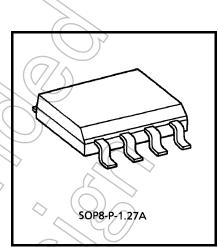
TOSHIBA Intelligent Power Device Silicon Monolithic Power MOS Integrated Circuit

TPD1033F

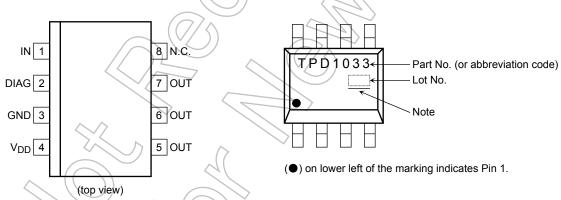

High-side Power Switch for Motors, Solenoids, and Lamp Drivers

The TPD1033F is a monolithic power IC for high-side switches. The IC has a vertical MOS FET output that can be directly driven from a CMOS or TTL logic circuit (e.g., an MPU).

The device is equipped with intelligent self-protection and diagnostic functions.

Features

- A monolithic power IC with a new structure combining a control block (Bi-CMOS) and a vertical power MOS FET (π-MOS) on a single chip
- One side of load can be grounded to a high-side switch
- Can directly drive a power load from a microprocessor.
- Built-in protection against thermal shutdown and load short-circuiting.



Weight: 0.08 g (typ.)

- Incorporates a diagnosis function that allows diagnosis output to be read externally in the event of load short-circuiting, opening, or overheating.
- Up to -10 V of counterelectromotive force from an L load can be applied.
- Low on-resistance : $R_{ON} = 220 \text{ m}\Omega \text{ (max)}$
- Low operating current : $I_{DD} = 1 \text{ mA (typ.)}$, $(@V_{DD} = 12 \text{ V}, V_{IN} = 0 \text{ V})$
- 8-pin SOP package for surface mounting can be packed in tape.

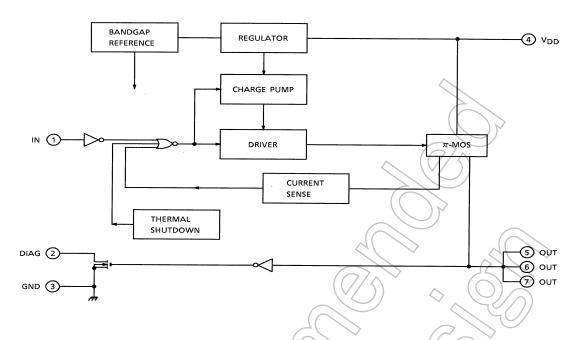
Pin Assignment

Marking

Note: A line under a Lot No. identifies the indication of product Labels

Not underlined: [[Pb]]/INCLUDES > MCV

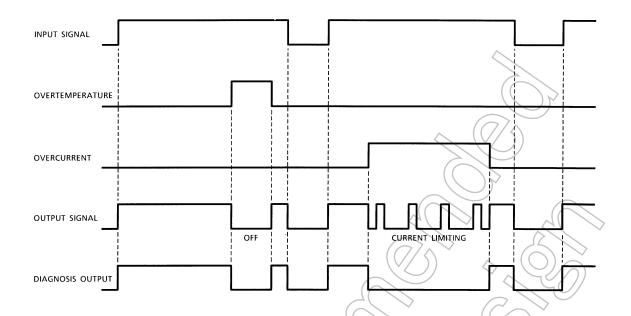
Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]


Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.

The RoHS is Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Due to its MOS structure, this product is sensitive to static electricity.

Start of commercial production 2000-02


Block Diagram

Pin Description

Pin No.	Symbol	Function
1	IN	Input pin. Input is CMOS-compatible, with pull-down resistor connected. Even if the input is open, output will not accidentally turn on.
2	DIAG	Self-diagnosis detection pin. Goes low when overheating is detected or when output is short-circuited with input on (high). n-channel open drain.
3	GND	Ground pin.
4	V_{DD}	Power pin.
5, 6, 7	OUT	Output pin. When the load is short-circuited and current in excess of the detection current (8 A typ.) flows to the output pin, the output automatically turns on or off.

Timing Chart

Truth Table

Input Signal	Output Signal	Diagnosis Output	State
Н	Н	H	Normal
L	L ((L	Tiomai
Н		L	Load short-circuited
L	4())	L	Load Short-circuited
Н		H	Load open
L	((//H))	#	Load open
Н //		((/ \^	Overtemperature
L	//~~L		Overtemperature

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol	Rating	Unite
Drain-source voltage		V_{DS}	60	V
Supply voltage	DC	V _{DD (1)}	25	V
Supply voltage Pulse V[V _{DD (2)}	60 (Rs = 1Ω,τ= 250 ms)	V
Input voltage	DC	V _{IN (1)}	-0.5 ~ 12	V
input voltage	Pulse	V _{IN (2)}	V _{DD (1)} + 1.5 (t = 100 ms)	V
Diagnosis output voltage	agnosis output voltage V _{DIAG}		-0.5 ~ 25	V
Output current		Io	Internally limited	Α
Input current		I _{IN}	±10	mA
Diagnosis output current		I _{DIAG}	5	mA
Power dissipation (Ta = 25°C)		PD	1.4 Note 1 2.4 Note 2	\w
Operating temperature		T _{opr} -40 ~ 110		> °C
Channel temperature		T _{ch}	150	°C
Storage temperature		T _{stg}	- 55 ~ 150	°C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Resistance

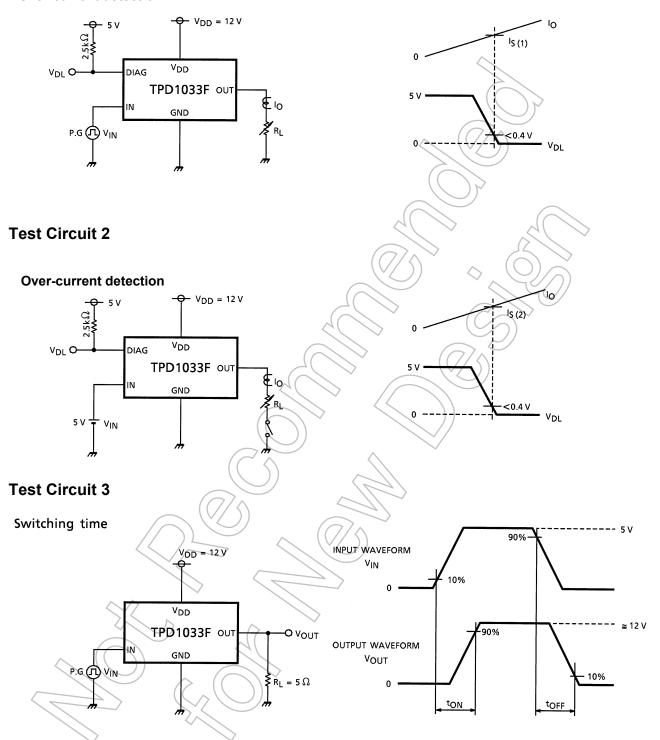
Ch	aracteristic		Symbol	Test Condition	Unit
Thermal resistance			R _{th} (ch-a)	89.3 (Note 1)	°C/W
Thermal resistance		Trin (cn-a)	52.1 (Note 2)	0/ 1/	

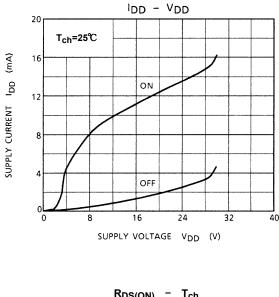
Note 1: Mounted on glass epoxy board (25.4 mm × 25.4 mm × 0.8 mm) (DC)

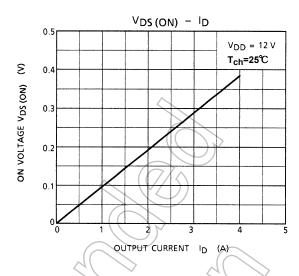
Note 2: Mounted on glass epoxy board (25.4 mm \times 25.4 mm \times 0.8 mm) (t $_{\text{W}} \le$ 10 s)

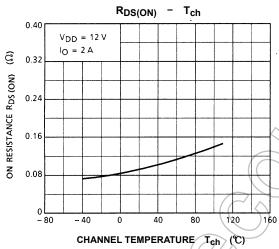
Electrical Characteristics

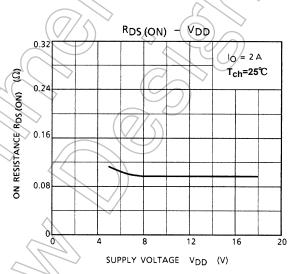
(Unless otherwise specified, T_{ch} = - 40 to 110°C, V_{DD} = 8~18 V)

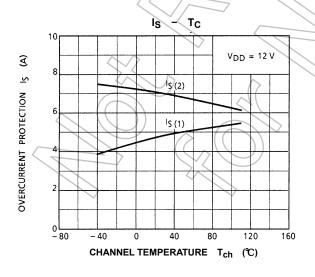

Characteristic		Symbol	Test Cir- cuit	Test Condition	Min	Тур.	Max	Unit
Operating supply voltage		V _{DD (opr)}	_	_	_5_	12	18	V
Supply current		I _{DD}	_	V _{DD} = 12 V, V _{IN} = 0 V	-	_1	5	mA
Input voltago		V _{IH}	_	V _{DD} = 12 V, I _O = 2 A	3.5	7	-	V
Input voltage		V _{IL}	_	V _{DD} = 12 V, I _O = 1.2 mA)	1.5	V
Input current		I _{IN (1)}	_	V _{DD} = 12 V, V _{IN} = 5 V	$(/ \neq)$	50	200	μΑ
Input current		I _{IN (2)}	_	V _{DD} = 12 V, V _{IN} = 0 V	-0.2	_	0.2	μΑ
On-voltage		V _{DS (ON)}	_	V _{DD} = 12 V, I _O = 2 A, T _{ch} = 25°C)}~	_	0.44	V
On-resistance		R _{DS} (ON)	_	V _{DD} = 12 V, I _O = 2 A, T _{ch} = 25°C	_	7(0.22	Ω
Output leakage current	t	l _{OL}	_	V _{DD} = 18 V, V _{IN} = 0 V	_	2	1,2	mA
Diagnosis output voltage	"L" Level	V _{DL}	_	V _{DD} = 12 V, I _{DL} = 2 mA	◇ -⟨	9)/	0.4	V
Diagnosis output current	"H" Level	I _{DH}	_	V _{DD} = 18 V, V _{DH} = 18 V	(7)	1	10	μΑ
Overcurrent protection		I _{S (1)} Note 3	1 (V _{DD} = 12 V, T _{ch} = 25°C	4~) 6	8	Α
		I _{S (2)} Note 4	2	VDD -12 V, 1ch - 23 C	<u></u> 4	8	12	Α
Thermal shutdown	Temperature	Ts (7		150	160	200	°C
Thermal shutdown	Hysteresis	ΔTs		//	_	10	_	°C
Open detection resistance		Rops)_	V _{DD} = 8 V	1	20	100	kΩ
Switching time		ton	3	$V_{DD} = 12 V, R_{L} = 5\Omega,$	10	100	_	μs
		*toff	3	T _{ch} = 25°C	10	30	_	μs

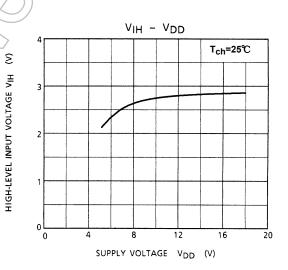

Note 3: Overcurrent detection value when load is short circuited and V_{IN} = "L" \rightarrow "H" Note 4: Overcurrent detection value when load current is increased while V_{IN} = "H"

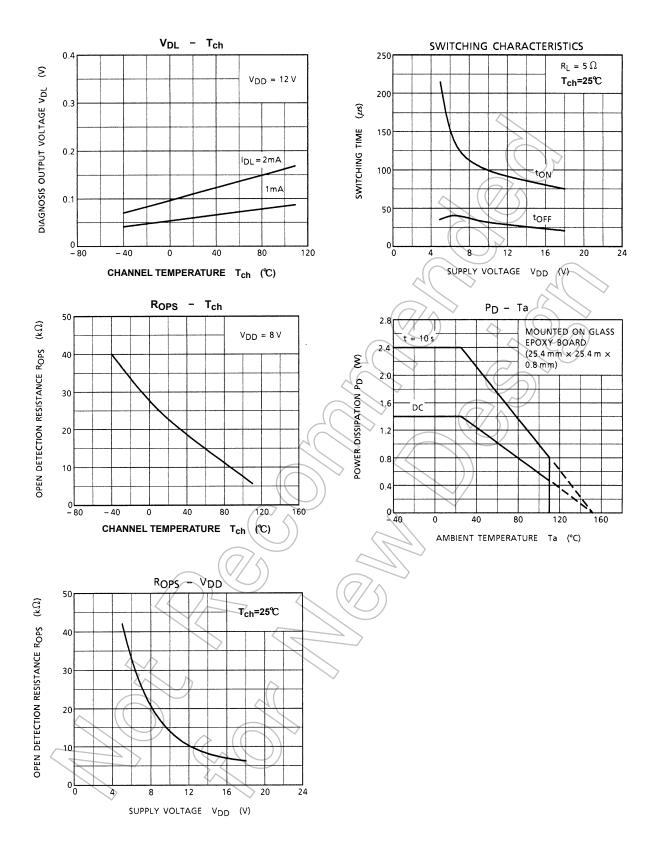


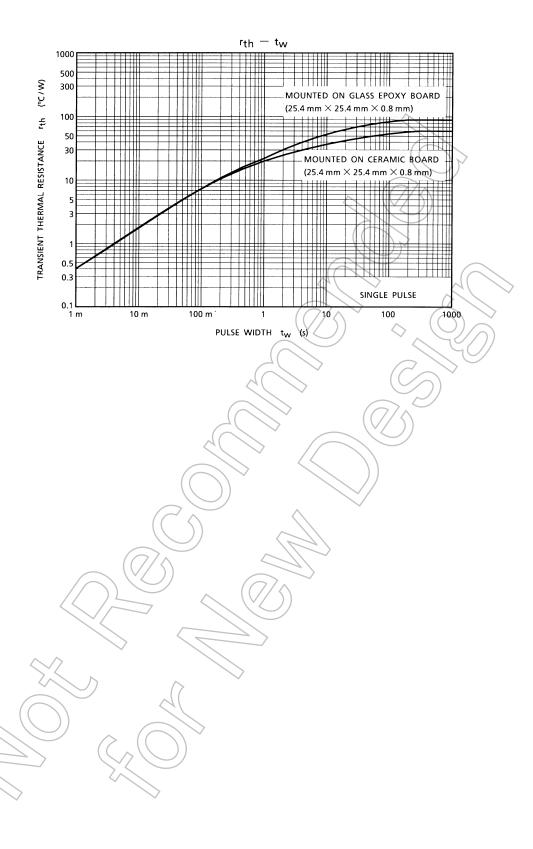

Test Circuit 1


Over-current detection

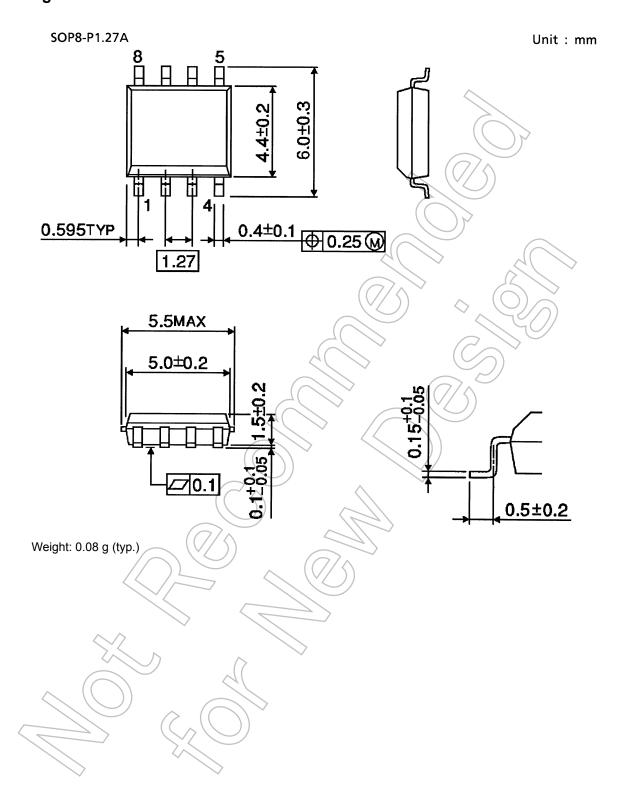








Precaution:


1. Since there is no built-in protection against reverse connection of batteries, etc., provide such protection using external circuits.

8

9 2013-12-26

Package Dimensions

10 2013-12-26

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE
 EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH
 MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT
 ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without
 limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for
 automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions,
 safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE
 PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your
 TOSHIBA sales representative.
- Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES
 OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.