

Features

- Maximum Voltage Input 28V
- Wide Operation Voltage Range from 4V to 24V
- Low Current Consumption
 - Normal Mode 4µA at +25°C
 - Shutdown Mode 0.4µA at +25°C
- High Accuracy Voltage Detection Circuit for each cell
 - Programmable Overcharge Threshold Voltage from 4.1V to 4.8V in 50mV step
 - Overcharge Threshold Accuracy ±20mV (+25°C)
 - Overcharge Threshold Accuracy ±25mV (-10°C to +60°C)
 - Overcharge Hysteresis Voltage -380mV
- Internal Delay Timer for Overcharge
 - Selectable Overcharge Detection Delay Time 2s, 4s, 6s, and 8s
 - Selectable Delay Time for Shutdown 2s, 4s, 6s, and 8s
- High CO Pull Up Voltage
 - Selectable CMOS Active High or Low output
- Test Mode to Shorten Mass Production Time
- Integrated Linear Regulator
 - Selectable LDO Output 3.0V, and 3.3V
 - LDO output Cut off Voltage 2.5V
 - Output Current 2mA
 - Short Circuit Protector

Typical Application Circuit

Applications

- Notebook
- Portable Equipment

Description

The TPB7462 series is a secondary overcharge hardware protector for 2s, 3s, or 4s lithium-ion battery packs

TPB7462 series provides high accuracy overcharge threshold to avoid the safety risk from battery pack. It also provides the CTL pin to directly control output or connect PTC (Positive Temperature Coefficient) resistor to monitor overtemperature of battery pack.

The TPB7462 integrates a LDO for powering external circuit with extremely low leakage current.

TPB7462 is available in WDFN2x2-8 package. Its operation temperature range is from -40° C to $+85^{\circ}$ C.

TPB7462

Product Name Rule

TPB7462 X	<u>x x</u>	- DF	GR				
Т	ΤТ	Fun	ction Selection				
			CTL Function at Shu	utdown	Timer Reset Delay Function	n COUT	VOUT
		A	Disable		Disable	Active High	3.0V
		В	Enable		Disable	Active High	3.0V
		С	Disable		Enable	Active High	3.0V
		D	Enable		Enable	Active High	3.0V
		E	Disable		Disable	Active High	3.3V
		F	Enable		Disable	Active High	3.3V
		G	Disable		Enable	Active High	3.3V
		Н	Enable		Enable	Active High	3.3V
				— De	lay Time Selection		
					Overvoltage Delay Time	Shutdown Dela	ay Time
				Α	2s	2s	
				В	2s	4s	
L	Ove	rvoltage Th	reshold Selection	С	2s	6s	
		Overvoltag	je Threshold	D	2s	8s	
	Α	4.800V		E	4s	2s	
	В	4.750V		F	4s	4s	
	С	4.700V		G	4s	6s	
	D	4.650V		H	4s	8s	
	E	4.600V		<u> </u>	6s	2s	
	F	4.550V		J	6s	4s	
	G	4.500V		K	6s	6s	
	Н	4.450V		L	6s	8s	
	<u> </u>	4.400V		Μ	8s	2s	
	J	4.350V		N	8s	4s	
	K	4.300V		0	8s	6s	
	_L	4.250V		P	8s	8s	

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
	1
Product Name Rule	
Revision History	4
Pin Configuration and Functions	5
Pin Functions	5
Specifications	6
Absolute Maximum Ratings	6
ESD, Electrostatic Discharge Protection	6
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	9
Detailed Description	10
Overview	10
Feature Description	10
Application and Implementation	12
Application Information	12
Typical Application	12
Layout	12
Layout Guideline	12
Tape and Reel Information	13
Package Outline Dimensions	14
DFN2X2-8	14
Order Information	15
IMPORTANT NOTICE AND DISCLAIMER	16

Revision History

Date	Revision	Notes					
2022-04-06	Rev.A.0	First Release Version					
2022-05-23	Rev.A.1	Update I _{SD} test condition					

4s High Accuracy Secondary Hardware Protector

With CTL and LDO

Pin Configuration and Functions

Pin Functions

Р	in	I/O	Description
No.	Name	1/0	Description
1	VDD	Ι	Power Supply. Connect a 0.1µF capacitor to ground.
2	VC1	Ι	Voltage Sense Input of Positive Terminator of 1 st Cell.
3	VC2	I	Voltage Sense Input of Positive Terminator of 2 nd Cell and Negative Terminator of 1 st Cell.
4	VC3	I	Voltage Sense Input of Positive Terminator of 3 rd Cell and Negative Terminator of 2 nd Cell.
5	VC4	I	Voltage Sense Input of Positive Terminator of 4^{th} Cell and Negative Terminator of 3^{rd} Cell.
6	VOUT	0	Voltage Regulator Output.
7	CTL	Ι	Control Pin for COUT.
8	COUT	0	FET Control. CMOS Output Active High or Active Low, NCH Open Drain Active High
9	Exposed Pad		Ground and Voltage Sense Input of Negative Terminator of 4 th Cell.

Specifications

Absolute Maximum Ratings

	Parameter	Min	Max	Unit
Supply Voltage	VDD to VSS	-0.3	28	V
	VDD to VC1	-0.3	6.5	V
Sense Input Voltage	VCn+1 to VCn, n=1,2,3	-0.3	6.5	V
Voltage	VC4 to VSS	-0.3	6.5	V
VCO	COUT Output Voltage to VSS	-0.3	6.5	V
VOUT	VOUT Output Voltage to VSS	-0.3	6.5	V
VCTL	CTL Pin Input Voltage	-0.3	28	V
TJ	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-45	85	°C
Тѕтс	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		300	°C

Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(1) This data was taken with the JEDEC low effective thermal conductivity test board.

(2) This data was taken with the JEDEC standard multilayer test boards.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	2000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	Package Type θ _{JA}		Unit	
WDFN2X2-8	TBD	TBD	°C/W	

Electrical Characteristics

All test condition is $T_A = +25^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Overcharg	e and Shutdown Threshold					
		TA = 25°C	-20		20	mV
Vota	Overcharge threshold accuracy	TA = -20° C to 60° C	-25		25	mV
	rcharge and Shutdown ThresholdOTAOvercharge threshold accuracyOTAOvercharge threshold accuracyHYSOvercharge Hysteresis Voltage'SDShutdown Voltage ThresholdSDRShutdown Release Voltage'TMTest Mode Transition Thresholdth Voltage and CurrentTopOperation VoltageSupply Current at Normal ModeSDDSupply Current of VCn Pin, n = 2CDSupply Current of VCn Pin, n = 1ModeInput Current of VC1 Pin, n = 1CTLInput Current of CTLCTLInput Current of CTLCTLOvercharge Delay TimeOVOvercharge Delay TimeOVShutdown Delay TimeOVOvercharge Delay Time in TestOVFOvercharge Delay Time in TestOVFOvercharge Delay Time in TestOVFNode	TA = -40° C to 85° C	-35		35	mV
V _{HYS}	Overcharge Hysteresis Voltage			-0.38		V
		TA = 25°C	2.35	2.50	2.65	V
Vsd	Shutdown Voltage Threshold	TA = −40°C to 85°C	2.30		2.70	V
V _{SDR}	Shutdown Release Voltage	TA = 25°C	2.65	2.80	3.00	V
VTM	Test Mode Transition Threshold				4	V
Input Volta	age and Current					
Vdd	Operation Voltage		4		24	V
IDD	Supply Current at Normal Mode	$VDD = VC1, VC4-VSS = V_{Cn}-V_{Cn+1} = 3.8V, n = 1 to 3$			4	μA
Isd		$VDD = VC1, VC4-VSS = V_{Cn}$ $V_{Cn+1} = 2V, n = 1 \text{ to } 3$			0.4	μA
Ivcn		$VDD = VC1, VC4-VSS = V_{Cn}-V_{Cn+1} = 3.8V, n = 1 to 3$			0.3	μA
	Input Current of VC1 Pin, n = 1				2	μA
		$VDD = VC1, VC4-VSS = V_{Cn}-V_{Cn+1} = 4.0V, n = 1 to 3, V_{CTL} = 16V$	1.2	1.6	2.4	μΑ
Ість	Input Current of CTL	$VDD = VC1, VC4-VSS = V_{Cn}$ $V_{Cn+1} = 2.0V, n = 1 \text{ to } 3, V_{CTL} = 8V, CTL Enable at Shutdown$	0.6	0.8	1.2	μA
		$\label{eq:VDD} \begin{array}{l} \text{VDD} = \text{VC1}, \ \text{VC4-VSS} = \text{V}_{\text{Cn}} \\ \text{V}_{\text{Cn+1}} = 3.8 \text{V}, \ \text{n} = 1 \ \text{to} \ 3, \ \text{V}_{\text{CTL}} = \\ 8 \text{V}, \ \text{CTL} \ \text{Disable at Shutdown} \end{array}$	0.35		0.35	μA
Delay Tim	e					
tov	Overcharge Delay Time		tovx0.8	tov	tovx1.2	
t _{OVR}	Overcharge Release Time		12.8	16	19.2	ms
t _{SD}	Shutdown Delay Time		t _{SD} x0.8	t _{SD}	t _{SD} x1.2	
tтк	• •			0.38		ms
tovf			$\frac{0.8}{128}$ × t _{OV}	$\frac{1}{128}$ ×t _{OV}	$\frac{1.2}{128}$ × t _{OV}	
t _{tst}	Transition Time to Test Mode				40	ms
tc⊤∟	CTL Pin Response Time				3	ms

*Note: (1) 100% tested at TA=25°C.

TPB7462

Electrical Characteristics (Continued)

All test condition is $T_A = +25^{\circ}C$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
COUT Out	put Voltage					
V _{COL}	COUT Pin ON Voltage	$I_{OL} = 50\mu A$, VDD = VC1, VC4-VSS = V _{Cn} -V _{Cn+1} = V _{OV} - 0.1V, n = 1 to 3		0.08	0.5	V
V _{сон1}	COUT Pin ON Voltage 1	$I_{OH} = -1\mu A$, VDD = VC1, VC4-VSS = V _{Cn} -V _{Cn+1} = 4.7V, n = 1 to 3	4.0	4.7	5.4	V
V _{COH2}	COUT Pin ON Voltage 2	I _{OH} = -1mA, VDD = VC1, VC4-VSS = V _{Cn} -V _{Cn+1} = 4.7V, n = 1 to 3	V _{сон1} – 0.5V	V _{сон1} – 0.1V		V
Voltage Re	egulator Output					
V _{OUT}	VR Output Voltage	V _{DD} = 5.1V to 25V. I _{OUT} = 10μA	2.94	3.0	3.06	V
Іоит	VR Output Current	V _{DD} = 5.1V to 25V			2	mA
CTL Input	Voltage					
Vih	CTL Pin Input Voltage, High		V _{DD} -0. 8			V
VIL	CTL Pin Input Voltage, Low				V _{DD} -2. 0	V

*Note: (1) 100% tested at T_A = 25°C.

4s High Accuracy Secondary Hardware Protector

With CTL and LDO

Typical Performance Characteristics

All test condition: TA = +25°C, unless otherwise noted.

Detailed Description

Overview

The TPB7462 series is a secondary overcharge hardware protector for 2s, 3s, or 4s lithium-ion battery packs. It provides high accuracy overcharge threshold to avoid the safety risk from battery pack. It also provides the CTL pin to directly control output or connect PTC (Positive Temperature Coefficient) resistor to monitor overtemperature of battery pack.

The TPB7462 integrates a LDO for powering external circuit with extremely low leakage current.

Feature Description

Overcharge Detection

The TPB7462 monitors VC1 to VC2, VC2 to VC3, VC3 to VC4, and VC4 to VSS voltage for over voltage protection. When the voltage of any cell exceeds Vor during charging and lasts for equal to or longer than overcharge delay time (tov), COUT pin turns to H. This is called overcharge protection mode. COUT pin drives the connecting FET to provide charge control and a second protection.

Once all the cell voltages are lower than V_{OT} + V_{HYS} and last for overcharge release time (t_{OVR}), the overcharge is released, COUT pin turns to L, the TPB7462 enters normal state.

Overcharge Timer Reset

When an overcharge release noise that forces all the cell voltages temporarily below the overcharge detection voltage (Vot) during the overcharge delay time (tov) counting period, the overcharge delay time will be continuously counted if the period of overcharge release noise is shorter than the overcharge delay timer reset time (trR). Otherwise, counting of tov will be reset if the period of overcharge release noise is equal to or longer than trR. After that, when Vot has been exceeded, counting tov resumes. Disabling of overcharge timer reset function is user selectable.

Shutdown Detection

The TPB7462 monitors VC1 to VC2, VC2 to VC3, VC3 to VC4, and VC4 to VSS voltage for shutdown protection. When all the cell voltages are less than the V_{SD} during discharging and last for equal to or longer than shutdown delay time (t_{SD}), VOUT pin turns to L. Once the voltage of any cell exceeds V_{SDR}, TPB7462 enters normal mode and VOUT pin becomes to H.

CTL Function

The TPB7462 has a CTL pin to control the output of the COUT.

Table 1. Control via CTL Pin

	СООТ					
CTL pin	Active High	Active Low				
"H"	Normal state	Normal state				
"Open"	"H"	"L"				
"L"	"H"	"L"				
"L" to "H"						
"H" to "L"						

COUT output active high/low is user selectable. Enabling/ disabling of CTL control function in the shutdown state is user selectable.

Timing

Overcharge detection

Figure 5 Timing for Overcharge

Figure 6 Timing for Overcharge Timer Reset

Overcharge Timer Reset

Application and Implementation

NOTE

Information in the following applications sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPB7462 series monitors the overcharge voltage of battery for 2s, 3s, or 4s lithium-ion battery packs and controls the charging path through COUT when overcharge is detected. It also provides the CTL pin to directly control output or connect PTC resistor to monitor temperature of battery packs. The TPB7462 returns to normal state when abnormal events are disappeared.

Typical Application

Figure 7 shows the typical application schematic of the TPB7462.

Figure 7 TPB7462 Typical Application Circuit

Symbol	Description	Recommend Value	Unit
R1, R2, R3, R4	Voltage monitor filter resistor	1	kΩ
Cp, C1, C2, C3, C4	Voltage monitor filter capacitor	0.1	μF
R₽	Supply voltage filter resistor	100	Ω
СР	Supply voltage filter capacitor	0.1	μF
CVOUT	Regulator output capacitor	0.1	μF

Layout

Layout Guideline

Both filter capacitors and output capacitor must be placed to the device pins as close as possible.

It is recommended to use wide trace lengths or thick copper weight to minimize I×R drop and heat dissipation.

Exposed pad must be connected to the PCB ground plane directly, the copper area must be as large as possible. To get the best thermal performance, thermal vis should be placed under and around the exposed pad with enough number and size.

TPB7462

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPB7462GGA-DFGR	DFN2X2-8	180	13.1	2.3	2.3	1.1	4	8	Q1

Package Outline Dimensions

DFN2X2-8

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008REF.		
D	1.900	2.100	0.075	0.083	
E	1.900	2.100	0.075	0.083	
D1	0.500	0.700	0.020	0.028	
E1	1.100	1.300	0.043	0.051	
k	0.350REF.		0.014REF.		
b	0.200	0.300	0.008	0.012	
е	0.500BSC.		0.020BSC.		
L	0.274	0.426	0.011	0.017	

SIDE VIEW

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPB7462GGA-DFGR	−40 to 85°C	DFN2X2-8	2NA	3	Tape and Reel, 3000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.