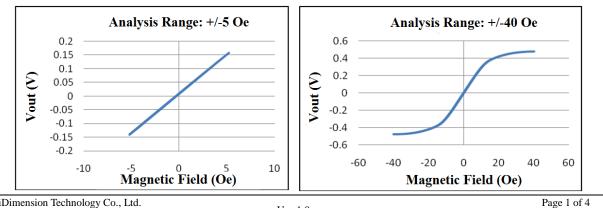


TMR9003 TMR Linear Sensor

Features and Benefits

- Tunneling Magnetoresistance (TMR) Technology
- High Sensitivity (~30mV/V/Oe)
- Ultra-low Noise Spectral Density (750 pT/√Hz @1Hz)
- Very-low Power Consumption
- Excellent Thermal Stability
- Low Hysteresis
- Compatible with Wide Range of Supply Voltages
- No need for set/reset calibration

Applications

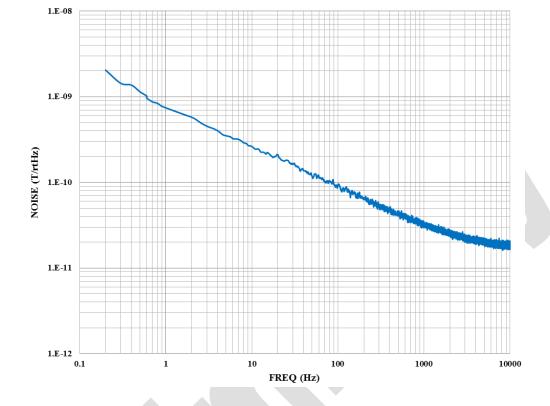

- Weak Magnetic Field Sensing
- Current Sensors
- Position and Displacement Sensing
- Biomedical Sensing
- Magnetic Communication

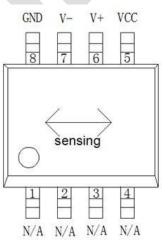
General Description

The TMR9003 linear sensor utilizes a unique push-pull Wheatstone bridge composed of four TMR sensor elements. The unique bridge design provides a high sensitivity differential output that is linearly proportional to a magnetic field applied parallel to the surface of the sensor package, and it provides superior temperature compensation of the output. The TMR9003 is assembled in a 6mm \times 5mm \times 1.5mm SOP8 package.

Transfer Curve

The following figure shows the response of the TMR9003 to an applied magnetic field in the range of ± 5 Oe and ± 40 Oe when the TMR9003 is biased at 1 V. The following specifications are calculated over an analysis range of ± 5 Oe.




MDT TMR9003

Sensor Noise

The following figure illustrates the Power Spectral Density (PSD) of the TMR9003 self noise (N_i). The 1/f noise is approximately 750 pT/ \sqrt{Hz} @ 1Hz, and the white noise is approximately 20 pT/ \sqrt{Hz} @ 10kHz.

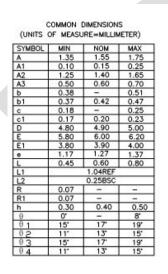
(SOP8 top view)

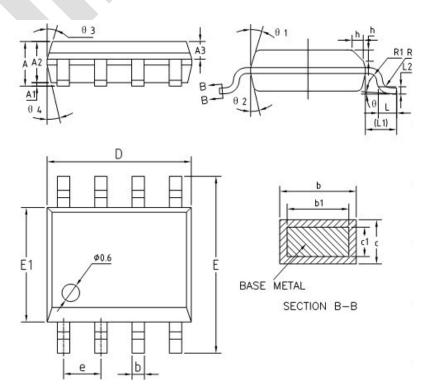
Pin No	Pin Name	Pin Function	
5	Vcc	Supply voltage	
6	V+	Analog Differential Output 1	
7	V-	Analog Differential Output 2	
8	GND	Ground	
1,2,3,4	N/A	Not connected	

Absolute Maximum Ratings

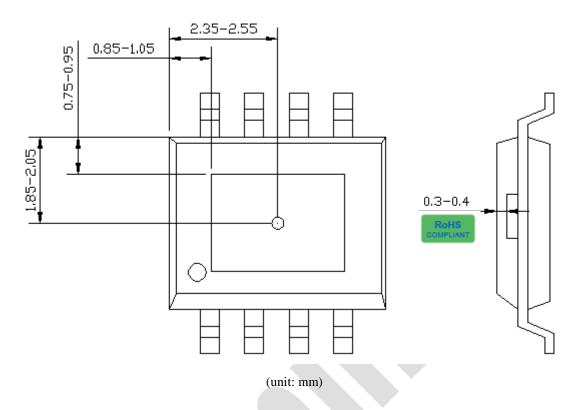
Parameter	Symbol	Limit	Unit	
Supply Voltage	V _{CC}	7	V	
Reverse Supply Voltage	V _{RCC}	7	V	
Magnetic Field	Н	5000	Oe ⁽¹⁾	
ESD Voltage	V _{ESD}	4000	V	
Operating Temperature	T_A	-40 ~ 125	°C	
Storage Temperature	Tstg	-50 ~ 150	°C	

Specification (V_{CC}=1.0V, T_A=25 °C, Differential Output)


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	Normal Operation		1	7	V
Supply Current	I _{CC}	Output Open		20 ⁽²⁾		μA
Resistance	R			50		kOhm
Sensitivity	SEN	Fit±5 Oe		30		mV/V/Oe
Saturation Field	H _{sat}			±15		Oe
Non-Linearity	NONL	Fit±5 Oe		0.5		%FS
Offset Voltage	V _{offset}			10		mV/V
Hysteresis	Hys	Fit±5 Oe		0.1		Oe
Self Noise	Ni	@1Hz		750		pT/\sqrt{Hz}


Note:

(1) 1 Oe (Oersted) = 1 Gauss in air = 0.1 millitesla = 79.8 A/m.


(2) $I_{CC} = V_{CC}/R$, Icc will vary under different R in practice and it can be customized accordingly.

Package information

Sensor Position

The information provided herein by MultiDimension Technology Co., Ltd. (hereinafter MultiDimension) is believed to be accurate and reliable. Publication neither conveys nor implies any license under patent or other industrial or intellectual property rights. MultiDimension reserves the right to make changes to product specifications for the purpose of improving product quality, reliability, and functionality. MultiDimension does not assume any liability arising out of the application and use of its products. MultiDimension's customers using or selling this product for use in appliances, devices, or systems where malfunction can reasonably be expected to result in personal injury do so at their own risk and agree to fully indemnify MultiDimension for any damages resulting from such applications.

"MultiDimension", "MultiDimension Sensing the Future", and "MDT" are registered trademarks of MultiDimension Technology Co., Ltd.