Low Voltage/Low Power

CMOS 16-Bit Microcontrollers TMP93PS40F TMP93PS40DF

1. Outline and Device Characteristics

The TMP93PS40 is OTP type MCU which includes 64-Kbyte One-time PROM. Using the adapter-socket (BM11109 or BM11129), you can write and verify the data for the TMP93PS40.

TMP93PS40 has the same pin-assignment with TMP93CM40/CS40 (Mask ROM type).

Writing the program to Built-in PROM, the TMP93PS40 operates as the same way as the TMP93CS40.

There is a difference in ROM capacity between TMP93PS40 (64 Kbytes) and the TMP93CM40 (32 Kbytes). Please pay attention to the difference of memory maps.

MCU	ROM	RAM	Package	Adapter Socket
TMP93PS40F	OTP 64 Kbytes	2 Kbytes	P-QFP100-1414-0.50	BM11109
TMP93PS40DF	OTF 04 Royles	2 Noytes	P-LQFP100-1414-0.50F	BM11129

030619EBP1

• The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause less of human life or hadily intereded Hange." Haistended Hange include standard usages. failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk

 The products described in this document are subject to the foreign exchange and foreign trade laws.
 TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

93PS40-1 2004-02-10

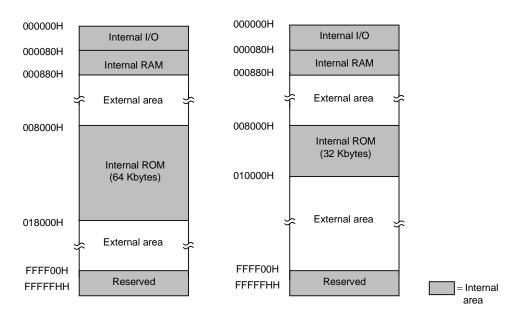


Figure 1.1 Memory Map of TMP93CS40/PS40

Figure 1.2 Memory Map of TMP93CM40

93PS40-2 2004-02-10

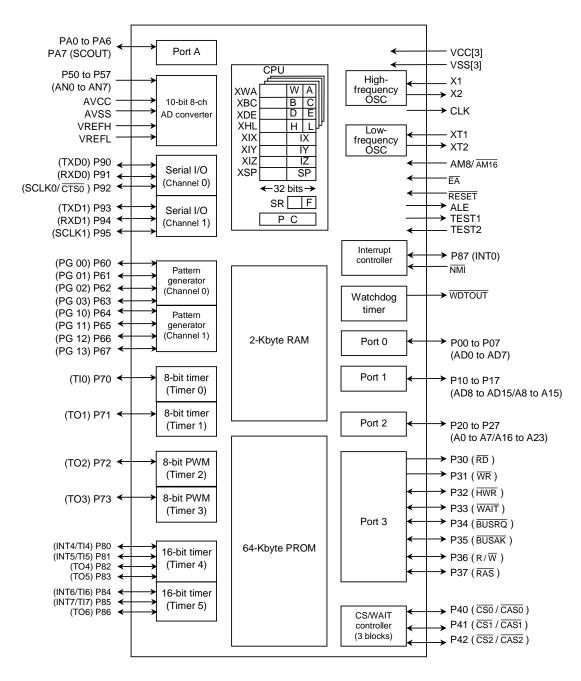


Figure 1.3 TMP93PS40 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for TMP93PS40, their name and outline functions are described below.

2.1 Pin Assignment

Figure 2.1.1 shows pin assignment of TMP93PS40.

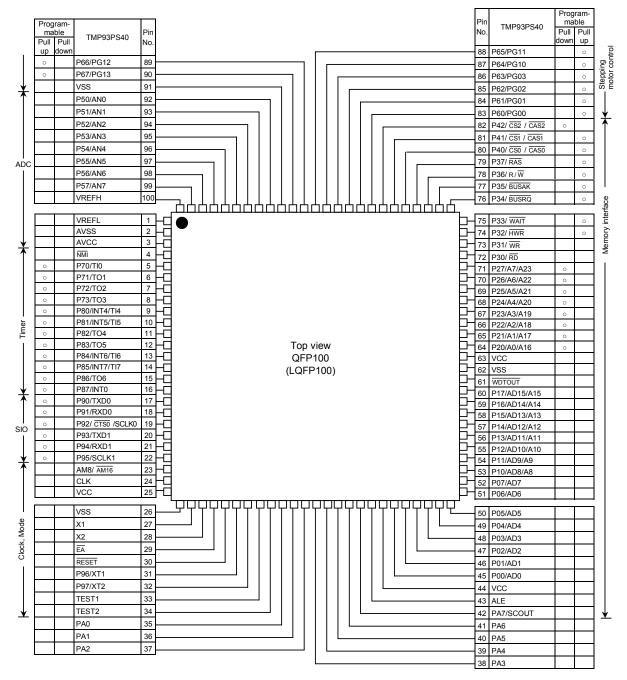


Figure 2.1.1 Pin Assignment (100-Pin QFP, 100-Pin LQFP)

2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below.

(1) Pin names and functions of TMP93PS40 in MCU mode (Table 2.2.1 to Table 2.2.4).

Table 2.2.1 Names and functions in MCU Mode (1/4)

Pin Names	Number of Pins	I/O	Functions
P00 to P07	8	I/O	Port 0: I/O port that allows I/O to be selected on a bit basis
AD0 to AD7		3-state	Address/Data (lower): 0 to 7 for address/data bus
P10 to P17	8	I/O	Port 1: I/O port that allows I/O to be selected on a bit basis
AD8 to AD15		3-state	Address/Data (upper): 8 to 15 for address/data bus
A8 to A15		Output	Address: 8 to 15 for address bus
P20 to P27	8	I/O	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor)
A0 to A7		Output	Address: 0 to 7 for address bus
A16 to A23		Output	Address: 16 to 23 for address bus
P30	1	Output	Port 30: Output port
RD		Output	Read: Strobe signal for reading external memory
P31	1	Output	Port 31: Output port
WR		Output	Write: Strobe signal for writing data on pins AD0 to AD7
P32	1	I/O	Port 32: I/O port (with pull-up resistor)
HWR		Output	High write: Strobe signal for writing data on pins AD8 to AD15
P33	1	I/O	Port 33: I/O port (with pull-up resistor)
WAIT		Input	Wait: Pin used to request CPU bus wait
P34	1	I/O	Port 34: I/O port (with pull-up resistor)
BUSRQ		Input	Bus request: Signal used to request high impedance for AD0 to AD15, A0 to A23, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{HWR}}$, $\overline{\text{R}}/\overline{\text{W}}$, $\overline{\text{RAS}}$, $\overline{\text{CS0}}$, $\overline{\text{CS1}}$, and $\overline{\text{CS2}}$ pins. (for external DMAC)
P35	1	I/O	Port 35: I/O port (with pull-up resistor)
BUSAK		Output	Bus acknowledge: Signal indicating that AD0 to AD15, A0 to A23, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{HWR}}$, $\overline{\text{R/W}}$, $\overline{\text{RAS}}$, $\overline{\text{CS0}}$, $\overline{\text{CS1}}$, and $\overline{\text{CS2}}$ pins are at high impedance after receiving $\overline{\text{BUSRQ}}$. (for external DMAC)
P36	1	I/O	Port 36: I/O port (with pull-up resistor)
R/ W		Output	Read/write: 1 represents read or dummy cycle; 0, write cycle.
P37	1	I/O	Port 37: I/O port (with pull-up resistor)
RAS		Output	Row address strobe: Outputs RAS strobe for DRAM.
P40	1	I/O	Port 40: I/O port (with pull-up resistor)
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.
CAS0		Output	Column address strobe 0: Outputs $\overline{\text{CAS}}$ strobe for DRAM when address is within specified address area.

Note: With the external DMA controller, this device's built-in memory or built-in I/O cannot be accessed using the $\overline{\text{BUSRQ}}$ and $\overline{\text{BUSAK}}$ pins.

Table 2.2.2 Names and Functions in MCU Mode (2/4)

Pin Name	Number of Pins	I/O	Functions
P41	1	I/O	Port 41: I/O port (with pull-up resistor)
CS1		Output	Chip select 1: Outputs 0 if address is within specified address area.
CAS1		Output	Column address strobe 1: Outputs $\overline{\text{CAS}}$ strobe for DRAM if address is within specified address area.
P42	1	I/O	Port 42: I/O port (with pull-down resistor)
CS2		Output	Chip select 2: Outputs 0 if address is within specified address area.
CAS2		Output	Column address strobe 2: Outputs $\overline{\text{CAS}}$ strobe for DRAM if address is within specified address area.
P50 to P57	8	Input	Port 5: Input port
AN0 to AN7		Input	Analog input: Input to AD converter
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
P60 to P63	4	I/O	Port 60 to 63: I/O (ports) that allow selection of I/O on a bit basis
			(with pull-up resistor)
PG00 to PG03		Output	Pattern generator ports: 00 to 03
P64 to P67	4	I/O	Port 64 to 67: I/O (ports) that allow selection of I/O on a bit basis
			(with pull-up resistor)
PG10 to PG13		Output	Pattern generator ports: 10 to 13
P70	1	I/O	Port 70: I/O port (with pull-up resistor)
TI0		Input	Timer input 0: Timer 0 input
P71	1	I/O	Port 71: I/O port (with pull-up resistor)
TO1		Output	Timer output 1: Timer 0 or 1 output
P72	1	I/O	Port 72: I/O port (with pull-up resistor)
TO2		Output	PWM output 2: 8-bit PWM timer 2 output
P73	1	I/O	Port 73: I/O port (with pull-up resistor)
TO3		Output	PWM output 3: 8-bit PWM timer 3 output
P80	1	I/O	Port 80: I/O port (with pull-up resistor)
TI4		Input	Timer input 4: Timer 4 count/capture trigger signal input
INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge
P81	1	I/O	Port 81: I/O port (with pull-up resistor)
TI5		Input	Timer input 5: Timer 4 count/capture trigger signal input
INT5		Input	Interrupt request pin 5: Interrupt request pin with rising edge
P82	1	I/O	Port 82: I/O port (with pull-up resistor)
TO4		Output	Timer output 4: Timer 4 output pin
P83	1	I/O	Port 83: I/O port (with pull-up resistor)
TO5		Output	Timer output 5: Timer 4 output pin

Table 2.2.3 Names and Functions in MCU Mode (3/4)

Pin Name	Number of Pins	I/O	Functions
P84	1	I/O	Port 84: I/O port (with pull-up resistor)
TI6		Input	Timer input 6: Timer 5 count/capture trigger signal input
INT6		Input	Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
P85	1	I/O	Port 85: I/O port (with pull-up resistor)
TI7		Input	Timer input 7: Timer 5 count/capture trigger signal input
INT7		Input	Interrupt request pin 7: Interrupt request pin with rising edge
P86	1	I/O	Port 86: I/O port (with pull-up resistor)
TO6		Output	Timer output 6: Timer 5 output pin
P87	1	I/O	Port 87: I/O port (with pull-up resistor)
INT0		Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising edge
P90	1	I/O	Port 90: I/O port (with pull-up resistor)
TXD0		Output	Serial send data 0
P91	1	I/O	Port 91: I/O port (with pull-up resistor)
RXD0		Input	Serial receive data 0
P92	1	I/O	Port 92: I/O port (with pull-up resistor)
CTS0		Input	Serial data send enable 0 (Clear to Send)
SCLK0		I/O	Serial clock I/O 0
P93	1	I/O	Port 93: I/O port (with pull-up resistor)
TXD1		Output	Serial send data 1
P94	1	I/O	Port 94: I/O port (with pull-up resistor)
RXD1		Input	Serial receive data 1
P95	1	I/O	Port 95: I/O port (with pull-up resistor)
SCLK1		I/O	Serial clock I/O 1
PA0 to PA6	7	I/O	Port A: I/O ports
PA7	1	I/O	Port A7: I/O port
SCOUT		Output	System clock output: Outputs system clock or 1/2 oscillation clock for synchronizing to external circuit.
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program.
CLK	1	Output	Clock output: Outputs [system clock ÷ 2] clock. Pulled-up during reset. Can be set to output disable for reducing noise.
ĒĀ	1	Input	External access: "1" should be inputted with TMP93PS40.

Table 2.2.4 Names and Functions in MCU Mode (4/4)

Pin Name	Number of Pins	I/O	Functions
AM8/ AM16	1	Input	Address mode: Selects external data bus width. "1" should be inputted. The data bus width for external access is set by chip select/wait control register, port 1 control register.
ALE	1	Output	Address latch enable Can be set to output disable for reducing noise.
RESET	1	Input	Reset: Initializes LSI. (with pull-up resistor)
X1/X2	2	Input/Output	High frequency oscillator connecting pin
XT1	1	Input	Low frequency oscillator connecting pin
P96		I/O	Port 96: I/O port (open-drain output)
XT2	1	Output	Low frequency oscillator connecting pin
P97		I/O	Port 97: I/O port (open-drain output)
TEST1/TEST2	2	Output /Input	TEST1 should be connected with TEST2 pin. Do not connect to any other pins.
VCC	3		Power supply pin
VSS	3		GND pin (0 V)
AVCC	1		Power supply pin for AD converter
AVSS	1		GND pin for AD converter (0 V)

Note: Pull-up/pull-down resistor can be released from the pin by software.

(2) PROM mode

Table 2.2.5 Name and Functions of PROM Mode

Pin Names	Number of Pins	I/O	Functions	Pin Names (in MCU Mode)
A7 to A0	8	Input		P27 to P20
A15 to A8	8	Input	Memory address of program	P17 to P10
A16	1	Input		P33
D7 to D0	8	I/O	Memory data of program	P07 to P00
CE	1	Input	Chip enable	P32
ŌĒ	1	Input	Output control	P30
PGM	1	Input	Program control	P31
VPP	1	Power supply	12.75 V/5 V (Power supply of program)	ĒĀ
VCC	4	Power supply	6.25 V/5 V	VCC, AVCC
VSS	4	Power supply	0 V	VSS, AVSS
Pin Functions	Number of Pins	I/O	Disposal of	Pins
P34	1	Input	Fix to low level (security pin)	
RESET	1	Input	Fix to low level (PROM mode)	
CLK	1	Input	Fix to low level (PROM Illode)	
ALE	1	Output	Open	
X1	1	Input	· Crystal	
X2	1	Output	- Crystal	
P42 to P40 P37 to P35 AM8/ AM16	7	Input	Fix to high level	
TEST1, TEST2	2	Input/ Output	TEST1 should be connected with TEST2 Do not connect to any other pins.	pin.
P57 to P50 P67 to P60 P73 to P70 P87 to P80 P97 to P90 PA7 to PA0 VREFH VREFL NMI WDTOUT	48	I/O	Open	

3. Operation

This section describes the functions and basic operational blocks of the TMP93PS40.

The TMP93PS40 has ROM in place of the mask ROM which is a included in the TMP93CS40. The other configuration and functions are the same as the TMP93CS40. Regarding the function of the TMP93PS40, which is not described herein, see the TMP93CS40.

The TMP93PS40 has two operational modes: MCU mode and PROM mode.

3.1 MCU Mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (Output status). In the MCU mode, the operation is same as TMP93CS40.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP93PS40.

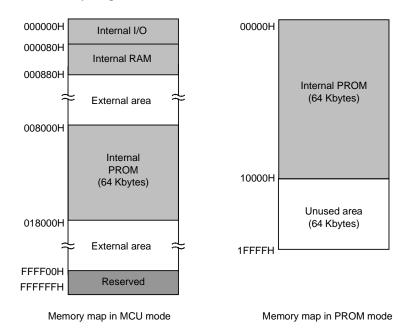


Figure 3.2.1 Memory Map

3.3 PROM Mode

(1) Mode setting and function

PROM mode is set by setting the $\overline{\text{RESET}}$ and CLK pins to the "L" level. The programming and verification for the internal PROM is achieved by using a general PROM programmer with the adaptor socket.

1. OTP adaptor

BM11109: TMP93PS40F, TMP93PW40F adaptors BM11129: TMP93PS40DF, TMP93PW40DF adaptors

2. Setting OTP adaptor

Set the switch (SW1) to N side.

- 3. Setting PROM programmer
 - 1) Set PROM type to TC571000D.

Size: 1 Mbits (128 K × 8 bits)

VPP: 12.75 V tpw: 100 μs

The electric signature mode (hereinafter referred to as "signature".) is not supported. Therefore if signature is used, the device is damaged because 12.75 V is applied to A9 of address. Do not use signature.

2) Transferring the data (copy)

In TMP93PS40, PROM is placed on addresses 00000 to 0FFFFH in PROM mode, and addresses 08000H to 17FFFH in MCU mode. Therefore data should be transferred to addresses 00000 to 0FFFFH in PROM mode using the object converter (tuconv) or the block transfer mode (see instruction manual of PROM programmer.) or making the object data.

3) Setting the programming address

Start address: 00000H End address: 0FFFFH

Using PROM programmer which can not set the programming address, set FFH at addresses 10000H to 1FFFFH.

4. Programming

Program/verify according to the procedures of PROM programmer.

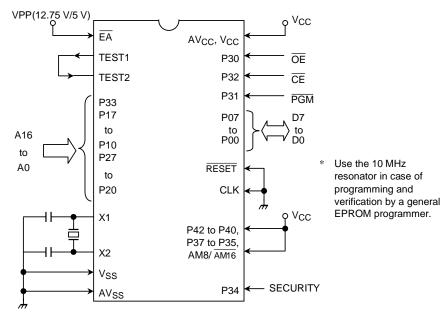


Figure 3.3.1 PROM Mode Pin Setting

(2) Programming flow chart

The programming mode is set by applying 12.75 V (programming voltage) to the VPP pin when the following pins are set as follows,

(VCC: 6.25 V, RESET: "L" level, CLK: "L" level).

While address and data are fixed and $\overline{\text{CE}}$ pin is set to "L" level, 0.1 ms of "L" level pulse is applied to $\overline{\text{PGM}}$ pin to program the data.

Then the data in the address is verified.

If the programmed data is incorrect, another 0.1 ms pulse is applied to \overline{PGM} pin.

This programming procedure is repeated until correct data is read from the address. (25 times maximum)

Subsequently, all data are programmed in all addresses.

The verification for all data is done under the condition of VPP = VCC = 5 V after all data were written.

Figure 3.3.2 shows the programming flow chart.

High Speed Program Writing

Flow chart

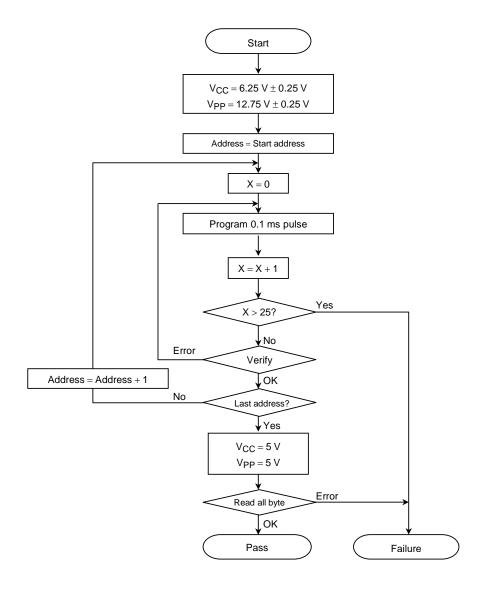


Figure 3.3.2 Flow Chart

(3) Security bit

The TMP93PS40 has a security bit.

If the security bit is programmed to "0", the content of the PROM can not be read in PROM mode. (outputs data FFH)

How to program the security bit.

The difference from the programming procedures described in section 3.3 (1) are follows.

1. Setting OTP adapter

Set the switch (SW1) to S side.

- 2. Setting PROM programmer
 - 2) Transferring the data
 - 3) Setting programming address

The security bit is in bit 0 of address 00000H.

Set the start address 00000H and the end address 00000H.

Set the data FEH at the address 00000H.

4. Electrical Characteristics

4.1 Maximum Ratings (TMP93PS40F)

"X" used in an expression shows a frequency of clock fFPH selected by SYSCR1<SYSCK>. If a clock gear or a low speed oscillator is selected, a value of "X" is different. The value in an example is calculated at fc, gear = 1/fc (SYSCR1<SYSCK, GEAR2:0 = "0000").

Parameter	Symbol	Rating	Unit
Power supply voltage	Vcc	-0.5 to 6.5	V
Input voltage	V _{IN}	-0.5 to Vcc + 0.5	V
Output current (total)	ΣI_{OL}	120	mA
Output current (total)	Σl _{OH}	-80	mA
Power dissipation(Ta = 85°C)	P_{D}	600	mW
Soldering temperature (10 s)	T _{SOLDER}	260	°C
Storage temperature	T _{STG}	-65 to 150	°C
Operating temperature	T _{OPR}	-40 to 85	°C

Note: The maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no maximum rating value will ever be exceeded.

4.2 DC Characteristics (1/2)

 $Ta = -40 \text{ to } 85^{\circ}C$

	Parameter	Symbol	Conditio	n	Min	Typ. (Note)	Max	Unit
Pow	Power supply voltage		fc = 4 to 20 MHz fs = 30 to		4.5			
	$ \begin{pmatrix} AV_{CC} = V_{CC} \\ AV_{CC} = V_{SS} = 0 V \end{pmatrix} $	Vcc	fc = 4 to 12.5 MHz	34 kHz	2.7		5.5	V
	AD0 to AD15	V.	$V_{CC} \ge 4.5 \text{ V}$				0.8	
age	AD0 10 AD15	V _{IL}	$V_{CC} < 4.5 \text{ V}$				0.6	
Input low voltage	Port 2 to A (except P87)	V _{IL1}			-0.3		0.3 V _{CC}	
t to	RESET, NMI, INTO	V _{IL2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$				0.25 V _{CC}	
du	EA , AM8/ AM16	V _{IL3}					0.3	
	X1	V _{IL4}					0.2 V _{CC}	V
	AD0 to AD15 V _{IH}		$V_{CC} \ge 4.5 \text{ V}$		2.2			V
tage	AD0 10 AD 10	VIН	V _{CC} < 4.5 V		2.0		,	
nput high voltage	Port 2 to A (except P87)	V _{IH1}			0.7 V _{CC}		V _{CC} + 0.3	
t hi	RESET, NMI, INTO	V _{IH2}	$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.75 V _{CC}			
lub	EA , AM8/ AM16	V _{IH3}			V _{CC} – 0.3			
	X1	V _{IH4}			0.8 V _{CC}			
Outp	Output low voltage		$I_{OL} = 1.6 \text{ mA}$ $(V_{CC} = 2.7 \text{ to})$	o 5.5 V)			0.45	
Outr			$I_{OH} = -400 \mu\text{A}$ $(V_{CC} = 3 V \pm$	± 10%)	2.4			V
Outp	ut high voltage	V _{OH2}	$I_{OH} = -400 \mu\text{A}$ $(V_{CC} = 5 \text{V} \pm$	± 10%)	4.2			

Note: Typical values are for $Ta = 25^{\circ}C$ and $V_{CC} = 5$ V unless otherwise noted.

4.2 DC Characteristics (2/2)

Parameter	Symbol	Condition	Min	Typ. (Note1)	Max	Unit
Darlington drive current (8 output pins max)	I _{DAR} (Note 2)	$V_{EXT} = 1.5 \text{ V}$ $R_{EXT} = 1.1 \text{ k}\Omega$ (when $V_{CC} = 5 \text{ V} \pm 10\%$)	-1.0		-3.5	mA
Input leakage current	ILI	$0.0 \leq V_{IN} \leq V_{CC}$		0.02	±5	
Output leakage current	I _{LO}	$0.2 \le V_{IN} \le V_{CC} - 0.2$		0.05	±10	μΑ
Powerdown voltage (at Stop, RAM Back-up)	V _{STOP}	$V_{IL2} = 0.2 V_{CC},$ $V_{IH2} = 0.8 V_{CC}$	2.0		6.0	V
RESET pull up resistor	-	$V_{CC} = 5 V \pm 10\%$	50		150	1.0
RESET pull up resistor	R _{RST}	$V_{CC} = 3 \text{ V} \pm 10\%$	80		200	kΩ
Pin capacitance	C _{IO}	fc = 1 MHz			10	pF
Schmitt width RESET, NMI, INTO	V _{TH}		0.4	1.0		V
Programmable	Ь	$V_{CC} = 5 V \pm 10\%$	10		80	
pull-down resistor	R _{KL}	$V_{CC} = 3 V \pm 10\%$	30		150	1.0
Programmable		$V_{CC} = 5 V \pm 10\%$	50		150	kΩ
pull-up resistor	R _{KH}	$V_{CC} = 3 V \pm 10\%$	100		300	
NORMAL (Note 3)	Icc	$V_{CC} = 5 \text{ V} \pm 10\%$		19	25	
NORMAL2 (Note 4)		fc = 20 MHz		24	30	
RUN				17	25	mA
IDLE2				12	17	
IDLE1				3.5	5	
NORMAL (Note 3)		$V_{CC} = 3 \text{ V} \pm 10\%$		6.5	10	
NORMAL2 (Note 4)		fc = 12.5 MHz		9.5	13	
RUN		(Typ: $V_{CC} = 3.0 \text{ V}$)		5.0	9	mA
IDLE2				4.5	6.5	
IDLE1				0.8	1.5	
SLOW (Note 3)		$V_{CC} = 3 \text{ V} \pm 10\%$		20	35	
RUN		fs = 32.768 kHz		16	30	
IDLE2		(Typ: $V_{CC} = 3.0 \text{ V}$)		15	25	μΑ
IDLE1				5	15	
STOP		$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.2	10	μΑ

Note 1: Typical values are for Ta = 25°C and $V_{CC} = 5$ V unless otherwise noted.

Note 2: $I_{\mbox{\scriptsize DAR}}$ is guranteed for total of up to 8 ports.

Note 3: The condition of measurement of I_{CC} (NORMAL/SLOW). Only CPU operates. Output ports are open and Input ports fixed.

Note 4: The condition of measurement of I_{CC} (NORMAL2). CPU and all peripherals operate. Output ports are open and Input ports fixed.

4.3 AC Characteristics

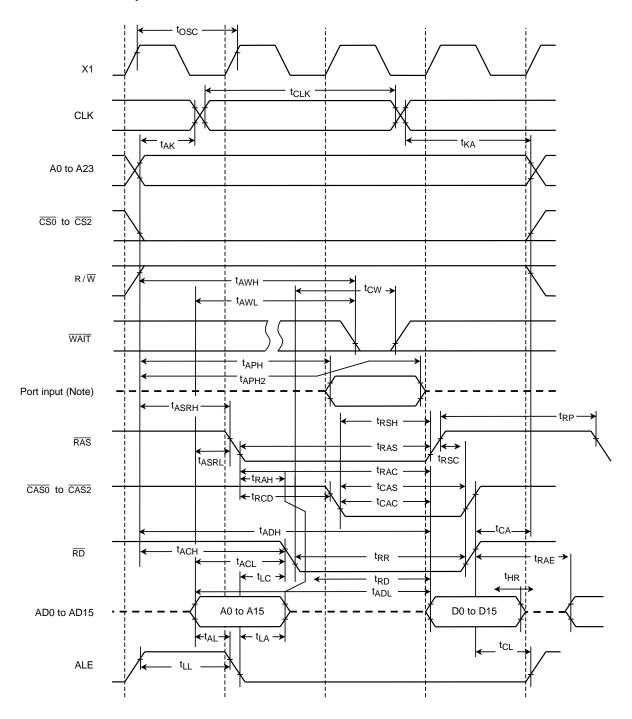
(1) $V_{CC} = 5 V \pm 10\%$

No.	Parameter	Symbol	Vari	able	16 N	ИНz	20 N	ИНz	Unit
INO.	raiailletei	Symbol	Min	Max	Min	Max	Min	Max	OTIIL
1	Osc. period (= x)	tosc	50	31250	62.5		50		ns
2	CLK pulse width	tCLK	2x - 40		85		60		ns
3	A0 to A23 valid → CLK hold	t _{AK}	0.5x - 20		11		5		ns
4	CLK valid → A0 to A23 hold	t _{KA}	1.5x - 70		24		5		ns
5	A0 to A15 valid → ALE fall	t _{AL}	0.5x - 15		16		10		ns
6	ALE fall → A0 to A15 hold	t _{LA}	0.5x - 20		11		5		ns
7	ALE high pulse width	tLL	x – 40		23		10		ns
8	ALE fall $\rightarrow \overline{RD} / \overline{WR}$ fall	tLC	0.5x - 25		6		0		ns
9	$\overline{RD} / \overline{WR} rise \to ALE rise$	t _{CL}	0.5x - 20		11		5		ns
10	A0 to A15 valid → RD / WR fall	t _{ACL}	x – 25		38		25		ns
11	A0 to A23 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	^t ACH	1.5x – 50		44		25		ns
12	$\overline{\text{RD}}$ / $\overline{\text{WR}}$ rise \rightarrow A0 to A23 hold	tCA	0.5x - 25		6		0		ns
13	A0 to A15 valid → D0 to D15 input	t _{ADL}		3.0x - 55		133		95	ns
14	A0 to A23 valid → D0 to D15 input	t _{ADH}		3.5x - 65		154		110	ns
15	RD fall → D0 to D15 input	t _{RD}		2.0x - 60		65		40	ns
16	RD low pulse width	t _{RR}	2.0x - 40		85		60		ns
17	RD rise → D0 to D15 hold	tHR	0		0		0		ns
18	RD rise → A0 to A15 output	t _{RAE}	x – 15		48		35		ns
19	WR low pulse width	t _{WW}	2.0x - 40		85		60		ns
20	D0 to D15 valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x - 55		70		45		ns
21	$\overline{\text{WR}} \text{ rise} \rightarrow \text{D0 to D15 hold}$	t _{WD}	0.5x – 15		16		10		ns
22	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{bmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{bmatrix}$	t _{AWH}		3.5x - 90		129		85	ns
23	A0 to A15 valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{bmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{bmatrix}$	t _{AWL}		3.0x - 80		108		70	ns
24	$\overline{RD}/\overline{WR} \text{ fall} \rightarrow \overline{WAIT} \text{ hold} \qquad \begin{bmatrix} (1+N) WAIT \\ mode \end{bmatrix}$	t_{CW}	2.0x + 0		125		100		ns
25	A0 to A23 valid → PORT input	t _{APH}		2.5x - 120		36		5	ns
26	A0 to A23 valid → PORT hold	t _{APH2}	2.5x + 50		206		175		ns
27	WR rise → PORT valid	t _{CP}		200		200		200	ns
28	A0 to A23 valid → RAS fall	t _{ASRH}	1.0x - 40		23		10		ns
29	A0 to A15 valid → RAS fall	t _{ASRL}	0.5x - 15		16		10		ns
30	RAS fall → D0 to D15 input	t _{RAC}		2.5x - 70		86		55	ns
31	RAS fall → A0 to A15 hold	tRAH	0.5x - 15		16		10		ns
32	RAS low pulse width	tras	2.0x - 40		85		60		ns
33	RAS high pulse width	t _{RP}	2.0x - 40		85		60		ns
34	$\overline{\text{CAS}} \text{ fall} \rightarrow \overline{\text{RAS}} \text{ rise}$	t _{RSH}	1.0x - 40		23		10		ns
35	\overline{RAS} rise $\to \overline{CAS}$ rise	t _{RSC}	0.5x - 25		6		0		ns
36	RAS fall → CAS fall	t _{RCD}	1.0x - 40		23		10		ns
37	CAS fall → D0 to D15 input	tCAC		1.5x – 65		29		10	ns
38	CAS low pulse width	tCAS	1.5x - 30		64		40		ns

AC measuring conditions

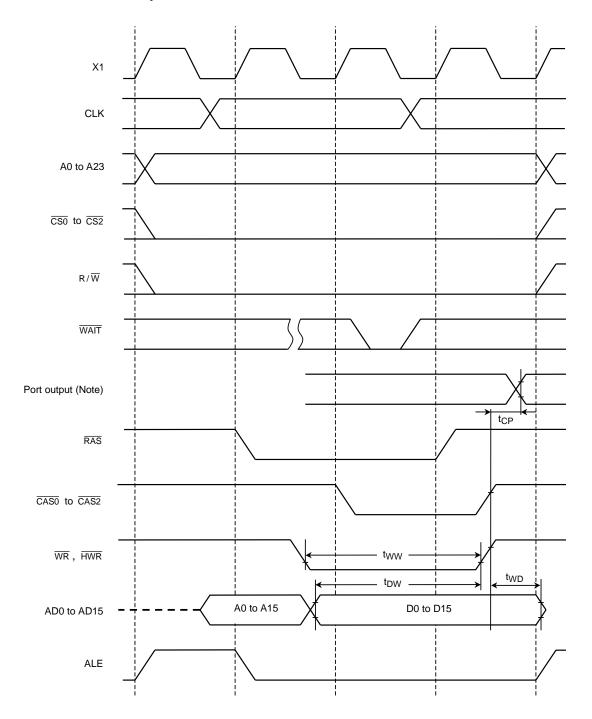
- Output level: High 2.2 V/Low 0.8 V, $C_L = 50 \text{ pF}$ (However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{HWR}}$, $R/\overline{\text{W}}$, CLK, $\overline{\text{RAS}}$, $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$)
- Input level: High 2.4 V/Low 0.45 V (AD0 to AD15) High $0.8 \times V_{CC}$ /Low $0.2 \times V_{CC}$ (Except for AD0 to AD15)

(2) $V_{CC} = 3 V \pm 10\%$


No.	Parameter	Symbol	Vari	able	12.5	MHz	Unit
INO.	raiametei	Symbol	Min	Max	Min	Max	Offic
1	Osc. period (= x)	tosc	80	31250	80		ns
2	CLK pulse width	t _{CLK}	2x - 40		120		ns
3	A0 to A23 valid → CLK hold	t _{AK}	0.5x - 30		10		ns
4	CLK valid → A0 to A23 hold	t _{KA}	1.5x - 80		40		ns
5	A0 to A15 valid → ALE fall	t _{AL}	0.5x - 35		5		ns
6	ALE fall \rightarrow A0 to A15 hold	t_{LA}	0.5x - 35		5		ns
7	ALE high pulse width	t _{LL}	x - 60		20		ns
8	ALE fall $\rightarrow \overline{RD} / \overline{WR}$ fall	t _{LC}	0.5x - 35		5		ns
9	$\overline{RD}/\overline{WR}rise \to ALErise$	t _{CL}	0.5x - 40		0		ns
10	A0 to A15 valid $\rightarrow \overline{RD}$ / \overline{WR} fall	t _{ACL}	x - 50		30		ns
11	A0 to A23 valid $ ightarrow \overline{RD}$ / \overline{WR} fall	t _{ACH}	1.5x - 50		70		ns
12	$\overline{\text{RD}}$ / $\overline{\text{WR}}$ rise \rightarrow A0 to A23 hold	t _{CA}	0.5x - 40		0		ns
13	A0 to A15 valid → D0 to D15 input	t _{ADL}		3.0x – 110		130	ns
14	A0 to A23 valid → D0 to D15 input	t _{ADH}		3.5x - 125		155	ns
15	\overline{RD} fall \rightarrow D0 to D15 input	t _{RD}		2.0x - 115		45	ns
16	RD low pulse width	t _{RR}	2.0x - 40		120		ns
17	\overline{RD} rise \rightarrow D0 to D15 hold	t _{HR}	0		0		ns
18	\overline{RD} rise \rightarrow A0 to A15 output	t _{RAE}	x – 25		55		ns
19	WR low pulse width	t _{WW}	2.0x - 40		120		ns
20	D0 to D15 valid $\rightarrow \overline{WR}$ rise	t _{DW}	2.0x - 120		40		ns
21	$\overline{\text{WR}} \text{ rise} \rightarrow \text{D0 to D15 hold}$	t _{WD}	0.5x - 40		0		ns
22	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{bmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{bmatrix}$	t _{AWH}		3.5x - 130		150	ns
23	A0 to A15 valid $\rightarrow \overline{\text{WAIT}}$ input $\begin{bmatrix} (1+N) \text{ WAIT} \\ \text{mode} \end{bmatrix}$	t _{AWL}		3.0x - 100		140	ns
24	$\overline{RD}/\overline{WR}$ fall $\rightarrow \overline{WAIT}$ hold $\begin{pmatrix} (1+N) & WAIT \\ mode \end{pmatrix}$	t _{CW}	2.0x + 0		160		ns
25	A0 to A23 valid \rightarrow Port input	t _{APH}		2.5x - 195		5	ns
26	A0 to A23 valid → Port hold	t _{APH2}	2.5x + 50		250		ns
27	\overline{WR} rise \rightarrow Port valid	t _{CP}		200		200	ns
28	A0 to A23 valid → RAS fall	tasrh	1.0x - 60		20		ns
29	A0 to A15 valid → RAS fall	tASRL	0.5x - 40		0		ns
30	RAS fall → D0 to D15 input	t _{RAC}		2.5x - 90		110	ns
31	RAS fall → A0 to A15 hold	t _{RAH}	0.5x - 25		15		ns
32	RAS low pulse width	t _{RAS}	2.0x - 40		120		ns
33	RAS high pulse width	t _{RP}	2.0x - 40		120		ns
34	$\overline{\text{CAS}} \text{ fall} \rightarrow \overline{\text{RAS}} \text{ rise}$	t _{RSH}	1.0x - 55		25		ns
35	\overline{RAS} rise $\rightarrow \overline{CAS}$ rise	t _{RSC}	0.5x - 25		15		ns
36	RAS fall → CAS fall	t _{RCD}	1.0x - 40		40		ns
37	CAS fall → D0 to D15 input	t _{CAC}		1.5x – 120		0	ns
38	CAS low pulse width	tCAS	1.5x – 40		80		ns

AC measuring conditions

• Output level: High $0.7 \times V_{CC}/Low \ 0.3 \times V_{CC}$, $C_L = 50 \ pF$


• Input level: High $0.9 \times V_{CC}/Low \ 0.1 \times V_{CC}$

(1) Read cycle

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as $\overline{\text{RD}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

(2) Write cycle

Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as $\overline{\text{WR}}$ and $\overline{\text{CS}}$ are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 AD Conversion Characteristics

 $AV_{CC} = V_{CC}$, $AV_{SS} = V_{SS}$

					00 00,	00 00
Parameter	Symbol	Power Supply	Min	Тур.	Max	Unit
Analog reference veltere ()	V	$V_{CC} = 5 V \pm 10\%$	V _{CC} – 1.5 V	V_{CC}	V _{CC}	
Analog reference voltage (+)	V _{REFH}	$V_{CC} = 3 V \pm 10\%$	V _{CC} – 0.2 V	V _{CC}	Vcc	
Analog reference voltage (–)	V	$V_{CC}=5~V\pm10\%$	V _{SS}	V_{SS}	V _{SS} + 0.2 V	V
Analog reference voltage (–)	V _{REFL}	$V_{CC} = 3 V \pm 10\%$	V _{SS}	V _{SS}	V _{SS} + 0.2 V	
Analog input voltage range	V _{AIN}		V_{REFL}		V_{REFH}	
Analog current for analog		$V_{CC}=5~V\pm10\%$		0.5	1.5	
reference voltage	I _{REF}	$V_{CC} = 3 V \pm 10\%$				mA
<vrefon> = 1</vrefon>	$(V_{REFL} = 0 V)$			0.3	0.9	
<vrefon> = 0</vrefon>		$V_{CC} = 2.7 \text{ to } 5.5 \text{ V}$		0.02	5.0	μА
Francis (avaluation avantining a array)		$V_{CC}=5~V\pm10\%$		±1.0	±3.0	LCD
Error (excluding quantizing error)	_	$V_{CC} = 3 V \pm 10\%$		±1.0	±3.0	LSB

Note 1: $1LSB = (V_{REFH} - V_{REFL})/2^{10} [V]$

Note 2: Minimum operation frequency.

The operation of the AD converter is guaranteed only when fc (high-frequency oscillator) is used. (It is not guaranteed when fs is used.) Additionally, it is guaranteed with $f_{FPH} \ge 4$ MHz.

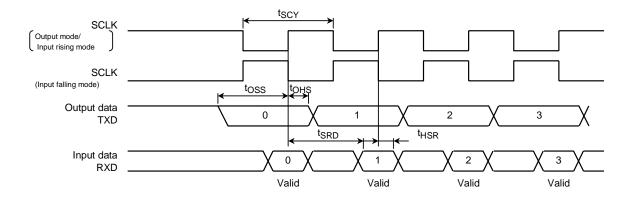
Note 3: The value $I_{\mbox{\footnotesize{CC}}}$ includes the current which flows through the AVCC pin.

4.5 Serial Channel Timing

(1) I/O interface mode

1. SCLK input mode

Parameter		Vari	able	32.768 KI	Hz (Note 1)	12.5 MHz		20 MHz		Unit
T drameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Offic
SCLK cycle	tSCY	16x		488 μs		1.28		0.8		μs
Output data → Rising edge or falling edge (Note 2) of SCLK	toss	t _{SCY} /2 - 5x - 50		91.5 μs		190		100		ns
SCLK rising edge or falling edge (Note 2) → Output data hold	tons	5x – 100		152 μs		300		150		ns
SCLK rising edge or falling edge (Note 2) → Input data hold	^t HSR	0		0		0		0		ns
SCLK rising edge or falling edge (Note 2) → Effective data input	^t SRD		t _{SCY} – 5x – 100		336 μs		780		450	ns


Note1: When fs is used as system clock (f_{SYS}) or fs is used as input clock to prescaler.

Note2: SCLK rising/falling timing SCLK rising in the rising mode of SCLK, SCLK falling in the falling mode of SCLK.

2. SCLK output mode

Parameter		Variable		32.768 KHz (Note)		12.5 MHz		20 MHz		Lloit
	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle (programmable)	tscy	16x	8192x	488 μs	250 ms	1.28	655.36	0.8	409.6	μs
Output data → SCLK rising edge	toss	t _{SCY} - 2x - 150		427 μs		970		550		ns
SCLK rising edge → Output data hold	tons	2x - 80		60 μs		80		20		ns
SCLK rising edge → Input data hold	tHSR	0		0		0		0		ns
SCLK rising edge → Effective data input	tSRD		t _{SCY} - 2x - 150		428 μs		970		550	ns

Note: When fs is used as system clock (f_{SYS}) or fs is used as input clock to prescaler.

4.6 Timer/Counter Input Clock (TI0, TI4, TI5, TI6 and TI7)

Parameter		Variable		12.5 MHz		20 MHz		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Offic	
Clock cycle	tvck	8X + 100		740		500		ns	
Low level clock pulse width	tVCKL	4X + 40		360		240		ns	
High level clock pulse width	tvckh	4X + 40		360		240		ns	

4.7 Interrupt and Capture

(1) $\overline{\text{NMI}}$ and INT0 interrupts

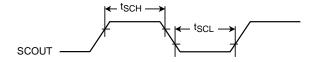
Parameter		Variable		12.5 MHz		20 MHz		Unit	
	Symbol	Min	Max	Min	Max	Min	Max	Offic	
$\overline{\text{NMI}}$, INT0 low level pulse width	tINTAL	4X		320		200		ns	
NMI, INTO high level pulse width	t _{INTAH}	4X		320		200		ns	

(2) INT4 to INT7 interrupts and capture

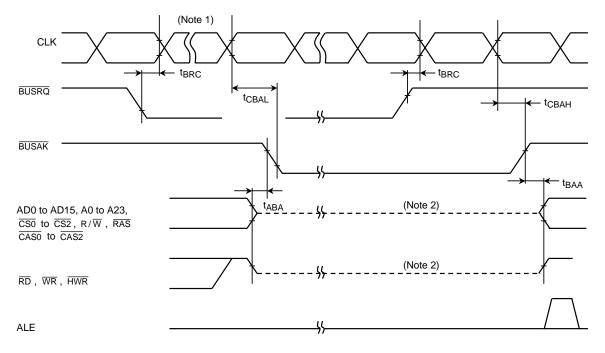
Input pulse width of INT4 to INT7 depends on the operation clock of CPU and timer (9-bit prescaler). The following shows the pulse width in each clock.

System Clock	Prescaler Clock	t _{INTBL} (INT4 to INT7	low level pulse width)	t _{INTBH} (INT4 to INT7	high level pulse width)	
Selected Selected <sysck> <prck1:0></prck1:0></sysck>	Variable	20 MHz	Variable	20 MHz	Unit	
	<prck1:0></prck1:0>	Min	Min Min Min		Min	
	00 (f _{FPH})	8X + 100	500	8X + 100	500	ns
0 (fc)	01 (fs)	8XT + 0.1	244.3	8XT + 0.1	244.3	
	10 (fc/16)	128X + 0.1	6.5	128X + 0.1	6.5	
1 (fs)	00 (f _{FPH})	8XT + 0.1	244.3	8XT + 0.1	244.3	μS
(Note2)	01 (fs)	6/1 + 0.1	244.3	0∧1 ± 0.1	244.3	

Note1: XT represents the cycle of the low frequency clock fs. Calculated at fs = 32.768 kHz.


Note2: When fs is used as the system clock, fc/16 can not be selected for the prescaler clock.

4.8 SCOUT pin AC characteristics


Parameter		Symbol	Variable		12.5 MHz		20 MHz		Unit
		Syllibol	Min	Max	Min	Max	Min	Max	Offic
	$V_{CC} = 5~V \pm 10\%$	tecu t	0.5X – 10		30		15		
High-level pulse width	$V_{CC} = 3 \text{ V} \pm 10\%$		0.5X - 20		20		1	_	ns
	$V_{CC} = 5 \text{ V} \pm 10\%$	4	0.5X - 10		30		15		
Low-level pulse width	$V_{CC} = 3 \text{ V} \pm 10\%$	t _{SCL}	0.5X - 20		20		1	_	ns

Measurement condition

• Output level: High 2.2 V/Low 0.8 V, CL = 10 pF

4.9 Timing Chart for Bus Request (BUSRQ)/Bus Acknowledge (BUSAK)

Parameter	Symbol	Variable		12.5 MHz		20 MHz		- Unit	
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Offic	
BUSRQ set-up time to CLK	t _{BRC}	120		120		120		ns	
$CLK o \overline{BUSAK}$ falling edge	tCBAL		1.5x + 120		240		195	ns	
$CLK o \overline{BUSAK}$ rising edge	tCBAH		0.5x + 40		80		65	ns	
Output buffer off to BUSAK	t _{ABA}	0	80	0	80	0	80	ns	
BUSAK	t _{BAA}	0	80	0	80	0	80	ns	

Note1: The Bus will be released after the \overline{WAIT} request is inactive, when the \overline{BUSRQ} is set to "0" during "Wait" cycle.

Note2: This line only shows the output buffer is off-state.

It doesn't indicate the signal level is fixed.

Just after the bus is released, the signal level which is set before the bus is released is kept dynamically by the external capacitance. Therefore, to fix the signal level by an external resistor during bus releasing, designing is executed carefully because the level-fix will be delayed.

The internal programmable pull-up/pull-down resistor is switched active/non-active by an internal signal.

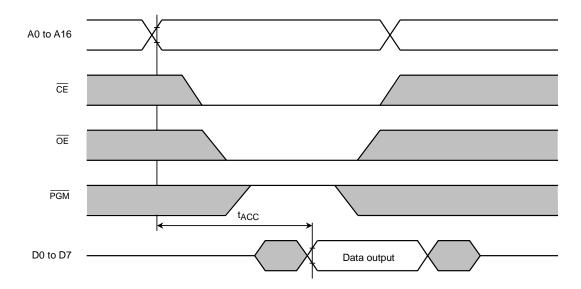
4.10 Read Operation in PROM Mode

DC/AC characteristics

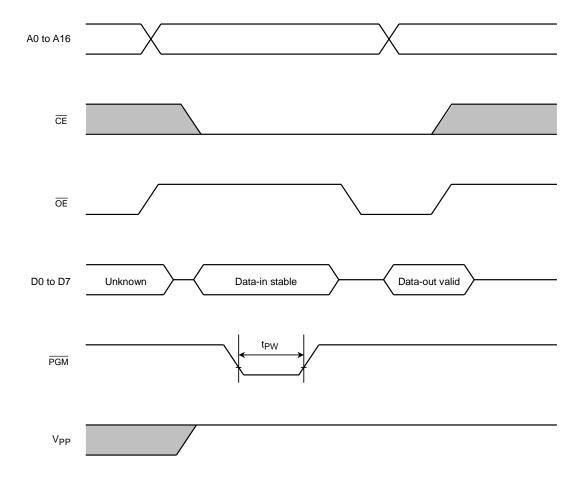
 $Ta=25\pm5^{\circ}C,\ V_{CC}=5\ V\pm10\%$

Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} read voltage	V _{PP}	-	4.5	5.5	
Input high voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IH1}	_	2.2	V _{CC} + 0.3	V
Input low voltage (A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IL1}	-	-0.3	0.8	
Address to output delay	t _{ACC}	$C_L = 50 pF$	_	2.25T _{CYC} + α	ns

 $T_{CYC} = 400 \text{ ns (10 MHz clock)}$ $\alpha = 200 \text{ ns}$


4.11 Program Operation in PROM Mode

DC/AC characteristics


 $Ta = 25 \pm 5$ °C, $V_{CC} = 6.25 \text{ V} \pm 0.25 \text{ V}$

14 20 0 1 100 0 120 1 20 120 1									
Parameter	Symbol	Condition	Min	Тур.	Max	Unit			
Programming supply voltage	V_{PP}	-	12.50	12.75	13.00				
Input high voltage (D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})	V _{IH}	-	2.6		V _{CC} + 0.3	V			
Input low voltage (D0 to D7, A0 to A16, $\overline{\text{CE}}$, $\overline{\text{OE}}$, $\overline{\text{PGM}}$)	V _{IL}	-	-0.3		0.8				
V _{CC} supply current	Icc	fc = 10 MHz	_		50	^			
V _{PP} supply current	I _{PP}	$V_{PP} = 13.00 \text{ V}$	_		50	mA			
PGM program pulse width	t _{PW}	$C_L = 50 pF$	0.095	0.1	0.105	ms			

4.12 Timing Chart of Read Operation in PROM Mode

4.13 Timing Chart of Program Operation in PROM Mode

Note 1: The power supply of V_{PP} (12.75 V) must be turned on at the same time or the later time for a power supply of V_{CC} and must be turned off at the same time or early time for a power supply of V_{CC} .

Note 2: The device suffers a damage taking out and putting in on the condition of $V_{PP} = 12.75 \text{ V}$.

Note 3: The maximum spec of V_{PP} pin is 14.0 V. Be carefull a overshoot at the programming.

4.14 Recommended Oscillator

The TMP93PS40 is evaluated with the resonators. The evaluation results are referred to your usable application.

Note: The load capacitance of the resonator consists of the load capacitance C1, C2 to be connected and the floating capacitance on the target board.

Even if the specified values of C1 and C2 are used, there is a possibility that the oscillator malfunctions due to different load capacitance of the target boards. Therefore the peripheral patterns of the oscillator should be designed to take the shortest course on the board. It is recommended that the evaluation of the resonators is executed on the target board.

(1) Recommended oscillator circuit

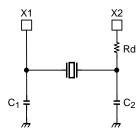


Figure 1 Example of High Frequency
Resonator Connection

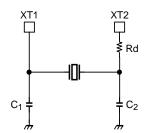


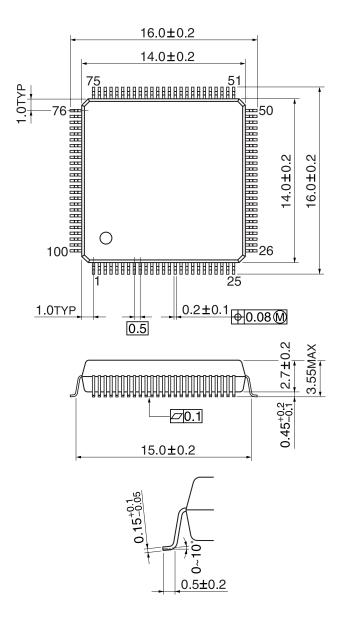
Figure 2 Example of Low Frequency
Resonator Connection

(2) Ceramic resonator: Murata Manufacturing. Co., Ltd.

 $Ta = -20 \text{ to } 80^{\circ}C$

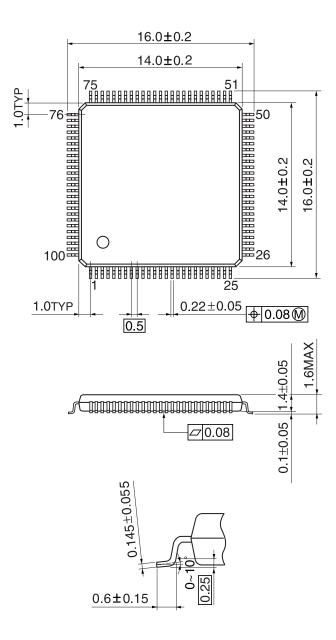
Danasastas	Frequency		Reco	mmended	value	V _{CC} [V]	
Parameter	(MHz)	Recommended resonator	C ₁ [pF]	C ₂ [pF]	R _d [kΩ]		
4.00	4.00	CSA4.00MGU	30	30			
	4.00	CST4.00MGWU	*(30)	*(30)			
	10.00	CSA10.0MTZ093	30	30		2.7 to 5.5	
High frequency		CST4.00MGWU	*(30)	*(30)	0	2.7 10 5.5	
oscillation	40.50	CSA12.5MTZ093	30	30	0		
	12.50	CST12.5MTW093	*(30)	(30)			
	16.00	CSA16.00MXZ040	5	5		454-55	
	20.00	CSA20.00MXZ040	3	3		4.5 to 5.5	

* : In case of built-in condenser type.


Note: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change.

For up-to-date information, please refer to the following URL: http://www.murata.com/

5. Package Dimensions


P-QFP100-1414-0.50

Unit: mm

P-LQFP100-1414-0.50F

Unit: mm

