

Features

- 7 full decades of range: 1nA to 10mA
- Law conformance error: 0.2 dB from 10nA to 10mA
- Fast step response: raising 0.2µs, falling 5µs for 10nA to 10µA input on INPT
- Basic logarithmic intercept at 100 pA
- Logarithmic slope of 200 mV/20dB (at the VLOG pin)
- Optimized for fiber optic photodiode interfacing
- Single-supply operation: 4.5 V to 5.5 V
- Power down mode

Applications

- High accuracy optical power measurement
- Wide range baseband log compression
- Versatile detector for APC loops
- EDFA

Block Diagram

Description

The TPA8304 is a logarithmic detector optimized for the measurement of low frequency signal power in fiber optic systems and offers a large dynamic range.

Wide measurement range, accuracy and fast step response are achieved, which is very suitable for the requirement of optic system.

The TPA8304 requires only a single positive supply of 5 V. Low quiescent current and chip disable facilitate use in batteryoperated applications.

Figure 1

Table of Contents

Features	
Applications	1
Description	
Block Diagram	1
Table of Contents	2
Revision History	3
Order Information	3
Pin Configuration and Description	4
Absolute Maximum Ratings Note 1	5
ESD Rating / Latch Up	5
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	8
Application Information	9
Basic Configuration to Use TPA8304	9
Using the Adaptive Bias	10
Using the Fixed Bias	11
Package Outline Dimensions	12
TSSOP-14	
QFN-16	13
IMPORTANT NOTICE AND DISCLAIMER	14

Revision History

Date	Revision	Notes
2019/9/10	Rev.0	Initial Version
2019/12/9	Rev.0.01	Add Application Information: Using the Fixed Bias
2020/11/16	Rev.A	Add phase margin and gain margin of Output Buffer, Pin BFIN, BFNG, VOUT in Electrical
		Characteristics
2021/5/30	Rev.A.1	Update description

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity
TPA8304-TS2R	-40 to 85°C	14-Pin TSSOP	A8304	3	Tape and Reel, 3000
TPA8304-QF4R	-40 to 85°C	16-Pin QFN	A8304	3	Tape and Reel, 4000

Pin Configuration and Description

Pin No. of TSSOP	Pin No. of QFN	Pin Name	Description
1	14, 15	GND	Power Supply Ground Connection.
2	16	PWDN	Power-Down Control Input. Device is active when PWDN is taken LOW.
3, 5	2, 4	VSUM	Guard Pins. Used to shield the INPT current line.
4	3	INPT	Photodiode Current Input.
6	5	VPDB	Photodiode Biaser Output. Connect this pin to the photodiode cathode when using
			adaptive bias control; Otherwise, leave this pin floating.
7	6	VREF	Voltage Reference Output of 2 V.
8	8	VLOG	Output of the Logarithmic Front-End Processor.
9	9	BFIN	Buffer Amplifier Noninverting Input
10	10	VPS2	Positive Supply.
11	11	VOUT	Buffer Amplifier Output
12	12	VPS1	Positive Supply.
13	13	BFNG	Buffer Amplifier Inverting Input.
14	7	ACOM	Analog Reference Ground.
	1	NC	Pins labeled NC can be allowed to float, but it is better to connect these pins to
		NC	ground.
	17	EPAD	Exposed Pad. Connect the exposed pad to the VSUM pins to provide low leakage
			guard.

Absolute Maximum Ratings Note 1

Parameters	Rating
Supply Voltage,	6.5 V
Input Current to INPT Note 2	±20mA
Maximum Junction Temperature	125°C
Operating Temperature Range	–40 to 85°C
Storage Temperature Range	–65 to 150°C
Lead Temperature (Soldering, 10 sec)	260°C

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 300mV beyond the power supply, the input current should be limited to less than 10mA.

ESD Rating / Latch Up

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	500	V	
HDIVI		ANSI/ESDA/JEDEC JS-001, All other pin except INPT	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	1	kV
LU	Latch Up	25degree	200	mA
LU	Latch Up	125degree	150	mA

Thermal Information

Package Type	θ _{JA}	θ _{JC}	Unit
16-Pin QFN	75	54	°C/W
14-Pin TSSOP	180	35	°C/W

Electrical Characteristics

All test condition is V_S = 5V, T_A = 25°C, unless otherwise noted.

Symbol	Parameter	Conditions	T _A	Min	Тур	Max	Unit
Power Su	pply, Pin VPS2, VPS1, GND				•	•	
Vs	Supply Voltage Range			4.5		5.5	V
lq	Quiescent Current per Amplifier				8	10	mA
I _{SN}	Shutdown Current	In disable state			40		μA
Input Inter	rface, Pin INPT, VSUM			1	1	1	-1
	Specified Current Range	Flows toward INPT		1			nA
					10	12	mA
	Input Node Voltage			1.05	1.2	1.35	V
	Input Node Voltage Drift				20		µV/°C
	VINPT – VSUM			-20		20	mV
Photodioc	de Bias, between Pin VPDB and INP	T					
	Minimum Value	IPD = 100 pA			100		mV
	Transresistance				150		mV/mA
Logarithm	nic Output, Pin VLOG						
	Slope			195	200	205	mV/dec
			0°C to 70°C	192		208	mV/dec
	Intercept			60	100	140	pА
			0°C to 70°C	35		175	pА
	Law Conformance Error	10 nA < IPD < 10 mA, peak error			0.2	0.25	dB
		1 nA < IPD < 10 mA, peak error			0.5	0.75	dB
	Maximum Output Voltage				1.6		V
	Minimum Output Voltage				0.1		V
	Output Resistance			4.95	5	5.05	kΩ
Reference	e Output, Pin VREF						
	Output Voltage			1.96	2	2.04	V
			-40°C to 85°C	1.95		2.05	V
	Output Resistance				2		Ω
Output Bu	uffer, Pin BFIN, BFNG, VOUT						
	Input Offset Voltage			-10		10	mV
	Input Bias Current				100		pА
	Output Voltage Swing to Power and Ground	$R_L = 1 k\Omega$ to ground			100		mV
	Output Resistance				0.5		Ω
	Wideband Noise ^{Note3}	IPD > 1 μA			1		μV/√Hz
	Small Signal Bandwidth Note3	IPD > 1 μA			10		MHz
	Slew Rate	0.2 V to 4.8 V output swing			15		V/µs

Symbol	Parameter	Conditions	T _A	Min	Тур	Max	Unit
	Phase Margin	C _L =100pF			60		0
	Gain Margin	C _L =100pF			10		dB
Power Do	wn Input, Pin PWDN						
	Logic Level, High State	V _S = 4.5V to 5.5V	-40°C to 85°C	2			V
	Logic Level, Low State	V _S = 4.5V to 5.5V	-40°C to 85°C			1	V

Note3: Output noise and incremental bandwidth are functions of input current

Step Response time from input to VLOG, 0°C to 70°C											
	Rising Ti	me		Falling Ti		Unit					
Conditions	Min	Тур	Max	Min	Тур	Мах	μs				
10nA to 100nA		2			4		μs				
10nA to 1µA		0.5			3		μs				
10nA to 10µA		0.2			5		μs				
10nA to 100µA		0.2			10		μs				
10nA to 1mA		0.2			15		μs				

Typical Performance Characteristics

V_S = 5V, unless otherwise specified.

Application Information

Basic Configuration to Use TPA8304

The basic configuration (see Figure 4) includes a 2.5x gain to amplify the VLOG voltage by the buffer amplifier. This increases the slope of 10 mV/dB(200 mV/DEC) at the VLOG pin to 25 mV/dB(500 mV/DEC) at VOUT. For the full dynamic range of 140 dB, the output swing is 4.0 V, which can be accommodated by the rail-to-rail output stage when using the recommended 5 V supply.

The capacitor C1 and R1 on INPT pin is recommended to not assemble as TPA8304 use advance technology to keep the loop stability and fast the step response. If C1 and R1 must be used for the compatibility to ADI ADL5303 and AD8304, the recommended value is 470pF for C1 and 750 Ω for R1, which make the output noise larger and step response slower than the not assemble configuration. The capacitor CF from VLOG to ground forms an optional single-pole low-pass filter. Because the resistance at this pin is 5 k Ω , an -3 dB corner frequency can be realized to minimize the output noise. A capacitor between VSUM and ground is essential for minimizing the noise on this node. When the bias voltage at either VPDB or VREF is not needed, these pins should be left unconnected.

Figure 4 Basic Configuration

The relationship between the input current, IPD, applied to the INPT pin, and the voltage appearing at the VLOG pin is:

 $V_{LOG} = V_Y * LOG_{10}(I_{PD}/I_Z)$

Where:

Vy is the voltage slope (in the case of base-10 logarithms, it is also referred to as volts per decade).

Iz is the fixed current in the logarithmic equation called the intercept.

In the basic configuration, the scaling is chosen so that V_Y is trimmed to 200 mV/decade (10 mV/dB). The intercept is positioned at 100 pA; the output voltage, V_{LOG} , crosses zero when I_{PD} is of this value. However, the actual VLOG must always be slightly above ground. Using Equation 1, the output for any value of I_{PD} can be calculated. For the specified input current of 1nA to 10mA of INPT:

1nA : $V_{LOG} = 0.2 \text{ V } LOG_{10} (1 \text{ nA}/100 \text{ pA}) = 0.2 \text{ V}$

10mA: V_{LOG} = 0.2 V LOG₁₀ (10 mA/100 pA) = 1.6 V

In practice, both the slope and intercept can be altered, to either higher or lower values, without any significant loss of calibration accuracy, by using one or two external resistors, often in conjunction with the 2 V voltage reference at the VREF pin.

Using the Adaptive Bias

For most photodiode applications, the placement of the anode above ground is acceptable in some case, as long as the positive bias on the cathode is enough to support the peak current for a particular diode, limited by its series resistance. To address this matter, the TPA8304 provides for a diode bias that increases linearly with the input current. This bias voltage appears at the VPDB pin, and varies from 1.3 V (reverse-biasing the diode by 0.1 V) for I_{PD} = 100 pA and rises to 2.8 V (for a diode bias of 1.7 V) at I_{PD} = 10 mA. The adaptive biasing function is valuable in minimizing dark current while preventing the loss of photodiode bias at high currents. Use of the adaptive bias feature is shown in Figure 5.

Capacitor CPB, between the photodiode cathode at the VPDB pin and ground, is used to lower the impedance at this node and improve the high frequency accuracy at current levels where the TPA8304 bandwidth is high. CPB also provide a high frequency path for any high frequency modulation on the optical signal. A suitable CPB value (1nF to 33nF) is recommended in the practice for fast falling step response. An undershoot appearing on output in VLOG pin when the large falling step input (For example, 1mA to 1nA) if large CPB value (>33nF) is used.

Figure 5 Using the Adaptive Bias

Using the Fixed Bias

For some photodiode applications, the fixed bias voltage is used for a photodiode. As the INPT pin has around 1.2V voltage, the voltage cross the photodiode must be carefully considered especially on the chip power on or off process. Refer to the Figure 6, the current of photodiode must be limited to the value of rating current, otherwise the photodiode may be damaged by large current. To keep the photodiode safe, the system design should be guaranteed:

- Keep the voltage of VBIAS is always equal or larger than the VP(power supply of TPA8304), especially on power on or off process. Use the same source for VBIAS and VP is recommended.
- Or use resistor RLIMIT to limit the current of photodiode into safe value if the previous solution is not available.

Figure 6 Using the Fixed Bias

Package Outline Dimensions

TSSOP-14

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	с	D(1)	E (2)	е	ΗE	L	Lp	Q	v	w	у	Z ⁽¹⁾	q
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4 .9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

QFN-16

DESCRIPTION		SYMBOL		MILLIMETEF	R		
DESCRIPTION		STMBOL	MIN	NOM	MAX		
TOTAL THICKNESS		А	0.70	0.75	0.80		
STAND OFF		Α1	0.00		0.05		
MOLD THICKNESS		A2	0.50	0.55	0.60		
L/F THICKNESS		A3		0.203 REF			
LEAD WIDTH		b	0.20	0.25	0.30		
	Х	D	2.95	3.00	3.05		
BODY SIZE	Y	E	2.95	3.00	3.05		
LEAD PITCH		е	0.50 BSC				
LEAD LENGTH		L	0.25	0.30	0.35		
EP SIZE	Х	D1	1.65	1.70	1.75		
EP SIZE	Y	E1	1.65	1.70	1.75		
	Tolerance	e of form ar	nd position				
PACKAGE EDGE TOLE	RANCE	aaa		0.1			
MOLD FLATNESS		bbb		0.1			
LEAD COPLANARITY		ССС		0.08			
LEAD POSITION OFFS	ΕT	ddd	0.1				
EXPOSED PAD OFFSE	T	eee		0.1			

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.