

Features

- Senses Bus Voltages From 0 V to 36 V
- High-Side or Low-Side Sensing
- Reports Current, Voltage, and Power
- High Accuracy
- Configurable Averaging Options
- 16 Programmable Addresses
- Operates from 2.7-V to 5.5-V Power Supply
- 10-Pin, MSOP Package

Applications

- Power Management
- Servers
- Telecom Equipment
- Computing
- Test Equipment

Description

The TPA6270X is a current and power monitor, with l^2C or SMBUS-compatible interface. The device monitors both a shunt voltage drop and bus supply voltage.

The TPA6270X common mode input voltage can vary from 0 V to 36 V.

The TPA6270X features up to 16 programmable addresses on the l^2 C-compatible interface.

GND

Functional Block Diagram

Table of Contents

Features	
Applications	1
Description	1
Functional Block Diagram	1
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions ⁽¹⁾	5
Thermal Information	6
Electrical Characteristics	7
Electrical Characteristics (continued)	8
Typical Performance Characteristics	9
Detailed Description	10
Overview	10
Functional Block Diagram	10
Feature Description	11
Tape and Reel Information	19
Package Outline Dimensions	
MSOP10	20
Order Information	21
IMPORTANT NOTICE AND DISCLAIMER	22

Revision History

Revision	Notes
Rev.A.0	Released version.

Pin Configuration and Functions

Table 1. Pin Functions: TPA6270X

Pin No.	Name	I/O	Description
2	A0	Digital input	Address pin. Connect to GND, SCL, SDA, or VS.
1	A1	Digital input	Address pin. Connect to GND, SCL, SDA, or VS.
3	Alert	Digital output	Multi-functional alert, open-drain output.
7	GND	Analog	Ground.
10	IN+	Analog input	Connect to the supply side of the shunt resistor.
9	IN–	Analog input	Connect to the load side of the shunt resistor.
5	SCL	Digital input	Serial bus clock line, open-drain input.
4	SDA	Digital I/O	Serial bus data line, open-drain input/output.
8	VBUS	Analog input	Bus voltage input.
6	VS	Analog	Power supply, 2.7 V to 5.5 V.

Specifications

Absolute Maximum Ratings

Cover operating free-air temperature range (unless otherwise noted) ⁽¹⁾

	Parameter	Min	Max	Unit
V _{VS}	Supply Voltage		6	V
Analog	Differential (VIN+ – VIN-) ⁽²⁾	-40	40	
Inputs, IN+, IN–	Common-Mode (VIN+ + VIN-) / 2	-0.3	40	V
Vvbus		-0.3	40	V
V _{SDA}		GND – 0.3	6	V
V _{SCL}		GND – 0.3	VVS + 0.3	V
lin	Input Current into any Pin		5	mA
Iout	Open-Drain Digital Output Current		10	mA
TJ	Junction Temperature		150	°C
T _{stg}	Storage Temperature Range	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) IN+ and IN− may have a differential voltage between −40 V and 40 V. However, the voltage at these pins must not exceed the range from −0.3 V to 40 V.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Value	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , all pins	±2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾ , all pins	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
 (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions ⁽¹⁾

	Parameter			Max	Unit
V _{CM}	Common Mode Input Voltage		12		V
Vvs	Operating Supply Voltage		3.3		V
TA	Operating Free-Air Temperature	-40		125	°C

Thermal Information

Package Type	θ _{JA}	θյς	Unit
MSOP10	171	42.9	°C/W

Electrical Characteristics

All test conditions: $T_A = 25^{\circ}C$, $V_{VS} = 3.3$ V, $V_{IN+} = 12$ V, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 0$ mV, and $V_{VBUS} = 12$ V, unless otherwise noted.

	Parameter	Test conditions	Min	Тур	Max	Unit
INPUT						
	Shunt Voltage Input Range		-81.9175		81.92	mV
	Bus Voltage Input Range ⁽¹⁾		0		36	V
CMRR	Common-Mode Rejection	0 V ≤ VIN+ ≤ 36 V	120	140		dB
Vos	Shunt Offset Voltage, RTI ⁽²⁾			±2.5	±10	μV
	Shunt Offset Voltage, RTI ⁽²⁾ vs Temperature	–40°C ≤ TA ≤ 125°C		0.025		µV/°C
PSRR	Shunt Offset Voltage, RTI ⁽²⁾ vs Power Supply	2.7 V ≤ VS ≤ 5.5 V		5		μV/V
Vos	Bus Offset Voltage, RTI ⁽²⁾			±1.25	±5	mV
	Bus Offset Voltage, RTI ⁽²⁾ vs Temperature	–40°C ≤ TA ≤ 125°C		5		µV/°C
PSRR	Bus Offset Voltage, RTI ⁽²⁾ vs Power Supply	2.7 V ≤ VS ≤ 5.5 V		0.1		mV/V
lв	Input Bias Current			10		μA
	VBUS Input Impedance			830		kΩ
	Input Leakage ⁽³⁾	(IN+ pin) + (IN– pin), Power- down mode		1		μΑ
DC ACC	URACY				1	
	ADC Native Resolution			16		Bits
		Shunt voltage		2.5		μV
	1 LSB Step Size	Bus voltage		1.25		mV
	Shunt Voltage Gain Error			0.02%	0.15%	
	Shunt Voltage Gain Error Vs Temperature	–40°C ≤ TA ≤ 125°C		10		ppm/°C
	Shunt Voltage Linearity			1		LSB
	Bus Voltage Gain Error			0.02%	0.15%	
	Bus Voltage Gain Error vs Temperature	–40°C ≤ TA ≤ 125°C		10		ppm/°C
	Bus Voltage Linearity			1		LSB
		CT bit = 000		140		
		CT bit = 001		204		
t _{CT}	ADC Conversion Time	CT bit = 010		332		μs
		CT bit = 011		588]
		CT bit = 100		1100		μs

	Parameter	Test conditions	Min	Тур	Max	Unit
		CT bit = 101		2116		
		CT bit = 110		4156		
		CT bit = 111		8244		
SMBus						
	SMBus Timeout ⁽⁴⁾			28		ms

(1) While the input range is 36 V, the full-scale range of the ADC scaling is 40.96 V.

- (2) RTI = Referred-to-input.
- (3) Input leakage is positive (current flowing into the pin) for the conditions shown at the top of this table. Negative leakage currents can occur under different input conditions.
- (4) SMBus timeout in the TPA6270X resets the interface any time SCL is low for more than 28 ms.
- (5) Test Levels: (A) Tested at final test. Over-temperature limits are set by characterization and simulation. (B) Set by characterization and simulation. (C) Typical value only for information, provided by design simulation.

Electrical Characteristics (continued)

All test conditions: $T_A = 25^{\circ}C$, $V_{VS} = 3.3$ V, $V_{IN^+} = 12$ V, $V_{SENSE} = (V_{IN^+} - V_{IN^-}) = 0$ mV, and $V_{VBUS} = 12$ V, unless otherwise noted.

Parameter		Test conditions	Min	Тур	Max	Unit
Digital	Input/Output					
	Input Capacitance			3		pF
	Leakage Input Current	0 V ≤ VSCL ≤ VVS , 0 V ≤ VSDA ≤ VVS, 0 V ≤ VAlert ≤ VVS , 0 V ≤ VA0 ≤ VVS , 0 V ≤ VA1 ≤ VVS		0.1		μΑ
VIH	High-Level Input Voltage		0.7×VVS			V
VIL	Low-Level Input Voltage				0.3×VVS	V
V _{OL}	Low-Level Output Voltage, SDA, Alert		0		0.4	V
	Hysteresis			150		mV
Power	Supply					
	Operating Supply Range		2.7		5.5	V
IQ	Quiescent Current			600	950	μA
	Quiescent Current, Power-Down (Shutdown) Mode			2	20	μA
V _{POR}	Operating Supply Range			2.2		V

TPA6270X

Bi-Directional Current and Power Monitor

Typical Performance Characteristics

All test conditions: $T_A = 25^{\circ}C$, $V_{VS} = 3.3$ V, $V_{IN+} = 12$ V, $V_{SENSE} = (V_{IN+} - V_{IN-}) = 0$ mV and $V_{VBUS} = 12$ V, unless otherwise noted.

Detailed Description

Overview

The TPA6270X is a digital current sense amplifier with an I2C- and SMBus-compatible interface. It performs two measurements on the power-supply bus: The differential shunt voltage created by load current flowing through a shunt resistor measured at the IN+ and IN- pins. The power supply bus voltage is measured at the VBUS pin.

There is no special requirement for power supply sequencing since power supply and input voltages are independent of each other.

Functional Block Diagram

Figure 7. Functional Block Diagram

Feature Description

Programming

Table 2 lists the steps for configuring, measuring, and calculating the values for current and power for this device.

Step	Register name	Address	Contents	Dec	Lsb	Value
Step 1	Configuration Register	00h	4127h			
Step 2	Shunt Register	01h	1F40h	8000	2.5 µV	20 mV
Step 3	Bus Voltage Register	02h	2570h	9584	1.25 mV	11.98 V
Step 4	Calibration Register	05h	A00h	2560		
Step 5	Current Register	04h	2710	10000	1 mA	10 A
Step 6	Power Register	03h	12B8h	4792	25 mW	119.82 W

Table 2. Calculating Current and Power

I²C Address

The device has two address pins, A0 and A1. The device samples the state of pins A0 and A1 on every bus communication. The following table lists the pin logic levels for each of the 16 possible addresses.

Table 3. Address Pins and Slave Address

A1	A0	Slave Address
GND	GND	100000
GND	VS	1000001
GND	SDA	1000010
GND	SCL	1000011
VS	GND	1000100
VS	VS	1000101
VS	SDA	1000110
VS	SCL	1000111
SDA	GND	1001000
SDA	VS	1001001
SDA	SDA	1001010
SDA	SCL	1001011
SCL	GND	1001100
SCL	VS	1001101
SCL	SDA	1001110
SCL	SCL	1001111

Register Map

Table 4. Register Set Summary

Pointer Address	Register Name	Function	Power-on R	Type ⁽¹⁾	
HEX			Binary	Hex	
00h	Configuration Register	All-register reset, shunt voltage and bus voltage ADC conversion times and averaging, operating mode.	01000001 00100111	4127	R/W
01h	Shunt Voltage Register	Shunt voltage measurement data.	00000000 00000000	0000	R
02h	Bus Voltage Register	Bus voltage measurement data.	00000000 00000000	0000	R
03h	Power Register ⁽²⁾	Contains the value of the calculated power being delivered to the load.	00000000 0000000	0000	R
04h	Current Register (2)	Contains the value of the calculated current flowing through the shunt resistor.	00000000 00000000	0000	R

Table 5.

Pointer Address	Begieter Neme	Function	Power-c	on Reset	Turne (1)
Hex	Register Name	Function	Binary	Hex	Type ⁽¹⁾
05h	Calibration Register	Sets full-scale range and LSB of current and power measurements. Overall system calibration.	00000000 00000000	0000	R/W
06h	Mask/Enable Register	Alert configuration and Conversion Ready flag.	00000000 00000000	0000	R/W
07h	Alert Limit Register	Contains the limit value to compare to the selected Alert function.	00000000 00000000	0000	R/W
FEh	Manufacturer ID Register	Contains unique manufacturer identification number.	010101000100100 1	5549	R
FFh	Die ID Register	Contains unique die identification number.	001000100110000 0	2260	R

Table 6. Configuration Register	(00h) (Read/Write) Descriptions
---------------------------------	---------------------------------

BIT NO.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT NAM E	RST	_	_	_	AVG 2	AVG 1	AVG 0	VBU SCT2	VBU SCT1	VBU SCT0	VSH CT2	VSH CT1	VSH CT0	MOD E3	MOD E2	MOD E1
POR VAL UE	0	1	0	0	0	0	0	1	0	0	1	0	0	1	1	1

Table 7. AVG Bit Settings[11:9] Combinations

AVG2 D11	AVG1 D10	AVG0 D9	Number OF Averages ⁽¹⁾
0	0	0	1
0	0	1	4
0	1	0	16
0	1	1	64
1	0	0	128
1	0	1	256
1	1	0	512
1	1	1	1024

(1) Shaded values are default.

Table 8. VBUSCT Bit Settings [8:6] Combinations

VBUSCT2 D8	VBUSCT1 D7	VBUSCT0 D6	CONVERSION TIME (µS)
0	0	0	140
0	0	1	204
0	1	0	332
0	1	1	588
1	0	0	1100
1	0	1	2116
1	1	0	4156
1	1	1	8244

Table 9. VSHCT Bit Settings [5:3] Combinations

VSHCT2 D5	VSHCT1 D4	VSHCT0 D3	CONVERSION TIME(1)
0	0	0	140
0	0	1	204
0	1	0	332

VSHCT2 D5	VSHCT1 D4	VSHCT0 D3	CONVERSION TIME(1)
0	1	1	588
1	0	0	1100
1	0	1	2116
1	1	0	4156
1	1	1	8244

Table 10. Mode Settings [2:0] Combinations

MODE3 D2	MODE2 D1	MODE1 D0	MODE ⁽¹⁾
0	0	0	Power-Down (or Shutdown)
0	0	1	Shunt Voltage, Triggered
0	1	0	Bus Voltage, Triggered
0	1	1	Shunt and Bus, Triggered
1	0	0	Power-Down (or Shutdown)
1	0	1	Shunt Voltage, Continuous
1	1	0	Bus Voltage, Continuous
1	1	1	Shunt and Bus, Continuous

Table 11. Shunt Voltage Register (01h) (Read-Only) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT																
NAM	SIGN	SD14	SD13	SD12	SD11	SD10	SD9	SD8	SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0
E																
POR																
VAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UE																

Table 12. Bus Voltage Register (02h) (Read-Only) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT NAM E	_	BD14	BD13	BD12	BD11	BD10	BD9	BD8	BD7	BD6	BD5	BD4	BD3	BD2	BD1	BD0
POR VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 13. Power Register (03h) (Read-Only) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT		0014	12	12	0011	0010		סחח	דחח				200	נחח	1	
NAM E	PDI5	PD14	PDIS	PD12	PDII	PD10	PD9	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
POR																
VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 14. Current Register (04h) (Read-Only) Register Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT NAM E	CSIG N	CD14	CD13	CD12	CD11	CD10	CD9	CD8	CD7	CD6	CD5	CD4	CD3	CD2	CD1	CD0
POR VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 15. Calibration Register (05h) (Read/Write) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT																
NAM	—	FS14	FS13	FS12	FS11	FS10	FS9	FS8	FS7	FS6	FS5	FS4	FS3	FS2	FS1	FS0
E																
POR																
VAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
UE																

Table 16. Mask/Enable Register (06h) (Read/Write)

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT NAM E	SOL	SUL	BOL	BUL	POL	CNV R	_	_	_	_	_	AFF	CVR F	OVF	APO L	LEN
POR VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

SOL: Shunt Voltage Over-Voltage

Bit 15

Setting this bit high configures the Alert pin to be asserted if the shunt voltage measurement following a conversion exceeds the value programmed in the Alert Limit Register.

SUL: Shunt Voltage Under-Voltage

Bit 14

Setting this bit high configures the Alert pin to be asserted if the shunt voltage measurement following a conversion drops below the value programmed in the Alert Limit Register.

BOL: Bus Voltage Over-Voltage

Bit 13

Setting this bit high configures the Alert pin to be asserted if the bus voltage measurement following a conversion exceeds the value programmed in the Alert Limit Register.

BUL: Bus Voltage Under-Voltage

Bit 12

Setting this bit high configures the Alert pin to be asserted if the bus voltage measurement following a conversion drops below the value programmed in the Alert Limit Register.

POL: Power Over-Limit

Bit 11

Setting this bit high configures the Alert pin to be asserted if the Power calculation made following a bus voltage measurement exceeds the value programmed in the Alert Limit Register.

CNVR: Conversion Ready

Bit 10

Setting this bit high configures the Alert pin to be asserted when the Conversion Ready Flag, Bit 3, is asserted indicating that the device is ready for the next conversion.

AFF: Alert Function Flag

Bit 4

While only one Alert Function can be monitored at the Alert pin at a time, Conversion Ready can also be enabled to assert the Alert pin. Reading the Alert Function Flag following an alert allows the user to determine if the

Alert Function was the source of the Alert.

When the Alert Latch Enable bit is set to Latch mode, the Alert Function Flag bit clears only when the Mask/Enable

Register is read. When the Alert Latch Enable bit is set to transparent mode, the Alert Function Flag bit is cleared following the next conversion that does not result in an Alert condition.

CVRF: Conversion Ready Flag

Bit 3

Although the device can be read at any time, and the data from the last conversion is available, the Conversion

Ready Flag bit is provided to help coordinate one-shot or triggered conversions. The Conversion Ready Flag bit is set after all conversions, averaging, and multiplications are complete. Conversion Ready Flag bit clears under the following conditions:

1.) Writing to the Configuration Register (except for Power-Down selection)

2.) Reading the Mask/Enable Register

OVF: Math Overflow Flag

Bit 2

This bit is set to '1' if an arithmetic operation results in an overflow error. It indicates that current and power data may be invalid.

APOL: Alert Polarity bit; sets the Alert pin polarity.

Bit 1

1 = Inverted (active-high open collector)

0 = Normal (active-low open collector) (default)

LEN: Alert Latch Enable; configures the latching feature of the Alert pin and Alert Flag bits.

Bit 0

1 = Latch enabled

0 = Transparent (default)

When the Alert Latch Enable bit is set to transparent mode, the Alert pin and Flag bit reset to the idle states when the fault has been cleared. When the Alert Latch Enable bit is set to Latch mode, the Alert pin and Alert Flag bit remains active following a fault until the Mask/Enable Register has been read.

ddBl T #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT NAM E	AUL1 5	AUL1 4	AUL1 3	AUL1 2	AUL1 1	AUL1 0	AUL9	AUL8	AUL7	AUL6	AUL5	AUL4	AUL3	AUL2	AUL1	AUL0
POR VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 17. Alert Limit Register (07h) (Read/Write) Description

Table 18. Manufacturer ID Register (FEh) (Read-Only) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
BIT																
NAM	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
E																
POR																
VAL	0	1	0	1	0	1	0	1	0	1	0	0	1	0	0	1
UE																

Table 19. Die ID Register (FFh) (Read-Only) Description

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4f	D3	D2	D1	D0
BIT NAM E	DID1 1	DID1 0	DID9	DID8	DID7	DID6	DID5	DID4	DID3	DID2	DID1	DID0	RID3	RID2	RID1	RID0

BIT #	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4f	D3	D2	D1	D0
POR VAL UE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The device can not accept a stop command immediately after a start operation. If the customer wants to reset I2C communication, 9 clocks could be sent to TPA6270X after a start operation, to make sure the device is quite to default mode, and then wait for a new I2C start operation.

SMBUS alert function is supported to respond to the SMBus Alert Response address (0001 100) when an alert occurs. But be aware when the master is accessing the address if the device doesn't have an alert, the device will still acknowledge to address but without following response.

I²C Data hold time should be at least 10nS for a proper start function is recognized.

TPA6270X

Bi-Directional Current and Power Monitor

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPA6270X- VS2R-S	MSOP10	330.0	17.6	5.30	3.30	1.40	8.0	12.0	Q1

Package Outline Dimensions

MSOP10

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPA6270X-VS2R-S	−40 to 125°C	MSOP10	6270	MSL2	Tape and Reel, 3000	Green

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.