
TMP95CS54

2005-05-10 95CS54-1

CMOS 16-Bit Microcontrollers
TMP95CS54F

1. Outline and Features

The TMP95CS54 is a high-speed 16-bit microcontroller designed for the control of various mid- to
large-scale equipment.

The TMP95CS54 comes in a 100-pin flat package.
Listed below are the features of the TMP95CS54.

(1) High-speed 16-bit CPU (900/H CPU)

• Instruction mnemonics are upward-compatible with the TLCS-90/900
• 16 Mbytes of linear address space
• General-purpose registers and register banks
• 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
• Micro DMA : Four-channels (667 ns/2 bytes at 24 MHz)

(2) Minimum instruction execution time : 167 ns (at 24 MHz)

(3) Built-in RAM : 2 Kbytes
Built-in ROM : 64 Kbyte

TMP95CS54

2005-05-10 95CS54-2

(4) External memory expansion
• Expandable up to 16 Mbytes (shared program/data area)

• External data bus width select pin (16ΑΜ8 /)
• Can simultaneously support 8/16-bit width external data bus

··· Dynamic data bus sizing

 (5) 8-bit timers : 8 channels
• With event counter function : 2 channels

(6) 16-bit timer/event counter : 2 channels

(7) General-purpose serial interface : 2 channels

(8) Serial Expansion Interface : 1 channel

(9) CAN Controller : 1 channel

(10) 10-bit AD converter : 8 channels

(11) Watchdog timer

(12) Bus width/wait controller : 4 blocks

(13) Interrupts : 47 interrupts
• 9 CPU interrupts : Software interrupt instruction and illegal instruction
• 28 internal interrupts : Seven selectable priority levels
• 10 external interrupts : Seven selectable priority levels

(14) Input/output ports : 81 pins

(15) Standby mode
• Four HALT modes : RUN, IDLE2, IDLE1, STOP

(16) Operating voltage
• VCC = 4.7 to 5.3 V

(17) Package
• P-LQFP100-1414-0.50D

TMP95CS54

2005-05-10 95CS54-3

900/H CPU

XWA
XBC
XDE
XHL
XIX
XIY
XIZ
XSP

W A
B C
D E
H L

IX
IY
IZ
SP

32-bit
 FSR

P C

Figure 1.1 TMP95CS54 Block Diagram

TMP95CS54

2005-05-10 95CS54-4

2. Pin Assignment and Pin Functions
This section shows the TMP95CS54 pin assignment, and the names and an outline of the

functions of the input/output pins.

2.1 Pin Assignment Diagram

Figure 2.1.1 is the pin assignment diagram for the TMP95CS54.

Figure 2.1.1 Pin Assignment Diagram (100-Pin LQFP)

TMP95CS54

2005-05-10 95CS54-5

2.2 Pin Names and Functions

Table 2.2.1 shows the names and functions of the input/output pins.

Table 2.2.1 Pin Names and Functions (1/4)

TMP95CS54

2005-05-10 95CS54-6

Table 2.2.1 Pin Names and Functions (2/4)

TMP95CS54

2005-05-10 95CS54-7

Table 2.2.1 Pin Names and Functions (3/4)

TMP95CS54

2005-05-10 95CS54-8

Table 2.2.1 Pin Names and Functions (4/4)

TMP95CS54

2005-05-10 95CS54-9

3. Operation
The following is a block-by-block description of the functions and basic operation of the

TMP95CS54.
Notes and restrictions for each block are outlined in “7, Use Precautions and Restrictions” at the

end of this manual.

3.1 CPU

TMP95CS54 incorporates a high-performance 16-bit CPU (900/H-CPU). For CPU operation,
see the section dealing with the TLCS-900/H CPU.

The following describes the unique functions of the CPU used in the TMP95CS54; these
functions are not covered in the TLCS-900/H CPU section.

3.1.1 Reset

When resetting the TMP95CS54 microcontroller, ensure that the power supply voltage is
within the operating voltage range, and that the internal high-frequency oscillator has
stabilized. Then hold the RESET input to low level for at least 10 system clocks (ten states:
0.83 µs at 24 MHz).

When the reset is accepted, the CPU:

• Sets as follows the program counter (PC) in accordance with the reset vector stored at
address FFFF00H - FFFF02H:
PC (7:0) ← value at FFFF00H address
PC (15:8) ← value at FFFF01H address
PC (23:16) ← value at FFFF02H address

• Sets the stack pointer (XSP) to 100H.
• Sets bits <IFF2:0> of the status register (SR) to 111 (sets the interrupt level mask

register to level 7).
• Sets the <MAX> bit of the status register to 1 (MAX mode).

(Note: As this product does not support a MIN mode, do not write 0 to <MAX>.)
• Clears bits <RFP2:0> of the status register to 000 (sets the register bank to 0).

When reset is released, the CPU starts executing instructions in accordance with the

program counter settings. CPU internal registers not mentioned above do not change when
the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports, and other pins as follows.
• Initializes the internal I/O registers.
• Sets the port pins, including the pins that also act as internal I/O, to general-purpose

input or output port mode.
• Pulls up the CLK pin to high level.

(Note: During reset, do not reduce the external voltage level as this can cause
malfunction.)

TMP95CS54

2005-05-10 95CS54-10

Figure 3.1.1 shows an example of the basic timing of the reset operation.

Figure 3.1.1 TMP95CS54 Reset Timing Example

3.1.2 External data bus width selection (16AM8/ Pin)

Connect the input pin to VCC. After a reset, this pin accesses ROM by the internal 16-bit
bus.

The data bus width for an external access depends on the setting in the <B0BUS>,
<B1BUS>, <B2BUS>, <B3BUS> or <BEXBUS> bit of the bus width/wait control registers.
To access the 16-bit bus, set port 1 to D8 to D15.

TMP95CS54

2005-05-10 95CS54-11

3.2 Memory Map

Figure 3.2.1 shows the memory map and the access widths for the CPU addressing modes.

Figure 3.2.1 TMP95CS54 Memory Map

TMP95CS54

2005-05-10 95CS54-12

3.3 Interrupts

Interrupts are controlled by the CPU interrupt mask register <IFF2:0> (bits 14 to 12 of the
status register) and by the built-in interrupt controller.

The TMP95CS54 has a total of 47 interrupts divided into the following five types:

Interrupts generated by CPU : 9
• Software interrupts : 8
• Illegal instruction : 1
Internal interrupts : 28
• Internal I/O interrupts : 24
• Micro DMA transfer end interrupts : 4
External interrupts : 10
• Interrupts from external pins (NMI , INT0 to INT8)

A (fixed) individual interrupt vector number is assigned to each interrupt.
One of seven (variable) priority levels can be assigned to each maskable interrupt. The priority

level of non-maskable interrupts is fixed at 7, the highest level.
When an interrupt is generated, the interrupt controller sends the priority of that interrupt to

the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends the
interrupt with the highest priority to the CPU. (The highest priority possible is level 7, used for
non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt mask
register <IFF2:0>. If the priority level of the interrupt is higher than the value of the interrupt
mask register, the CPU accepts the interrupt. However, software interrupts and illegal
instruction interrupts generated by the CPU are processed without comparison with the
<IFF2:0> value.

The interrupt mask register <IFF2:0> value can be updated using the value of the EI
instruction (executing EI num sets the content of <IFF2:0> to num). For example, specifying EI 3
enables the acceptance of maskable interrupts whose priority level set in the interrupt controller
is 3 or higher, and enables the acceptance of non-maskable interrupts. However, if EI or EI 0 is
specified, maskable interrupts with a priority level of 1 or higher and non-maskable interrupts
are accepted (operationally identical to “EI 1”).

Operationally, the DI instruction (<IFF2:0> is 7) is identical to the EI 7 instruction, but as the
priority level of maskable interrupts is 0 to 6, the DI instruction is used to disable maskable
interrupts. The EI instruction is valid immediately after execution begins. (With the TLCS-90,
the EI instruction is valid after execution of the instruction following the EI instruction.)

TMP95CS54

2005-05-10 95CS54-13

In addition to the general-purpose interrupt processing mode described above, the TLCS-900/H
interrupts also have a micro DMA processing mode.

Because the CPU transfers data (byte transfer, word transfer, or 4-byte transfer) automatically
in micro DMA mode, this mode can be used for speeding up interrupt processing, such as
transferring data to I/O.

The TMP95CS54 also has a micro DMA soft start function for requesting micro DMA
processing by software rather than by interrupt.

Figure 3.3.1 shows the overall interrupt processing flow.

Figure 3.3.1 Interrupt and Micro DMA Processing Flow

TMP95CS54

2005-05-10 95CS54-14

3.3.1 General-purpose interrupt processing

When the CPU accepts an interrupt, the CPU performs the following processing. However,
in the case of software interrupts and illegal instruction interrupts generated by the CPU,
the CPU skips [1] and [3] and executes steps [2], [4], and [5].

[1] The CPU reads the interrupt vector from the interrupt controller. If there are

simultaneous interrupts set to the same level, the interrupt controller generates an
interrupt vector in accordance with the default priority and clears the interrupt
request.
(The default priority is already fixed for each interrupt: the smaller the vector value,
the higher the priority level.)

[2] The CPU saves the contents of the program counter (PC) and status register (SR) to
the stack area (indicated by XSP).

[3] The CPU sets the value of the CPU’s interrupt mask register <IFF2:0> to the
received interrupt level incremented by 1. However, if the incremented value level is
7 or higher, the CPU just sets the register to 7.

[4] The CPU increments interrupt nesting counter INTNEST by 1.

[5] The CPU jumps to the address indicated by the data at address FFFF00H +
interrupt vector, and starts the interrupt processing routine.

Table 3.3.1 shows the times for the above processing.

Table 3.3.1 Interrupt Processing Times for Bus Widths

When the CPU has completed the interrupt processing, use the RETI instruction to return
to the main routine. This instruction restores the contents of the program counter and status
register from the stack, and decrements interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by program. Maskable interrupts can be
enabled or disabled by program. The program can set a priority level for every interrupt
source. (Setting the priority level to 0 (or 7) disables the interrupt request.)

TMP95CS54

2005-05-10 95CS54-15

If a request is received for an interrupt with a higher priority level than that set in the
CPU interrupt mask register <IFF2:0>, the CPU accepts the interrupt. Set the CPU
interrupt mask register <IFF2:0> to the received interrupt priority level incremented by 1.

If, during interrupt processing, an interrupt is generated with a higher level than the
interrupt being currently processed, or if, during non-maskable interrupt processing, a
non-maskable interrupt request is generated from another source, the CPU suspends the
current processing routine and accepts the later interrupt. Then, after the CPU has finished
processing the later interrupt, the CPU returns to the interrupt it previously suspended and
resumes processing.

If the CPU receives a request for another interrupt while already performing processing
steps [1] to [5], the second interrupt is sampled immediately after execution of the start
instruction for its interrupt processing routine. Specifying DI as the start instruction
disables maskable interrupt nesting. (Note: In the 900 and 900/L, sampling is performed
before execution of the start instruction.)

After a reset, the interrupt mask register <IFF2:0> is initialized to 111, thus disabling
maskable interrupts.

The following steps (1) through (5) show the interrupt processing flow.

(1) Maskable interrupts

(2) Non-maskable interrupts (NMI, INTWD)

When the CPU accepts an interrupt, it sets IFF to the priority
level of the interrupt incremented by 1.
Accordingly, if during interrupt processing an interrupt
request is received with the same or a lower priority than that
of the interrupt being processed, because this priority level is
lower than the IFF value, the second interrupt cannot be
accepted until the processing of the prior interrupt is
complete.

Note: ＿ (underline) : Instruction
 : Execution flow
 IFF : Interrupt mask register

When the DI instruction is executed (IFF is 7), only
non-maskable interrupts can be received (because the
priority level of non-maskable interrupts is fixed to 7.)
When the EI instruction is executed, the CPU sets IFF to 7
upon acceptance of an NMI or INTWD interrupt.

TMP95CS54

2005-05-10 95CS54-16

(3) Non-maskable interrupts (Software interrupts, illegal instruction interrupts)

(4) Interrupt nesting

(5) Interrupt sampling (Maskable interrupt nesting disabled)

Table 3.3.2 shows the TMP95CS54 interrupt vectors and micro DMA start vectors. With
the TMP95CS54, FFFF00H to FFFFFFH (256 bytes) is allocated to the interrupt vector area.

When the DI instruction is executed (IFF is 7),
the CPU can accept interrupts. However, unlike
with NMI or INTWD interrupts, IFF does not
change upon acceptance of an interrupt.
Therefore, during processing of a software
interrupt, if a request is received for an interrupt
with a priority the same or higher than the IFF
value, the interrupt is nested.

During interrupt processing, if a request is
received for an interrupt with a priority the same
or higher than the interrupt being processed (the
interrupt priority level is the same as or higher
than the IFF value), the CPU receives the second
interrupt and nests it.

If, after the time the CPU has accepted an interrupt but before
the CPU begins processing it, the CPU receives a request for
another interrupt with a higher priority, the second interrupt is
nested after execution of the start instruction for processing of
the interrupt accepted first.
Accordingly, issuing the DI instruction as the start instruction
disables nesting of maskable interrupts.

Note: ＿ (underline) : Instruction
 : Execution flow
 IFF : Interrupt mask register

TMP95CS54

2005-05-10 95CS54-17

Table 3.3.2 TMP95CS54 Interrupt Vectors and Micro DMA Start Vectors

TMP95CS54

2005-05-10 95CS54-18

Setting reset vectors and interrupt vectors

[1] Reset vector

[2] Interrupt vectors (Other than reset vector)

(Setting example)
Where the reset vector is defined as FF0000H, the NMI vector as FF9ABCH, and the INT1

vector as FF3456H

TMP95CS54

2005-05-10 95CS54-19

3.3.2 Micro DMA processing

In addition to general-purpose interrupt processing, the TMP95CS54 supports a micro
DMA function. Interrupt requests set by the micro DMA perform micro DMA processing at
the highest priority level of maskable interrupts (level 6), regardless of the priority level of
the particular interrupt source.

Because the micro DMA function is implemented with the cooperative operation of the
CPU, when the CPU is put into stand-by state -by by HALT instruction, micro DMA
requirements will be ignored (pending).

(1) Micro DMA Operation

When an interrupt request is generated by an interrupt source specified by the micro
DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at
interrupt priority level 6 and starts processing the request. The four micro DMA
channels allow micro DMA processing to be set for up to four types of interrupts at any
one time.

When micro DMA is accepted, the interrupt request flip-flop assigned to that channel
is cleared. The data are automatically transferred from the transfer source address to
the transfer destination address set in the control register, and the transfer counter is
decremented by 1. If the decremented counter reads other than 0, DMA processing ends
with no change in the value of the micro DMA start vector register. If the decremented
reading is 0, the micro DMA transfer end interrupt (INTTC0 to 3) passes from the CPU
to the interrupt controller. In addition, the micro DMA start vector register is cleared to
0, the next micro DMA is disabled, and micro DMA processing is complete.

If a micro DMA request is set for more than one channel at a time, the priority is not
based on the interrupt priority level but on the channel number: the smaller the channel
number the higher the priority. (Channel 0 (high) --> channel 3 (low)).

If an interrupt request is triggered for the interrupt source in use during the interval
between the clearing of the micro DMA start vector and the next setting,
general-purpose interrupt processing is executed at the interrupt level set. Therefore,
when using the interrupt only for starting the micro DMA (not using the interrupt as a
general-purpose interrupt), first set the interrupt level to 0 (interrupt requests
disabled).

When using micro DMA and general-purpose interrupts together as described above,
first set the level of the interrupt used to start micro DMA processing lower than all the
other interrupt levels. In this case, the cause of a general interrupt is limited to the edge
interrupt.

Example:When using external interrupt INT0 to 3 to start micro DMA0 to 3, set:

 External interrupt INT0 to 3 interrupt level“1”
 Level of other interrupts......................................“2” to “6”

As with other maskable interrupts, the priority of the micro DMA transfer end

interrupt is determined by the interrupt level and the default priority.

TMP95CS54

2005-05-10 95CS54-20

While the register for setting the transfer source/transfer destination addresses is a
32-bit control register, this register can only effectively output 24-bit addresses.
Accordingly, micro DMA can access 16 Mbytes (the upper eight bits of the 32 bits are not
valid).

Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte (one word)
transfer, and 4-byte transfer. After a transfer in any mode, the transfer
source/destination addresses are incremented, decremented, or remain unchanged. This
simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to
I/O. For details of the transfer modes, see 3.3.2 (4), Transfer Mode Register.

As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to
65536 times per interrupt source. (The micro DMA processing count is maximized when
the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 28 interrupts (INT0 to INTTX1, INTAD)
shown in the micro DMA start vectors of Table 3.3.2 and by the micro DMA soft start,
making a total of 29 interrupts.

Figure 3.3.2 shows the micro DMA cycle in transfer destination address INC mode (the
same as for other modes, with the exception of COUNTER mode).

[1] Word transfer (the conditions for this cycle are based on an external 16-bit bus, 0

waits, transfer source/transfer destination addresses both even-numbered values)

Address Address + 2

Figure 3.3.2 Timing of Micro DMA Cycle (1/3)

States 1 to 3 : Instruction fetch cycle (gets next address code).
If three or more instruction codes are inserted in the instruction queue buffer, this cycle
becomes a dummy cycle.

States 4 to 5 : Micro DMA read cycle
State 6 : Dummy cycle (the address bus remains as in state 5)
States 7 to 8 : Micro DMA write cycle

Note 1: If the source address area is an 8-bit bus, it is incremented by two states.

Note 2: If the destination address area is an 8-bit bus, it is incremented by two states.

TMP95CS54

2005-05-10 95CS54-21

[2
]

W
or

d
tr

an
sf

er
 (t

he
 co

nd
iti

on
s f

or
 th

is
 cy

cl
e

ar
e

ba
se

d
on

 a
 1

6-
bi

t e
xt

er
na

l b
us

, 0
 w

ai
ts

, t
ra

ns
fe

r s
ou

rc
e/

tr
an

sf
er

 d
es

tin
at

io
n

ad
dr

es
se

s b
ot

h
od

d-
nu

m
be

re
d

va
lu

es
)

A
dd

re
ss

A

dd
re

ss
 +

 2

Fi
gu

re
 3

.3
.2

 T
im

in
g

of
 M

ic
ro

 D
M

A
C

yc
le

 (2
/3

)

[3
]

4-
by

te
 tr

an
sf

er
 (t

he
 c

on
di

tio
ns

 fo
r

th
is

 c
yc

le
 a

re
 b

as
ed

 o
n

a
16

-b
it

ex
te

rn
al

 b
us

, 0
 w

ai
ts

, t
ra

ns
fe

r
so

ur
ce

/tr
an

sf
er

 d
es

tin
at

io
n

ad
dr

es
se

s
bo

th
 e

ve
n-

nu
m

be
re

d
va

lu
es

A
dd

re
ss

A

dd
re

ss
 +

 2

Fi
gu

re
 3

.3
.2

 T
im

in
g

of
 M

ic
ro

 D
M

A
C

yc
le

 (3
/3

)

TMP95CS54

2005-05-10 95CS54-22

(2) Micro DMA soft start function
In addition to starting micro DMA by interrupt, the TMP95CS54 supports a micro

DMA soft start function. This starts micro DMA by generating a cycle to write to the soft
DMA control register.

To code a soft start, write micro DMA start vector FCH to micro DMA start vector
register DMA0V to 3 V (at memory addresses 5AH, 5BH, 5CH, and 5DH).

Then, write any data to soft DMA control register SDMACR0 to 3 (at memory
addresses 6AH, 6BH, 6CH, and 6DH). (The value of the data has no effect on the
operation of the soft start.) This starts micro DMA of the applicable channel once. Then,
whenever data are written again to the soft DMA control register, as long as the micro
DMA transfer counter register values are other than 0, a soft start can be continuously
triggered (without rewriting the micro DMA start vector).

Setting the micro DMA start vector is a prerequisite for generating a micro DMA
software start. (The software start request is a one-shot request and not saved.
Therefore, even if a cycle which writes to the soft DMA control register is generated,
unless the micro DMA start vector is already set, a soft start cannot be generated.)

TMP95CS54

2005-05-10 95CS54-23

(3) Structure of micro DMA-only registers
Figure 3.3.3 shows the micro DMA-only registers. These registers are incorporated in

the CPU. (See 3.2.5, Control Registers in Chapter 3, TLCS-900/H CPU.) To set the
registers use the LDC instruction.

Set the transfer source address in the transfer source address register; the transfer
destination address, in the transfer destination address register. These address registers
use only the lower 24 bits. They support a 16-Mbyte address space.

Use the transfer counter register to set the number of times micro DMA is performed
between 1 and 65536.

For details on setting the transfer mode register, see 3.3.2 (4), Transfer Mode Register.
Only the LDC cr, r instruction can load data into the micro DMA-only registers.

Figure 3.3.3 Micro DMA-Only Registers

TMP95CS54

2005-05-10 95CS54-24

(4) Transfer Mode Register
To set micro DMA transfer mode, use transfer mode register DMAM0 to 3. Table 3.3.3

shows the settings for each mode and the numbers of execution states.

Table 3.3.3 Micro DMA Transfer Mode

TMP95CS54

2005-05-10 95CS54-25

3.3.3 Interrupt Controller Control

Figure 3.3.4 is a block diagram of the interrupt controller circuit. The left-hand side of this
diagram shows the interrupt controller. The right-hand side shows the CPU interrupt
request signal circuit and CPU halt release circuit. (For details on halt modes, see 3.4,
Standby Function.)

The interrupt controller has a total of 38 interrupt channels, consisting of NMI, INTWD,
INT0 to 8, INTT0 to 7, INTTR8 to O9, INTRX0 to TX1, INTCR to G, INTSEI, INTAD, and
INTTC0 to 3.

Each interrupt channel supports:
• Interrupt request flag (38 channels)
• Interrupt priority setting register (36 channels (NMI and INTWD excluded)).

In addition, there are also four channels of start vector registers for performing micro DMA
processing.

(1) Interrupt request flags

The function of the interrupt request flag is to indicate the generation of an interrupt
request. Apart from NMI and INTWD, each channel has a clear bit <IxxC> for clearing
the interrupt requests (see Figure 3.3.5, Interrupt Priority Setting Registers). Reading
clear bit <IxxC> reads the state of the interrupt request flag and indicates whether an
interrupt request is generated or not.

The interrupt request flags are zero-cleared by the following operations:
[1] A reset (clears all interrupt request flags)

[2] When the CPU accepts an interrupt and reads the vector of the accepted
interrupt channel

[3] When the CPU accepts the micro DMA request of the specified channel

[4] When 0 is written to clear bit <IxxC> of the interrupt priority setting register
Note: [2], [3], and [4] operations do not include INT0 level mode or INTRX0, 1.

In addition, flags are also cleared by the following operations.

Table 3.3.4 Other Flag Clearing Operations

Before clearing an interrupt request by writing 0 to the clear bit or by performing a
Table 3.3.4 operation to clear the interrupt request flag, first execute the DI instruction.

TMP95CS54

2005-05-10 95CS54-26

(INT0 interrupt cautions)
Note the following cautions when using the INT0 interrupt in level mode.
In level mode, the INT0 pin input must be held continuously at high level until the

interrupt response sequence is completed. Likewise, when releasing the halt in this
mode, the INT0 pin must be held continuously at high level until the halt is
released.

When using INT0 level mode, be sure that a low level is not input as a result of
noise as this can cause malfunction.

When switching the INT0 pin operation mode from level to edge mode, first
disable the INT0 interrupt as follows. (In level mode, an accepted interrupt request
must be cleared.)

Setting example:
 DI ; disable interrupt
 LD (IIMC), XX0XXX0XB ; switch from level to edge
 LD (INTE0AD), XXXX0nnnB ; clear interrupt request flag and set INT0

interrupt level to nnn
 EI ; enable interrupt

TMP95CS54

2005-05-10 95CS54-27

Figure 3.3.4 Block Diagram of Interrupt Controller

TMP95CS54

2005-05-10 95CS54-28

(2) Interrupt priority setting register
Figure 3.3.5 shows the interrupt priority setting registers. Each of the 36 interrupt

channels (INT0 to AD, INTTC0 to 3) has an interrupt request level setting bit
<IxxM2:0>. An interrupt request is generated at six interrupt levels (levels 1 through 6).
Setting the priority level to 0 (or 7) disables the corresponding interrupt request. The
priority level for non-maskable interrupts (NMI pin input) is fixed to 7. If two or more
interrupts with the same level occur simultaneously, the interrupts are accepted in
accordance with the default priority.

Figure 3.3.5 Interrupt Priority Setting Registers (1/2)

TMP95CS54

2005-05-10 95CS54-29

Figure 3.3.5 Interrupt Priority Setting Registers (2/2)

TMP95CS54

2005-05-10 95CS54-30

From among simultaneous interrupts, the interrupt controller selects the interrupt
request with the highest level and sends its vector address to the CPU.

Then, the CPU compares the priority level of the interrupt request with the value of
the interrupt mask register <IFF2:0> in the status register. If the priority level of the
interrupt request is higher than the value of the interrupt mask register, the CPU
accepts the interrupt. When the CPU side interrupt mask register <IFF2:0> is set to the
priority level of the received interrupt incremented by 1, subsequent interrupt requests
are only accepted if their level is equal to or greater than the incremented value.

(3) Micro DMA start vector

The interrupt controller has four channels of micro DMA start vector registers.
Writing the micro DMA start vector value (Table 3.3.2) for each interrupt source to these
registers makes the applicable interrupt request into a micro DMA request. But first set
values in the registers for micro DMA parameters (DMAS, DMAD, DMAC, DMAM).
Figure 3.3.6 shows the micro DMA start vector registers.

The function of the micro DMA start vector registers is to select the interrupt to use
with micro DMA processing. The micro DMA start source is assigned to the interrupt
source whose micro DMA start vector matches the vector value set in the micro DMA
start vector register.

When the value of the micro DMA transfer counter is set to 0 after micro DMA
processing, the CPU generates a micro DMA transfer end interrupt (INTTC0 to 3)
corresponding to the micro DMA start vector register. When the micro DMA start vector
register is cleared, the micro DMA startup source is released. Therefore, when
continuously performing micro DMA processing, set the start vector value in the micro
DMA start vector register again during processing of the micro DMA transfer end
interrupt.

When the same vector is set in the micro DMA start vector registers of multiple
channels, the lower the channel number the higher the priority.

The channel with the lowest number is executed until the micro DMA transfer end
interrupt. Unless the micro DMA start vector is set again during the processing of the
micro DMA transfer end interrupt, the subsequent micro DMA startup moves to the next
smallest channel number. (This operation is called a micro DMA chain.)

TMP95CS54

2005-05-10 95CS54-31

Setting Micro DMA Startup Source

Figure 3.3.6 Setting Micro DMA Start Vector Register and Startup Source

TMP95CS54

2005-05-10 95CS54-32

(4) External Interrupt Control
Table 3.3.5 shows the function settings for the external interrupt pins.
TMP95CS54 can select the operating mode for the NMI , INT0, INT5, or INT7 pins

from among external interrupt functions. (For details on the external interrupt function
pulse width, see “4.7 Interrupt Operations”.)

Table 3.3.5 Setting Functions on External Interrupt Pins

TMP95CS54

2005-05-10 95CS54-33

The input mode of the NMI and INT0 interrupts can be controlled by interrupt input
mode control register IIMC.

Figure 3.3.7 shows the interrupt input mode control register.

Figure 3.3.7 Interrupt Input Mode Control Register

(5) Caution
When the CPU fetches an instruction to clear the interrupt request flag for the

interrupt controller immediately before an interrupt is generated, the CPU may execute
the instruction between receiving the interrupt and reading the interrupt vector.

To avoid the above occurring, clear the interrupt request flag by entering the
instruction to clear the flag after the DI instruction. When setting an interrupt enable
again by EI instruction after the execution of a clearing instruction, execute the EI
instruction after the clearing instruction and following the execution of more than one
more instruction. If the EI instruction is placed immediately after the clearing
instruction, an interrupt could be enabled before interrupt request flags are cleared.

When changing the value of the interrupt mask register<IFF2:0> by execution of a
POP SR instruction, disable an interrupt by DI instruction before execution of the POP
SR instruction.

TMP95CS54

2005-05-10 95CS54-34

3.4 Standby Function

(1) HALT modes
When the TMP95CS54 executes a HALT instruction, WDMOD<HALTM1:0> of the

watchdog timer mode register can be used to set one of the following HALT modes: RUN,
IDLE2, IDLE1, STOP. Figure 3.4.1 shows the watchdog timer mode control register.

Figure 3.4.1 Watchdog Timer Mode Control Register

TMP95CS54

2005-05-10 95CS54-35

The characteristics of RUN, IDLE2, IDLE1, and STOP modes are as follows:
[1] RUN: In this mode, only the CPU is halted. Power dissipation is almost the same

as when the CPU is operating.

[2] IDLE2: Only the internal oscillator and specific internal I/O operate. Power
dissipation is around one half that when the CPU is operating.

[3] IDLE1: Only the internal oscillator operates; all other circuits are halted. Power
dissipation is one tenth of operating mode dissipation.

[4] STOP: All internal circuits, including the internal oscillator, are halted. In this
mode power dissipation drops considerably.

Table 3.4.1 shows the operation of all blocks in HALT modes.

Table 3.4.1 Blocks and I/O Pin Operation in Halt Modes

(2) Release from HALT mode
Release from HALT mode can trigger an interrupt request or a reset. A combination of the

interrupt mask register <IFF2:0> state and the halt mode determine the useable halt release
source. (For details, see Table 3.4.2)
• Release by interrupt request

The operation to release HALT mode by using an interrupt request differs according to
the interrupt enable state. If the interrupt request level set prior to the execution of the
HALT instruction is higher than the interrupt mask register value, after HALT mode is
released, interrupt processing is performed by this source, and processing starts from
the next instruction following the HALT instruction. If the interrupt request level is
lower than the interrupt mask register value, HALT mode is not released. (At a
non-maskable interrupt, interrupt processing is performed after HALT mode release
irrespective of the mask register value.)

However, in the case of the INT0 interrupt only, HALT mode can be released if the
interrupt request level is lower than the interrupt mask register value. In this case the
interrupt processing is not performed. Processing always starts from the next
instruction following the HALT instruction. (The INT0 interrupt request flag is held at
1.)

Note) Usually, interrupts can release all halts status. However, the interrupts (= NMI and INT0) which can release
the HALT mode may not be able to do so if they are input during the period when the CPU is shifting to the
HALT mode (for about 3 clocks of fc) with IDLE1 or STOP mode (RUN and IDLE2 are not applicable to this
case). (In this case, an interrupt request is kept on hold internally.)

 If another interrupt is generated after it has shifted completely to HALT mode, halt status can be released
without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally,
and the interrupt with the higher priority is handled first followed by the other interrupt.

TMP95CS54

2005-05-10 95CS54-36

• Release by reset
All HALT modes can be released by a reset. However, when releasing STOP mode,

allow sufficient reset time (at least 3 ms) for the oscillator to stabilize.
When releasing HALT mode by a reset, the internal RAM retains the data prevailing

immediately prior to entering the HALT mode. However, other settings are initialized.

Table 3.4.2 Halt Release Sources and Halt Release Operation

Interrupt accept state
Interrupt enabled

(interrupt request level) ≥ (interrupt mask)

Interrupt disabled
(interrupt request level) < (interrupt mask)

HALT mode RUN IDLE2 IDLE1 STOP RUN IDLE2 IDLE1 STOP

NMI □ □ □ □*1 − − − −

INTWD □ × × × − − − −

INT0 □ □ □ □*1 O O O O*1

INT1 to 8 □ □ × × × × × ×

INTT0 to 7 □ □ × × × × × ×

INTTR8, 9, A, B □ □ × × × × × ×

INTTO8, 9 □ □ × × × × × ×

INTRX0, TX0 □ □ × × × × × ×

INTRX1, TX1 □ □ × × × × × ×

INTCR, CT, CG □ □ × × × × × ×

INTSEI □ □ × × × × × ×

In
te

rru
pt

 s
ou

rc
e

INTAD □ × × × × × × ×

H
A

LT
 re

le
as

e
so

ur
ce

 RESET □ □ □ □ □ □ □ □

□: After HALT mode release, the CPU starts interrupt processing (a reset initializes the LSI).
O: After HALT mode release, processing starts from the next instruction following the HALT instruction.

(No interrupt processing)
×: Not used for HALT release.
−: As the highest priority level (interrupt request level) for a non-maskable interrupt is fixed to 7, this

combination is not available.
*1: Releases HALT after the warmup time has elapsed.

Note: When releasing HALT in an interrupt enabled state by using a level mode INT0 interrupt, maintain
high level on pin INT0 until interrupt processing begins. If pin INT0 changes to low level before
interrupt processing begins, interrupt processing cannot start correctly.

TMP95CS54

2005-05-10 95CS54-37

(Example of release from HALT mode)
Releasing HALT mode using the edge mode INT0 interrupt when the CPU is in RUN

mode:

TMP95CS54

2005-05-10 95CS54-38

(3) Operation in each mode

[1] RUN mode
In RUN mode, the system clock continues operating even after execution of the HALT

instruction. Only the CPU instruction execution operations stop.
In HALT mode, interrupt requests are sampled on the falling edge of the CLK signal.
All the external and internal interrupts can be used for releasing RUN mode. (See

Table 3.4.2, Halt Release Sources and Halt Release Operation.)

Figure 3.4.2 shows the timing example for releasing HALT mode using an interrupt.

Address Address + 2

Figure 3.4.2 Example of Timing for Releasing Halt by Interrupt (RUN or IDLE2 Mode)

[2] IDLE2 mode
In IDLE2 mode, the system clock is supplied only to specific internal I/O. CPU

instruction execution halts.
In IDLE2 mode, the timing for releasing HALT mode by interrupt is the same as in

RUN mode.
External and internal interrupts, apart from INTWD/INTAD, can release IDLE2 mode.

(See Table 3.4.2, Halt Release Sources and Halt Release Operation.)
Before entering HALT mode in IDLE2 mode, disable the watchdog timer (to prevent

the generation of a watchdog timer interrupt immediately after halt mode release).

TMP95CS54

2005-05-10 95CS54-39

[3] IDLE1 mode
In IDLE1 mode, only the internal oscillator operates. The system clock stops. The CLK

pin outputs high level.
The interrupt request sampling in HALT mode is asynchronous to the system clock.

However, the release (resumption of operation) is synchronous.
Release IDLE1 mode by an external interrupt (NMI, INT0). (See Table 3.4.2, Halt

Release Sources and Halt Release Operation.)

Figure 3.4.3 shows the timing example for releasing HALT mode by interrupt.

Address Address + 2

Figure 3.4.3 Example of Timing for Releasing HALT by Interrupt (IDLE1 Mode)

TMP95CS54

2005-05-10 95CS54-40

[4] STOP mode
In STOP mode, all internal circuits, including the internal oscillator, are halted. The

pin states in STOP mode differ according to the setting of the watchdog timer mode
register WDMOD<DRVE>. (For details on the WDMOD<DRVE> settings, see Figure
3.4.1). Table 3.4.3 shows the pin states in STOP mode.

Release STOP mode by an external interrupt (NMI, INT0). When releasing STOP
mode, system clock output starts after the elapse of the warmup time (as set in the
warmup counter) in order to stabilize the internal oscillator. Set the warmup time in the
WDMOD<WARM> register.

Figure 3.4.4 shows an example of the timing for releasing HALT by interrupt.

Address Address + 2

Figure 3.4.4 Example of Timing for Releasing HALT by Interrupt (STOP Mode)

TMP95CS54

2005-05-10 95CS54-41

Table 3.4.3 Pin States in Stop Mode

Pin Name Input/Output <DRVE> = 0 <DRVE> = 1
P00 to 07 Input mode

Output mode
Input/output (D0 to D7)

□
□
−

□
Output

−
P10 to 17 Input mode

Output mode
Input/output (D8 to D15)

□
□
−

□
Output

−
P20 to 27 Input mode

Output mode
Output (A16 to A23)

□
−

□
Output
Output

P30 to 37 Input mode
Output mode
Output (A8 to A15)

□
□
−

□
Output
Output

P40 to 47 Input mode
Output mode
Output (A0 to A7)

□
□
−

□
Output
Output

P50 (RD), P51 (WR) Output mode
Output (RD , WR)

□
−

Output
High level output

P52 to 55 Input mode
Output mode

PU*
PU

PU
Output

P56 (INT0) Input mode
Output mode
Input mode (INT0)

PU
PU

Input

PU
Output
Input

P57 (CLKOUT) Output mode
Output (CLKOUT)

PU
−

Output
High level output

P60 to 63 Input mode
Output mode

−
−

Input
Output

P70 to 75 Input mode
Output mode

−
−

Input
Output

P80, 83, 86 Input mode
Output mode

PU*
PU*

PU
Output

P81, 82, 84, 85, 87 Input mode
Output mode

PU*
PU

PU
Output

P90 to 97 Input mode
Output mode

−
−

Input
Output

PA0 to 7 (AN0 to 7) Input
Input (ADTRG)

□
−

□
Input

NMI Input Input Input

CLK Output − High level output
RESET Input Input Input

EA Input Fixed to High level Fixed to High level

16AM8/ Input Fixed to High level Fixed to High level

X1 Input − −
X2 Output High level High level

− : Indicates that input is invalid for an input pin or a pin in input mode. Also, that the pin is set to high impedance for an output pin

or a pin in output mode.

Input : The input gate is functioning. To prevent the input pin from floating, fix the input voltage to low or high.

Output : Output state.

PU : Programmable pull-up pin. The input gate is functioning. Pins without pull-up set must be fixed to prevent through current.

PU* : Programmable pull-up pin. The input gate is disabled. A through current does not occur even if high impedance is set.

□ : The input gate continues to operate if the HALT instruction is executed and the CPU is halted at the port register address value.

To prevent a through current in this case, either fix the pin or ensure by software that the situation does not occur. In other

cases, input is invalid.

Note : The port register controls the programmable pull-up. However, if the function is set for a pin shared with an output function (eg,

TxD0), the pull-up selection for the pin depends on the output function data. For pins that are shared with input functions, the

port register setting alone determines whether or not a pull-up resistor is used.

TMP95CS54

2005-05-10 95CS54-42

3.5 Port Functions

TMP95CS54 has a total of 81 bits for input/output ports.
As well as being used as general-purpose I/O ports, port pins are also used for internal CPU

and built-in I/O functions. Table 3.5.1 lists port pin functions; Table 3.5.2, pin settings.

Table 3.5.1 Port Pin Functions

TMP95CS54

2005-05-10 95CS54-43

Table 3.5.2 Port Pin Setting Methods (1/3)

TMP95CS54

2005-05-10 95CS54-44

Table 3.5.2 Port Pin Setting Methods (2/3)

TMP95CS54

2005-05-10 95CS54-45

Table 3.5.2 Port Pin Setting Methods (3/3)

TMP95CS54

2005-05-10 95CS54-46

3.5.1 Port 0 (P00 to P07)

Port 0 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as a general-purpose input/output port, port 0 also functions as
the data bus (D0 to D7). The port 0 control register P0CR sets the pins as inputs or outputs.

A reset sets all the bits of the P0CR register to 0, and sets all pins to input mode.
When external memory is accessed, the port automatically functions as the data bus (D0 to

D7) and all bits of P0CR are cleared to 0.

Figure 3.5.1 Port 0 (P00 to P07)

Figure 3.5.2 Port 0 Related Registers

TMP95CS54

2005-05-10 95CS54-47

3.5.2 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as a general-purpose input/output port, port 1 also functions as a
data bus (D8 to D15). The port 1 control register P1CR and function register P1FC set the
port 1 functions.

Reset sets all the bits of the P1 output latch register and all bits of the P1CR and P1FC
registers to 0, and sets port 1 to input mode.

Figure 3.5.3 Port 1 (P10 to P17)

TMP95CS54

2005-05-10 95CS54-48

Figure 3.5.4 Port 1 Related Registers

TMP95CS54

2005-05-10 95CS54-49

3.5.3 Port 2 (P20 to P27)

Port 2 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as a general-purpose input/output port, port 2 also functions as
an address bus (A16 to A23). The port 2 control register P2CR and function register P2FC set
the port 2 functions.

Reset sets all the bits of the P2 output latch register and all bits of the P2CR and P2FC
registers to 0, setting port 2 to input mode.

Figure 3.5.5 Port 2 (P20 to P27)

TMP95CS54

2005-05-10 95CS54-50

Figure 3.5.6 Port 2 Related Registers

TMP95CS54

2005-05-10 95CS54-51

3.5.4 Port 3 (P30 to P37)

Port 3 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as a general-purpose input/output port, port 3 also functions as
an address bus (A8 to A15). The port 3 control register P3CR and function register P3FC set
the port 3 functions.

Reset sets all the bits of the P3 output latch register and all bits of the P3CR and P3FC
registers to 0, setting port 3 to input mode.

Figure 3.5.7 Port 3 (P30 to P37)

TMP95CS54

2005-05-10 95CS54-52

Note: When setting the address bus (A15 to A8), first set P3CR, then P3FC.

Figure 3.5.8 Port 3 Related Registers

TMP95CS54

2005-05-10 95CS54-53

3.5.5 Port 4 (P40 to P47)

Port 4 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as a general-purpose input/output port, port 4 also functions as
an address bus (A0 to A7). The port 4 control register P4CR and function register P4FC set
the port 4 functions.

Reset sets all the bits of the P4 output latch register and all bits of the P4CR and P4FC
registers to 0, setting port 4 to input mode.

Figure 3.5.9 Port 4 (P40 to P47)

TMP95CS54

2005-05-10 95CS54-54

Figure 3.5.10 Port 4 Related Registers

TMP95CS54

2005-05-10 95CS54-55

3.5.6 Port 5 (P50 to P57)

Port 5 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output. However, P50, P51 and P57 are output-only ports.

In addition to functioning as a general-purpose input/output port, port 5 also has a CPU
control/status signal input/output function, a WAIT input function, an INT0 external
interrupt input function, and a CLKOUT output function. The port 5 control register P5CR
and function register P5FC set the port 5 functions.

Reset sets all the bits of the P5 output latch register and bit 7 of P5FC to 1 and clears all
bits of P5CR (bits 0, 1 and 7 are unused) and bits 0, 1, 2, 3 and 4 of P5FC (bits 5 and 6 are
unused) to 0. Pins P50 and P51 output 1 and P52 to P56 are set to input mode with resistors
pulled up and P57 output CLKOUT.

When P50 is set as the RD pin (when P5FC<P50F> = 1) when P5<P50> is cleared to 0, the
P50 RD signal is output even when an internal address area is accessed, and external
PSRAM (pseudo SRAM) can be refreshed. If <P50> is set to 1, the RD signal is output only
when an external area is accessed.

(1) Port 50 (RD)

In addition to functioning as a general-purpose output-only port, port 50 can also
function as the RD pin.

Figure 3.5.11 Port 5 (P50)

TMP95CS54

2005-05-10 95CS54-56

(2) Port 51 (WR)
In addition to functioning as a general-purpose output-only port, port 51 can also

function as the WR pin.

Figure 3.5.12 Port 5 (P51)

(3) Ports 52, 54 (HWR , BUSAK)
In addition to being general-purpose input/output ports, port 52 can also function as

the HWR pin, and port 54 can also function as the BUSAK pin.

Figure 3.5.13 Port 5 (P52, P54)

TMP95CS54

2005-05-10 95CS54-57

(4) Port 53 (BUSRQ)

In addition to being a general-purpose input/output port, port 53 also functions as the
BUSRQ pin.

Figure 3.5.14 Port 5 (P53)

TMP95CS54

2005-05-10 95CS54-58

(5) Port 55 (WAIT)
In addition to being a general-purpose input/output port, port 55 also functions as the

WAIT pin.

Figure 3.5.15 Port 5 (P55)

(6) Port 56 (INT0)
In addition to being a general-purpose input/output port, port 56 also functions as the

external interrupt request input INT0 pin.

Figure 3.5.16 Port 5 (P56)

TMP95CS54

2005-05-10 95CS54-59

(7) Port 57 (CLKOUT)
In addition to being a general-purpose output port, port 57 also functions as the

CLKOUT output pin.

Note: During the reset, port 57 is pulled up. After the reset, port 57 functions as the CLKOUT
output pin.

Figure 3.5.17 Port 5 (P57)

TMP95CS54

2005-05-10 95CS54-60

Figure 3.5.18 Port 5 Related Registers (1/2)

TMP95CS54

2005-05-10 95CS54-61

Figure 3.5.18 Port 5 Related Register (2/2)

TMP95CS54

2005-05-10 95CS54-62

3.5.7 Port 6 (P60 to P63)

Port 6 is a 4-bit general-purpose input/output port with each bit settable as an input or
output.

In addition to functioning as a general-purpose input/output port, port 6 also has a serial
expansion interface function (SS , MOSI, MISO and SCLK). The port 6 control register P6CR
and the port 6 function register P6FC set the functions.

Reset sets the P60 to P63 output latch to 1. Reset also clears all bits of the P6CR and P6FC
register to 0, setting port 6 to a general-purpose input port.

(1) Port 60 (SS)

In addition to being a general-purpose input/output port, port 60 also functions as the
SS pin.

Note)

Note) There is no Mode fault detection.

Figure 3.5.19 Port 6 (P60)

TMP95CS54

2005-05-10 95CS54-63

(2) Port 61, 62, 63 (MOSI, MISO, SCLK)
In addition to being general-purpose input/output ports, port 61 also functions as the

MOSI pin, port 62 also functions as the MISO pin, and port 63 also functions as the
SCLK pin.

Figure 3.5.20 Port 6 (P61, P62, P63)

TMP95CS54

2005-05-10 95CS54-64

Figure 3.5.21 Port 6 Related Registers (1/2)

TMP95CS54

2005-05-10 95CS54-65

Note2)

Note2: There is no Mode fault detection. Set <P60F>, which is the enable/disable bit for Mode fault detection, to “1” to

disable the Mode fault detection function.

Figure 3.5.21 Port 6 Related Registers (2/2)

TMP95CS54

2005-05-10 95CS54-66

3.5.8 Port 7 (P70 to P75)

Port 7 is a 6-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to functioning as general-purpose input/output port pins, port 7 pins also
function as event count inputs for the 8-bit timer, outputs for the 8-bit timer, and INT1 to 4
inputs for the external interrupt function.

Port 7 control register P7CR and port 7 function register P7FC set the port 7 functions.
Reset clears all bits of the output latch register and P7CR to 0, setting all pins to input

mode.
To enable the timer output function, write 1 to the corresponding bits in both P7CR and

P7FC.

(1) Port 70, 73 (TI0/INT1, T14/INT3)
In addition to functioning as a general-purpose input/output port, port 70 can also

function as the event count input TI0 for timer 0 and as the external interrupt request
input INT1.

In addition to functioning as a general-purpose input/output port, port 73 can also
function as the event count input TI4 for timer 4 and as the external interrupt request
input INT3.
Caution when using INT1 and INT3 interrupts

Input is always enabled for the INT1 and INT3 external interrupt requests.
Caution is required if port 70 or 73 is used as a general-purpose input/output port or a

timer event count input while the INT1 and INT3 interrupt functions are in use. This is
because rising edges on these input/output signals generate interrupt requests.
Caution when using timer event count inputs TI0 and TI4

Input is always enabled for the timer event count inputs TI0 and TI4.
Caution is required if port 70 or 73 is used as a general-purpose input/output port or

an INT1 or INT3 interrupt during event counting based on TI0 or TI4. This is because
these input/output signals trigger an event count on the timer.

Figure 3.5.22 Port 7 (P70, P73)

TMP95CS54

2005-05-10 95CS54-67

(2) Port 71, 74 (TO1, TO5)
In addition to functioning as a general-purpose input/output port, port 71 also

functions as TO1 for output of timers 0 and 1. In addition to functioning as a
general-purpose input/output port, port 74 also functions as TO5 for output of timers 4
and 5.

Figure 3.5.23 Port 7 (P71, P74)

TMP95CS54

2005-05-10 95CS54-68

(3) Port 72, 75 (TO3/INT2, TO7/INT4)
In addition to functioning as a general-purpose input/output port, port 72 also

functions as TO3 for output of timers 2 and 3 and as the external interrupt request input
INT2.

In addition to functioning as a general-purpose input/output port, port 75 also
functions as TO7 for output of timers 6 and 7 and as the external interrupt request input
INT4.
Caution when using INT2 or INT4 interrupts

Input is always enabled for the INT2 and INT4 external interrupt requests.
Caution is required if port 72 or 75 is used as a general-purpose input/output port or

timer event count input port while the INT2 and INT4 interrupt functions are in use.
This is because rising edges on these input/output signals generate interrupt requests.

Figure 3.5.24 Port 7 (P72, P75)

TMP95CS54

2005-05-10 95CS54-69

Figure 3.5.25 Port 7 Related Registers

TMP95CS54

2005-05-10 95CS54-70

3.5.9 Port 8 (P80 to P87)

Port 8 is an 8-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to being a general-purpose input/output port, port 8 also functions as a serial
channel TxD output, RxD input, SCLK input/output, and CAN controller Tx output and Rx
input.

Port 8 control register P8CR and port 8 function register P8FC set the functions.
Reset sets all bits of the output latch to 1. It also clears all bits of the P8CR and P8FC

registers to 0, setting port 8 to input mode using pull-up resistors.
Port pins 80 and 83 have a programmable open drain function.

(1) Ports 80, 83, 86 (TxD0, TxD1, Tx)

Ports 80, and 83 function as the serial channel TxD0 and TxD1 outputs as well as
input/output ports.

These ports have a programmable open drain function. Setting open drain disables
pull-up.

Port 86 functions as the CAN controller Tx output as well as input/output ports.

Figure 3.5.26 Port 8 (P80, P83, P86)

TMP95CS54

2005-05-10 95CS54-71

(2) Port 81, 84, 87 (RxD0, RxD1, Rx)
Ports 81, and 84 function as serial channel RxD0 and RxD1 inputs as well as

input/output ports.
Port 87 functions as the CAN controller Rx input as well as input/output port.

Figure 3.5.27 Port 8 (P81, P84, P87)

(3) Port 82 (SCLK0/CTS0)
Port 82 functions as the SCLK0 input/output for serial channel 0 as well as an

input/output port. The port also functions as the CTS0 input.

Figure 3.5.28 Port 8 (P82)

TMP95CS54

2005-05-10 95CS54-72

(4) Port 85 (SCLK1/CTS1)
Port 85 functions as the SCLK1 input/output for serial channel 1 as well as an

input/output port. The port also functions as the CTS1 input.

Figure 3.5.29 Port 8 (P85)

TMP95CS54

2005-05-10 95CS54-73

Figure 3.5.30 Port 8 Related Registers (1/2)

TMP95CS54

2005-05-10 95CS54-74

Figure 3.5.30 Port 8 Related Registers (2/2)

TMP95CS54

2005-05-10 95CS54-75

3.5.10 Port 9 (P90 to P96)

Port 9 is a 7-bit general-purpose input/output port with each port bit settable as an input
or output.

In addition to its input/output port functions, port 9 also functions as a 16-bit timer input
clock pin, a 16-bit timer output pin, and inputs for INT5 to 8. Port 9 control register P9CR
and port 9 function register P9FC set the port 9 functions.

A reset clears all bits of the P9 output latch and all bits of the P9CR and P9FC registers to
0, setting port 9 to input mode.

To enable the timer output function, write 1 to the corresponding bit in P9FC.

TMP95CS54

2005-05-10 95CS54-76

(1) Ports 90, 91, 94, 95 (TI8/INT5, TI9/INT6, TIA/INT7, TIB/INT8)
In addition to functioning as general-purpose input/output ports, ports 90 and 91 can

also function as timer 8 event count inputs TI8 and TI9, and as external interrupt
request inputs INT5 and INT6. Ports 94 and 95, in addition to being general-purpose
input/output ports, can also function as the timer 9 event count inputs TIA and TIB, and
as the external interrupt request inputs INT7 and INT8.
Caution when using INT5 to INT8 interrupts

Input is always enabled for the INT5 to INT8 external interrupt requests.
Caution is required if ports 90, 91, 94, or 95 are used as general-purpose input/output

ports or timer event count inputs while the INT5 to INT8 interrupt functions are in use.
This is because rising or falling edges on these input/output signals generate interrupt
requests.
Caution when using timer event count inputs TI8 to TIB

Input is always enabled for timer event count inputs TI8 to TIB.
Caution is required if ports 90, 91, 94, or 95 are used as general-purpose input/output

ports or INT5 to INT8 interrupts during event counting based on TI8 to TIB. This is
because these input/output signals trigger an event count on the timer.

Figure 3.5.31 Port 9 (P90, P91, P94, P95)

TMP95CS54

2005-05-10 95CS54-77

(2) Ports 92, 93 (TO8, TO9)
In addition to operating as a general-purpose input/output port, port 92 also functions

as the TO8 output for timer 8. Port 93 operates as the TO9 output for timer 8 as well as
functioning as a general-purpose input/output port.

Figure 3.5.32 Port 9 (P92, P93)

TMP95CS54

2005-05-10 95CS54-78

(3) Port 96 (TOA/TOB)
In addition to functioning as a general-purpose input/output port, port 96 also

functions as the TOA and TOB outputs for timer 9.

Figure 3.5.33 Port 9 (P96)

TMP95CS54

2005-05-10 95CS54-79

Figure 3.5.34 Port 9 Related Registers

TMP95CS54

2005-05-10 95CS54-80

3.5.11 Port A (PA0 to PA7)

Port A is an 8-bit input-only port with analog input pins (AN0 to AN7). The PA3 pin also
functions as the external trigger input for analog conversion (ADTRG).

Figure 3.5.35 Port A (PA0 to PA7)

Figure 3.5.36 Port A Related Registers

TMP95CS54

2005-05-10 95CS54-81

3.6 Bus Width/Wait Controller

In the TMP95CS54, four user-specifiable address area blocks can be set. The data bus width
and number of waits can be set independently for each address area and for others.

Address areas 0 to 3 are set by a combination of memory start address registers MSAR0 to
MSAR3 and memory address mask registers MAMR0 to MAMR3.

Use bus width/wait control registers WAITC0 to WAITC3 and WAITCEX to specify the master
enable, data bus width, and number of waits for each address area.

The input pins controlling these states are the bus wait request pin (WAIT), the external data
bus selection pin (16ΑΜ8 /), and the external memory access pin (EA). (See 3.1.2, External
Data Bus Width Selection Function.)

3.6.1 Specifying address areas

Address areas 0 to 3 are specified using the start address registers MSAR0 to MSAR3 and
memory address mask registers MAMR0 to MAMR3.

At each bus cycle, a compare operation is performed to determine if the address on the bus
specifies a location in address areas 0 to 3. If the result of the comparison is a match, this
indicates an access to the corresponding address area. In this case, the bus cycle operates in
accordance with the settings in bus width/wait control register WAITC0 to WAITC3. If the
result of the comparison is not a match, this indicates an access to another address area. In
this case, the bus cycle operates in accordance with the settings in bus width/wait control
register WAITCEX. (See 3.6.2, Bus Width/Wait Control Register.)

TMP95CS54

2005-05-10 95CS54-82

(1) Memory start address registers
Figure 3.6.1 shows the memory start address registers. Memory start address

registers MSAR0 to MSAR3 set the start address for address areas 0 to 3. Set the upper
eight bits (A23 to A16) of the start address in <S23:16>. The lower 16 bits of the start
address (A15 to A0) are permanently set to 0. Accordingly, the start address can only be
set in 64 Kbyte increments, starting from 000000H. Figure 3.6.2 shows the relationship
between the start address and the start address register value.

Figure 3.6.1 Memory Start Address Register

Figure 3.6.2 Relationship Between Start Address and Start Address Register Value

TMP95CS54

2005-05-10 95CS54-83

(2) Memory address mask registers
Figure 3.6.3 shows the memory address mask registers. Memory address mask

registers MAMR0 to MAMR3 are used to set the size of address areas 0 to 3 by specifying
a mask for each bit of the start address set in memory start address registers MSAR0 to
MSAR3. The compare operation used to determine if an address is in the address areas 0
to 3 is only performed for bus address bits corresponding to bits set to 0 in these
registers.

Also, the address bits that can be masked by MAMR0 to MAMR3 differ between
address areas 0 to 3. Accordingly, the size that can be set for each area is different.

Figure 3.6.3 Memory Address Mask Registers

TMP95CS54

2005-05-10 95CS54-84

(3) How to set memory start addresses and address areas
Figure 3.6.4 shows an example of specifying a 64 Kbyte address area starting from

010000H using address area 0.
Set 01H in memory start address register MSAR0<S23:16> (corresponding to the

upper 8 bits of the start address). Next, calculate the difference between the start
address and the anticipated end address (01FFFFH) based on the size of address area 0.
Bits 20 to 8 of the result correspond to the mask value to be set for address area 0.
Setting this value in memory address mask register MAMR0<V20:8> sets the area size.
This example sets 07H in MAMR0 to specify a 64 Kbyte area.

Figure 3.6.4 Address Area 0 Setting Example

After a reset, MSAR0 to MSAR3 and MAMR0 to MAMR3 are set to FFH.
WAITC0<B0E>, WAITC1<B1E>, and WAITC3<B3E> are reset to 0. This disables
address areas 0, 1 and 3. However, as WAITC2<B2M> is reset to 0 and WAITC2<B2E>
to 1, address area 2 is enabled from 0008A0H to 0021FFH and from 002340H to
FEFFFFH. Also, the bus width and number of waits specified in WAITCEX are used for
accessing addresses outside the specified address areas 0 to 3. (See 3.6.2, Bus
Width/Wait Control Register.)

TMP95CS54

2005-05-10 95CS54-85

(4) Address area size specifications
Table 3.6.1 shows the relationship between address area and area size. ∆ indicates

areas that cannot be set by memory start address register and memory address mask
register combinations. When setting an area size using a combination indicated by ∆, set
the start address in the desired steps starting from 000000H.

If the address area 2 is set to 16 Mbyte or if two or more areas overlap, the smaller
address area number has the higher priority.

Example: When setting address as 0 a 128-Kbyte area:

[1] Available start addresses

[2] Unavailable start addresses

Table 3.6.1 Address Area and Area Size
Size (bytes)

Address area
256 512 32 K 64 K 128 K 256 K 512 K 1 M 2 M 4 M 8 M

0 O O O O ∆ ∆ ∆ ∆ ∆
1 O O O ∆ ∆ ∆ ∆ ∆ ∆
2 O O ∆ ∆ ∆ ∆ ∆ ∆ ∆
3 O O ∆ ∆ ∆ ∆ ∆ ∆ ∆

TMP95CS54

2005-05-10 95CS54-86

3.6.2 Bus Width/Wait Control Registers

Figure 3.6.5 lists the bus width/wait control registers. The master enable/disable, data bus
width, and number of wait states for each address area 0 to 3 and others are set in their
respective bus width/wait control registers, WAITC0 to WAITC3 and WAITCEX.

Figure 3.6.5 Bus Width/Wait Control Registers

TMP95CS54

2005-05-10 95CS54-87

(1) Master enable bits
Bit 7 (<B0E>, <B1E>, <B2E>, and <B3E>) of the bus width/wait control registers is

the master bit used to enable or disable settings for the address area. Writing 1 to the bit
enables the settings. Reset disables (sets to 0) <B0E>, <B1E>, and <B3E>, and enables
(sets to 1) <B2E>.

(2) Selection of data bus width
Bit 3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS>, and <BEXBUS>) of the bus

width/wait control registers specifies the width of the data bus. Set 0 to access memory
when using a 16-bit data bus. Set 1 when using an 8-bit data bus.

Connect the EA and 16ΑΜ8 / pins to VCC. This enables external memory to be
accessed using the data bus width set in the data bus width select bit.

This method of changing the data bus width depending on the address being accessed
is called dynamic bus sizing. For details of this bus operation, see Table 3.6.2.

Table 3.6.2 Dynamic Bus Sizing

xxxxx : Indicates that the input data from these bits are ignored during a read. During a write,

indicates that the bus for these bits goes to high impedance; also, that the write strobe signal
for the bus remains inactive.

TMP95CS54

2005-05-10 95CS54-88

(3) Wait control
Bits 2 to 0 (<B0W2:0>, <B1W2:0>, <B2W2:0>, <B3W2:0>, and <BEXW2:0>) of the bus

width/wait control registers specify the number of waits to insert.
The following types of wait operation can be specified using combinations of these bits.

Do not set combinations other than those listed in the table.

Table 3.6.3 Wait Operation Settings

Figures 3.6.6 and 3.6.7 show the timing for N = 0, 1 when the setting is 0 + NWAIT.
For the timings for settings other than 0 + NWAIT, see Figures 7.1 to 7.5 in 7, Basic

Timing, Chapter 3, TLCS-900/H CPU.
Reset sets these bits to 000 (2 WAIT).

TMP95CS54

2005-05-10 95CS54-89

Figure 3.6.6 0 + NWAIT Read/Write Cycle (When N = 0)

Figure 3.6.7 0 + NWAIT Read/Write Cycle (When N = 1)

TMP95CS54

2005-05-10 95CS54-90

(4) Bus width and wait control outside address areas 0 to 3
The bus width/wait control register WAITCEX controls the bus width and number of

waits when locations outside the four user-specified address area blocks 0 to 3 are
accessed. The WAITCEX register settings are always enabled for areas other than
address areas 0 to 3.

(5) 16-Mbyte area/address setting area selection

Setting the bus width/wait control register WAITC2<B2M> to 0 selects a 16-Mbyte
address area (0008A0H to 0021FFH, and 002340H to FEFFFFH) for address area 2.
Setting WAITC2<B2M> to 1 selects the address area specified by start address register
MSAR2 and address mask register MAMR2 for address area 2, and likewise for address
area 0, 1, and 3. Reset clears this bit to 0 and selects a 16-Mbyte address area.

(6) Bus width/wait control setting procedure

When using the bus width/wait control function, set the registers as follows:
[1] Set memory start address registers MSAR0 to MSAR3.

Set the start addresses of address areas 0 to 3.
[2] Set memory address mask registers MAMR0 to MAMR3.

Set the size of address areas 0 to 3.
[3] Set control registers WAITC0 to WATC3.

Set the data bus width, number of waits, and master enable/disable for address
areas 0 to 3.

In the case of addresses, if one of the address areas 0 to 3 is set but an internal I/O,
RAM or ROM area is specified, the CPU accesses the internal area.

Setting example:

This example sets address area 0 as 010000H to 01FFFFH (64-Kbyte area) with a
16-bit bus and zero waits:
 MSAR0 = 01H......... Start address: 010000H
 MAMR0 = 07H........ Address area: 64 Kbytes
 WAITC0 = 83H 16-bit data bus, zero waits, address area 0 settings enabled

TMP95CS54

2005-05-10 95CS54-91

3.7 8-Bit Timers

The TMP95CS54 incorporates eight 8-bit timers (timers 0 to 7).
Each timer can operate independently or be cascaded to form four 16-bit timers. The 8-bit

timers have the following four operating modes.

• 8-bit interval timer mode (8 channels)
• 16-bit interval timer mode (4 channels)
• 8-bit programmable square wave pulse generation (PPG: variable cycle, variable duty)

output mode (4 channels)
• 8-bit PWM (pulse width modulation: variable duty at fixed cycle) output mode

(4 channels)

Figure 3.7.1 shows the block diagram of 8-bit timers (timers 0, 1). The other 8-bit timers
(timers 2 and 3, 4 and 5, and 6 and 7) have the same circuit configuration as timers 0 and 1.

Each 8-bit timer consists of an 8-bit up-counter, an 8-bit comparator, and an 8-bit timer register.
One timer flip-flop each (TFF1, TFF3, TFF5, and TFF7) is provided for the timer pairs, consisting
of timers 0 and 1, timers 2 and 3, timers 4 and 5, and timers 6 and 7.

Of the input clock sources for the 8-bit timers, the φT1, φT4, φT16, and φT256 internal clocks
are obtained from the 9-bit internal prescaler.

The 8-bit timers are controlled by nine control registers (T01MOD, T23MOD, T45MOD,
T67MOD, T02FFCR, T46FFCR, T8RUN, T16RUN, and TRDC).

These modes can be combined
(for example, four 8-bit timers and two 16-bit timers).

TMP95CS54

2005-05-10 95CS54-92

Figure 3.7.1 8-Bit Timer Block Diagram (Timers 0, 1)

TMP95CS54

2005-05-10 95CS54-93

3.7.1 8-bit Timer Registers

Figure 3.7.2 shows the 8-bit timer registers. Setting these registers controls the operation
of the 8-bit timers.

Figure 3.7.2 8-Bit Timer Related Registers (1/8)

TMP95CS54

2005-05-10 95CS54-94

Figure 3.7.2 8-Bit Timer Related Register (2/8)

TMP95CS54

2005-05-10 95CS54-95

Figure 3.7.2 8-Bit Timer Related Register (3/8)

TMP95CS54

2005-05-10 95CS54-96

Figure 3.7.2 8-Bit Timer Related Register (4/8)

TMP95CS54

2005-05-10 95CS54-97

Figure 3.7.2 8-Bit Timer Related Register (5/8)

TMP95CS54

2005-05-10 95CS54-98

Figure 3.7.2 8-Bit Timer Related Register (6/8)

TMP95CS54

2005-05-10 95CS54-99

Figure 3.7.2 8-Bit Timer Related Register (7/8)

TMP95CS54

2005-05-10 95CS54-100

Figure 3.7.2 8-Bit Timer Related Register (8/8)

TMP95CS54

2005-05-10 95CS54-101

3.7.2 Block Structure

(1) Prescaler
The prescaler is a 9-bit divider circuit that divides its supplied clock (4/fc) by 2n (n =

1, ..., 6, 9). The clock supplied to the prescaler is the CPU clock (fc) divided by four (4/fc).
The divided clock is used as the input clock for such functions as the 8-bit timers, 16-bit
timer/event counters, and baud rate generator.

The prescaler count can be turned on and off using timer operation control register
T16RUN<PRRUN>. Setting T16RUN<PRRUN> to 1 starts the count.

Setting 0 clears the divided clock to zero and stops the prescaler. A reset clears
<PRRUN> to 0, clearing and stopping the prescaler.

Figure 3.7.3 Prescaler

TMP95CS54

2005-05-10 95CS54-102

(2) 8-bit up-counters
The 8-bit up-counters UC0 to 7 are the 8-bit binary counters for timers 0 to 7. The

up-counters count up on the internal or external clock selected by 8-bit timer mode
control registers T01MOD, T23MOD, T45MOD, and T67MOD. The 8-bit timer operation
control register T8RUN settings control the up-counter operation.

The available input clocks for UC0, 2, 4, 6 are the internal clocks φT1, φT4, or φ16.
UC0 and 4 can use the external clocks input from the timer input pin (TI0 and TI4)
signals.

The input clocks for UC1, 3, 5, 7 vary according to the operating mode.
In 16-bit timer mode, the overflow output signals of timer 0, 2, 4, 6 are used as the

input clocks.
In other than 16-bit timer mode, the available input clocks are internal clocks φT1,

φT16, φT256 or TOxTRG (timer 0, 2, 4, 6 match detect signals).
A reset clears T8RUN and stops UC0 to 7.

(3) 8-bit timer registers

The 8-bit timer registers are 8-bit registers for setting count values.
The comparator outputs a match detect signal when the value set in 8-bit timer

register TREG0 to 7 matches the 8-bit up-counter UC0 to 7 value. If 00H is set, the
match detect signal is output when the 8-bit up-counter overflows.

8-bit timer registers TREG0, 2, 4, 6 have a double-buffer configuration (each has a
dedicated register buffer).

Timer register double-buffer control registers TRDC<TR0/2/4/6DE> enable or disable
the double buffer. Setting <TR0/2/4/6DE> to 0 disables the double-buffer; setting
<TR0/2/4/6DE> to 1 enables the double buffer.

When the double buffer is enabled, data are transferred from the register buffer to the
timer register at a 2n − 1 overflow in pulse width modulation (PWM) mode, or at a cycle
compare match in programmable pulse generation (PPG) mode.

Always disable the double buffer in 8-bit and 16-bit interval timer modes.
A reset clears TRDC to 0 and disables the double buffer. When using the double buffer,

first write data to TREG0, 2, 4, 6 and set TRDC<TR0/2/4/6DE> to 1, then write the next
settings.

As TREG0 to 7 are undefined after a reset, set the registers before using the 8-bit
timers.

Figure 3.7.4 shows the configuration of timer registers 0, 2, 4, 6.

TMP95CS54

2005-05-10 95CS54-103

Figure 3.7.4 Configuration of Timer Registers 0, 2, 4, 6

Note: The timer register and register buffer are allocated to the same address in memory.
When TRDC<TR0/2/4/6DE> is set to 0, the same value is written to both the register buffer and the
timer register. When TRDC<TR0/2/4/6DE> is set to 1, the value is written to the register buffer only.
Accordingly, when writing the initial values to the timer registers, first disable the register buffers.

The timer registers are located in memory as follows.

All registers are write-only and therefore cannot be read.

TMP95CS54

2005-05-10 95CS54-104

(4) 8-bit comparator
The 8-bit comparator compares the 8-bit up-counter value with the 8-bit timer register

value and detects when the values are equal (match). If the values match, a match detect
signal is output, the 8-bit up-counter is cleared to zero, and an interrupt is generated
(INTT0 to 7).

(5) Timer flip-flops

The timer flip-flops (TFF1, TFF3, TFF5, TFF7) are inverted by a match detect signal
from the 8-bit comparator.

Timer flip-flop control registers T02FFCR<FF3IE>, <FF1IE>, and T46FFCR
<FF7IE>, <FF5IE> enable or disable inversion. Setting these bits to 0 disables
inversion; setting to 1 enables inversion.

The timer flip-flop values after a reset are undefined. Writing 01 or 10 to
T02FFCR<FF3C1, 0>, <FF1C1, 0>, or T46FFCR<FF7C1, 0>, <FF5C1, 0> sets the timer
flip-flop to 0 or 1. Writing 00 to the bits inverts the timer flip-flop value (software
inversion).

The TFF1, TFF3, TFF5, and TFF7 values can be output to the timer output pins TO1
(shared with P71), TO3 (shared with P72), TO5 (shared with P74), and TO7 (shared with
P75) respectively.

As the timer output pins also function as P71, P72, P74, and P75, be sure to set the
port 7 function register P7FC before performing timer output.

(See Figure 3.5.25 Port 7 Registers)

TMP95CS54

2005-05-10 95CS54-105

3.7.3 Operation Description for Each Mode

(1) 8-bit Interval timer mode
The eight interval timers 0 to 7 can be used independently. When setting the functions

and count data, first stop timers 0 to 7.
The following describes the example of timer 1 only.

[1] Generate interrupts at fixed intervals
Use T01MOD to select the operating mode and input clock. Set the interval time

(cycle) in TREG1. Enable interrupt INTT1 such that INTT1 is generated when a
match occurs between UC1 and TREG1. After setting the registers, start the timer
counting.

Table 3.7.1 shows the input clock selection.

Example: To generate a timer 1 interrupt every 33 µs (at fc = 24 MHz), set the
registers in the following order:

Table 3.7.1 Selecting Interval and Input Clock for 8-Bit Timer Interrupt

TMP95CS54

2005-05-10 95CS54-106

[2] Generate square wave with 50%-duty cycle
To output a square wave with a duty cycle of 50%, set a count value equivalent to

half the desired cycle and TFF1 to invert on a match detect signal from timer 1
(T02FFCR<FF1IE, FF1IS> = 11).

Also, set P71 as a timer output (P7CR<P71C> = 1, P7FC<P71F> = 1)

Example: To output a square wave from pin TO1 with an interval of 2 µs (at fc =
24 MHz), set the registers in the following order:

T1

Figure 3.7.5 Square Wave (50% Duty Cycle) Output Timing Chart

TMP95CS54

2005-05-10 95CS54-107

[3] To count up at each timer 0 match output, set timer 1
Set 8-bit timer mode and the timer 0 comparator output as the timer 1 input clock

(T01MOD<T1CLK1, 0> = 00).

Figure 3.7.6 Using Timer 0 to Drive Timer 1 Count

(2) 16-bit interval timer mode
The 8-bit timers can be cascaded in pairs (timers 0 and 1, 2 and 3, 4 and 5, 6 and 7) to

create 16-bit interval timers.
Timers 0 and 1, 2 and 3, 4 and 5, 6 and 7 operate the same. Each pair can be used

independently.
The following describes the example of timers 0 and 1.
To cascade timers 0 and 1 to form a 16-bit interval timer, set the timer 0, 1 mode

control register T01MOD<T01M1, 0> to 01.
When 16-bit interval timer mode is set, the T01MOD<T1CLK1, 0> setting is ignored

and the timer 0 overflow output is forcibly set as the timer 1 input clock.
Table 3.7.2 shows the relationship between the timer (interrupt) interval and the

input clock selection.

Table 3.7.2 16-Bit Timer (Interrupt) Interval and Input Clock Selection

TMP95CS54

2005-05-10 95CS54-108

To set the timer interrupt interval, set the lower eight bits in timer register TREG0
and the upper eight bits in TREG1. Be sure to set TREG0 first (as entering data in
TREG0 temporarily disables compare, while entering data in TREG1 starts compare).

Example: To generate interrupt INTT1 every 0.33s at fc = 24 MHz, set the following

values in timer registers TREG0 and TREG1:
Using φT16 (= 5.33 µs @ 24 MHz) as a timer input clock
 0.33 s ÷ 5.33 µs = 62500 = F424H
Therefore, set TREG1 to F4H, and TREG0 to 24H.
Whenever 8-bit up-counter UC0 and TREG0 match, the timer 0 comparator outputs a

match detect signal, but up-counter UC0 is not cleared. No INTT0 interrupt is
generated.

When up-counter UC1 and TREG1 match, at comparator timing the timer 1
comparator outputs a match detect signal.

When comparator match detect signals for both timer 0 and timer 1 are output at the
same time, up-counter 0 and up-counter 1 are cleared to 0 and interrupt INTT1 only is
generated. When the timer flip-flop inversion is enabled, the value of timer flip-flop
TFF1 is inverted.

Table 3.7.3 Dfferences Between 16-Bit Timer Mode and 8-Bit Timer Mode
(Timer 1 Input Clock: TO0TRG)

Example: When TREG1 = 04H and TREG0 = 80H:

Figure 3.7.7 Timer Output for 16-Bit Timer Mode

TMP95CS54

2005-05-10 95CS54-109

(3) 8-bit programmable pulse generation (PPG) output mode
Timers 0, 2, 4, or 6 can output square waves with variable frequencies and variable

duty (programmable pulse generation). The output pulse can be set to either active low
or active high. Timers 1, 3, 5, and 7 cannot be used in this mode.

Timer 0 outputs from pin TO1 (shared with pin P71), timer 2 outputs from pin TO3
(shared with pin P72), timer 4 outputs from TO5 (shared with pin P74), and timer 6
outputs from TO7 (shared with pin P75).

The following describes the example of timer 0. (Timers 2, 4, 6 operate the same as
timer 0.)

A programmable square wave can be output from pin TO1 by setting 8-bit
programmable square wave output mode and enabling inversion of the timer flip-flop
TFF1.

The TFF1 value is inverted by a match between 8-bit up-counter UC0 and TREG0,
and by a match with TREG1. UC0 is cleared by a match with TREG1.

In PPG mode, timer 1 cannot be used, but timer 1 up-counter UC1 must be run
(T8RUN<T1RUN> = 1).

Also, the TREG0 and TREG1 settings in PPG mode must satisfy the following
condition.

 (TREG0 setting value) < (TREG1 setting value)

Figure 3.7.8 8-Bit PPG Output Waveform

TMP95CS54

2005-05-10 95CS54-110

Figure 3.7.9 Block Diagram of 8-Bit PPG Output Mode

Enabling the timer register TREG0 double buffer in this mode shifts the register
buffer value to TREG0 when timer register TREG1 matches 8-bit up-counter UC0.

Using the double buffer facilitates handling of small duty waves (when changing the
duty).

Figure 3.7.10 Register Buffer Operation

TMP95CS54

2005-05-10 95CS54-111

Example: Output 1/4-duty 75 kHz-pulse (@ fc = 24 MHz)
Calculate the setting of the timer register.
Setting the frequency to 75 kHz creates a square wave with a cycle of t = 1/75 kHz

= 13.3 µs.

Using φT1 = 0.33 µs (@ fc = 24 MHz) results in
 13.3 µs ÷ 0.33 µs = 40
Accordingly, set TREG1 = 40 = 28H.
Next, set the duty to 1/4 as follows:
 t × 1/4 = 13.3 µs × 1/4 = 3.3 µs
As with TREG1,
 3.3 µs ÷ 0.33 µs = 10
Accordingly, set TREG0 = 10 = 0AH.

TMP95CS54

2005-05-10 95CS54-112

(4) 8-bit pulse width modulation (PWM) output mode
Only timers 0, 2, 4, 6 can be set to this mode, which allows up to four pulse width

modulation outputs with 8-bit resolution. Timers 1, 3, 5, and 7 can be used as 8-bit
timers.

In the case of timer 0, PWM is output to pin TO1 (shared with P71). In the case of
timers 2, 4, 6, PWM is output to pins TO3 (shared with P72), TO5 (shared with P74), and
TO7 (shared with P75) respectively.

Here, the example of timer 0 is used. (Timers 2, 4, 6 operate the same as timer 0)
Timer output inversion occurs when the 8-bit up-counter UC0 setting and the timer

register TREG0 setting match, or when 2n − 1 (T01MOD specifies one of n = 6, n = 7, or n
= 8) counter overflow occurs. UC0 is cleared by the 2n − 1 counter overflow.

In addition, the following conditions must be satisfied when using 8-bit PWM output
mode:

(Timer register setting) < (2n − 1 counter overflow setting)
(Timer register setting) ≠ 0

Figure 3.7.11 8-Bit PWM Output Waveform

TMP95CS54

2005-05-10 95CS54-113

Figure 3.7.12 Block Diagram of 8-Bit PWM Output Mode

Enabling the TREG0 double-buffer in this mode shifts the register buffer value to
TREG0 when 2n − 1 counter overflow is detected.

Using the double buffer facilitates handling of small duty waves.

Figure 3.7.13 Register Buffer Operation

TMP95CS54

2005-05-10 95CS54-114

Example: Output following PWM waveform to pin TO1 (@ fc = 24 MHz)

To realize a PWM interval of 42.33 µs using φT1 = 0.33 µs (@ fc = 24 MHz) :
 42.33 µs ÷ 0.33 µs = 127 = 2n − 1
Accordingly, set n = 7.
As the low level cycle is 30 µs, at φT1 = 0.33 µs,
 30 µs ÷ 0.33 µs = 90
Accordingly, set TREG0 = 90 = 5AH.

Table 3.7.4 shows the timer input clock source and the PWM interval determined by
the (2n − 1) counter.

Table 3.7.4 Setting of PWM Interval (@ fc = 24 MHz)

TMP95CS54

2005-05-10 95CS54-115

(5) Timer mode list
The 8-bit timers 0 to 7 can be set to 8-bit timer mode, 16-bit timer mode, 8-bit PPG

mode, or 8-bit PWM mode. Table 3.7.5 lists settings for the timer modes.

Table 3.7.5 Settings for All Timer Modes

Note: External clock is not input to timer 2 or timer 6.

TMP95CS54

2005-05-10 95CS54-116

3.8 16-Bit Timers/Event Counters

The TMP95CS54 incorporates two multi-function 16-bit timer/event counters (timers 8 and 9).
Timers 8 and 9 have the same functions and can operate independently. The 16-bit timers have
the following three operating modes.

• 16-bit interval timer mode
• 16-bit event counter mode
• 16-bit programmable pulse generation (PPG) output mode

The capture function can also be used to perform the following operations.

• One-shot pulse output from the external trigger pulse
• Frequency measurement
• Pulse width measurement
• Time differential measurement

Also, the 16-bit timers can be used to output a signal with any phase difference.
Figure 3.8.1 is a block diagram of the 16-bit timer/event counters (timer 8). Timer 9 has the

same circuit configuration.
Each 16-bit timer/event counter consists of a 16-bit up-counter, a 16-bit comparator, a 16-bit

timer register, and a 16-bit capture register. Timers 8 and 9 each have two timer flip-flops
(TFF8/9 and TFFA/B).

Clock sources φT1, φT4, and φT16 input to the 16-bit timers are obtained from the internal
9-bit prescaler (see 3.7.2 (1), Prescaler).

The 16-bit timer/event counters are controlled by six control registers (T8MOD, T9MOD,
T8FFCR, T9FFCR, T16RUN, and T89CR).

TMP95CS54

2005-05-10 95CS54-117

Figure 3.8.1 16-Bit Timer Block Diagram (Timer 8)

TMP95CS54

2005-05-10 95CS54-118

3.8.1 16-bit Timer/Event Counter Registers

Figure 3.8.2 shows the 16-bit timer/event counter related registers.
These register settings control the 16-bit timer/event counter operations.

Figure 3.8.2 16-Bit Timer/Event Counter Related Registers (1/5)

TMP95CS54

2005-05-10 95CS54-119

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (2/5)

TMP95CS54

2005-05-10 95CS54-120

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (3/5)

TMP95CS54

2005-05-10 95CS54-121

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (4/5)

TMP95CS54

2005-05-10 95CS54-122

Figure 3.8.2 16-Bit Timer/Event Counter Related Register (5/5)

TMP95CS54

2005-05-10 95CS54-123

3.8.2 Block Structure

(1) 16-bit up-counters
16-bit up-counters UC8 and 9 are 16-bit binary counters for timers 8 and 9.
These up-counters count up on the external and internal clocks selected by 16-bit

timer mode control registers T8MOD and T9MOD. To control the up-counter operations,
use 16-bit timer operation control register T16RUN.

The UC8, 9 input clock is selected from either internal clocks φT1, φT4, and φT16, or
the external clocks input from the timer input pin (TI8 and TI9).

Any overflow from UC8 or 9 triggers interrupt request INTTO8 or INTTO9.
At a reset, T16RUN is cleared, and the prescaler and UC8, 9 are stopped.

(2) 16-bit timer registers

Each timer has two internal 16-bit timer registers for setting counters. A match
between these timer register settings and the value of the 16-bit up-counter UC8, 9
outputs a comparator match detect signal.

Data set to 16-bit timer registers TREG8, TREG9 and TREGA, TREGB use a 2-byte
data transfer instruction, or two 1-byte data transfer instructions; first for the lower
eight bits, then for the upper eight bits.

TREG8 to TREGB are write-only registers and therefore cannot be read.
Of the 16-bit timer registers, TREG8 and TREGA have a double-buffer configuration

(each has a register buffer).
Timer 8, 9 control register T89CR<DB8EN, DBAEN> enables/disables the double

buffer. Setting <DB8EN, DBAEN> to 0 disables the double buffer; setting <DB8EN,
DBAEN> to 1 enables the double buffer.

With the double buffer enabled, data are transmitted from the register buffer to the
timer register at a match between up-counter UC8 and TREG9, or between UC9 and
timer register TREGB.

As TREG8 to TREGB are undefined after a reset, when using a 16-bit timer write the
data first.

A reset clears T89CR to 0 and disables the double buffer. When using the double buffer,
write data to TREG8, TREGA, set T89CR<DB8EN, DBAEN> to 1, then write the next
data to the register buffer.

The 16-bit timer registers and register buffers are allocated to the same addresses in
memory. When T89CR<DB8EN, DBAEN> is set to 0, the same value is written to the
timer register and register buffer.

When <DB8EN, DBAEN> is set to 1, the value is written to the register buffer only.
Therefore, the register buffer must be disabled before writing the initial value to the
timer register.

TMP95CS54

2005-05-10 95CS54-124

(3) Capture register
The capture register is a 16-bit register for latching the 16-bit up-counter UC8, 9

value.
When reading the capture register, use a 2-byte data load instruction, or two 1-byte

data load instructions; first to read the lower eight bits, then to read the upper eight bits.

CAP1 to CAP4 are read-only registers and cannot be written by software.

(4) Capture input control

The capture input control circuit controls the timing of the latching of the 16-bit
up-counter UC8, 9 value to capture registers CAP1, CAP2, CAP3, and CAP4. Set the
capture register latch timing with the timer 8, 9 mode control registers
T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0>.

The following describes the latch timing setting and operation.
• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 00:

The capture function is disabled. A reset also disables the capture function.
• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 01:

On the external input rising edge of TI8 (shared with P90/INT5) and TIA (shared
with P94/INT7), capture register CAP1, CAP3 loads the up-counter value. On the
external input rising edge of TI9 (shared with P91/INT6) and TIB (shared with
P95/INT8), capture register CAP2, CAP4 loads the up-counter value. (Time
differential measurement)

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 10:
On the TI8, TIA external input rising edge, capture register CAP1, CAP3 loads the
up-counter value. On the input falling edge, capture register CAP2, CAP4 loads the
up-counter value. Interrupt INT4, INT6 is generated on a falling edge in this mode
only. (Pulse width measurement)

• When T8MOD<CAP12M1, 0>, T9MOD<CAP34M1, 0> are set to 11:
On the timer flip-flop TFF1 rising edge, capture register CAP1, CAP3 loads the
up-counter value. On the falling edge, capture register CAP2, CAP4 loads the
up-counter value.
The UC8, 9 up-counter value can also be loaded to a capture register on a software
request. When 0 is written to T8MOD<CAP1IN>, T9MOD<CAP3IN>, the UC8, 9
up-counter value at that time is loaded to capture register CAP1, 3.
The prescaler must first be set to RUN (set T16RUN<PRRUN> = 1).

TMP95CS54

2005-05-10 95CS54-125

(5) Comparator
To detect a match, the 16-bit comparator compares the 16-bit up-counter UC8, 9 with

the 16-bit timer register TREG8, 9 and TREGA, B settings.
On detection of a match, the comparator outputs a match detect signal and generates

interrupts INTTR8, 9 or INTTRA, B from the respective 16-bit timer.
UC8 is cleared by a match between the UC8 value and the TREG9 value. UC9 is

cleared by a match between the UC9 value and the TREGB value. UC8, 9 clearing can be
disabled by setting the timer 8, 9 mode control registers T8MOD<CLE>, T9MOD<CLE>
to 0.

(6) Timer flip-flops

Timers 8 and 9 have two timer flip-flops each. The flip-flops of each timer have
different functions.

[1] TFF8, TFFA

Flip-flops TFF8 and TFFA are inverted by a match signal from the comparator
and a latch signal to the capture register.

In timer 8 and timer 9, two different capture operations and two types of match
detection can be specified as inversion triggers. Use bits 2 to 5 of the T8FFCR and
T9FFCR registers to set the inversion triggers.

[2] TFF9, TFFB

Timer flip-flops TFF9 and TFFB are inverted by a match signal from the
comparator and a latch signal to the capture register.

In timers 8 and 9, one type of capture operation and one type of match detection
can be specified as inversion triggers. Use bits 6 and 7 of the T8MOD and T9MOD
registers to set the inversion triggers.

After a reset the timer flip-flop values are undefined. Writing 01 to T8FFCR

<TFF8C1, 0>, <TFF9C1, 0> or T9FFCR <TFFAC1, 0>, <TFFBC1, 0> sets the timer
flip-flop to 0; writing 10 to the bits sets the timer flip-flop to 1. Writing 00 to the bits
inverts the timer flip-flop value (software inversion).

The TFF8, TFF9, TFFA, and TFFB values can be output to timer output pins TO8
(shared with P92), TO9 (shared with P93), TOA (shared with P96), and TOB (shared
with P96) respectively.

As the timer output pins also function as P92, P93, and P96, set port 9 function
register P9FC before performing timer output. (See Figure 3.5.34, Port 9 Related
Registers)

TMP95CS54

2005-05-10 95CS54-126

3.8.3 Operation Description for Each Mode

(1) 16-bit interval timer mode
Interval timers 8 and 9 can be used independently as 16-bit interval timers. The

following describes the example of timer 8 only.
Example: Generate interrupts at fixed intervals
To generate timer interrupts at fixed intervals, set the interval time (cycle) in 16-bit

timer register TREG9 and use interrupt INTTR9.
Set the registers as follows.

(2) 16-bit event counter mode
Timers 8 and 9 can be set to operate as event counters by setting external inputs TI8

and TIA as the timer clock sources. The following describes timer 8 only.
The 16-bit up-counter UC8 counts up on the rising edge of the TI8 input. The count

value can be read by performing a software capture and reading the capture value.
Timer input pin TI8 is shared with P90. However, there is no selection function.

Therefore, event counter operation can be performed at any time by setting timer 8 to
operating state. Set the registers as follows.

TMP95CS54

2005-05-10 95CS54-127

(3) 16-Bit programmable pulse generation (PPG) output mode
Timers 8 and 9 can output a square wave with a user-specified frequency and duty

(programmable square wave). The output pulse can be either active-low or active-high.
Timer 8 outputs a square wave from pin TO8 (shared with P92) ; timer 9, from TOA

(shared with P96).
The following describes timer 8 only.
A programmable pulse (square wave) can be output from pin TO8 by triggering

inversion of timer flip-flop TFF8 when a match occurs between the 16-bit up-counter
UC8 and TREG8, or between UC8 and TREG9. The TREG8 and TREG9 settings must
satisfy the following condition:

(TREG8 setting) < (TREG9 setting)

Figure 3.8.3 16-Bit Programmable Pulse Generation (PPG) Output Waveform

Enabling the TREG8 double-buffer in this mode shifts the value of register buffer 8 to
TREG8 when TREG9 matches UC8. Using the double-buffer facilitates handling of
small duty waves.

Figure 3.8.4 Register Buffer Operation

TMP95CS54

2005-05-10 95CS54-128

Figure 3.8.5 is a block diagram of 16-bit PPG output mode.

Figure 3.8.5 16-Bit PPG Output Mode Block Diagram

In 16-bit PPG output mode, set the registers as follows.

TMP95CS54

2005-05-10 95CS54-129

(4) Example of capture function application
Use the capture function to realize many applications, including the following

examples.
[1] One-shot pulse output from the external trigger pulse
[2] Frequency measurement
[3] Pulse width measurement
[4] Time differential measurement

The following describes these applications based on timer 8.

[1] One-shot pulse output from external trigger pulse
Obtain one-shot pulse output from the external trigger pulse as follows.
Set 16-bit up-counter UC8 to free-running count-up using an internal clock.
Input the external trigger pulse from pin TI8. Load the up-counter value to

capture register CAP1 on the rising edge of the external trigger pulse using the
capture function.

Interrupt INT5 is generated on the rising edge of the external trigger pulse. Add
the value of capture register CAP1 at this interrupt (c) to the delay time (d), and set
timer register TREG8 to the sum of these values (c + d). Add the pulse width of the
one-shot pulse (p) to TREG8, and set timer register TREG9 to the result (c + d + p).

In addition, set the timer 8 flip-flop control register T8FFCR<EQ9T8, EQ8T8> to
11 and enable the trigger to invert timer flip-flop TFF8 when a match occurs
between UC8 and TREG8 or UC8 and TREG9. Then, after output of the one-shot
pulse, set the trigger back to disabled state during INTTR9 interrupt processing.

The (c), (d), and (p) notation above corresponds to c, d, and p in Figure 3.8.6,
One-Shot Pulse Output from External Trigger Pulse (With Delay).

Figure 3.8.6 One-Shot Pulse Output from External Trigger Pulse (With Delay)

TMP95CS54

2005-05-10 95CS54-130

Example: On pin TI8, output 2 ms one-shot pulse with 3 ms-delay after external
trigger pulse.

If delay time is not required, invert timer flip-flop TFF8 by loading capture
register 1 (CAP1). Set timer register TREG9 to the sum of the one-shot pulse width
(p) and the value of CAP1 at interrupt INT5 (c) (c + p). Set the TFF8 inversion on a
match between TREG9 and UC8, and select inversion enable. On interrupt INTTR9,
disable the TFF8 inversion.

TMP95CS54

2005-05-10 95CS54-131

Figure 3.8.7 External Trigger Pulse One-Shot Pulse Output (No Delay)

[2] Frequency measurement
The frequency of an external clock can be measured by the capture function.
The frequency is measured by combining the 8-bit timers (timers 0, 1) in 16-bit

event counter mode. (Timers 0 and 1 are used to set the measuring time by inverting
TFF1.)

Select the TI8 input as the timer 8 count clock and count timer 8 on the external
clock input. Set timer 8 mode control register T8MOD<CAP12M1, 0> to 11. This
setting loads the counter value of 16-bit up-counter UC8 into capture register CAP1
on the rising edge of timer flip-flop TFF1. It also loads the counter value into capture
register CAP2 on the falling edge of timer flip-flop TFF1. TFF1 is the timer flip-flop
of the 8-bit timers (timers 0, 1).

Based on the measuring time, the frequency is calculated from the difference
between capture registers CAP1 and CAP2 at the 8-bit timer interrupts (INTT0 or
INTT1).

Figure 3.8.8 Frequency Measurement

For example, if TFF1 (8-bit timer flip-flop) is set to 1 for 0.5 s, and the difference
between CAP1 and CAP2 is 100, the frequency is 100 ÷ 0.5 s = 200 Hz.

TMP95CS54

2005-05-10 95CS54-132

[3] Pulse width measurement
The high-level width of an external pulse can be measured using the 16-bit timer

capture function.
To measure the pulse width, first set 16-bit up-counter UC8 to operate as a

free-running up-counter driven by an internal clock. Using the capture function,
load the up-counter value into capture registers CAP1 and CAP2 on the rising and
falling edges respectively of the external pulse being measured on the TI8 pin.

Using these settings, the high-level pulse width can be calculated during INT5
interrupt processing by multiplying the difference between CAP1 and CAP2 by the
internal clock cycle.

For example, if the difference between CAP1 and CAP2 is 100 and the internal

clock cycle is 0.8 µs, the pulse width is 100 × 0.8 µs = 80 µs.

Caution is required when the width of the pulse being measured exceeds the
maximum UC8 count time (which is determined by the clock source). Software
processing is required in this case.

Figure 3.8.9 Pulse Width Measurement

Note: Measure pulse width by setting the timer 8 mode control register T8MOD<CAP12M1, 0>
to 10. External interrupt INT5 is generated on the falling edge of the TI8 input pin. At other
settings, INT5 is generated on the rising edge of TI8.

It is also possible to measure the width of low level external pulses. In this case,

the pulse width is calculated during the interrupt processing for the second INT5
interrupt by multiplying the internal clock cycle by the difference between the value
of C2 at the first INT5 interrupt and the value of C1 at the second INT5 interrupt.
However, as the first C2 value has been overwritten by the time of the second INT5
interrupt, the C2 value must be saved during processing of the first INT5 interrupt.

TMP95CS54

2005-05-10 95CS54-133

[4] Time difference measurement
The time difference between two events can be measured using the 16-bit timer

capture function.
To measure time difference, first set the 16-bit up-counter UC8 to operate as a

free-running up-counter driven by an internal clock. Load the value of up-counter
UC8 into capture register CAP1 on a rising edge detected on the TI8 pin input pulse.
Interrupt INT5 is generated at this time.

Similarly, on a rising edge detected on the TI9 pin input pulse, load the up-counter
UC8 value into capture register CAP2. Interrupt INT6 is generated at this time.

When both values have been loaded into the capture registers, calculate the time
difference by multiplying the difference between CAP2 and CAP1 by the internal
clock cycle.

Figure 3.8.10 Time Difference Measurement

TMP95CS54

2005-05-10 95CS54-134

(5) Phase output (only available on timer 8)
Signals with a user-specified phase difference can be output using the 16-bit timer.
Select an internal clock as the clock source and set the 16-bit up-counter UC8 to

free-running. Set the phase difference in 16-bit timer registers TREG8 and TREG9, set
timer flip-flops TFF8 and TFF9 to invert when a match is detected for TREG8 and
TREG9, and output the flip-flop values from TO8 and TO9.

Figure 3.8.11 Phase Output

Table 3.8.1 lists the cycles (counter overflow times) that can be set for each clock
source.

Table 3.8.1 16-Bit Up-Counter Overflow Times

TMP95CS54

2005-05-10 95CS54-135

3.9 Serial Channels

The TMP95CS54 has two internal serial input/output channels. The serial channels have the
following four operating modes.

• I/O interface mode

Mode 0: Can be used to expand the I/O by sending and receiving I/O data
and the associated synchronizing signal (SCLK).

• Universal asynchronous receiver transmitter (UART) mode
Mode 1: Send/receive data length: 7 bits
Mode 2: Send/receive data length: 8 bits
Mode 3: Send/receive data length: 9 bits

A parity bit can be added in modes 1 and 2. Mode 3 has a wake-up function that allows a master

controller to activate slave controllers via a serial link (multi-controller system).

TMP95CS54

2005-05-10 95CS54-136

Figure 3.9.1 Block Diagram of Serial Channel 0

TMP95CS54

2005-05-10 95CS54-137

3.9.1 Serial Channel Registers

Each serial channel is controlled by three control registers (SC0CR, SC0MOD, and BR0CR
in the case of channel 0). Data sent and received are stored in the serial send/receive buffer
register in each channel (SC0BUF in the case of channel 0).

(1) Serial channel 0

Figure 3.9.2 Serial Channel 0 Related Register (1/6)

TMP95CS54

2005-05-10 95CS54-138

Figure 3.9.2 Serial Channel 0 Related Register (2/6)

TMP95CS54

2005-05-10 95CS54-139

Figure 3.9.2 Serial Channel 0 Related Registers (3/6)

TMP95CS54

2005-05-10 95CS54-140

(2) Serial channel 1

Figure 3.9.2 Serial Channel 1 Related Register (4/6)

TMP95CS54

2005-05-10 95CS54-141

Figure 3.9.2 Serial Channel 1 Related Register (5/6)

TMP95CS54

2005-05-10 95CS54-142

Figure 3.9.2 Serial Channel 1 Related Registers (6/6)

TMP95CS54

2005-05-10 95CS54-143

3.9.2 Block Structure

As serial channels 0 and 1 operate identically, the following uses channel 0 as an example.

(1) Serial transfer clock generator circuit
The serial transfer clock generator circuit generates SIOCLK (internal signal), which

is the send/receive basic clock. To generate SIOCLK, select the clock source required for
the generation.
[1] I/O interface mode

As the clock source, select either baud rate generator 0, or SCLK0 from an
external source. Set the clock source in bit 0 (<IOC>) of serial channel 0 control
register SC0CR.

When baud rate generator 0 is selected (<IOC> = 0), this circuit generates
SIOCLK by dividing the output of the baud rate generator by 2.

When external SCLK0 is selected (<IOC> = 1), SIOCLK is set to the same value as
the external source.

[2] UART mode
In addition to the clock sources in I/O interface mode, the comparator output of

timer 2 and the internal clock φ1 (2/fc) can also be selected as clock sources.
Bits 1 and 0 of serial channel 0 mode control register SC0MOD<SC1,0> select the

clock source. SIOCLK is set to the same value as the selected clock source.

(2) Receive counter
The receive counter is a 4-bit binary counter used in UART mode.
The receive counter uses SIOCLK as the count clock to generate receive sampling

clock RxDCLK (internal signal).

(3) Receive control

[1] I/O interface mode
In I/O interface mode, the receive data input to the RxD0 pin are sampled

synchronously with transfer clock SCLK0.
Setting serial channel 0 control register SC0CR<IOC> to 0 samples the received

data on the rising edge of SCLK0. Setting SC0CR<IOC> to 1 samples the data on
the rising or the falling edge of SCLK0 as determined by the setting of
SC0CR<SCLKS>.

[2] UART mode
The receive data are sampled bit by bit using RxDCLK, which is generated by the

receive counter. Each bit of data is sampled three times, using majority rule. If two
or more instances of the same value are detected among three samples, the circuit
recognizes the data as receive data. If the sampled data are 1, 0, 1, for example, the
data are evaluated as 1; if 0, 0, 1, the data are evaluated as 0.

TMP95CS54

2005-05-10 95CS54-144

(4) Receive buffer
The receive buffer has a double-buffer configuration to prevent overrun error. Receive

buffer 1 stores the data received bit by bit.
When receive buffer 1 contains seven or eight bits of data, the data are transferred to

receive buffer 2 (SC0BUF), generating interrupt INTRX0.
Reading the data in receive buffer 2 clears the interrupt request flag

INTRX0<IRX0C>.
Even before the CPU reads the data in receive buffer 2, the next data can be received

and stored in receive buffer 1.
However, receive buffer 2 must be read before all bits of the next data frame are

received by buffer 1. If not, an overrun error occurs and the contents of receive buffer 1
are lost, although the contents of receive buffer 2 and the serial channel 0 control
register SC0CR<RB8> are preserved.

In 8-bit UART mode (mode 2) with parity added, the parity bit is stored in
SC0CR<RB8>. In 9-bit UART mode (mode 3), the MSB is stored in SC0CR<RB8>.

(5) Send counter

The send counter is a 4-bit binary counter used in UART mode.
The send counter uses SIOCLK as its count clock, generating send clock TxDCLK

(internal signals).

Figure 3.9.3 Send Clock Generation

(6) Send control

[1] I/O interface mode
In I/O interface mode, the TMP95CS54 outputs send data from the TxD0 pin

synchronously with transfer clock SCLK0.
Setting serial channel 0 control register SC0CR<IOC> to 0 outputs send data on

the rising edge of transfer clock SCLK0.
Setting SC0CR<IOC> to 1 outputs the send data on the rising or falling edge of

SCLK0 as determined by the setting of SC0CR<SCLKS>.
[2] UART mode

In UART mode, the send data are output synchronously with the rising edge of the
TxDCLK send clock generated by the send counter.

(7) Send buffer

Send buffer (SC0BUF) outputs the send data written by the CPU, beginning with the
least significant bit.

When all bits are output, the empty send buffer generates interrupt request INTTX0.

TMP95CS54

2005-05-10 95CS54-145

(8) Parity control
Parity bit addition can only be set in 7-bit UART mode (mode 1) and 8-bit UART mode

(mode 2).
When serial channel 0 control register SC0CR<PE> is set to 1, data can be sent with a

parity bit added. SC0CR<EVEN> selects even parity or odd parity.
A send operation automatically generates the parity bit determined by the send data.

In mode 1, SC0BUF<TB7> stores the parity bit; in mode 2, serial channel 0 mode control
register SC0MOD<TB8> stores the parity bit.

Set both <PE> and <EVEN> before writing the send data in SC0BUF.
When receiving, parity is calculated from the received data and compared with the

received parity bit. If the parities differ, a parity error occurs and parity error flag
SC0CR<PERR> is set to 1.

(9) Error flags

To improve the reliability of data reception, serial channel 0 control register SC0CR
contains the following three error flags.
[1] Overrun error <OERR>

When all bits of the next data frame have been received in receive buffer 1 while
valid data are stored in receive buffer 2 (SC0BUF), an overrun error occurs.

At an overrun error, the data received in buffer 1 are lost.
[2] Parity error <PERR>

The parity bit determined by the data stored in receive buffer 2 (SC0BUF) is
compared with the received parity bit. If the parities differ, a parity error occurs.

[3] Framing error <FERR>
The stop bit of data received is sampled three times. If the majority of samples are

0, a framing error occurs.

If an error occurs, these error flags are set to 1. Reading the SC0CR register clears the
error flags to 0. If an error occurs, fix by software.

TMP95CS54

2005-05-10 95CS54-146

(10) Handshake function control (only supported in UART mode)

The serial channels use the CTS0 input pin to send data in one-frame units, thus
preventing an overrun error. The serial channel 0 mode control register
SC0MOD<CTSE> enables or disables the handshake function.

In send operations, sending starts when a low level signal is input to the CTS0 pin.
When CTS0 goes high, data sending is halted when sending of the current data

completes and the pin is set to wait state. Sending is not restarted until CTS0 goes low
again.

Although an RTS0 pin is not provided, any port can be assigned to the RTS0 function.
When the receiving side has completed reception, the receiving interrupt processing
routine outputs a high-level signal from the port assigned to the RTS0 function. A
handshake function can be easily configured by connecting the sending side CTS0 pin
and the receiving side RTS0 pin.

Figure 3.9.4 Handshake Function

[1] When the CTS0 singnal risedsignal rises during sending, sending of the current
data frame completes is completed, and sending of the next data frame halts.

[2] Sending begins at the first TxDCLK clock falling edge after the CTS0 signal
drops.

Figure 3.9.5 CTS0 (Clear to Send) Signal Timing

TMP95CS54

2005-05-10 95CS54-147

3.9.3 Description of Operation

As serial channels 0 and 1 operate identically, the following uses channel 0 as an example.

(1) Setting send/receive clock transfer rate

[1] Transfer rate setting with baud rate generator selected
The baud rate generator is a circuit used to generate a clock source for the

send/receive clock that controls the serial channel transfer rate.
The input clock for generating the clock source can be selected from among φT0

(4/fc), φT2 (16/fc), φT8 (64/fc), or φT32 (256/fc) from the 9-bit prescaler (see 3.7.2 (1),
Prescaler). The 8-bit and 16-bit timers share the prescaler. Bits 5, 4 of baud rate
generator control register BR0CR<BR0CK1:0> select the input clock.

The selected input clock is divided by the 4-bit divider performing 1 to 16 divisions.
Bits 3 to 0 of BR0CR<BR0S3:0> set the divider. The divided clock is the output clock
for the baud rate generator.

The following are the transfer rate calculation formulas when the baud rate
generator is selected:

• I/O interface mode

Baud rate generator input clock [Hz] Transfer rate [bps] = Baud rate generator divisor (2 to 16) ÷ 2

 Note: In I/O interface mode, do not set divisor to 1.

• UART mode

Baud rate generator input clock [Hz] Transfer rate [bps] = Baud rate generator divisor (1 to 16) ÷ 16

The relationship between the input clock and the source clock (fc) is:
 φT0 = 4/fc
 φT2 = 16/fc
 φT8 = 64/fc
 φT32 = 256/fc

Accordingly, with the source clock set to 12.288 MHz, when φT2 (16/fc) is selected
as the input clock and the divisor is 5, the transfer rate in UART mode is:

fc/16 Transfer rate = 5 ÷ 16 = 12.288 × 106 ÷ 16 ÷ 5 ÷ 16 = 9600 [bps]

Table 3.9.1 shows examples of transfer rate settings in UART mode.

TMP95CS54

2005-05-10 95CS54-148

[2] Transfer rate settings with the timer 2 comparator output selected (UART mode
only)

The following are the transfer rate calculation formulas when the timer 2
comparator output is selected:

Timer 2 input clock [Hz] Transfer rate [bps] = TREG2 (1 to 256) ÷ 16

The relationship between the timer 2 input clock and the source clock (fc) is:
 φT1 = 8/fc
 φT4 = 32/fc
 φT16 = 128/fc

Accordingly, with the source clock set to 24 MHz, when the timer 2 input clock is
set to φT1 and TREG2 is set to 1, the transfer rate is:

fc/8 Transfer rate = TREG2 ÷ 16 = 24 × 106 ÷ 8 ÷ 1 ÷ 16 = 187500 [bps]

Table 3.9.2 shows examples of the transfer rate settings.

[3] Transfer rate settings with external SCLK input selected

The following are the transfer rate calculation formulas when the external SCLK
input is selected:

• I/O interface mode

Transfer rate [bps] = external SCLK input [Hz] ÷ 2
• UART mode

Transfer rate [bps] = external SCLK input [Hz] ÷ 16

TMP95CS54

2005-05-10 95CS54-149

Table 3.9.1 UART Mode Transfer Rate Setting Example (1) (Using Baud Rate Generator)

Note: In I/O interface mode, the transfer rate are 8 times the values in this table.
 In I/O interface mode, do not st the baud rate generator divisor to 1.

Table 3.9.2 UART Mode Transfer Rate Setting Example (2) (Using Timer 2 Input Clock φT1)
Unit: kbps

fc
TREG2 12.288MHz 12MHz 9.8304MHz 8MHz 6.144MHz

1H 96 76.8 62.5 48
2H 48 38.4 31.25 24
3H 32 31.25 16
4H 24 19.2 12
5H 19.2 9.6
8H 12 9.6 6
AH 9.6 4.8
10H 6 4.8 3
14H 4.8 2.4

TMP95CS54

2005-05-10 95CS54-150

(2) Data format
Figure 3.9.6 shows the data format for each mode.

Figure 3.9.6 Data Formats

TMP95CS54

2005-05-10 95CS54-151

(3) I/O interface mode (Mode 0)
In this mode, data transfer to an external device is synchronous with the transfer

clock.
This mode is used to increase the number of I/O pins for sending or receiving data to

an external shift register or other external destinations.
This mode consists of SCLK0 output mode, which outputs a synchronous clock

(SCLK0), and SCLK0 input mode, which inputs a synchronous clock (SCLK0) from an
external source.

Figures 3.9.7 and 3.9.8 show connection examples of SCLK0 output and input modes.

Figure 3.9.7 Example of SCLK0 Output Mode Connection

Figure 3.9.8 Example of SCLK0 Input Mode Connection

TMP95CS54

2005-05-10 95CS54-152

[1] Sending
In SCLK0 output mode, each time the CPU writes data in the send buffer, eight

data bits are output from the TxD0 pin, and a transfer clock signal is output from
the SCLK0 pin. When all data have been sent, INTES0<ITX0C> is set, triggering an
INTTX0 interrupt request.

Figure 3.9.9 Sending in I/O Interface Mode (SCLK0 Output Mode)

In SCLK0 input mode, pin TxD0 outputs eight transfer data bits when SCLK0
input is supplied and data are written to the send buffer by the CPU.

When all data have been sent, INTES0<ITX0C> is set, triggering an INTTX0
interrupt request.

Figure 3.9.10 Sending in I/O Interface Mode (SCLK0 Input Mode)

TMP95CS54

2005-05-10 95CS54-153

[2] Receiving
In SCLK0 output mode, whenever the receive interrupt flag INTES0<IRX0C> is

cleared by the CPU reading the received data, a synchronous clock is output from
the SCLK0 pin and the next data frame is shifted to receive buffer 1. When an 8-bit
data frame is received, it is transferred to receive buffer 2 (SC0BUF), and
INTES0<IRX0C> is set again, triggering an INTRX0 interrupt request.

Figure 3.9.11 Receiving in I/O Interface Mode (SCLK0 Output Mode)

In SCLK0 input mode, if SCLK0 input is supplied when received data are read by
the CPU, thus clearing receive interrupt flag INTES0<IRX0C>, the next data frame
is shifted into receive buffer 1.

When an 8-bit data frame is received, it is shifted to receive buffer 2 (SC0BUF)
and INTES0<IRX0C> is set again, triggering an INTRX0 interrupt request.

Figure 3.9.12 Receiving in I/O Interface Mode (SCLK0 Input Mode)

Note: To receive data, first enable reception (set SC0MOD<RXE> to 1) for either SCLK0 input mode or
output mode.

TMP95CS54

2005-05-10 95CS54-154

(4) 7-bit UART mode (Mode 1)
Setting serial channel 0 mode control register SC0MOD<SM1:0> to 01 specifies 7-bit

UART mode.
A parity bit may be added in this mode. Enable or disable the addition of a parity bit by

serial channel 0 control register SC0CR<PE>.
With<PE> set to 1 (parity bit added), SC0CR<EVEN> selects even or odd parity.

Setting example: send 7-bit data with an even parity bit added:

(5) 8-bit UART mode (Mode 2)
Setting serial channel 0 mode control register SC0MOD<SM1:0> to 10 selects 8-bit

UART mode.

A parity bit may be added in this mode. Enable or disable the addition of a parity bit by
serial channel 0 control register SC0CR<PE>. With<PE> set to 1 (parity bit added),
SC0CR<EVEN> selects even or odd parity.

Setting example: send 8-bit data with an odd parity bit added:

TMP95CS54

2005-05-10 95CS54-155

Main routine settings:

Note: X : Don’t care − : No change

Interrupt routine processing example:

Check for errors with SC0CR error flags (<OERR>, <PERR>, <FERR>). If there are no
errors, read the data received.

(6) 9-bit UART mode (Mode 3)

Setting the serial channel 0 mode control register SC0MOD<SM1:0> to 11 selects 9-bit
UART mode.

A parity bit cannot be added in this mode.
When sending, the most significant bit (bit 9) is written to SC0MOD<TB8>.
When receiving, the most significant bit is saved in serial channel control register

SC0CR<RB8>. When the buffer is written to or read from, the most significant bit is
always read or written first.

Wake-Up Function

In 9-bit UART mode, select the slave controller wake-up function by setting
SC0MOD<WU> to 1. When SC0CR<RB8> = 1, received data are interpreted as select
code, and an INTRX0 interrupt request occurs.

Figure 3.9.13 Serial Link with Wake-Up Function

TMP95CS54

2005-05-10 95CS54-156

[1] Set the master controller and all slave controllers to 9-bit UART mode.

[2] Set the serial channel 0 mode control register SC0MOD<WU> of each slave
controller to 1 to enable data reception.

[3] The master controller sends one frame with the most significant bit (bit 8)
SC0MOD<TB8> set to 1. This frame contains the 8-bit select code of a slave
controller.

[4] The slave controllers receive the above data frame. The slave controller whose select
code matches the select code in the data frame received clears its SC0MOD<WU>
bit to 0.

[5] The master controller sends data frames with their most significant bit (bit 8)
SC0MOD<TB8> set to 0 to the specified slave controller (the controller whose
SC0MOD<WU> bit is cleared to 0).

[6] The slave controllers whose SC0MOD<WU> bit is 1 ignore the received data as
interrupt INTRX0 is not generated when the most significant bit (bit 8)
SC0CR<RB8> remains cleared to 0 (when data are sent).

The slave controller whose SC0MOD<WU> bit is cleared to 0 can inform the
master controller of the termination of a send it received by sending data to the
master controller.

Protocol

TMP95CS54

2005-05-10 95CS54-157

Setting example: When linking two slave controllers serially with the master controller
using internal clock φ1 as the transfer clock.

As serial channels 0 and 1 operate identically in this mode, the following describes
channel 0 only.
• Setting the master controller

Main routine:

INTTX0 interrupt routine:

• Setting slave controller 2

Main routine:

INTRX0 interrupt routine:
Compare SC0BUF and select code (00001010B). If these match, clear SC0MOD<WU>

to 0.

TMP95CS54

2005-05-10 95CS54-158

(7) Signal generation timing

[1] In I/O Interface mode

[2] In UART mode

Receive

Send

TMP95CS54

2005-05-10 95CS54-159

3.10 Analog/Digital Converter

The TMP95CS54 incorporates a high-speed, high-precision 10-bit successive approximation-type
analog/digital converter (AD converter) with 8-channel analog input.

Figure 3.10.1 is a block diagram of the AD converter. The 8-channel analog input pins (AN0 to
AN7) are shared by input-only port A and can thus be used as an input port.
Note : When the power is reduced by setting IDLE2, IDLE1, or STOP mode, with some timings,

the system may enter standby mode even though the internal comparator is still enabled.
Therefore, be sure to check that AD converter operations are halted before executing a
HALT instruction.

Figure 3.10.1 AD Converter Block Diagram

TMP95CS54

2005-05-10 95CS54-160

3.10.1 AD Converter Registers

The AD converter is controlled by two AD mode control registers: ADMOD0 and ADMOD1.
Eight AD conversion data upper and lower registers (ADREG04H/L, ADREG15H/L,
ADREG26H/L, and ADREG37H/L) store the AD conversion results.

Figures 3.10.2 shows registers related to the AD converter.

Figure 3.10.2 AD Converter Related Register (1/4)

TMP95CS54

2005-05-10 95CS54-161

Figure 3.10.2 AD Converter Related Register (2/4)

TMP95CS54

2005-05-10 95CS54-162

Figure 3.10.2 AD Converter Related Registers (3/4)

TMP95CS54

2005-05-10 95CS54-163

Figure 3.10.2 AD Converter Related Registers (4/4)

TMP95CS54

2005-05-10 95CS54-164

3.10.2 Description of Operation

(1) Analog reference voltage
A high level analog reference voltage is applied to the VREFH pin; a low level analog

reference voltage to the VREFL pin. To perform AD conversion, the reference voltage
(the difference between VREFH and VREFL) is divided by 1024 using string resistance.
Then, the result of the division is compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write 0 to AD mode control
register 1 ADMOD1<VREFON>. To start AD conversion from the off state, first write 1
to <VREFON>, wait 3 µs until the internal reference voltage stabilizes (not related to
the fc), then write 1 to AD mode register ADMOD0<ADS>.

(2) Analog input channel selection

The analog input channel selection varies according to the operating mode of the AD
converter.
• In analog input channel fixed mode (ADMOD0<SCAN> = 0)

Setting ADMOD1<ADCH2 to 0> selects one channel from among analog input
pins AN0 to AN7.

• In analog input channel scan mode (ADMOD0<SCAN> = 1)
Setting ADMOD1<ADCH2 to 0> selects one scan mode from among eight scan

modes.

Table 3.10.1 shows the analog input channel selection for each operating mode.
After a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH2 to 0> is initialized

to 000, thus selecting pin AN0 as the channel fixed input. Pins not used as analog input
channels can be used as standard input ports.

Table 3.10.1 Analog Input Channel Selection

TMP95CS54

2005-05-10 95CS54-165

(3) Starting AD conversion
To start AD conversion, write 1 to AD mode control register 0 ADMOD0<ADS> or AD

mode control register 1 ADMOD1<ADTRGE> and input a falling edge on the ADTRG
pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> is set to
1, indicating AD conversion is in progress.

Writing 1 to <ADS> during AD conversion restarts conversion. At that time, to
determine whether the AD conversion results are preserved, check the conversion data
storage flag ADREGxL<ADRxRF>.

During AD conversion, inputting a falling edge to the ADTRG pin is ignored.

(4) AD conversion modes and AD conversion end interrupt
The four AD conversion modes are:

• Channel fixed single conversion mode
• Channel scan single conversion mode
• Channel fixed repeat conversion mode
• Channel scan repeat conversion mode

AD mode control register 0 ADMOD0<REPET>, <SCAN> selects the AD mode.
Completion of AD conversion triggers the AD conversion end INTAD interrupt request.

Also, ADMOD0<EOCF> is set to 1 to indicate that AD conversion is complete.
[1] Channel fixed single conversion mode

Setting ADMOD0<REPET>, <SCAN> to 00 sets conversion channel fixed single
conversion mode.

In this mode, one specified channel is converted once only. When the conversion is
complete, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to 0,
and an INTAD interrupt request is generated.

[2] Channel scan single conversion mode
Setting ADMOD0<REPET>, <SCAN> to 01 sets conversion channel scan single

conversion mode.
In this mode, the specified scan channels are converted once only. When scan

conversion is complete, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared
to 0, and an INTAD interrupt request is generated.

TMP95CS54

2005-05-10 95CS54-166

[3] Channel fixed repeat conversion mode
Setting ADMOD0<REPET>, <SCAN> to 10 sets conversion channel fixed repeat

conversion mode.
In this mode, one specified channel is converted repeatedly. When conversion is

complete, ADMOD0<EOCF> is set to 1 and ADMOD0<ADBF> is not cleared to 0
but held at 1. The INTAD interrupt request generation timing is selected by
ADMOD0<ITM0>.

Setting <ITM0> to 0 generates an interrupt request when every AD conversion is
complete.

Setting <ITM0> to 1 generates an interrupt request when every fourth conversion
is complete.

 [4] Channel scan repeat conversion mode
Setting ADMOD0<REPET>, <SCAN> to 11 sets conversion channel scan repeat

conversion mode.
In this mode, the specified scan channels are converted repeatedly. When each

scan conversion is complete, ADMOD0<EOCF> is set to 1 and an INTAD interrupt
request is generated. ADMOD0<ADBF> is not cleared to 0 but held at 1.

To stop conversion in a repeat conversion mode (mode [3] or [4]), write 0 to
ADMOD0<REPET>. After the current conversion is complete, the repeat conversion
mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2, IDLE1, or STOP) immediately stops the AD
converter even with AD conversion still in progress. In repeat conversion modes
(modes [3] and [4]), after the halt is released, conversion restarts from the beginning.
In single conversion modes (modes [1] and [2]), conversion does not restart (the
converter remains stopped).

Table 3.10.2 shows the relationship between AD conversion modes and interrupt

requests.

Table 3.10.2 Relationship Between AD Conversion Modes and Interrupt Requests

X : Don’t care

TMP95CS54

2005-05-10 95CS54-167

(5) AD conversion time
84 states (7 µs @ fc = 24 MHz) are required for AD conversion of one channel.

(6) Storing and reading AD conversion result

The AD conversion data upper and lower registers (ADREG04H/L to ADREG37H/L)
store the AD conversion results. (ADREG04H/L to ADREG37H/L are read-only
registers.)

In channel fixed repeat conversion mode, the conversion results are stored
successively in registers ADREG04H/L to ADREG37H/L. In other modes, the AN0 and
AN4, AN1 and AN5, AN2 and AN6, and AN3 and AN7 conversion results are stored in
ADREG04H/L, ADREG15H/L, ADREG26H/L, and ADREG37H/L respectively.

Table 3.10.3 shows the correspondence between analog input channels and AD
conversion result registers.

Table 3.10.3 Correspondence Between Analog Input Channels and

AD Conversion Result Registers

The AD conversion data storage flag <ADRxRF> uses bit 0 of the AD conversion data
lower register. The storage flag indicates whether the AD conversion result register was
read or not. When a conversion result is stored in the AD conversion result register the
flag is set to 1. When either of the AD conversion result registers (ADREGxH or
ADREGxL) is read the flag is cleared to 0.

Reading the AD conversion result also clears the AD conversion end flag
ADMOD0<EOCF> to 0.

TMP95CS54

2005-05-10 95CS54-168

Setting example:
[1] Convert the analog input voltage at the AN3 pin and write the result to memory

address 0800H using the AD interrupt (INTAD) processing routine.
Main routine setting:

Interrupt routine processing example:

[2] This example repeatedly converts the analog input voltages at the three pins AN0 to
AN2, using channel scan repeat conversion mode.

TMP95CS54

2005-05-10 95CS54-169

3.11 CAN Controller

(1) Overview
• Supports CAN version 2.0B
• Supports standard format and Extended format
• Supports data frames and remote frames in both formats
• 16 Mailboxes (15 Receive and Transmit + 1 Receive only)
• Baud rate up to 1 Mbps on the CAN bus (at operation frequency 20 to 24 MHz)
• Programmable baud rate with bit time parameter
• Built-in baud rate prescaler
• 2 selectable mechanisms for internal arbitration of transmit messages

[1] mailbox number
[2] identifier priority

• Time stamp for receive and transmit messages
• Operation mode

[1] Normal operation mode
[2] Configuration mode
[3] Sleep mode (Wake up on CAN bus activity or CPU access)
[4] Halt mode
[5] Test loopback mode (stand alone operation enabled by self acknowledge)
[6] Test error mode (Write enabled to error counter)

• Message acceptance filter
[1] Programmable global mask for mailboxes 0 to 14
[2] Programmable local mask for mailbox 15

• Acceptance mask bit for identifier extended bit
• Flexible interrupt structure (3 interrupts)

[1] Receive interrupt: INTCR
[2] Transmit interrupt: INTCT
[3] Global interrupt: INTCG (includes warning level, error passive, bus off, etc)

(2) Nomenclature
• R/W Read and write access by the CPU
• R Read access by the CPU
• W Write access by the CPU
• R/S Read access and set (write with 1) by the CPU
• R/C Read access and clear (write with 1) by the CPU
• The mailbox RAM symbol column of the after Reset “−” following a Reset for the mailbox

RAM indicates that the initial value is indeterminate.
• The mailbox RAM bit Symbol “\” for the mailbox RAM denotes blank bits. The values of

these bits are indeterminate when read.
• The control register bit Symbol “\” for the control register denotes reserved bits. They

indicate that value is indeterminate when read.
Always write “0” when write..

TMP95CS54

2005-05-10 95CS54-170

(3) Architecture

Figure 3.11.1 Block Diagram of CAN Controller

(4) CAN bus interface
The interface to the CAN bus is a simple two-wire line, consisting of an input pin RX and

an output pin TX. This CAN bus interface is suitable for operation with CAN bus
transceivers based on ISO/DIS 11898.

16 × 128-bit

TMP95CS54

2005-05-10 95CS54-171

3.11.1 Memory Map

The mailboxes and control registers used by the CAN are mapped to the memory locations
shown below.

Table 3.11.1 CAN Mailboxes and Control Registers

(Reserved)

(Reserved)

Note1: * Read- modify-write prohibited.
Note2: Do not access the reserved address.

TMP95CS54

2005-05-10 95CS54-172

3.11.2 Mailboxes

The mailbox is configured with RAM to store identifiers and transmit/receive data, which
can be accessed by the CAN controller and the CPU. The CPU controls the CAN controller by
modifying the contents of the mailboxes and control registers. The contents of the mailboxes
and control registers are used to perform the functions of acceptance filtering, transmit
message and interrupt handling.

In order to initiate a transfer, the transmission request bit has to be written to the
corresponding register. The entire transmission procedure is done then without any CPU
involvement. If a mailbox has been configured as receive messages the CPU easily reads its
data registers using CPU read instructions. The mailbox may be configured to interrupt the
CPU after every successful message transmission or reception.

The mailbox module provides 16 mailboxes, each of which has 8 bytes long data, 29-bit
identifier and several control bits. Each mailbox is 16 bytes in size. Each mailbox, except the
last one, can be set for either transmit or receive operation.

Mailbox 15 is a receive-only mailbox with a special acceptance mask designed to allow
groups of different message identifiers to be received.

The receive-only mailbox 15 masks all bits when receiving a message whose ID does not
correspond to any of the mailboxes 0 to 14.

In addition, when using mailbox 15 as a usual receiving mailbox, each time a message is
received, the, the ID of all mailboxes is checked by software. If the ID is rewritten to a
different ID from that which was originally received, the received data is invalid. Once
mailbox prohibit (MC=0) is set, after waiting the maximum frame length time, set the correct
ID again.

Each mailbox is configured as shown below.

The components of each mailbox are explained in the following pages.

TMP95CS54

2005-05-10 95CS54-173

Message Identifier Field 0 (MI0)

The priority of a message ID becomes so high that 0 continues from the MSB (<ID28> bit) of ID.

TMP95CS54

2005-05-10 95CS54-174

Message Identifier Field 1 (MI1)

Note1: For standard format, identifiers <ID17> to <ID0> are indeterminate.

Note2: Set the mailbox ID at initial cconfiguration. Once a mailbox has been enabled, when writing to the MI0
or MI1 field of the mailbox, reset the <MC> bit, and after a mailbox has been prohibited by the CAN
controller, wait the maximum frame length time before executing the operation.

TMP95CS54

2005-05-10 95CS54-175

Message Control Field (MCF)

Note: There is no necessity for an initial configuration of receive mailboxes. RTR and DLC of the received
message are stored in the MCF register. Please set transmit mailboxes at the initial configuration.

Data field (D0 to D7)

This is a read/write register that stores up to 8 bytes of transmit/receive data. However, in
the case of receive mailboxes, the write access to the data field is disabled.

For transmit, data in a length of bytes set by the mailbox’s data length code is transmitted.
For receive, the data length code in the received message is copied to the mailbox’s data

length code, so that the byte data in a length equal to this data length code is received as
valid data.

TMP95CS54

2005-05-10 95CS54-176

TMP95CS54

2005-05-10 95CS54-177

Time Stamp Value (TSV)

This is a 16-bit read-only register into which the value of the time stamp counter is loaded
when data is successfully transmitted or received.

The counter value is not loaded into this register when transmit or receive operations fail.

Maximum frame length

Rewrite messsage ID field after MCn is prohibited and one frame time passes .
General one frame time is as follows:
N means the number of data byte (0-8 byte).
- Standard frame format (at data frame) = (44 + 8N) × 1 bit time
- Extended frame format (at data frame) = (64 + 8N) × 1 bit time
Furthermore, the maximum frame length to which bit stuffing applies is as follows:
 Since the maximum number of bits is eight byte data of the extended frame format,
 64-bit (fixed length) + 64-bit (number of data bytes) = 128-bit.

 Moreover, the bit stuffing rule is not applied to
 EOF + ACK field + CRC delimiter = 10-bit,

Therefore the maximum number of bits to which the bit stuffing rule applies is
 128-bit – 10-bit = 118-bit length.

(It is calculated on the assumption of the longest case of insertion of the stuffing bit in
the CRC field.)
At the bit stuffing rule, as a reversing bit is inserted when the same level is 5-bit
successive, the maximum inserted number of bits is

 118-bit ÷ 5 → 24-bit.
Hence, the maximum frame length is

 128-bit + 24-bit = 152-bit.
Therefore, when the message ID field is rewritten at a baud-rate of 500kbps, is the
necessary waiting time is:

 152-bit × 2 us = 304 µs

TMP95CS54

2005-05-10 95CS54-178

3.11.3 Control Registers

(1) Mailbox control registers

Mailbox configuration register (MC)

Each bit corresponds to mailboxes 0 through 15.
Each mailbox can be enabled or disabled.

When <MCn> = 1, access to mailbox “n” is enabled.
When <MCn> = 0, access to mailbox “n” is disabled.

If, during CAN controller transmission, <MCn>=0, access may be permitted depending on
the transmission stage. In this case, there is the possibility of conflict between the mailbox
transmit/receive complete flag and the transmit/receive interrupt flag.

Set the mailbox ID at initial configuration. After disabling a mailbox by resetting the
<MC> bit, wait the maximum frame length time before rewriting to the MI0 or MI1 field of
the mailbox which is permitted.

The transmit mailbox data and control fields can be accessed for write at any time.

TMP95CS54

2005-05-10 95CS54-179

Mailbox direction register (MD)

Each bit corresponds to mailboxes 0 through 15.
Each mailbox except mailbox 15 can be directed for transmit or receive.
When <MDn> = 0, the mailbox MBn is directed for transmit.
When <MDn> = 1, the mailbox MBn is directed for receive.
Mailbox 15 is a receive-only buffer, so that <MD15> bit is fixed to 1. This bit can only be

read; you cannot write to it.
MD registers are set at initial configuration. When the setting is changed while

transmitting or receiving, the following operations occur.
(1) When changing to <MDn> = 0 (transmission) while receiving.

Reception of the message currently being received continues, and after the reception is
completed, the <RMPn> bit is set to 1. However, the <MBRIFn>flag is not set even if
<MBIMn> is set to 1 (interrupt enabled), and the receive interrupt is not generated.

(2) When changing to <MDn>=1 (reception) while transmitting.
Transmission of the message currently being transmitted continues, and after the
transmission is completed, the <TAn> bit is set to 1. However, the <MBTIFn> flag is not
set even if <MBIMn> is set to 1 (interrupt enabled), and the transmit interrupt is not
generated.

TMP95CS54

2005-05-10 95CS54-180

(2) Transmit control registers

Transmission request set register (TRS)

Each bit corresponds to mailboxes 0 through 15. Since mailbox 15 is a receive-only
buffer, bit 15 is nonexistent.

If after writing data and identifier to mailbox “n” that has been set for transmit
(<MDn> = 0) the <TRSn> bit is set when the said mailbox is enabled (<MCn> = 1), a
message is transmitted from mailbox “n”. If there are multiple transmit requests,
messages are transmitted sequentially. The order in which messages are transmitted
depends on the master control register MCR bit 3 <MTOS>.

When the <MTOS> bit = 0, messages are transmitted in order of mailbox numbers.
Since the transmit buffers are empty after a reset, presence of transmit requests is
checked beginning with mailbox 0. After that, presence of transmit requests is checked
beginning with the mailbox next to the last mailbox transmitted. However, for transmit
operation after arbitration is lost or an error is detected, transmit requests are checked
over again beginning with the mailbox that has failed. For this reason, if a transmit
request of higher priority occurs in the CAN controller, it is kept waiting until the
system finishes transmitting the failed message.

When the <MTOS> bit = 1, a message is transmitted from the mailbox that has the
highest priority identifier among the mailboxes for which message transmission has
been requested. In case for the transmit operation after arbitration is lost, a message is
transmitted from the mailbox that has the highest priority identifier at that point in
time among those that have been requested to send messages.

In case of the transmit operation after an error is detected, a message is transmitted
again with the mailbox that has failed.

The <TRSn> bit is reset when transmit has succeeded.
If transmit has failed, transmit is retried repeatedly until it succeeds.
When the <TRSn> bit is 1, the write access to the corresponding mailbox is denied.
The <TRSn> bit cannot be set from the CPU if mailbox “n” is set for receive.
When mailbox “n” is set for transmit, the <TRSn> bit is set by writing a 1 from the

CPU and is reset by the internal logic. Writing a 0 from the CPU has no effect.

TMP95CS54

2005-05-10 95CS54-181

Transmission acknowledge register (TA)

Each bit corresponds to mailboxes 0 through 15. Since mailbox 15 is a receive-only
buffer, bit 15 is nonexistent.

The <TAn> bit is set when the message of mailbox “n” has been transmitted
successfully. In this case, a transmit successful interrupt is generated if it has been
enabled.

The <TAn> bit is reset by writing a 1 to the <TAn> bit or <TRSn> bit from the CPU.
Writing a 0 from the CPU has no effect.

TMP95CS54

2005-05-10 95CS54-182

(3) Receive control registers
The identifier of each incoming message is compared with the identifiers held in the

mailboxes that have been set for receive operation. The comparison of the identifiers
depends on the value of the global/local acceptance mask enable bits <GAME>/<LAME>
in the mailbox and the data held in the global/local acceptance mask registers
GAM/LAM.

When a matching identifier is detected, the received identifier, control bits, and data
bytes are written to the mailbox that has matched. At this time, the corresponding
receive message pending bit <RMPn> is set and a receive successful interrupt is
generated if it has been enabled. Once a matching identifier is found, no other identifiers
are compared.

If no match is detected, the message is rejected.
The <RMPn> bit must be reset by the CPU after reading the data. If a second message

is received for this mailbox when the <RMPn> bit has already been set, the
corresponding receive message lost bit <RMLn> is set. In this case, the data stored in
mailbox “n” is overwritten with the new data. In this case a global interrupt (receive
message lost) is generated if it has been enabled.

Receive-only mailbox
Only if the identifier of a received message does not match any identifiers of the

mailboxes 0 through 14 is the identifier compared with the identifier of the receive-only
mailbox 15. When a matching identifier is detected, the contents of the received message
are written to the mailbox 15.

Receive message pending register (RMP)

Each bit corresponds to mailboxes 0 through 15.
When a message is received and its content is stored in mailbox “n”, the <RMPn> bit is

set.
If a second message is received by mailbox “n” for which the <RMPn> bit has been set,

mailbox “n” is overwritten with the new data. In this case, the corresponding <RMLn>
bit is set.

The <RMPn> bit is set by the internal logic and is reset by writing a 1 to the <RMPn>
bit from the CPU. Writing a 0 from the CPU has no effect.

TMP95CS54

2005-05-10 95CS54-183

Receive message lost register (RML)

Each bit corresponds to mailboxes 0 through 15.
If a second message is received by mailbox “n” for which the <RMPn> bit has been set,

mailbox “n” is overwritten with the new data and the <RMLn> bit is set.
The <RMLn> bit is set by the internal logic and is reset by writing a 1 to the <RMPn>

bit from the CPU. Writing a 0 has no effect. Writing a 0 to <RMPn> bit and writing a 1 or
0 to <RMLn> bit from the CPU have no effect.

TMP95CS54

2005-05-10 95CS54-184

(4) Handling of remote frames
If a remote frame is received, it is compared with the identifiers of all mailboxes. The

comparison of identifiers depends on the value of the global/local acceptance mask
enable bits <GAME>/<LAME> in the mailbox and the data held in the global/local
acceptance mask registers GAM/LAM.

If there is a matching identifier and this mailbox is set for receive, the remote frame is
processed as data frame, in which case the <RMP> and <RFP> bits are set.

Once a matching identifier is found, no other identifiers are compared.
Remote frame pending register (RFP)

When a remote frame is received by mailbox “n” directed for receive, the corresponding
<RFPn> and <RMPn> bits are set.

The <RFPn> bit is reset by writing a 1 to the <RMPn> bit. Wiring a 0 has no effect.
Also, the <RFPn> bit is reset automatically when the remote frame received in mailbox
“n” is overwritten by a newly received data frame.

TMP95CS54

2005-05-10 95CS54-185

(5) Acceptance filter
The global acceptance mask registers GAM0, GAM1 are used for filtering messages

when the <GAME> bit for mailboxes 0 through 14 is set (= 1). An incoming message is
stored in the first mailbox with a matching identifier. Only if there is no matching
identifier in the mailboxes 0 to 14 is the incoming message compared with the mailbox
15, a receive-only mailbox. The local acceptance mask registers LAM0, LAM1 are used
for filtering messages when the <LAME> bit for mailbox 15 is set.

Figure 3.11.2 Acceptance Filter

TMP95CS54

2005-05-10 95CS54-186

Local acceptance mask registers (LAM0, LAM1)

The LAM0 and LAM1 registers are used only for filtering messages for mailbox 15.
This feature allows the user to choose whether or not to locally mask any identifier bit of
the incoming message for mailbox 15. Incoming messages are first checked to see if they
match mailboxes 0 to 14 before being forwarded to mailbox 15.

If the <LAMn> bit is 0, messages are received only when the corresponding bit of the
incoming message identifier matches that of the mailbox identifier. If the <LAMn> bit is
1, messages are received regardless of whether the corresponding bit of the incoming
message identifier is 0 or 1. The GAM0 and GAM1 registers do not affect mailbox 15.

For messages in extended format, the identifier extension <IDE> bit and the whole 29
bits of the identifier are compared. For messages in standard format, only the <IDE> bit
and the first 11 bits of the identifier (<ID28> to <ID18>) are compared.

The <LAMI> bit (local acceptance mask identifier extension bit) is used to mask the
<IDE> bit of mailbox 15.

If the <LAMI> bit is 0, messages in extended or standard format are received
according to the <IDE> bit of mailbox 15.

If the <LAMI> bit is 1, messages in both extended and standard formats are received
regardless of whether the <IDE> bit of mailbox 15 is 0 or 1. For messages in extended
format, the whole 29 bits of the mailbox identifier and the whole 29 mask bits of the
LAM register are used for filtering. For messages in standard format, only the first 11
bits of the mailbox identifier (<ID28> to <ID18>) and the first 11 bits of the LAM register
(<LAM28> to <LAM18>) are used for filtering.

LAM0 and LAM1 are set at initial configuration. Do not change the setting of these
registers while operating. If the setting is changed while receiving, the received message
IDs are compared with the value changed register values.

TMP95CS54

2005-05-10 95CS54-187

Global acceptance mask registers (GAM0, GAM1)

The GAM0 and GAM1 registers are used for filtering messages for mailboxes 0 to 14.
If the <GAME> bit for mailboxes 0 to 14 is set, the GAM0 and GAM1 registers are

used for incoming messages. A received message is stored in only the first mailbox with a
matching identifier.

If the <GAMn> bit is 0, messages are received only when the corresponding bit of the
incoming message identifier matches that of the mailbox identifier. If the <GAMn> bit is
1, messages are received regardless of whether the corresponding bit of the incoming
message identifier is 0 or 1.

For messages in extended format, the identifier extension <IDE> bit and the whole 29
bits of the identifier are compared. For messages in standard format, only the <IDE> bit
and the first 11 bits of the identifier (<ID28> to <ID18>) are compared.

The <GAMI> bit (global acceptance mask identifier extension bit) is used to mask the
<IDE> bits of mailboxes 0 to 14.

If the <GAMI> bit is 0, messages in extended or standard format are received
according to the <IDE> bits of mailboxes 0 to 14.

If the <GAMI> bit is 1, messages in both extended and standard formats are received
regardless of whether the <IDE> bits of mailboxes 0 to 14 are 0 or 1. For messages in
extended format, the whole 29 bits of the mailbox identifier and the whole 29 mask bits
of the GAM register are used for filtering. For messages in standard format, only the
first 11 bits of the mailbox identifier (<ID28> to <ID18>) and the first 11 bits of the GAM
register (<GAM28> to <GAM18>) are used for filtering.

GAM0 and GAM1 are set at initial configuration. Do not change the setting of these
registers while operating. If the setting is changed while receiving, the received message
IDs are compared with the changed register values.

TMP95CS54

2005-05-10 95CS54-188

(6) Control registers

Master control register (MCR)

TSTLB: Test Loopback
0: Cancels the test loopback mode. (Normal operation)
1: Requests the test loopback mode.

This mode supports stand alone operation.

TSTERR: Test Error
0: Cancels the test error mode. (Normal operation)
1: Requests the test error mode.

In this mode it is possible to write the error counter register CEC.

CCR: Change Configuration Request
0: Cancels the configuration mode. (Normal operation)
1: Requests the configuration mode.

This mode allows for writing to the bit configuration registers BCR1, BCR2.

SMR: Sleep Mode Request
0: The sleep mode is not requested. (Normal operation)
1: Requests the sleep mode.

When this mode is entered, the CAN controller clock stops oscillating and
the error counter and transmit requests are cleared.

HMR: Halt Mode Request
0: Cancels the halt mode. (Normal operation.)
1: Requests the halt mode.

When this mode is entered, the CAN controller does no longer transmits and
receives messages. It only sends error and acknowledge flags.

WUBA: Wake Up on Bus Activity
0: Wakes up the module only by detecting a write access to the MCR register.
1: Wakes up the module when active bus state is detected or detecting a write

access to the MCR register.

MTOS: Mailbox Transmission Order Select
0: Transmits messages in order of mailbox numbers.
1: Transmits messages sequentially beginning with the mailbox message

identifier that has priority over others.

TMP95CS54

2005-05-10 95CS54-189

TSCC: Time Stamp Counter Clear
0: No effect.
1: Clears the time stamp counter.

Note1: This is a write-only bit; it is always 0 when read.
Note2: The time stamp counter is also cleared by a write to the TSP register, or

writing a 0 to TSC register.

SRES: Software Reset
0: No effect.
1: Resets the CAN controller in software. All internal registers are initialized.

Note: This is a write-only bit; it is always 0 when read.

Bit configuration register 1 (BCR1)

TMP95CS54

2005-05-10 95CS54-190

Bit configuration register 2 (BCR2)

TMP95CS54

2005-05-10 95CS54-191

The bit length is determined by parameters TSEG1, TSEG2, and BRP. All CAN
controllers on the CAN bus must operate at the same baud rate. If individual CAN
controllers operate with different frequencies, adjust the baud rate of each using the said
parameters. The required bit timing is materialized by converting the parameters in a
bit timing circuit. The configuration registers BCR1 and BCR2 contain the data
regarding bit timing.

Figure 3.11.3 Bit Timing

TSCL is calculated by the equation below:
TSCL = (<BRP7:0> + 1) /fSYS fSYS: external clock divided by 2

The length of one bit is determined by the equation below:
1 Bit Time = SYNCSEG + TSEG1 + TSEG2

The length of the synchronizing segment SYNCSEG is always 1 × TSCL. TSEG1 sets
up value the same or more than TSEG2.

The baud rate is calculated by the equation below:
Baud rate = fSYS ÷ [(<BRP7:0> + 1) × ((<TSEG13:10> + 1) + (<TSEG22:20> + 1) +

1)]
IPT (information processing time) defines the time required for bit read processing.

IPT is equal to 4 fSYS clock cycles. TSEG2 sets up value the same or more than IPT.
SJW indicates how much bit length can be extended or shortened in units of TSCL

time for adjustment when resynchronizing. Bit timing is always synchronized at the
falling edge of the bus signal. SJW sets up value smaller than TSEG2.

If the <SAM> bit is set, multiple sampling on the bus is enabled corresponding to the
bit timing. The level is determined by majority decision of the last three values sampled.
A set up of the <SAM> bit is effective when <BRP7:0> is larger than 0.

There is a restriction as follows:

<BRP7:0>
TSCL length

(CAN clock cycles: fsys)
IPT length

(CAN clock sycles: fsys)
TSEG2 minimum length

(TSCL)

0 1 4 4
1 2 4 2

>1 <BPR7:0>+1 4 2

TMP95CS54

2005-05-10 95CS54-192

Example for setting baudrate
External clock = 24MHz CAN input clock = fsys
Internal system clock fsys=12MHz 1TSCL=(<BRP7:0>+1)÷fsys

(1)1Mbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

0110b (7TSCL) 011b (4TSCL) 66.7 00h 12
0101b (6TSCL) 100b (5TSCL) 58.3

01h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(2) 500kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 00h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1000b (9TSCL) 001b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

01h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 02h 8
0011b (4TSCL) 010b (3TSCL) 62.5

03h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(3)250kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 01h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1100b (13TSCL) 001b (2TSCL) 87.5
1011b (12TSCL) 010b (3TSCL) 81.3
1010b (11TSCL) 011b (4TSCL) 75.0
1001b (10TSCL) 100b (5TSCL) 68.8
1000b (9TSCL) 101b (6TSCL) 62.5

02h 16

0111b (8TSCL) 110b (7TSCL) 56.3
1000b (9TSCL) 001b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

03h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 05h 8
0011b (4TSCL) 010b (3TSCL) 62.5

07h 6 0010b (3TSCL) 001b (2TSCL) 66.7

(4)125kbps
<BRP7:0> TSCL <TSEG13:10> <TSEG22:20> Sample Point(%)

1111b (16TSCL) 110b (7TSCL) 70.8 03h 24
1110b (15TSCL) 111b (8TSCL) 66.7
1100b (13TSCL) 001b (2TSCL) 87.5
1011b (12TSCL) 010b (3TSCL) 81.3
1010b (11TSCL) 011b (4TSCL) 75.0
1001b (10TSCL) 100b (5TSCL) 68.8
1000b (9TSCL) 101b (6TSCL) 62.5

05h 16

0111b (8TSCL) 110b (7TSCL) 56.3
1000b (9TSCL) 101b (2TSCL) 83.3
0111b (8TSCL) 010b (3TSCL) 75.0
0110b (7TSCL) 011b (4TSCL) 66.7

07h 12

0101b (6TSCL) 100b (5TSCL) 58.3
0100b (5TSCL) 001b (2TSCL) 75.0 0Bh 8
0011b (4TSCL) 010b (3TSCL) 62.5

0Fh 6 0010b (3TSCL) 001b (2TSCL) 66.7

TMP95CS54

2005-05-10 95CS54-193

Example: Setting 1 Mbps (bit length = 1 µs)
 In cases when the clock frequency : fSYS = 12 MHz
 the baud rate prescaler : <BRP7:0> = 00H

the length of one bit required for data transmission must be programmed in 12 ×
TSCL. An example of parameter setting is shown below.

<TSEG13:10> = 0101B (6 × TSCL), <TSEG22:20> = 100B (5 × TSCL)
Since in this setting multiple sampling on the bus cannot be used, the <SAM> bit need

to be set to 0.
Note: The synchronization of SOF (start of frame) bit is possible on the inter frame

space but on the ITM (intermission).

TMP95CS54

2005-05-10 95CS54-194

Time stamp feature
To get information about the time at which messages sent or received, a 16-bit

free-running time stamp counter TSC is implemented in the CAN controller. When a
receive message has been stored or the system has finished sending a message, the
content of this counter is written to the time stamp value TSV of the corresponding
mailbox.

The TSC counter is clocked by the CAN bus line bit clock that is supplied via a
prescaler. When operating in configuration or sleep mode, the counter remains idle.
After a reset, the counter is cleared by writing to the time stamp counter prescaler TSP.
The counter can be accessed for read or write from the CPU, even during configuration
mode.

Time stamp counter register (TSC)

Overflow of the counter can be detected by the global status register GSR’s <TSO> flag
and the global interrupt flag register GIF’s <TSOIF> flag. Both flags are reset by writing
a 1 to the GIF register’s <TSOIF> flag.

A 4-bit prescaler is provided for the counter. It is the time stamp counter prescaler
register TSP that stores the value to be reloaded into this prescaler. After a reset, the
TSP register is set to 0, so a value 0 is loaded into the prescaler. The TSC counter’s
count-up period, TTSC, is shown below.
TTSC = TBIT × (<TSP3:0> + 1)

TMP95CS54

2005-05-10 95CS54-195

Time stamp counter prescaler register (TSP)

To ensure that the value of the time stamp counter will not change during a write cycle
to the mailbox, there is a hold register is implemented. When a message has been
successfully transmitted or received, the counter value is copied to this register, from
which it is written to the mailbox. The message is valid for the receiver if there is no
error in it until the last but one bit of end of frame. The transmission is successful for the
transmitter if there is no error until the last bit of end of frame. (Refer to the CAN
version 2.0B)

Figure 3.11.4 Time Stamp Counter

Time Stamp Counter Prescaler Register
TSP<TSP3:0>

Prescaler
(4 bits)

Time Stamp Counter Register
TSC<TSC15:0>

Time Stamp Counter Hold Register
(16 bits)

Read/Write

Read/Write

Load

CPU

CPU

CAN bus bit clock

Transmission successful
Reception successful

Hardware reset
Software reset

Hardware reset
Software reset
Entering sleep mode
Entering configuration mode
Write to TSP register

Re-Load value

Count-up clock

Mailbox RAM

Clear

Clear

Clear

TMP95CS54

2005-05-10 95CS54-196

(7) Status registers

Global status register (GSR)

MsglnSlot: Message In Slot
Indicates a message in the transmit buffer.
0000: Message in mailbox 0
0001: Message in mailbox 1

1110: Message in mailbox 14
1111: There is no message in the transmit buffer.

RM: Receive Mode
0: The CAN controller is not receiving a message.
1: The CAN controller is receiving a message.

TM: Transmit Mode
0: The CAN controller is not transmitting a message.
1: The CAN controller is transmitting a message.

CCE: Change Configuration Enable
0: The CAN controller is not in the configuration mode. (Normal operation)
1: The CAN controller is in the configuration mode.

SMA: Sleep Mode Acknowledge
0: The CAN controller is not in the sleep mode. (Normal operation)
1: The CAN controller is in the sleep mode.

HMA: Halt Mode Acknowledge
0: The CAN controller is not in the halt mode. (Normal operation)
1: The CAN controller is in the halt mode.

TSO: Time Stamp Overflow Flag
0: There is no overflow in the time stamp counter.
1: The time stamp counter has overflowed at least once after this bit was

cleared.
To clear this bit, clear the <TSOIF> bit of the GIF register.

TMP95CS54

2005-05-10 95CS54-197

BO: Bus-Off Status
0: The CAN controller is in the bus-on status. (Normal operation)
1: The CAN controller is in the bus-off status.

The CAN bus is placed in the off state if an error on the bus occurs so
frequently that the transmit error counter TEC reaches the limit of 256.
When the bus is in this state, no message can be transmitted or received.
Also, when in this state, the error counter is undefined.
The CAN controller goes to a bus-on-state automatically after a bus-off
recover sequence.

EP: Error Passive Status
0: The CAN controller is in the error active mode.
 The values of both transmit error counter TEC and receive error counter

REC are less than 128.
1: The CAN controller is in the error passive mode.
 Either one of or both the transmit error counter TEC and the receive error

counter REC have reached the error passive status of 128.

EW: Warning Status
0: The values of both the transmit error counter TEC and the receive error

counter REC are less than or equal to 96.
1: At least one of the transmit error counter TEC and the receive error counter

REC is greater than 96 and has reached the warning level.
CAN error counter register (CEC)

The CAN controller has two error counters: receive error counter REC and transmit

error counter TEC. The values of these counters can be read by the CPU. A write access
to the error counters is only possible in the test error mode, at the same time as and with
the same value of the lower 8 bit (<TSTERR> bit in MCR register is set).

These error counters are incremented or decremented according to CAN version 2.0B.

TMP95CS54

2005-05-10 95CS54-198

The controller enters the following three states depending on the values of REC and
TEC.

(1) Error active state (TEC < 128 and REC < 128)
The state where an error has hardly occurrs.
The CAN controller is in an error active state after reset release.
When an error is detected, an active error flag is transmitted.

(2) Error passive state (TEC ≥ 128 or REC ≥128)
The state where many errors have occurred.
When an error is detected, a passive error flag is transmitted.

(3) Bus-off state (TEC ≥ 256)
The CAN controller cannot perform message transmission to and reception from
the CAN bus.

The REC counter is not incremented beyond the error passive limit (128). If a message
is received correctly when REC = 128, the counter is set to a value between 119 and 127
back again. The REC count becomes indeterminate when a bus-off-state is reached.

A CAN controller which has changed to the bus-off state will automatically enter error
active state if 11 continuous recessive bits are detected 128 times on the CAN bus. All
internal flags are reset and the error counters are cleared. The configuration registers
retain the programmed values. During bus-off, the values of the error counters are
indeterminate.

When the CAN controller enters the configuration mode (see 3.11.4 (1) Configuration
mode), the error counters will be cleared.

TMP95CS54

2005-05-10 95CS54-199

(8) Interrupt control registers
The CAN controller has the following interrupt sources:

• Transmit interrupt
When a message has been transmitted successfully

• Receive interrupt
When a message has been received successfully

• Remote frame pending interrupt
When a remote frame is received

• Wake-up interrupt
When the CAN controller is awakened from sleep mode

• Receive message lost interrupt
When a receive message is lost

• Time stamp counter overflow interrupt
When the time stamp counter has overflowed

• Bus off interrupt
When the CAN controller enters the bus-off mode

• Error passive interrupt
When the CAN controller enters the error passive mode

• Warning level interrupt
When at least one of the two error counters is greater than 96 and has reached the
warning level

These interrupt sources are divided into three groups:

• Receive interrupt (INTCR)

• Transmit interrupt (INTCT)

• Global interrupt (INTCG)
There is one interrupt output line for each group. INTCR is dedicated to receive

interrupts, INTCT is dedicated to transmit interrupts and INTCG to the global
interrupts.

TMP95CS54

2005-05-10 95CS54-200

Global interrupt flag register (GIF)

Each bit in this register is set when the corresponding global interrupt condition
occurs. If when a global interrupt flag is set the global interrupt mask register GIM has
its corresponding bit set (interrupt enabled), a global interrupt pulse INTCG is
generated. Even if a second interrupt for the same interrupt cause occurs before this
global interrupt flag is cleared, no other global interrupt pulse INTCG is generated. If an
interrupt for some other interrupt cause occurs and another global interrupt flag
corresponding to it is set, a global interrupt pulse INTCG is generated. If when a global
interrupt flag is cleared some other flag remains set, a new global interrupt pulse
INTCG is generated.

Each bit in this register that has been set is cleared by writing a 1 from the CPU.
Writing a 0 has no effect.

RFPF: Remote Frame Pending Flag
0: No remote frame has been received.
1: A remote frame has been received.

WUIF: Wake Up Interrupt Flag
0: The CAN controller is in sleep mode or normal operating normally.
1: The CAN controller has been awakened from the sleep mode.

RMLIF: Receive Message Lost Interrupt Flag
0: No receive message has been lost.
1: For at least one of the receive mailboxes, a receive message lost has been

occurred.
At least one of the bits in the RML register is set..

TSOIF: Time Stamp Counter Overflow Interrupt Flag
0: There have been no overflows of the time stamp counter since this bit has been

cleared.
1: There was at least one overflow of the time stamp counter since this bit has been

cleared.

TMP95CS54

2005-05-10 95CS54-201

BOIF: Bus-off Interrupt Flag
0: The CAN controller is in the bus-on mode.
1: The CAN controller is in the bus-off mode.

EPIF: Error Passive Interrupt Flag
0: The CAN controller is in the error active mode.
1: The CAN controller is in the error passive mode.

WLIF: Warning Level Interrupt Flag
0: Neither of the two error counters have reached the warning level.
1: At least one of the two error counters has reached the warning level.

Note: Error counter level detection (warning level, error passive, bus off) occurs only one time. After
<BOIF>,<EPIF>, or <WLIF> is cleared, even if its factor is set, its flag is never set again.

Global interrupt mask register (GIM)

Note)

 Note: Write to 0

This register controls generation of global interrupts by enabling or disabling them
according to each interrupt flag in the global interrupt flag register GIF. If a GIM
register bit for a global interrupt is set (= 1) the global interrupt is enabled, so that it is
generated when the corresponding interrupt flag is set ; if a GIM register bit is 0 the
global interrupt is disabled, so that it is not generated. After reset, all bits in this
register are cleared, thereby disabling global interrupts.

TMP95CS54

2005-05-10 95CS54-202

Mailbox interrupts
Separate interrupt outputs are provided for mailbox interrupts independently of

global interrupts. These include mailbox transmit interrupt INTCT and mailbox receive
interrupt INTCR, that depend on mailbox settings. A mailbox transmit interrupt flag
register MBTIF is provided for mailbox transmit interrupts, and a mailbox receive
interrupt flag register MBRIF is provided for mailbox receive interrupts. In addition,
there is a mailbox interrupt mask register MBIM that enables or disables each mailbox
interrupt.

Mailbox interrupt mask register (MBIM)

Each bit corresponds to mailboxes 0 through 15.
The MBIM register settings determine whether to enable or disable each mailbox

interrupt.
If a bit in the MBIM register is 0, the interrupt generation for the corresponding

mailbox is disabled.
If a bit in the MBIM register is 1, the interrupt generation for the corresponding

mailbox is enabled.

TMP95CS54

2005-05-10 95CS54-203

Mailbox transmit interrupt flag register (MBTIF)

This register is provided for mailbox transmit interrupts. Each bit in this register
corresponds to mailboxes 0 through 15. The interrupt flag for mailbox 15, bit
<MBTIF15> flag, is nonexistent because mailbox 15 is a receive-only mailbox. If mailbox
“n” is set for receive, the corresponding interrupt flag in this register, the <MBTIFn>
flag, will always be read as 0.

When a message in mailbox “n” has been transmitted successfully and the
corresponding interrupt mask bit, bit <MBIMn>, is 1 (interrupt enabled), the
<MBTIFn> flag will be set. If no other bit has been set in the MBTIF register, INTCT
pulse will be generated.

If for any mailbox, the mask bit in the MBIM register is 0, the transmit interrupt flag
in The MBTIF register will not be set and no transmit interrupt pulse INTCT will be
generated.

Information about successful transmission can be read from the TA register.
If one or more transmit interrupt flags have been set in the MBTIF register and

another interrupt condition has occurred no interrupt will be generated, but the
corresponding flag in the MBTIF register will be set.

If when a mailbox transmit interrupt flag is cleared there is some other interrupt flag
that remains set, a mailbox transmit interrupt pulse INTCT will be generated. The
interrupt flags in the MBTIF register will be cleared by writing a 1 from the CPU.
Writing a 0 has no effect.

Note that interrupt flags in the MBTIF register must be confirmed as 1 (active), before
clearing.

TMP95CS54

2005-05-10 95CS54-204

Mailbox receive interrupt flag register (MBRIF)

This register is provided for mailbox receive interrupts. Each bit in this register
corresponds to mailboxes 0 through 15. If mailbox “n” is set for transmit, the
corresponding interrupt flag in this register, the <MBRIFn> flag, will always be read as
0.

When the system has finished receiving a message in mailbox “n” and the
corresponding interrupt mask bit, bit <MBIMn>, is 1 (interrupt enabled), the
<MBRIFn> flag will be set. If no other bit was set before in MBRIF register, INTCR
pulse will be generated.

If for a mailbox the mask bit in MBIM register is 0, the receive interrupt flag in
MBRIF register will not be set and no receive interrupt pulse INTCR will be generated.

The information about a successful reception could be read from the RMP register
respectively.

If one or more receive interrupt flags have been set in MBRIF register and another
interrupt condition has occurred no interrupt will be generated, but the corresponding
flag in MBRIF register will be set.

If when a mailbox receive interrupt flag is cleared there is some other interrupt flag
that remains set, a mailbox receive interrupt pulse INTCR will be generated. The
interrupt flags in MBRIF register will be cleared by writing a 1 from the CPU. Writing a
0 has no effect.

Note that interrupt flags in the MBRIF register is must be confirmed as 1 (active),
before clearing

TMP95CS54

2005-05-10 95CS54-205

3.11.4 Description of mode

(1) Configuration mode
The CAN controller must be initialized (set the bit configuration registers BCR1 and

BCR2) before activation. The BCR1 and BCR2 registers can only be modified when the
module is in the configuration mode. After reset, the configuration mode is active and
the <CCR> bit of the MCR register and the <CCE> bit of the GSR register are set to 1.
The CAN controller can be set to the normal operation mode by writing a 0 to the <CCR>
bit. After leaving the configuration mode, the <CCE> bit will be set to 0 and the
power-up sequence will start. The power-up sequence consists of detecting eleven
consecutive recessive bits on the CAN bus line. After the power-up sequence, the CAN
controller is bus-on and ready for operation.

When the <CCR> bit is set to 1, the CAN controller will enter the configuration mode
from the normal operation mode. After the CAN controller has entered the configuration
mode, the <CCE> bit will be set to 1. See also the flowchart in Figure 3.11.5 Flowchart of
CAN Initialization. On entering the configuration mode, the error counter CEC, the time
stamp counter TSC and the time stamp hold register will be cleared.

Figure 3.11.5 Flowchart of CAN initialization

TMP95CS54

2005-05-10 95CS54-206

(2) Sleep mode
The sleep mode will be requested by writing 1 to the <SMR> bit of the MCR register.

When the CAN controller enters the sleep mode, the status bit <SMA> of the GSR
register will be set to 1.

During the sleep mode the clock of the CAN controller is switched off. Only the wake
up logic will be active. The read value of the GSR register will be F040H, this means
there is no message in transmit buffer and the sleep mode is active (the <SMA> bit is set
to 1). Read accesses to all other registers will deliver the value 0000H and write accesses
to all registers other than the MCR register will be denied.

The CAN controller leaves the sleep mode if a write accesses to the MCR register has
been detected or there is any bus activity detected on the CAN bus line (with <WUBA> =
1). The CAN controller then begins its power-up sequence. The CAN controller waits
until detecting 11 consecutive recessive bits on the RX input line and goes to bus active
after them. The first message that initiates the bus activity cannot be received.

In sleep mode, the CAN error counters and all “transmission request set bits <TRSn>”
will be cleared. After leaving the sleep mode, the <SMR> bit in the MCR register and the
<SMA> bit in the GSR register will be cleared.

If the CAN controller is transmitting a message when the <SMR> bit is set, the CAN
controller will not switch to the sleep mode immediately. It will continue until a
successful transmission or after losing arbitration, or until a successful reception or an
error condition occurs on the CAN bus line. So the CAN controller initiate no error
condition on the CAN bus line.

(3) Halt mode

The halt mode will be requested by writing a 1 to the <HMR> bit of the MCR register.
When the CAN controller enters the halt mode, the <HMA> bit of the GSR register will
be set. During the halt mode the CAN controller does not send or receive any messages.
The CAN controller is still active on the CAN bus line. Error Flags and Acknowledge
Flags will be sent. The CAN controller leaves the halt mode if the <HMR> bit is reset to
0.

If the CAN controller is transmitting a message when the <HMR> bit is set, the
transmission will be continue until successful or until a lost arbitration is detected. By
this means the CAN controller will initiate no error condition on the CAN bus line.

(4) Test loopback mode

In this mode, the CAN controller can receive its own transmitted message and will
generate its own acknowledge bit. No other CAN controller is necessary for this
operation. The only supposition is that the RX and TX lines must be connected to a CAN
bus transceiver or directly together.

In the testloop back mode, the CAN controller can transmit a message from one
mailbox and receive it in another mailbox. The set-up for the mailboxes is the same as in
the normal operation mode.

The testloop back mode can only be enabled or disabled in the configuration mode.
Figure 3.11.6 shows the flowchart of the test loopback mode and the test error mode

set-up.

TMP95CS54

2005-05-10 95CS54-207

(5) Test error mode
The error counters can only be written when the CAN controller is in the test error

mode.
When the CAN controller is in the test error mode both error counters will be written

at the same time with the same value (lower 8 bits). The maximum value that can be
written into the error counters is 255. Thus, the error counter value of 256 which forces
the CAN controller into the bus-off mode can not be written into the error counters.

The test error mode can only be enabled or disabled in the configuration mode.
Figure 3.11.6 shows the flowchart of the test loopback mode and the test error mode

set-up.

Figure 3.11.6 Flowchart of the test loopback mode and the test error mode Set-up

TMP95CS54

2005-05-10 95CS54-208

3.11.5 Functional Description

(1) Transmit mode
Figure 3.11.7 shows the flowchart of message transmit using the transmit interrupt

INTCT.
It is also possible to use polling instead of the interrupt. In this case, “Transmit

interrupt generated?” is replaced by “<TAn> = 1?”. “Set <MBIMn> to 1” and “Clear
<MBTIFn>” must be removed from the flow.

Figure 3.11.7 Flowchart of message transmission

TMP95CS54

2005-05-10 95CS54-209

(2) Receive mode
If the CAN controller has received a message from the CAN bus line, this message will

be located in the receive buffer. The identifier of the message stored in the receive buffer
will be compared to the identifier of the mailbox. If <GAME>/<LAME> bit is set, the
global/local acceptance mask register GAM/LAM will be used. If there is one of the
following conditions found, no further compare will be performed.
• Data frame and a matching identifier in a mail box configured as receive
• Remote frame and matching identifier in a mailbox configured as receive

The minimal time to save a next received message after the <RMP> bit set depends on
the configured bit timing. In the case of the data length code = 0, the minimal time is as
follows.

• Standard format: 47 bit times − 16 fSYS
• Extended format: 67 bit times − 16 fSYS

In case of the global/local acceptance mask register GAM/LAM is used, the minimal
time is as follows.

• Standard format: 17 bit times − 16 fSYS
• Extended format: 36 bit times − 16 fSYS

TMP95CS54

2005-05-10 95CS54-210

[1] Data frames
Figure 3.11.8 shows one example of the flowchart of message reception using the

receive interrupt INTCR.
It is also possible to use polling instead of the interrupt. In this case, “Receive

interrupt generated?” is replaced by “<RMPn> = 1?”. “Set <MBIMn> to 1” and “Clear
<MBRIFn>” must be removed from the flow.

Note1: Be sure to check <RMPn> and <MBRIFn>

Note2: If “Clear <RMPn>” is executed, and mailbox “n” receives a message before “Clear <MBRIFn>” is also
executed, then it is possible that <RMPn> will be set at 1 (<MBRIFn>=0) depending.

Figure 3.11.8 Flowchart of message reception (example)

Set up for message
Reception

Receiving message

End of setup

Set <MCn> to 0

Set <MDn> to 1

Setup ID, <IDE>
to mailbox “n”

If necessary,
Set <LAME>/<GAME>

Setup LAM/GAM

Set <MBIMn> to 1

Set <MCn> to 1

Check
<RMPn> and <MBRIFn>

(Note1)

Read out the mailbox”n”

Message lost
(The data that was read out the

mailbox ”n” was invalid.)

Clear <RMPn>
Clear <RMLn>

<RMLn>=1？

Clear <RMPn>

New setup?

Clear <MBRIFn>

RETI

Receive interrupt
generated?

Yes No

No

Yes

Yes

No

(Note2)

(Note2)

(Note2)

TMP95CS54

2005-05-10 95CS54-211

[2] Remote frame
Figure 3.11.9 shows are example of the flowchart of remote frame reception &

transmission by using the global interrupt.

Figure 3.11.9 Flowchart of remote frame reception & message transmission (Example)

TMP95CS54

2005-05-10 95CS54-212

3.12 Serial Expansion Interface (SEI)

3.12.1 Overview

The SEI is one of the serial interfaces built into the TMP95CS54, which allows the
TMP95CS54 and peripheral devices to be interconnected. The TMP95CS54 incorporates one
channel of this serial expansion interface.

(1) Features

• The master outputs the shift clock only during data transfer
• The clock polarity and phase are programmable
• The data are 8 bits long
• Either MSB first or LSB first can be selected
• Transfer rate: 4 Mbps, 2 Mbps, 1 Mbps or 250 Kbps (when operating at 24 MHz)
• End of data transfer flag
• Write collision flag

Note: There is no Mode fault detection function. Set P6FC<P60F>, which is the enable / disable bit for
Mode fault detection, to “1” to disable the Mode fault detection function.

TMP95CS54

2005-05-10 95CS54-213

3.12.2 Signal Signal Lines

There are four signal lines (SCLK, MISO, MOSI, SS) available in both master and slave
modes. These signal lines are detailed below.

(1) SCLK

The SCLK pin functions as an output pin when the SEI is set for master and functions
as an input pin when the SEI is set for slave.

When the SEI is set for master, the SCLK signal is supplied by the internal SEI clock
generation circuit. When the master starts transferring data, eight clock cycles are
automatically output at the SCLK pin. The clock rate is determined by transfer rate
select bit <SER1:0> of SEI control register SECR. The transfer rate select bit <SER1:0>
is invalid in the slave.

When the SEI is set for slave, the SCLK pin functions as an input pin, in which case
the SCLK signal from the master synchronizes data transfers between the master and
slave. The slave device ignores the SCLK signal if the slave select (SS) pin is high.

In both master and slave SEI devices, data is shifted in or out at each rising or falling
edge of the SCLK signal and is sampled at the opposite edge. The edge polarity is set by
<CPOL>, <CPHA> bit of the SEI control register SECR. For the timing, refer to Figure
3.12.1 and 3.12.2.

Both master and slave SEI devices must be set at same the <CPOL> and <CPHA> bit
setting of the SECR register and operate at same timing mode.
Note: Noise in the SCLK input to the slave device may cause the device to operate

erratically.

Figure 3.12.1 SEI Transfer Format of <CPHA> = 0 (MSB First)

Figure 3.12.2 SEI Transfer Format of <CPHA> = 1 (MSB First)

TMP95CS54

2005-05-10 95CS54-214

(2) MISO/MOSI
The MISO and MOSI pins are used in sending and receiving serial data.
When the SEI is set for master, MISO serves as a data input pin and MOSI serves as a

data output pin.
When the SEI is set for slave, MISO serves as a data output pin and MOSI serves as a

data input pin.
However, the MISO pins are placed in the high-impedance state when the master is

not selected, i.e. when the SS pin input is “High”.
All SCLK pins ar connected together, as are all MOSI and all MISO pins.. Refer to

“figure 3.12.4 Configuration of SEI system”. In this configuration, one SEI device
operates as the master and all other SEI devices operate as slaves. The transfer clock
and the data are sent from the SCLK and MOSI pins of the master device to the
corresponding pins of the slave devices. One selected slave device can send data from its
MISO pin to the corresponding pin of the master device.

The SCLK, MISO and MOSI pins can be set up to function as programmable
open-drain pins.

(3) SS

The SS pin is used to enable the various transfer and receive functions of the SEI
master and slave devices . Data transmission from the slave device’s MISO pin is
enabled when the SS pin is low. Make sure the SS pin is fixed low during data
transmission. When the SS pin is high, the slave device ignores the SCLK clock and its
MISO output pin is placed in the high-impedance state.

The SS pin must be fixed “Low” during serial data transfer and after completing the
data transfer, it must be changed to “High”. When the SS pin is low and the data is
written SEI data register SEDR, write collision occurs, and the <WCOL> flag of the SEI
status register SESR is set.

TMP95CS54

2005-05-10 95CS54-215

3.12.3 Functional Description

Figure 3.12.3 shows master-to-slave connections via the SEI.
When data is sent from the MOSI pin of the master device to the corresponding pin of the

slave device, the data is sent back from the MISO pin of the slave device to the corresponding
pin of the master device.

This means that data is communicated in full-duplex mode, where data output and data
input are synchronized by the same clock signal. After a transfer, the data transmitted from
the 8-bit shift register are replaced with receive data. The transmit-empty and the
receive-full status are not provided separately and completion of data transfer is indicated by
one status flag, <SEF>, of the SEI status register SESR.

The master device is the SCLK output. The level of SCLK at idling can be determined by
the <CPOL> bit of the SECR register. When writing data to the SEI data register SEDR
(shift register), 8 clocks are output from the SCLK pin and the 8 bit data are output from the
MOSI pin, then the SEI device is back to the state of idling.

The slave device can be synchronized with the master by inputting “Low” level to SS pin
and inputting clock from the SCLK pin.

The data from master receives from the MOSI pin of slave and stores 8 bits shift register
and subsequently transfers to read-buffer. 8-bit data where located in shift register of slave
is synchronized with the SCLK clock from master and outputs from the MISO pin
continuously.

Figure 3.12.3 Connection between Master and Slave in SEI (In this Example,
Data is Sent the LSB First, for Both Master and Slave.)

Figure 3.12.4 shows a configuration of the SEI system.
Port, an SEI output, can be set for open-drain output programmable. Therefore, this

port can be connected to multiple devices.

Figure 3.12.4 Configuration of SEI System (comprising one master and two slaves)

TMP95CS54

2005-05-10 95CS54-216

3.12.4 SEI Registers

The SEI contains three registers - the SEI control register SECR, the SEI status register
SESR, and the SEI data register SEDR.

Each of these registers is detailed below.
Note: When accessing the SEI registers, at least 4 states must be inserted between SEI

register write and SEI register read in the following cases. Please remember this
when programming.

• SECR register read after SECR register write
• SEDR register read after SEDR register write
• SESR register read after SEDR register write

(1) SEI control register (SECR)

Refer to Table 3.12.1

Bit 7, SEIE
This is the SEI interrupt enable bit. When this bit is set, SEI interrupts are

enabled, in which case an SEI interrupt pulse is generated when the SEI status
register SESR’s <SEF> flag is set.

When the <SEIE> bit is reset, SEI interrupts are masked, and SEI interrupt
pulse is not generated, but this does not mean that the <SEF> flag is disabled from
being set. When setting the <SEIE> bit and the <SEF> flag is already set, an SEI
interrupt pulse is generated at the time.

Even if starting new transfer and completing the transfer before the <SEF> bit is
cleared, the <SEF> flag is set and SEI interrupt pulse is not generated. Before
starting next transfer, clear the <SEF> flag.

Bit 6, SEE

This is the SEI enable bit. The SEI function is enabled when this bit is set.
Interface with externral SEI bus is also enabled. The <SEE> bit is cleared by reset.

Before using the SEI function, make sure that the port 6 function is set for the
SEI function.

Note: Wait until the transfer in progress is completed before you clear the <SEE>
bit to stop the SEI operation. If the SEI is stopped in the middle of transfer,
after enabling the SEI again the remaining part of the byte will be
transferred.

TMP95CS54

2005-05-10 95CS54-217

Bit 5, BOS
This is a bit order select bit. This bit order selection bit <BOS> selects whether the

data to be transferred is MSB first or LSB first.
0: Transferred the MSB first
1: Transferred the LSB first

Bit 4, MSTR
This is a master select bit. The master selection bit <MSTR> sets the SEI device

in either the master or the slave.
0: Slave
1: Master

Bit 3, CPOL
This is a clock polarity select bit. It controls the steady-state level of the master

clock pin SCLK when no data is being transferred (idle state). Refer to Figure 3.12.1
and 3.12.2.

0: Active “H” level clock is selected. The SECLK clock is at idle “L” level when no
data is being transferred.
1: Active “L” level clock is selected. The SECLK clock is at idle “H” level when

no data is being transferred.
The <CPOL> bit effects on the both devices, master and slave. Putting the

<CPHA> bit together, the clock necessary for the transfer between master and slave
can be created.

Bit 2, CPHA

This is a clock phase select bit. It controls the relationship between the data on the
MISO and MOSI pins and the clock on the SCLK pin. Refer to Figure 3.12.1 and
3.12.2.

The <CPHA> bit effects on the both devices, master and slave. Putting the
<CPOL> bit together, the clock necessary for the transfer between master and slave
can be created.

Bits 1, 0, SER1, SER0
These bits select a data transfer rate from the following four. This setting is

effective for only the master and has no effect for slaves.
 Table 3.12.1 SEI transfer bit rate

Internal SEI clock: external clock divided by 3

TMP95CS54

2005-05-10 95CS54-218

(2) SEI status register (SESR)

Bit 7, SEF
This is an SEI data transfer complete flag. It is set when data transfer by the SEI

is completed. An SEI interrupt pulse is generated when this flag is set while the
<SEIE> bit of the SEI control register SECR is set.

The received data is forwarded from the shift register to the receive buffer during
a clock cycle where the <SEF> flag is set. The content of this receive buffer can be
read out by reading the SEI data register SEDR.

Data transfer begins when the master writes to the SEDR register. The <SEF>
flag is automatically reset by reading or writing to the SEDR register after reading
the SESR register.

In case of the master, when you renew the data, always confirm that the <SEF>
flag has been cleared before writing to the SEDR register.

In case of the slave, always confirm that the <SEF> flag has been cleared in the
same procedure before completing next data transfer.

Bit 6, WCOL
This is a write collision flag. This flag is automatically set by a write to the SEDR

register during data transfer. When in transmit operation, the SEDR register is not
a dual-buffer structure, so that data is written directly to the shift register by a
write to the SEDR register. Since data transfer is executed without interruption, a
write to the SEDR register performed during data transfer has no effect. When a
write collision occurs, the <WCOL> flag is set, but no SEI interrupt is generated.
The <WCOL> flag only serves as a status flag and has no other functions.

The <WCOL> flag is automatically reset by reading or writing to the SEDR
register after reading the SESR register. Note the following points in resetting of the
<WCOL> flag by writing to the SEDR register. When the writing to the SEDR
register is transferring data, the <WCOL> flag is reset. The writing to the SEDR
register becomes invalid. Do not set the next transfer data by writing to the SEDR
register in order to reset the <WCOL> flag.

Because slaves cannot control the master as it starts transferring data, a write
collision normally occurs in the slaves. Conversely, since the master knows when a
transfer is performed, in no cases does the master cause a write collision. The SEI
logic is designed to detect write collisions in both master and slaves, however.

The transfer period of master is defined that the transfer begins when the master
writes to the SEDR register and completes when the <SEF> flag is set. A write
collision of the master does not effect on the status of SS pin.

The transfer period of the slaves begins when the SS pin is set to “Low”, and the
transfer is completed when the SS pin is set to “High”. If writing the SEDR register
while SS pin is in the “Low”, a write collision occurs and the <WCOL> flag is set. As
long as the SS pin in slave mode is “Low” a write to the SEDR register will not
change the data. In the master, the SS pin of the slaves must be set to “High”
between each byte.

TMP95CS54

2005-05-10 95CS54-219

When the transfer is completed, the <SEF> flag is set, but when the SS pin is still
in the “Low”, the slaves cannot write the SEDR register. If processing of the master
is delayed, the SS pin may be in “Low” for a longer time than the slaves was
expected. To avoid this trouble, the slaves should read the condition of port 60 pin
before writing the SEDR register.

Bit 5 to 0 (unused)

TMP95CS54

2005-05-10 95CS54-220

(3) SEI data register (SEDR)

SEI Data Register

 7 6 5 4 3 2 1 0
Bit symbol SED7 SED6 SED5 SED4 SED3 SED2 SED1 SED0

(for transmission)
Read/Write W
After reset 0 0 0 0 0 0 0 0

 SEDR

 (009FH)
 7 6 5 4 3 2 1 0

Bit symbol SED7 SED6 SED5 SED4 SED3 SED2 SED1 SED0
(for receiving)

Read/Write R
 After reset 0 0 0 0 0 0 0 0

Note: SEDR is not able to read-modify-write.

This register is used to transmit and receive data. A data transfer is initiated by only a

write to this register, which is effective in only the master. In slaves, transfer is not
started even by writing to this register. When one byte of transfer is completed, the
<SEF> flag is set in both master and slave. The <SEF> flag is reset by reading or writing
to the SEDR register after reading the SESR register.

The received data is transferred from the shift register to the receive buffer during a
clock cycle where the <SEF> flag is set. The content of this receive buffer can be read out
by reading the SEDR register.

(4) Open drain enable register (ODE)

TMP95CS54

2005-05-10 95CS54-221

3.13 Watchdog Timer (Runaway Detection Timer)

The TMP95CS54 incorporates a watchdog timer for detecting a runaway (out-of-control)
condition.

The watchdog timer (WDT) returns the CPU to its normal state when it detects the start of a
CPU runaway due to, for example, noise. When the watchdog timer detects a runaway, it
generates an INTWD (non-maskable) interrupt to notify the CPU of the condition.

In addition, the runaway detection result can be used for a forcible reset of the microcontroller
itself. The watchdog timer consists of a 22-step binary counter with 2/fc as the input clock, and a
control block. Figure 3.13.1 is a block diagram of the watchdog timer (WDT).

Figure 3.13.1 Watchdog Timer Block Diagram

TMP95CS54

2005-05-10 95CS54-222

3.13.1 Watchdog timer registers

The watchdog timer (WDT) is controlled by two control registers. Figure 3.13.2 shows
watchdog timer mode control register WDMOD and watchdog timer control register WDCR.

Figure 3.13.2 Watchdog Timer Related Registers

TMP95CS54

2005-05-10 95CS54-223

(1) Watchdog timer mode control register (WDMOD)

[1] Setting watchdog timer detection time <WDTP1:0>
This 2-bit register is used to set the watchdog timer interrupt time for detecting a

runaway. After a reset, WDMOD<WDTP1:0> is set to 00, which sets a detection time
of 216/fc [s]. (The number of states is approximately 32,768.)

[2] Watchdog timer enable/disable control <WDTE>
After a reset, WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.
Disabling the watchdog timer requires both clearing this bit to 0 and writing the

disable code B1H in watchdog timer control register WDCR. This two-step process is
an insurance against an out-of-control system disabling the watchdog timer.

To return from disable state to enable state, simply set <WDTE> to 1.
[3] Runaway detection time internal reset control <RESCR>

This register determines whether or not the watchdog timer resets itself on
detection of a runaway. Setting WDMOD<RESCR> to 1 forcibly resets the
microcontroller after detection of a runaway. On reset, <RESCR> is initialized to 0.
Therefore, detection of a runaway will not trigger an internal reset. In such a case,
the watchdog timer holds the runaway detection state until the clear code is written
to WDCR.

(2) Watchdog timer control register WDCR
This register is used to disable the watchdog timer functions and to clear the binary

counter.
• Disable control

After clearing WDMOD<WDTE> to 0, write the disable code B1H to WDCR to
disable the watchdog timer.

• Watchdog timer clear control
Writing clear code 4EH to WDCR clears the binary counter and resumes the

count.

TMP95CS54

2005-05-10 95CS54-224

3.13.2 Description of operation

After the detection time set by the watchdog timer mode register WDMOD<WDTP1:0> is
reached, the watchdog timer generates interrupt INTWD. The watchdog timer detection
time can be selected from 216f/c, 218f/c, 220f/c, and 222f/c. The binary counter for the watchdog
timer must be cleared to 0 by software (by instruction) before the INTWD interrupt is
generated. If the CPU malfunctions (is out of control) due to factors such as noise, and does
not execute an instruction to clear the binary counter, the binary counter overflows and
generates interrupt INTWD. The CPU interprets the INTWD interrupt as a malfunction
(runaway condition) detection signal, which can be used to start program-based
anti-malfunction measures to return the system to normal (normal mode).

Runaway detection can also be used for an internal reset (reset mode). To perform an
internal reset by runaway detection, first set WDMOD<RESCR> to 1.

The INTWD interrupt generation cycle is twice the watchdog timer detection time selected
by <WDTP1:0>.

Figure 3.13.3 Normal Mode

Figure 3.13.4 Reset Mode

The watchdog timer operates during RUN and IDLE2 modes. While an INTWD interrupt
does not occur during IDLE2 mode, to prevent an INTWD interrupt being triggered
immediately after the halt release, disable the watchdog timer. The watchdog timer is halted
in IDLE1 and STOP modes.

As the binary counter continues counting during bus release (when BUSAK goes low), set
the runaway detection time in accordance with the bus release time. If the watchdog timer
detects a runaway condition during bus release, the watchdog timer generates an INTWD
interrupt immediately after the bus release.

The watchdog timer starts operating immediately after reset release.

TMP95CS54

2005-05-10 95CS54-225

Example: [1] Clear the binary counter.

 [2] Set the watchdog timer detection time to 218/fc.

 [3] Disable the watchdog timer.

 [4] Select IDLE1 mode.

 [5] Select IDLE2 mode.

 [6] Select STOP mode. (Warm-up time 216/fc)

 Note: X : Don’t care − : No change

TMP95CS54

2005-05-10 95CS54-226

3.14 Bus Release Function

The TMP95CS54 has a bus request pin (BUSRQ , shared with P53) for releasing the bus, and a
bus acknowledge pin (BUSAK , shared with P54). These pins are set by the P5CR and P5FC
registers.

3.14.1 Description of operation

When a low level signal is input to the BUSRQ pin, the TMP95CS54 recognizes a bus
release request. When the current bus cycle terminates, the address bus (A23 to A0) and the
bus control signals (RD, WR , HWR) first go high. Then these signals and the data bus
(D15 to D0) output buffer are set to off, and the BUSAK pin outputs a low signal. This
sequence indicates that the bus is released.

During bus release, TMP95CS54 disables all access to the internal I/O registers, although
internal I/O functions are not affected. Accordingly, the watchdog timer continues to count up
during bus release. When using the bus release function, set the runaway detection time in
accordance with the bus release time.

3.14.2 Pin states when bus is released

Table 3.14.1 shows the pin states when the bus is released.

Table 3.14.1 Pin States at Bus Release

TMP95CS54

2005-05-10 95CS54-227

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

TMP95CS54

2005-05-10 95CS54-228

4.2 DC Electrical Characteristics

Vcc = 4.7 to 5.3 V, Ta = −40 to +85°C (fc = 8 to 24 MHz)

Refer: IDAR definition diagram.

TMP95CS54

2005-05-10 95CS54-229

4.3 AC Electrical Characteristics

Vcc = 4.7 to 5.3 V, Ta = −40 to +85°C

AC measuring conditions

• Output level: High 2.2 V / Low 0.8 V, CL = 50 pF
• Input level: High 2.4 V / Low 0.45 V (D0 to D15)

High 0.8×Vcc / Low 0.2×Vcc (except for D0 to D15)

TMP95CS54

2005-05-10 95CS54-230

(1) Read cycle

(2) Write cycle

TMP95CS54

2005-05-10 95CS54-231

4.4 Serial Channel Timing

(1) I/O interface mode

[1] SCLK input mode

[2] SCLK output mode

(2) UART mode (SCLK0 to 1 external input)

TMP95CS54

2005-05-10 95CS54-232

4.5 AD Conversion Characteristics

4.6 Event Counter (External Input Clocks: TI0, TI4, TI8, TI9, TIA, TIB)

4.7 Interrupt Operation

TMP95CS54

2005-05-10 95CS54-233

4.8 Bus Request/Bus Acknowledge Timing

Note 1: When BUSRQ goes to low level to request bus release, if the current bus cycle is not yet complete
due to a wait, the bus is not released until the wait is completed.

Note 2: The dotted line indicates only that the output buffer is off, not that the signal is at middle level.
Immediately after bus release, the signal level prior to the bus release is held dynamically by the
external load capacitance. Therefore, designs should allow for the fact that when using an external
resistor or similar to fix the signal level while the bus is released, after bus release, a delay occurs
before the signal goes to its fixed level (due to the CR time constant). The internal programmable
pull-up resistor continues to function in accordance with the internal signal level.

TMP95CS54

2005-05-10 95CS54-234

5. List of Special Function Registers (SFR) and the Mailbox RAM
The special function registers (SFR), which control the input/output ports and peripheral

components, are allocated 160 bytes within the 000000H to 00009FH address range and 64 bytes
within the 002300H to 00233FH address range.

The mailbox RAM is allocated 256 bytes within the 002200H to 0022FFH address range.
The registers built into the TMP95CS54 cannot be accessed from outside the TMP95CS54.

(1) Input/output port

(2) Input/output port control

(3) Timer control

(4) Serial channel control

(5) Interrupt control

(6) Watchdog timer control

(7) Bus Width/wait controller

(8) AD converter control

(9) Serial Expansion interface control

(10) CAN controller

Table structure

(Supplement for symbols used in Table)
[1] Read/Write

• R/W : Both readable and writable
• R : Readable
• W : Writable
• *R/W : Read-modify-write (RMW) instructions are prohibited for controlling

ON/OFF of the pull-up resistors.
• R/S : Enable Read/Set (When “1” is written)
• R/C : Enable Read/Clear (When “1” is written)

[2] RMW prohibited

• Read-Modify-Write instructions are prohibited. (Cannot use the following instructions:
EX, ADD, ADC, SUB, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET,
RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD, RRD)

TMP95CS54

2005-05-10 95CS54-235

Table 5.1 List of TMP95CS54 Special Function Register Addresses (1/2)

TMP95CS54

2005-05-10 95CS54-236

Table 5.1 List of TMP95CS54 Special Function Register Addresses (2/2)

(Reserved)
(Reserved)

(Reserved)
(Reserved)

TMP95CS54

2005-05-10 95CS54-237

Table 5.2 List of TMP95CS54 Mailbox RAM Addresses (1/2)

TMP95CS54

2005-05-10 95CS54-238

Table 5.2 List of TMP95CS54 Mailbox RAM Addresses (2/2)

TMP95CS54

2005-05-10 95CS54-239

(1) Input/output ports

AN3/

TMP95CS54

2005-05-10 95CS54-240

(2) Input/output port control (1/2)

TMP95CS54

2005-05-10 95CS54-241

Input/output port control (2/2)

TMP95CS54

2005-05-10 95CS54-242

(3) Timer control (1/4)

TMP95CS54

2005-05-10 95CS54-243

Timer control (2/4)

TMP95CS54

2005-05-10 95CS54-244

Timer control (3/4)

TMP95CS54

2005-05-10 95CS54-245

Timer control (4/4)

TMP95CS54

2005-05-10 95CS54-246

(4) Serial channel control (1/2)

Undefined

Undefined

0

TMP95CS54

2005-05-10 95CS54-247

Serial channel control (2/2)

TMP95CS54

2005-05-10 95CS54-248

(5) Interrupt control (1/3)

TMP95CS54

2005-05-10 95CS54-249

Interrupt control (2/3)

Note 2: As <IRX0C>, <IRX1C> are read-only, an interrupt request cannot be cleared by writing 0 to these
flags.

Note 3: As <ISEM2:0> and <IC2M2:0> are same bits, it can set the identical level only.

TMP95CS54

2005-05-10 95CS54-250

Interrupt control (3/3)

(6) Watchdog timer control

TMP95CS54

2005-05-10 95CS54-251

(7) Bus width/wait controller (1/2)

Address
space
0: Disable
1: Enable

Address
space
0: Disable
1: Enable

Address
space
0: Disable
1: Enable

Address
space
0: Disable
1: Enable

0: 16M
1: Spacifying

address
areas

TMP95CS54

2005-05-10 95CS54-252

Bus width/wait controller (2/2)

(8) AD converter control (1/2)

TMP95CS54

2005-05-10 95CS54-253

AD converter control (2/2)

TMP95CS54

2005-05-10 95CS54-254

(9) Serial expansion interface control

Refer to table 3.12.1

TMP95CS54

2005-05-10 95CS54-255

(10) CAN controller (1/5)

TMP95CS54

2005-05-10 95CS54-256

CAN controller (2/5)

TMP95CS54

2005-05-10 95CS54-257

CAN controller (3/5)

TMP95CS54

2005-05-10 95CS54-258

CAN controller (4/5)

Note)

Note: Fix to 0 necessarily.

TMP95CS54

2005-05-10 95CS54-259

CAN controller (5/5)

TMP95CS54

2005-05-10 95CS54-260

6. Diagram of Equivalent Circuit in Port Block
• Reading circuit diagrams

The TMP95CS54 uses essentially the same gate symbols as the standard CMOS logic IC
(74HCxxx) series.

The following lists the special symbols.
STOP : This symbol sets the HALT mode setting register to STOP mode

(WDMOD<HALTM1:0> = 0, 1). When the CPU executes the HALT instruction,
STOP is active 1.
Note that when the drive enable bit WDMOD<DRVE> is set to 1, STOP
remains at 0.

• The input protection resistor operates in the range of tens to hundreds of ohms.

■ P0 (D0 to D7), P1 (D8 to D15), P2 (A16 to A23), P3 (A8 to A15), P4 (A0 to A7)

■ P50 (RD), P51 (WR)

TMP95CS54

2005-05-10 95CS54-261

■ P52 to 55, P81, P82, P84, P85, P86, P87

■ P56 (INT0)

■ P57 (CLKOUT)

■ P70 (INT1), P72 (INT2), P73 (INT3), P75 (INT4)

TMP95CS54

2005-05-10 95CS54-262

■ P60, P71, P74, P9

■ P61 (MOSI), P62 (MISO), P63 (SCLK)

■ P80 (TxD0), P83 (TxD1)

TMP95CS54

2005-05-10 95CS54-263

■ PA0 to 2 (AN0 to 2), PA4 to 7 (AN4 to 7)

■ PA3 (AN3)

■ NMI

■ CLK

TMP95CS54

2005-05-10 95CS54-264

■ EA

■ 16AM8/

■ RESET

■ X1, X2

■ VREFH, VREFL

TMP95CS54

2005-05-10 95CS54-265

7. Use Precautions and Restrictions

(1) Special Notations and Words

[1] Description of internal I/O registers: Register symbol<bit symbol>
Example: T8RUN<T0RUN> ··· The T0RUN bit of the T8RUN register

[2] Read-modify-write instructions
Instructions which tell the CPU to read the data in memory, manipulate them, then write

them back to memory are called read-modify-write instructions.
Example 1: SET 3, (T8RUN) ··· Sets bit 3 of the T8RUN register.
Example 2: INC 1, (100H) ··· Adds 1 to the data at address 100H.

• TLCS-900 read-modify-write instructions
Conversion instruction
 EX (mem), R
Arithmetic operations
 ADD (mem), R/# ADC (mem), R/#
 SUB (mem), R/# SBC (mem), R/#
 INC #3, (mem) DEC #3, (mem)
Logic operations
 AND (mem), R/# OR (mem), R/#
 XOR (mem), R/#
Bit manipulation
 STCF #3/A, (mem) SET #3, (mem)
 RES #3, (mem) TSET #3, (mem)
 CHG #3, (mem)
Rotate, shift
 RLC (mem) RRC (mem)
 RL (mem) RR (mem)
 SLA (mem) SRA (mem)
 SLL (mem) SRL (mem)
 RLD A, (mem) RRD A, (mem)

[3] One state
The single cycle resulting from dividing the oscillation frequency by 2 is called “one state”.
Example: At oscillation frequency 24 MHz
 2/24 MHz = 83 ns = 1 state

TMP95CS54

2005-05-10 95CS54-266

(2) Use Precautions and Limitations

[1] EA pin, 16ΑΜ8 / pin
This pin is connected to the VCC pin. Do not alter the level while the pin is active.

[2] Warm-up counter
When releasing STOP mode (by interrupt, for example) in a system that uses an external

oscillator, a warm-up time is required until the system clock is output. The warm-up
counter operates during the warm-up time.

[3] Programmable pull-up resistor
The pull-up resistor of a port can only be set to programmable or non-programmable in

input port mode. When using a port as an output port, its pull-up resistor cannot be set to
programmable.

[4] Watchdog timer
As the watchdog timer is enabled after a reset, disable the watchdog timer when it is not

required.
Note that during bus release, the I/O block, including the watchdog timer, still operates.

[5] CPU (Micro DMA)
Only “LDC cr, r” and “LDC r, cr” can write or read data to or from control registers (eg,

transfer source register DMASx) in the CPU.
[6] As this device does not support minimum mode, do not use the MIN instruction.

[7] POP SR instruction
Please execute POP SR instruction during DI condition.

[8] Releasing the HALT mode by requesting an interruption
Usually, interrupts can release all halts status. However the interrupts (=NMI, and

INT0) which can release the HALT mode may not be able to do so if they are input during
the period when the CPU is shifting to the HALT mode (for about 3 clocks of fc) with IDLE1
or STOP mode (RUN and IDLE2 are not applicable to this case). (In this case, an interrupt
request is kept on hold internally)

If another interrupt is generated after it has shifted to HALT mode, halt status can be
released without difficultly. The priority of this interrupt is compared with that of the
interrupt kept on hold internally, and the interrupt with the higher priority is handeled fist
followed by the other interrupt.

