

TMR7308-B

Board Mount Precision Current Sensor

Description

TMR7308-B is a closed loop current sensor for accurate measurement of DC, AC, pulsed current and arbitrary waveform current with galvanic isolation between primary and secondary circuits.

Features and Benefits

- · High accuracy
- · Low temperature coefficient
- · Galvanic isolation
- · High immunity to external interference
- · Excellent linearity
- · Light weight design
- RoHS & REACH compliant

Applications

- Computer numerical control system (CNC)
- Inverter
- · DC motor drives
- Inverter and variable frequency drives (VFD)
- Uninterruptible power supplies (UPS)
- Telecom power supplies

Selection Guide

Part Number	Primary Nominal Current	Primary Current Measuring Range
TMR7308-0500B	50 A	±150 A
TMR7308-1000B	100 A	±280 A

Insulation and Environmental Characteristics

Parameters	Symbol	Тур.	Unit
Dielectric Strength	V_{D}	5	kV(50 Hz, 1 min)
Insulation Resistance	R _{IS}	500	ΜΩ
Creepage Distance	d _{CP}	10.7	mm
Clearance	d _{CL}	10.7	mm
Ambient Operating Temperature	T _A	-40 to +85	°C
Ambient Storage Temperature	T_{STG}	-40 to +85	°C
Mass	m	18	g

Catalogue

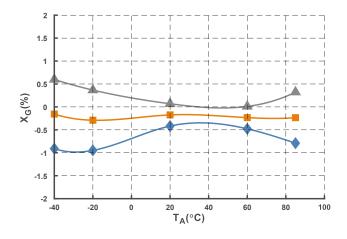
1. TMR7308-0500B Specifications	03
2. TMR7308-1000B Specifications	04
3. Typical Temperature Characteristics	05
4. Parameters Definition And Formula	06
5. Application Information	07
6. Recommended PCB Layout	08
7. Dimensions	09

1. TMR7308-0500B Specifications

 $\rm T_A$ = +25 °C, $\rm V_{CC}$ = ±15 V, $\rm R_M$ = 120 $\rm \Omega,$ unless otherwise noted

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		General Electrical Data				
Primary Nominal Current	I _{PN}	TMR7308-0500B	-	50	-	А
Primary Current Measuring Range	I _{PM}	TMR7308-0500B	-150	-	150	А
Sensitivity	S	$I_P = 0 \text{ to } \pm I_{PN}$	-	0.5	-	mA/A
Number of secondary turns	N _s	-	-	2000	-	-
Output Current	I _{OUT}	$I_P = 0 \text{ to } \pm I_{PM}$	-	I _{OE} + S × I _P	-	mA
Supply Voltage	V _{cc}	±5 %	-	±15	-	V
Current Consumption	I _c	I _P = 0	-	15	-	mA
Secondary Coil Resistance	R _s	T _A = +25 °C	-	64	-	Ω
Measuring Resistance	R _M	T _A = +85 °C, I _{PM} ≤ 50A	120	-	480	Ω
		Static Performance Data				
Accuracy	X _G	$T_A = +25 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	-0.5	±0.2	0.5	- % I _{PN}
		$T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}, I_P = 0 \text{ to} \pm I_{PN}$	-1	-	1	
Linearity Error	$\epsilon_{\scriptscriptstyle L}$	$T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}, I_P = 0 \text{ to} \pm I_{PN}$	-	0.1	-	% I _{PN}
Symmetry	ε _{SYM}	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	99.5	100	100.5	%
Sensitivity Error	$\epsilon_{ ext{S}}$	$T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}, I_P = 0 \text{ to} \pm I_{PN}$	-0.5	-	0.5	%
Offset Error	I _{OE}	T _A = +25 °C, I _P = 0	-0.15	±0.05	0.15	mA
		$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0$	-0.3	-	0.3	mA
Hysteresis	I _{OH}	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \ I_P = \pm I_{PN} \rightarrow 0$	-	±0.2	-	mA
		Dynamic Performance Da	ta			
Response Time	t _R	di/dt > 50 A/µs, 10% to 90% of I _{PN}	-	1	-	μs
Bandwidth	BW	-3 dB	DC	200	-	kHz

2. TMR7308-1000B Specifications


 $\rm T_A$ = +25 °C, $\rm V_{CC}$ = ±15 V, $\rm R_M$ = 60 $\Omega,$ unless otherwise noted

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		General Electrical Data				
Primary Nominal Current	I _{PN}	TMR7308-1000B	-	100	-	А
Primary Current Measuring Range	I _{PM}	TMR7308-1000B	-280	-	280	А
Sensitivity	S	$I_P = 0 \text{ to } \pm I_{PN}$	-	0.5	-	mA/A
Number of secondary turns	N _s	-	-	2000	-	-
Output Current	I _{OUT}	$I_P = 0 \text{ to } \pm I_{PM}$	-	I _{OE} + S × I _P	-	mA
Supply Voltage	V _{cc}	±5 %	±12	±15	-	V
Current Consumption	Ic	I _P = 0	-	15	-	mA
Secondary Coil Resistance	Rs	T _A = +25 °C	-	42	-	Ω
Measuring Resistance	R _M	T _A = +85 °C, I _{PM} ≤ 50A	60	-	220	Ω
		Static Performance Data	l			
Accuracy	X _G	$T_A = +25 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	-0.5	±0.2	0.5	- % I _{PN}
		$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	-1	-	1	
Linearity Error	ϵ_{L}	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \ I_P = 0 \text{ to } \pm I_{PN}$	-	0.1	-	% I _{PN}
Symmetry	ε _{SYM}	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	99.5	100	100.5	%
Sensitivity Error	ε _S	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0 \text{ to } \pm I_{PN}$	-0.5	-	0.5	%
Offset Error	I _{OE}	T _A = +25 °C, I _P = 0	-0.15	±0.05	0.15	mA
		$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, I_P = 0$	-0.3	-	0.3	mA
Hysteresis	I _{OH}	$T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}, \ I_P = \pm I_{PN} \rightarrow 0$	-	±0.2	-	mA
	•	Dynamic Performance Da	ta		•	
Response Time	t _R	di/dt > 50 A/µs, 10% to 90% of I _{PN}	-	1	-	μs
Bandwidth	BW	-3 dB	DC	200	-	kHz

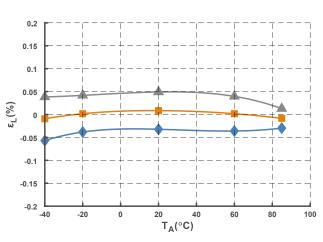
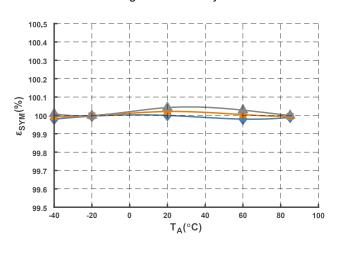



Figure 1. Accuracy

Figure 2. Linearity Error

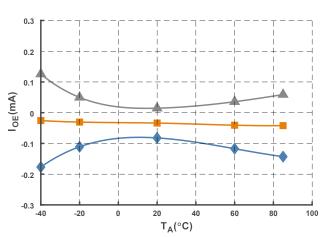
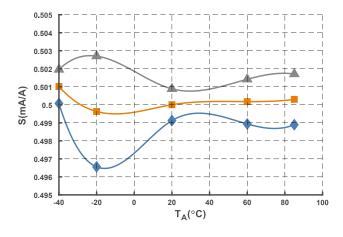



Figure 3. Symmetry

Figure 4. Offset Error

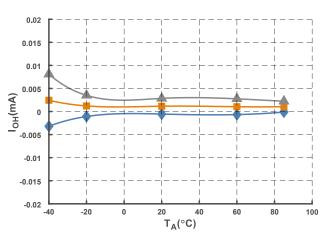


Figure 5. Sensitivity

Figure 6. Hysteresis

05

4. Parameters Definition And Formula

1) Output Current

$$I_{OUT} = I_{OE} + S \times I_{P}$$

 I_{OUT} stands for current sensor output current at given primary current, I_{OE} stands for offset error, S stands for sensitivity, I_P stands for primary current.

2) Accuracy

$$X_{G} = \underset{I_{P} \in [-I_{PN}, I_{PN}]}{MAX} \left(\frac{I_{OUT} - (S \times I_{P})}{S \times I_{PN}} \times 100\% \right)$$

I_{PN} stands for nominal primary current

3) Sensitivity

$$S = \frac{I_{OUT(@ I_{PN})} - I_{OUT(@ -I_{PN})}}{2 \times I_{PN}}$$

 $I_{OUT_{\left(igotimes_{I_{PN}} \right)}}$ and $I_{OUT_{\left(igotimes_{I_{PN}} \right)}}$ stand for the current output at I_{PN} and $-I_{PN}$ respectively.

4) Linearity

$$\varepsilon_{L} = \underset{I_{P} \in [-I_{PN}, I_{PN}]}{\text{MAX}} \left(\frac{I_{OUT} - (\overline{I}_{OE} + \overline{S} \times I_{P})}{S \times I_{PN}} \times 100\% \right)$$

 \overline{S} and \overline{I}_{OE} stand for the average values of the sensitivity and offset error.

Symmetry

$$\epsilon_{\text{SYM}} = \left| \frac{I_{\text{OUT}(@ I_{PN})} - \bar{I}_{\text{OE}}}{I_{\text{OUT}(@ -I_{PN})} - \bar{I}_{\text{OE}}} \right| \times 100\%$$

6) Hysteresis

$$I_{OH} = MAX \Delta H$$

ΔH is the maximum residual output current between full scale positive and negative nominal current.

5. Application Information

5.1 Electrical Connection

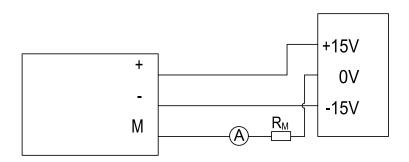


Figure 7. Electrical Connection

5.2 Mounting Recommendation

1. Mounting method: PCB through hole mount

2. Primary pin dimensions: 6 pins 1.4 mm × 1 mm

3. Primary through hole dimensions: Hole diameter 2 mm

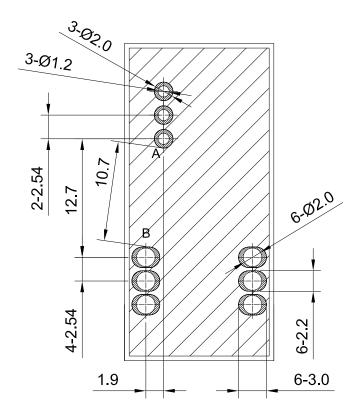
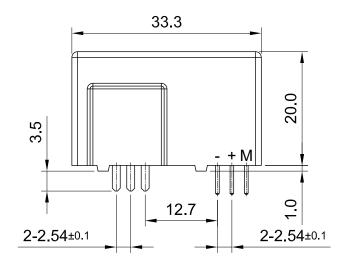
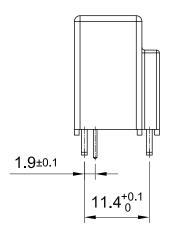
4. Secondary pin dimensions: 3 pins 0.64 mm × 0.64 mm

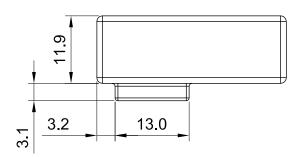
5. Secondary through hole dimensions: Hole diameter 1.2 mm

5.3 Remarks

- 1. Wave soldering profile max temperature should be set no higher than 260 °C for 10 s.
- 2. Temperature of the primary busbar should not exceed 100 °C.
- 3. I_{OUT} is positive when the primary current (I_P) is in the same direction as the arrow indication on the label and vice versa.
- 4. Improper connection may result in permanent damage of the sensor.
- 5. Power must be disconnected when installing the current sensor, and any other components should be avoid in shaded area.
- 6. Sensor is customizable upon request.

6. Recommended PCB Layout


Figure 8. TMR7308-B PCB layout

7. Dimensions

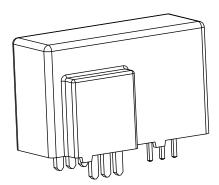


Figure 9. TMR7308-B Dimension (unit: mm, tolerances for unmarked scales ±1 mm)

Copyright © 2023 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

