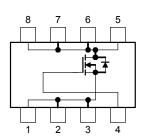
TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOS V-H)

TPC8032-H

High-Efficiency DC/DC Converter Applications
Notebook PC Applications
Portable Equipment Applications


- · Small footprint due to a small and thin package
- High-speed switching
- Small gate charge: QSW = 8.4 nC (typ.)
- Low drain-source ON-resistance: $RDS(ON) = 5.0 \text{ m}\Omega \text{ (typ.)}$
- High forward transfer admittance: $|Y_{fs}| = 60 \text{ S (typ.)}$
- Low leakage current: $IDSS = 10 \mu A (max) (VDS = 30 V)$
- Enhancement mode: $V_{th} = 1.5 \text{ to } 2.5 \text{ V (V}_{DS} = 10 \text{ V, I}_{D} = 1 \text{ mA)}$

Absolute Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit	
Drain-source voltage		V_{DSS}	30	V	
Drain-gate voltage (R	$k_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	30	V	
Gate-source voltage		V_{GSS}	±20	V	
Drain current	DC (Note 1)	ΙD	15	Α	
Diam current	Pulsed (Note 1)	I _{DP}	60		
Drain power dissipation	on $(t = 10 s)$ (Note 2a)	P_{D}	1.9	W	
Drain power dissipation $(t = 10 \text{ s})$ (Note 2b)		P_{D}	1.0	W	
Single-pulse avalance	ne energy (Note 3)	E _{AS}	146	mJ	
Avalanche current		I _{AR}	15	Α	
Repetitive avalanche	energy Note 2a) (Note 4)	E _{AR}	0.12	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature	range	T _{stg}	-55 to 150	°C	

Weight: 0.085 g (typ.)

Circuit Configuration

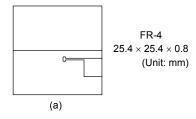
Note 1, Note 2, Note 3 and Note 4: See the next page.

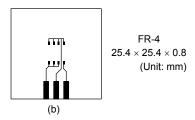
Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

This transistor is an electrostatic-sensitive device. Handle with care.

Thermal Characteristics

Characteristic	Symbol	Max	Unit
Thermal resistance, channel to ambient (t = 10 s) (Note 2a)	R _{th (ch-a)}	65.8	°C/W
Thermal resistance, channel to ambient (t = 10 s) (Note 2b)	R _{th (ch-a)}	125	°C/W

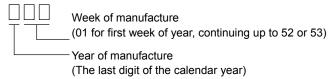

Marking (Note 5)



Note 1: The channel temperature should not exceed 150°C during use.

Note 2: (a) Device mounted on a glass-epoxy board (a)

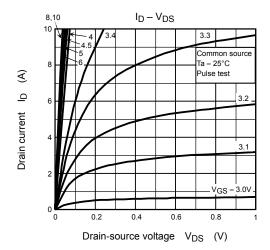
(b) Device mounted on a glass-epoxy board (b)

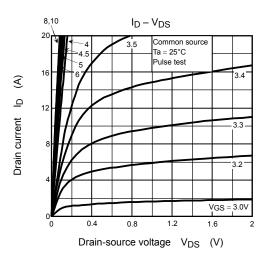


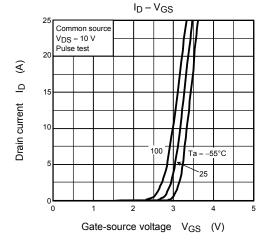
Note 3: $V_{DD} = 24 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), $L = 500 \ \mu \text{ H}$, $R_G = 25 \ \Omega$, $I_{AR} = 15 \ \text{A}$

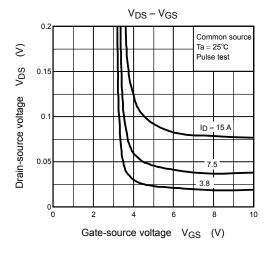
Note 4: Repetitive rating: pulse width limited by max channel temperature

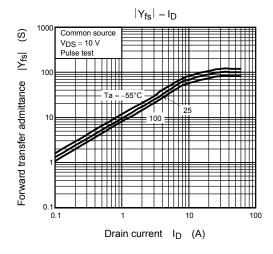
Note 5: * Weekly code: (Three digits)

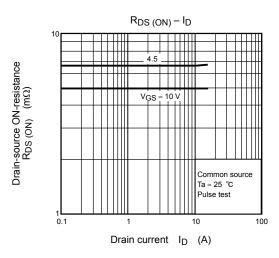


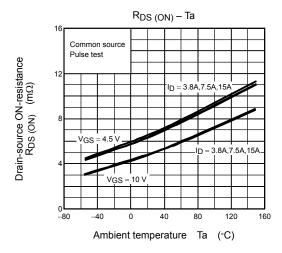

Electrical Characteristics (Ta = 25°C)

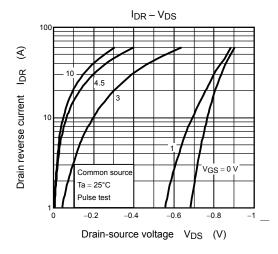

Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$		_	±100	nA	
Drain cutoff curre	ent	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	_	_	10	μА	
Danier and the state of the sta		V (BR) DSS	$I_D = 10$ mA, $V_{GS} = 0$ V	30	_	_	V	
Dialii-source bre	in-source breakdown voltage		$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	_	_	v	
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$	1.5	_	2.5	V	
Drain-source ON	rosistanos	Pro (OLI)	$V_{GS} = 4.5 \text{ V}, I_D = 7.5 \text{ A}$	_	6.6	8.6		
Diain-source Oiv	-resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 7.5 A	— 5.0 30 60		6.5	mΩ	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 7.5 A	30 60 —		_	S	
Input capacitance	9	C _{iss}			2270	2846	pF	
Reverse transfer	capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		135	205		
Output capacitan	ce	Coss			505	_		
Gate resistance		rg	V _{DS} = 10 V, V _{GS} = 0 V, f = 5 MHz	_	_ 1.0 1.5		Ω	
	Rise time	t _r	V _{GS} 10 V	_	4	_	ns	
Cuitabina tima	Turn-on time	ton		_	12	_		
Switching time	Fall time	t _f		_	11	_		
	Turn-off time	t _{off}	$V_{DD} \simeq 15 \text{ V}$ Duty \leq 1%, $t_W = 10 \mu\text{s}$	_	37	_		
Total gate charge		Qg	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$		33	_		
(gate-source plus	ate-source plus gate-drain)		$V_{DD} \simeq 24 \text{ V}, V_{GS} = 5 \text{ V}, I_D = 15 \text{ A}$	_	17	_	nC	
Gate-source charge 1		Q _{gs1}		_	7.9	_		
Gate-drain ("Miller") charge		Q _{gd}	$V_{DD} \simeq 24 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 15 \text{ A}$	_	5.2	_		
Gate switch charge		Q _{SW}		_	8.4	_		

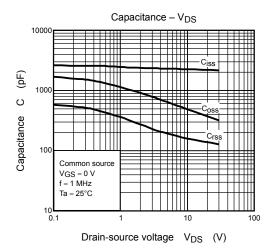

Source-Drain Ratings and Characteristics (Ta = 25°C)

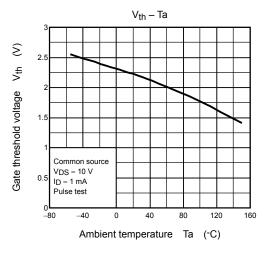

Characteri	stics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse	(Note 1)	I _{DRP}	_	_	_	60	Α
Forward voltage (diode)			V_{DSF}	I _{DR} = 15 A, V _{GS} = 0 V	_	_	-1.2	V

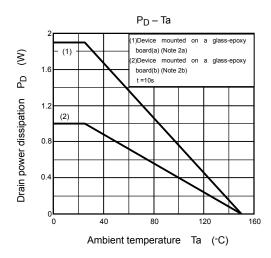


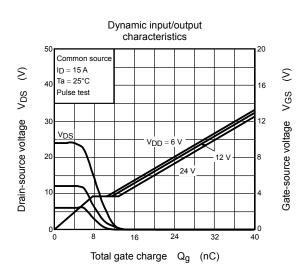


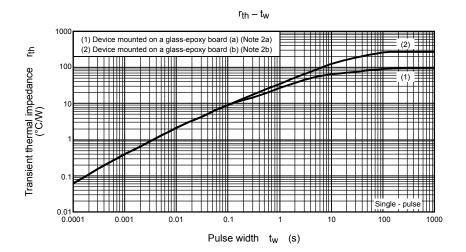


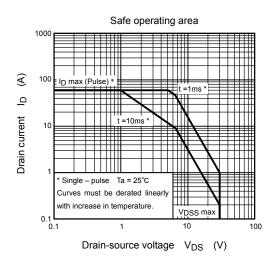





4 2007-12-25







5 2007-12-25

6 2007-12-25

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

2007-12-25