

TMR2623

High Frequency Response Programmable TMR Linear Magnetic Sensor

Description

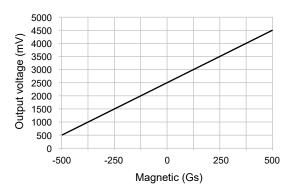
The TMR2623 is a tunneling magnetoresistance (TMR) linear sensor with a dedicated signal conditioning circuit built in. The integrated signal conditioning circuit of TMR2623 is able to calibrate zero-offset, gain, temperature coefficient of sensitivity (TCS) and temperature coefficient of zero offset (TCO) of the TMR bridge circuit, and outputs the conditioned voltage signals.

In addition to TMR's intrinsic advantages of high resolution, high signal-to-noise ratio, and low power consumption, TMR2623 series linear sensors also provide the following characteristics:

- 1. Fixed voltage output range in linear range
- 2. Excellent sensitivity consistency
- 3. Minimal zero drift
- 4. Low temperature coefficient of sensitivity
- 5. Low temperature coefficient of offset

This improvement greatly enhances the convenience of design and use of TMR linear sensor products.

TMR2623 is available in DFN6L (3mm×2mm×0.75mm) package with P/N of TMR2623D.


DFN6L

Features and Benefits

- Tunneling magnetoresistance (TMR) technology
- High frequency response: DC~2 MHz
- Large dynamic range: ±500 Gs
- Wide range supply voltages: 3 V to 5.5 V
- Nonlinearity: 0.2%
- Programmable sensitivity and zero offset
- Programmable temperature compensation
- RoHS & Reach compliant

Applications

- Current sensor
- · Linear position sensor
- Gaussmeter
- Encoder

TMR2623D output transfer curve

Selection Guide

Part Number	Supply Voltage(V)	Zero Offset(V) Reference Voltage(V		Package	Packing Form
TMR2623D-P5	5	2.5	2.5	DFN6L	Tape & Reel
TMR2623D-P3	3	1.65	1.65	DFN6L	Tape & Reel

Catalogue

1. Functional Block Diagram	03
2. Pin Configuration	03
3. Sensing Direction	03
4. Absolute Maximum Ratings	04
5. Electrical Specifications	04
6. Typical Characteristics	05
7. Application Information	06
8 Dimensions	07

1. Functional Block Diagram

TMR2623 integrates a linear TMR magnetic sensor and a dedicated signal conditioning chip with a single-ended analog voltage output signal. The V_{OUT} pin can be reused as the OWI(One-Wire-Interface) protocol programming interface, to adjust zero-point, sensitivity, reference voltage V_{REF} and other parameters in a targeted manner.

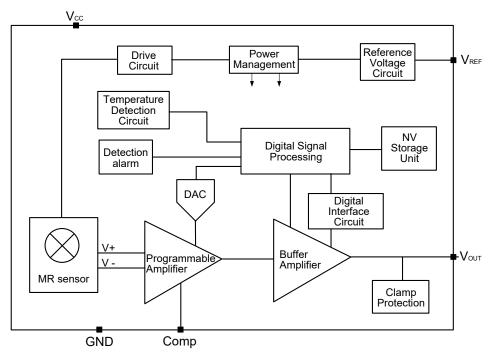


Figure 1. Block Diagram

2. Pin Configuration

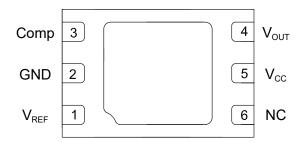


Figure 2. Pin Configuration (DFN6L)

Pin Number Name		Function		
1	V_{REF}	Reference voltage output		
2	GND	Ground		
3	Comp	Analog voltage		
4	V _{OUT}	Analog output		
5 V _{cc}		Power supply		
6	NC	Not connected		
	EP	Center Pad		

3. Sensing Direction

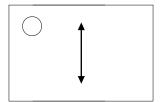


Figure 3. Sensing Direction

4. Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Supply voltage	V _{cc}	3	5.5	V
Supply current	I _{CC} ¹⁾	-	8	mA
Magnetic flux density	В	-	4000	Gs
ESD performance (HBM)	V _{ESD}	-	4	kV
Operating ambient temperature	T _A	-40	125	°C
Storage ambient temperature	T _{STG}	-50	150	°C

¹⁾ Supply current I refers to the current to operate after calibration.

5. Electrical Specifications

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable Part Number	
Cupply voltage	V _{cc}	T _A =25°C	3	5	5.5	V	TMR2623D-P5	
Supply voltage			3	3.3	5.5	V	TMR2623D-P3	
Supply ourrent	I _{cc}	V _{CC} =5V, T _A =25°C	-	5	8	mA	TMR2623D-P5	
Supply current		V _{CC} =3.3V, T _A =25°C	-	5	8	mA	TMR2623D-P3	
Power-on time	T_PO	T _A =25°C	-	40	ı	ms	All porto	
Magnetic range	H_{SAT}	T _A =25°C	-500	-	500	Gs	All parts	
Sensitivity	SEN ²⁾	V _{CC} =5V, T _A =25°C	2	-	100	mV/Gs	TMR2623D-P5	
Sensitivity		V _{CC} =3.3V, T _A =25°C	1	-	65	mV/Gs	TMR2623D-P3	
Zero offset	V _{OFFSET}	V _{CC} =5V, T _A =25°C	-	2.5	-	V	TMR2623D-P5	
Zero oliset		V _{CC} =3.3V, T _A =25°C	-	1.65	-	V	TMR2623D-P3	
	V_{REF}	V _{CC} =5V, T _A =25°C	-	2.5	-	V	TMR2623D-P5	
Reference voltage		V _{CC} =3.3V, T _A =25°C	-	1.65	-	V	TMR2623D-P3	
		V _{cc}	-	V _{CC} /2	-	V	TMR2623D-P3	
Hysteresis	HYS	T _A =25°C, +/-100Gs	-	0.1	-	Gs		
Hysteresis		T _A =25°C, +/-500Gs	-	0.5	-	Gs		
Nonlinearity	NONL	T _A =25°C	-	0.2	-	%FS		
Temperature coefficient of sensitivity	TCS ³⁾	-40°C to 125°C	-	-	100	PPM/°C	All parts	
Temperature coefficient of offset	TCO ⁴⁾	-40°C to 125°C	-	-	50	PPM/°C		
Response frequency	F	Minimum gain	DC~2MHz					

²⁾ The typical value of sensitivity is programmable via OWI protocol.

³⁾ The TCS is programmable through OWI protocol for multi-point temperature calibration to obtain better results.

⁴⁾ The TCO is programmable through OWI protocol for multi-point temperature calibration to obtain better results.

6. Typical Characteristics

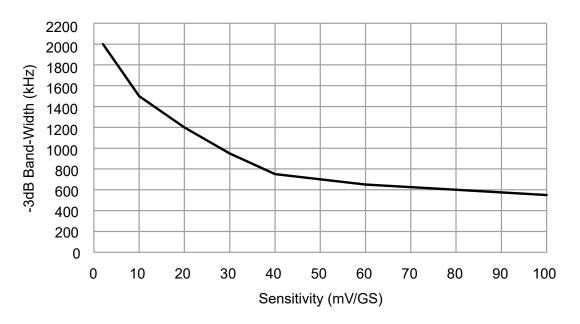
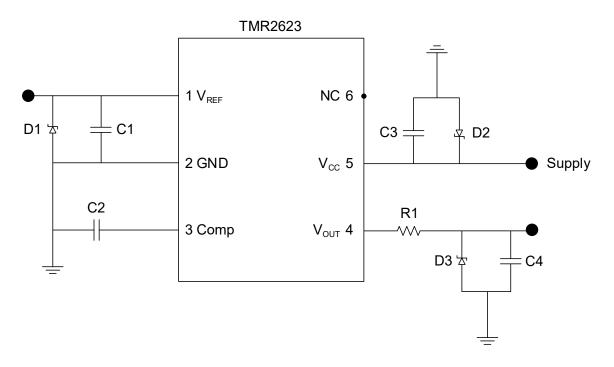
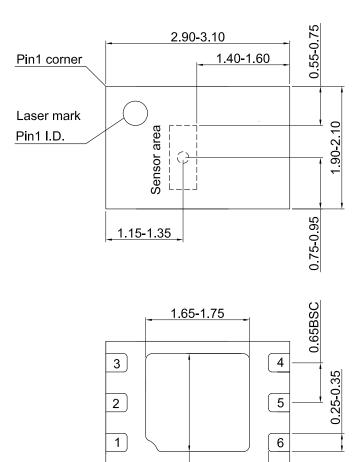



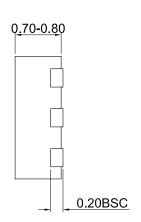
Figure 4. Sensitivity VS Band-width

7. Application Information

Device description in Figure 5:

R1		R1/C4: for output pin RC filtering				
C1	20pF	Connects V _{REF} to GND for reference voltage filtering				
C2	20pF	Connects Comp to GND for output voltage filtering				
C3	0.1µF	Connects V_{CC} to GND for supply voltage filtering				
C4		R1/C4: for output pin RC filtering				
D1	ESD5341N_5V/NA	Dual lead bidirectional 5V transient voltage suppression devices for ESD/surge protection				
D2	ESD5341N_5V/NA	Dual lead bidirectional 5V transient voltage suppression devices for ESD/surge protection				
D3 ESD5341N_5V/NA		Dual lead bidirectional 5V transient voltage suppression devices for ESD/surge protection				


Figure 5. Typical Application Circuit


Please contact MDT regional sales representative to obtain "Product Application Manual" for more information about TMR2623 product application, including programming methods (OWI programming instructions) for sensor sensitivity, temperature coefficient of sensitivity, zero offset, temperature coefficient of zero offset, nonlinearity, etc.

8. Dimensions

DFN6L Package

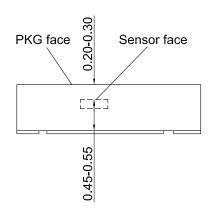


Figure 6. Package outline of DFN6L (unit: mm)

0.30-0.40

Pin1 corner

Copyright © 2022 by MultiDimension Technology Co., Ltd.

Information furnished herein by MultiDimension Technology Co., Ltd. (hereinafter MDT) is believed to be accurate and reliable. However, MDT disclaims any and all warranties and liabilities of any kind, with respect to any examples, hints or any performance or use of technical data as described herein and/or any information regarding the application of the product, including without limitation warranties of non-infringement of intellectual property rights of any third party. This document neither conveys nor implies any license under patent or other industrial or intellectual property rights. Customer or any third-party must further determine the suitability of the MDT products for its applications to avoid the applications default of customer or third-party. MDT accept no liability in this respect.

MDT does not assume any liabilities of any indirect, incidental, punitive, special or consequential damages (including without limitation of lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, MDT's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the terms and conditions of commercial sale of MDT.

Absolute maximum ratings are the extreme limits the device will withstand without damage to the MDT product. However, the electrical and mechanical characteristics are not guaranteed as the maximum limits (above recommended operating conditions) are approached. MDT disclaims any and all warranties and liabilities of the MDT product will operate at absolute maximum ratings.

Specifications may change without notice.

Please download latest document from our official website www.dowaytech.com/en.

Recycling

The product(s) in this document need to be handed over to a qualified solid waste management services company for recycling in accordance with relevant regulations on waste classification after the end of the product(s) life.

