SET} = 0.47 μ F		90		dB
PSRR	Power Supply Rejection Ratio	$I_{OUT} = 200 \text{ mA}, V_{Ripple} = 150$ mV_PP, f = 100 kHz, C_{OUT} = 4.7 μ F, C_{SET} = 0.47 μ F		80		dB
		I_{OUT} = 200 mA, V_{Ripple} = 150 mV _{PP} , f = 1 MHz, C_{OUT} = 4.7 µF, C_{SET} = 0.47 µF		80		dB
		$I_{OUT} = 200 \text{ mA}, V_{Ripple} = 80$ mV_PP, f = 10 MHz, C_{OUT} = 4.7 μ F, C_{SET} = 0.47 μ F		50		dB
		V_{OUT} = 3.3 V, I_{OUT} = 200 mA, f = 10 Hz, C_{OUT} = 4.7 µF, C_{SET} = 0.47 µF		525		nV/√Hz
		$V_{OUT} = 1.2 V \text{ to } 15 V, I_{OUT} = 200$ mA, f = 10 Hz, C_{OUT} = 4.7 μ F, C_{SET} = 4.7 μ F		68		nV/√Hz
V _N	Output Noise Spectral Density	$V_{OUT} = 1.2 V \text{ to } 15 V, I_{OUT} = 200$ mA, f = 10 kHz, C _{OUT} = 4.7 μ F, C _{SET} = 4.7 μ F		2.3		nV/√Hz
		V_{OUT} = 3.3 V, I_{OUT} = 200 mA, f = 10 Hz to 100 kHz, C_{OUT} = 4.7 μ F, C_{SET} = 0.47 μ F		2.5		μV _{RMS}
		V _{OUT} = 1.2 V to 15 V, I _{OUT} = 200 mA, f = 10 Hz to 100 kHz, C _{OUT} = 4.7 µF, C _{SET} = 4.7 µF		1		µV _{RMS}
	ISET Current RMS Output Noise	BW = 10 Hz to 100 kHz		6		nA _{RMS}
Tempera	ture Range					
T _{SD}	Thermal Shutdown Threshold			170		°C
• 50		Hysteresis		20		°C

(1) $V_{IN,MIN} = V_{OUT(NOM)} + 1 V \text{ or } 2.5 V$, whichever is greater.

(2) I_{SET} and I_{LIM} are not included.

(3) Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. Dropout voltage is measured for output ≥ 2 V. In dropout, the output voltage is equal to: V_{IN} – V_{DROPOUT}.

Typical Performance Characteristics

All test conditions: $V_{IN} = V_{OUT(NOM)} + 1 V$ or 2.5 V, whichever is greater; OUTS ties directly to OUT, $C_{IN} = C_{OUT} = 4.7 \mu$ F, $C_{SET} = 4.7 \mu$ F, $V_{EN/UV} = 5 V$, $I_{OUT} = 1 \text{ mA}$, $-40^{\circ}\text{C} \le T_J \le +125^{\circ}\text{C}$, unless otherwise noted.

20-V 200-mA Ultra-Low Noise Ultra-High PSRR Low Dropout Linear Regulator

Detailed Description

Overview

The TPL8033 is a 20-V 200-mA high-performance low-dropout linear regulator with $1-\mu V_{RMS}$ ultra-low noise and 110-dB ultra-high PSRR. The TPL8033 support adjustable output from 1.2 V to 15 V with a single resistor and is stable with 4.7 μ F to 100 μ F.

The TPL8033 implements a precision current reference and a high-performance voltage buffer. With an external capacitor connecting to the current reference, the output voltage noise can be further reduced.

The TPL8033 features adjustable output current limit with a single external resistor and adjustable power-good threshold with an external resistors divider. The TPL8033 also integrates over-current protection and over-temperature protection to enhance system reliability.

Functional Block Diagram

Figure 34. Functional Block Diagram

Feature Description

Enable/UVLO (EN/UV)

The TPL8033 integrates an EN/UV pin to turn on or turn off the device. This pin has an accurate 1.23-V turn-on threshold with 120-mV hysteresis. This EN/UV threshold can be used to set an accurate under-voltage lockout (UVLO) threshold of the input voltage with a resisitor divider connected from V_{IN} to GND. The UVLO threshold can be calculated according to Equation 1.

$$V_{\text{IN, UVLO}} = 1.23 \text{V} \times \left(1 + \frac{\text{R}_{\text{EN2}}}{\text{R}_{\text{EN1}}}\right) + \text{I}_{\text{EN}} \times \text{R}_{\text{EN2}}$$
(1)

where,

- R_{EN1} is the low-side resistor connected from the EN/UV pin to the GND pin.
- R_{EN2} is the high-side resistor connected from the IN pin to the EN/UV pin.
- I_{EN} is the EN/UV pin current. This current can be neglected if the R_{EN1} is less than 100 k Ω .

If accurate UVLO is not used, connect EN/UV pin to VIN directly or a digital logic control circuit.

Adjustable Output Voltage (SET, OUT, OUTS)

The TPL8033 integrates a precision $100-\mu A$ current source flowing out of the SET pin. The output voltage can be set by connecting an external resistor (R_{SET}) and capacitor (C_{SET}) at this SET pin. Below table provides different output voltage options with corresponding external resistors.

The OUTS pin of the TPL8033 provides a Kelvin sense connction to the output. The ground side of the resistor at the SET pin provides a Kelvin sense connection to the ground side of the load.

Table 2. Output Voltage and R_{SET} Resistors

V _{OUT} (V)	RSET (kΩ)
2.5	24.9
3.3	33.2
5	49.9
12	121
15	150

Figure 36. OUTS Pin Kelvin Sense Connction

Power Good (PG)

The TPL8033 integrates an open-drain output power good indicator. Connect the PG pin to a pull-up voltage through a resistor from 10 k Ω to 100 k Ω if the power good function is used. Left the PG pin open if it is not used.

After regulator startup, the PG pin keeps low impendence until the output voltage reaches the power good threshold, $V_{PG,TH}$. When the output voltage is higher than $V_{PG,TH}$, the PG pin turns to high output impedance, and PG is pulled up to a high voltage level to indicate the output voltage is ready.

Please note, the power good function is disabled in shutdown mode.

20-V 200-mA Ultra-Low Noise Ultra-High PSRR Low Dropout Linear Regulator

Adjustable Power Good Threshold (PGFB)

The TPL8033 integrates an adjustable power-good threshold, of which the value can be set by a external resistor divider. Use Equation 2 to calculate the power good threshold.

$$V_{PG,TH} = 0.3V \times \left(1 + \frac{R_{PG2}}{R_{PG1}}\right) + I_{PGFB} \times R_{PG2}$$
⁽²⁾

where,

- R_{PG1} is the low-side resistor connected from the PGFB pin to the GND pin.
- R_{PG2} is the high-side resistor connected from the OUT pin to the PGFB pin.
- I_{PGFB} is the PGFB pin curret. This current can be neglected if the R_{PG1} is less than 30 kΩ.

Please note, the adjustable power good function is disabled in shutdown mode.

Figure 37. Power Good Threshold

Over-Current Protection(ILIM)

The TPL8033 integrates a current limit circuit that helps to protect the device during fault conditions. The default current limit value is typically 320 mA, and the TPL8033 also provides an adjustable option set by an external resistor R_{ILIM} . Use Equation 3 to calculate the adjustable current limit value.

Current

For example:

- when $R_{LIM} = 2.5 \text{ k}\Omega$, the output current limit is set to 50 mA.
- when $R_{LIM} = 625 \Omega$, the output current limit is set to 200 mA.

Over-Temperature Protection

The over-temperature protection starts to work when the junction temperature exceeds the thermal shutdown threshold, which turns off the regulator immediately. Until when the device cools down and the junction temperature falls below a value which equals to the thermal shutdown threshold minus thermal shutdown hysteresis, the regulator turns on again.

The junction temperature range should be limited according to the Recommended Operating Conditions table, continuously operating above the junction temperature range reduces the device lifetime.

(3)

Application and Implementation

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Note

Application Information

The TPL8033 is a 20-V 200-mA high-performance low-dropout linear regulator with $1-\mu V_{RMS}$ ultra-low noise and 110-dB ultra-high PSRR.

Typical Application

The Figure 38 shows the typical application schematic.

Figure 38. Typical Application Circuit

Input Capacitor and Output Capacitor

3PEAK recommends adding a $10-\mu$ F or greater capacitor at the IN pin to keep the input voltage stable. The voltage rating of the capacitors must be higher than the maximum input voltage.

To ensure the loop stability, the TPL8033 requires a ceramic capacitor from 4.7 μ F to 100 μ F at the regulator output. 3PEAK recommends selecting a 10- μ F or greater X7R ceramic capacitor with low ESR range at the OUT pin.

Both input capacitors and output capacitors must be placed as close to the device pins as possible.

Power Dissipation and Thermal Consideration

During the normal operation, the LDO junction temperature should meet the requirement in the Recommended Operating Conditions table. Use the equations below to calculate the power dissipation and estimate the junction temperature.

The power dissipation can be calculated using below equation.

 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN} - \mathsf{V}_\mathsf{BAT}) \times \mathsf{I}_\mathsf{OUT} + \mathsf{V}_\mathsf{IN} \times \mathsf{I}_\mathsf{GND}$

The junction temperature can be estimated using below equation. θ_{JA} is the junction-to-ambient thermal resistance.

 $T_J = T_A + P_D \times \theta_{JA}$

(4)

(5)

Layout

Layout Guideline

- Both input capacitors and output capacitors must be placed as close to the device pins as possible.
- It is recommended to bypass the IN pin to ground with a 10-µF capacitor in parallel with a 0.1-µF small ceramic capacitor. The loop area formed by the bypass capacitor connection, the IN pin, and the GND pin of the system must be as small as possible.
- It is required to place a decoupling 4.7-µF or greater capacitor at the output. A small 0.1-µF ceramic capacitor in parallel is recommended to filter the noise and improve the output transient performance.
- It is recommended to use wide and thick trace to minimize I×R drop and heat dissipation.

Layout Example

Figure 39. Layout Example

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPL8033AD- DF8R	DFN3X3-10	330	17.6	3.3	3.3	1.1	8	12	Q1

A0

В0

P0

Package Outline Dimensions

DFN3X3-10

Order Information

Order Num	ber Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan	
TPL8033AD-I	DF8R -40°C to +125°C	DFN3X3-10	L83A	MSL3	4,000	Green	

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

20-V 200-mA Ultra-Low Noise Ultra-High PSRR Low Dropout Linear Regulator

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.