TOSHIBA

TMP96C081F

CMOS 16-bit Microcontrollers

TMP96C081F

1. Outline and Device Characteristics

The TMP96C081F are high-speed advanced 16-bit microcontrollers developed for controlling medium to large-scale equipment.

The TMP96C081F are housed in a 100-pin flat package. Device characteristics are as follows:

(1) Original 16-bit CPU

- TLCS-90 instruction mnemonic upward compatible.
- 16M-byte linear address space
- · General-purpose registers and register bank system
- 16-bit multiplication/division and bit transfer/arithmetic instructions
- High-speed micro DMA
 - 4 channels (1.6µs/2 bytes @ 20MHz)
- (2) Minimum instruction execution time
 - 200ns @ 20MHz

- (3) Internal DMAC:
- 4 channels
- (4) External memory expansion
- Can be expanded up to 16M bytes (for both programs and data).
- AM8/16 pin (select the external data bus width)
- Can mix 8- and 16-bit external data buses. ··· Dynamic data bus sizing
- (5) 8-bit timers:
- (6) 8-bit PWM timers:
- (7) 16-bit timers:
- (8) Pattern generators:
- (9) Serial interface:
- (10) 10-bit A/D converter:
- (11) Watchdog timer
- (12) Chip select/wait controller: 5 blocks
- (13) Interrupt functions
- 3 CPU interrupts SWI instruction, privileged violation, and Illegal instruction
- 18 internal interrupts -7-level priority can be set.
- 6 external interrupts
- (14) I/O ports:
- Maximum 64 pins (15) Standby function: 3 halt modes (RUN, IDLE, STOP)

- 2 channels 2 channels
- 4 bits, 2 channels
- 2 channels

2 channels

6 channels

Figure 1. TMP96C081F Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for TMP96C081F, their name and outline functions.

2.1 Pin Assignment

Figure 2.1 shows pin assignment of TMP96C081F.

Figure 2.1. Pin Assignment (100-pin QFP)

2.2 Pin Names and Functions

The names of input/output pins and their functions are described below.

Table 2.2.	Pin Names	and Functions
------------	-----------	---------------

Pin Name	Number of Pins	1/0	Functions				
AD0 ~ AD7	8	Tri-state	Address/data (lower): 0 - 7 for address/data bus				
AD8 ~ AD15	8	Tri-state	Address data (upper): 8 - 15 for address/data bus				
A8 ~ A15		Output	Address: 8 to 15 for address bus				
P20 ~ P27	8	I/O	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor)				
A0 ~ A7		Output	Address: 0 - 7 for address bus				
A16 ~ A23		Output	Address: 16 - 23 for address bus				
RD	1	Output	Read: Strobe signal for reading external memory				
WR	1	Output	Write: Strobe signal for writing data on pins AD0 -7				
P32	1	I/O	Port 32: I/O port (with pull-up resistor)				
HWR		Output	High write: Strobe signal for writing data on pins AD8 - 15				
P33	1	I/O	Port 33: I/O port (with pull-up resistor)				
WAIT		Input	Wait: Pin used to request CPU bus wait				
P34 BUSRQ	1	I/O Output Input	Port 34: I/O port (with pull-up resistor) Bus request: Signal used to request high impedance for AD0 - 15, A0 - 23, RD, WR, HWR, R/W, RAS, CSO, CS1, CS2, CS3 and CS4 pins. (For external DMAC)				
P35 BUSAK	1	I/O Output	Port 35: I/O port (with pull-up resistor) Bus acknowledge: Strobe indicating that AD0 - 15, A0 - 23, RD, WR, HWR, R/W, RAS, CSO, CS1, CS2, and CS4 pins are at high impedance after receiving BUSRQ. (For external DMAC)				
P36	1	I/O	Port 36: I/O port (with pull-up resistor)				
R/W		Output	Read/write: 1 represents read or dummy cycle 0, write cycle.				
P37	1	I/O	Port 37: I/O port (with pull-up resistor)				
RAS		Output	Row address strobe: Outputs RAS strobe for DRAM.				
P40	1	I/O	Port 40: I/O port (with pull-up resistor)				
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.				
CAS0		Output	Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.				
P41	1	I/O	Port 41: I/O port (with pull-up resistor)				
CS1		Output	Chip select 1: Outputs 0 if address is within specified address area.				
CAS1		Output	Column address strobe 1: Outputs CAS strobe for DRAM when address is within specified address area.				
P42	1	I/O	Port 42: I/O port (with pull-up resistor)				
CS2		Output	Chip select 2: Outputs 0 if address is within specified address area.				
CAS2		Output	Column address strobe 2: Outputs CAS strobe for DRAM when address is within specified address area.				
P43	1	I/O	Port 43: I/O port (with pull-up resistor)				
CS3		Output	Chip select 3: Outputs 0 if address is within specified address area.				
CAS3		Output	Column address strobe 3: Outputs CAS strobe for DRAM if address is within specified address area.				
P44	1	I/O	Port 43: I/O port (with pull-up resistor)				
CS4		Output	Chip select 3: Outputs 0 if address is within specified address area.				
CAS4		Output	Column address strobe 4: Outputs CAS strobe for DRAM if address is within specified address area.				

Note: The internal I/O of this device cannot be accessed using the external DMA controller.

Pin Name	Number of Pins	1/0	Functions
P50 ~ P53	6	Input	Port 5: Input port
AN0 ~ AN5		Input	Analog input: Input to A/D converter
VREF	1		Pin for reference voltage input to A/D converter
AVCC	1		Power supply pin for A/D converter
AGND	1		Ground
P60 ~ 63	4	I/O	Port s 60 - 63: I/O ports that allow selection of I/O on a bit basis
PG00 ~ 03		Output	Pattern generator ports: 00 - 03
P64 ~ 67	4	I/O	Port s 64 - 67: I/O ports that allow selection of I/O on a bit basis
PG10 ~ 13		Output	Pattern generator ports: 10 - 13
P70	1	I/O	Port 70: I/O port
TI0		Input	Timer input 0: Timer 0 or 1 output
P71	1	I/O	Port 71: I/O port
T01		Output	Timer output 1: Timer 0 or 1 output
P72	1	I/O	Port 72: I/O port
T02		Output	PWM output 2: 8-bit PWM timer 2 output
P73	1	I/O	Port 73: I/O port
T03		Output	PWM output 3: 8-bit PWM timer 3 output
P80	1	I/O	Port 80: I/O port
T14		Input	Timer output 4: Timer 4 count/capture trigger signal input
INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge.
P81	1	I/O	Port 81: I/O port
TI5		Input	Timer output 5: Timer 4 count/capture trigger signal input
INT5		Input	Interrupt request pin 5: Interrupt request pin with programmable rising edge.
P82	1	I/O	Port 82: I/O port
T04		Output	Timer output 4: Timer 4 output pin
P83	1	I/O	Port 83: I/O port
T05		Output	Timer output 5: Timer 4 output pin

Note: Pull-up/pull-down resistor can be released from the pin by software.

Pin Name	Number of Pins	1/0	Functions
P84	1	I/O	Port 84: I/O port
TI6		Input	Timer input 6: Timer 5 count/capture trigger signal input
INT6		Input	Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
P85	1	I/O	Port 85: I/O port
TI7		Input	Timer output 7: Timer 5 count/capture trigger signal input
INT7		Input	Interrupt request pin 7: Interrupt request pin with rising edge
P86	1	I/O	Port 86: I/O port
T06		Output	Timer output 6: Timer 5 output pin
P87	1	I/O	Port 87: I/O port
INTO		Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge
P90	1	I/O	Port 90: I/O port
TXD0		Output	Serial send data 0
P91	1	I/O	Port 91: I/O port
RXD0		Input	Serial receive data 0
P92	1	I/O	Port 92: I/O port
CTS0		Input	Serial data send enable 0 (Clear to Send)
P93	1	I/O	Port 93I/O port
TXD1		Output	Serial send data 1
P94	1	I/O	Port 94: I/O port
RXD1		Input	Serial receive data 1
P95	1	1/0	Port 95: I/O port
SCLK1		1/0	Serial clock I/O 1
PA0	1	I/O	Port A0: I/O port
DREQ0		Input	DMA request 0: DMA channel 0 request pin
PA1	1	I/O	Port A1: I/O port
DACK0		Output	DMA acknowledge 0: DMA channel 0 acknowledge signal
PA2	1	I/O	Port A2: I/O port
DREQ1		Input	DMA request 1 : DMA channel 1 request pin
PA3	1	I/O	Port A3: I/O port
DACK1		Output	DMA acknowledge 1: DMA channel 1 acknowledge signal
PA4	1	I/O	Port A4: I/O port
DREQ2		Input	DMA request 2: DMA channel 2 request pin

Note: Pull-up/pull-down resistor can be released from the pin by software.

Pin Name	Number of Pins	1/0	Functions
PA5 DACK2	1	I/O Output	Port A5: I/O port DMA acknowledge 2: DMA channel 2 acknowledge signal
PA6 DREQ3	1	I/O Input	Port A6: I/O port DMA request 3: DMA channel 3 request pin
PA7 DACK3	1	I/O Output	Port A7: I/O port DMA acknowledge 3: DMA channel 3 acknowledge signal
PB0 AEN	1	I/O Output	Port B0: I/O port Address enable: Enabled when internal DMA has bus mastership
PB1 EOP	1	I/O Input	Port B1: I/O port DMA acknowledge 3: DMA channel 3 acknowledge signal
PB2 TC	1	I/O Output	Port B2: I/O port Terminal count: Output signal to indicate transfer completion.
PB3 IORD	1	I/O Output	Port B3: I/O port I/O read signal: Strobe signal for reading external I/O when DMA is in signal address mode.
PB4 IOWR	1	I/O Output	Port B4: I/O port I/O write signal: Strobe signal for writing external I/O when DMA is in signal address mode.
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program.
CLK	1	Output	Clock output : Outputs X1 + 4 Clock. Pulled-up during reset.
AM8/16	1	Input	Address mode: Selects external Data Bus width. "0" should be input with fixed 16 bit Bus width or 16 bit Bus interfaced width 8bit Bus. "1" should be input with fixed 8 bit Bus width.
CSEL	1	Input	CPU slect: Signal used for emulation. Fix either "0" or "1".
ALE	1	Output	Addres latch enable
RESET	1	Input	Reset:: Initializes LSI. (With pull-up resistor)
X1/X2	2	1/0	Oscillator connecting pin
VCC	2		Power supply pin (+5V)pin
VSS	2		GND pin (OV)

Note: Pull-up/pull-down resistor can be released from the pin by software.

3. Operation

This section describes in blocks the functions and basic operations of the TMP96C081F device.

Check the chapter Guidelines and Restrictions for proper care of the device.

3.1 CPU

The TMP96C081F device has a built-in high-performance 16bit CPU. (For CPU operation, see TLCS-900 CPU in the book Core Manual Architecture User Manual.)

This section describes CPU functions unique to TMP96C081F that are not described in the previous section.

3.1.1 Reset

To reset the TMP96C081F, the RESET input must be kept at 0 for at least 10 system clocks (10 states: 1μ s with a 20MHz system clock) within an operating voltage range and with a stable oscillation.

When reset is accepted, the CPU sets as follows:

- Program counter (PC) to 8000H.
- Stack pointer (XSP) for system mode to 100H.
- SYSM bit of status register (SR) to 1. (Sets to system mode.)
- IFF2 to 0 bits of status register to 111. (Sets mask register to interrupt level 7.)
- MAX bit of status register to 0. (Sets to minimum mode.)
- Bits RFP2 to 0 of status register to 000. (Sets register banks to 0.)

When reset is released, instruction execution starts from address 8000H. CPU internal registers other than the above are not changed.

When reset is accepted, processing for built-in I/Os, ports, and other pins is as follows:

- Initializes built-in I/O registers as per specifications.
- Sets port pins (including pins also used as built-in I/Os) to general-purpose input/output port mode (sets I/O ports to input ports).
- Sets the WDTOUT pin to 0. (Watchdog timer is set to enable after reset.)
- Pulls up the CLK pin to 1.
- Sets the ALE pin to 0.

3.2 Memory Map

Figure 3.2 is a memory map of the TMP96C081F.

Note: The start address after reset is 8000H. Resetting sets the stack pointer (XSP) on the system mode side to 100H.

Figure 3.2. Memory Map

3.3 Interrupts

TLCS-900 interrupts are controlled by the CPU interrupt mask flip-flop (IFF2 to 0) and the built-in interrupt controller.

The TMP96C081F has altogether the following 27 interrupt sources:

- Interrupts from the CPU^{...}3 (Software interrupts, privileged violations, and Illegal (undefined) instruction execution)
- Interrupts from external pins (NMI, INTO, and INT4 to 7)…6
- Interrupts from built-in I/Os…18

A fixed individual interrupt vector number is assigned to each interrupt source; six levels of priority (variable) can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority of 7.

When an interrupt is generated, the interrupt controller sends the value of the priority of the interrupt source to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the value of the highest priority (7 for non-maskable interrupts is the highest) to the CPU.

The CPU compares the value of the priority sent with the value in the CPU interrupt mask register (IFF2 to 0). If the value is greater than that of the CPU interrupt mask register, the interrupt is accepted. The value in the CPU interrupt mask register (IFF2 to 0) can be changed using the El instruction (contents of the El num/IFF <2:0> = num). For example, programming El 3 enables acceptance of maskable interrupts

with a priority of 3 or greater, and non-maskable interrupts which are set in the interrupt controller. The DI instruction (IFF <2:0> = 7) operates in the same way as the EI 7 instruction. Since the priority values for maskable interrupts are 0 to 6, the DI instruction is used to disable maskable interrupts to be accepted. The EI instruction becomes effective immediately after execution. (With the TLCS-90, the EI instruction.)

In addition to the general-purpose interrupt processing mode described above, there is also a high-speed micro DMA processing mode. High-speed micro DMA is a mode used by the CPU to automatically transfer byte or word data. It enables the CPU to process interrupts such as data saves to built-in I/Os at high speed.

Figure 3.3 (1) is a flowchart showing overall interrupt processing.

TMP96C081F

Figure 3.3 (1). Interrupt Processing Flowchart

3.3.1 General-Purpose Interrupt Processing

When accepting an interrupt, the CPU operates as follows:

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same level is generated simultaneously, the interrupt controller generates interrupt vectors in accordance with the default priority (which is fixed as follows: the smaller the vector value, the higher the priority), then clears the interrupt request.
- (2) The CPU pushes the program counter and the status register to the system stack area (area indicated by the system mode stack pointer).
- (3) The CPU sets a value in the CPU interrupt mask register <IFF2 to 0> that is higher by 1 than the value of the accepted interrupt level. However, if the value is 7, 7 is set without an increment.
- (4) The CPU sets the <SYSM> flag of the status register to 1 and enters the system mode.
- (5) The CPU jumps to address 8000H + interrupt vector, then starts the interrupt processing routine.

The table below shows the number of execution states for the above processing times.

Bus Width of Stack Area	Interrupt Processing State Number				
BUS WIGHT OF STACK Area	MAX mode	Min mode			
8-bit	23	19			
16-bit	17	15			

To return to the main routine after completion of the interrupt processing, the RETI instruction is usually used. Executing this instruction restores the contents of the program counter and the status registers.

Though acceptance of non-maskable interrupts cannot be disabled by program, acceptance of maskable interrupts can. A priority can be set for each source of maskable interrupts. The CPU accepts an interrupt request with a priority higher than the value in the CPU mask register <IFF2 to 0>. The CPU mask register <IFF2 to 0> is set to a value higher by 1 than the priority of the accepted interrupt. Thus, if an interrupt with a level higher than the interrupt being processed is generated, the CPU accepts the interrupt with the higher level, causing interrupt processing to nest.

The interrupt request with a priority higher than the accepted now interrupt during the CPU is processed above (1) ~ (5) is accepted before the 1'st instruction in the interrupt processing routine, causing interrupt processing to nest. This is the same case of over lapped each Non-maskable interrupt (level "7").) The CPU does not accept an interrupt request of the same level as that of the interrupt being processed.

Resetting initializes the CPU mask registers <IFF2 to 0> to 7; therefore, maskable interrupts are disabled.

The addresses 008000H to 0081FFH (512 bytes) of the TLCS-900 are assigned for interrupt processing entry area.

Default Priority	Туре		Interrupt Source	Vector Value "V"	Start Address	High-Speed Micro DMA Start Vector
1		Reset	, or SW10 instruction	0 0 0 0 H	8000H	-
2		INTPREV:	Privileged violation, or SWI1	0010H	8010H	-
3		INTUNDEF:	Illegal instruction, or SWI2	0020H	8020H	-
4		SWI 3 Instruction		0030H	8030H	-
5	Non-	SWI 4 Instruction		0040H	8040H	-
6	Maskable	SWI 5 Instruction		0050H	8050H	-
7		SWI 6 Instruction		0060H	8060H	
8		SWI 7 Instruction		0070H	8070H	
9		NMI Pin		0080H	8080H	08H
10		INTWD:	Watchdog timer	0090H	8090H	09H
11		INTO pin		00А0Н	80 A 0 H	0AH
12		INT4 pin		0 0 B 0 H	80B0H	0BH
13		INT5 pin		00C0H	80C0H	OCH
14		INT6 pin		0 0 D 0 H	80D0H	ODH
15		INT7 pin		0 0 E 0 H	80E0H	0EH
32		INTAD:	A/D conversion completion	0 0 F 0 H	80F0H	0FH
16		INTTO:	8-bit timer 0	0100H	8100H	10H
17		INTT1:	8-bit timer 1	0110H	8110H	11H
18		INTT2:	8-bit timer 2/PWM0	0120H	8120H	12H
19		INTT3:	8-bit timer 3/PWM1	0130H	8130H	13H
20	Martakla	INTTR4:	16-bit timer 4 (TREG4)	0140H	8140H	14H
21	Maskable	INTTR5:	16-bit timer 4 (TREG5)	0150H	8150H	15H
22		INTTR6:	16-bit timer 5 (TREG6)	0160H	8160H	16H
23		INTTR7:	16-bit timer 5 (TREG7)	0170H	8170H	17H
24		INTRX0:	Serial receive (Channel.0)	0180H	8180H	18H
25		INTTX0:	Serial send (Channel.0)	0190H	8190H	19H
26		INTRX1:	Serial receive (Channel.1)	0 1 A 0 H	81A0H	1AH
27		INTTX1:	Serial send (Channel.1)	0 1 B 0 H	81B0H	1BH
28		DMA0:	DMA channel 0	01 C O H	81C0H	1CH
29		DMA1:	DMA channel 1	0 1 D 0 H	81D0H	1DH
30		DMA2:	DMA channel 2	0 1 E 0 H	8 1 E O H	1EH
31		DMA3:	DMA channel 3	0 1 F 0 H	81F0H	1FH

Table 3.3 (1) TMP96C081F Interrupt Table

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TMP96C081F

3.3.2 High-Speed Micro DMA

In addition to the conventional interrupt processing, the TLCS-900 also has a high-speed micro DMA function. When an interrupt is accepted, in addition to an interrupt vector, the CPU receives data indicating whether processing is high-speed micro DMA mode or general-purpose interrupt. If high-speed micro DMA mode is requested, the CPU performs high-speed micro DMA processing.

The TLCS-900 can process at very high speed compared with the TLCS-90 micro DMA because it has transfer parameters in dedicated registers in the CPU. Since those dedicated registers are assigned as CPU control registers, they can only be accessed by the LDC (privileged) instruction.

(1) High-Speed Micro DMA Operation

High-speed micro DMA operation starts when the accepted interrupt vector value matches the micro DMA start vector value set in the interrupt controller. The high-speed micro DMA has four channels so that it can be set for up to four types of interrupt source.

When a high-speed micro DMA interrupt is accepted, data is automatically transferred from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented. If the value in the counter after decrementing is other than 0, high-speed micro DMA processing is completed. If the value in the counter after decrementing is 0, general-purpose interrupt processing is performed. In read-only mode, which is provided for DRAM refresh, the value in the counter is ignored and dummy read is repeated.

The 32-bit control registers are used for setting transfer

source/destination addresses. However, the TLCS-900 has only 24 address pins for output. A 16M-byte space is available for the high-speed micro DMA. Also in normal mode operation, the all address space (in other words, the space for system mode which is set by the CS/WAIT controller) can be accessed by high-speed micro DMA processing.

There are two data transfer modes: one-byte mode and one-word mode. Incrementing, decrementing, and fixing the transfer source/destination address after transfer can be done in both modes. Therefore data can easily be transferred between I/O and memory and between I/Os. For details of transfer modes, see the description of transfer mode registers.

The transfer counter has 16 bits, so up to 65536 transfers (the maximum when the initial value of the transfer counter is 0000H) can be performed for one interrupt source by highspeed micro DMA processing.

After transferring data using the high-speed micro DMA and the transfer counter has been decremented to 0, the program goes to a general-purpose interrupt processing. Note that after interrupt processing, when an interrupt for the same channel is generated, if the system requires resetting the transfer counter starts from 65536.

For the source and destination address registers, please reset the register number when specifying a particular register number. Otherwise, the register number is counted in order.

Interrupt sources processed by high-speed micro DMA processing are those with the high-speed micro DMA start vectors listed in Table 3.3 (1).

The following timing chart shows a high-speed micro DMA cycle of the transfer address in increment mode (all modes except the Read-only mode operate similarly). (Condition: MIN mode, 16-bit Bus width for 16M Byte, 0 wait)

area is 8bit (Note2) This is added 2 states the case of the bus width of destination address area is 8bit (Note3) This may be a dummy cycle with instruction queue buffer. (Note4) This is added 2 states the case of the bus width of stack address area is 8bit

(2) Register Configuration (CPU Control Register)

This Control Register cannot be set only "LDC cr, r" instruction.

(3) Transfer Mode Register Details

(DN	MAN	0~3)		
0	0 0	0	Mode Note : When specifying values for this register, set the upper 4 bits to 0.	
	ſ	•	Z: 0 = byte transfer, 1 = word transfer	cution time (Min.)
0	0 0) Z	Transfer destination address INC mode for I/O to memory (DMADn +) \leftarrow (DMASn) DMACn \leftarrow DMACn - 1 if DMACn = 0 then INT.	16 states (1.6μs)
0	0 1	ΙZ	Transfer destination address DEC mode for I/O to memory $(DMADn -) \leftarrow (DMASn)$ DMACn $\leftarrow DMACn - 1$ if $DMACn = 0$ then INT.	16 states (1.6μs)
0	1 0) Z	Transfer source address INC mode for I/O to memory (DMADn) ← (DMASn +) DMACn←DMACn - 1 if DMACn = 0 then INT.	16 states (1.6µs)
0	1 1	Z	Transfer source address DEC mode for I/O to memory (DMADn) ← (DMASn –) DMACn←DMACn – 1 if DMACn = 0 then INT.	16 states (1.6µs)
1 (0 0) Z	Fixed address mode I/O to I/O (DMADn) ← (DMASn) DMACn←DMACn − 1 if DMACn = 0 then INT.	16 states (1.6µs)
1 (0 1	0	Read-only mode for DRAM refresh Dummy← (DMASn) ; Reads 4 bytes. DMASn←DMASn + 4 ; Increments lower word only. DMACn←DMACn – 1	14 states (1.4µs)
1 (0 1	1	Counter mode for interrupt counter DMASn←DMASn + 1 DMACn←DMACn - 1 if DMACn = 0 then INT.	11 states (1.1µs)
			(1 states = 100	ins @ 20MHz)

Note :

n : corresponds to high-speed µDMA channels 0-3.

1000

DMADn + / DMASn + : Post-increment (Increments register value after transfer.) DMADn - / DMASn - : Post-decrement (Decrement register value after transfer.)

Excution time : Indicates when the destination/source address space is 16-bit bus width and is set to 0 WAIT.

All address space which is can be accessed by highspeed μ DMA is the space for system mode, specified chip select/wait controller. Do not use undefined codes for transfer mode control.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(4) Example for High-Speed Micro DMA Operation

< Example for usage of read only mode (DRAM refresh)>

When the hardware configuration is as follows: DRAM mapping size: = 1MB DRAM data bus size: = 8 bits DRAM mapping address range: = 1000000H to 1FFFFFH Set the following registers first; refresh is performed auto-

① Register initial value setting

LD LDC	XIX, 1000000H DMASO, XIX	mapping start address
LD	A, 00001010B	
LDC	DMAMO, A	read only mode (for DRAM
		refresh

② Timer setting

matically.

Set the timers so that interrupts are generated at intervals of $62.5\mu s$ or less.

③ Interrupt controller setting

Set the timer interrupt above level at the other desired interrupt request level. Write the above timer interrupt vector value in the micro DMA start vector register, DMAOV.

(Operation description)

The DRAM data bus is in an 8-bit bus and the highspeed μ DMA is in read-only mode (4 bytes), so refresh is performed for four times per interrupt. When a 512 refresh/8ms DRAM is connected, DRAM refresh is performed sufficiently if the high-speed μ DMA is started every 15.625 μ s x 4 = 62.4 μ s or less, since the timing is 15.625 μ s/refresh.

(Overhead)

Each processing time by the high-speed μ DMA is 1.8µs (18 states) @ 20MHz with an 8-bit data bus. In the above example, the micro DMA is started every 62.5µs, 1.8µs/62.5µs = 0.0288; thus, the overhead is 2.88%.

(Note)

Please be aware that a refresh is ineffective at a bus release which an interrupt is in a wait state, because the high-speed micro DMA is started by an interrupt.

3.3.3 Interrupt Controller

Figure 3.3.3 (1) is a block diagram of the interrupt circuits. The left half of the diagram shows the interrupt controller; the right half includes the CPU interrupt request signal circuit and the HALT release signal circuit.

Each interrupt channel (total of 20 channels) in the interrupt controller has an interrupt request flip-flop, interrupt priority setting register, and a register for storing the high-speed micro DMA start vector. The interrupt request flip-flop is used to latch interrupt requests from peripheral devices. The flip-flop is cleared to 0 at reset, when the CPU reads the interrupt channel vector after the acceptance of interrupt, or when the CPU executes an instruction that clears the interrupt of that channel (writes 0 in the clear bit of the interrupt priority setting register).

For example, to clear the INTO interrupt request, set the register after the DI instruction as follows.

INTEOAD ---- 0 --- Zero-clears the INTO Flip Flop.

The status of the interrupt request flip-flop is detected by reading the clear bit. Detects whether there is an interrupt request for an interrupt channel.

The interrupt priority can be set by writing the priority in the interrupt priority setting register (e.g., INTEOAD, INTE45, etc.) provided for each interrupt source. Interrupt levels to be set are from 1 to 6. Writing 0 or 7 as the interrupt priority disables the corresponding interrupt request. The priority of the non-maskable interrupt (NMI pin, watchdog timer, etc.) is fixed to 7. If interrupt requests with the same interrupt level are generated simultaneously, interrupts are accepted in accordance with the default priority (the smaller the vector value, the higher the priority).

The interrupt controller sends the interrupt request with the highest priority among the simultaneous interrupts and its vector address to the CPU. The CPU compares the priority value <|FF2 to 0> set in the Status Register by the interrupt request signal with the priority value sent; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 in the CPU SR <|FF2 to 0>. Interrupt requests where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine. When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR <|FF2 to 0>.

The interrupt controller also has four registers used to store the high-speed other micro DMA start vector. These are I/ O registers; unlike other DMA registers (DMAS, DMAD, DMAM, and DMAC), they can be accessed in either normal or system mode. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.3 (1)), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to the micro DMA processing.

Figure 3.3.3 (1). Block Diagram of Interrupt Controller

(1) Interrupt Priority Setting Register

					(R	ead-modif	y-write pr	ohibited.)	
Symbol	Address	7	6 5	4	3	2	1	0]
			INTAD			IN	IT0		←Interrupt source
INTEOAD	70H		DM2 : IADM1	: IADM0	10C		: I0M1	: IOM0	←bit Symbol
		R/W :	w		R/W		W]←Read/Write
		0 :	0 : 0	: 0	0	: 0	: 0	: 0	←After reset
			INT5			IN	IT4		
INTE45	71H	15C I	5M2 : 15M1	: I5M0	14C	: I4M2	14M1	: I4M0]
	, , ,	R/W	W		R/W	1	w		1
		0 :	0 : 0	0	0	: 0	: 0	: 0	
			INT7			IN	IT6		
INTE67	72H	17C 17	7M2 : 17M1	: I7M0	16C	16M2	16M1	: I6M0	
	7211	R/W	w		R/W	1	w]
		0 :	0 0	: 0	0	: 0	: 0	: 0	
		11	NTT1 (Timer1)			INTTO (Timer0)		
INTET10	73H	IT1C IT	1M2 IT1M1	IT1M0	ITOC	ITOM2	IT0M1	ITOMO	
	730	R/W :	W		R/W		W		1
		0 :	0 0	: 0	0	0	0	: 0	
		INTT	3 (Timer3/PWM	1)		NTT2 (Tim		0)	
INTERNALIO	74.1		V1M2 IPW1M1					IPW0M0	
INTEPW10	74H	R/W	W		R/W	1	W		
		0		: 0	0	0	0	: 0	
			TTR5 (TREG5)				(TREG4)		
I			5M2 IT5M1	IT5M0	IT4C		IT4M1	IT4M0	
INTET54	75H	R/W	W	1101010	R/W		W		
		0	0 0	0	0	0	0	0	
			TTR7 (TREG7)	·			(TREG6)		
			7M2 IT7M1	17740	IT6C		IT6M1	ITEMO	
INTET76	76H	R/W	W	: 1171010	R/W	110112	W	110000	
		0	0 : 0	0	0	0	0	0	
		v :	INTTXO	<u> </u>			RXO	······	
		ITX0C ITX	OM2 ITXOM1	TYOMO	IRXOC	IRX0M2		IRYOMO	
INTESO	77H	R/W	W	TIXONO	R/W	INADIVIZ	W		
			0 0	0	0	0	0	0	
		V	INTTX1	· · ·	V		RX1	· · · · · ·	
		ITX1C ITX	1M2 ITX1M1	1TY 1640	IRX1C	IRX1M2		1PY 1840	
INTES1	78H	R/W	W		R/W	100 1012	W	: INA TIVIO	
			0 0	0	0	0	. 0	: 0	
			DMA1	·	¥		140	·	
		ID1C ID	1M2 ID1M1	10100	IDOC	: IDOM2		: 100040	
INTOMAO	79H	R/W	W	. 1011410	R/W	: 1001012	W	. 1001010	
	1		0 0	0	0	: 0	0	: 0	
		0	DMA3	· •	V		1A2	· •	
		ID3C ID		103840	ID2C	: ID2M2		: 102440	
INTDMA1	7AH		3M2 : ID3M1	: 1031010		IDZIVIZ	W	1021010	
		R/W		: 0	R/W	0		0	
L		0	0 0	: 0	0	: <u>0</u>	0	: 0	
		L			L	I			
			r						
ixxM2	IxxM1	lxxM0		Function	(Write)				
0	0	0	Prohibits inte	errupt requ	est				
0	ō	1	Sets interrup			*			
o	1	ó	Sets interrup						
ő	1	l i	Sets interrup						
1	0	l o	Sets interrup						
1	0	1	Sets interrup						
1	1	6	Sets interrup						
	1	1				•			
1	1	1	Prohibits inte	errupt requ	est.		J		
IxxC		Eurostine /P-	ad)	T	Eunetia	n (Mrite)		٦	
IXXC		Function (Re	ao)	L	runctio	n (Write)		-	
0	Indica	tes no interru	ot request.	Clear	s interru	t request	flag.	1	
								-1	
1	Indica	tes interrupt r	equest.	-	Don	't care	••		
				·····					

(Read-modify-write prohibited.)

(2) External Interrupt Control

Interrupt Input Mode Control Register

Setting of External Interrupt Pin Functions

Interrupt	Pin name	Mode		Setting method		
		7	Falling edge	IIMC <nmiree> = 0</nmiree>		
NMI			 Rising and falling edges 	IIMC <nmiree> = 1</nmiree>		
		ſ	Rising edge	IIMC <i0le> = 0, <i0ie> = 1</i0ie></i0le>		
INTO PE	P87	7•2	Level	IIMC <iole> = 1, <ioie> = 1</ioie></iole>		
	200	ſ	Rising edge	T4MOC <cap12m1,0> = 0,0 or 0,1 or 1,1</cap12m1,0>		
INT4	P80	_ ب _	Falling edge	T4MOD <cap12m1, 0=""> = 1, 0</cap12m1,>		
INT5	P81	<u> </u>	Rising edge			
		ſ	Rising edge	T5MOC <cap34m1,0> = 0,0 or 0,1 or 1,1</cap34m1,0>		
INT6	P84	٦_	Falling edge	T5MOD <cap34m1, 0=""> = 1, 0</cap34m1,>		
INT7	P85	<u>_</u>	Rising edge			

TMP96C081F

(3) High-Speed Micro DMA Start Vector

When the CPU reads the interrupt vector after accepting an interrupt, it simultaneously compares the interrupt vector with each channel's micro DMA start vector (bits 4 to 8 of the interrupt vector). When both match, the interrupt is processed in

micro DMA mode for the channel whose value matched. If the high-speed μ DMA vector matches more than one channel, the channel with the lower channel number has a higher priority.

	Micro DMA	0 Start Vec	tor				(read-	modify-write is r	not possible.)	
		7	6	5	4	3	2	1	0	
DMAOV	bit Symbol		\sim	\sim	DMA0V8	DMA0V7	DMA0V6	DMA0V5	DMA0V4	
(007CH)	Read/Write		·			·	W			
	After reset				0	0	0	0	0	
	Micro DMA	1 Start Vec	tor	- .			(read-r	nodify-write is n	ot possible.)	
		7	6	5	4	3	2	1	0	
DMA1V	bit Symbol	\sim	\sim	\sim	DMA1V8	DMA1V7	DMA1V6	DMA1V5	DMA1V4	
(007DH)	Read/Write				×	W				
	After reset				0	0	0	0	0	
	Micro DMA	2 Start Vec	tor				(read-r	nodify-write is n	ot possible.)	
		7	6	5	4	3	2	1	0	
DMA2V	bit Symbol	\sim	\sim	\sim	DMA2V8	DMA2V7	DMA2V6	DMA2V5	DMA2V4	
(007EH)	Read/Write						W			
	After reset				0	0	0	0	0	
	Micro DMA	3 Start Vec	tor	······································			(read-r	nodify-write is n	ot possible.)	
		7	6	5	4	3	2	1	0	
DMA3V	bit Symbol	\sim	\sim	\sim	DMA3V8	DMA3V7	DMA3V6	DMA3V5	DMA3V4	
(007FH)	Read/Write		·····	•			W			
	After reset				0	0	0	0	0	

(4) Notes

The instruction execution unit and the bus interface unit of this CPU operate independently of each other. Therefore, if the instruction used to clear an interrupt request flag of an interrupt is fetched before the interrupt is generated, it is possible that the CPU might execute the fetched instruction to clear the interrupt request flag while reading the interrupt vector after accepting the interrupt. If so, the CPU would read the default vector 00A0 and start the interrupt processing from the address 80A0. To avoid this, make sure that the instruction used to clear the interrupt request flag comes after the DI instruction.

3.4 Standby Function

When the HALT instruction is executed, the TMP96C081F enters RUN, IDLE, or STOP mode depending on the contents of the HALT mode setting register.

- (1) RUN: Only the CPU halts; power consumption remains unchanged.
- (2) IDLE: Only the built-in oscillator operates, while all other built-in circuits halt. Power consumption is

reduced to 1/10 or less than that during normal operation.

(3) STOP: All internal circuits including the built-in oscillator halt. This greatly reduces power consumption.

The states of the port pins in STOP mode can be set as listed in Table 3.4 (1) using the I/O register WDMOD <DRVE> bit.

		7	6	5	4	3	2	1	0
WDMOD (005CH)	Bit Symbol	WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTM0	RESCR	DRVE
	Read/Write	R/W							
	After reset	1	0	0	0	0	0	0	0
	Function	1 : WDT Enable	01 : : 10 : 11 :	2 ¹⁶ / fc 2 ¹⁸ / fc 2 ²⁰ / fc 2 ²² / fc ion time	Warming up time 0 : 2 ¹⁶ /fc 1 : 2 ¹⁸ /fc	Standby mode 00 : RUN 01 : STOP 10 : IDLE 11 : Don't care	mode mode mode	1: Connects watchdog timer output to RESET pin internally.	1: Drive pin even in STOP mode.

When STOP mode is released by other than a reset, the system clock output starts after allowing some time for warming up set by the warming-up counter fro stabilizing the bulit-in oscillator. (same the external oscillator) To release by a reset, it is necessary to allow a reset time long enough to allow the oscillator to stabilize.

To release standby mode, a reset or an interrupt is used. To release IDLE or STOP mode, only an interrupt by the NMI or INTO pin, or a reset can be used. The details are described below:

Standby Release by Interrupt

Interrupt Level Standby Mode	Interrupt Mask (IFF2 to 0) ≤ Interrupt Request Level	Interrupt Mask (IFF2 to 0) > Interrupt Request Level
RUN	Can be released by any interrupt. After standby mode is released, interrupt processing starts. (Note 1)	Can only be released by INTO pin. Processing resumes from address next to HALT instruction.
IDLE	Can only be released by MMI or INTO pin. After standby mode is released, interrupt processing starts. (Note 1)	Ŷ
STOP	↑ (Note 1)	↑ (

Note 1: When releasing standby setting INTO to high level input mode, keep it high until interrupt processing starts. If the level drops to low, interrupt processing cannot be started correctly.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Pin Name	I/O	DRVE = 0	DRVE = 1
P0	Input mode/AD0 ~ 7 Output mode		– Output
P1	Input mode/AD8 ~ 15 Output mode /A8 ~ 15		_ Output
P2	Input mode Output mode/A0 ~ 7, A16 ~ 23	PD* PD*	PD* Output
RD, WR	Output	-	Output
P32 ~ P37	Input mode Output mode	PU PU	PU Output
P40, P41, P43, P44	Input mode Output mode	PU* PU*	PU* Output
P42 (CS2/CAS2)	Input mode Output mode	PD* PD*	PD* Output
P50 ~ P53	Input	-	-
P54	Input mode Output mode	Input –	Input Ouput
P60 ~ P63	Input	-	Input
P64	Input mode Output mode	Input ·	Input Output
P7	Input mode Output mode		Input Output
P80 ~ P83	Input mode Output mode		Input Output
P86 (NMI) P87 (INTO)	Input mode Output mode	tuteri -	input Output
P90	Input mode Output mode	РU* РU*	PU* Output
P91 ~ P93	Input mode Output mode		Input Output
PA	Input mode Output mode		Input Output
РВ	Input mode Output mode		Input Output
WDTOUT	Output	Output	Output
ALE	Output	"0"	"0"

Table 3. 4 (1) Pin States in STOP Mode (1/2)

Input for input mode/input pin is invalid; output mode/output pin is at high impedance.

Input enable state

Input: Input gate in operation. Fix input voltage to 0 or 1 so that input pin stays constant.

Output: Output state

PU: Programmable pull-up pin. Fix the pin to avoid through current since the input gate operates when a pull-up resistor is not set.

PD: Programmable pull-down pin. Fix the pin like a pull-up pin when a pull-down resistor is not set.

*: Input gate disable state. No through current even if the pin is set to high impedance.

Note: Port registers are used for controlling programmable pull-up/pull-down.

Pin Name	I/O	DRVE = 0	DRVE = 1
CLK	Output	-	"1"
RESET	Input	hpai	ingul
AM8/16	Input	Input	Input
X1	Input	-	-
X2	Output	"1"	"1"
D - A0 D - A1	Output	0V	٥v

Table 3. 4 (1) Pin States in STOP Mode (1/2)

Input for input mode/input pin is invalid; output mode/output pin is at high impedance.

Input enable state

Input: Input enable state Input: Input gate in operation. Fix input voltage to 0 or 1 so that input pin stays constant.

Output: Output state

-1

PU: Programmable pull-up pin. Fix the pin to avoid through current since the input gate operates when a pull-up resistor is not set.

PD: Programmable pull-down pin. Fix the pin like a pull-up pin when a pull-down resistor is not set.

*: Input gate disable state. No through current even if the pin is set to high impedance.

Note: Port registers are used for controlling programmable pull-up/pull-down.

3.5 Functions of Ports

The TMP96C081F has 64 bits for I/O ports. These port pins have I/O functions for the built-in CPU and

internal I/Os as well as general-purpose I/O port functions. Table 3.5 (1) lists the function of each port pin.

			Table 3.5 (1)	Func	(R: tions of Ports	$ \ \uparrow = \mbox{With programmable pull-up resistor} \\ \ \downarrow = \mbox{With programmable pull-down resistor} $
Port Name	Pin Name	Number of Pins	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port2	P20 to P27	8	1/0	Ļ	Bit	A0 to A/A16 to A23
Port3	P32 P33 P34 P35 P36 P37	1 1 1 1 1 1	I/O I/O I/O I/O I/O I/O	↑ ↑ ↑ ↑ ↑	Bit Bit Bit Bit Bit Bit	HWR WAIT BUSRQ BUSAK R/W RAS
Port4	P40 P41 P42 P43 P44	1 1 1 1 1	1/0 1/0 1/0 1/0 1/0	↑ ↑ ↑ ↑	Bit Bit Bit Bit Bit	CS0/CAS0 CS1/CAS1 CS2/CAS2 CS3/CAS3 CS4/CAS4
Port5	P50 to P55	6	Input	-	(Fixed)	ANO ~ AN5
Port6	P60 to P67	8	I/O	↑	Bit	PG00 ~ PG03, PG10 ~ PG13
Port7	P70 P71 P72 P73	1 1 1	1/0 1/0 1/0 1/0		Bít Bit Bít Bít	TI0 TO1 TO2 TO3
Port8	P80 P81 P82 P83 P84 P85 P86 P87	1 1 1 1 1 1 1 1	1/0 1/0 1/0 1/0 1/0 1/0 1/0		Bit Bit Bit Bit Bit Bit Bit Bit	TI4/INT4 TI5/INT5 TO4 T05 TI6/INT6 TI7/INT7 TO6 INTO
Port9	P90 P91 P92 P93 P94 P95	1 1 1 1 1 1	1/0 1/0 1/0 1/0 1/0 1/0	↑ - - - -	Bit Bit Bit Bit Bit Bit	TxD0 RxD0 CTS0/SCLK0 TxD1 RxD1 SCLK1
PortA	PA0 ~ PA7	8	1/0	-	Bit	DREQ0 ~ 3, DACK0 ~ 3
PortB	PA0 PA1 PA2 PA3 PA4	1 1 1 1	I/O I/O I/O I/O I/O	- - - -	Bit Bit Bit Bit Bit	AEN EOP TC IORD IOWR

Resetting makes the port pins listed below function as general-purpose I/O ports.

I/O pins programmable for input or output are set to input ports.

To set port pins for built-in functions, a program is required.

* Note about the Bus Release and programmable pull-up/ down I/O ports.

When the bus is released ($\overline{BUSAK} = "0"$), the output

buffer for AD0 - AD15, A0 - A23, control signal (\overline{RD} , \overline{WR} , HWR, R/W, RAS, CS0/CAS0 - CS4/CAS4) is off and their state become high-impedance.

However, the output of built-in programmable pull up/ down resistors are kept before the bus is released. These programmable pull up/down resistors can be selected ON/OFF by programmable when they are used as the input ports.

They are used as the output ports, they cannot be selected ON/OFF by programmable.

The following in the pin state when the bus is released (BUSAK = "0").

Pin Name	Pin state at bus release					
riii Naine	Used as the port	Used as the function				
P00 to P07 AD8 to 15/A8 to 15	-	becomes high-impedance (HZ).				
RD WR	-	becomes high-impedance (HZ); ("Hz" status after these pins are driven to high level.))				
P32 (HWR) P37 (RAS)	The state is not changed. (does not become high-impedance (HZ).)	The output buffer is "OFF". These pins are added to theinternal resistor of pull-up. I t's no relation for the value of output latch.				
P36 (R/W) P40 (CS0/CAS0) P41 (CS1/CAS1) P42 (CS3/CAS3) P42 (CS4/CAS4)	The state is not changed. (does not become high-impedance (HZ).)	The output buffer is "OFF". These pins are added to theinternal resistor of pull-up. It's no relation for the value of output latch.				
P42 (CS2/CAS2)	The state is not changed. (does not become high-impedance (HZ).)	The output buffer is "OFF". These pins are added to theinternal resistor of pull-up. I t's no relation for the value of output latch.				
P20 - P27 (A16 - A23)	The state is not changed. (does not become high-impedance (HZ).)	The output buffer is "OFF". These pins are added to theinternal resistor of pull-down. It's no relation for the value of output latch.				

The following are the example of the interface circuit about above the pins the case of the bus releasing function is used.

When bus is released, both internal memory and internal

I/O can be accessed. But the internal I/O continues to operate.

So, the watchdog timer also continues to run. Therefore, be careful about bus releasing time and set the detection time of WDT.

Example of the interface circuit (Using bus releasing function)

The above circuit is necessary to fix the signal level the case of the bus is released.

Resetting sets RD, WR to output, P40 P41, P43, P44 (CS0, CS1, CS3, CS4), P32 (HWR), P36 (R/W), P37 (RAS), and P35 (BUSAK) to input pull up resistor, P42 (CS2) and P20 ~ 27 (A16 ~ 23) to input with pull down resistor.

The above circuit is necessary to fix the signal level after reset because of the external pull up resistor collisions with the internal pull down resistor. The value of this external pull up resistor must be several $k\Omega$ (The value of the internal pull down resistor is about 50 ~ 150k Ω).

P20 ~ P27 (A16 ~ 23) also needs circuit like P42 ($\overline{CS2}$) to fix the signal level.

But for the P20 \sim P27 (A16 \sim 23) which does not have the means ("L" is active), add pull down directly like above circuit.

3.5.1 Port 2 (P20 - P27)

Port 2 is an 8-bit general-purpose I/O port. I/O can be set on bit basis using the control register P2CR and function register P2FC. Resetting resets all bits of output latch P2, control register P2CR and function register P2FC to 0. It also sets Port 2 to input mode and connects a pull-down resistor. To disconnect the pull-down resistor, write "1" in the output latch.

In addition to functioning as a general-purpose I/O port, Port 2 also functions as an address bus (A0 to 7 and A16 to 23).

Figure 3.5 (1). Port 2

TLCS-900 16-bit Microcontroller

				Por	t 2 Regi	ster						
	\square	7	6	5	4	3	2	1	0			
2	bit Symbol	P27	P26	P25	P24	P23	P22	P21	P20			
	Read/Write	R/W										
	After reset		Input mode (Output latch register is cleared to "0".)									
				Port 2 C	ontrol f	Register						
		7	6	5	4	3	2	1	0			
2CR	bit Symbol	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C			
0008H)	Read/Write	Ŵ										
	After reset	0	0	0	0	0	0	0	0			
	Function	<see below.="" p2fc="">></see>										
		7	6	5	4	3	2	1	0			
	_			Port 2 Fu	Inction	Register						
2FC	bit Symbol	P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F			
0009H)	Read/Write		W									
	After reset	0	0	0	0	0	0	0	0			
	Function	P2FC/P2CR = 00 : IN, 01 : OUT, 10 : A7-0, 11 : A23-16										
	L											
	Read-modify-w						> Port 2	function set	ting			
	prohibited for P2CR and P2FC					P2FC P2CR <p2xc></p2xc>	<p2xf></p2xf>	0	1			
						0		Input	addres (A7			
						1		Output	addres (A23			

Note : <P2XF> is bit X in register P2FC; <P2XC>; in register P2CR. To set as an address bus A23~16, set P2FC after setting P2CR.

Figure 3.5 (2). Registers for Port 2

3.5.2 Port 3 (P32 - P37)

Port 3 is a 6-bit general-purpose I/O port.

I/O is set using control register P3CR and function register P3FC. Resetting resets all bits of output latch P3; control register P3CR (bits 0 and 1 are unused), and function register P3FC to 0. Resetting sets P32 to P37 to input mode, and connects a pull-up resistor.

In addition to functioning as a general-purpose I/O port, Port 3 also functions as an I/O for the CPU's control/status signal.

Figure 3.5 (3). Port 3 (P32, P35, P36, P37)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Figure 3.5 (4). Port 3 (P33, P34)

Figure 3.5 (5). Registers for Port 3

3.5.3 Port 4 (P40 - P42)

Port 4 is a 5-bit is a general-purpose I/O port. I/O can be set on a bit basis using control register P4CR and function register. Resetting does the following:

- Sets the P40, P41, P43 and P44 output latch registers to 1.
- Resets all bits of the P42 output latch register, the control register P4CR, and the function register P4FC to 0.
- Sets P40, P41, P43 and P44 to input mode and connects a pull-up resistor.
- Sets P42 to input mode and connects a pull-down resistor.

To disconnect the resistors, write 0 in the output latch (for pull-down).

In addition to functioning as a general-purpose I/O port, Port 4 also functions as a chip select output signal (\overline{CSO} to $\overline{CS4}$ or $\overline{CAS0}$ to $\overline{CAS4}$).

TMP96C081F

Figure 3.5 (6). Port 4

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Note: To output chip select signal (CSO/CASO to CS4/CAS4), set the corresponding bits of the control register P4CR and the function register P4FC. The BOCSL, B1CSL, B2CSL, B3CSL and B4CSL registers of the chip select / wait controller are used to select the CS/CAS function.

Figure 3.5 (7). Registers for Port 4
3.5.6 Port 5 (P50 - P55)

Port 5 is a 6-bit input port, also used as an analog input pin.

Figure 3.5 (8). Port 5

Note) The input channel selection of A/D Converter is set by A/D Converter mode register ADMOD2.

Figure 3.5 (9). Registers for Port 5

3.5.5 Port 6 (P60 - P67)

Port 6 is an 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 6 as an input port. It also sets all bits of the output latch to 1. In addition to functioning as a general-purpose I/O port, Port 6 also functions as a pattern gener-

ator PG0/PG1 output/ PG0 is assigned to P60 to P63; PG1, to P64 to P67. Writing 1 in the corresponding bit of the port 6 function register (P6FC) enables PG output. Resetting resets the function register P6FC value to 0, and sets all bits to ports.

Figure 3.5 (10). Port 6

Port 6 Register

Figure 3.5 (11). Registers for Port 6

3.5.6 Port 7 (P70 - P73)

Port 7 is a 4-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 7 as an input port. In addition to functioning as a general-purpose I/O port, Port 70 also functions as an input clock pin TI0; Port 71 as an 8-bit timer output

(TO1), Port 72 as a PWM0 output (TO2), and Port 73 as a PWM1 output (TO3) pin. Writing 1 in the corresponding bit of the Port 7 function register (P7FC) enables output of the timer. Resetting resets the function register P7FC value to 0, and sets all bits to ports.

Figure 3.5 (12). Port 7

Note) P70/TIO pin does not have a register changing PORT/FUNCTION. For example, when it is used as an input port (P70), the input signal for P70 is inputted to 8 bit Timer 0 as a timer input 0(TIO).

Figure 3.5 (13). Registers for Port 7

MCU900-467

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

3.5.7 Port 8 (P80 - P87)

Port 8 is an 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port 8 as an input port. It also sets all bits of the output latch register P8 to 1. In addition to functioning as a general-purpose I/O port, Port 8 also functions as an input for 16-bit timer 4 and 5 clocks, an output for 16-bit timer F/F 4, 5, and 6 output, and an input for INTO. Writing 1 in the corresponding bit of the Port 8 function register (P8FC) enables those functions. Resetting resets the function register P8FC value to 0, and sets all bits to ports.

(1) P80 ~ P86

Figure 3.5 (14). Port 8 (P80 - P86)

(2) P87 (INTO)

Port 87 is a general-purpose I/O port, and also used as an INTO pin for external interrupt request input.

Figure 3.5 (15). Port 87

Note) P80/TI4, P81/TI5, P84/TI6, P85/TI7 pins do not have aregister changing PORT/FUNCTION. Therefore this is the same as P70/TI0 pin.

When P87/INTO pin is used as an INTO pin. set P8CR<P87C>to '0' and IIMC<IOIE>to'1'.

Figure 3.5 (16). Registers for Port 8

3.5.8 Port 9 (P90 - P95)

Port 9 is a 6-bit general-purpose I/O port. I/O can be set on bit basis.

Resetting sets Port 9 to an input port.

It also sets all bits of the output latch register to 1.

In addition to functioning as a general-purpose I/O port, Port 9 can also function as an I/O for serial channels 0 and 1. Writing 1 in the corresponding bit of the port 9 function register (P9FC) enables is function. Resetting resets the function register value to 0, and sets all bits to ports.

(1) P80 ~ P86 (TXD0/TXD1)

Ports 90 and 93 also function as serial channel TXD output pins in addition to I/O ports. They have a programmable open drain function.

Figure 3.5 (17). Ports 90 and 93

TMP96C081F

(2) Ports 91 and 94 (RXD0, 1)

Ports 91 and 94 are I/O ports, and also used as RXD input pins for serial channels.

(3) Port 92 (CTS/SCLK0)

Port 92 is an I/O port, and also used as $\overline{\text{CTS}}$ input pins for serial channels.

Figure 3.5 (19). Port 92

(4) Port 95 (SCLK1)

Port 95 is a general-purpose I/O port. It is also used as an SCLK I/O pin for serial channel 1.

Figure 3.5 (20). Port 95

TLCS-900 16-bit Microcontroller

Note : To set the TxD pin to open drain, write 1 in bit 0 (for TxD0 pin) or bit 1 (for TxD1 pin) of the ODE register.

P91/RXD0, P94/RXD1 pins do not have a register changing PORT/FUNCTION. Therefore this is the same as P70/TI0 pin.

Figure 3.7 (21). Registers for Port 9

3.5.9 Port A (PA0 - PA7)

Port A is an 8-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port A as an input port. It also sets all bits of the output latch register PA to 1. In addition to functioning as a general-purpose I/O port, Port A also functions as an I/O for DREQ/DACK of DMAC. Writing "1" in the corresponding bit of the Port A function register (PAFC) enables those functions. Resetting resets the function register PAFC value to "0", and sets all bits to ports. (1) Port A0, A2, A4, A6 (DREQ0, DREQ1, DREQ2, DREQ3)

Ports A0/A2/A4 and A6 also function as DREQ input pins of DMAC in addition to I/O ports.

Figure 3.5 (22). Ports A0, A2, A4, A6

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(2) Port A1, A3, A5, A7 (DACK0, DACK1, DACK2, DACK3)

Ports A1, A3, A5 and A7 also function as $\overrightarrow{\text{DACK}}$ output pins of DMAC in addition to I/O ports.

Figure 3.5 (23). Ports A1, A3, A5, A7

	<u> </u>	·			ort A Registe	r						
		77	6	5	4	3	2	1	0			
PA	bit Symbol	PA7	PAG	PA5	PA4	PA3	PA2	PA1	PAO			
(001EH)	Read/Write		R/W									
				Input mod	e (Output la	tch register	sets to "1")					
	After reset	1	1	1	1	1	1	1	1			
				Port A Co	ntrol Registe	r						
	\sim	7	6	5	4	3	2	1	0			
PACR (003CH)	bit Symbol	PA7C	PA6C	PA5C	PA4C	PA3C	PA2C	PAIC	PAOC			
003CH)	Read/Write		······································									
	After reset	0	0	0	0	0	0	0	0			
	Function	0: IN 1: OUT										
							0 Input 1 Output					
						L]			
i	<u> </u>				tion Registe	r		·]			
	\backslash	7	6	5	4	r 3	2	1]			
	bit Symbol	7 PA7F	6 PA7F			r		1 PA1F	0 PAOF			
РАFС 003ЕН)	bit Symbol Read/Write			5	4	r 3	2	÷				
				5	4 PA4F	r 3	2	÷				
	Read/Write	PA7F 0 0 : PORT	PA7F 0 0 : PORT	5 PA7F 0 0 : PORT	4 PA4F W 0 0: PORT	r 3 PA3F 0 0 : PORT	2 PA2F 0 0 : PORT	PA1F 0	PA0F 0 0 : PORT			
	Read/Write After reset	0 0 : PORT 1 : DACK3	9A7F 0 0 : PORT 1 : ŌRĒQ́3	5 PA7F 0 0 : PORT	4 PA4F W 0 0 : PORT 1 : DREQ2	r 3 PA3F 0 0 : PORT	2 PA2F 0 0 : PORT	PA1F 0 0 : PORT	PA0F 0 0 : PORT			

PAFC <pa0f> <pa2f> <pa4f> <pa6f></pa6f></pa4f></pa2f></pa0f>	1
PACR <pa0c> <pa2c> <pa4c> <pa6c></pa6c></pa4c></pa2c></pa0c>	0

Setting PA1, A3, A5 and A7 as DACK pins

PAFC <pa1f> <pa3f> <pa5f> <pa7f></pa7f></pa5f></pa3f></pa1f>	1
PACR <pa1c> <pa3c> <pa5c> <pa7c></pa7c></pa5c></pa3c></pa1c>	1

Note: Read-modify-write is prohibited for registers PACR and PAFC.

Figure 3.5 (24). Registers for Port A

TMP96C081F

3.5.10 Port B (PB0 - PB4)

Port B is a 5-bit general-purpose I/O port. I/O can be set on bit basis. Resetting sets Port B as an input port. It also sets all bits of the output latch register PB to 1. In addition to functioning as a general-purpose I/O port, Port B also functions as TC, EOP, etc., of DMA. Writing "1" in the corresponding bit of the Port B function register (PBFC) enables those functions. Resetting resets the function register PBFC value to "0", and sets all bits to ports. (1) Port B1 (EOP)

Port B1 also functions as $\overline{\text{EOP}}$ input pin of DMAC in addition to I/O port.

Figure 3.5 (25). Port B1

(2) Port B0, B2, B3, B4 (AEN, TC, IORD, IOWR)

IORD and IOWR pins of DMAC in addition to I/O ports.

Ports B0, B2, B3 and B4 also functions as AEN, TC,

Figure 3.5 (26). Ports B0, B2, B3, B4

TLCS-900 16-bit Microcontroller

				Po	rtB Registe	r			
		7	6	5	4	3	2	1	0
PB	bit Symbol				PB4	PB3	PB2	PB 1	PBO
(001EH)	Read/Write						R/W		
						Input mode (O	utput latch reg	ister set to "1")
	After reset				1	1	1	1	1

PortB	Contr	ol R	egister	
-------	-------	------	---------	--

			 4	3	2	1	U
	bit Symbol	 	 PB4C	PB3C	PB2C	PB1C	PBOC
(003CH)	Read/Write				w	*	
- F	After reset		0	0	0	0	0
Г	Function			0:	IN	1:0	DUT

>	1/O s	etting
	0	Input

1

1 Output

				PortB Fun	ction Regist	er			
	\sim	7	6	5	4	3	2	1	0
PBFC	bit Symbol				PB4F	PB3F	PB2F	P81F	PBOF
(003EH)	Read/Write	1	- 1				w		
	After reset				0	0	0	0	0
	Function		×7.		0 : PORT 1 : IOWR	0 : PORT 1 : IORD	0 : PORT 1 : TC	0 : PORT 1 : EOP	0 : PORT 1 : AEN

Sد	tting	PB1	as	ĒŌP	pin.	

PBFC < PB1F >	80 - R	1
PBCR < PB1C>		0

Setting PB0, B2, B3 and B4 as AEN, TC, IORD and IOWR pins.

PBFC < PB0F > < PB2F > < PB3F > < PB4F >

PBCR <PB0C><PB2C><PB3C><PB4C>

Figure 3.5 (27). Port B Register

3.6 Chip Select/Wait Control, AM8/16 pin

The TMP96C081F has a built-in chip select/wait controller used to control chip select ($\overline{\text{CS0}} - \overline{\text{CS4}}$ pins), wait (WAIT pin), and data bus size (8 or 16 bits) for any of the five block address areas.

And there is an AM8/ $\overline{16}$ which selects external data width for TMP96C081.

3.6.1 AM8/16 pin

(1) (1-1) 16-bit bus width internalized with 8 bit width or fixed 16 bit bus

Set this pin to "0". Then AD8 - 15 or A8 - 15 are fixed to AD8 - 15 function compulsorily.

The bus width when the CPU accesses an external area is set by Chip Select/Wait Control Register described at 3.6.2.

However, the bus width of program memory only after reset must be 16 bit bus width in this case.

(1-2) Fixed 8-bit bus width

Set this pin to "1". Then AD8 - 15 or A8 - 15 function compulsorily.

The value of bit 4: <B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> or <B4BUS> described at 3.6.2 are ignored and the bus width is fixed to 8 bit.

3.6.2 Control Registers

Table 3.6 (1) shows control registers

One block address areas are controlled by 1-byte CS/ WAIT control register (BOCSL to B4CSL and BOCSH and B4CSH). These registers can be written to only when the CPU is in system mode.

(1) Enable

Control register bit 7 <B0E to B3E> is a master bit used to specify enable ("1")/disable ("0") of the setting. Resetting sets B0E, B1E, B3E and B4E to disable ("0") and B2E to enable ("1").

(2) System only specification

Control register bit 7 (B0SYS, B1SYS, B2SYS, and B4E> is used to specify enable/disable of the setting depending on the CPU operating mode (system or normal). Setting this bit to 0 enables setting (Address space for CS, Wait state, Bus size, etc.) regardless of the CPU operating mode; setting it to 1 enables setting in system mode but disables setting in normal mode. Resetting clears bit 6 to 0.

Bit 6 is mainly used when external memory data should not be accessed in normal mode (i.e., for system mode only memory data for the operating system).

(3) CS/CAS Waveform select

Control register bit 5 (BOCAS to B4CAS) is used to specify waveform mode output from the chip select pin (CS0/CAS0-CS4/CAS4). Setting this bit to 0 specifies CS0 to CS4 waveforms; setting it to 1 specifies CAS0 to CAS4 waveforms.

Resetting clears bit 5 to 0.

(4) Data bus width select

Bit 4 (BOBUS to B4BUS) of the control register is used to specify data bus size. Setting this bit to 0 accesses in the memory in 16-bit data bus mode; setting it to "1", memory is accessed in 8-bit data bus mode. Changing data bus depending on the access address is called dynamic bus sizing. Table 3.6 (2) shows the details of the bus operation.

This bit is changed by the state of $AM8/\overline{16}$ pin.

(5) Wait control

Control register bits 2 to 0 (B0W2, 1, 0 to B4W2, 1, 0) are used to specify the number of waits. Setting these bits to 010 inserts a 1-state wait and samples the WAIT pin status. If the pin is low, inserting the wait maintains the bus cycle until the pin goes to high. Setting these bits to 100 or 101 inserts a 0-2-state wait 0-1-state wait according to the WAIT pin status.

Resetting sets these bits to 000 (2-state wait mode).

(6) Address area specification

Bits 3 to 0 in the B0CSH to B4CSH control register are used to specific the corresponding address areas. If 0000 is set in those four bits (same value after reset), the setting is enable and low strobe signal is output from the chip select pins (CS0/CAS0 to CS4/CS4) when the following address are accessed; 7F00H to 7FFFH by CSO, 0080H to 7F00H to 7FFFH by CS1 and 8000H to 3FFFFFH by CS2. If other than 0000 is set in those four bits, the chip select pin compares the setting with that in A23 to A20. If the setting match, the chip select pin outputs a low strobe signal. Bit 7 to 4 are used to mask bits 3 to 0. Setting 1 in the four bits compares address A23 to A20 with the masked address bits and detects match. Setting 1 in the four bits determines match regardless of setting. Unlike CS0 to CS2, CS3 and CS4 do not have an address area assigned in advance after reset. Thus address area of 1M byte can be freely set using B3CSH or B4CSH.

Figure 3.6 (1). Chip select (CS0 ~ CS4)

Figure 3.6 (2). CS3 Address Decoder Block Diagram

	Table 3.6 (3)	Chip Select/Wait Control Register (1/2)
--	---------------	-------------------------------------	------

Code	Name	Address	B7	B6	B5	B4	B3	B2	B1	во
			BOE	BOSYS	BOCAS	BOBUS	- 1	B0W2	BOW1	B0W0
		1	W	w	w	w		w	w	w
			0	0	0	0		0	0	0
	Block0		1:	1:	0:C50	0:16bit		Wait Cont	rol	
	CS/WAIT		CS/CAS	System	1:CAS0	Bus		000 :		
BOCSL	Control	68H	Enable	only		1:8bit		001 :		
	Register					Bus		010 :		ו
	Low							011 :		
		1			1	1	1	100 :		
		1		ļ				101 :		
		ļ			(1	1	110 :		
			B0M3	B0M2	BOM 1	вомо	B0A3	111 : B0A2	Reserved B0A1	B0A0
	Block0	1	W	W	W	W	W	W	W	W
	CS/WAIT		0	0	0	0	0	0	0	0
BOCSH	Control	69H		23~A20) M		· · · ·		23~A20) Co		
	Register	1		Non-Mask	ask set		0000			
	High			Mask			other		are A23~A20	h
			BIE	BISYS	BICAS	BIBUS	-	B1W2	B1W1	B1W0
1			w	W	W	W		w	w	w
		1	0	0	0	0		0	0	0
	Block 1		1:	1:	0:051	0:16bit		Wait Cont	rol	
	CS/WAIT		CS/CAS	System	1:CA51	Bus		000 :	2 Wait	
BICSL	Control	6AH	Enable	only	}	1:8bit		001:	1 Wait	
	Register	0,				Bus		010 :	1 Wait + r	1
	Low					ļ		011:	0 Wait	
1								100 :	0~2 Wait	
						1		101 :	0~1 Wait	
1								110:	Reserved	
								111 :	Reserved	
	Block1		B1M3	B1M2	B1M1	B1M0	B1A3 W	B1A2	B1A1 W	B1A0
	CS/WAIT		w	w	w	w		w	w	
B1CSH	Control	6BH	0	0	0	0	0	0	<u> </u>	0
	Register			23~A20) M	ask Set			23~A20) Co		
	High			Non-Mask Mask			0000		~/FFFH are A23~A20	
			B2E	B2SYS	B2CAS	B2BUS	other	B2W2	B2W1	B2W0
			W	W	W	W		W	W	w
			1	0	0	0		0	0	0
			1	1:	0:C52	0:16bit		Wait Contr		
	Block2		CS/CAS	System	1:CAS2	Bus		000 :	2 Wait	
B2CSL	CS/WAIT Control	6СН	Enable	only	1.0.52	1:8bit		001 :	1 Wait	
BZCSL	Register	OCT				Bus		010:	1 Wait + n	
	Low							011:	0 Wait	
	LOW							100 :	0~2 Wait	
			1. 19 3. 19 10					101 :	0~1 Wait	
								110:	Reserved	
								111:	Reserved	
	Block2		B2M3	82M2	B2M1	B2M0	B2A3	B2A2	B2A1	82A0
	CS/WAIT	[W	w	w	w	w	W	W	w
B2CSH	Control	6DH	0	0	0	0	0	0	0	0
uzesii	Register		Address (A	23~A20) M	ask Set		Address (A	23~A20) Co		
ļ	High		0: 1	Non-Mask			0000	: 8000H	~3FFFFFH	
1			1: 1	Mask			other	: Compa	re A23~A20	

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Code	Name	Address	B7	B6	B5	B4	B3	B2	B1	BO			
		1	B3E	B35YS	B3CAS	B3BUS		B3W2	B3W1	B3W0			
			w	w	w	W		w	w	W			
	1		0	0	0	0	1	0	0	0			
	Block3	1	1:	1:	0:CS3	0:16bit		Wait Cont	rol				
	CS/WAIT		CS/CAS	System	1:CA53	Bus		000 :	2 Wait				
B3CSL	Control	6EH	Enable	only		1:8bit	1	001:	1 Wait				
	Register	0211	}	1		Bus		010 :	1 Wait + I	n			
	Low							011:	0 Wait				
			1			1		100 :	0~2 Wait				
		1			1			101 :					
								110 :					
		l						111:	Reserved				
	Block3	1	B3M3	B3M2	B3M1	B3M0	B3A3	B3A2	B3A1	B3A0			
		S/WAIT Control 6FH	w	w	w	w	w	w	w	w			
взсян	Control		0	0	0	0	0	0	0	0			
	Register		Address (A	23~A20) M	ask Set		Address (A	23~A20) Co	omparison				
	High		0:	Non-Mask			0000	: Address areas are not specifie					
			1:	Mask			other		A23~A20				
			B4E	B45YS	B4CAS	B4BUS	-	84W2	B4W1	B4W0			
			¥	w	w	w		w	w	w			
			0	0	0	0		0	0	0			
	Block4	1	1:	1:	0:CS4	0:16bit		Wait Cont					
	CS/WAIT	}	CS/CAS	System	1:CAS4	Bus		000 :	2 Wait				
B4CSL	Control	4AH	Enable	only		1:8bit		001:	1 Wait				
	Register	Register	Register		1		1		Bus		010 :	1 Wait + r)
1				1		1		}		011:	0 Wait		
		1						100 :	0~2 Wait				
		1		1				101 :	0~1 Wait				
ł								110:	Reserved				
								111:	Reserved				
	Block4		B4M3	B4M2	B4M1	B4M0	B4A3	B4A2	B4A1	B4A0			
	CS/WAIT		W	W	w	W	w	W	W	W			
B4CSH	Control	4BH	0	0	0	0	0	0	0	0			
	Register			23~A20) M	ask Set			23~A20) Co					
1	High			Non-Mask			0000		reas are not	specified			
	-		1:	Mask			other	: Compare	A23~A20				

Table 3.6 (3) Chip Select/Wait Control Register (2/2)

Note : Only block 2 is enable the CS/CAS after reset.

Operand	Operand	Memory	CPU Address	CPU	CPU Data		
Data Size	Start Address	Data Size		D15 - D8	D7 - D0		
	2n + 0	8 bits	2n + 0	XXXXX	b7 - b0		
8 bits	(even number)	16 bits	2n + 0	XXXXX	b7 - b0		
	2n + 1	8 bits	2n + 1	XXXXX	b7 - b0		
	(odd number)	16 bits	2n + 1	b7 - b0	XXXXX		
	2n + 0	8 bits	2n + 0 2n + 1	XXXXX XXXXX	b7 - b0 b15 - b8		
	(even number)	16 bits	2n + 0	b15 - b8	b7 - b0		
16 bits	2n + 1	8 bits	2n + 1 2n + 2	XXXXX XXXXX	b7 - b0 b15 - b8		
	(odd number)	16 bits	2n + 1 2n + 2	b7 - b0 xxxxx	xxxxx b15 - b8		
	2n + 0 (even number)	8 bits	2n + 0 2n + 1 2n + 2 2n + 3	XXXXX XXXXX XXXXX XXXXX	b7 - b0 b15 - b8 b23 - b16 b31 - b24		
22 bits		16 bits	2n + 0 2n + 2	b15 - b8 b31 - b24	b7 - b0 b23 - b16		
32 bits	2n + 1 (odd number)	8 bits	2n + 1 2n + 2 2n + 3 2n + 4	XXXXX XXXXX XXXXX XXXXX	b7 - b0 b15 - b8 b23 - b16 b31 - b24		
		16 bits	2n + 1 2n + 2 2n + 4	b7 - b0 b23 - b16 xxxxx	xxxxx b15 - b8 b31 - b24		

Table 3.6 (4) Dynamic Bus Sizing

xxxxx: During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains non-active.

MCU900-484

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

3.6.3 Chip Select Image

Address areas from 0100H to FFFFFH can be specified for 1M, 2M, 4M, 8M, 16M bytes.

The chip select controller compares an address on a bus and values of bit 3 to 0 of BOCSH to B4CSH at every cycle. When the values of bit 3 to 0 are "0000", the chip select controller compares the address and the address value which has already been defined to each block.

If the result of the comparison matches, the specified address area is assumed to be accessed. If channels B0E to B4E are set to enable, a chip select pin (CS0 to CS4) corresponding to these channels outputs a low strobe signal.

When comparing addresses, a compared result of a particular address can be ignored by setting the values of bit 7 to 4 of BOCSH to B4CSH. Consequently, and address area size can be specified. An image of the actual chip select is shown below. After reset (when bits 3 to 0 of B0CSH to B4CSH set 0000), 7F00H to 7FFFH is specified for CS0; 0080H to 7FFFH, for CS1; 8000H to 3FFFFFFH, for CS2.

The reason is that a device other than ROM (i.e., RAM or I/O) might be connected externally.

The addresses 7F00H to 7FFFH (256 bytes) for CS0 are mapped mainly for possible expansions to external I/O.

The addresses 0100H to 7FFFH (approx. 32K bytes) for CS1 0 are mapped there mainly for possible extensions to external RAM.

The addresses 8000H to 3FFFFFH (approx. 4M bytes) for CS2 are mapped mainly for possible extensions to external ROM. After reset, CS2 is enable in 16-bit bus and 2-wait. The program is externally read at address.

The address 8000H in this setting (16-bit bus, 2-wait). (If AM8/16 pin is "1", CS2 is enable in 8-bit bus.)

Note 1: Access priority is built-in I/O then the chip select controller.

Note 2: External areas other than CS0 to CS4 are accessed in 16-bit data bus (0 wait) mode.

When using the chip select/wait controller and specifying the same address area more than once, the priority is CS0, CS1, CS2, CS3, CS3, and CS4. (However, when address 7F00H to 7FFFH for CS0 and 100H to 7FFFH for CS1 are specified, in other words, specification overlap, only the CS0 setting pin is active.)

Note 3: When the bus is released (BUSAK = "0"), CS0 - CS4 pins are also (the output buffer is OFF). Refer to L Note about the bus release] in 3.5 Function of Ports about the state of pins.

B3	ICSH	Specified the Address Areas			
0000	0001	100000H ~ 1FFFFFH	1M Bytes		
0001	0011	200000H ~ 3FFFFFH	2M Bytes		
0011	0111	400000H ~ 7FFFFFH	4M Bytes		
0111	1000	800000H ~ FFFFFH	8M Bytes		
1111	1000	100H ~ 1FFFFFH	16M Bytes		

Table 3.6 (5) Specified the address areas of B3CSH

TMP96C081F

3.6.4 Example of Usage

Figure 3.6 (6) is an example in which an external memory is connected to the TMP96C081F. In this example, a ROM is

connected using 16 bit Bus; a RAM and an I/O are connected using 8 bit Bus.

Figure 3.6 (6). Example of External Memory Connection (ROM = 16 bits, RAM and I/O = 8 bits)

Resetting sets pins $\overline{CS0}$, $\overline{CS1}$, $\overline{CS2}$, $\overline{CS3}$ to $\overline{CS4}$ to input port mode. $\overline{CS0}$, $\overline{CS1}$, $\overline{CS3}$, and $\overline{CS4}$ are set high due to an internal pull-up resistor; $\overline{CS2}$, low due to an internal

pull-down resistor. The program used to set these pins is as follows:

P4CR	EQU	0EH	
P4FC	EQU	10H	
BOCSL	EQU	68H	
B1CSL	EQU	6AH	
B2CSL	EQU	6CH	
LD	(BOCS),	0090H	; CS0 = 8 bits, 2WAIT, 7F00H ~ 7FFFH
LD	(B1CS),	0093H	; CS1 = 8 bits, 0WAIT, 0080H ~ 7FFFH
LD	(B2CS),	0081H	; CS2 = 16 bits, 1WAIT, 8000H ~ 3FFFFFH
LD	(P4CR),	07H	$\overline{)}$ $\overline{CS0}$, $\overline{CS1}$, $\overline{CS2}$ output mode setting
LD	(P4FC),	07H) 000, 001, 002 output mode setting

(2) Example Usage-2

Figure 3.6 (7) is an example in which an external memory is

connected to the TMP96C081F. In this example, a ROM, a RAM, and I/O are connected using 8 bit Bus.

Figure 3.6 (7). Example of External Memory Connection (ROM and RAM and I/O = 8bits)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TMP96C081F

Resetting sets pins $\overline{CS0}$, $\overline{CS1}$, $\overline{CS2}$, $\overline{CS3}$ and $\overline{CS4}$ to input port mode. $\overline{CS0}$, $\overline{CS1}$, $\overline{CS3}$, and $\overline{CS4}$ are set high due to an internal pull-up resistor; $\overline{CS2}$, low due to an internal

pull-down resistor. The program used to set these pins is as follows:

P4CR	EQU	OEH		
P4FC	EQU	10H		
BOCSL	EQU	68H		
BOCSH	EQU	69H		
B1CSL	EQU	6AH		
B1CSH	EQU	6BH		
B1CSL	EQU	6CH		
B2CSH	EQU	6DH		
LD	(BOCSL),	1X010000B		CS0 = 8bits, 2WAIT, 7F00H~7FFFH
LD	(BOCSH),	0000000B)	
LD	(B1CSL),	1X010011B		CS1 = 8bits, 0WAIT, 80H~7FFFH
LD	(B1CSH),	0000000B)	
LD	(B2CSL),	1X000001B		CS2 = 16bits, 1WAIT, 8000H~3FFFFFH
LD	(B2CSH),	0000000B		
	(~	
LD	(P4CR),	XXXXX111B		$\overline{CS0}, \overline{CS1}, \overline{CS2}$ output moce setting
LD	(P4FC),	XXXXX111B	/	1
Note)X	: don't car	e		

When $AM8/\overline{16}$ Pin is set to high level, all address area are

fixed to 8-bit data bus regardless of CS area statuses.

3.6.5 How to Start with an 8-Bit Data Bus (with AM8/16 pin sets "0")

Resetting sets the $\overline{\text{CS2}}$ pin low due to an internal pull-down resistor; memory access starts in 16-bit data bus (2-wait) mode. To start in 8-bit data bus mode, a special operation is required. Operation is as described in the example below:

B2CS	EQU	6AH	; CS2 register address
	ORG	8000H	; RESET address
	LDX	(B2CSL), 9CH	; CS2 8bit, 0WAIT, 8000H ~

After reset, the program reads the LDX (B2CSL), 93H instruction in 16-bit data bus mode. LDX is a 6-byte instruction: the 2nd, 4th and 6th bytes are handled as dummies (i.e., only codes in the 1st, 3rd and 5th bytes are actually used). Even if starting in 8-bit data bus mode, it is possible to program so that the LDX instruction is executed and the block 2

area (8000H - 3FFFFH) is accessed in 8-bit data bus mode without any problem.

The above program does not include setting the P42/ CS2 pin to output; add a program to set the P4CR and P4FC registers as required.

3.7 8-bit Timers

The TMP96C081F contains two 8-bit timers (timers 0 and 1), each of which can be operated independently. The cascade connection allows these timers to be used as 16-bit timer. The following four operating modes are provided for the 8-bit timers.

- 8-bit interval timer mode (2 timers)
- 16-bit interval timer mode (1 timer)
- 8-bit programmable square wave pulse generation (PPG: variable duty with variable cycle) output mode (1 timer)
- 8-bit pulse width modulation (PWM: variable duty with constant cycle) output mode (1 timer)

Figure 3.7 (1) shows the block diagram of 8-bit timer (timer 0 and timer 1).

Each interval timer consists of an 8-bit up counter, 8-bit comparator, and 8-bit timer register. Besides, one timer flip-flop (TFF1) is provided for timer 0 and timer 1

Among the input clock sources for the interval timers, the internal clocks of ϕ T1, ϕ T4, ϕ T16, and ϕ T256 are obtained from the 9-bit prescaler shown in Figure 3.7 (2).

The operation modes and timer flip-flops of the 8-bit timer are controlled by three control registers TMOD, TFFCR, and TRUN.

TLCS-900 16-bit Microcontroller

Figure 3.7 (1). Block Diagram of 8-Bit Timers (Timers 0 and 1)

Prescaler

This 9-bit prescaler generates the clock input to the 8bit timers, 16-bit timer/event counters, and baud rate generators by further dividing the fundamental clock (fc) after it has been divided by 4 (fc/4).

Among them, 8-bit timer uses 4 types of clock:

φT1, φT4, φT16, and φT256.

This prescaler can be run or stopped by the timer operation control register TRUN <PRRUN>. Counting starts when <PRRUN> is set to "1", while the prescaler is cleared to zero, and stops operation when <PRRUN> is set to "0". Resetting clears <PRRUN> to "0", which clears and stops the prescaler.

Cycle						
Input fc clock	20MHz					
¢T1 (8/fc)	0.4µs					
¢T4 (32/fc)	1.6µs					
¢T16 (128/fc)	6.4 <i>µ</i> s					
¢T256 (2048/fc)	102 <i>µ</i> s					

Figure 3.7 (2). Prescaler

Up-counter

This is an 8-bit binary counter which counts up by the input clock pulse specified by TMOD.

The input clock of timer 0 is selected from the external clock TI0 pin and three internal clocks ϕ T1 (8/fc), ϕ T4 (32/fc), and ϕ T16 (128/fc), according to the set value of TMOD register.

The input clock of timer 1 differs depending on the operation mode. When set in 16-bit timer mode, the overflow output of timer 0 is used as the input clock. When set to any other mode than 16-bit timer mode, the input clock is selected from the internal clocks ϕ T1 (8/fc), ϕ T16 (128/fc), and ϕ T256 (2048/fc) as well as the comparator output (match detection signal) of timer 0 according to the set value of TMOD register.

Example: When TMOD <T10M1,0> = 01, the overflow output of timer 0 becomes the input clock of timer 1 (16-bit timer mode). When TMOD <T10M1,0> = 00 and TMOD <T1CLK1,0> = 01, ϕ T1 (8/fc) becomes the input of timer 1 (8bit timer mode).

Operation mode is also set by TMOD register. When reset, it is initialized to TMOD <T01M1, 0> = 00, whereby the up-counter is placed in the 8-bit timer mode.

The counting and stop and clear of up-counter can be controlled for each interval timer by the timer operation control register TRUN. When reset, all up-counters will be cleared to stop the timers.

③ Timer register

This is an 8-bit register for setting an interval time. When the set value of timer registers TREG0, TREG1, matches the value of up-counter, the comparator match detect signal becomes active. If the set value is 00H, this signal becomes active when the up-counter overflows.

Timer register TREG0 is of double buffer structure, each of which makes a pair with register buffer. The timer flip-flop control register TFFCR <DBEN> bit controls whether the double buffer structure in the TREG0 should be enabled or disabled. It is disabled when <DBEN> = 0 and enabled when they are set to 1.

In the condition of double buffer enable state, the data is transferred from the register buffer to the timer register when the 2^{n} - 1 overflow occurs in PWM mode, or at the PPG cycle in PPG mode.

When reset, it will be initialized to $\langle DBEN \rangle = 0$ to disable the double buffer. To use the double buffer, write data in the timer register, set $\langle DBEN \rangle$ to 1, and write the following data in the register buffer.

Figure 3.7 (3). Configuration of Timer Register 0

Note: Timer register and the register buffer are allocated to the same memory address. When <DBEN> = 0, the same value is written in the register buffer as well as the timer register, while when <DBEN> = 1 only the register buffer is written.

The memory address of each timer register is as follows.

TREG0: 000022H TREG1: 000023H

All registers are write-only and cannot be read.

④ Comparator

A comparator compares the value in the up-counter with the values to which the timer register is set. When they match, the up-counter is cleared to zero and an interrupt signal (INTT0, INTT1) is generated. If the timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

⑤ Timer flip-flop (timer F/F: TFF1)

The status of the timer flip-flop is inverted by the match detect signal (comparator output) of each interval timer and the value can be output to the timer output pins TO1 (also used as P71).

A timer F/F is provided for a pair of timer 0 and timer 1 and is called TFF1. TFF1 is output to TO1 pin.

Figure 3.7 (4). Timer Operation Control Register (TRUN)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TMP96C081F

		7	6	5	. 4	3	2	. 1	0	7
OD	bit Symbol	T10M1	TIOMO	PWMM1	PWMM0	TICLKI	TIC		TOCLK	
24H)	Read/Write		1101010		V		inci		TUCER	4
	After reset	0	0	0	0	0	0	0	0	-1
		Operation		PWM cycl	÷	Source clock	÷			-
		00: 8bit Tir		00: -	e	00 : TOOT		00: TI0	cor umero	
	Function	01: 16bit T		01:26-1		01:¢T1		01: ¢T1		
		10: 8bit PP		10: 27-1		10:¢T16		10: øT4		
		11: 8bit PW		11:28-1		11: ¢T256	5	11:øT16		
1				: I						
	Prohibit F	Read								
	Modify W	/rite					1]	
						L,	- Inpu	t clock of time	er O	
							00	External Inpu	ut (TIO)	
							01	φT1 (Pr	escaler)	
							10	φT4 (Pr	escaler)	
						:	11	¢T16 (Pr	escaler)	•••••••
								t clock of time		
						-	mpu	TMOD <tiom1.0:< td=""><td></td><td>000 110M1,0>=01</td></tiom1.0:<>		000 110M1,0>=01
							00	Comparator of of timer 0	utout	Overflov utput of time
							01	Internal clock #T		
							10	Internal clock #T		6-bit time
							11	Internal clock #T	256 ^m	ode)
				l			Selec	t PWM cycle		
							00			
							01	26 – 1		
		1					10	27 - 1		
							11	28 - 1		
								ne operation r r 0 and 1.	node of	
							00	Two 8-bit tin (timer 0 and		
							01	16-bit timer		
							10	8-bit PPG ou	tput	
							11	8-bit PWM o + 8-bit timer		

Figure 3.7 (5). Timer Mode Control Register (TMOD)

TFFCR

5 4 3 2 1 0 TFF1C0 DBEN TFF 11E bit Symbol TFF1C1 TFF1IS (0025H) Read/Write R/W w R/W After reset 0 0 0 0 0 Double TFF1 TFF1 00: Invert TFF1 buffer Inversion Inversion 01: Set TFF1 0: Disable trigger source Function 10: Clear TFF1 0: Disable 0: Timer 0 1: Enable 11: don't care 1: Enable 1: Timer 1 + Always read as Select inverse signal of timer F/F1 ("Don't care" except in 8-bit timer mode) TMOD<T10M1,0 >=00 11 01 10 0 Inversion by PPG mode PWM mode 16-bit timer mode timer0 match Inversion by Inversion by Inversion by signal match signal match signal of match and 1 Inversion by each timer 0 and overflow signal timer1 match timer 1 of timer 0 signal Inversion of Timer F/F1 (TFF1) 0 Disable invert Enable invert 1 Control of Timer F/F1 (TFF1) Invert the value of TFF1 (software inversion) 00 01 Set TFF1 to "1". Clear TFF1 to "0". 10 11 Don't care **Double Buffer Control of TREGO** 0 Disable double Buffer 1 **Enable double Buffer**

Figure 3.7 (6). Timer Flip-Flop Control Register (TFFCR)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

The operation of 8-bit timers will be described below:

(1) 8-bit timer mode

Two interval timers 0, 1, 2, 3, can be used independently as 8-bit interval timer. All interval timers operate in the same manner, and thus only the operation of timer 1 will be explained below. ① Generating interrupts in a fixed cycle

To generate timer 1 interrupt at constant intervals using timer 1 (INTT1), first stop timer 1 then set the operation mode, input clock, and a cycle to TMOD and TREG1 register, respectively. Then, enable interrupt INTT1 and start the counting of timer 1.

		MSI	3						LSB
		7	6	5	4	3	2	1	0
TRUN	←	-	х	-	-	-	-	0	-
TMOD	←	0	0	х	х	0	1		-
TREG1	←	0	1	0	1	0	0	0	0
INTET10	←	1	1	0	1	-	-	-	-
TRUN	←	1	х	1	-	-	-	1	-
Note: x; o	don't c	are	-;	no ch	ange				

Stop timer	1, and clear it to "0".
Set the 8-b	it timer mode, and select <i>o</i> T1.
(0.4µs @ fo	c = 20MHz) as the input clock
Set the time	er register at 40µs øT1 = 100H (64H).
Enable INT	T1, and set it to "Level 5".
Start timer	1 counting.

Use the following table for selecting the input clock.

input CLock	Interrupt Cycle (at fc = 20MHz)	Resolution
<i>ф</i> T1 (8/fc)	0.4µs ~ 102.4µs	0.4µs
ø T4 (32/fc)	1.6µs ~ 409.6µs	1.6µs
φT16 (128/fc)	6.4µs ~ 1.638ms	6.4µs
φT256 (2048/fc)	102.4µs ~ 2.621ms	102.4µs

Note: The input of timer 0 and timer 1 are different from as follows:

Timer 0: TIO input, øT1, øT4, øT16 Timer 1: match output of Timer 0, øT1, øT16, øT2566

Example: To generate timer 1 interrupt every 40 microseconds at fc = 20MHz, set each register in the following manner.
② Generating a 50% duty square wave pulse

The timer flip-flop (TFF1) is inverted at constant intervals, and its status is output to timer output pin (TO1). Example: To output a 2.4μ s square wave pulse from TO1 pin at fc = 20MHz, set each register in the following procedures. Either timer 0 or timer 1 may be used, but this example uses timer 1.

	N	1SB	LSB							
		7	6	5	4	3	2	1	0	
TRUN	←	-	х	-	-		-	0	-	
TMOD	←	0	0	х	х	0	1	-	-	
TREG1	←	0	0	0	0	0	0	1	1	
TFFCR	←			-		1	0	1	1	
P7CR	←	x	х	х	х	-		1	-	
P7FC	←	х	х	х	х		-	1	x	
TRUN	←	1	х	-	-			1	-	

Note: x; don't care -; no change

Stop timer 1, and clear it to "0".

Set the 8-bit timer mode, and select ϕ T1 as the input clock.

Set the timer register at 3.0 μ s + ϕ T1 + 2 = 3.

Clear TFF1 to "0", and set to invert by the match detect signal from timer 1.

Select P71 as T01 pin.

Start timer 1 counting.

TLCS-900 16-bit Microcontroller

Figure 3.7 (7). Square Wave (50% Duty) Output Timing Chart

③ Making timer 1 count up by match signal from timer 0 comparator

Set the 8-bit timer mode, and set the comparator output of timer 0 as the input clock to timer 1.

④ Output inversion with software

The value of timer flip-flop (TFF1) can be inverted, independent of timer operation.

Writing "00" into TFFCR <TFF1C1,0> (memory address: 000025H of bit 3 and bit 2) inverts the value of TFF1.

Initial setting of timer flip-flop (Timer F/F)

The value of TFF1 can be initialized to "0" or "1", independent of timer operation.

For example, write "10" in TFFCR <TFF1C1,0> to clear TFF1 to "0", while write "01" in TFFCR <TFF1C1, 0> to set TFF1 to "1".

Note: The value of timer register and timer flip-flop cannot be read.

(2) 16-bit timer mode

A 16-bit interval timer is configured by using the pair of timer 0 and 1.

To make a 16-bit interval timer by cascade connecting timer 0 and timer 1, set timer 0/timer 1 mode register, TMOD <T10M1,0> to "0,1".

When set in 16-bit timer mode, the overflow output of timer 0 will become the input clock of timer 1, regardless of the set value TMOD <T1CLK1,0>. Table 3.7 (2) shows the relation between the cycle of timer (interrupt) and the selection of input clock.

Input Clock	Interrupt Cycle (at fc = 20MHz)	Resolution
<i>φ</i> T1 (8/fc)	0.4µs ~ 26.214ms	0.4µs
φT4 (32/fc)	1.6µs ~ 104.857ms	1.6µs
φT16 (128/fc)	6.4µs ~ 419.430ms	6.4µs

Table 3.7 (2) 16-Bit Timer (Interrupt) and Input Clock

The lower 8 bits of the timer (interrupt) cycle are set by the timer register TREG0, and the upper 8 bits are set by TREG1. Note that TREG0 always must be set first. (Writing data into TREG0 disables the comparator temporarily, and the comparator is restarted by writing data into TREG1.)

Setting example:

To generate an interrupt INTT1 every 0.4 seconds at fc = 20MHz, set the following values for timer registers TREG0 and TREG1:

When counting with input clock of ϕ T16 (6.4µs @ 20MHz)0.4 sec \div 6.4µs = 62500 = F424H

Therefore, set TREG1 = F4H and TREG0 = 24H, respectively.

The comparator match signal is output from timer 0 each time the up-counter UC0 matches TREG0, where the up-counter UC0 is not to be cleared.

With the timer 1 comparator, the match detect signal is output at each comparator timing when up-counter UC1 and TREG1 values match. When the match detect signal is output simultaneously from both comparators of timer 0 and timer 1, the up-counters UC0 and UC1 are cleared to "0", and the interrupt INTT1 is generated. If inversion is enabled, the value of the timer flip-flop TFF1 is inverted.

		Timer 0		Timer 1			
	INTT0	TO1	Value of comparison	INTT1	TO1	Value of comparison	
16-Bit Timer Mode (Counts Timer 1 upward) when Timer 0 is overflowed	Generation of an interrupt	Disable to Output	TREGO (Counts upward even when matched)	Generation of an interrupt	Disable to output	TREG1+2 ⁸ + TREGO (16 bit full)	
8-Bit Timer Mode (Counts Timer 1 upward) when Timer 0 is matched)	Generation of an interrupt	Eriable to output (Timer 0 or Timer 1	TREGO (Cleared (when matched	Generation of an interrupt	Enable to output (Timer 0 or Timer 1	TREG1+ TREG0 (Value of Multiplier	

Example: When TREG1 = 04H and TREG0 = 80H

Figure 3.7 (9). Output Timer by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable Pulse Generation) Output mode

Square wave pulse can be generated at any frequency and duty by timer 0 and timer 1. The output pulse may be either low-active or high-active. In this mode, timer 1 cannot be used.

Timer 0 outputs pulse to TO1 pin (also used P70). In this mode, a programmable square wave is generated by inverting timer output each time the 8-bit upcounter (UC0) matches the timer registers TREG0 and TREG1.

However, it is required that the set value of TREG0 is smaller than that of TREG1.

Though the up-counter (UC1) of timer 1 is not used in this mode, UC1 should be set for counting by setting TRUN <T1RUN> to 1.

Figure 3.7 (1) shows the block diagram for this mode.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

When the double buffer of TREG0 is enabled in this mode, the value of register buffer will be shifted in TREG0 each time TREG1 matches UC0.

Use of the double buffer makes easy handling of low duty waves (when duty is varied).

MCU900-504

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TMP96C081F

 Calculate the value to be set for timer register. To obtain the frequency 62.5kHz, the pulse cycle t should be: $t = 1/62.5 \text{kHz} = 16 \mu \text{s}$. Given $\phi T1 = 0.4 \mu s @ 20 MHz$). $16\mu s \div 0.4\mu s = 40$ Consequently, to set the timer register 1 (TREG1) to TREG1 = 40 = 28H and then duty to 1/4, t x 1/4 = $16\mu s \times 1/4 = 4\mu s$ $4\mu s \div 0.4\mu s = 10$ Therefore, set timer register 0 (TREG0) to TREG0 = 10 = 0AH.

		7	6	5	4	3	2	1	0	
TRUN	←	-	x	-	-	-	-	0	0	Stop timer 0, and clear it to "0".
TMOD	←	1	0	х	х	х	x	0	1	Set the 8-bit PPG mode, and select <i>p</i> T1 as input clock.
TREG0	←	0	0	0	0	1	0	1	0	Write "OAH".
TREG1	←	0	0	0	0	1	0	0	0	Write "28H".
TFFCR	←	-	-	-	1	0	1	1	x	Sets TFF1 and enables the inversion and double buffer enable.
						L				Writing "10" provides negative logic pulse.
P7CR	←	x	x	x	x	-	-	1		
P7CR P7FC	← ←	x x	x x	x x	x x	-	-	1 1	- x	Select P71 as T01 pin.
	↓ ↓ ↓						- - -	1 1 1	– x 1	

Note: x: don't care -: no change

(4) 8-bit PWM Output mode

This mode is valid only for timer 0. In this mode, maximum 8-bit resolution PWM pulse can be output. PWM pulse is output to TO1 pin (also used as P71) when using timer 0. Timer 1 can also be used as 8-bit timer.

Timer output is inverted when up-counter (UC1) matches the set value of timer register TREG or when 2n - 1 (n = 6, 7, or 8; specified by T01MOD

<PWM01,07) counter overflow occurs. Up-counter UC1 is cleared when 2n - 1 counter overflow occurs. For example, when n = 6, 6-bit PWM will be output, while when n = 7, 7-bit PWM will be output. To use this PWM mode, the following conditions must be satisfied.

(Set value of timer register) < (Set value of 2ⁿ - 1

counter overflow)

(Set value of timer register) $\neq 0$

Figure 3.7 (13). 8-Bit PWM Waveforms

Figure 3.7 (14) shows the block diagram of this mode.

Figure 3.7 (14). Block Diagram of 8-Bit PWM Waveforms

In this mode, the value of register buffer will be shifted in TREG0 if 2^n - 1 overflow is detected when the double buffer of TREG0 is enabled.

Use of the double buffer makes the handling of small duty waves easy.

Figure 3.7 (15). Operator of Register Buffer

Example: To output the following PWM waves to TO1 pin at fc = 20MHz.

To realize 50.8µs of PWM cycle by $\phi T1$ = 0.4µs (@ fc = 20MHz),

$$50.8\mu s \div 0.4\mu s = 127 = 2^7 - 1$$

Consequently, n should be set to 7. As the period of low level is $36\mu s$, for $\phi T1 = 0.4\mu s$, set the following value for TREG0:

$$36\mu s \div 0.4\mu s = 90 = 5AH$$

		MS	В						LSB	
		7	6	5	4	3	2	1	0	
TRUN	←	-	x	-	-	-	-	-	0	Stop timer 0, and clear it to "0".
TMOD	←	1	1	1	0	-	-	0	1	Set 8-bit PWM mode (cycle: $2^7 - 1$) and select ϕ T1 as the input clock.
TREG0	←	0	1	0	1	1	0	1	0	Write "5AH".
TFFCR	←	x	x	x	х	1	0	1	x	Clears TFF1, enables the inversion and double buffer.
P7CR	←	х	x	х	х	-	-	1		Set P71 as T01 pin.
P7FC	←	х	x	х	х	-	-	1	х	
TRUN	←	1	х	-	-	-	-	-	1	Start timer 0 counting.
Note: x	; don't c	are	-;	no cha	ange					

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

	P	PWM Cycle (@ fc = 20 MHz)									
	<i>φ</i> Τ1	<i>φ</i> Τ4	φ T 16								
2 ⁶ -1	25.2µsec (39.0kHz)	100µsec (10.0kHz)	0,40msec (2.4kHz)								
2 ⁷ -1	50.8µsec (19.7kHz)	203µsec (4.9kHz)	0.81msec (1.2kHz)								
2 ⁸ -1	102µsec (9.80kHz)	408µsec (2.4kHz)	1.63msec (0.61kHz)								

Table 3.7 (3) PWM Cycle and the Setting of 2ⁿ -1 Counter

(5) Table 3.7 (4) shows the list of 8-bit timer modes.

Table 3.7 (4) Timer Mode Setting Registers

Register Name		TMOD									
Name of Function in Register	T10M	PWMM	T1CLK	TOCLK	TFF1IS						
Function	Timer Mode	PWM0 Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select						
16-bit timer mode	01	_	-	External clock, <i>φ</i> T1, <i>φ</i> T4, <i>φ</i> T16 (00, 01, 10, 11)							
8-bit timer x 2 channels	00	_	Lower timer match, <i>ø</i> T1, 16, 256 (00, 01, 10, 11)	External clock, <i>φ</i> T1, <i>φ</i> T4, <i>φ</i> T16 (00, 01, 10, 11)	0 : Lower timer output 1 : Upper timer output						
8-bit PPG x 1 channel	10		-	External clock, <i>φ</i> T1, <i>φ</i> T4, <i>φ</i> T16 (00, 01, 10, 11)	-						
8-bit PWM x 1channel	11	2 ⁶ - 1, 2 ⁷ - 1, 2 ⁸ - 1 (01, 10, 11)	-	External clock, <i>φ</i> T1, <i>φ</i> T4, <i>φ</i> T16 (00, 01, 10, 11)	-						
8-bit timer x 1channel	11	-	(<i>ø</i> T1, T16, T256) (01, 10, 11)	_	Output disabled						

Note: --; Don't care

3.8 8-Bit PWM Timer

The TMP96C081F has two built-in 8-bit PWM timers (timers 2 and 3).

They have two operating modes.

- 8-bit PWM (pulse width modulation: variable duty fixed interval output mode
- 8-bit interval timer mode

Figure 3.8 (1) is a block diagram of 8-bit PWM timer (timers 2 and 3).

PWM timers consist of an 8-bit up-counter, 8-bit comparator, and 8-bit timer register. Two timer flip-flops (TFF2 for timer 2 and TFF3 for timer 3) are provided.

Input clocks ϕ P1, ϕ P4, and ϕ P16 for the PWM timers can be obtained using the built-in prescaler.

PWM timer operating mode and timer flip-flops are controlled by four control registers (P0MOD, P1MOD, PFFCR, and TRUN). TMP96C081F

Figure 3.8 (1). Block Diagram of 8-Bit Timer 0 (Timer 2)

Note: Block diagram for 8-bit PWM timer 1 (timer 3) is the same as the above diagram.

1) Prescaler

Generates input clocks dedicated to PWM timers by further dividing the fundamental clock (fc) after it has been divided by 2 (fc/2). Since the register used to control the prescaler is the same as the one for other timers, the prescaler cannot be operated independently. The PWM timer uses three input clocks: ϕ /P1, ϕ /P4, and ϕ /P16.

Like the 9-bit prescaler described in the 8-bit timer section, this prescaler can be counted/stopped using bit 7 <PRRUN> of the timer operation control register TRUN. Setting <PRRUN> to 1 starts counting; setting it to 0 zero-clears and stops counting. Resetting clears <PRRUN> to 0, which clears and stops the prescaler.

Figure 3.8 (2). Prescaler

② Up-counter

An 8-bit binary counter which counts up using the input clock specified by PWM mode register (P0MOD or P1MOD).

The input clock for the PWM0/PWM1 is selected from the internal clocks ϕ P1, ϕ P4, and ϕ P16 (PWM dedicated prescaler output) depending on the value set in the P0MOD/P1MOD register.

Operating mode is also set by POMOD and P1MOD registers. At reset, they are initialized to POMOD <PWM0M> = 0 and P1MOD <PWM1M> = 0, thus, the up-counter is in PWM mode. In PWM mode, the up-counter is cleared when a 2ⁿ - 1 overflow occurs; in timer mode, the up-counter is cleared at compare and match.

Count/stop and clear of the up-counter can be controlled for each PWM timer using the timer operation control register TRUN. Resetting clears all up-counters and stops timers. ③ Timer registers

Two 8-bit registers used for setting an interval time. When the value set in the timer registers (TREG 2 and 3) matches the value in the up-counter, the match detect signal of the comparator becomes active. Timer registers TREG2 and TREG3 are each paired with register buffer to make a double buffer structure. TREG2 and TREG3 are controlled double buffer enable/disable by POMOD <DB2EN> and P1MOD <DB3EN>: disabled when <DB2EN>/<DB3EN> = 0, enabled when <DB2EN>/<DB3EN> = 1.

Data is transferred from register buffer to timer when a 2^n - 1 overflow occurs in the PWM mode, or when compare and match occurs in 8-bit timer mode. That is, with a PWM timer, the timer mode can be operated in double buffer enable state, unlike timer mode for timers 0 and 1.

At reset, <DB2EN>/<DB3EN> is initialized to 0 to disable double buffer. To use double buffer, write the data in the timer register at first, then set <DB2EN>/<DB3EN> to 1, and write the following data in the register buffer.

Figure 3.8 (3). Structure of Timer Registers 2 and 3

Note: The timer register and register buffer are allocated to the same memory address. When <DB2EN>/<DB3EN> = 0, the same value is written to both register buffer and timer register. When <DB2EN>/<DB3EN> = 1, the value is written to the register only.

Memory addresses of the timer registers are as follows:

TREG2: 000026H

TREG3: 000027H

Both timer registers are write only; however, register buffer values can be read when reading the above addresses. ④ Comparator

Compares the value in the up-counter with the value in the timer register (TREG2/TREG3). When they match, the comparator outputs the match detect signal. A timer interrupt (INTT2/INTT3) is generated at compare and match if the interrupt select bit <PWM01NT>/ <PWM1NT> of the mode register (POMOD/P1MOD) is set to 1. In timer mode, the comparator clears the up-counter to 0 at compare and match. It also inverts the value of the timer flip-flop if timer flip-flop invert is enabled.

⑤ Timer flip-flop

The value of the timer flip-flop is inverted by the match detect signal (comparator output) of each interval timer or 2^{n} - 1 overflow. The value can be output to the timer output pin TO2/TO3 (also used as P72/P73).

	\sim	7	: 6	5	4	3	2	1	0
POMOD	bit Symbol	FF2RD	DB2EN	PWM0INT	PWMOM	T2CLK1	T2CLK0	PWM051	PWM050
(0028H)	Read/Write	R				w			
	After reset	-	0	0	0	0	0	0	0
		Flip-flop	1: Double	0: 2n-1 overflow	0: PWM mode	00: ¢P1 (f		00:26-1	
	Function	(F/F2) output	Buffer2 Enable	interrupt	1: Timer	01: ¢P4 (f 10: ¢P16		01:27-1 10:28-1	
		data	chibble	1: compare & match interrupt	mode	11: Don't care		11 : Don't care	
Read-mo prohibite	dify-write is				·	<u>Lonco</u>		·	1
prombra	FU.						[,		 WM0 cycle
								00 26	-1
								01 27	-1
								10 28	-1
								11 Do	on't care
							L,	Select P	WM0 input clock
								00 ø I	P1 (fc/4)
								01 ¢ I	P4 (fc/16)
								10 ¢ I	P16 (fc/64)
								11 Do	on't care
								- select P\	VM0 mode
								0 PV	VM mode
								1 8-1	oit timer mode
								- select PV	VM0 interrupt
								0 0	erflow interrupt
								1 Co	mpare and match errupt
							>	- control e	double buffer
								0 Di	sable
								1 En	able

Figure 3.8 (4). 8-Bit PWM0 Mode Control Register

Figure 3.8 (5). 8-Bit PWM1 Mode Control Register

Figure 3.8 (6). 8-Bit PWM F/F Control Register

The following explains PWM timer operations.

(1) PWM timer mode

Both PWM timers can output 8-bit resolution PWM independently. Since both timers operate in exactly the same way, PWM0 is used for purposes of explanation. PWM output changes under the following two conditions.

Condition 1:

- TFF2 is cleared to 0 when the value in the upcounter (UC2) and the value set in the TREG2 match.
- TFF2 is set to 1 when a 2ⁿ 1 counter overflow (n = 6, 7, or 8) occurs.

Condition 2:

TFF2 is set to 1 when the value in the up-counter (UC2) and the value set in TREG2 match.
TFF2 is cleared to 0 when a 2ⁿ - 1 counter over flow (n = 6, 7, or 8) occurs.

The up-counter (UC2) is cleared by a 2^n - 1 counter overflow.

The PWM timer can output 0% - 100% duty pulses because a 2^n - 1 counter overflow has a higher priority. That is, to obtain 0% output (always low), the mode used to set TFF2 to 0 due to overflow (PFFCR <FF2TRG1, 0> = 1, 0) must be set and 2^n - 1 (value for overflow) must be set in TREG2. To obtain 100% output (always high), the mode must be changed: PFFCR <FF2TRG1, 0> = 1,1 then the same operation is required.

PWM timing

Figure 3.8 (8). Output Waves in PWM Timer Mode

Note: The above waves are obtained in a mode where the F/F is set by a match with the timer register (TREG) and reset by an overflow.

Figure 3.8 (9) is a block diagram of this mode.

Figure 3.8 (9). Block Diagram of PWM Timer Mode (PWM0)

In this mode, enabling double buffer is very useful. The register buffer value shifts into TREG2 when a 2ⁿ -1 overflow is detected, when double buffer is enabled.

Using double buffer makes handling small duty waves easy.

 $39.68\mu s \div 0.25\mu s = 127 = 2^7 - 1.$

18.75µs + 0.312 = 60 = 3CH

Since the low level cycle = 18.75μ s; for $\phi P1 = 0.312\mu$ s

Consequently, set n to 7.

set the 3CH in TREG2.

To implement 39.68 μ s PWM cycle by ϕ P1 = 0.312 μ s (@ fc = 20MHz)

		7	6	5	4	3	2	1	0	
TRUN	←	-	х	-	-	-	0	-	-	Stops PWM0 and clears it to 0.
POMOD	←	-	0	0	0	0	0	0	1	Sets PWM (2^7 - 1) mode, input clock ϕ P1, overflow interrupt, and disables double buffer.
TREG2	←	0	0	1	1	1	1	0	0	Writes 3CH.
POMOD	←	-	1	0	0	0	0	0	1	Enables double buffer.
PFFCR	←	-	-	-	-	0	1	1	1	Sets TFF2 and a mode where TFF2 is set by compare and match, and cleared by overflow.
P7CR	←	x	x	x	x	-	1	-	-) Calls 070 as the TOD all
P7FC	←	х	x	x	x	-	1	-	x) Sets P72 as the TO2 pin.
TRUN	←	1	x	-	-	-	1	-	-	Starts PWM0 counting.
Note : x	; don'i	t care		-; r	no cha	nge				

Table 3.8 (1) PWM Cycle and 2ⁿ -1 Counter Setting

	Formula	20MHz							
	Formula	<i>φ</i> Р1	<i>φ</i> P 4	<i>φ</i> Ρ16					
2 ⁶ -1	2 ⁶ -1 - <i>ø</i> Pn	12.6µsec (79kHz)	50.4µsec (20kHz)	201µsec (4.9kHz)					
2 ⁷ -1	2 ⁷ -1 - <i>ø</i> Pn	25.4µsec (39kHz)	101.6µsec (9.8kHz)	406µsec (2.5kHz)					
2 ⁸ -1	2 ⁸ -1 - <i>ø</i> Pn	51.0µsec (20kHz)	204.0µsec (4.9kHz)	816µsec (1.2kHz)					

(2) 8-bit timer mode

Both PWM timers can be used independently as 8-bit interval timers. Since both timers operate in exactly the same way, PWM0 (timer 2) is used for the purposes of explanation.

① Generating interrupts at a fixed interval

To generate timer 2 interrupt (INTT2) at a fixed interval using PWM0 timer, first stop PWM0, then set the operating mode, input clock, and interval in the P0MOD and TREG2 registers. Next, enable INTT2 and start counting PWM0.

Example: To generate a timer 2 interrupt every $32\mu s$ at fc = 20MHz, set registers as follows:

			7	6	5	4	3	2	1	0
	TRUN	←	-	х	-	-	-	0		-
	POMOD	←	х	0	1	1	0	0	х	х
	TREG2	←	1	0	1	0	0	0	0	0
	INTEPW10	←	-	-	-	-	1	1	0	0
	TRUN	←	1	x	-	-	-	1	-	-
١	Note: x; d	on't c	are	; no c	change	9				

Stops PWM0 and clears it to 0.	
Sets 8-bit timer mode and selects ϕ P1 (0.2	μs) and
compare interrupt.	
Sets 32µs/0.2µs = A0H in timer register.	
Enables INTT2 and sets interrupt level 4.	
Starts PWM0 counting.	

Select an input clock using the table below.

Input Clock	Interrupt Cycle (at fc = 20MHz)	Resolution
φP1 (4/fc)	0.2µs ~ 51.2µs	0.2µs
 <i>ϕ</i> P4 (16/fc)	0.8µs ~ 204.8µs	0.8µs
φP16 (64/fc)	3.2µs ~ 819.2µs	3.2µs

Table 3.8 (2) Interrupt Cycle and Input Clock Selection using 8-Bit Timer Mode

Note: To generate interrupts in 8-bit timer mode, bit 5 (interrupt control bit <PWM01NT>/<PWM1NT> of P0M0D/P1M0D) must be set to 1.

② Generating a 50% square wave

value to the timer output pin (TO2).

To generate a 50% square wave, invert the timer flipflop at a fixed interval and output the timer flip-flop

Example: To output a $2.4\mu s$ square wave at fc = 20MHz from TO2 pin, set register as follows:

		7	6	5	4	3	2	1	0	
TRUN	←	-	х	-	-	-	0	-	-	Stops PWM0 and clears it to 0.
POMOD	←	x	0	1	1	0	0	X	x	Sets 8-bit timer mode and selects ϕ P1 (0.2 μ s) as the input clock.
TREG2	←	0	0	0	0	0	1	1	0	Sets $2.4\mu s/0.2\mu s/2 = 6$ in the timer register.
PFFCR	←	-	-	-	-	1	0	0	1	Clears TFF2 to 0 and inverts using comparator output.
P7CR	←	х	х	x	х	-	1	-	-	
P7FC	←	х	х	х	х	-	1	-	х	Sets P72 as the TO2 pin.
TRUN	←	1	х	-	-	-	1	-	-	Starts counting PWM0.
Note: x;	; don't	care	-;	no cha	ange					

Figure 3.8 (11). Square Wave (50% Duty) Output Timing Chart

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

This mode is as shown in Figure 3.8 (12) below.

Figure 3.8 (12). Block Diagram of 8-Bit Timer Mode

3.9 16-Bit Timer

The TMP96C081F contains two (timer 4 and timer 5) multifunctional 16-bit timer/event counter with the following operation modes.

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode
- Frequency measurement mode
- Pulse width measurement mode

• Time differential measurement mode

Timer/event counter consists of 16-bit up-counter, two 16-bit timer registers, two 16-bit capture registers (one of them applies double-buffer), two comparators, capture input controller, and timer flip-flop and the control circuit.

Timer/event counter is controlled by four control registers: T4MOD/T5MOD, T4FFCR/T5FFCR, TRUN and T45CR.

Figure 3.9 (1) and (2) show the block diagram of 16-bit timer/event counter (timer 4 and timer 5).

Figure 3.9 (1). Block Diagram of 16-Bit Timer (Timer 4)

TLCS-900 16-bit Microcontroller

Figure 3.9 (2). Block Diagram of 16-Bit Timer (Timer 5)

TMP96C081F

		7	6	5	4	3	2	1	0
T4MOD bit Sy	mbol CA	AP2T5	EQ5T5	CAP1IN	CAP12M1	CAP12M0	CLE	T4CLK1	T4CLK0
(0038H) Read/	Write	R/	N	w	R/	w	R/W	R/	w
After	reset	0	0	1	0	0	0	0	0
Func	0: E tion 1: E Inve Whe	en the value is ded to	rigger	Capture 1: don't care	01 : TI4 † INT4 occurs 10 : TI4 † INT4 occurs 11 : TFF1 †	at rise edge. TI5↑ at rise edge. TI4↓ at fall edge.	1: UC4 Clear Enable	Timer 4 so 00: TI4 01: ¢T1 10: ¢T4 11: ¢T16	urce clock
					00 01 10 11	¢Τ1 (8/ ¢Τ4 (32 ¢Τ16 (1	al clock (Ti fc) 2/fc) 128/fc) up-counte		

Figure 3.9 (3). 16-Bit Timer Mode Controller Register (T4MOD) (1/2)

CAP2T5 : Invert when the up-counter value is loaded to CAP2 EQ5T5 : Invert when the up-counter matches TREG5

Figure 3.9 (4). 16-Bit Controller Register (T4MOD) (2/2)

Figure 3.9 (5). 16-Bit Timer 4 F/F Control (T4FFCR)

11

Don't care (Always read as "11".)

Figure 3.9 (6). 16-Bit Timer Mode Control Register (T5MOD) (1/2)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Figure 3.9 (7). 16-Bit Timer Control Register (T5MOD) (2/2)

Figure 3.9 (8). 16-Bit Timer 5 F/F Control (T5FFCR)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Figure 3.9 (10). Timer Operation Control Register (TRUN)

① Up-counter (UC4/UC5)

UC4/UC5 is a 16-bit binary counter which counts up according to the input clock specified by T4MOD <T4CLK1, 0> or T5MOD <T5CLK1, 0> register.

As the input clock, one of the internal clocks ϕ T1 (8/ fc), ϕ T4 (32/fc), and ϕ T16 (128/fc) from 9-bit prescaler (also used for 8-bit timer), and external clock from TI4 pin (also used as P80/INT4 pin) or TI6 (also used as P84/INT6 pin) can be selected. When reset, it will be initialized to <T4CLK1, 0><T5CLK1, 0> = 00 to select TI4/TI6 input mode. Counting or stop and clear of the counter is controlled by timer operation control register TRUN <T4RUN, T5RUN>.

When clearing is enabled, up-counter UC4/UC5 will be cleared to zero each time it coincides matches the

TRECA

timer register TREG5, TREG7. The "clear enable/disable" is set by T4MOD <CLE> and T5MOD <CLE>. If clearing is disabled, the counter operates as a freerunning counter.

② Timer Registers

These two 16-bit registers are used to set the interval time. When the value of up-counter UC4/UC5 matches the set value of this timer register, the comparator match detect signal will be active.

Setting data for timer register (TREG4, TREG5, TREG6 and TREG7) is executed using 2 byte date transfer instruction or using 1 byte date transfer instruction twice for lower 8 bits and upper 1 bits in order.

	-01			Luo
Upper 8 bits Lower 8 bits			Upper 8 bits	Lower 8 bits
000031H	000030H	-	000033H	000032H
TR	EG6		TRI	EG7
TRI Upper 8 bits	EG6 Lower 8 bits]	TRI Upper 8 bits	EG7 Lower 8 bits
	Upper 8 bits		Upper 8 bits Lower 8 bits	Upper 8 bits Upper 8 bits

TREG4 and TREG6 timer register is of double buffer structure, which is paired with register buffer. The timer control register T45CR <DB4EN, DB6EN> controls whether the double buffer structure should be enabled or disabled. : disabled when <DB4EN, DB6EN> = 0, while enabled when <DB4EN, DB6EN> = 1.

When the double buffer is enabled, the timing to transfer data from the register buffer to the timer register is at the match between the up-counter (UC4/UC5) and timer register TREG5/TREG7.

When reset, it will be initialized to <DB4EN, DB6EN> = 0, whereby the double buffer is disabled. To use the double buffer, write data in the timer register, set <DB4EN, DB6EN> = 1, and then write the following data in the register buffer.

TREG4, TREG6 and register buffer are allocated to the

same memory addresses 000030H/000031H/ 0000400H/000041H. When <DB4EN, DB6EN> = 0, same value will be written in both the timer register and register buffer. When <DB4EN, DB6EN> = 1, the value is written into only the register buffer.

③ Capture Register

TRECS

These 16-bit registers are used to hold the values of the up-counter.

Data in the capture registers should be read by a 2byte data load instruction or two 1-byte data load instruction, from the lower 8 bits followed by the upper 8 bits.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

④ Capture Input Control

This circuit controls the timing to latch the value of upcounter UC4/UC5 into (CAP1, CAP2)/(CAP3, CAP4). The latch timing of capture register is controlled by register T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0>.

 When T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0> = 00 Capture function is disabled. Disable is the

default on reset.

 When T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0> = 01

Data is loaded to CAP1, CAP3 at the rise edge of TI4 pin (also used as P80/INT4) and TI6 pin (also used as P84/INT6) input, while data is loaded to CAP2, CAP4 at the rise edge of TI5 pin (also used as P81/INT5 and TI7 pin (also used as P85/INT7) input. (Time difference measurement)

• When T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0> = 10

Data is loaded to CAP1 at the rise edge of Tl4 pin input and to CAP3 at the rise edge of Tl6, while to CAP2, CAP4 at the fall edge. Only in this setting, interrupt INT4/INT6 occurs at fall edge. (Pulse width measurement)

• When T4MOD <CAP12M1, 0>/T5MOD <CAP34M1, 0> = 11

Data is loaded to CAP1, CAP3 at the rise edge of timer flip-flop TFF1, while to CAP2, CAP4 at the fall edge. Besides, the value of up-counter can be loaded to capture registers by software. Whenever "0" is written in T4MOD <CAPIN>, T5MOD <CAP31N> the current value of up-counter will be loaded to capture register CAP1/CAP3. It is necessary to keep the prescaler in RUN mode (TRUN <PRRUN> to be "1").

⑤ Comparator

These are 16-bit comparators which compare the upcounter UC4/UC5 value with the set value of (TREG4, TREG5)/(TREG6, TREG7) to detect the match. When a match is detected, the comparators generate an interrupt (INTT4, INTT5)/(INTT6, INTT7) respectively. The upcounter UC4/UC5 is cleared only when UC4/UC5 matches TREG5/TREG7. (The clearing of up-counter UC4/UC5 can be disabled by setting T4MOD <CLE>/ T5MOD <CLE> = 0.)

⑥ Timer Flip-Flop (TFF4/TFF6)

This flip-flop is inverted by the match detect signal from the comparators and the latch signals to the capture registers. Disable/enable of inversion can be set for each element by T4FFCR <CAP2T4, CAP1T4, EQ5T4, EQ4T4>/T6FFCR <CAP4T6, CAP3T6, EQ7T6, EQ6T6>. TFF4/TFF6 will be inverted when "00" is written in T4FFCR <TFF4C1, 0>/T6FFCR <TFF6C1, 0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF4/TFF6 can be output to the timer output pin TO4 (also used as P82) and TO6 (also used as P86).

⑦ Timer Flip-Flop (TFF5)

This flip-flop is inverted by the match detect signal from the comparator and the latch signal to the capture register CAP2. TFF5 will be inverted when "00" is written in T4FFCR <TFF5C1, 0>/T6FFCR <TFF6C1, 0>. Also it is set to "1" when "10" is written, and cleared to "0" when "10" is written. The value of TFF5 can be output to the timer output pin TO5 (also used as P82).

Note: This flip-flop (TFF5) is contained only in the 16-bit timer 4.
(1) 16-bit Timer Mode

Timers 4 and 5 operate independently. Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation. Generating interrupts at fixed intervals: In this example, the interval time is set in the timer register TREG5 to generate the interrupt INTTR5.

		7	6	5	4	3	2	1	0
TRUN	←	-	х	-	0	-	-	-	-
INTET54	←	1	1	0	0	1	0	0	0
T4FFCR	←	1	1	0	0	0	0	1	1
T4MOD	←	0	0	1	0	0	1	*	*
					(** :	= 01, 1(), 11)		
TREG5	←	*	*	* .	*	*	*	*	*
		*	*	*	*	*	*	*	*
TRUN	←	1	х	-	1	-	-	-	-
Note: x;	don't	care		; no	chang	е			

Stop timer 4. Enable INTTR5 and sets interrupt level 4. Disables INTTR4. Disable trigger. Select internal clock for input and disable the capture function. Set the interval timer (16 bits). Start timer 4.

(2) 16-bit Event Counter Mode

In 16-bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TI4/TI6 pin input) as the input clock. To read the value of the counter, first perform "software capture" once and read the captured value. The counter counts at the rise edge of TI4/TI6 pin input.

TI4/TI6 pin can also be used as P80/INT4 and P84/ INT6.

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

		7	6	5	4	3	2	1	0	
TRUN	←		х	-	0	-	-		-	Stop timer 4.
P8CR	←	-	-	-	-	-	-	-	0	Set P80 to input mode.
INTET54	←	1	1	0	0	1	0	0	0	Enable INTTR5 and sets interrupt level 4, while
										disables INTTR4.
T4FFCR	←	1	1	0	0	0	0	1	1	Disable trigger.
T4MOD	←	0	0	1	0	0	1	0	0	Select TI4 as the input clock.
TREG5	←	*	*	*	*	*	*	*	*	Set the number of counts (16 bits).
TRUN	←	1	х	-	1	-	-	-	-	Start timer 4.

Note: When used as an event counter, set the prescaler in RUN mode.

(3) 16-bit Programmable Pulse Generation (PPG) Output Mode

Since both timers operate in exactly the same way, timer 4 is used for the purposes of explanation.

The PPG mode is obtained by inversion of the timer flip-flop TFF4 that is to be enabled by the match of the up-counter UC4 with the timer register TREG4 or 5 and to be output to TO4 (also used as P82). In this mode, the following conditions must be satisfied.

(Set value of TREG4) < (Set value of TREG5)

		7	6	5	4	3	2	1	0	
TRUN	←	-	х	-	0	-	-	-	-	Stop timer 4.
TREG4	←	*	*	*	*	*	*	*	*	Set the duty (16 bits).
TREG5	←	*	*	*	*	*	*	*	*	Set the cycle (16 bits).
T45CR	←	0	x	х	х	-	-	-	1	Double buffer of TREG4 enable.
										(Changes the duty and cycle at the interrupt INTTR5)
T4FFCR	←	1	1	0	0	1	1	0	0	Set the mode to invert TFF4 at the match with
										TREG4/TREG5, and also sets TFF4 to "0".
T4MOD	←	0	0	1	0	0	1	*	*	Select internal clock for input and disables the capture function.
					(**	= 01, *	10, 11)			
P8CR	←	-		-	-	-	1	-	-	Assign P82 as TO4.
P8FC	←	х	-	х	х	-	1	х	x	Assign to 2 as 104.
TRUN	←	1	x	-	1	-	-	-	-	Start timer 4.

Note: x; don't care -; no change

Figure 3.9 (11). Programmable Pulse Generation (PPG) Output Waveforms

When the double buffer of TREG4 is enabled in this mode, the value of register buffer 4 will be shifted in TREG4

at match with TREG5. This feature makes easy the handling of low duty waves.

Shows the block diagram of this mode.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(4) Application Examples of Capture Function

The loading of up-counter (UC4) values into the capture registers CAP1 and CAP2, the timer flip-flop TFF4 inversion due to the match detection by comparators CP4 and CP5, and the output of TFF4 status to TO4 pin can be enabled or disabled. Combined with interrupt function, they can be applied in many ways, for example:

- ① One-shot pulse output from external trigger pulse
- ② Frequency measurement
- ③ Pulse width measurement
- ④ Time difference measurement

① One-Shot Pulse Output from External Trigger Pulse

Set the up-counter UC4 in free-running mode with the internal input clock, input the external trigger pulse from Tl4 pin, and load the value of up-counter into capture register CAP1 at the rise edge of the Tl4 pin. Then set to T4MOD <CAP12M1, 0 > = 01. When the interrupt INT4 is generated at the rise edge of Tl4 input, set the CAP1 value (c) plus a delay time (d) to TREG4 (= c + d), and set the above set value (c + d) plus a one-shot pulse width (p) to TREG5 (= c + d + p). When the interrupt INT4 occurs the T4FFCR <EQ5T4, EQ4T4> register should be set that the TFF4 inversion is enabled only when the up-counter value matches TREG4 or TREG5. When interrupt INTTR5 occurs, this

inversion will be disabled.

Figure 3.9 (14). One-Shot Pulse Output (with Delay)

3ms delay to the external trigger pulse to TI4 pin.

To output 2ms one-shot pulse with

Setting Example:

Keep counting (Free-running). Count with *o*T1. Main setting T4MOD n 0 Load the up-counter value into CAP1 at the rise edge of TI4 pin input. 0 0 0 0 0 T4FFCR 1 1 1 Clear TFF4 to zero. Disable TFF4 inversion. P8CR 1 -Select P82 as the TO4 pin. P8FC 1 х х ¥ х 0 0 Enable INT4, and disables INTTR4 and INTTR5. INTE45 1 1 0 INTET54 0 0 0 1 0 0 TRUN Start timer 4. х 1 Setting of INT4 **TREG4** CAP1 + 3ms/øT1 4 TREG5 TREG4 + 2ms/øT1 T4FFCR Enable TFF4 inversion when the up-counter value matches TREG4 or 5. INTET54 Enable INTTR5. 1 0 0 Setting of INT5 T4FFCR n 0 Disable TFF4 inversion when the up-counter value matches TREG 4 or 5. Disable INTTR5 INTET54 0 ۵ 1 ٥ 4 Note: x; don't care -; no change

When delay time is unnecessary, invert timer flip-flop TFF4 when the up-counter value is loaded into capture register 1 (CAP1), and set the CAP1 value (c) plus the one-shot pulse width (p) to TREG5 when the interrupt INT4 occurs. The TFF4 inversion should be enabled when the up-counter (UC4) value matches TREG5, and disabled when generating the interrupt INTTR5.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Figure 3.9 (15). One-Shot Pulse Output (without Delay)

② Frequency Measurement

The frequency of the external clock can be measured in this mode. The clock is input through the Tl4 pin, and its frequency is measured by the 8-bit timers (Timer 0 and Timer 1) and the 16-bit timer/event counter (Timer 4).

The TI4 pin input should be selected for the input clock

of Timer 4. The value of the up-counter is loaded into the capture register CAP1 at the rise edge of the timer flip-flop TFF1 of 8-bit timers (Timer 0 and Timer 1), and into CAP2 at its fall edge.

The frequency is calculated by the difference between the loaded values in CAP1 and CAP2 when the interrupt (INTTO or INTT1) is generated by either 8-bit timer.

Figure 3.9 (16). Frequency Measurement

For example, if the value for the level "1" width of TFF1 of the 8-bit timer is set to 0.5 sec. and the difference

between CAP1 and CAP2 is 100, the frequency will be 100/0.5[s] = 200[Hz].

③ Pulse Width Measurement

This mode allows measuring the "H" level width of an external pulse. While keeping the 16-bit timer/event counter counting (free-running) with the internal clock input, the external pulse is input through the TI4 pin. Then the capture function is used to load the UC4 values into CAP1 and CAP2 at the rising edge and falling

edge of the external trigger pulse respectively. The interrupt INT4 occurs at the falling edge of TI4. The pulse width is obtained from the difference between the values of CAP1 and CAP2 and the internal clock cycle.

For example, if the internal clock is 0.8 microseconds and the difference between CAP1 and CAP2 is 100, the pulse width will be $100 \times 0.8 = 80$ microseconds.

Figure 3.9 (17). Pulse Width Measurement

Note: Only in this pulse width measuring mode (T4MOD <CAP12M1, 0> = 10), external interrupt INT4 occurs at the falling edge of Tl4 pin input. In other modes, it occurs at the rising edge.

The width of "L" level can be measured from the difference between the first C2 and the second C1 at the second INT4 interrupt.

④ Time Difference Measurement

This mode is used to measure the difference in time between the rising edges of external pulses input through TI4 and TI5.

Keep the 16-bit timer/event counter (Timer 4) counting

(free-running) with the internal clock, and load the UC4 value into CAP1 at the rising edge of the input pulse to TI4. Then the interrupt INT4 is generated.

Similarly, the UC4 value is loaded into CAP2 at the rising edge of the input pulse to TI5, generating the interrupt INT5.

The time difference between these pulses can be obtained from the difference between the time counts at which loading the up-counter value into CAP1 and CAP2 has been done.

Figure 3.9 (18). Time Difference Measurement

(5) Different Phased Pulses Output Mode

In this output mode, signals with any different phase can be outputted by free-running up-counter UC4.

When the value in up-counter UC4 and the value in TREG4 (TREG5) match, the value in TFF4 (TFF5) is inverted and output to TO4 (TO5). This mode can only be used by 16-bit timer 4.

Cycles (counter overflow time) of the above output waves are listed below.

	20MHz			
φ Τ1	0.819ms			
<i>φ</i> Τ4	3.277ms			
<i>ø</i> T16	13.11ms			

3.10 Stepping Motor Control/Pattern Generation Port

TMP96C141/TMP96CM40/TMP96PM40 contains 2 channels (PG0 and PG1) of 4-bit hardware stepping motor control/ pattern generation (herein after called PG) which actuate in synchronization with the (8-bit/16-bit) timers. The PG (PG0 and PG1) are shared in 8-bit I/O ports P6. Channel 0 (PG0) is synchronous with 8-bit timer 0 or timer 1, 16-bit timer 5, to update the output.

The PG ports are controlled by control registers (PG01CR) and can select either stepping motor control mode or pattern generation mode. Each bit of the P6 can be used as the PG port.

Figure 3.10 (1). PG Block Diagram

PG01CR bit (004EH) Re

Figure 3.10 (2a). Pattern Generation Control Register (PG01CR)

TMP96C081F

Figure 3.10 (2b). Pattern Generation Control Register (PG01CR)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

		7	6	5	4	3	2	1	0
PGOREG	bit Symbol	PG03	PG02	PG01	PG00	SA03	SA02	SA01	SA00
(004CH)	Read/Write	i.	Ì	N			R/	W	
	After reset	0	0	0	0		Unde	fined	
	Function			GO) output latch re he PG port allows		F		ite register 0 4-bit write) registe	ſ
	hibit Read dify write			Pattern Ge					0
moc	Jify write	. 7	6	5	4	3	2	1	0
moc PG1REG	dify write		6 PG12	5 PG11			2 SA12	1 SA11	0 SA10
moc PG1REG	Jify write	. 7	6	5 PG11	4	3	2		
	dify write	. 7	6 PG12	5 PG11	4	3	2 SA12 R/		

Figure 3.10 (5). 16-bit Timer Trigger Control Register (T45CR)

Figure 3.10 (6). Connection of Timer and Pattern Generator

(1) Pattern Generation Mode

PG functions as a pattern generation according to the setting of PG01CR <PAT1>/PAT0>. In this mode, writing from CPU is executed only on the shifter alternate register. Writing a new data should be done during the interrupt operation of the timer for shift trigger, and a pattern can be output synchronous with the timer.

In this mode, set PG01CR <PG0M> and <PG1M> to 1, and PG01CR <CCW0> and <CCW1> to 0.

The output of this pattern generator is output to port 6; since port and functions can be switched on a bit basis using port function control register P6FC, any port pin can be assigned to pattern generator output.

Figure 3.10 (7) shows the block diagram of this mode.

Example of pattern generation mode

Figure 3.10 (7). Pattern Generation Mode Block Diagram (PG0)

In this pattern generation mode, only writing the output latch is disabled by hardware, but other functions do the same operation as 1-2 excitation in stepping motor control port mode. Accordingly, the data shifted by trigger signal from a timer must be written before the next trigger signal is output.

- (2) Stepping Motor Control Mode
 - ① 4-phase 1-Step/2-Step Excitation

Figure 3.10 (8) and Figure 3.10 (9) show the output waveforms of 4-phase 1 excitation and 4-phase 2 excitation, respectively when channel 0 (PG0) is selected.

. Initial value PG0REG ← 0100 x x x x

Note : bn indicates the initial value of PGOREG \leftarrow b7 b6 b5 b4 $\times \times \times \times$

Figure 3.10 (8). Output Waveforms of 4-Phase 1-Step Excitation (Normal Rotation and Reverse Rotation)

Figure 3.10 (9). Output Waveforms of 4-Phase 2-Step Excitation (Normal Rotation)

The operation when channel 0 is selected is explained below.

The output latch of PG0 (also used as P6) is shifted at the rising edge of the trigger signal from the timer to be output to the port.

The direction of shift is specified by PG01CR < <CCW0>: Normal rotation (PG00 \rightarrow PG01 \rightarrow PG02 \rightarrow PG03) when <CCW0> is set to "0"; reverse rotation (PG00 \leftarrow PG01 \leftarrow PG02 \leftarrow PG03) when "1". Four-phase 1-step excitation will be selected when only one bit is set to "1" during the initialization of PG, while 4-phase 2-step excitation will be selected when two consecutive bits are set to "1".

The value in the shift alternate registers are ignored when the 4-phase 1-step/2-step excitation mode is selected.

Figure 3.10 (10) shows the block diagram.

Figure 3.10 (10). Block Diagram of 4-Phase 1-Step Excitation/2-Step Excitation (Normal Rotation)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

2 4-Phase 1-2 Step Excitation

Figure 3.10 (11) shows the output waveforms of 4-phase 1 -2 step excitation when channel 0 is selected.

Note: bn denotes the initial value PG0REG ← b7 b6 b5 b4 b3 b2 b1 b0

① Normal Rotation

② Reverse Rotation

Figure 3.10 (11). Output Waveforms of 4-Phase 1-2 Step Excitation (Normal Rotation and Reverse Rotation)

The initialization for 4-phase 1-2 step excitation is as follows:

By rearranging the initial value "b7 b6 b5 b4 b3 b2 b1 b0" to "b7 b3 b6 b2 b5 b1 b4 b0", the consecutive 3 bits are set to "1" and other bits are set to "0" (positive logic).

For example, if b7, b3, and b6 are set to "1", the initial value becomes "11001000", obtaining the output waveforms as shown in Figure 3.10 (11).

To get an output waveform of negative logic, set values 1s and 0's of the initial value should be inverted. For example, to change the output waveform shown in Figure 3.10 (11) into negative logic, change the initial value to "00110111".

The operation will be explained below for channel 0. The output latch of PG0 (shared by P6) and the

shifter alternate register (SA0) for Pattern Generation are shifted at the rising edge of trigger signal from the timer to be output to the port. The direction of shift is set by PG01CR <CCW0>.

Figure 3.10 (12) shows the block diagram.

Figure 3.10 (12). Block Diagram of 4-Phase 1-2 Step Excitation (Normal Rotation)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Setting example: To drive channel 0 (PG0) by 4-phase 1-2 step excitation (normal rotation) when timer 0 is selected, set each register as follows:

		7	6	5	4	3	2	1	0
TRUN	←	-	x			-	-	-	0
TMOD	←	0	0	х	х	-	-	0	1
TFFCR	←	x	х	х	0	1	0	1	0
TREG0	←	*	*	*	*	*	*	*	*
P6CR	←	-	-	-	-	1	1	1	1
P6FC	←	-	-	-	-	1	1	1	1
PG01CR	←		-	-	-	0	0	1	1
PGOREG	\leftarrow	1	1	0	0	1	0	0	0
TRUN	←	1	x	-	-	-	-	-	1
Note: x;	don't	care	-;	no ch	nange				

Stop timer 0, and clears it to zero. Set 8-bit timer mode and selects ϕ T1 as the input clock of timer 0. Clear TFF1 to zero and enables the inversion trigger by timer 0. Set the cycle in timer register. Set P60 ~ P63 bits to the output mode. Set P60 ~ P63 bits to the PG output. Select PG0 4-phase 1-2 step excitation mode and normal rotation. Set an initial value. Start timer 0.

(3) Trigger Signal From Timer

The trigger signal from the timer which is used by PG is

not equal to the trigger signal of timer flip-flop (TFF1, TFF4, TFF5, and TFF6) and differs as shown in Table 3.10 (1) depending on the operation mode of the timer.

	TFF1 Inversion	PG Shift
8-bit timer mode	Selected by TFFCR <tff1is> when the up-counter value matches TREG0 or TREG1 value.</tff1is>	<
16-bit timer mode	When the up-counter value matches with both TREG0 and TREG1 values. (The value of up-counter = TREG1* 2^8 + TREG0)	
PPG output mode	When the up-counter value matches with both TREG0 and TREG1.	When the up-counter value matches TREG1 value (PPG cycle).
PWM output mode	When the up-counter value matches TREG0 value and PWM cycle.	Trigger signal for PG is not generated.

Table 3.10 (1) Select of Trigger Signal

Note: To shift PG, TFFCR <TFF1IE> must be set to "1" to enable TFF1 inversion.

Channel 1 of PG can be synchronized with the 16-bit timer Timer 4/Timer 5. In this case, the PG shift trigger signal from the 16-bit timer is output only when the upcounter UC4/UC5 value matches TREG5/TREG7. When using a trigger signal from Timer 4, set either

T4FFCR <EQ5T4> or T4MOD <EQ5T5> to "1" and a trigger is generated when the value in UC4 and the value in TREG5 match. When using a trigger signal from Timer 5, set T5FFCR <EQ7T6> to 1. Generates a trigger when the value in UC5 and the value in TREG7 match.

(4) Application of PG and Timer Output

As explained in "Trigger signal from timer", the timing to shift PG and invert TFF differs depending on the mode of timer. An application to operate PG while operating an 8-bit timer in PPG mode will be explained below. To drive a stepping motor, in addition to the value of each phase (PG output), synchronizing signal is often required at the timing when excitation is changed over. In this application, port 6 is used as a stepping motor control port to output a synchronizing signal to the TO1 pin (shared by P71).

Setting example:

		7	6	5	4	3	2	1	0
TRUN	←	-	х	-		-	-	0	0
TMOD	←	1	0	х	х	х	x	0	1
TFFCR	←	x	x	x	0	0	1	1	х
TREG0	\leftarrow	*	*	*	*	*	*	*	*
TREG1	←	*	*	*	*	*	*	*	*
P7CR	←	x	х	х	х	-		1	-
P7FC	←	x	х	x	х	-	-	1	х
P6CR	←	-	-	-	-	1	1	1	1
P6FC	←	-	-	-	-	1	1	1	1
PG01CR	←	-	-	-	-	0	0	0	1
PGOREG	←	*	*	*	*	*	*	*	*
TRUN	←	1	x	-	-	-	-	1	1
Note: x;	don't	care	-; r	no cha	nge				

Stop timer 0, and clears it to zero. Set timer 0 and timer 1 in PPG output mode and selects ϕ T1 as the input clock. Enable TFF1 inversion and sets TFF1 to "1". Set the duty of TO1 to TREG0. Set the cycle of TO1 to TREG1.

Assign P71 as T01.

Assign P60 - 63 as PG0.

Set PG0 in 4-phase 1-step excitation mode. Set an initial value. Start timer 0 and timer 1.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TLCS-900 16-bit Microcontroller

3.11 Serial Channel

TMP96C141/TMP96CM40/TMP96PM40 contains two serial I/ O channels for full duplex asynchronous transmission (UART) as well as for I/O extension.

The serial channel has the following operation modes:

I/O interface mode ______ Mode 0: To transmit and receive I/O data as well as the synchronizing signal SCLK for extending I/O.
Asynchronous transmission (UART) mode (channel 0 and 1)

In mode 1 and mode 2, a parity bit can be added. Mode 3 has wake-up function for making the master controller start slave controllers in serial link (multi-controller system).

Figure 3.11 (1) shows the data format (for one frame) in each mode.

• Mode 0 (I/O interface mode)

• Mode 1 (7-bit UART mode)

• Mode 2 (8-bit UART mode)

• Mode 3 (9-bit UART mode)

Figure 3.11 (1). Data Formats

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

The serial channel has a buffer register for transmitting and receiving operations, in order to temporarily store transmitted or received data, so that transmitting and receiving operations can be done independently (full duplex).

However, in I/O interface mode, SCLK (serial clock) pin is used for both transmission and receiving, the channel becomes half-duplex.

The receiving data register is of a double buffer structure to prevent the occurrence of overrun error and provides one frame of margin before CPU reads the received data. The receiving data register stores the already received data while the buffer register receives the next frame data.

By using CTS and RTS (there is no RTS pin, so any one port must be controlled by software), it is possible to halt data send until CPU finishes reading receive data every time a frame is received (Handshake function).

In the UART mode, a check function is added not to start the receiving operation by error start bits due to noise. The channel starts receiving data only when the start bit is detected to be normal at least twice in three samplings.

When the transmission buffer becomes empty and requests the CPU to send the next transmission data, or when data is stored in the receiving data register and the CPU is requested to read the data, INTTX or INTRX interrupt occurs. Besides, if an overrun error, parity error, or framing error occurs during receiving operation, flag SCOCR/SC1CR <OERR, PERR, FERR> will be set.

The serial channel 0/1 includes a special baud rate generator, which can set any baud rate by dividing the frequency of four clocks (ϕ T0, ϕ T2, ϕ T8, and ϕ T32) from the internal prescaler (shared by 8-bit/16-bit timer) by the value 2 to 16.

In I/O interface mode, it is possible to input synchronous signals as well as to transmit or receive data by external clock.

3.11.1 Control Registers

The serial channel is controlled by three control registers SCOCR, SCOMOD, and BROCR. Transmitted and received data is stored in register SCOBUF.

Note: There is SC1MOD (56H) in Channel1

4

3

2

1

0

SCOCR (0051H) 7

6

5

Note: As all error flags are cleared after reading do not test only a single bit with a bittesting instruction.

Figure 3.11 (3). Serial Control Register (Channel, SCOCR)

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.11 (4). Serial Channel Control (Channel 0, BR0CR)

Note: When setting the serial transfer mode to "9-bit length UART mode", transfer data "TB08" is written to bit? of SCOMOD register, and received data "RB08" is read from bit? of SC)CR register.

Figure 3.11 (6). Serial Mode Control Register (Channel 1, SC1MOD)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Note: As all error flags are cleared after reading, do not test only a single bit with a bittesting instruction.

Figure 3.11 (7). Serial Control Register (Channel 1, SC1CR)

Note : To use baud rate generator, set TRUN < PRRUN > to "1", putting the prescaler in RUN mode.

Figure 3.11 (8). Baud Rate Generator Control Register (Channel 0, BR0CR)

Note: When setting the serial transfer mode to "9-bit length UART mode", transfer data "TB18" is written to bit7 of SC1MOD register, and received data "RB18" is read from bit7 of SC1CR register.

Figure 3.11 (9). Serial Transmission/Receiving Buffer Registers (Channel 1, SC1BUF)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Figure 3.11 (10). Port 9 Function Register (P9FC)

Port 3.11 (11). Port 9 Open Drain Enable Register (ODE)

MCU900-564

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

3.11.2 Configuration

Figure 3.11 (12) shows the block diagram of the serial channel 0.

Figure 3.11 (12). Block Diagram of the Serial Channel 0

Figure 3.11 (13) shows the block diagram of the serial channel 1.

Figure 3.11 (13). Block Diagram of the Serial Channel 1

① Baud Rate Generator

UART mode

Baud rate generator comprises a circuit that generates transmission and receiving clocks to determine the transfer rate of the serial channel.

The input clock to the baud rate generator, ϕ T0 (fc/4), ϕ T2 (fc/16), ϕ T8 (fc/64), or ϕ T32 (fc/256) is generated by the 9-bit prescaler which is shared by the timers. One of these input clocks is selected by the baud rate generator control register BR0CR/BR1CR <BR0CK1, 0/BR1CK1, 0>.

The baud rate generator includes a 4-bit frequency divider, which divides frequency by 2 to 16 values to determine the transfer rate.

How to calculate a transfer rate when the baud rate generator is used is explained below.

÷ 16

Transfer rate =	Input clock of baud rate generator
	Frequency divisor of baud rate generator
I/O interface mode	

Transfer rate =	Input clock of baud rate generator	÷ 2
	Frequency divisor of baud rate generator	÷Ζ

The relation between the input clock and the source clock (fc) is as follows:

 ϕ TO = fc/4 ϕ T2 = fc/16 ϕ T8 = fc/64 ϕ T32 = fc/256

Accordingly, when source clock fc is 12.288 MHz, input clock is ϕ T2 (fc/16), and frequency divisor is 5, the transfer rate in UART mode becomes as follows:

Transfer rate =

$$\frac{\text{fc}/16}{5} \div 16$$

 $= 12.288 \times 10^{6}/16/5/16 = 9600 \text{ (bps)}$

Table 3.11 (1) shows an example of the transfer rate in UART mode.

Also with 8-bit timer 0, the serial channel can get a transfer rate. Table 3.11 (2) shows an example of baud rate using timer 0.

Table 3.11 (1) Selection of Transfer Rate (1) (When Baud Rate Generator is Used)

			· · · · · · · · · · · · · · · · · · ·		Unit (kbps)
fc [Mhz]	Input Clock Frequency Divisor	φT0 (fc/4)	φT2 (fc/16)	φT8 (fc/64)	φT32 (fc/256)
9.830400	2	76.800	19.200	4.800	1.200
↑	4	38.400	9.600	2.400	0.600
1	8	19.200	4.800	1.200	0.300
1	0	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
↑	A	19.200	4.800	1.200	0.300
14.745600	3	76.800	19.200	4.800	1.200
1	6	38.400	9.600	2.400	0.600
1	C	19.200	4.800	1.200	0.300

Note: Transfer rate in I/O interface mode is 8 times as fast as the values given in the above table.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Table 3.11 (2) Selection of Transfer Rate (1) (When Timer 0 (Input Clock *\phi*T1) is Used)

					Unit (Kups)	
fc TREGO	12.288MHz	12MHz	9.8304MHz	8MHz	6.144MHz	
1H	96		76.8	62.5	48	
2H	48		38.4	31.25	24	
3H	32	31.25			16	
4H	24		19.2		12	
5H	19.2				9.6	
8H	12		9.6		6	
AH	9.6	taan ka Mada Managa ay ka Kanga ka Kang			4.8	
10H	6		4.8		3	
14H	4.8				2.4	

How to calculate the transfer rate (when timer 0 is used):

Transfer rate =

fc TREG0 x 8 x 16 (When timer 0 (input clock øT1) is used)

Input clock of timer 0 $\phi T1 = \frac{fc}{8}$

 ϕ T4 = ^{fc}/32

 ϕ T16 = ^{fc}/128

Note: Timer 0 match detect signal cannot be used as the transfer clock in I/O interface mode.

② Serial Clock Generation Circuit

This circuit generates the basic clock for transmitting and receiving data.

1) I/O interface mode (channel 1 only)

When in SCLK output mode with the setting of SC1CR <IOC> = "0", the basic clock will be generated by dividing by 2 the output of the baud rate generator as described before. When in SCLK input mode with the setting of SC1CR <IOC> = "1", the rising edge or falling edge will be detected according to the setting of SC1CR <SCLKC> register to generate the basic clock.

2) Asynchronous Communication (UART) mode

According to the setting of SCOCR and SC1CR <SC1, 0>, the above baud rate generator clock, internal clock ϕ 1 (500 Kbps @ fc = 16 MHz), or the match detect signal from timer 0 will be selected to generate the basic clock SIOCLK.

③ Receiving Counter

The receiving counter is a 4-bit binary counter used in asynchronous communication (UART) mode and counts up by SIOCLK clock. Sixteen pulses of SIOCLK are used for receiving one bit of data, and the data bit is sampled three times at 7th, 8th and 9th clock.

Unit (Khoo)

With the three samples, the received data is evaluated by the rule of majority.

For example, if the sampled data bit is "1", "0" and "1" at 7th, 8th and 9th clock respectively, the received data is evaluated as "1". The sampled data "0", "0" and "1" is evaluated that the received data is "0".

④ Receiving Control

1) I/O interface mode (channel 1 only)

When in SCLK1 output mode with the setting of SC1CR <IOC> = "0", RxD1 signal will be sampled at the rising edge of shift clock which is output to SCLK pin.

When in SCLK input mode with the setting SC1CR <IOC> = "1", RxD1 signal will be sampled at the rising edge or falling edge of SCLK input according to the setting of SC1CR <SCLKS> register.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

2) Asynchronous Communication (UART) mode

The receiving control has a circuit for detecting the start bit by the rule of majority. When two or more "0" are detected during 3 samples, it is recognized as start bit and the receiving operation is started.

Data being received is also evaluated by the rule of majority.

⑤ Receiving Buffer

To prevent overrun error, the receiving buffer has a double buffer structure.

Received data is stored one bit by one bit in the receiving buffer 1 (shift register type). When 7 bits or 8 bits of data are stored in the receiving buffer 1, the stored data is transferred to another receiving buffer 2 (SC0BUF/SC1BUF), generating an interrupt INTRXO/ INTRX1. The CPU reads only receiving buffer 2 (SC0BUF/SC1BUF). Even before the CPU reads the receiving buffer 2 (SC0BUF/SC1BUF), the received data can be stored in the receiving buffer 1. However, unless the receiving buffer 2 (SC0BUF/SC1BUF) is read before all bits of the next data are received by the receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of the receiving buffer 1 will be lost, although the contents of the receiving buffer 2 and SC0CR <RB8> SC1CR <RB8> are still preserved.

The parity bit added in 8-bit UART mode and the most significant bit (MSB) in 9-bit UART mode are stored in SCOCR <RB8>/SC1CR <RB8>.

When in 9-bit UART mode, the wake-up function of the slave controllers is enabled by setting SCOMOD <WU>/SC1MOD <WU> to "1", and interrupt INTRXO/ INTRX1 occurs only when SCOCR <RB8>/SC1CR <RB8> is set to "1".

⑥ Transmission Counter

Transmission counter is a 4-bit binary counter which is used in asynchronous communication (UART) mode and, like a receiving counter, counts by SIOCLK clock, generating TxDCLK every 16 clock pulses.

Figure 3.11 (14). Generation of Transmission Clock

⑦ Transmission Controller

1) I/O interface mode (channel 1 only)

In SCLK output mode with the setting of SC1CR <IOC> = "0", the data in the transmission buffer are output bit by bit to TxD1 pin at the rising edge of shift clock which is output from SCLK1 pin.

In SCLK input mode with the setting SC1CR <IOC> = "1", the data in the transmission buffer are output bit

by bit to TxD1 pin at the rising edge or falling edge of SCLK input according to the setting of SC1CR <SCLKC> register.

2) Asynchronous Communication (UART) mode

When transmission data is written in the transmission buffer sent from the CPU, transmission starts at the rising edge of the next TxDCLK, generating a transmission shift clock TxDSFT.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

Handshake function

Serial channel 0 has a CTS0 pin. Using this pin, data can be sent in units of one frame; thus, overrun errors can be avoided. The handshake function is enabled/ disabled by SC0MOD <CTSE>.

When the CTSO pin goes high, after completion of the current data send, data send is halted until the CTSO pin goes low again. The INTTXO Interrupts are gener-

ated, requests the next send data to the CPU. Though there is no RTS pin, a handshake function can be easily configured by setting any port assigned to the RTS function. The RTS should be output "High" to request data send halt after data receive is completed by a software in the RXD interrupt routine.

Note 1: If the CTS signal falls during transmission, the next data is not sent after the completion of the current transmission. Note 2: Transmission starts at the first TXDCLK clock fall after the CTS signal falls.

⑧ Transmission Buffer

Transmission buffer (SC0BUF/SC1BUF) shifts to and sends the transmission data written from the CPU from the least significant bit (LSB) in order, using transmission shift clock TxDSFT which is generated by the transmission control. When all bits are shifted out, the transmission buffer becomes empty and generates INTTX0/INTTX1 interrupt.

Parity Control Circuit

When serial channel control register SCOCR <PE>/ SC1CR <PE> is set to "1", it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART or 8-bit UART mode. With SCOCR <EVEN>/SC1CR <EVEN> register, even (odd) parity can be selected.

For transmission, parity is automatically generated according to the data written in the transmission buffer SCBUF, and data are transmitted after being stored in SC0BUF <TB7>/SC1BUF <TB7> when in 7-bit UART mode while in SCMOD <TB8>/SCMOD <TB8> when in 8-bit UART mode. <PE> and <EVEN> must be set before transmission data are written in the transmission buffer.

For receiving, data is shifted in the receiving buffer 1, and parity is added after the data is transferred in the receiving buffer 2 (SC0BUF/SC1BUF), and then compared with SC0BUF <RB7>/SC1BUF <RB7> when in 7-bit UART mode and with SCOMOD <RB8>/ SC1MOD <RB8> when in 8-bit UART mode. If they are not equal, a parity error occurs, and SCOCR <PERR>/SC1CR <PERR> flag is set

In Error Flag

Three error flags are provided to increase the reliability of receiving data.

1. Overrun error <OERR>

If all bits of the next data are received in receiving buffer 1 while valid data is stored in receiving buffer 2 (SCBUF), an overrun error will occur.

2. Parity error <PERR>

The parity generated for the data shifted in receiving buffer 2 (SCBUF) is compared with the parity bit received from RxD pin. If they are not equal, a parity error occurs.

3. Framing error <FERR>

The stop bit of received data is sampled three times around the center. If the majority is "0", a framing error occurs.

① Generating Timing

1) UART mode

Receiving

Mode	9 Bit	8 Bit + Parity	8 Bit, 7 Bit + Parity, 7 Bit
Interrupt timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit
Overrun error timing	Center of last bit (Bit 8)	Center of last bit (parity bit)	Center of stop bit

Note: Framing error occurs after an interrupt has occurred. Therefore, to check for framing error during interrupt operation, it is necessary to wait for 1 bit period of transfer rate.

Transmitting

Mode	9 Bit	8 Bit + Parity	8 Bit, 7 Bit + Parity, 7 Bit
Interrupt timing	Just before last bit is transmitted.	←	←

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TLCS-900 16-bit Microcontroller

2) I/O Interface mode

	SCLK output mode	Immediately after rise of last SCLK signal. (See figure 3.11 (19))						
Transmission interrupt timing	SCLK input mode	Immediately after rise of last SCLK signal (rising mode), or immediately after fall in falling mod (See Figure 3.11 (20))						
	SCLK output mode	Timing used to transfer received data to data receive buffer 2 (SC1BUF); that is, immediately after last SCLK. (See Figure 3.11 (21))						
Receiving interrupt timing	SCLK input mode	Timing used to transfer received data to data receive buffer 2 (SC1BUF); that is, immediately after SCLK. (See Figure 3.11 (22))						

3.11.3 Operational Description

for transmitting or receiving data to or from the external shifter register.

(1) Mode 0 (I/O interface mode)

This mode is used to increase the number of I/O pins

This mode includes SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

Figure 3.11 (17). Example of SCLK Output Mode Connection

MCU900-572

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

① Transmission

In SCLK output mode, 8-bit data and synchronous clock are output from TxD pin and SCLK pin, respectively, each

time the CPU writes data in the transmission buffer. When all data is output, INTES1 <ITX1C> will be set to generate INTTX1 interrupt.

Figure 3.11 (19). Transmitting Operation in I/O Interface Mode (SCLK Output Mode)

In SCLK output mode, 8-bit data are output from TxD1 pin when SCLK input becomes active while data are written in the transmission buffer by CPU.

When all data are output, INTES1 <ITXIC> will be set to generate INTTX1 interrupt.

SCLK input (SCLKC = 0: Rising edge mod			
		╼ <mark>┙</mark> ─╹ [╣] ╌┩──╹	
SCLK input (SCLKC = 1: Falling edge mod	je)		
TxD	bit 0	bit 1 X bit 5 X	bit 6 X bit 7 X
TxDSFT	П		П
TX1C (INTTX1 nterrupt request)			

Figure 3.11 (20). Transmitting Operation in I/O Interface Mode (SCLK Input Mode)

② Receiving

In SCLK output mode, synchronous clock is output from SCLK pin and the data is shifted in the receiving buffer 1 whenever the receive interrupt flag INTES1 <IRX1C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred in the receiving buffer 2 (SC1BUF) at the timing shown below, and INTES1 <IRX1C> will be set again to generate INTRX1 interrupt.

In SCLK input mode, the data is shifted in the receiving buffer 1 when SCLK input becomes active, while the receive interrupt flag INTES1 <IRX1C> is cleared by reading the received data. When 8-bit data is received, the data will be shifted in the receiving buffer 2 (SC1BUF) at the timing shown below, and INTES1 <IRX1C> will be set again to generate INTRX interrupt.

Note: For data receiving, the system must be placed in the receive enable state (SCMOD <RXE> = "1")

(2) Mode 1 (7-bit UART Mode)

The 7-bit mode can be set by setting serial channel mode register SC0MOD <SM01,00>/SC1MOD <SM11,10> to "01".

In this mode, a parity bit can be added, and the addition of a parity bit can be enabled or disabled by serial channel control register SC0CR <PE>/SC1CR <PE>, and even parity or odd parity is selected by SCOCR <EVEN>/SC1CR <EVEN> when <PE> is set to "1" (enable).

Setting example: When transmitting data with the following format, the control registers should be set as described below. Channel 0 is explained here.

------ Direction of transmission (transmission rate: 9600 bps @ fc = 12.288 MHz)

		7	6	5	4	3	2	1	0	
P9CR	←	х	х	-	-		-	-	1) Select P90 as th
P9FC	←	х	х	-	х	-	х	х	1	J Select F90 as u
SCOMOD	←	х	0		х	0	1	0	1	Set 7-bit UART
SCOCR	←	х	1	1	х	х	х	0	0	Add an even pa
BROCR	←	0	х	1	0	0	1	0	1	Set transfer rate
TRUN	←	1	х	-	-		-	-	-	Start the presca
INTES0	←	1	1	0	0	-	-	-	-	Enable INTTX0
SCOBUF	←	*	*	*	*	*	*	*	*	Set data for tran

Note: x; don't care -; no change

) Select P90 as the TxD pin.
Set 7-bit UART mode.
Add an even parity.
Set transfer rate at 2400 bps.
Start the prescaler for the baud rate generator.
Enable INTTX0 interrupt and sets interrupt level 4.
Set data for transmission.

(3) Mode 2 (8-bit UART Mode)

The 8-bit UART mode can be specified by setting SCOMOD <SM01,00>/SC1MOD <SM11,10> to "10". In this mode, parity bit can be added, the addition of a parity bit is enabled or disabled by SCOCR <PE>/

SC1CR <PE>, and even parity or odd parity is selected by SC0CR <EVEN>/SC1CR <EVEN> when <PE> is set to "1" (enable).

Setting example: When receiving data with the following format, the control register should be set as described below.

Direction of transmission (transmission rate: 9600 bps @ fc = 12.288 MHz)

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

MCU900-575

Main setting

		7	6	5	4	3	2	1	0	
P9CR	←	X	х	-	-	-	-	0	-	
SCOMOD	←	-	0	1	х	1	0	0	1	
SCOCR	←	х	0	1	х	х	х	0	0	
BROCR	←	0	х	0	1	0	1	0	1	
TRUN	←	1	х	-	-	-	-	-	-	
INTES0	←	-	-	-	-	1	1	0	0	

Select P91 (RxD) as the input pin.

Enable receiving in 8-bit UART mode.

Add an odd parity.

Set transfer rate at 9600 bps.

Start the prescaler for the baud rate generator.

Enable INTTXO interrupt and sets interrupt level 4.

Interrupt processing Acc \leftarrow SC0CB and 00011100)	Check for error.
If Acc \neq 0 then ERROR		
Acc \leftarrow SCOBUF		Read the received data.

Note: x; don't care -; no change

(4) Mode 3 (9-bit UART Mode)

The 9-bit UART mode can be specified by setting SCOMOD <SM01,00>/SC1MOD <SM11,10> to "11". In this mode, parity bit cannot be added For transmission, the MSB (9th bit) is written in SCMOD <TB8>, while in receiving it is stored in SCCR <RB8>. For writing and reading the buffer, the MSB is read or written first, then SC0BUF/SC1BUF.

Wake-up function

In 9-bit UART mode, the wake-up function of slave controllers is enabled by setting SCOMOD <WU>/ SC1MOD <WU> to "1". The interrupt INTRX1/INTRX0 occurs only when <RB8> = 1

Note: TxD pin of the slave controllers must be in open drain output mode.

Figure 3.11 (23). Serial Link Using Wake-Up Function

Protocol

- ① Select the 9-bit UART mode for master and slave controllers.
- ② Set SCOMOD <WU>/SC1MOD <WU> bit of each slave controller to "1" to enable data receiving.
- ③ The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (bit 8) <TB8> is set to "1".

Select code of slave controller

- ④ Each slave controller receives the above frame, and clears WU bit to "0" if the above select code matches its own select code.
- In the master controller transmits data to the specified slave controller whose SCOMOD <WU>/SC1MOD <WU> bit is cleared to "0." The MSB (bit 8) <TB8> is cleared to "0".

(6) The other slave controllers (with the <WU> bit remaining at "1") ignore the receiving data because their MSBs (bit 8 or <RB8>) are set to "0" to disable the interrupt INTRXO/INTRX1.

The slave controllers (WU = 0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

MCU900-577

Setting Example: To link two slave controllers serially with the master controller, and use

the internal clock $\phi 1$ (fc/2) as the transfer clock.

Since serial channels 0 and 1 operate in exactly the

...

same way, channel 0 is used for the purposes of explanation.

A 4 1 1 1 1 1 1 1 1 1 1										
Main settir	-							•		
P9CR	←	х	Х	-	-	-	-	0	1	Select P90 as TxD pin and P91 as RxD pin.
P9FC	←	X	X	-	х	_	X	X	1	·
INTES0	←	1	1	0	0	1	1	0	1	Enable INTTXO and sets the interrupt level 4.
										Enable INTRXO and sets the interrupt level 5.
SCOMOD	←	1	0	1	0	1	1	1	0	Set ϕ 1 (fc/2) as the transmission clock in 9-bit UART mode.
SCOBUF	←	0	0	0	0	0	0	0	1	Set the select code for slave controller 1.
INTTX0 inf	terrupt									
SCOMOD	←	-	0	-	_	-		-	-	Set TB8 to "0".
SCOBUF	←	. *	*	*	*	*	*	*	*	Set data for transmission.
Setting	g the :	slave	cont	roller	2					
Setting Main settir P9CR	-	slave x	cont	roller _	2	-	_	0	1	Colort PO1 on PVD bin and PO0 on TVD bin (open drain output)
Main settir	ng			roller - -	2 - x	-	- x	0 x	1) Select P91 as RxD pin and P90 as TxD pin (open drain output).
Main settir P9CR	ng ←	x	x	-	_	- - X	- x x			Select P91 as RxD pin and P90 as TxD pin (open drain output).
Main settir P9CR P9FC	ng ← ←	x x	x x	-	- x	- - x 1		X	1) Select P91 as RxD pin and P90 as TxD pin (open drain output). Enable INTRX0 and INTTX0.
Main settir P9CR P9FC ODE	ng ← ← ←	x x x	x x x	- - x	- x x		х	x _	1 1	Enable INTRX0 and INTTX0.
Main settir P9CR P9FC ODE INTESO	ng	x x x 1	x x x 1	- - x 0	- x x 1	1	x 1	x 1	1 1 0	 Enable INTRX0 and INTTX0. Set <wu> to "1" in the 9-bit UART transmission mode with transf</wu>
Main settir P9CR P9FC ODE INTESO SCOMOD	ng ← ← ← ← ← ← ← terrupt	x x x 1	x x x 1	- - x 0	- x x 1	1	x 1	x 1	1 1 0	 Enable INTRX0 and INTTX0. Set <wu> to "1" in the 9-bit UART transmission mode with transf</wu>
Main settir P9CR P9FC ODE INTESO SCOMOD	ng ← ← ← ← ← terrupt :0BUF	x x 1 0	x x x 1	- - x 0	- x x 1	1	x 1	x 1	1 1 0	 Enable INTRX0 and INTTX0. Set <wu> to "1" in the 9-bit UART transmission mode with transference</wu>

MCU900-578

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

3.12 Analog/Digital Converter

The TMP96C081F contains a high-speed analog/digital converter (A/D converter) with 6-channel analog input that features 10-bit successive approximation.

Figure 3.12 (1) shows the block diagram of the A/D converter. 6-channel analog input pins (AN5 to AN0) are shared by input-only P5 and so can be used as input port.

Figure 3.12 (1). Block Diagram of A/D Converter

- Note 1: This A/D converter does not have a built-in sample and hold circuit. Therefore, when A/D converting high-frequency signals, connect a sample and hold circuit externally.
- Note 2: In order to reduce power supply currency in IDLE or STOP mode, the A/D converter enters standby mode even if the internal comparator remains in the enable state depending on the timing. Stop the A/D converter before executing the HALT command. Since the ladder resistor between V_{REF} A_{GND} cannot be stopped internally, I_{REF} is transmitted regardless of a mode.

Figure 3.12 (2). A/D Control Register

TMP96C081F

		7	6	5	4	3	2	1	0							
DREG04L 0060H)	bit Symbol	ADR041	ADR40			//										
000011)	Read/Write				F	}										
	After reset	Unde	efined	1	1	1	1	1	1							
	Function		·····	Lower 2	bits of A/D result	for AN0 or AN4 ar	e stored.									
		7	6	5	4	3	2	1	0							
DREG04H (0061H)	bit Symbol	ADR049	ADR048	ADR047	ADR046	ADR045	ADR044	ADR043	ADR042							
00010)	Read/Write		•		F	}										
		Undefined														
	After reset	Ì		Upper 8 bits of A/D result for AN0 or AN4 are stored.												
	After reset Function			Upper 8	bits of A/D result	for ANO or AN4 ar	e stored.									
		7	6	Upper 8 5	bits of A/D result	for ANO or AN4 ar 3	e stored. 2	1	0							
		7 ADR151	6 ADR150					1	0							
	Function		-			3		1	0							
	Function bit Symbol	ADR151	-		4	3		1	0							
	Function bit Symbol Read/Write	ADR151	ADR150	5	4	3	2									
)REG15L 0062H)	Function bit Symbol Read/Write After reset	ADR151	ADR150	5	4 F 1	3	2									
0062H)	Function bit Symbol Read/Write After reset Function	ADR151	ADR150	5	4 F 1	3	2									
0062H) REG15H	Function bit Symbol Read/Write After reset Function	ADR151 Unde	ADR150	5 1 Lower 2	4 F 1 bits of A/D result	3 1 for AN1 or AN5ar	2 1 e stored.	1	1							
	Function bit Symbol Read/Write After reset Function	ADR151 Unde	ADR150	5 1 Lower 2 5	4 F 1 bits of A/D result	3 1 for AN1 or AN5ard 3 ADR155	2 1 e stored. 2	1	1							

Figure 3.12 (3-1). A/D Conversion Result Register (ADREG04, 15)

Upper 8 bits of A/D result for AN1 or AN5 are stored.

Function

	/	7	6		5		4		3		2		1		0
ADREG2L (0064H)	bit Symbol	ADR21	ADR20	<u> </u>			\sim	\sum	/	\sim				1	\sim
	Read/Write							R							
	After reset	Unde	fined		1		1		l		1	1	1	1	1
	Function	Lower 2 b	its of A/D	resu	It for /	4N2 a	are store	d.							

	/	7	[.] 6	5	4	3	2	1	0			
ADREG2H (0065H)	bit Symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22			
(,	Read/Write	1										
After reset Undefined												
	Function	Upper 8 b	its of A/D re	sult for AN	2 are stored	J.						

		7	6		5		4	3		2		1	0
ADREG3L (0066H)	bit Symbol	ADR31	ADR30	\sim	/		/		//	/	//	\langle	/
Read/Write R													
	After reset	Unde	fined		1		1	1		1		1	1
	Function	Lower 2 b	its of A/D	resu	It for A	N3 a	re store	d.					

	/	7	6	5	4	3	2	1	0					
ADREG3H (0067H)	bit Symbol	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32					
(0000)	Read/Write													
	After reset	r reset Undefined												
	Function	Upper 8 b	its of A/D re	sult for AN	13 are store	d.								

Figure 3.12 (3-2). A/D Conversion Result Register (ADREG2, 3)

	nalog input c	hannel select
	Normal	Scan mode
0	AN0~3	AN0-AN1-AN2-AN3
1	AN4~5	AN4-AN5

Figure 3.12 (3-3). A/D Channel Select Register

3.12.1 Operation

(1) Analog Reference Voltage

High analog reference voltage is applied to the VREF pin, and low analog reference voltage is applied to AGND pin.

The reference voltage between VREG and AGND is divided by 1024 using ladder resistance, and compared with the analog input voltage for A/D conversion.

(2) Analog Input Channels

Analog input channel is selected by ADMOD <ADCH1, 0>. However, which channel to select depends on the operation mode of the A/D converter.

In fixed analog input mode, one channel is selected by ADMOD <ADCH1, 0> among four pins: AN0 to AN3. In analog input channel scan mode, the number of

channels to be scanned from AN0 is specified by ADMOD <ADCH1, 0>, such as AN0 \rightarrow AN1, AN0 \rightarrow AN1 \rightarrow AN2, and AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3.

When reset, A/D conversion channel register will be initialized to ADMOD <ADCH1, 0 > = 00, so that AN0 pin will be selected.

The pins which are not used as analog input channel can be used as ordinary input port P5.

(3) Starting A/D Conversion

A/D conversion starts when A/D conversion register ADMOD <ADS> is written "1". When A/D conversion starts, A/D conversion busy flag ADMOD <ADBF> which indicates "A/D conversion is in progress" will be set to "1".

(4) A/D Conversion Mode

Both fixed A/D conversion channel mode and A/D conversion channel scan mode have two conversion modes, i.e., single and repeat conversion modes. In fixed channel repeat mode, conversion of specified

one channel is executed repeatedly.

In scan repeat mode, scanning from ANO, $\cdots \rightarrow$ AN3 is executed repeatedly.

A/D conversion mode is selected by ADMOD <REPET, SCAN>.

(5) A/D Conversion Speed Selection

There are two A/D conversion speed modes: high speed mode and low speed mode. The selection is executed by ADMOD <ADCS> register. When reset, ADMOD <ADCS> will be initialized to "0," so that high speed conversion mode will be selected.

(6) A/D Conversion End and Interrupt

• A/D conversion single mode

ADMOD <EOCF> for A/D conversion end will be set to "1," ADMOD <ADBF> flag will be reset to "0," and INTAD interrupt will be enabled when A/D conversion of specified channel ends in fixed conversion channel mode or when A/D conversion of the last channel ends in channel scan mode.

 A/D conversion repeat mode For both fixed conversion channel mode and conversion channel scan mode, INTAD should be disabled when in repeat mode. Always set the INTEOAD at "000," that disables the interrupt request.

Write "0" to ADMOD <REPET> to end the repeat mode. Then, the repeat mode will be exited as soon as the conversion in progress is completed.

(7) Storing the A/D Conversion Result

The results of A/D conversion are stored in ADREG0 to ADREG3 registers for each channel. In repeat mode, the registers are updated whenever conversion ends. ADREG0 to ADREG3 are read-only registers.

(8) Reading the A/D Conversion Result

The results of A/D conversion are stored in ADREG0 to ADREG3 registers. When the contents of one of ADREG0 to ADREG3 registers are read, ADMOD <EOCF> will be cleared to "0".

Setting example: When the analog input voltage of the AN3 pin is A/D converted and the result is stored in the memory address FF10H by A/D interrupt INTAD routine.

- Inteoad	←	1	1	0	Ó	-	-	-	-	Enable INTAD and sets interrupt level 4.
- ADMOD	←	х	x	0	0	0	1	1	1	Specify AN3 pin as an analog input channel and starts A/D conversion in high spee mode.
INTAD routine										
-	;									
WA	←	ADR	EG3							Read ADREG3L and ADREG3H values and writes to WA (16 bit).
WA	>	>	6							Right-shifts WA six times and writes 0 in upper bits.
_(00FF10H)	←	WA								Writes contents of WA in memory at FF10H.
When the ana	log inp	out volt	tage of	AN0 ~	AN2 p	ins is A	/D com	verted i	n high spe	eed conversion channel scan repeat mode.
INTEOAD	←	1	0	0	-	-	-		-	Disable INTAD.
ADMOD	←	х	x	1	1	0	1	1	0	Start the A/D conversion of analog input channels ANO ~ AN2 in the high-speed scan repeat mode.

3.13 Watchdog Timer (Runaway Detecting Timer)

The TMP96C081F is containing watchdog timer of Runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a nonmaskable interrupt to notify the CPU of the malfunction, and outputs 0 externally from watchdog timer out pin WDTOUT to notify the peripheral devices of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

3.13.1 Configuration

Figure 3.13 (1) shows the block diagram of the watchdog timer (WDT).

Figure 3.13 (1). Block Diagram of Watchdog Timer

The watchdog timer is a 22-stage binary counter which uses ϕ (fc/2) as the input clock. There are four outputs from the binary counter: 2^{16} /fc, 2^{18} /fc, 2^{20} /fc, and 2^{22} /fc. Selecting one of the outputs with the WDMOD register generates a watchdog interrupt, and outputs watchdog timer out when an overflow occurs.

Since the watchdog timer out pin (WDTOUT) outputs "0" due to a watchdog timer overflow, the peripheral devices can

be reset. The watchdog timer out pin is set to 1 by clearing the watchdog timer (by writing a clear code 4EH in the WDCR register). In other words, the WDTOUT keeps outputting "0" until the clear code is written.

The watchdog timer out pin can also be connected to the reset pin internally. In this case, the watchdog timer out pin (WDTOUT) outputs 0 at 8 to 20 states (800ns to $2.0\mu s$ @ 20MHz) and resets itself.

Figure 3.13 (2). Normal Mode

Figure 3.13 (3). Reset Mode

MCU900-586

3.13.2 Control Registers

Watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog Timer Mode Register (WDMOD)
 - ① Setting the detecting time of watchdog timer <WDTP>

This 2-bit register is used to set the watchdog timer interrupt time for detecting the runaway. This register is initialized to WDMOD </br/>WDTP1, 0> = 00 when reset, and therefore 2^{16} /fc is set. (The number of states is approximately 32,768).

② Watchdog timer enable/disable control register <WDTE>

When reset, WDMOD <WDTE> is initialized to "1" enable the watchdog timer.

• Disable control

WDMOD	←	0	-	-	-	-	-	х	х	
WDCR	←	1	0	1	1	0	0	0	1	

• Enable control Set WDMOD <WDTE> to "1". To disable, it is necessary to clear this bit to "0" and write the disable code (B1H) in the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return from the disable state to enable state by merely setting <WDTE> to "1".

③ Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with RESET terminal, internally. Since WDMOD <RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog Timer Control Register (WDCR)

This register is used to disable and clear the binary counter of the watchdog timer function.

Clear WDMOD <WDTE> to "0". Write the disable code (B1H).

> Watchdog timer clear control The binary counter can be cleared and resume counting by writing clear code (4EH) into the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0

Write the clear code (4EH).

Figure 3.13 (4). Watchdog Timer Mode Register

Figure 3.13 (5). Watchdog Timer Control Register

TMP96C081F

3.13.3 Operation

····

The watchdog timer generates interrupt INTWD after the detecting time set in the WDMOD <WDTP1, 0> register and outputs a low level signal. The watchdog timer must be zerocleared by software before an INTWD interrupt is generated. If the CPU malfunctions (runaway) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter overflows and an INTWD interrupt is generated. The CPU detects malfunction (runaway) due to the INTWD Interrupt and it is possible to return to normal oper-

ation by an anti-malfunction program. By connecting the watchdog timer out pin to peripheral devices' resets, a CPU malfunction can also be acknowledged to other devices.

The watchdog timer restarts operation immediately after resetting is released.

The watchdog timer stops its operation in the IDLE and STOP modes.

The watchdog timer stops when a bus is released or internal DMAC is operating.

Example:	 Clear the binary counter 	
	WDCR ← 0 1 0 0 1 1	1 0 Write clear code (4EH).
	② Set the watchdog timer detecting time to	to 2 ¹⁸ /fc
	WDMOD ← 1 0 1	X X
	③ Disable the watchdog timer	
	WDMOD ← 0	x x Clear WDTE to "0".
	WDCR ← 1 0 1 1 0 0	0 1 Write disable code (B1H).
	④ Set IDLE mode	
	WDMOD \leftarrow 0 1 0	x x Disables WDT and sets IDLE mode.
	WDCR ← 1 0 1 1 0 0	0 1
	Executes HALT command	Set the standby mode
	Set the STOP mode (warming up time: 2	2 ¹⁶ /fc)
	WDMOD ← 1 0 1	x x Set the STOP mode.
	Executes HALT command	Execute HALT instruction. Set the standby mode.

3.14 Direct Memory Access Controller (DMAC)

3.14.1 Outline

The Direct Memory Access Controller (DMAC) is a peripheral circuit used to directly access memory in more than one mode. The DMAC enables direct data transfer between the internal and the external I/Os of the TMP96C081 without interfering with the CPU operation, thus contributing to system efficiency.

The DMAC has four independent built-in channels. Programmable channel control registers support three transfer modes and two address specification methods. Auto-initialization is also supported. This enables repeated DMA transfers, by automatically returning the values previously set in the registers at the completion of one data transfer.

Also supported are:

- increment/decrement of transfer source and destination address
- accesses necessary for the DMAC built into the MCU, such as access to fixed addresses and access in I/O mode (see 3.14.4 (4) Address specification).

Channels have the following capabilities:

maximum number of transfer blocks: 64K words maximum address area: 16M bytes

3.14.2 Features

- Four independent DMA channels
- Transfer speed at 20MHz:

Single address transfer:

- external memory → external I/O, 5M bytes (words)/s external memory → internal I/O, 5M bytes/s internal memory → external I/O, 3.3M bytes/s Dual address transfer:
 - $8 \rightarrow 8 \text{ or } 16 \rightarrow 16 \text{ bit transfer, } 2.5 \text{M bytes (word)/s}$
 - $8 \rightarrow 16 \text{ or } 16 \rightarrow 8 \text{ bit transfer, } 3.3 \text{ M bytes (word)/s}$
- Three transfer modes; byte, demand, and continuous
- Transfer between memories or between memories and I/Os
- Independent auto-initialization for each channel
- Programmable address increment/decrement/fixed I/O mode
- Control of enable/disable for each DMA request
- Three methods of ending transfers: completion of specified number of transfers, end of process by external circuit, and data match detect
- DMA request by software
- Report of transfer end to CPU by interrupt
- · Channel priority can be rotated
- Transfer between ROM and RAM in different bus sizes

3.14.3 Circuit Configuration and Related Pins

The circuit configuration

Note: An asterisk* next to the pin name represents a channel number.

(1) **DREQ***

Input pin used for DMA start requested by an external circuit.

(2) DACK*

Output pin used respond to DMA start requested by an external circuit.

(3) TC*

Output signal pin used to indicate DMA completion. The specified number of DMA transfers in response to a DMA request is ended.

(4) <u>EOP</u>*

Input pin used to request DMA transfer ended by an external circuit.

(5) AEN*

Output signal used to externally notify DMA in operation.

- (6) IORD* Read signal used for external I/Os.
- (7) IOWR*

Write signal used for external I/Os.

Figure 3.14 (1). DMAC Block

MCU900-592

TMP96C081F

3.14.4 DMA Operation

This section describes address specification methods, transfer modes, start/stop methods, and interrupt generation.

- (1) Address Specification Methods
 - · Single address transfer

1-byte or 1-word transfer in 1-bus cycle. Simultaneous read and write from/to memories and internal/external peripheral circuits. When an internal peripheral circuit is accessed, a wait may automatically be inserted to adjust the clock phase. Note that single address transfer is enabled only for SIO0, SIO1, and A/D among internal peripheral circuits.

Figure 3.14 (1). Single Address Transfer Timing

Note: CLK output is not necessarily the same as the above phase.

Figure 3.14 (2). Single Address Transfer Timing

Note: CLK output is not necessarily the same as the above phase.

Figure 3.14 (3). Single Address Transfer Timing

Note: CLK output is not necessarily the same as the above phase.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

MCU900-595

Dual address transfer

1-byte or 1-word transfer in 2-bus cycle consisting of read and write cycles. When an internal peripheral cir-

cuit is accessed, a wait may automatically be inserted to adjust the clock phase.

Note that $\overline{DACK0}$ to $\overline{DACK3}$ signals are output only when \overline{DACK} output is enabled. For details, see (10) \overline{DACK} output enable bit.

Figure 3.14 (4). Dual Address Transfer Timing

Figure 3.14 (6). Dual Address Transfer Timing

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

MCU900-597

(2) Transfer Modes

The DMAC supports the following three transfer modes.

• Byte mode

In this mode, bus mastership is released after each transfer in response to a DMA request and when DREQ (DMA request input) is sensed. If DREQ is active, bus mastership is re-captured to resume DMA transfer; if DREQ is inactive, DMA transfer ends.

Continue mode

In this mode, the specified number of DMA transfers is executed by one DMA request.

Demand mode

In this mode, DMA transfers continue as long as DREQ by one DMA request. Transfer ends when DREQ becomes inactive.

- (Note) When starting DMA transfer using a built-in peripheral circuit which can be connected internally, the DREQ detect method (pulse or level) must be set depending on the output waveform of the interrupt signal to be connected.
- (3) DMA Transfer Start and Stop Methods
 - Start

The DMAC can be started using any of the following three methods:

- DREQ input by external peripheral circuit Inputting DREQ to the external DREQ pin corresponding to a channel starts DMA transfer.
- 2. DREQ input by internal peripheral circuit Selecting the internal DREQ input corresponding to a channel and ending the anticipated operation starts DMA transfer.
- Software request Setting the DSREQ* DMA start request bit in the DMACR* command register for a channel starts transfer.

Stop

The DMAC can be stopped in any of the following three methods:

 Completion of a set number of DMA transfers (terminal count: TC) When the number of data transfers set in the count

register for a channel is completed, the DMAC releases bus mastership and outputs the TC signal. Interrupt generation and setting the TC* (* = channel number) bit in the status register notify the CPU of DMAC stop.

- End of process signal input by external circuit (End of process: EOP) Inputting the EOP signal to a channel in DMA transfer ends transfer and releases bus mastership. Interrupt generation and setting the EOP* (* = channel number) bit in the status register notify the CPU of DMAC stop.
- Data match detected (match: MATCH)
 Detecting a match between the data set in the match register for a channel and the data to be transferred ends transfer. Interrupt generation and setting the MAT* (* = channel number) bit in the status register notify the CPU of DMAC stop.
- (4) DMA Transfer Start and Stop Methods

The DMAC supports four methods for updating the transfer source and destination address:

- Fixed mode: Used to access address set in the transfer source and destination address registers.
- 2. Increment mode:

Used to sequentially increment addresses set in the transfer source and destination address registers: DMASAA/B/C* and DMADAA/B/C (* = channel number).

3. Decrement mode:

Used to sequentially decrement addresses set in the transfer source and destination address registers: DMASAA/B/C* and DMADAA/B/C (* = channel number).

4. I/O mode:

Used to access 2-byte data repeatedly. Useful for accessing internal peripheral circuits

Counter : 8 bytes

Figure 3.14 (5). Example: Setting Transfer Source Address Update Method to I/O Mode

(5) Transfer Error Generation

The DMAC can notify the CPU that a transfer is accepted by setting 0 in the count register. When 0 is set in the count register, accepting a transfer request causes an error to occur in the DMAC. In this case, the DMAC does not perform DMA transfer. It generates an interrupt and sets the ERR* bit (* = channel) in the status register. After an error occurred in the DMAC, DMA transfer can be enabled by the following steps:

(1) set a value other than 0 in the count register.

(2) reset the error bit in the status register.

(3) set the DMA enable bit.

However, if the DMA request source disappears during step (1) to (3), DMA transfer will not be performed.

(6) Auto-initialization

When DMA transfer stops (explained in (3), DMA transfer start and stop methods), and RLD*, the auto-initialization bit in the DMACR* command register for a channel is set, the pre-transfer data is returned to the registers. One of the advantages of auto-initialization is that it eliminates the need to set the DMA control registers when the same address is repeatedly accessed. Auto-initialization is used for count registers, and transfer source and destination address registers. Usually, the DMAEN* bit in the DMACR* command register is cleared after a channel ends transfer. However, if RLD is set and DMA transfer stops due to interrupt disable (set in the DMACR command register), the DMAEN* bit will not be cleared. In this case, when a DMA request is generated, DMA transfer restarts without setting DMA enable again.

(7) Channel Priority Setting

The DMAC supports the following two methods for setting channel priority. Priority is set in the PRI bit of the DMAMODA3 mode A register.

1. Fixed method

Used to assign fixed priorities to four channels. Channel 0 has the highest priority: next highest is channel 1, then channel 2, and channel 3 has the lowest priority.

2. Rotate mode

Used to change the priorities of four channels. In this mode, when DMA transfer ends for a channel, the priority of that channel becomes the lowest, then the next channel has the highest priority.

(8) Interrupt Generation

The DMAC can notify the CPU of an event such as transfer end by generating an interrupt. The DMAC supports the following four interrupt sources. It can set interrupt generation enable/disable using the DMACR* (* = channel number) command register.

- Match (MATCH) Data set in the match register matched the data being transferred.
- Terminal count (TC) Number of transfers set in the count register has ended.
- End of process (EOP) Transfer ended by end of process input externally.

4. Error (ERROR)

DMA start request is generated with 0s in the count register and an error has occurred in the corresponding channel.

When an interrupt is generated, this is reflected in the DMAST* status register. Thus, writing 1 in DMAST* clears the status.

(9) DACK Output Enable Bit

Bit 7 in the DMACR* command register for channels 0 to 2 is used to set whether to send a response (DACK) when a DMA request (DREQ) is input to a channel. DACK signal output can be classified as shown in the table below, depending on the combination of address specification method and transfer mode.

Bit 7 in the DMAC3* command register for channel 3 is used to set DMAC channel priority. Thus, DACK signal output cannot be set for channel 3. Instead, channel 3 supports DACK output using 0 set in bit 7 of other channels.

DMA start source	DACK output select MODA bit7	MIO/IOM MODA bit3	Sng/Dua1 MODA bit2	Internal connection /no connection MODB bit4	Output address	Internal DACK address	External DACK output
	0 : no output 1 : output	0 : IO → M 1 : M → IO	0 : Dual 1 : Sngl	0 : no connection 1 : connection	SA : Transfer source DA : destination	O: output	O: output
	0	0	0	0	SA/DA	×	×
	1	0	0	0	SA/DA	×	
	0	0	1	0	DA	×	×000 ×000
External	1	0	1	0	DA	×	0
DREQ	0	1	0	0	SA/DA	×	×
	1	1	0	0	SA/DA	×	Q
	0	1	1	0	SA	×	Q
	1	1	1	0	SA	×	
	0	0	0	1	SA/DA	×	ŏ
	1	0	0	1	SA/DA	×	0
	0	0	1	1	DA	00	ŏ
Internal	1	0	1	1	DA		0
DREQ	0	1	0	1	SA/DA	×	Ň
	1	1	0	1	SA/DA	×	0
	0	1	1	1	SA	× 00	Ň
	1	1	1	1	SA		0
	0	0	0	0	SA/DA	×	×
	1	0	0	0	SA/DA	×	Q
	0	0	1	0	DA	×	Q
Software	1	0	1	0	DA	×	0
request	0	1	0	0	SA/DA	×	×
	1	1	0	0	SA/DA	×	Q
	0	1	1		SA	×	×000 ×000
	1	1	1	0	SA	×	0

Table 3.14 (7) DAMC Register Setting and Address and DACK Output

Notes : • Internal DREQ signal is used by the peripheral circuit specified by bits 7 to 5 in the mode B register. Internal DACK signal is only output at SIO0 send request, SIO0 receive request, SIO1 send request, SIO1 receive request, and A/D conversion end.

 To start the DMA by an external DREQ or software request, set the internal connect bit (bit 4 in the mode B register) to 0.

• Do not set <PAFC> for DREQ function with software request start.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

3.14.5 DMAC Control Registers

The TMP96C081F has four built-in independent channels, each of which has 14 registers belonging to eight register groups. Channel functions are almost the same. Channel-specific functions specific to channels are also explained below.

When setting the following (1) to (8) registers, the TMP96C081F must be in DMA disable state (bit DMAEN* in the DMACR* command register = 0).

(1) Source Address Register, Common to All Channels (*: channel number)

> Used to specify the start address of the data transferred by the DMAC, and memory-mapped I/O register addresses. To transfer 16-bit data, specify even-numbered addresses.

DMASAA* (Transfer source address : lower 8 bits)

Register name	87	B6	B5	B4	B3	B2	B1	BO
DMASAA*	SA07*	SA06*	SA05*	SA04*	SA03*	SA02*	SA01*	SA00*

DMASAB* (Transfer source address : middle 8 bits)

DMASAB* SA15* SA14* SA13* SA12* SA11* SA10* SA09* SA08*	Register name	B7	B6	B5	B4	B3	B2	B1	BO
	DMASAB*	SA15*	SA14*	SA13*	SA12*	SA11*	SA10*	SA09*	SA08*

DMASAC* (Transfer source address : upper 8 bits)

Register name	B7	B6	B5	B4	B3	B2	B1	BO
DMASAC*	SA23*	SA22*	SA21*	SA20*	SA19*	SA18*	SA17*	SA16*

Destination Address Register, Common to All Channels (* = Channel Number)

Used to specify the transfer destination address. To transfer 16-bit data, specify even-numbered addresses.

DMADAA* (Transfer destination address : lower 8 bits)

Register name	87	B6	B5	B4	B3	B2	B1	BO
DMADAA*	DA07*	DA06*	DA05*	DA04*	DA03*	DA02*	DA01*	DA00*

DMADAB* (Transfer destination address : middle 8 bits)

Register name	B7	B6	B5	B4	B3	B2	B1	BO
DMADAB*	DA15*	DA14*	DA13*	DA12*	DA11*	DA10*	DA09*	DA08*

DMADAC* (Transfer destination address : upper 8 bits)

Register name	B7	86	B5	B4	B3	B2	B1	B0
DMADAC*	DA23*	DA22*	DA21*	DA20*	DA19*	DA18*	DA17*	DA16*

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(3) Count Register, Common to All Channels (* = Channel Number) transfer or the number of words for 16-bit DMA transfer. If the data width of the transfer source differs from the transfer destination, the data width of the transfer source is used for counting data.

Used to specify the number of bytes for 8-bit DMA

DMACTA* (Count register : lower 8 bits)

Register name	B7	86	B5	B4	B3	B2	B1	80
DMACTA*	СТ07*	СТ06*	СТ05*	CT04*	CT03*	CT02*	CT01*	СТ00*

DMACTB* (Count register : upper 8 bits)

Register name	B7	B6	B5	B4	B3	B2	B1	BO
DMACTB*	CT15*	CT14*	CT13*	CT12*	CT11*	CT10*	СТ09*	СТ08*

 Match Register, Common to All Channels (* = Channel Number)

Used to specify data for stopping DMA transfer if the specified data is accessed during DMA transfer. For 8-

bit to 8-bit transfer, the upper 8-bits are not compared but ignored.

If the data width of the transfer source differs from the transfer destination, the data width of the transfer source is used for counting data.

DMAMAA* (Match data : lower 8 bits)

Register name	B7	B6	B5	B4	B3	B2	B1	BO
DMAMAA*	MA07*	MA06*	MA05*	MA04*	MA03*	MA02*	MA01*	MA00*

DMAMAB* (Match data : upper 8 bits)

Register name	B7	B6	B5	B4	B3	B2	B1	во
DMAMAB*	MA15*	MA14*	MA13*	MA12*	MA11*	MA10*	MA09*	MA08*

(5) Mode Register A, Common to Channels 0 to 2; Excluding Channel 3 whether to output DACK to request source at DMA transfer by an external DREQ. With channel 3, bit 7 is used to specify channel priority specification method for the DMAC; that is, DACK output cannot be set.

Used to specify transfer mode, data width, and transfer direction. With channels 0 to 2, bit 7 is used to specify

(Note1)The DIR* bit is sighificant only when single address transfer is specified in the 5D* bit below. (Note2)Operations depend on transfer mode. For details, see Table 3.14 (7), DMAC register setting and address/DACK output. (Note3)Set the transfer source and destination data widths to same as those in the CS/w controller. When transferring data to/from internal memory mapped I/O (including internal I/O in single address transfer). Set the transfer data width to applications of the transfer source and estimation data width to the transfer data width to

(Note4) Set the transfer source and destination data widths to same as those when single address transfer is specified.

(Note1) The DIR* bit is sighificant only when single address transfer is specified in the SD bit below.

(Note2) Set the transfer source and destination data widths to same as those in the CS/W controller. When transferring data to/from internal memory mapped I/O (including internal I/O in single address transfer), set the transfer data width to abit

una.

(6) Mode Register B, Common to All Channels

internal I/O and DMA start request; also, the method for updating transfer source and destination address.

Used to control connection between the TMP96C081

B7	B6	85	Specifies internal I/O and DREQ connection	Internal DACK
0	0	0	Requests at SIO0 send end (by pulse)	Yes
0	0	1	Requests at SIO0 receive end (by level, released by SCOBUF read)	Yes
0	1	0	Requests at SIO1 send end (by pulse)	Yes
0	1	1	Requests at SIO1 receive end (by level, released by SC1BUF read)	Yes
1	0	0	Requests at A/D conversion end (by level, released by ADREG04H read)	Yes
1	0	1	Requests at 8-bit timer 0 time out (by pulse)	No
1	1	0	Requests at 8-bit PWM timer 2 time out (by pulse)	No
1	1	1	Requests at 16-bit timer 4 time out (by pulse)	No

(Note) For a request by pulse, set the LV* bit in the DMAMODA* register to 1; for a request by level, to 0. Since DACK for A/D conversion end is connected to CH0, use CH0 for DMA transfer. AN0 and AN4 of A/D converter, use AN0 or AN4 for DMA transfer. (selectable using ADBS register)
(7) Command Register, Common to All Channels

tion, or software request.

Used to control interrupt enable/disable, auto-initializa-

(Note) When auto-initialization is set, start of auto-initialization can be selected depending on the interrupt source. (More than one interrupt source can be specified)

For interrupt source for which auto-initialization is enabled, to disable interrupts, sets 0s in bits 7 to 4 in the DMACR*; for interrupt source for which auto-initialization is disabled, to enable interrupts, set 1s.

(8) Status Register B, Common to All Channels (* = Channel Number)

> Used to display DMA stop source or error generation, or whether there are any sources held for internal/ external DREQs.

Writing 1 in the EOP*, MAT*, TC*, or ERR* bit clears the DMA transfer stop source. Once EN* bit is latched. it is held until the status is cleared or reset. When DREQ is detected by level (by setting the LV bit in the mode A* register), the EN* bit must be cleared in order to determine the current DMA request before the status register.

(Note) This bit does not influence software requests.

Examples of program settings using DMAC

(a) Initial setting

LD MAX	SP ,	0200H	Sets stack pointer to 200H Sets maximum mode
LD	(B1CSL),	93H	CS/CAS ENABLE, 8bit Bus & 0 wait
LD	(B1CSH),	00Н	Addresses 100H to 7FFFH
LD	(P4CR).	1FH	output set
LD	(P4FC),	1FH	CS/CAS set
LD	(P10CR),	02H	output set
LD	(P10FC),	03H	DACKO, DREQO set
LD	(P11CR).	1DH	output set
LD	(P11FC),	1FH	IORD, IOWR, TC EOP, AEN set
LD	(INTDMA0),	06H	Sets DMAC ch0 interrupt request level to 6
EI	6		Sets CPU interrupt receive level to6

(b) Single address transfer start at completion of SIO0Tx

1	MSB								LSB
	7	6	5	4	3	2	1	0	
DMASAA0	← Χ	Х	X	X	X	X	X	X)
DMASAB0	÷Χ	X	X	Х	X	X	X	X	Sets transfer source address
DMASACO	÷Χ	X	X	Х	X	Х	X	X)
DMACTAO	÷Χ	X	X	X	X	X	Х	X	Sets number of transfers
DMACTBO	← Χ	X	X	X	X	X	X	X	
DMAMAAO	÷Χ	X	X	X	X	X	X	X	> Sets data to be mached
DMAMABO	⊢X	X	X	X	X	Х	Х	X)
DMAMODEAO	⊢X	1	0	0	1	1	0	0	Pulse detect, transfer source : 8 bits \rightarrow transfer destination
									: 8 bits, memory \rightarrow I/O, single address transfer, byte mode
DMAMODEB0	⊢ 0	0	0	1	0	0	1	0	Requests at completion of SIO0Tx
DMACR0	⊢X	X	X	X	X	X	0	X	Does not set software request

		:>>	u	an	sie	:	ii c		ch
MS		6	5	4	3	2	1		SB
DMADAA0 +		-				X			٦
									Sets transfer source address
DMADACO +									
						Ô			
	-	-	-	-	-	0	_	-	> Sets number of transfers to 2
						x			
	•••					x			> Sets data to be matched
									∠ Level detect, transfer source : 8 bits → transfer destination :
DMAMODEAU	Ŷ	Ů	Ů	v	Ů		v	1	8 bits, I/O \rightarrow memory, single address transfer, continue mode
		~	~		~	~	^		Requests at completion of A/D conversion
DMAMODEB0←									Does not set software request
DMACR0 ←	x	X	x	x	×	х	0	X	Does not set software request
MS		6	5	4	3	2	1	-	SB
DMASAA0 ←		-	-		-	2	-	-	2
						0			> Sets A/D register address
	-	-	-	-	-	ō	-		
	-	-	-	-		x			Ĵ
						x			Sets transfer destination address
DMADACO +									
						Ô			Sets number of transfers to 2. (Even number must be set
	-	-	-	-		0			because ADREG04L and ADREG04H must be read in two
DARCIDO	Ŭ	č	č	č	Ť	Ť	Ĵ	•	bytes.)
DMAMAA0 ←	¥	¥	¥	x	x	х	x	x	
			• •			x			> Sets data to be matched
DMAMODEA0+									Level detect, transfer source : 8 bits \rightarrow transfer destination : 8
Dia WIODE/IU	î	v	J	Ĵ			•	-	bits, dual address transfer, continue mode
DMAMODEB0+	1	0	0	1	x	x	1	1	Requests at completion of A/D conversion. Transfer source :
DEMPHODEDU	1	9	Ű	•	^	^	•	•	I/O mode
DMACR0 ←	¥	¥	¥	¥	¥	x	٥	x	Does not set software request
DIMONO T	^	^	^	^	^	^	5	~	Doct not better not a signal and a signal an

(c) Single address transfer at completion of A/D conversion and continue mode start

```
(e) DMA start at 16-bit timer 4 time out, and overwrite of timer register
           Dual address transfer, transfer source : 16 bits \rightarrow transfer destination : 8 bits
               Note : In this case, CS at the transfer source must be set to 16 bits.
          MSB
7 6 5 4 3 2 1 0
                              LSB
DMASAA0 + X X X X X X X X X
DMASABO ← X X X X X X X X X
                                    Sets transfer source address
DMASACO ← X X X X X X X X X
DMADAA0 + 0 0 1 1 0 0 0 0
                                   - Sets timer register address
DMADAB0 + 0 0 0 0 0 0 0 0
DMADAC0 + 0 0 0 0 0 0 0 0
DMACTA0 + X X X X X X X X X
                                   Sets number of transfers
DMACTBO ← X X X X X X X X X
DMAMAAO \leftarrow X X X X X X X X
                                   Sets data to be matched
DMAMABO ← X X X X X X X X X
DMAMODEA0← X 1 1 1 X 0 0 0
                                   Pulse detect, transfer source : 16 bits \rightarrow transfer destination :
                                   8 bits, byte mode
DMAMODEB0+ 1 1 1 1 1 1 0 1
                                   Starts at 16-bit timer 4 time out.
                                                        Transfer source : I/O mode
                                                        Transfer destination : increment mode
Does not set software request
```

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

DMA Cycle Timing

When bus cycle return to CPU cycle from DMA cycle, 2

state dummy cycle may insert to bus cycle.

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

DREQ ERR

MCU900-618

Priority order when transferring in byte mode (① Rotate mode, ② Fixed mode)

Priority order between BUSRQ and DREQ when transferring in byte mode

If BUSRQ and \overline{DREQ} are generated at sampling, \overline{BUSRQ} has the priority over \overline{DREQ}

MCU900-620

Priority order between BUSRQ and DREQ when transferring in demand or continue mode

Priority order between BUSRQ and other channel's DREQ when transferring DMA

Because other channel's DREQ is sampled at the DMA last transfer cycle, BUSRQ has the priority even if BUSRQ is generated after other channel's DREQ is generated.

4. Electrical Characteristics

4.1 Absolute Maximum (TMP96C081F)

Symbol	Parameter	Rating	Unit
V _{cc}	Power Supply Voltage	-0.5 ~ 6.5	V
V IN	Input Voltage	-0.5 ~ V _{cc} + 0.5	٧
ΣIOL	Output Current (total)	100	mA
Σ 10H	Output Current (total)	-100	mA
PD	Power Dissipation (Ta = 70° C)	600	mW
T SOLDER	Soldering Temperature (10s)	260	°C
T STG	Storage Temperature	-65 ~ 150	°C
T OPR	Operating Temperature	-20 ~ 70	°C

```
4.2 DC Characteristics (TMP96C081F) 
 V_{cc} = 5V \pm 10%, Ta = -20 \,\sim\, 70 ^{\circ}C (Typical values are for Ta = 25 ^{\circ}C and V_{cc} = 5V)
```

Symbol	Parameter	Min	Max	Unit	Test Condition
V IL	Input Low Voltage (AD0-15)	-0.3	0.8	V	
V IL1	P2, P3, P4, P5, P6, P7, P8, P9, PA, PB	-0.3	0.3V _{cc}	V	
V IL2	RESET, NMI, INTO (P87)	-0.3	0.25V _{cc}	V	
V IL3	AM8/16	-0.3	0.3	V	
V IL4	X1	-0.3	0.2V _{cc}	V	
V IH	Input High Voltage (AD0 - 15)	2.2	V _{cc} + 0.3	V	
V IH1	P2, P3, P4, P5, P6, P7, P8, P9, PA, PB	0.7V _{cc}	V _{cc} + 0.3	V	
V IH2	RESET, NMI, INTO (P87)	0.75V _{cc}	V _{cc} + 0.3	V	
V IH3	AM8/16	V _{cc} - 0.3	V _{cc} + 0.3	V	
V IH4	X1	0.8V _{cc}	V _{cc} + 0.3	V V	
V OL	Output Low Voltage		0.45	V	I OL = 1.6mA
V OH	Output High Voltage	2.4		V	I OH = -400µA
V OH1		0.75V _{cc}		V	I OH = -100µA
V OH2		0.9V _{cc}		V	I OH = - 20µA
I DAR	Darlington Drive Current (8 Output Pins max.)	-1.0	-3.5	mA	V EXT = 1.5V R EXT = 1.1kΩ
I LI	Input Leakage Current	0.02 (Typ)	±б	Aμ	$0.0 \le V_{in} \le V_{cc}$
I LO	Output Leakage Current	0.05 (Typ)	±10	μA	$0.2 \le V_{in} \le V_{cc} - 0.2$
l _{cc}	Operating Current (RUN) IDLE STOP (Ta = -20 ~ 70°C) STOP (Ta = 0 ~ 50°C)	26 (Typ) 1.7 (Typ) 0.2 (Typ)	50 10 50 10	mA mA μA μA	$\label{eq:scalar} \begin{split} f_{osc} &= 16 MHz \\ 0.2 \leq V_{in} \leq V_{cc} - 0.2 \\ 0.2 \leq V_{in} \leq V_{cc} - 0.2 \end{split}$
V STOP	Power Down Voltage (@STOP, RAM Back up)	2.0	6.0	v	$ \begin{array}{l} V \text{ IL2} = 0.2 V_{\text{cc}}, \\ V \text{ IH2} = 0.8 V_{\text{cc}} \end{array} $
R RST	RESET Pull Up Register	50	150	ΚΩ	
C 10	Pin Capacitance		10	pF	tosc = 1MHz
V TH	Schmitt Width RESET, NMI, INTO (P87)	0.4	1.0 (Тур)	v	
RK	Pull Down/Up Register	50	150	ΚΩ	

Note: I-DAR is guaranteed for a total of up to 8 ports.

4.3 AC Electrical Characteristics (TMP96C081F) V_{cc} = 5V±10%, Ta = -20 ~ 70°C (4MHz ~ 20MHz)

No	Gumbal	Deromotor	Varia	ble	16	MHz	20	MHz	11-12
No.	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
1	tosc	Osc. Period (= x)	62.5	250	62.5		50	1	ns
2	t _{CLK}	CLK width	2x - 40		85		60		ns
3	t _{AK}	A0 - 23 Valid→CLK Hold	0.5x - 20		11		5		ns
4	t _{KA}	CLK Valid→A0 - 23 Hold	1.5x - 70		24		5		ns
5	t _{AL}	A0-15 Valid→ALE fall	0.5x - 15		16		10		ns
6	t _{LA}	ALE fall→A0 - 15 Hold	0.5x - 15		16		10		ns
7	t _{LL}	ALE High width	x - 40		23		10		ns
8	t _{LC}	ALE fall→RD/WR fall	0.5x - 30		1		-5		ns
9	t _{CL}	RD/WR rise→ALE rise	0.5x - 20		11		5		ns
10	t _{ACL}	A0 - 15 Valid→RD/WR fall	x - 25		38		25		ns
11	t _{ACH}	A0 - 23 Valid→RD/WR fall	1.5x - 50		44		25		ns
12	t _{CA}	RD/WR rise→A0 - 23 Hold	0.5x - 20		11		5		ns
13	t _{ADL}	A0 - 15 Valid→D0 - 15 input		3.0x - 45		143	1	105	ns
14	t _{ADH}	A0 - 23 Valid→D0 - 15 input		3.5x - 65		154		110	ns
15	t _{RD}	RD fall→D0 - 15 input		2.0x - 50		75		50	ns
16	t _{RR}	RD Low width	2.0x - 40		85		60		ns
17	t _{HR}	RD rise→D0 - 15 Hold	0		0		0		ns
18	t _{RAE}	RD rise→A0 - 15 output	x - 15		48		35		ns
19	tww	WR Low width	2.0x - 40		85		60		ns
20	t _{DW}	D0 - 15 Valid→WR rise	2.0x - 50		75		50		ns
21	t _{WD}	WR rise→D0 - 15 Hold	0.5x - 10		21		15		ns
22	t _{AEH}	A0 - 23 Valid→WAIT input (1WAIT + n mode)		3.5x - 90		129		85	ns
23	t _{AWL}	A0 - 15 Valid→WAIT input (1WAIT + n mode)		3.0x - 80		108		70	ns
24	t _{CW}	RD/WR fall→WAIT Hold (1WAIT + n mode)	2.0x + 0		125		100		ns
25	t _{APH}	A0 - 23 Valid→PORT input		2.5x - 120		80		36	ns
26	t _{APH2}	A0 - 23 Valid→PORT Hold	2.5x + 50		206		175		ns
27	t _{CP}	WR rise→PORT Valid		200		200		200	ns
28	t _{ASRH}	A0 - 23 Valid→RAS fall	1.0x - 40		23		10		ns
29	tASRL	A0 - 15 Valid→RAS fall	0.5x - 15		16		10		ns
30	t _{RAC}	RAS fall→D0 - 15 input		2.5x - 70		130		86	ns
31	t _{RAH}	RAS fall→A0 - 15 Hold	0.5x - 15		16		10		ns
32	t _{RAS}	RAS Low width	2.0x - 40		85		60		ns
33	t _{RP}	RAS High width	2.0x - 40		85		60		ns
34	t _{RSH}	\overline{CAS} fall $\rightarrow \overline{RAS}$ rise	1.0x - 35		28		15		ns
35	t _{RSC}	RAS rise→CAS rise	0.5x - 25		6		0		ns
36	t _{RCD}	RAS fall→CAS fall	1.0x - 40		23		10		ns
37	t _{CAC}	CAS fall→D0 - 15 input		1.5x - 65		29		10	ns
38	t _{CAS}	CAS Low width	1.5x - 30		64		45		ns

AC Measuring Conditions

Output Level: High 2.2V /Low 0.8V, CL50pF

(However CL = 100pF for AD0 ~ AD15, AD0 ~ AD23, ALE, RD, WR, HWR, RW, CLK, RAS, CAS0 ~ CAS2) Input Level: High 2.4V /Low 0.45V (AD0 ~ AD15) Input Level:

High 0.8Vcc /Low 0.2Vcc (Except for AD0 ~ AD15)

MCU900-624

(1) Read Cycle

(2) Write Cycle

Number	Gumbal	Baramatar	Vari	iable	16MHz		201	MHz	11-14
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
1	t _{DK}	DACK valid \rightarrow CLK hold	0.5x - 20		11		5		ns
2	t _{KD}	CLK valid→DACK hold	1.5x - 70		24		5		ns
3	t _{AEK}	AEN valid \rightarrow CLK hold	0.5x - 20		11		5		ns
4	t _{KAE}	CLK valid→AEN hold	1.5x - 70		24		5		ns
5	t _{ILC}	ALE fall→IORD/IOWR fall	0.5x - 30		1		-5		ns
6	t _{DK}	IORD/IOWR rise→ALE rise	0.5x - 20		11		5		ns
7	t _{KD}	A0 - 15 valid→IORD/IOWR fall	x - 25		38		25		ns
8	t _{aek}	A0 - 23 valid→IORD/IOWR fall	1.5x - 20		44		25		ns
9	t _{kae}	IORD/IOWR rise→A0 - 23 hold	0.5x - 20		11		5		ns
10	t _{ILC}	IORD fall→D0 - 15 input		2.0x - 50		75		50	ns
11	t _{IACL}	IOWR low→pulse width	2.0x - 40		85		60		ns
12	t _{IACH}	IORD rise→D0 - 15 hold	0		0		0		ns
13	t _{IRAE}	IORD fall→A0 - 15 output	x - 15		48		35		ns
14	t _{IWW}	IOWR low-→pulse width	2.0x - 40		85		60		ns

4.3.2 Serial Channel Timing - I/O Interface Mode

 $V_{--} = 5V \pm 10\%$ TA = -20 ~ 70°C (4MHz ~ 20MHz)

AC Measuring Conditions

Output Level: High 2.2V /Low 0.8V, CL50pF (However CL = 100pF for AD0 ~ AD15, AD0 ~ AD23, ALE, IORD, IOWR, CLK, AEN, DACK0 ~ DACK3) Input Level: High 2.4V /Low 0.45V (AD0 ~ AD15) High 0.8Vcc /Low 0.2Vcc (Except for AD0 ~ AD15)

(1) DMA Cycle

4.4 A/D Conversion Characteristics (TMP96C081F)

 $V_{cc} = 5V \pm 10\%$ TA = -20 ~ 70°C

Symbol	Parameter	Min	Тур	Max	Unit
V _{REF}	Analog reference voltage	V _{cc} - 1.5	V _{cc}	V _{cc}	
AGND	Analog reference voltage	V _{SS}	V _{SS}	V _{ss}	l v
V _{AIN}	Analog input voltage range	V _{SS}		V _{cc}	
I _{REF}	Analog current for analog reference voltage		0.5	1.5	mA
Error	Total error (TA = 25°C, V _{CC} = V _{REF} = 5.0V)		2	±4.0	
(Quantize error of ±0.5 LSB not included)	Total error			±6.0	LSB

4.5 Serial Channel Timing - I/O Interface Mode

$V_{cc} = 5V \pm 10\%$ TA = -20 ~ 70°C

(1) SCLK Input Mode

Symbol	Parameter	Variable			MHz	20	MHz	Unit
Symbol	Falalitetei	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle	16x		1		0.8		μs
t _{oss}	Output Data-rising edge of SCLK	t _{SCY} /2 - 5x - 50		137		100		ns
t _{OHS}	SCLK rising edge→output data hold	5x - 100		212		150		ns
t _{HSR}	SCLK rising edge→input data hold	0		0		0		ns
t _{SRD}	SCLK rising edge→effective data input		t _{SCY} - 5x - 100		587		450	ns

(2) SCLK Output Mode

Gumbal	Parameter	Vari	161	/Hz	20	WHz	Unit	
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Unit
t _{SCY}	SCLK cycle (programmable)	16x	8192x	1	512	0.8	409.6	μs
toss	Output Data→rising edge of SCLK	t _{SCY} - 2x - 150		725		550		ns
t _{OHS}	SCLK rising edge-output data hold	2x - 80		45		20		ns
t _{HSR}	SCLK rising edge→input data hold	0		0		0		ns
t _{SRD}	SCLK rising edge>effective data input		t _{SCY} - 2x - 150		725		550	ns

4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6, TI7)

 $V_{cc} = 5V \pm 10\%$ TA = -20 ~ 70°C

Cumhal	Parameter	Variable			/iHz	201	MHz	Unit
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Unit
tvck	Clock cycle	8x + 100		600		500		ns
t _{VCKL}	Low level clock pulse width	4x + 40		290		240		ns
t _{VCKH}	High level clock pulse width	4x + 40		290		240		ns

4.7 Interrupt Operation

$V_{cc} = 5V \pm 10\%$ Ta = -20 ~ 70°C

Symbol	Parameter	Varia	161	/ Hz	201	AHz	Unit	
Symbol	r alanicici	Min	Max	Min	Max	Min	Max	Unit
t _{INTAL}	NMI, INTO Low level pulse width	4x		250		200		ns
t _{intah}	NMI, INTO High level pulse width	4x		250		200		ns
t _{INTBL}	INT4 ~ INT7 Low level pulse width	8x + 100		600		500		ns
t _{intbh}	INT4 ~ INT7 High level pulse width	8x + 100		600		500		ns

4.8 Timing Chart for I/O Interface Mode

4.9 Timing Chart for Bus Request (BUSRQ)/BUS Acknowledge (BUSAK)

Symbol	Parameter	Va	Variable			20	Unit	
Symbol	Falameter	Min	Max	Min	Max	Min	Max	Unit
tBRC	BUSRQ setup time for CLK	120		120		120		ns
t _{CBAL}	$CLK \rightarrow \overline{BUSAK}$ falling edge		1.5x + 120		245		220	ns
t _{CBAH}	$CLK \rightarrow \overline{BUSAK}$ rising edge		0.5x + 40		71		65	ns
t _{ABA}	Floating time to BUSAK fall	0	80	0	80	0	80	ns
t _{BAA}	Floating time to BUSAK rise	0	80	0	80	0	80	ns

Note 1: The Bus will be released after the WAIT request is inactive, when the BUSRQ is set to "0" during "Wait" cycle.

Note 2: The built-in programmable pull-down register is always provided.

Note 3: The built-in programmable pull-up register is always provided.

Although CS2/CAS2 pin does not have programmable pull-up register, the built-in pull-up register is always supported with a bus release.

4.10 DMAC

Number	Sumbol	Davameter	Varia	able	16	MHz	201	Unit	
Number	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
1	t _{DRW}	DREQ low→Pulse width (input)	2x		250		100		ns
2	t _{DRC}	CLK valid→DREQ fall (input)					80		ns
3	t _{DCH}	CLK valid→DREQ rise (input)			0		0		ns
4	^t DDRC	DREQ fall (input)—>CLK valid (Receiving DREQ in demand mode)			0		0		ns
5	t _{DDCH}	CLK valid $\rightarrow \overline{\text{DREQ}}$ rise (input) (Receiving $\overline{\text{DREQ}}$ in demand mode)			0		0		ns
6	t _{DDQH}	DREQ rise (input)→CLK valid (Canceling DREQ in demand mode)			0		0		ns
7	t _{DDQC}	CLK valid $\rightarrow \overline{\text{DREQ}}$ high hold (input) (Canceling DREQ in demand mode)			0		0		ns
8	^t кт	CLK valid→TC rise (output)	x - 25		38		25		ns
9	t _{TK}	CLK valid→TC fall (output)	1.5x - 70	Arra (* 1977	24		5		ns
10	teoc	CLK valid $\rightarrow \overline{EOP}$ fall (input)			40		40		ns
11	t _{ЕОН}	CLK valid $\rightarrow \overline{EOP}$ rise (input)			0		0		ns

4.10 DMA Timing Chart

5. Table of Special Function Registers (SFR; Special Function Register)

The special function registers (SFRs) include the I/O ports and peripheral control registers allocated to the 128-byte addresses from 000000H to 00007FH.

- (1) I/O port
- (2) I/O port control
- (3) Timer control
- (4) Pattern Generator control
- (5) Watch Dog Timer control
- (6) Serial Channel control
- (7) A/D converter control
- (8) Interrupt control
- (9) Chip Select/Wait Control

Configuration of the table

Symbol	Name	Address	7	6	17	\square	1		0	
								1		→bit Symbol
				1	1	1		-		→Read / Write
						11		1		→Initial value afrer reset
						1/		Ť		→ Remarks

Address	Name	Address	Name	Address	Name	Address	Name
000000H		20H	TRUN	40H	TREG6L	60H	ADREGOL
1H		21H		41H	TREG6H	61H	ADREGOH
2H		22H	TREG0	42H	TREG7L	62H	ADREG1L
3H		23H	TREG1	43H	TREG7H	63H	ADREG1H
4H		24H	TMOD	44H	CAP3L	64H	ADREG2L
5H		25H	TFFCR	45H	САРЗН	65H	ADREG2H
6H	P2	26H	TREG2	46H	CAP4L	66H	ADREG3L
7H	P3	27H	TREG3	47H	CAP4H	67H	ADREG3H
8H	P2CR	28H	POMOD	48H	T5MOD	68H	BOCSL
9H	P2FC	29H	P1MOD	49H	T5FFCR	69H	B1CSH
AH	P3CR	2AH	PFFCR	4AH	B4CSL	6AH	B1CSL
вн	P3FC	2BH		4BH	B4CSH	6BH	B1CSH
СН	P4	2CH		4CH	PGOREG	6CH	B2CSL
DH	P5	2DH		4DH	PG1REG	6DH	B2CSH
EH	P4CR	2EH		4EH	PG01CR	6EH	B3CSL
FH		2FH		4FH		6FH	B3CSH
10H	P4FC	30H	TREG4L	50H	SCOBUF	70H	INTEOAD
11H		31H	TREG4H	51H	SCOCR	71H	INTE45
12H	P6	32H	TREG5L	52H	SCOMOD	72H	INTE67
13H	P7	33H	TREG5H	53H	BROCR	73H	INTET10
14H	P6CR	34H	CAP1L	54H	SC1BUF	74H	INTEPW10
15H	P7CR	35H	CAP1H	55H	SC1CR	75H	INTET54
16H	P6FC	36H	CAP2L	56H	SC1MOD	76H	INTET76
17H	P7FC	37H	CAP2H	57H	BR1CR	77H	INTESO
18H	P8	38H	T4MOD	58H	ODE	78H	INTES1
19H	P9	39H	TFF4CR	59H		79H	INTDMA0
1AH	P8CR	3AH	T45CR	5AH		7AH	INTDMA1
1BH	P9CR	3BH		5BH		7BH	IIMC
1CH	P8FC	зсн	PACR	5CH	WDMOD	7СН	DMAOV
1DH	P9FC	3DH	PBCR	5DH	WDCR	7DH	DMA1V
1EH	PA	3EH	PAFC	5EH	ADMOD	7EH	DMA2V
1FH	PA	3FH	PBFC	5FH	ADBS	7FH	DMA3V

Table 5 I/O Register Address Map (1/2)

TLCS-900 16-bit Microcontroller

TMP96C081F

Address	Name	Address	Name	Address	Name	Address	Name
000080H	DMASAA0	AOH	DMASAA2	СОН		EOH	
81H	DMASAB0	A1H	DMASAB2	C1H		E1H	
82H	DMASACO	A2H	DMASAC2	C2H		E2H	
83H		A3H		СЗН		E3H	
84H	DMADAA0	A4H	DMADAA2	C4H		E4H	
85H	DMADAB0	A5H	DMADAB2	C5H		E5H	
86H	DMADACO	A6H	DMADAC2	C6H		E6H	
87H		A7H		C7H		E7H	
88H	DMACTA0	A8H	DMACTA2	C8H		E8H	
89H	DMACTB0	A9H	DMACTB2	С9Н		E9H	
8AH	DMAMAA0	AAH	DMAMAA2	CAH		EAH	
8BH	DMAMAB0	ABH	DMAMAB2	СВН		EBH	
8CH	DMAMODEA0	ACH	DMAMODEA2	ССН		ECH	
8DH	DMAMODEB0	ADH	DMAMODEB2	CDH		EDH	
8EH	DMACRO	AEH	DMACR2	CEH		EEH	
8FH	DMAST0	AFH	DMAST2	CFH		EFH	
90H	DMASAA1	BOH	DMASAA3	DOH		FOH	
91H	DMASAB1	B1H	DMASAB3	D1H		F1H	
92H	DMASAC1	B2H	DMASAC3	D2H.		F2H	
93H		B3H		D3H		F3H	
94H	DMADAA1	B4H	DMADAA3	D4H		F4H	
95H	DMADAB1	B5H	DMADAB3	D5H		F5H	
96H	DMADAC1	B6H	DMADAC3	D6H		F6H	
97H		B7H		D7H		F7H	
98H	DMACTA1	B8H	DMACTA3	D8H		F8H	
99H	DMACTB1	B9H	DMACTB3	D9H		F9H	
9AH	DMAMAA1	BAH	DMAMAA3	DAH		FAH	
9BH	DMAMAB1	BBH	DMAMAB3	DBH		FBH	
9CH	DMAMODEA1	ВСН	DMAMODEA3	DCH		FCH	
9DH	DMAMODEB1	BDH	DMAMODEB3	DDH		FDH	
9EH	DMACR1	BEH	DMACR3	DEH		Feh	
9FH	DMAST1	BFH	DMAST3	DFH		FFH	

Table 5 I/O Register Address Map (2/2)

TMP96C081F

TLCS-900 16-bit Microcontroller

(1) I/O Port (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P27	P26	P25	P24	P23	P22	P21	P20
P2	DODTO	06Н			-	R	/W			4
P2	PORT2	0011				Input	mode			
			0	0	0	0	0	0	0	0
			P37	P36	P35	P34	P33	P32	P31	P30
P3	PORT3	07H				R	/W			
13	10015	0/11				Input mode				
			1	1	1	1	1	1	1	1
						P44	P43	P42	P41	P40
P4	PORT4	осн						R/W		
	1 OAT 1						+	Input mode		.
								0	1	1
					P55	P54	P53	P52	P51	P50
P5	PORT5	ODH						R		
								mode	T	1
			P67	P66	P65	P64	P63	P62	P61	P60
P6	PORT6	12H					/W			
				· · · · · ·			mode		T	1
			1	1	1	1	1	1	1	1
							P73	P72	P71	P70
P7	PORT7	13H -							/W	
							1	1 1	mode	1
			P87	P86	P85	P84	P83	P82	P81	P80
		-	F 07	FOU	FOJ		W 105	1 02	1 101	100
P8	PORT8	18H -					mode			
			1	1	1	1	1	1	1	1
		<u>├</u>		·	P95	P94	P93	P92	P91	P90
						L		//////////////////////////////////////	L	
P9	PORT9	19H -					Input mode			
					1	1	1	1	1	1

(1) I/O Port (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			P107	P106	P105	P104	P103	P102	P101	P100		
DA	DODTO	1011			.	R/	W	· · · · · · · · · · · · · · · · · · ·				
PA	PORT8	18H				Input	mode					
			1	1	1	1	1	1	1	1		
			P117	P116	P115	P114	P113	P112	P111	P110		
50	DODTO	4011				.	R/	W				
PB	PORT9	19H			Input mode							
					1	1	1	1	1	1		

Note: Clearing the output latch register RDFC to "0" outputs the RD strobe from RD pin for PSRAM, even when the internal address is accessed. If the output latch register RDFC remains "1", the RD strobe is output only when the external address is accessed.

Read/Write R/W

R

W

; Either read or write is possible

; Only read is possible

; Only write is possible

Prohibit RWM ; Prohibit Read Modify Write. (Prohibit RES/SET/TSET/CHG/STCF/ANDCF/ORCF/XORCF Instruction)

(2) I/O Port Control (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
DOOD	PORT2	08H				V	V			
P2CR	Control	(Prohibit	0	0	0	0	0	0	0	0
		`RMW)			NACE 10 10 10 10 10 10 10 10 10 10 10 10 10	< <refer td="" the<="" to=""><td>ne "P2FC">></td><td></td><td></td><td></td></refer>	ne "P2FC">>			
			P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
P2FC	PORT2	09H				٧	V			
P2FC	Function	(Prohibit	0	0	0	0	0	0	0	0
		RMW)			P2FC/P2CR	= 00 : IN, 01 : 0	UT, 10 : A7 - 0,	11 : A23 - 16		
			P37C	P36C	P35C	P34C	P33C	P32C		
P3CR	PORT3	0AH				٧	V			
PSCR	Control	(Prohibit	0	0	0	0	0	0		
		RMW)				0 : IN 1	I : OUT			
			P37F	P36F	P35F	P34F		P32F	P31F	P30F
	PORT3	OBH				٧	V			
P3FC	Function		0	0	0	0		0	0	0
		(Prohibit RMW)	0 : <u>PORT</u> 1 : <u>RAS</u>	0 : PORT 1 : R/W	0 : Port 1 : Busak	0 : PORT 1 : BUSRQ		0 : <u>PORT</u> 1 : HWR	0 : PORT 1 : WR	0 : <u>Port</u> 1 : RD
						P44C	P43C	P42C	P41C	P40C
DIOD	PORT4	OEH						W		
P4CR	Control	(Prohibit				0	0	0	0	0
		RMW)						0 : IN 1 : OUT		
						P44F	P43F	P42F	P41F	P40F
P4FC	PORT4	10H						W		
P4F6	Function	(Prohibit				0	0	0	0	0
		RMW)					0 :	PORT 1 : CS/C/	1S	

Note: With the TMP96C141/TMP96C141A/TMP96C041A, which requires an external ROM. PORT0 functions as AD0 to AD7; PORT1, AD8 to AD15; P30, the RD signal; P31, the WR signal, regardless of the values set in P0CR, P1CR, P1FC, P30F and P31F.

(2) I/O Port Control (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
P6CR	PORT6	14H					Ŵ			
TUON	Control	(Prohibit	0	0	0	0	0	0	0	0
		RMW)				0 : IN	1: OUT			
		15H					P73C	P72C	P71C	P70C
P7CR	PORT7							V		
	Control	(Prohibit		ļ			0	0	0	0
		RMW)						0 : IN		
		16H	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
P6FC	PORT6					-	<u>W</u>			
	Function	(Prohibit RMW)	0	0	0	0	0	0	0	0
				0 : IN	: OUT			0 : PORT	1 : PGO - OU	
		17H					P73F	P72F W	P71F	
P7FC	PORT7	1/11					0	0	0	
	Function	(Prohibit					0 : PORT	0 :PORT	0 : PORT	
		RMW)					1 : T03	1 : T02	1:T01	
			P87C	P86C	P85C	P84C	P83C	P82C	P81C	P80C
DOOD	PORT8	1AH				1	Ŵ			
P8CR	Control	(Prohibit	0	0	0	0	0	0	0	0
		RMW)				0 : IN	1: OUT			
		4011			P95C	P94C	P93C	P92C	P91C	P90C
P9CR	PORT9	1BH			r		V			
1 3011	Control	(Prohibit			0	0	0	0	0	0
		RMW)					0: IN			
				P86F			P83F	P82F		
P8FC	PORT8	1CH		W			W	W		
	Function	(Prohibit		0			0	0		
		RMW)		0 : PORT 1 : TO6			0 : PORT 1 : TO5	0 : PORT 1 : TO4		
					P95F		P93F	P92F		P90F
		1DH			W		W	W		W
P9FC	PORT9 Function				0		0	0		0
	1 Unction	(Prohibit			0 : PORT		0 : PORT	0 : PORT		0 : PORT
		RMW)			1 : SCLK1		1 : TxD1	1 : SCLK0		1 : TxD0
		201	PA7C	PA6C	PA5C	PA4C	PA3C	PA2C	PA1C	PAOC
PACR	PORTA	3CH		·	-		W			
	Control	(Prohibit	0	0	0	0	0	0	0	0
		RMW)		·			1:0UT			
		3DH				P84F	P83F	P82F	P81F	P80F
PBCR	PORT8				·		W			
	Control	(Prohibit				0	0	0	0	0
		RMW)				0 : IN	1 : OUT			

MCU900-640

(2) I/O Port Control (3/3)

Symbol	Name	Address	7	6	5.	4	3	2	1	0		
			PA7F	PA6F	PA5F	PA4F	PA3F	PA2F	PA1F	PAOF		
	DODTA	3EH				Ŵ	Ŵ					
PAFC	PORTA Function		0	0	0	0		0	0	0		
		(Prohibit RMW)	0 : PORT 1 : DACK3	0 : PORT 1 : DREQ3	0 : PORT 1 : DACK2	0 : Port 1 : Dreq2	0 : PORT 1 : DACK1	0 : PORT 1 : DREQ1	0 : PORT 1 : DACK0	0 : Port 1 : Dreqo		
						PB4F	PB3F	PB2F	PB1F	PBOF		
	DODTD	3FH		L		Ŵ	1					
PBFC	PORTB Function		0	0	0	0		0	0	0		
		(Prohibit RMW)				0 : Port 1 : Iowr	0 : Port 1 : Iord	0 : PORT 1 : TC	0 : PORT 1 : EOP	0 : Port 1 : Aen		

(3) Timer Control (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			PRRUN		T5RUN	T4RUN	P1RUN	PORUN	T1RUN	TORUN			
			R/W			L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	R,	w		J			
TRUN	Timer	20H	0		0	0	0	0	0	0			
mon	Control	2011			Pres	0 : Stop :	Run/Stop CON and Clear Count up)	FROL	 	• • • • • • • • • • • • • • • • • • •			
		22H				-	-						
TREGO	8bit Timer Register 0	(Prohibit RMW)					W efined						
		23H	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
TREG1	8bit Timer	(Deckibit		W									
	Register 1	(Prohibit RMW)		Undefined									
			T10M1	T10M0	PWMM1	PWMM0	T1CLK1	T1CLK0	T0CLK1	TOCLKO			
	0hih Timor	0.411	W										
TMOD	8bit Timer Source CLK	24H	0	0	0	0	0	0	0	0			
	and MODE	(Prohibit RMW)	00 : 8bi 01 : 16b 10 : 8bi 11 : 8bi	it Timer t PPG	00 : - 01 : 2 ⁶ - 10 : 2 ⁷ - 11 : 2 ⁸ -	1	00 : T00 01 : φT 10 : φT 11 : φT2	71 16	00 : TI0 01 : φT 10 : φT 11: φT1	1 4			
						DBEN	TFF1C1	TFF1C0	TFF1IE	TFF1IS			
						R/W	١	V	R	/W			
	8bit Timer	0511				0	0	0	0	0			
TFFCR	Flip-flop Control	25H	1 : Double 00 : Invert TFF1 1 : TFF1 Buffer 01 : Set TFF1 Invert Enable 10 : Clear TFF1 Enable 11 : Don't care 11 : Don't care							0 : Inverted by Timer 0			
TREG2	PWM Timer	26H			(R).		- buble buffer valu	es.)					
	Register 2					Unde							

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

TMP96C081F

TLCS-900 16-bit Microcontroller

Symbol	r Control (2/ Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Aug 635	· · · · ·		J	4	3	2	•	U
TREG3	PWM Timer	27H			(B)	/W (Can read do	- uble buffer valu	les.)		
	Register 3				(,	Unde				
			FF2RD	DB2EN	PWM0INT	PWM0M	T2CLK1	T2CLK0	PWM0S1	PWM0S0
			R				W	I		
DOLLOD		28H	-	0	0	0	0	0	0	0
POMOD	PWM0 MODE	(Prohibit RMW)	TFF2 output value	1 : Double Buffer Enable	0 : Overflow Interrupt 1: Compare/ Match Interrupt	0 : PWM Mode 1 : Timer Mode	00 : φF 01 : φF 10 : φP1 11 : Don	24(fc/16) 6(fc/64)	00 : 2 ⁶ - 01 : 2 ⁷ - 10 : 2 ⁸ - 11 : Don'	1
			FF3RD	DB3EN	PWM1INT	PWM1M	T3CLK1	T3CLK0	PWM1S1	PWM1S0
			R		_L	L	W	I		
		29H	-	0	0	0	0	0	0	0
P1MOD	PWM1 MODE	(Prohibit RMW)	TFF3 output value	1 : Double Buffer Enable	0 : Overflow Interrupt 1 : Compare/ Match Interrupt	0 : PWM Mode 1 : Timer Mode	00 : Ø F 01 : Ø F 10 : ØP1 11 : Don	P4(fc/16) 6(fc/64)	00 : 2 ⁶ - 01 : 2 ⁷ - 10: 2 ⁸ - 1 11: Don't	1 I
			- FF3C1	FF3C0	FF3TRG1	FF3TRG0	FF2C1	FF2C0	FF2TRG1	FF2TRG0
			Ŵ	1	R,	W	١	N	R/	W
	PWM		0	0	0	0	0	0	0	0
PFFCR	Flip-flop Control	2AH	00 : Don' 01 : Set T 10 : Clea 11 : Don'	FF3 TFF3	Inve 01 : Inve 10 : Set Clea 11 : Clea	hibit TFF3 rted rt if matched if matched; ar if overflowed ir if matched; if overflowed	00 : Don 01 : Set 10 : Clea 11 : Don	TFF2 ar TFF2	10 : Set i Clea 11 : Clea	
	16bit Timer	30H (Prohibit				-	-			
TREG4L	Register 4L	RMW)				۷				
		31H				Unde	TINEO			
TREG4H	16bit Timer	(Prohibit					 V			
THE G III	Register 4H	RMW)				Unde				
		32H					-			
TREG5L	16bit Timer Register 5L	(Prohibit RMW)				٧	V			
	negister of	nivivi)				Unde	fined			
		33H				-				
TREG5H	16bit Timer Register 5H	(Prohibit RMW)				٧				
		·				Unde	fined			
CAD1	Capture	2411				- -	-			
CAP1L	Register 1L	34H				F Unde				ana di chi interna dala dalar
CAP1H	Capture	35H					}			
	Register 1H					Unde				
(3) Timer Control (3/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	Oration	1					-					
CAP2L	Capture Register 2L	36H					R					
							efined					
	Capture						-	····				
CAP2H	Register 2H	37H					R					
							efined	<u></u>				
			CAP2T5	EQ5T5	CAP1IN	CAP12M1	CAP12M0	CLE	T4CLK1	T4CLK0		
	401 'I T' 4			W	W	•		W				
T4MOD	16bit Timer 4 Source	38H	0	0	0	0	0	0	0	0		
	CLK and		TFF5 IN 0: TRG I		0 : Soft- Capture	Capture 00 : Disabl		1 : UC4 Clear	Source Cloo 00 : TI4	CK		
	MODE		1: TRG E		1 : Don't care	01 : T14		Enable	01: <i>ø</i> T1			
							↑ T14 ↓		10: φT4			
						11 : TFF1			11 : ¢ T16			
			TFF5C1	TFF5C0	CAP2T4	CAP1T4	EQ5T4	EQ4T4	TFF4C1	TFF4C0		
	16bit Timer 4		١				/W		V			
T4FFCR	Flip-flop	39H	0	0	0	0	0	0	0	0		
	Control				00 : Inve 01 : Set			TFF4 Invert			00 : Inver	
				r TFF5	0 : Trigger Disable 1 : Trigger Enable				01 : Set TFF4 10 : Clear TFF4			
			11 : Don						11 : Don	't care		
			-				PG1T	PG0T		DB4EN		
			R/W					R/	W			
T45CR	TA TE Control	2411	0				0	0		0		
1450K	T4, T5 Control	3AH					PG1 shift	PG0 shift	1 : Do	uble		
			Fix at "0"				trigger 0 : Timer 0, 1	trigger 0 : Timer 0,1	Buf	fer		
							1 : Timer 5	1 : Timer 4	Ena	ble		
		40H		L	L	······	_	I				
TREG6L	16bit Timer	(Prohibit					N					
	Register 6L	RMW)				Und	efined					
		41H					-					
TREG6H	16bit Timer	(Prohibit	W									
	Register 6H	RMW)				Und	efined					
		42H					_					
TREG7L	16bit Timer	(Prohibit				1	N					
	Register 6L	RMW)				Und	efined					
		43H			and the second of the second of the base		_					
TREG7H	16bit Timer	(Prohibit										
	Register 6H RMW)		Undefined									

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(3) Timer Control (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
CAP3L	Capture Register 3L	44H					R			•
							efined			
САРЗН	Capture Register 3H	45H					R			
				1		Und	efined			
CAP4L	Capture	46H					– R			
	Register 4L					Und	efined			
	0						-			
CAP4H	Capture Register 4H	47H					R			
							efined			
					CAP3IN	CAP34M1	CAP34M0	CLE	T5CLK1	T5CLK0
					W		R,	W		
T5MOD	16bit Timer 5	48H			0	0	0	0	0	0
TOMOU	Source CLK and MODE	401			0 : Soft- Capture 1 : Don't care	Capture 00 : Disable 01 : T16 10 : T16 11 : TFF1	e ↑ T17 ↑ ↑ T16 ↓	1 : UC5 Clear Enable	Source Clo 00 : TI6 01 : φT 10 : φT 11 :φT10	1 4
					CAP4T6	CAP3T6	EQ7T6	EQ6T6	TFF6C1	TFF6C0
	16bit Timer 5					R	Ŵ		٧	٧
T5FFCR	Flip-flop	49H			0	0	0	0	0	0
	Control		TFF6 Invert Trigger 0 : Trigger Disable 1 : Trigger Enable					00 : Inve 01 : Set 10 : Clea 11 : Don	TFF6 ar TFF6	

(4) Pattern Generator

Symbol	Name	Address	7	6	5	4	3	2	1	0
		4CH	PG03	PG02	PG01	PG00	SA03	SA02	SA01	SA00
PGOREG	PGO Register	(Prohibit		1	N			R	/W	
		RMW)	0	0	0	0		Und	efined	
		4DH	PG13	PG12	PG11	PG10	SA13	SA12	SA11	SA10
PG1REG	PG1 Register	(Prohibit		١	Ň			R	/W	
		RMW)	0	0	0	0		Und	efined	
			PAT1	CCW1	PG1M	PG1TE	PATO	CCWO	PGOM	PGOTE
						R	Ŵ			
		4EH	0	0	0	0	0	0	0	0
PG01CR	PG0, 1 Control		0 : 8bit write 1 : 4bit write	0 : Normal Rotation 1 : Reverse Rotation	0 : 4bit Step 1 : 8bit Step	PG1 trigger input enable 1 : Enable	0 : 8bit write 1 : 4bit write	0 : Normal Rotation 1 : Reverse Rotation	0 : 4bit Step 1 : 8bit Step	PGO trigger input enable 1 : Enable

(5) Watch Dog Timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0	WARM	HALTM1	HALTMO	RESCR	DRVE
						R/	W			
WD	Wetch Dee		1	0	0	0	0	0	0	0
WD- MOD	Watch Dog Timer Mode	5CH	1 : WDT Enable	00 : 2 01 : 2 10 : 2 11 : 2	¹⁸ /fc ²⁰ /fc	Warming up Time 0 : 2 ¹⁴ /fc 1 : 2 ¹⁶ /fc	Standby 00 : RUN 01 : STC 10 : IDLI 11 : Don	I Mode IP Mode E Mode	1 : Connect internally WDT out pin to Reset Pin	1 : Drive the pin in STOP Mode
	Watch Dog						-			
WDCR	Timer Control	5DH				V	·			·····
	Register					Unde				
	nogistor				B1H : WD	T Disable Code	4EH : WDT	Clear Code		

(6) Serial Channel (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial		RB7 TB7	RB6 TB6	RB5 TB5	RB4 TB4	RB3 TB3	RB2 TB2	RB1 TB1	RB0 TB0
SCOBUF	Channel 0 Buffer	50H				R (Receiving)/W	(Transmission)		-
	Dunor					Unde	efined			
			RB8	EVEN	PE	OERR	PERR	FERR	-	-
	Carlal		R	R	/W	R (Cl	eared to 0 by re	ading)	F	Ŵ
SCOCR	Serial Channel 0	51H	0	0	0	0	0	0	0	0
	Control		Receiving	Parity	1 : Parity		1 : Error			
			data bit 8	0 : Odd 1 : Even	Enable	Overrun	Parity	Framing	Fix at "0"	Fix at "0"
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R/	W			
SCO-	Serial	5011	0	0	0	0	0	0	0	0
MOD	Channel 0 Mode	52H	Transmission data bit 8	1 : CTS Enable	1 : Receive Enable	1 : Wake up Enable	10 : U	nused ART 7bit ART 8bit ART 9bit	00 : TOO Tr 01 : Baud r 10 : Interna 11 : Don't d	ate generator I clock ø1
			-		BR0CK1	BROCKO	BR053	BR052	BR051	BR050
			R/W				R/W			
	Baud Rate	5011	0		0	0	0	0	0	0
BROCR	Control	53H	Fix at "0"		01	: \$\phi to (fc/4) : \$\phi to (fc/16) : \$\phi to (fc/64) :\$\phi to (fc/256)		0	ency divisor ~ F ohibited)	
			RB7	RB6	RB5	RB4	RB3	RB2	RB1	RBO
SC1BUF	Serial Channel 1	54H	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
SCIDUL	Buffer	J411				R (Receiving)/W)		
							efined		· · · · · · · · · · · · · · · · · · ·	
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
			R	R	/W	R (Cl	eared to 0 by re	ading)	F	/W
	Serial			0	0	0	0	0	0	0
SC1CR	Channel 1 Control	55H		Parity			1 : Error		0: SCLKQ	
	Control		Receiving data bit 8	0 : Odd 1 : Even	1 : Parity Enable	Overrun	Parity	Framing		1 : Input SCLK1 pir
			TB8	_	RXE	WU	SM1	SM0	SC1	SCO
					l	R/	Ŵ	I	.I	-L
SC1-	Serial		0	0	0	0	0	0	0	0
MOD	Channel 1 Mode	56H	Transmission data bit 8	Fix at "0"	1 : Receive Enable	1 : Wake up Enable	00 : 1/ 01 : U 10 : U	O Interface ART 7bit ART 8-bit ART 9bit	00 : TO0 Tr	ate generator I clock <i>ø</i> 1

MCU900-646

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(6) Serial Channel (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-		BR1CK1	BR1CK0	BR153	BR152	BR151	BR150
			R/W				R/W	••••••••••••••••••••••••••••••••••••••	.	
	Baud Rate		0		0	0	0	0	0	0
BR1CR	Control	57H	Fix at "0"		00 : ¢t0 01 : ¢t2 10 : ¢t8 11 :¢t32	(fc/16) (fc/64)		0	ency divisor ~ F phibited)	
			-						ODE1	ODE0
	Special								R/	W
ODE	Open Drain	58H							0	0
	Enable								1 : P93 Open-drain	1 : P90 Open-drain

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(7) A/D Converter Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			EOCF	ADBF	REPET	SCAN	ADCS	ADS	ADCH1	ADCH0			
	A/D		ŀ	2	R/W	R/W	R/	w	R/	w			
ADMOD	Converter	5EH	0	0	0	0	0	0	0	0			
ADIVIOD	Mode	2551	1 : END	1: BUSY	1: Repeat	1 : Scan	1:Slow	1:START	Analog	Input			
	Register				Mode	Mode	Mode		Channe	Select			
					Set	Set							
	A/D		-	-	-		-	-	-	ADCH2			
ADCH	Control									R/W			
ADCH	Select	5FH								0			
	Register				1					0: AN0~3			
	Register									1 : AN4~5			
	A/D		ADR041	ADR040									
AD	Result	60H				F	1						
REG04L	04L Register			Undefined Lower 2 bits of AD conversion result for AN0 or AN4 are stored.									
	CH0, 4 (L)			Lower	2 bits of AD c	onversion re	sult for AN0	or AN4 are	stored.				
AD	A/D		ADR049	ADR048	ADR047	ADR046	ADR045	ADR044	ADR043	ADR042			
REG04H	Result	61H				R							
11200411	Register	0111	Undefined Upper 8 bits of AD conversion result for AN0 or AN4 are stored.										
	CH0, 4 (H)			Upper	8 bits of AD c	onversion re	sult for AN0	or AN4 are	stored.				
	AD		ADR151	ADR150									
AD	Result	62H				R							
REG15L	EG15L Register					Undet							
	CH1, 5 (L)				2 bits of AD c								
	AD		ADR159	ADR158	ADR157			ADR154	ADR153	ADR152			
AD	Result	63H				R							
REG15H	Register					Unde							
	CH1, 5 (H)				B bits of AD c	onversion re	sult for AN1	or AN5 are	stored.	·			
	AD		ADR21	ADR20					<u>.</u>	<u> </u>			
AD	Result	64H				R							
REG2L	Register	•				Unde							
	CH2 (L)				ver 2 bits of A								
	AD		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22			
AD	Result	65H				R							
REG2H	Register					Unde							
	CH2 (H)				per 8 bits of A	D conversio	n result for A	N2 are stor	ed.	·			
	A/D		ADR031	ADR030						<u>.</u>			
AD	Result	66H				R							
REG3L	Register					Undel							
	CH3 (L)				ver 2 bits of A								
AD	A/D		ADR039	ADR038	ADR037			ADR034	ADR033	ADR032			
REG3H	Result	67H				R							
	Register	U /				Unde							
	CH3 (H)			Upp	per 8 bits of A	D conversio	n result for A	N3 are stor	ed				

(8) Interrupt Control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INTerrupt				TAD				ITO	
INTE-	Enable	70H	IADC	IADM2	IADM1	IADMO	юс	10M2	I0M1	10M0
0AD	0 & A/D	(Prohibit	R/W		w		R/W			
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt				175				174	
INTE45	Enable	71H	15C	15M2	15M1	15M0	14C	I4M2	14M1	I4M0
	4/5	(Prohibit	R/W		w	·····	R/W		. w	
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt				177				176	
INTE67	Enable	72H	17C	17M2	17M1	17M0	16C	16M2	16M1	16M0
	6/7	(Prohibit	R/W		. w		R/W		. w	·
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt				Timer 1)				Timer 0)	
INTET10	Enable	73H	ITIC	IT1M2	ITIMI	IT1M0	ITOC	ITOM2	ITOM 1	ITOMO
	Timer 1/0	(Prohibit	R/W		w		R/W		<u>w</u>	
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt				er 3/PWM1)				er 2/PWM0)	
INTE-	Enable	74H	IPW1C	IPW1M2	IPW1M1	IPW1M0	IPWOC	IPW0M2	IPWOM1	IPW0M0
PW10	PWm 1/0	(Prohibit	R/W	1	W		R/W		w	
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt				(TREG5)				(TREG4)	
INTET54	Enable	75H	IT5C	IT5M2	IT5M1	IT5M0	IT4C	IT4M2	IT4M1	IT4M0
	Treg 5/4	(Prohibit	R/W				R/W		w	
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt			INTTR7				INTTR6		
INTET76	Enable	76H	IT7C	IT7M2	IT7M1	IT7M0	IT6C	IT6M2	IT6M1	IT6M0
	Treg 7/6	(Prohibit	R/W		w		R/W		W	
		RMW)	0	0	0	0	0	: 0	0	
	INTerrupt				тхо				RXO	
INTESO	Enable	77H	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRXOC	IRX0M2	IRX0M1	IRXOMO
	Serial 0	(Prohibit	R/W		w		R/W		w	
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt			INT				INT		
INTES1	Enable	78H	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
	Serial 1	(Prohibit	R/W		w		R/W	<u> </u>		
		RMW)	0	0	0	0	0	0	0	0
	INTerrupt			DN	IA1			DN		
INT-	Enable	79H	ID1C	ID1M2	ID1M1	ID1M0	IDOC	ID0M2	ID0M1	ID0M0
DMA0	DMAC 1/0	(Prohibit	R/W		w		R/W		W	
	5.0.AC 1/0	RMW)	0	0		0	0	0	0	0
	INTerrupt			DN				DN		
INT-	Enable	7AH	ID3C	ID3M2	ID3M1	ID3M0	ID2C	ID2M2	ID2M1	ID2M0
DMA1	DMAC 3/2	(Prohibit	R/W		w		R/W		W	
	DIVIAC 3/2	RMW)	0	0	0	0	0	0	0	0

(8) Interrupt Control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	DMA 0						µD	MA0 start ve	ctor	
DMAOV	request	7CH				DMA0V8	DMA0V7	DMA0V6	DMA0V5	DMA0V4
DIVIAUV	Vector	(Prohibit						w		
	Vector	RMW)				0	0	0	0	0
	DMA 1							MA1 start ve		
DMA1V	request	7DH				DMA1V8	DMA1V7	DMA1V6	DMA1V5	DMA1V4
DIVIATV	Vector	(Prohibit						w		
	vector	RMW)				0	0	0	0	0
	DMA 2						µDI	MA2 start ve	ctor	
DMA2V	request	7EH				DMA2V8	DMA2V7	DMA2V6	DMA2V5	DMA2V4
DIVIAZV	Vector	(Prohibit						w		
	Vector	RMW)				0	0	0	0	0
	DMA 3						μDI	MA3 start ve	ctor	
DMA3V	request	7FH [DMA3V8	DMA3V7	DMA3V6	DMA3V5	DMA3V4
DIVIASV	Vector	(Prohibit						w		
	vector	RMW)				0	0	0	0	0
								IOIE	IOLE	NMIREE
								w	W	w
		1 E						0	0	0
	Interrupt Input	1 F				1		1: INT0	O: INTO	1: Operate
IIMC	Mode	78H						input	edge	even at
		1 1						enable	mode	NMI rise
	Contorol								1: INTO	edge
		(Prohibit							level	
		RMW)			1		1		mode	

(9) Chip Select/Wait Controller (1/2)

Symbol	Name	Address	B7	86	B5	B4	B3	B2	B1	B0
BOCSL	Block0	68H	BOE	BOSYS	BOCAS	BOBUS	-	B0W2	BOW1	BOW1
	CS/WAIT	1	w	w	w	w		w	w	w
	Control		0	0	0	0		0	0	0
	Register		1: CS/CAS	1: System	0:	0: 16 bit		Wait Cont	rol	
	Low		Enable	Only	/CS0	Bus		000: 2		
				-	1:	1:8 bit		001:1		
			1		/CASO	Bus		011:0	Wait	
			1				1	100:0-		
			1					110 : Re		
						L			eserved	·····
BOCSH	Block0	69H	B0M3	B0M2	B0M1	BOMO	B0A3	B0A2	B0A1	BOAO
	CS/WAIT		W	w	w	w	w	w	w	w
	Control		0	0	0	0	0	0	0	0
	Register			23~A20) Ma	sk Set			23~A20) Co		
	High		0 : Non					7F00H~7FFF		
			1 : Mas				Other :	Compare A	*****	
BICSL	Block 1	6AH	B1E	BISYS	B1CAS	BIBUS		B1W2	B1W1	B1W0
	CS/WAIT		w	w	w	w		w	w	w
	Control		0	0	0	0		0	0	0
	Register		1: CS/CAS	1: System	0:	0: 16 bit		Wait Contr		
	Low		Enable	Only	/CS1	Bus		000:2	Wait	
		1			1:	1:8 bit		010 : 11	Wait + n	
					/CAS1	Bus		011:01	Wait ~2 Wait	
								101 : 0-	-1 Wait	
								110: Re 111: Re		
BICSH	Block 1	68H	B1M3	81M2	B1M1	B1M0	B1A3	B1A2	B1A1	B1A0
	CS/WAIT		W	W	w	w	W	w	w	w
	Control		0	0	0	0	0	0	0	0
	Register		Address (A7	3~A20) Ma	ck Sat		Addross (A	23~A20) Cor	nnarision	
1	High		0 : Non-		JK Jet			0080H~7FFF		
			1 : Masi					Compare A2		
B2CSL	Block2	6CH	B2E	B2SYS	B2CAS	B2BUS	_	B2W2	B2W1	B2W0
	CS/WAIT	1	w	w	w	w		w	w	w
	Control		1	0	0	0		0	0	0
	Register		1: CS/CAS	1: System	0:	0: 16 bit		Wait Contr	ol	
	Low		Enable	Only	/CS2	Bus		000: 2	Nait	
					1:	1:8 bit		001:11	Nait + n	
					/CAS2	Bus		011:01	Nait	
								100: 0-		
								110: Re		
								111: Re		
B2CSH	Block2	6DH	B2M3	B2M2	B2M1	B2M0	B2A3	B2A2	82A1	B2A0
	CS/WAIT		w	w	w	w	w	w	w	w
	Control		0	0	0	0	0	0	0	0
	Register			3~A20) Ma	sk Set			23~A20) Cor		
	High		0 : Non-				0000 : 8000H~3FFFFFH			
			1 : Mask	:			Other :	Compare A2	23~A20	

TOSHIBA AMERICA ELECTRONIC COMPONENTS, INC.

(9) Chip Select/Wait Controller (2/2)

Symbol	Name	Address	B7	B6	85	B4	B3	82	81	BO
B3CSL	Block3	6EH	B3E	B3SYS	B3CAS	B3BUS	- 1	B3W2	83W1	B3W1
	CS/WAIT		W	w	w	w		w	w	w
	Control	1	0	0	0	0		0	0	0
	Register		1: CS/CAS	1: System	0:	0: 16 bit		Wait Cont		
	Low		Enable	Only	/C\$3	Bus		000: 2		
	1		1		1:	1:8 bit		010:1		
					/CAS3	Bus		011: 0	Wait	
								100: 0-		
	ļ							110: R		
									eserved	
B3CSH	Block3	6FH	B3M3	B3M2	B3M1	B3M0	B3A3	B3A2	B3A1	B3A0
	CS/WAIT		w	W	W	W	W	w	W	w
	Control		0	0	0	0	0	0	0	0
	Register			23~A20) Ma	sk Set			23~A20) Coi		
	High	1	0 : Non-						s are not spe	cified
			1 : Mas				Other :	Compare A		
B4C5L	Block4	4AH	B4E	B4SYS	B4CAS	B4BUS		B4A2	B4A1	B4A0
	CS/WAIT		w	w	w	w		w	w	w
	Control		0	0	0	0		0	0	0
	Register		1: CS/CAS		0:	0: 16 bit		Wait Cont		
	Low		Enable	Only	/CS4	Bus		000:2		
	[1:	1: 8 bit		010:1	Wait + n	
					/CAS4	Bus		011: 0		
							1	100:0-		
								110: Re	served	
								111: Re		
B4CSH	Block4	4BH	B4M3	B4M2	B4M1	B4M0	B4A3	B4A2	B4A1	B4A0
	CS/WAIT		w	w	w	w	w	w	w	<u>w</u>
	Control		0	0	0	0	0	0	0	0
	Register			3~A20) Ma	sk Set			23~A20) Cor		
	High		0 : Non-						s are not spe	cified
		1	1 : Masi	< c			Other :	Compare A2	(3~A20	

6. Port Section Equivalent Circuit Diagram

• Reading The Circuit Diagram

Basically, the gate singles written are the same as those used for the standard CMOS logic IC [74HCXX] series.

The dedicated signal is described below.

- STOP: This signal becomes active "1" when the hold mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit [DRIVE] is set to "1", however, STP remains at "0".
- The input protection resistor ranges from several tens of ohms to several hundreds of ohms.
- AD0 ~ AD7, AD8 ~ 15, A8 ~ 15, P2 (A16 23, A0 ~7)

• RD, WR

• P32 ~ 37, P40 ~ 41, P43 ~ 44

TMP96C081F

• P42 (CS2, CAS2)

• P5 (AN0 ~ 5)

• P87 (INTO)

• P90 (TXD0), P93 (TXD1)

• P96 (XT1), P97 (XT2)

NMI

TMP96C081F

TLCS-900 16-bit Microcontroller

• WDTOUT

WDTOUT _____ OUT

• CLK

• CSEL, AM8/16

• ALE

RESET

• X1, X2

• VREF, AGND

7. Guidelines and Restrictions

- (1) Special Expression
 - ① Explanation of a built-in I/O register: Register
 - Symbol <Bit Symbol>
 - ex) TRUN <TRUN> ··· Bit TORUN of Register TRUN
 - ② Read, Modify and Write Instruction

An instruction which CPU executes following by one instruction.

- 1. CPU reads data of the memory.
- 2. CPU modifies the data.
- 3. CPU writes the data to the same memory.

ex1) SET 3, (TRUN) ··· set bit3 of TRUN ex2) INC1, (100H) ··· increment the data of 100H

• The representative Read, Modify and Write Instruction in the TLCS-900

SET	imm, mem,	RES	imm, mem
CHG	imm, mem,	TSET	imm, mem
INC	imm, mem,	DEC	imm, mem
RLD	A, mem,	ADD	imm, reg

③ 1 state

One cycle clock divided by 2 oscillation frequency is called 1 state

ex) The case of oscillation frequency is 20MHz

2/20MHz = 100ns = 1 state

- (2) Guidelines
 - ① CESL, AM8/16 pin

Fix these pins $V_{CC}\xspace$ or GND unless changing voltage.

② Standby Mode (IDLE1)

When the IDLE1 mode (operates only oscillator) is used, set TRUN <PRRUN> to "0" to stop prescaler before "HALT" instruction is executed.

3 Warming-up Counter

The warming-up counter operates when the STOP mode. is released even the system which is used an external oscillator. As a result, it takes warming up time from inputting the releasing request to outputting the system clock.

④ High Speed µDMA (DRAM refresh mode)

When the Bus is released ($\overline{\text{BUSAK}} = "0"$) for waiting to accept the interrupt, DRAM refresh is not performed because of the high-speed μ DMA is generated by an interrupt.

⑤ Programmable Pull Up/Down Resistance

The programmable pull up/down resistors can be selected ON/OFF by program when they are used as the input ports. The case of they are used as the output ports, they cannot be selected ON/OFF by program.

Bus Releasing Function

Refer to the "Note about the Bus Release" in 3.5 Functions of Ports because the pin state when the bus is released is written.

⑦ Watch Dog Timer

The watch dog timer starts operation immediately after the reset is released. When the watch dog timer is not used, set watch dog timer to disable.

⑧ Watch Dog Timer

When the Bus is released, the watch dog timer cannot be operated.

A/D Converter

The ladder resistor between VREF and AGND pin can be cut by program to reduce the power consumption. When the standby mode is used, cut by program before "HALT" instruction is executed.

OPU (High Speed µDMA)

Only the "LDC cr, r", "LDC r, cr" instruction can be used to access the control register like transfer source address register (DMASn) in the CPU.