TOSHIBA

TOSHIBA Original CMOS 32-Bit Microcontroller

TLCS-900/H1 Series

TMP92CF26AXBG

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions".

CMOS 32-Bit Microcontroller TMP92CF26AXBG

Outline and Features

The TMP92CF26A is a high-speed advanced 32-bit microcontroller developed for controlling equipment which processes mass data.

The TMP92CF26AXBG is housed in a 228-pin BGA package.

- (1) CPU: 32-bit CPU (High-speed 900/H1 CPU)
 - Compatible with TLCS-900/L1 instruction code
 - 16 Mbytes of linear address space
 - General-purpose register and register banks
 - Micro DMA: 8channels (62.5 ns/4 bytes at f_{SYS} = 80 MHz, best case)
- (2) Minimum instruction execution time: 12.5 ns (at fsys = 80 MHz)
- (3) Internal RAM: 144 Kbytes (can be used for program, data and display memory) Internal ROM: 8 Kbytes (memory for Boot only)

Possible downloading of user program through either USB, UART

- (4) External memory expansion
 - Expandable up to 3.1 Gbytes (shared program/data area)
 - Can simultaneously support 8 and 16-bit width external data buses Dynamic data bus sizing
 - Separate bus system
- (5) Memory controller
 - Chip select output: 4 channels
 - One channel in 4 channels is enabled detailed AC enable setting
- (6) 8-bit timers: 8 channels
- (7) 16-bit timer/event counter: 2 channels
- (8) General-purpose serial interface: 1 channel
 - UART/synchronous mode
 - IrDA ver.1.0 (115.2 kbps) selectable

(There is the restriction in the setting baud rate when use this function together other functions)

- (9) Serial bus interface: 1 channel
 - I²C bus mode only

(10) USB (universal serial bus) controller: 1 channel

- Supports USB (ver.1.1)
- Full-speed (12 Mbps) (Low-speed is not supported.)
- Endpoint 0: Control 64 bytes × 1 FIFO
 - Endpoint 1: BULK (output) 64 bytes × 2 FIFOs
 - Endpoint 2: BULK (input) 64 bytes × 2 FIFOs
 - Endpoint 3: Interrupt (input) 8 bytes × 1 FIFO
- Descriptor RAM: 384 bytes

(11) I2S (Inter-IC Sound)interface: 2 channels

- I²S bus mode selectable (Master, transmission only)
- Data Format is supported Left/Right Justify
- 128-byte FIFO buffer (64 bytes × 2) per channel

(12) LCD controller

- Supports monochrome, 4, 16 and 64 gray levels and 256/4096/65536 colors for STN
- Supports 4096/65536/262144/16777216 colors for TFT
- Supports PIP (Picture In Picture Display)
- Supports H/W Rotation function for support to various LCDM

(13) SDRAM controller:1 channel

- Supports 16-Mbit, 64-Mbit, 128-Mbit, 256-Mbit and 512-Mbit SDR (Single-data-rate) SDRAM
- Possible to execute instruction on SDRAM

(14) Timer for real-time clock (RTC)

- Based on TC8521A
- (15) Key-on wakeup (Interrupt key input)
- (16) 10-bit A/D converter (Built in Sample Hold circuit): 6 channels
- (17) Touch screen interface
 - Built-in Switch of Low-resistor, and available to reduce external components for shift change row/column

(18) Watchdog timer

- (19) Melody/alarm generator
 - Melody: Output of a clock 4 to 5461-Hz clock
 - Alarm: Output of 8 kinds of alarm pattern
 - 5 kinds of interval interrupt

(20) MMU

- Expandable up to 3.1 Gbytes (3 local area/8 bank method)
- Independent bank for each program, read data, write data, source and destination of DMAC (Odd channel/Even channel) and LCD display data

(21) Interrupts: 56 interrupts

- 9 CPU interrupts: Software interrupt instruction and illegal instruction
- 38 internal interrupts: Seven selectable priority levels
- 9 external interrupts: Seven selectable priority levels (8-edge selectable)

(22) DMAC function: 6 channels

 High-speed data transfer enable by controlling which convert micro DMA function and this function

(23) Input/Output ports: 136 pins (Except Data bus (16bit), Address bus (24bit) and RD pin)

(24) NAND Flash interface: 2 channels

- Direct NAND flash connection capability
- Supports SLC type and MLC type
- Supports Data Bus 8/16 bits, Page Size 512/2048 bytes
- Built-in Reed Solomon calculation circuits which enabled correct 4-address, and detect error more than 5-address

(25) SPI controller: 1 channel

- Supports SPI mode of SD card and MMC card
- Built-in FIFO buffer of 32 bytes to each Input/Output

(26) Product/Sum calculation: 1 channel

- Supports calculation $32 \times 32 + 64 = 64$ bits, $64 32 \times 32 = 64$ bits and $32 \times 32 64 = 64$ bits
- I/O method
- Supports Signed calculations

(27) Standby function

- Three Halt modes: IDLE2 (programmable), IDLE1, STOP
- Each pin status programmable for standby mode
- Built-in power supply management circuits (PMC) for leakage current provision

(28) Clock controller

- Two blocks of clock doubler (PLL) supplies 48 MHz for USB and 80 MHz for CPU from 10 MHz
- Clock gear function: Selectable high-frequency clock fc to fc/16
- Clock for Timer (fs = 32.768 kHz)

(29) Operating voltage:

- Internal $V_{CC} \neq 1.5 \text{ V}$, External I/O $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$
- 2 power supplies (Internal power supply (1.4 to 1.6 V), External power supply (3.0 to 3.6 V)

(30) Package

• 228-pin FBGA: FBGA228-P-1515-0.80A5

TOSHIBA TMP92CF26A **DVCC3A** [12] (AN0 to AN1)PG0 to PG1 10-bit 6ch DVCC3B [1] (AN2, MX)PG2 DVCC1A [5] 900/H1 CPU AD (AN3, MY, ADTRG)PG3 DVCC1B [1] Converter (AN4 to AN5)PG4 to PG5 DVSSCOM DVCC1C [1] AVCC, AVSS PLL VREFH, VREFL W **XWA** Α X1 H-OSC Touch Screen X2 (PX, INT4)P96-**XBC** В С Clock gear (PY)P97 (TSI) Е D **XDE** XT1 L-ØSC (TXD0)P90 ◄ Н SERIAL I/O XHL L XT2 (RXD0)P91 SIO₀ RESET XIX IX (CTS0, SCLK0)P92 **DBGE** (I2S0CKO)PF0 -AM [1:0] XIY ΙY I²S (I2S0DO)PF1 PZ0 (EI PODDATA) (I^2S0) XIZ ΙZ (I2S0WS)PF2 < PZ1 (EI_SYNCLK) (I2S1CKO)PF3-PZ2 (EI_PODREQ) I^2S **XSP** SP (I2S1DO)PF4 -PZ3(EI_REFCLK) (I²S1)32bit PZ4(EI_TRGIN) (12S1WS)PF5 < DSU PZ5(EI_COMRESET) (SDA)PV6 ₹ SR F SBI (I²Cbus) ➤ PZ6(EO_MCUDATA) (SCL)PV7 ➤ PZ7(EO_MCUREQ) P C **USB** D. >PMC PM7 (PWE) Controller (X1USB) PX5≺ 8BIT TIMER (TMRA0) PC0 (INT0) Interrupt (TA0IN, INT1)PC1 ◄ WATCH-DOG TIMER Controller PC2 (INT2) 8BIT TIMER D0 to D7 (TA1OUT, MLDALM)PM1 -(TMRA1) MMD PORT/1 P10 to P17 (D8 to D15) **8BIT TIMER** (TA2IN, INT3)PC3 (TMRA2) ➤ P40 to P47 (A0 to A7) PORT4 **8BIT TIMER** MAC (TA3OUT)PP1 ← (TMRA3) → P50 to P57 (A8 to A15) PORT5 8BIT TIMER (TMRA4) PORT6 P60 to P67 (A16 to A23) DMAC **8BIT TIMER** P70 (RD) (TA5OUT)PP2 ≺ (TMRA5) P73 (EA24) 8BIT TIMER (TMRA6) PORT7 P74 (EA25) P75(R/W, NDR/B) 8BIT TIMER P76 (WAIT) (TA7OUT, INT5)PP3 -(TMRA7) P80 (CS0) (TB0IN0, INT6)PP4< **16BIT TIMER** P81 (CS1, SDCS) PORT8 (TMRB0) P82 (CS2 , CSZA , SDCS) (TB0OUT0)PP6< 16BIT TIMER (TMRB1) P83 (CS3, CSXA) (TB1IN0, INT7)PP5◀ P84 (CSZB) (TB1OUT0)PP7◀ P85 (CSZC) (SPDI)PR0≺ SPI P71 (WRLL, NDRE) (<u>SPDO</u>)PR1≺ (SPCS) PR2≺ Controller P72 (WRLU, NDWE) NAND-FLASH (SPCLK)PR3 144KB RAM P86 (CSZD, ND0CE) I/F (2ch) P87 (CSXB, ND1CE) (LCP0)PK0< PJ5 (NDALE) (LLOAD)PK1-PJ6 (NDCLE) (LFR)PK2< PA0 to PA7 (KI0 to KI7) (LVSYNC)PK3≺ KEY-BOARD ➤ PN0 to PN7 (KO0 to KO7) LCD (LHSYNC)PK4 I/F PC7 (KO8) (LGOE2 to 0)PK7 to 5€ Controller (LD7 to 0)PL7 to 0≺ **BOOT ROM 8KB** PM2 (ALARM , MLDALM) **RTC** (LD15 to 8)PT7 to 0< (LD22 to 16)PU6 to 0 MELODY/ (LD23, EO_TRGOUT)PU7~ ALARM-OUT (CLKOUT, LDIV)PX4≺ ➤PV3 PX7< **PORTV** ►PV4 (SDRAS, SRLLB)PJ0 PV0 (SCLK0) (SDCAS, SRLUB)PJ1 ◄ **SDRAM** →PV1 (SDWE, SRWR)PJ2 ◄ → PV2 Controller (SDLLDQM)PJ3 -→ PW7 to 0 (SDLUDQM)PJ4 ◄ PC4 (EA26) (SDCKE)PJ7≺ → PC5 (EA27) (SDCLK)PF7◄ PC6 (EA28)

Figure 1.1 Block Diagram of TMP92CF26A

2. Pin Assignment and Pin Functions

The assignment of input/output pins for TMP92CF26A, their names and functions are as follows;

2.1 Pin Assignment Diagram (Top View)

Figure 2.1.1 shows the pin assignment of the TMP92CF26A.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 D1 D2 D3 D5 D6 D7 D8 D9 D10 D11 D12 D13 D15 D16 D17 E1 E2 E3 E4 F6 F7 F8 F9 F10 F11 F14 F15 F16 F17 G1 G2 G3 G4 G6 G7 F8 F9 F10 F11 F14 F15 F16 F17 K1 K2 K3 K4 K6 K6 TMP92CF26A J12 J14															$\overline{}$		
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 G14 C15 C16 C17 D1 D2 D3	A1	A2	А3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	A17
D1 D2 D3 D5 D6 D7 D8 D9 D10 D11 D12 D13 D15 D16 D17 E1 E2 E3 E4 F1 F2 F3 F4 G1 G2 G3 G4 H1 H2 H3 H4 H6 H12 H14 H15 H16 H17 H1 H2 L3 L4 K6 FBGA228 K12 K14 K15 K16 K17 K1 K2 K3 K4 K6 TOP VIEW L12 M6 M7 M8 M9 M10 M11 M12 M14 N15 N16 N17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	B1	B2	ВЗ	B4	B5	В6	В7	B8	В9	B10	B11	B12	B13	B14	B15	B16	B17
E1 E2 E3 E4 F1 F2 F3 F4 F6 F7 F8 F9 F10 F11 F14 F15 F16 F17 G1 G2 G3 G4 H1 H2 H3 H4 J6 TMP92CF26A J12 J14 J15 J16 J17 K1 K2 K3 K4 K6 FBGA228 K12 K14 K15 K16 K17 L1 L2 L3 L4 M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 F1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	C1	C2	СЗ	C4	C5	C6	C7	C8	6 9	C10	C11	C12	C13	614	C15	C16	C17
F1 F2 F3 F4	D1	D2	D3		D5	D6	D7	D8	D9	D10	D11	D12	D13	12	D15	D16	D17
G1 G2 G3 G4 H6 H6 H12 H14 H15 H16 H17 J1 J2 J3 J4 K6 FBGA228 K12 K14 K15 K16 K17 L1 L2 L3 L4 L6 TOP VIEW L12 L14 L15 L16 L17 M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 N14 F5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	E1	E2	E3	E4										E14	E15	E16	E17
H1 H2 H3 H4	F1	F2	F3	F4		F6	F7	F8	F9	F10	F11			F14	F15	F16	F17
J1 J2 J3 J4 J6 TMP92CF26A J12 J14 J15 J16 J17 K1 K2 K3 K4 K6 FBGA228 K12 K14 K15 K16 K17 L1 L2 L3 L4 L6 TOP VIEW L12 L14 L15 L16 L17 M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 N4 N10 M11 M12 M14 M15 M16 M17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17	G1	G2	G3	G4		G6	G7			(77	G12		G14	G15	G16	G17
K1 K2 K3 K4 K6 FBGA228 K12 K14 K15 K16 K17 L1 L2 L3 L4 L6 TOP VIEW L12 L14 L15 L16 L17 M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 N4 N14 N15 N16 N17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	H1	H2	НЗ	H4		H6		\bigcirc			V.	H12	4	H14	H15	H16	H17
K1 K2 K3 K4 K6 K12 K14 K15 K16 K17 L1 L2 L3 L4 L6 TOP VIEW L12 L44 L15 L16 L17 M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 N4 N14 N15 N16 N17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	J1	J2	J3	J4		J6	7			_ \		J12	,	J14	315	J16	J17
M1 M2 M3 M4 M6 M7 M8 M9 M10 M11 M12 M14 M15 M16 M17 N1 N2 N3 N4 N14 N15 N16 N17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	K1	K2	K3	K4		K6		FI	3GA22	28	>	K12	(K14	K15	K16	K17
N1 N2 N3 N4 N4 N14 N15 N16 N17 P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	L1	L2	L3	L4		L6		TÓ	PVIE	₩)		L12	(7)	14	L15	L16	L17
P1 P2 P3 P5 P6 P7 P8 P9 P10 P11 P12 P13 P15 P16 P17 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	M1	M2	М3	M4		M6	М7	M8	M9	M10	M11	M12		M14	M15	M16	M17
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	N1	N2	N3	N4					>	<				N14	N15	N16	N17
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17	P1	P2	РЗ		P5	P6	P7	P8	P9	P10	P11	P12	P13		P15	P16	P17
	R1	R2	R3	R4	R5	R6	7 R 7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17	T1	T2	T3	T4	T5	T6		T8	T9	T10	IN	T12	T13	T14	T15	T16	T17
	U1	U2	U3	U4	U5	U6	U7	U8	U9	U10	Ų11	U12	U13	U14	U15	U16	U17

Figure 2.1.1 Pin assignment diagram (FBGA228)

4 balls of A1, A17, U1 and U17 (most outside 4 corner of BGA package) are Dummy Balls. These balls are not connected with internal LSI chip, electrical characteristics.

A1 and U1, A17 and U17 are shorted in internal package. It is recommended that using to OPEN check of mounting if mounting this LSI to Target board.

Example: If checking signal (or voltage) via A1-U1-U17-A17, short U17 and U1 on Target board beforehand, and input signal (or voltage) from A1, and check voltage of A17.

Table 2.1.1 Pin number and the name

			Table 2.1.1 Pin nur	11001			
Ball No.	Pin name	Ball No.	Pin name	Ball No.	Pin name	Ball No.	Pin name
A1	Dummy1	D9	P73,EA24	J15	PT5,LD13	P15	PK4,LHSYNC
A2	PG2,AN2, MX	D10	PF4,I2S1DO	J16	P47,A7	P16	P13,D11
А3	PA6,KI6	D11	PF7,SDCLK	J17	P46,A6	P17	P14,D12
A4	PA5,KI5	D12	PJ4,SDLUDQM	K1	PN3,KO3	R1	X2
A5	PA3,KI3	D13	P85, CSZC	K2	PN4,KO4	R2	PC7,KO8
A6	PA1,KI1	D15	PU6,LD22	K3	PN5,KO5	R3	PC3,INT3,TA2IN
A7	DVCC1A5	D16	P61,A17	K4	PN6,KO6	R4	PX5,X1USB
A8	PF1,I2S0DO	D17	P60,A16	K6	DVCC3A2	R5	PP7,TB1OUT0
A9	PJ6,NDCLE	E1	P96,PX,INT4	K12	DVCC3A7	R6	PP1,TA3OUT
A10	PJ1, SDCAS, SRLUB	E2	PW1	K14	PT4,LD12	R7	PP3,INT5,TA7OUT
A11	P87, CSXB, ND1CE	E3	PW2	K15	PT3,LD11	R8	PP5,INT7,TB1IN0
A12	P83, CS3, CSXA	E4	PW3	K16	P45,A5	R9	PR2, SPCS
A13	P81, CS1, SDCS	E14	PU7,LD23,EO TRGOUT	K17	P44,A4	R10	PX7
A14	P72, WRLU , NDWE	E15	PU4,LD20	L1	PK2,LFR	R11	PZ0,EI_PODDATA
A15	P70, RD	E16	P57,A15	L2	PN7,KQ7	R12	PZ2,EI_PODREQ
A16	P65,A21	E17	P56,A14	L3	PM1,MLDALM,TA1OUT	R13	PZ4,EI_TRGIN
A17	Dummy3	F1	DVCC1B1	L4	PM7,PWE	R14	PZ6,EO MCUDATA
B1	VREFH	F2	PW6	L6	DVSS3	R15	PZ7,EO_MCUREQ
B2	PG5.AN5	F3	PW5	L12	DVSS7	R16	P15,D13
B3	PG3,AN3,MY, ADTRG	F4	PW4	L14	PT2.LD10	R17	DVCC1A3
	PA7.KI7			L15	PT1,LD9	T1	X1
B4	PA7,KI7 PA2.KI2	F6 F7	DVCC3A12		P11,LD9	T2	AM0
B5	,		DVCC3A11	L16			
B6	PA0,KI0	F8	DVSS11	L47	P42,A2	T3/	AM1
B7	PF2,I2S0WS	F9	DVCC3A10	M1	PK3,LVSYNC	T4	PP6,TB0OUT0
B8	PF0,I2S0CKO	F10	DVSS10	M2	PC0,INT0	T5	PL0,LD0
B9	PJ5,NDALE	F11	DVCC3A9	M3	PM2, ALARM, MLDALM	T6	PL2,LD2
B10	PJ2, SDWE , SRWR	F14	PU5,LD21	M4	P90,TXD0	T7	PL4,LD4
B11	PJ0, SDRAS, SRLLB	F15	PU2,LD18	M6	DVCC3A3	T8	PL5,LD5
B12	P86. CSZD , ND0CE	F16	P55,A13	M7	DVSS4	T9	PR1,SPDO
B13	P82, CS2, CSZA, SDCS	F17	P54,A12	M8	DVCC3A4	T10	PL6,LD6
B14	P75,R/ W ,NDR/B	G1	DVCC3B1	M9	DVSS5	T11	PK1,LLOAD
B15	P71, WRLL, NDRE	G2	PW7	M10	DVCC3A5	T12	D0
B16	P64,A20	G3	PV0,SCLK0	M11/	DVSS6	T13	D2
B17	DVCC1A4	G4	PV1	M12	DVCC3A6	T14	D4
C1	AVCC	G6	DVSS1	M14	PK7,LGOE2	T15	D6
C2	VREFL	G7	DVSS12	M15	PT0,LD8	T16	P11,D9
C3	PG4,AN4	G12	DVSS9	M16	P41,A1	T17	P12,D10
C4	PG1,AN1	G14	PU3,LD19	M17/	P40,A0	U1	Dummy2
C5	PA4,KI4	G 15	PU0,LD16	N1	DVCC1A1	U2	RESET
C6	PC5,EA27	G16	P53,A11	N2	PC1,INT1,TA0IN	U3	D+
C7	P76, WAIT	G17	P52,A10	N3	P91,RXD0	U4	D-
C8	PF5,I2S1WS	H1	PV7,SCL	N4	DVSS1C	U5	DVCC1A2
C9	PF3,I2S1CKO	H2	PV6,SDA	N14	PK6,LGOE1	U6	PL1,LD1
C10	PJ7,SDCKE	/ H3	PV3	N15	PK5,LGOE0	U7	PL3,LD3
C11	PJ3,SDLLDQM	H4	PV2	N16	P17,D15	U8	XT1
C12	P84, CSZB	H6	DVCC3A1	N17	P16,D14	U9	XT2
C13	P80, CS0	H12	DVCC3A8	P1	DVCC1C	U10	PL7.LD7
C14/	P67,A23	H14	PU1,LD17	P2	PC2,INT2	U11	PK0,LCP0
C15	P66,A22	H15	PT7,LD15	P3	P92,SCLK0, CTS0,	U12	D1
C16	P63,A19	H16	P51,A9	P5	PX4,CLKOUT, LDIV	U13	D3
C17	P62,A18	H17	P50,A8	P6	PP2,TA5OUT	U14	D5
D1	P97,PY	J1	PN2,KO2	P7	PP4,INT6,TB0IN0	U15	D7
D2	AVSS	J2	PN1,KO1	P8	PR0,SPDI	U16	P10,D8
D3	PW0	J3	PN0,KO0	P9	PR3,SPCLK	U17	Dummy4
D5	PG0,AN0	J4	PV4	P10	DBGE		
D6	PC6,EA28	J6	DVSS2	P11	PZ1,EI_SYNCLK		
D7	PC4,EA26	J12	DVSS8	P12	PZ3,EI_REFCLK		
D8	P74,EA25	J14	PT6,LD14	P13	PZ5,EI_COMRESET		
	,==0	V	,==		5,0 0 (LOL)		

Note1: The P96, P97 and PG0~PG5 operate with the AVCC power supply.

Note2: The PW0~PW7 and PV0~PV7 operate with the DVCC3B power supply.

Note3: The X1 and X2 operate with the DVCC1C power supply.

2.2 Pin names and Functions

The names of the input/output pins and their functions are described below.

Table 2.2.1 Pin names and functions (1/6)

Pin name	Number of Pins	I/O	Functions
D0 to D7	8	I/O	Data: Data bus D0 to D7
P10 to P17		I/O	Port 1: I/O port input or output specifiable in units of bits
D8 to D15	8	I/O	Data: Data bus D8 to D15
P40 to P47		Output	Port 4: Output port
A0 to A7	8	Output	Address: Address bus A0 to A7
P50 to P57		Output	Port 5: Output port
A8 to A15	8	Output	Address: Address bus A8 to A15
P60 to P67		I/O	Port 6: I/O port input or output specifiable in units of bits
A16 to A23	8	Output	Address: Address bus A16 to A23
P70	1	Output	Port 70: Output port
RD		Output	Read: Outputs strobe signal to read external memory
P71	1	I/O	Port 71: Output port
WRLL		Output	Write: Outputs strobe signal for writing data on pins D0 to D7
NDRE		Output	NAND Flash read: Outputs strobe signal to read external NAND-Flash
P72	1	I/O	Port 72: I/O port
WRLU		Output	Write: Outputs strobe signal for writing data on pins D8 to D15
NDWE		Output	NAND Flash write: Write enable for NAND Flash
P73	1	I/O	Port 73: I/O port
EA24		Output	Expanded address 24
P74	1	I/O	Port 74: I/O port
EA25		Output	Expanded address 25
P75	1	I/O	Port 75: I/O port
R/W		Output	Read/Write: "High" represents read or dummy cycle; "Low" represents write cycle
NDR/B		Input	NAND Flash Ready(1) / Busy(0) input
P76		1/0	Port 76: 1/O port
WAIT	1	Input	Wait: Signal used to request CPU bus wait
P80		Output	Port 80: Output port
CS0	1 /	Output	Chip select 0: Outputs "Low" when address is within specified address area
P81	1	Output	Port 81: Output port
CS1		Output	Chip select 1: Outputs "Low" when address is within specified address area
SDCS		Output	Chip select for SDRAM: Outputs "Low" when the address is within SDRAM address area
P82	$\langle 1 \rangle \rangle$	Output	Port 82: Output port
CS2	3/	Output	Chip select 2: Outputs "Low" when address is within specified address area
CSZA		Output	Expanded address ZA: Outputs "Low" when address is within specified address area
SDCS		Output	Chip select for SDRAM: Outputs "Low" when the address is within SDRAM address area
P83		Output	Port 83: Output port
CS3		Output	Chip select 3: Outputs "Low" when address is within specified address area
CSXA		Output	Expanded address XA: Outputs "Low" when address is within specified address area
P84	1	Output	Port 84: Output port
CSZB		Output	Expanded address ZB: Outputs "Low" when address is within specified address area
P85	1	Output	Port 85: Output port
CSZC		Output	Expanded address ZC: Outputs "Low" when address is within specified address area

Table 2.2.1 Pin names and functions (2/6)

P86 CSZD	Pin name	Number of Pins	I/O	Functions
NDOCE	P86		Output	Port 86: Output port
P87	CSZD	1	Output	Expanded address ZD: Outputs "Low" when address is within specified address area
P87	ND0CE		Output	Chip select for NAND Flash 0: Outputs "Low" when NAND Flash 0 is enable
NDICE	P87		Output	
P90	CSXB	1	Output	Expanded address XB: Outputs "Low" when address is within specified address area
P90	ND1CE		Output	Chip select for NAND Flash 1: Outputs "Low" when NAND Flash 1 is enable
TXD0	P90	_	I/O	// 7 / Å
RXDO	TXD0	1	Output	Transmit data for serial 0: programmable Open-drain output
RXD0	P91	_	I/O	Port 91: I/O port (Schmitt-input)
SCLKO CTS0 1	RXD0	1	Input	
Input Enable to send data for serial 0 (Clear to send)	P92		I/O	Port 92: I/O port (Schmitt-input)
P96 1 Input Input Input Port 96: Input port (schmitt-input, with pull-up resistor) INT4	SCLK0	1	I/O	Clock I/O for serial 0
INT4 Input Output	CTS0		Input	Enable to send data for serial 0 (Clear to send)
PX Output X-Plus: Pin connected to X+ pin for Touch Screen I/F P97 1 Input Output Y-Plus: Pin connected to Y+ pin for Touch Screen I/F PA0 to PA7 R/I0 to RA7 R/I0 to RA7 Input Port A0 to A7: Input port (Schmitt-input) PC0 1 I/O Port C0: I/O port (Schmitt-input) INT0 1 Input Input Interrupt request pin 0: Interrupt request pin with programmable rising/falling edge PC1 1 I/O Port C1: I/O port (Schmitt-input) INT1 1 Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge PC2 1 I/O Port C2: I/O port (Schmitt-input) INT2 1 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 I/O Port C3: I/O port (Schmitt-input) INT3 1 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 I/O Port C3: I/O port (Schmitt-input) INT3 1 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge PC4 1 Input Interrupt pin for 8 bit timer 2 PC4 2 Input Input pin for 8 bit timer 2 PC5 1 I/O Port C4: I/O port (Schmitt-input) Expanded address 26 PC5 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port Expanded address 28 PC7 I/O Port C7: I/O port Expanded address 28 PC7 I/O Port C7: I/O port Expanded address 28	P96	1	Input	Port 96: Input port (schmitt-input, with pull-up resistor)
PX Output X-Plus: Pin connected to X+ pin for Touch Screen I/F P97 1 Input Output Y-Plus: Pin connected to Y+ pin for Touch Screen I/F PA0 to PA7 R/I0 to RA7 R/I0 to RA7 Input Port A0 to A7: Input port (Schmitt-input) PC0 1 I/O Port C0: I/O port (Schmitt-input) INT0 1 Input Input Interrupt request pin 0: Interrupt request pin with programmable rising/falling edge PC1 1 I/O Port C1: I/O port (Schmitt-input) INT1 1 Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge PC2 1 I/O Port C2: I/O port (Schmitt-input) INT2 1 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 I/O Port C3: I/O port (Schmitt-input) INT3 1 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 I/O Port C3: I/O port (Schmitt-input) INT3 1 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge PC4 1 Input Interrupt pin for 8 bit timer 2 PC4 2 Input Input pin for 8 bit timer 2 PC5 1 I/O Port C4: I/O port (Schmitt-input) Expanded address 26 PC5 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port Expanded address 28 PC7 I/O Port C7: I/O port Expanded address 28 PC7 I/O Port C7: I/O port Expanded address 28	INT4		Input	Interrupt request pin 4: Interrupt request pin with programmable rising/falling edge
P97	PX		Output	
PA0 to PA7 KI0 to KI7 8 Input Input Input Key input 0 to 7: Pin used for key on wake-up 0 to 7 (Schmitt-input, with pull-up resistor) PC0 INT0 1 Input Input Interrupt request pin 0: Interrupt request pin with programmable rising/falling edge PC1 INT1 1 Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge PC2 INT2 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 INT3 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 INT3 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Input Input Input pin for 8 bit timer 2 PC4 Input Input Expanded address 26 PC5 Input Input Expanded address 27 PC6 Input Input Input Expanded address 27 PC7 I/O Port C6: I/O port Expanded address 28 PC7 I/O Port C7: I/O port	P97	1	Input	
Rill to Ki7 8	PY		Output	Y-Plus: Pin connected to Y+ pin for Touch Screen I/F
Rio to Ri7 Input Key input 0 to 7: Pin used for key on wake-up 0 to 7. (Schmitt-input, with pull-up resistor)	PA0 to PA7		Input	Port A0 to A7: Input port
INTO Input Interrupt request pin 0; Interrupt request pin with programmable rising/falling edge INTO PC1 INT1 Input Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge Input Timer A0 input: Input pin for 8 bit timer 0 PC2 INT2 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 INT3 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 INT3 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Interrupt request pin 6 in 8 bit timer 2 PC4 INO POrt C4: I/O port EA26 PC5 INO Port C5: I/O port Expanded address 26 PC6 INO Port C6: I/O port Expanded address 27 PC6 EA28 PC7 I/O Port C6: I/O port Expanded address 28 PC7 I/O Port C7: I/O port	KI0 to KI7	8	Input	Key input 0 to 7: Pin used for key on wake-up 0 to 7 (Schmitt-input, with pull-up resistor)
INTO Input Interrupt request pin 0: Interrupt request pin with programmable rising/falling edge I/O Port C1: I/O port (Schmitt-input) INT1 1 Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge Input Timer A0 input: Input pin for 8 bit timer 0 PC2	PC0		I/O	Port C0: I/O port (Schmitt-input)
INT1 1 Input Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge TA0IN	INT0	1	Input	Interrupt request pin 0: Interrupt request pin with programmable rising/falling edge
TAOIN Input Timer A0 input: Input pin for 8 bit timer 0 PC2 INT2	PC1		I/O	Port C1: I/O port (Schmitt-input)
PC2 INT2 INT2 INT3 I I/O Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 INT3 I Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge Input Input Input Input Input pin for 8 bit timer 2 PC4 EA26 I I/O Port C4: I/O port EA27 I I/O Port C5: I/O port Expanded address 26 PC5 I I/O Port C5: I/O port Expanded address 27 PC6 EA28 PC7 I PO Port C6: I/O port Expanded address 28 PC7 I PO Port C7: I/O port Expanded address 28 PC7 I PO Port C7: I/O port	INT1	1	Input	Interrupt request pin 1: Interrupt request pin with programmable rising/falling edge
INT2	TAOIN		Input	Timer A0 input: Input pin for 8 bit timer 0
INT2 Input Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge PC3 I/O Port C3: I/O port (Schmitt-input) INT3 1 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge TA2IN Input Input Input pin for 8 bit timer 2 PC4 I Port C4: I/O port EA26 PC5 I I/O Port C5: I/O port EA27 Output Expanded address 26 PC6 I Port C6: I/O port EA28 Output Expanded address 28 PC7 I/O Port C7: I/O port	PC2		I/O	Port C2: I/O port (Schmitt-input)
INT3 1 Input Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge TA2IN PC4 EA26 1 I/O Port C4: I/O port Expanded address 26 PC5 EA27 1 Output Expanded address 27 PC6 EA28 1 I/O Port C6: I/O port Expanded address 28 PC7 I/O Port C7: I/O port Expanded address 28 PC7 I/O Port C7: I/O port	INT2	1	Input	Interrupt request pin 2: Interrupt request pin with programmable rising/falling edge
TA2IN Input Timer A2 input: Input pin for 8 bit timer 2 PC4 1 I/O Port C4: I/O port EA26 1 Output Expanded address 26 PC5 1 I/O Port C5: I/O port EA27 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port EA28 1 Output Expanded address 28 PC7 I/O Port C7: I/O port	PC3		I/O	Port C3: I/O port (Schmitt-input)
TA2IN Input Timer A2 input: Input pin for 8 bit timer 2 PC4 1 I/O Port C4: I/O port EA26 1 Output Expanded address 26 PC5 1 I/O Port C5: I/O port EA27 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port EA28 1 Output Expanded address 28 PC7 I/O Port C7: I/O port	INT3	1	Input	Interrupt request pin 3: Interrupt request pin with programmable rising/falling edge
EA26 1 Output Expanded address 26 PC5 1 I/O Port C5; I/O port EA27 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port EA28 1 Output Expanded address 28 PC7 I/O Port C7; I/O port	TA2IN		((Timer A2 input: Input pin for 8 bit timer 2
EA26 1 Output Expanded address 26 PC5 1 I/O Port C5; I/O port EA27 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port EA28 1 Output Expanded address 28 PC7 I/O Port C7; I/O port	PC4			
PC5 1 I/O Port C5: I/O port EA27 1 Output Expanded address 27 PC6 1 I/O Port C6: I/O port EA28 Output Expanded address 28 PC7 I/O Port C7: I/O port	EA26	1 (Output	
EA27 Output Expanded address 27 PC6 I/O Port C6: I/O port EA28 Output Expanded address 28 PC7 I/O Port C7: I/O port	PC5		1/0	
PC6 EA28 Output Expanded address 28 PC7 I/O Port C6: I/O port Expanded address 28 Port C7: I/O port	EA27	1	Output	Expanded address 27
EA28 Output Expanded address 28 PC7 I/O Port C7; I/O port	PC6	^. ^		Port C6: I/O port
PC7 I/O Port C7; I/O port	EA28	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Output	' \ \
	PC7		7	
KO8 Output Key output 8: Key scan strobe pin (programmable Open-drain output)				\ (·

Table 2.2.1 Pin names and functions (3/6)

Pin name	Number of Pins	I/O	Functions
PF0	4	I/O	Port F0: I/O port
I2S0CKO	1	Output	Outputs clock for I ² S0
PF1	4	I/O	Port F1: I/O port
I2S0DO	1	Output	Outputs data for I ² S0
PF2	1	I/O	Port F2: I/O port
I2S0WS	'	Output	Outputs word select signal for I ² S0
PF3	1	I/O	Port F3: I/O port
I2S0WS	'	Output	Outputs clock for I ² S1
PF4	1	I/O	Port F4: I/O port
I2S1CKO		Output	Outputs data for I ² S1
PF5	1	I/O	Port F5: I/O port
I2S1WS		Output	Outputs word select signal for I ² S1
PF7	1	Output	Port F7: Output port
SDCLK		Output	Clock for SDRAM
PG0 to PG1	2	Input	Port G0 to G1: Input port
AN0 to AN1		Input	Analog input pin 0 to 1: Input pin for AD converter
PG2	_	Input	Port G2: Input port
AN2	1	Input	Analog input pin 2: Input pin for AD converter
MX		Output	X-Minus: Pin connected to X- pin for Touch Screen I/F
PG3		Input	Port G3: Input port
AN3	1	Input	Analog input pin 3: Input pin for A/D converter
MY		Output	Y-Minus: Pin connected to Y- pin for Touch Screen I/F
ADTRG		Input	A/D Trigger: Request signal for A/D start
PG4 to PG5	2	Input	Port G4 to G5: Input port
AN4 to AN5		Input	Analog input pin 4 to 5: Input pin for A/D converter
PJ0		Output	Port Jo: Output port
SDRAS	1	Output	Outputs strobe signal for SDRAM row address
SRLLB		Output	Data enable signal for D0 to D7 for SRAM
PJ1		Output	Port J1: Output port
SDCAS	1	Output	Outputs strobe signal for SDRAM column address
SRLUB	/.	Output	Data enable signal for D8 to D15 for SRAM
PJ2		Output	Port J2: Output port
SDWE SRWR	1	Output	Outputs write enable signal for SDRAM
		Output	Write enable for SRAM: Outputs strobe signal to write data
PJ3	<1\/	Output	Port J3: Output port
SDLLDQM	- 	Output	Data enable signal for D0 to D7 for SDRAM
PJ4		Output	Port J4/ Output port
SDLUDQM	(())	Output	Data enable signal for D8 to D15 for SDRAM
PJ5		I/O	Port J5: 1/O port
NDALE		Output	Address latch enable signal for NAND Flash
PJ6		NO V	Port J6: I/O port
NDCLE		Output	Command latch enable signal for NAND Flash
PJ7	1	Output	Port J7: Output port
SDCKE		Output	Clock enable signal for SDRAM

Table 2.2.1 Pin names and functions (4/6)

Pin name	Number of Pins	I/O	Functions
PK0	1	Output	Port K0: Output port
LCP0	'	Output	Signal for LCD driver
PK1	1	Output	Port K1: Output port
LLOAD	'	Output	Signal for LCD driver: Data load signal
PK2	1	Output	Port K2: Output port
LFR	'	Output	Signal for LCD driver
PK3	1	Output	Port K3: Output port
LVSYNC		Output	Signal for LCD driver: Vertical sync signal
PK4	1	Output	Port K4: Output port
LHSYNC	•	Input	Signal for LCD driver: Horizontal sync signal
PK5	1	Output	Port K5: Output port
LGOE0	•	Output	Signal for LCD driver
PK6	1	Output	Port K6: Output port
LGOE1		Output	Signal for LCD driver
PK7	1	Output	Port K7: Output port
LGOE2	•	Output	Signal for LCD driver
PL0 to PL7	8	Output	Port L0 to L7: Output port
LD0 to LD7		Output	Data bus for LCD driver: LD0 to LD7
PM1		Output	Port M1: Output port
TA1OUT	1	Output	Timer A1 output: Output pin for 8 bit timer 1
MLDALM		Output	Melody / Alarm output pin
PM2		Output	Port M2: Output port
ALARM	1	Output	Alarm output from RTC
MLDALM		Output	Melody / Alarm output pin (inverted)
PM7	_	Output	Port M7: Output port
PWE	1	Output	External power supply control output: Pin to control ON/OFF for external power supply. In
DNIG (DNIZ		1/0	stand-by mode, outputs "L" level In other than stand-by mode, outputs "H" level
PN0 to PN7	8	1/0	Port N: I/O port
KO0 to KO7		Output	Key output 0 to 7: Key scan strobe pin (programmable Open-drain output)
PP1 TA3OUT	1	1/0	Port P1: I/O port
PP2		Output	Timer A3 output: Output pin for 8 bit timer 3
	1	NO Output	Port P2: I/O port Timer A5 output: Output pin for 8 bit timer 5
TA5OUT PP3		Output	Port P3: I/O port (Schmitt-input)
INT5	4 .	I/O Input	Interrupt request pin 5: Interrupt request pin with programmable rising/falling edge
TA7OUT	<\\?	Output	Timer A7 output: Output pin for 8 bit timer 7
PP4	- (A)	I/O	Port P4: I/O port (Schmitt-input)
INT6		Input	Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
TB0IN0	(('))	Input	Timer B0 input: Input pin for 16 bit timer 0
PP5		I/O>	Port P5: I/O port (Schmitt-input)
INT7		Input />	Interrupt request pin 7: Interrupt request pin with programmable rising/falling edge
TB1IN0	/	Input	Timer B1 input: Input pin for 16 bit timer 1
PP6		Output	Port P6: I/O port
TB0OUT0	<i>></i> 1	Output	Timer B0 output: Output pin for 16 bit timer 0
PP7		Output	Port P7: I/O port
TB1OUT0	1	Output	Timer B1 output: Output pin for 16 bit timer 1
PR0		I/O	Port R0: I/O port
SPDI	1	Input	Data input pin for SD card
PR1		I/O	Port R1: I/O port
SPDO	1	Output	Data output pin for SD card
PR2		I/O	Port R2: I/O port
	1		

Table 2.2.1 Pin names and functions (5/6)

Pin name	Number of Pins	I/O	Functions
PR3		I/O	Port R3: I/O port
SPCLK	1	Output	Clock output pin for SD card
PT0 to PT7		I/O	Port T0 to T7: I/O port
LD8 to LD15	8	Output	Data bus for LCD driver: LD8 to LD15
PU0 to PU4,PU6		I/O	Port U0 to U4 , U6: I/O port
LD16 to LD20,LD22	6	Output	Data bus for LCD driver: LD16 to LD20, LD22
PU5		I/O	Port U5: I/O port
LD21	1	Output	Data bus for LCD driver: LD21
PU7		I/O	Port U7: I/O port
LD23	1	Output	Data bus for LCD driver: LD23
EO_TRGOUT	·	Output	Output pin for Debug mode
PV0		I/O	Port V0: I/O port
SCLK0	1	Output	Clock I/O for serial 0
PV1	1	I/O	Port V1: I/O port
PV2		1/0	
	1		Port V2: I/O port
PV3 to PV4	2	Output	Port V3 to V4: Output port
PV6	1	I/O	Port V6: I/O port
SDA		I/O	Send/receive data at I ² C mode
PV7	1	I/O	Port V7: I/O port
SCL		I/O	Input/output clock at I ² C mode
PW0 to PW7	8	I/O	Port W0 to W7: I/O port
PX4		Output	Port X4: Output port
CLKOUT	1	Output	Internal clock output pin
LDIV		Output	Output pin for LCD driver
PX5	1	I/O	Port X5: I/O port
X1USB	'	Input	Clock input pin for USB
PX7	1	I/O	Port X7: I/O port
PZ0	1	I/O	Port Z0: I/O port (Schmitt-input)
EI_PODDATA	I	Input	Input pin for Debug mode
PZ1	1	I/O ((Port Z1: I/O port (Schmitt-input)
EI_SYNCLK	' /	Input	Input pin for Debug mode
PZ2	1 //	1/0	Port Z2: I/O port (Schmitt-input)
EI_PODREQ		Input	Input pin for Debug mode
PZ3		1/0	Port Z3: 1/O port (Schmitt-input)
EI_REFCLK	1	Input	Input pin for Debug mode
PZ4		I/O	Port Z4: I/O port (Schmitt-input)
EI_TRGIN	7	Input	Input pin for Debug mode
PZ5		1/0	Port Z5: I/O port (Schmitt-input)
EI_COMRESET		Input	Input pin for Debug mode
PZ6		I/O	Port Z6: I/O port (Schmitt-input)
EO_MCUDATA	1	Output	Output pin for Debug mode
PZ7		WO	Port Z7: I/O port (Schmitt-input)
EO_MCUREQ	1	Output	Output pin for Debug mode
	ı	- arpar	

Table 2.2.1 Pin names and functions (6/6)

Pin name	Number of Pins	I/O	Functions
D+, D-	2	I/O	USB-data connecting pin Connect pull-up(DVCC3A) or pull-down resistor to both pins to avoid through current when USB is not in use.
CLKOUT	1	Output	Internal clock output pin
AM1,AM0	2	Input	Operation mode; Fix to AM1 = "0",AM0 = "1" for 16 bit external bus starting Fix to AM1 = "1",AM0 = "0" is prohibit to set Fix to AM1 = "1",AM0 = "1" for BOOT (32 bit internal Mask ROM) starting Fix to AM1 = "0",AM0 = "0" is prohibited to set
DBGE	1	Input	Input pin in debug mode (This pin is set to "Debug mode" by input "0")
X1/X2	2	I/O	High-frequency oscillator circuit connection pin
XT1/XT2	2	I/O	Low-frequency oscillator circuit connection pin
RESET	1	Input	Reset: Initialize TMP92CF26A (Schmitt-input, with pull-up resistor)
VREFH	1	Input	Pin for reference voltage input to AD converter(H)
VREFL	1	Input	Pin for reference voltage input to AD converter(L)
AVCC	1	-	Power supply pin for AD converter
AVSS	1	-	GND pin for AD converter (0V)
DVCC3A	12	-	Power supply pin for peripheral I/O-A (All DVCC3A pins should be connected to the power supply pin)
DVCC3B	1	-	Power supply pin for peripheral I/O-B (All DVCC3B pins should be connected to the power supply pin)
DVCC1A	5	=	Power supply pin for internal logic-A (All DVCC1A pins should be connected to the power supply pin)
DVCC1B	1	-	Power supply pin for internal logic-B (Keep the voltage DVCC1A level)
DVSSCOM	12	-	GND pin (0V) (All DVSS pins should be connected to GND(0V))
DVCC1C	1	-	Power supply pin for High speed oscillator (Keep the voltage DVCC1A level)
DVSS1C	1	ī	GND pin (0V) (DVSS1C pin should be connected to GND(0V))
Dummy4-1	4	- ((Dummy1 and Dummy2, Dummy3 and Dummy4 are shorted in package (These pins are not connected with internal LSI chip.)

Table 2.2.2 shows the range of operational voltage for power supply pins.

Table 2.2.2 the range of operational voltage for power supply pins

Power supply pin	Range of operational voltage
DVCC1A	
DVCC1B	1.4V~1.6V
DVCC1C	
DVCC3A	
DVCC3B	3.0V~3.6V
AVCC	

3. Operation

This section describes the basic components, functions and operation of the TMP92CF26A.

3.1 CPU

The TMP92CF26A contains an advanced high-speed 32-bit CPU (TLCS-900/H1 CPU)

3.1.1 CPU Outline

The TLCS-900/H1 CPU is a high-speed, high-performance CPU based on the TLCS-900/L1 CPU. The TLCS-900/H1 CPU has an expanded 32-bit internal data bus to process Instructions more quickly.

The following is an outline of the CPU:

Table 3.1.1Outline of TMP92CF26A

Table 3.1.1 Outline of TWF 92CF26A							
Parameter	TMP92CF26A						
Width of CPU Address Bus	24-bit						
Width of CPU Data Bus	32-bit						
Internal Operating Frequency	Max	80MHz					
Minimum Bus Cycle	1-clock access	(12.5ns at 80MHz)					
Internal RAM	32-bit 2-1-1-	1 clock access					
Internal Boot ROM	32 bit 2-c	lock access					
Internal I/O	8-bit, 2-clock access	INTC,SDRAMC, MEMC,LCDC, TSI,PORT,PMC					
	16-bit, 2-clock access	MMU,USB, NDFC,SPIC,DMAC					
	32-bit, 2-clock access	l ² S					
	32-bit, 1-clock access	MAC					
	8-bit, 5'to 6-clock access	TMRA,TMRB, SIO,RTC, MLD/ALM, SBI CGEAR,ADC,WDT					
External memory	8/16-bit 2-	clock access					
(SRAM, MASKROM etc.)	(waits can	be inserted)					
External memory (SDRAM)	16-bit 1-clock access						
External memory	8/16-bit 2-	clock access					
(NAND FLASH)	(waits can	be inserted)					
Minimum Instruction Execution Cycle	1-clock (12.	5ns at 80MHz)					
Conditional Jump	2-clock (25.	Ons at 80MHz)					
Instruction Queue Buffer	12	-byte					
Instruction Set	Compatible with TLCS-900/L1						
¥	(LDX instruction is deleted)						
CPU mode	Maximum mode only						
Micro DMA	8-channel						
Hardware DMA	6-channel						

3.1.2 Reset Operation

When resetting the TMP92CF26A microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input Low for at least 20 system clocks (32 μ s at X1=10MHz).

At reset, since the clock doublers (PLL0) is bypassed and the clock-gear is set to 1/16, the system clock operates at 625 kHz(X1=10MHz).

When the Reset has been accepted, the CPU performs the following. CPU internal registers do not change when the Reset is released.

- Sets the Stack Pointer (XSP) to 00000000H.
- Sets bits <IFF2:0> of the Status Register (SR) to "111" (thereby setting the Interrupt Level Mask Register to level 7).
- Clears bits <RFP1:0> of the Status Register to "00" (thereby selecting Register Bank 0).

When the Reset is released, the CPU starts executing instructions according to the Program Counter settings.

• Sets the Program Counter (PC) as follows in accordance with the Reset Vector stored at address FFFF00H~FFFF02H:

PC<7:0> ← data in location FFFF00H

PC<15:8> ← data in location FFFF01H

PC<23:16> ← data in location FFFF02H

When the Reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

• Initializes the internal I/O registers as table of "Special Function Register" in Section 5.

Note1: This LSI builds in RAM internally. However, the data in internal RAM may not be held by Reset operation. After reset, initialize the data in internal RAM.

Note2: This LSI builds in PMC function (for reducing stand-by current by blocking the power supply of DVCC1A and DVCC1C). However, if executing reset operation without supplying DVCC1A and DVCC1C, the current may flow to internal. When reset this LSI, supply the power of DVCC1A and DVCC1C first and wait until the power supply stabilizes.

Figure 3.1.1 shows reset timing chart. Figure 3.1.2 shows the example of order of supplying power and the timing of releasing reset.

TOSHIBA

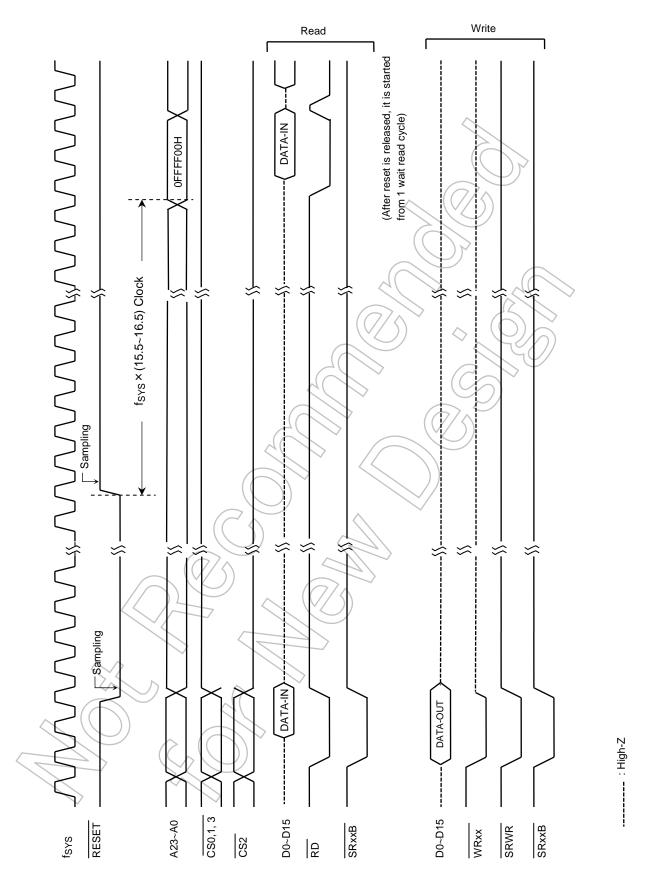
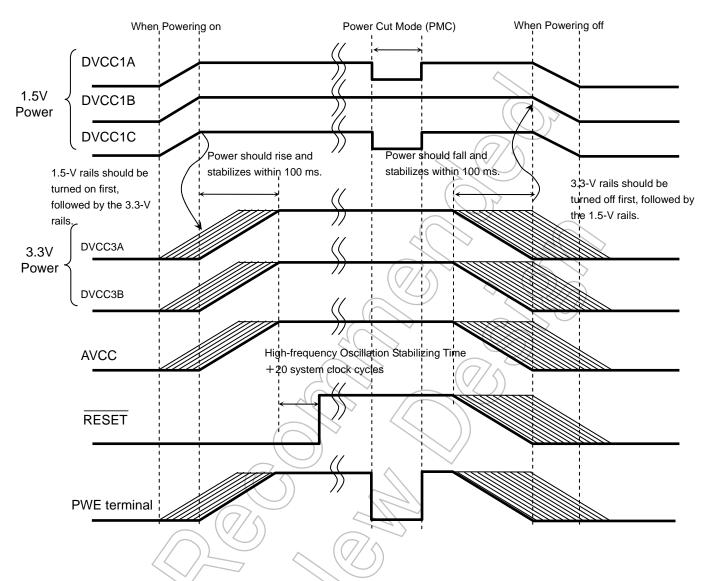



Figure 3.1.1 TMP92CF26A Reset timing chart

This LSI has the restriction for the order of supplying power. Be sure to supply external 3.3V power with 1.5V power is supplied.

Note1: Although it is possible to turn on or off the 1.5-V and 3.3-V power supply rails simultaneously, it may cause external pins to temporarily become unstable. Therefore, if there is any possibility that this would affect peripheral devices connected with the TMP92CF26A, external power supplies should be turned on or off while the internal power supplies are stable, as indicated by the heavy lines in the diagram above.

Note2: In the power-on sequence, the 3.3-V power supply rails must not be turned on before the ones of 1.5-V. In the power -off sequence, the 3.3-V power supply rails must not be turned off after the ones of 1.5-V.

Figure 3.1.2 Power on Reset Timing Example

3.1.3 Setting of AM0 and AM1

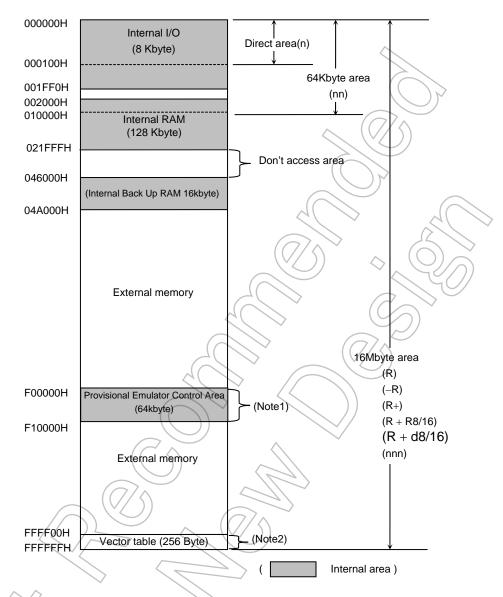
Set AM1 and AM0 pins as shown in Table 3.1.2 according to system usage.

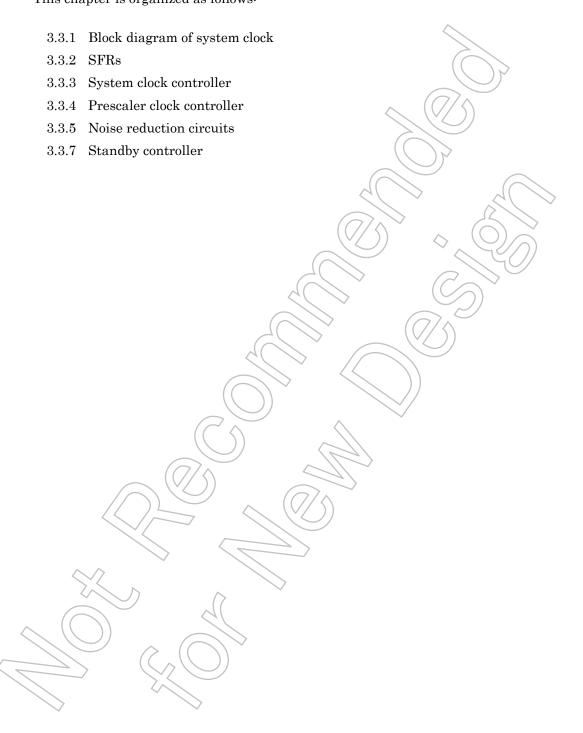
Table 3.1.2 Operation Mode Setup Table

М	ode Setu _l	p input pir	Operation Mode	
RESET	AM1	AM0	DBGE	Operation wode
	0	1	0	Debug mode
	O	ı	16-bit external bus starting	
	1	0	0	Test mode (Prohibit to set)
	ı	U	1	rest flode (Pfoffibit to set)
1			0	Test mode (Prohibit to set)
	1	1	1	BOOT(32-bit internal-MROM) starting
			1	(BOOT mode)
	0	0	0	Test mode (Prohibit to set)
	U	U	1	rest mode (Prombit to set)

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP92CF26A.

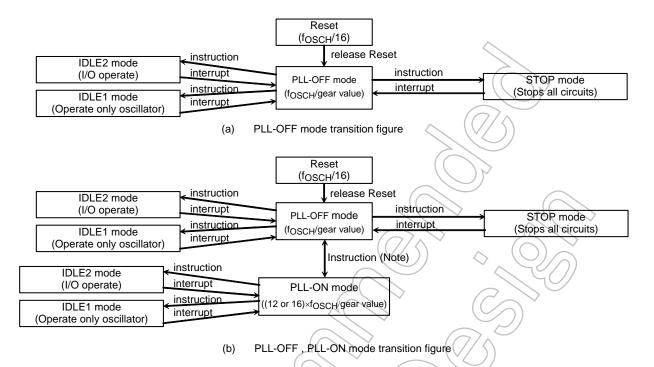



Figure 3.2.1 Memory Map

Note1: The Provisional emulator control area, mapped F00000H to F0FFFFH after reset, is for a Debug mode use and so is not available

Note2: Do not use the last 16-byte area (FFFFOH to FFFFFH). This area is reserved as internal area.

3.3 Clock Function and Standby Function


The TMP92CF26A contains (1) clock gear, (2) clock doubler (PLL), (3) standby controller and (4) noise reduction circuits. They are used for low-power, low-noise systems. This chapter is organized as follows:

The clock operating modes are as follows: (a) PLL-OFF Mode (X1, X2 pins only),

(b) PLL-ON Mode (X1, X2, and PLL).

Figure 3.3.1 shows a transition figure.

Note 1: When shifting from PLL-ON mode to PLL-OFF mode, execute the following setting in the same order.

- (1) Change CPU clock (Set "0" to PLLCR0<FCSEL>)
- (2) Stop PLL circuit (Set "0" to PLLCR1<PLLON>)

Note 2: It is not possible to shift from PLL-ON mode to STOP mode directly. PLL-OFF mode should be set once before shifting to STOP mode.

Figure 3.3.1 System clock block diagram

The clock frequency input from the X1 and X2 pins is called f_{OSCH} and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<GEAR2:0> is called the system clock f_{SYS} . And one cycle of f_{SYS} is defined to as one state.

3.3.1 Block diagram of system clock

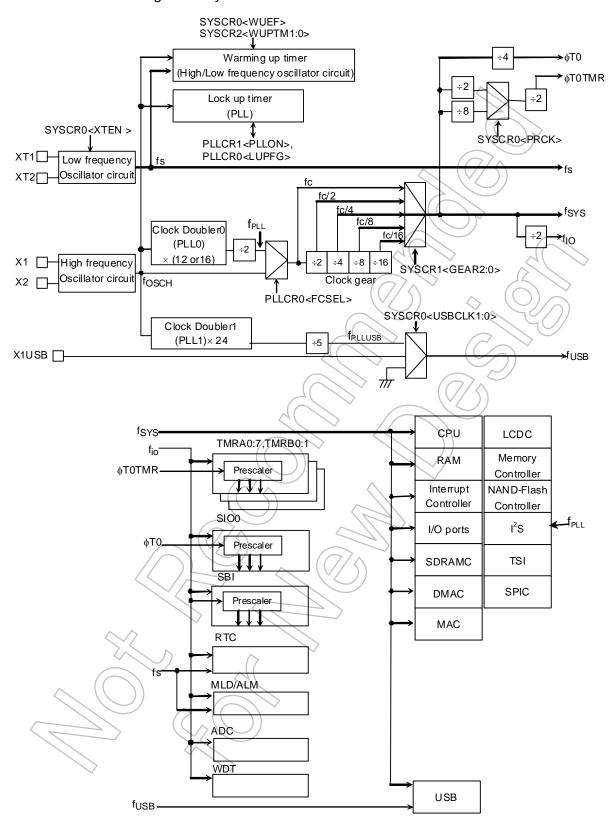


Figure 3.3.2 Block Diagram of System clock

TMP92CF26A has two PLL circuits: one is for CPU (PLL0) and the other for USB (PLL1). Each PLL can be controlled independently. Frequency of external oscillator is 6 to 10MHz.

Don't connect oscillator more than 10MHz. When clock is input by using external oscillator, range of input frequency is 6 to 10MHz. Don't input the clock over 10MHz.

Table 3.3.1 Setting example for fosch

	High frequency: fosch	System clock: f _{SY\$}	System clock: fsys	USB clock: f _{USB}
(a) USB in use, with PLL (PLL0 ON/PLL1 ON)	10.0 MHz	Max 80 MHz	Max 60 MHz	48 MHz
(b) USB not in use, with PLL (PLL0 ON/PLL1 OFF)	Max 10.0 MHz	Max 80 MHz	Max 60 MHz	_
(c) USB not in use, without PLL (PLL0 OFF/PLL1 OFF)	Max 10.0 MHz	Max 10 MHz	Max 10 MHz	

3.3.2 SFR

		7	6	5	4	3	2	1	0
SYSCR0	bit Symbol		XTEN	USBCLK1	USBCLK0		WUEF		PRCK
(10E0H)	Read/write			R/W			R/W	//	R/W
(/	Reset State		1	0	0		0 ^		0
	Function		Low	Select the cl	lock of		Warm-up		Select
			-frequency	USB(f _{USB})			Timer /		Prescaler
			oscillator	00:Disable			0: Write	())	clock
			circuit (fs)	01: Reserve	d		Don't care	,	0: f _{SYS} /2
			0: Stop	10: X1USB		^	Note3	$\langle \wedge \rangle$	1: f _{SYS} /8
			1: Oscillation	11: f _{PLLUSB}			1: Write	ノ)	
							start timer		
						(0: Read		
							end		
							warm-up 1: Read		
						(1)	do not end	112	
							warm-up	12	
		7	6	5	4	$(\sqrt{3})$	2 <>	(\mathfrak{P})	0
0)/000.	1110 111		0		4	(3)	Ψ.		/]]
SYSCR1	bit Symbol				\rightarrow		GEAR2	GEAR1	GEAR0
(10E1H)	Read/write				- C		1(C	R/W 0	0
	Reset State Function				4/-	\rightarrow		value of high	
	Function						(fc)	value of fligh	rrequericy
							000: fc		
				$\langle \langle \rangle \rangle$			001: fc/2		
							010; fc/4		
							011: fc/8		
				(())			100: fc/16		
							101: Reserv	ed	
					<		110: Reserv		
))			111: Reserv		
		7	6	5	4	3	2	1	0
SYSCR2	bit Symbol	_	CKOSEL	WUPTM1	WUPTM0	HALTM1	HALTM0		
(10E2H)	Read/write			R/	$W \cap A$				
	Reset State	// 0 /	0	1	(Vø))	1	1		
	Function	Always	Select	Warm-Up Tim	er	HALT mode			
		write "0"	CLKOUT	00: Reserved	7	00: Reserve	-		
			0: fsys	01: 28/inputted		01: STOP m			
			1: f _S	10:2 ¹⁴ /inputted		10: IDLE1 m 11: IDLE2 m			
	7.			11:2 ¹⁶ /inputted frequency			node		

Note1: The unassigned registers, SYSCR0<bit7><bit3><bit1>,SYSCR1<bit7:3> and SYSCR2<bit1:0> are read as undefined value.

Note2: Low frequency oscillator circuit is enabled on reset.

Note3: Do not write SYSCR0 resiter during warming up. Because the warm-up end flag doesn't become enable if write "0" to SYSCR0<WUEF> bit during warming up.

(A read-modify-write operation cannot be performed for SYSCR0 register during warm-up.)

Figure 3.3.3 SFR for system clock

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT				-	EXTIN	DRVOSCH	DRVOSCL
(10E3H)	Read/Write	R	/				R	2/W	
	Reset State	0	/			0	0	1	1
	Function	Protect				Always	1: External	fc oscillator	fs oscillator
		flag				write "0".	clock	drive ability	drive ability
		0: OFF						1: NORMAL	1: NORMAL
		1: ON						0: WEAK	0: WEAK
EMCCR1	Bit symbol						(=		
(10E4H)	Read/Write					^	$\langle (7)$		
	Reset State		Cwitch the	nrotoot ON	OEE by writi	ing the follow	ion to 1 st I/E	TY and KEV	
	Function					MCCR1=5Al			
EMCCR2	Bit symbol				•	MCCR1=3AI	111	>	
(10E5H)	Read/Write			12 1. Willo III	004001100 E			0,	
	Reset State								
	Function					(1)		11	

Note: In case restarting the oscillator in the stop oscillation state (e.g. Restart the oscillator in STOP mode), set EMCCR0<DRVOSCH>, <DRVOSCL>= "1".

Figure 3.3.4 SFR for system clock

PLLCR0 (10E8H)

	7	6	5	4	3	2	1	0
bit symbol		FCSEL	LUPFG					
Read/Write		R/W	R					
Reset State		0	0					
Function		Select fc-clock 0:fosch 1:f _{PLL}	Lock-up timer Status flag 0 : not end 1 : end			<		

Note: Ensure that the logic of PLLCR0<LUPFG> is different from 900/L1's DFM,

PLLCR1 (10E9H)

						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	7	6	5	4	3	2	<u>//</u> 1	0
bit symbol	PLL0	PLL1	LUPSEL					PLLTIMES
Read/Write		R/W				The state of the s		R/W
Reset State	0	0	0		4		\nearrow	0
Function	PLL0 for CPU 0: Off 1: On	PLL1 for USB 0: Off 1: On	Select stage of Lock up counter 0: 12 stage (for PLL0) 1:13 stage (for PLL1)			\(\frac{1}{2}\)		Select the number of PLL 0: ×12 1: ×16

Figure 3.3.5 SFR for PLL

PxDR (xxxxH)

	7	6	5	4	3) 2	1	0		
bit symbol	Px7D	Px6D	Px5D	Px4D	Px3D	Px2D	Px1D	Px0D		
Read/Write		RW								
System Reset State	1	1 ((<u></u>	1 _	1	1	1	1		
Hot Reset State	-		_			-	-	-		
Function			Output/Input	buffer drive-	register for s	tandby-mode)			

(Purpose and using)

- This register is used to set each pin-status at stand-by mode.
- All ports have registers of the format shown above. ("x" indicates the port name.)
- For each register, refer to 3.5 Function of Ports.
- Before "HALT" instruction is executed, set each register pin-status. They will be effective after the CPU has executes the "HALT" instruction.
- This is the case regardless of stand-by modes (IDLE2, IDLE1 or STOP).
- This is the case regardless of using PMC function. For details, refer to PMC section.

The Output/Input buffer control table is shown below.

OE	PxnD	Output buffer	Input buffer
0	0	OFF	OFF
0	1	OFF	ON
1	0	OFF	OFF
1	1	ON	OFF

Note1: OE denotes an output enable signal before stand-by mode. Basically, PxCR is used as OE.

Note2: "n" in PxnD denotes the bit number of PORTx.

Figure 3.3.6 SFR for Drive register

TOSHIBA

3.3.3 System clock controller

The system clock controller generates the system clock signal (fsys) for the CPU core and internal I/O.

SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator. SYSCR1<GEAR2:0> sets the high frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8, fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = "1"$, $\langle SYSCK \rangle = "0"$ and $\langle GEAR2$ to $0 \rangle = "100"$ will be PLL-OFF mode and cause the system clock (fsys) to be set to fc/16 after reset.

For example, fsys is set to 625 kHz when the 10MHz oscillator is connected to the X1 and X2 pins.

(1) Clock gear controller

fsys is set according to the contents of the Clock Gear Select Register SYSCR1<GEAR2: 0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fsys reduces power consumption.

```
(Example)
Changing clock gear
SYSCR1 EQU 10E1H

LD (SYSCR1),XXXXXX001B; Changes system clock f<sub>SYS</sub> to fc/2
LD (DUMMY),00H Dummy instruction
X: don't care
```

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary for the warming up time to elapse before the change occurs after writing the register value.

There is the possibility that the instruction following the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction following the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (instruction to execute the write cycle).

```
(Example)

SYSCR1 EQU 10E1H

LD (SYSCR1),XXXXX010B ; Changes f<sub>SYS</sub> to fc/4

LD (DUMMY),00H ; Dummy instruction

Instruction to be executed after clock gear changed
```

3.3.4 Clock doubler (PLL)

PLL0 outputs the fPLL clock signal, which is 12 or 16 times as fast as fosch. A low-speed frequency oscillator can be used as external oscillator, even though the internal clock is high-frequency.

Since Reset initializes PLL0 to stop status, so setting to PLLCR0 and PLLCR1-register is needed before use.

As with an oscillator, this circuit requires time to stabilize. This is called the lock-up time and it is measured by a 12-stage binary counter. Lock-up time is about 0.41ms at fosch = 10MHz.

PLL (PLL1) which is special for USB is built in. Lock-up time is about 0.82ms at fosch = 10MHz measured by 13-stage binary counter.

Note1: Input frequency range for PLL

The input frequency range (High frequency oscillation) for PLL is as follows: $f_{OSCH} = X$ to X MHz (Vcc = 1.4 to 1.6V)

Note2: PLLCR0<LUPFG>

The logic of PLLCR0<LUPFG> is different from 900/L1 s DFM. Exercise care in determining theend of lock-up time.

Note3: PLLCR1<PLL0>, PLLCR1<PLL1>

It is not possible to turn ON both PLL0 and PLL1 simultaneously.

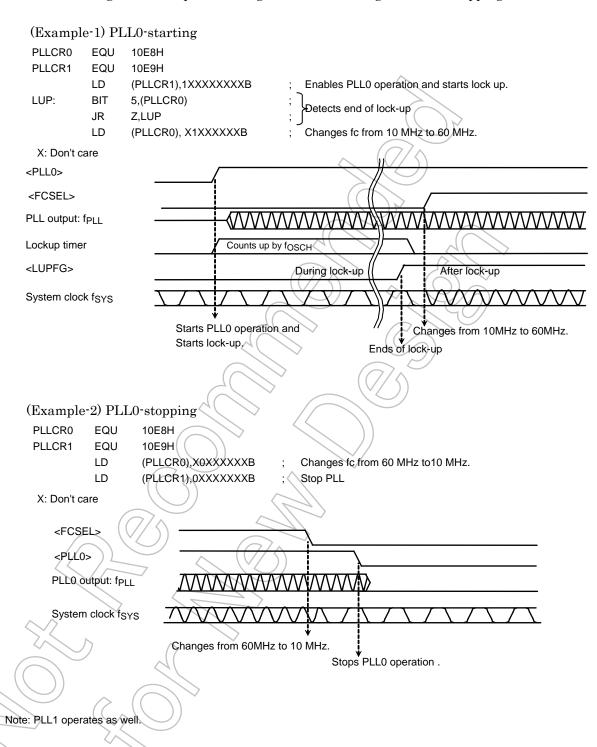

If turning ON simultaneously, one PLL should be turn ON after finishing the lock up of the other PLL.

Table 3.3.2 shows the frequency of fsys when using PLL and clock gear at fosch = 10MHz.

Table 3.3.2 The frequency of f_{SYS} at $f_{OSCH} = 10MHz$

f · ·	f	$((\))$	Fre	equency of f	SYS	
IOSCH	T _{PLL}	fc	fc/2	fc/4	fc/8	fc/16
10MHz	f _{OSCH} 10MHz	10MHz	5MHz	2.5MHz	1.25MHz	625KHz
	×12 120MHz	60MHz	30MHz	15MHz	7.5MHz	3.75MHz
	×16 160MHz	80MHz	40MHz	20MHz	10MHz	5MHz

The following is an example of settings for PLLO-starting and PLLO stopping.

Limitations on the use of PLL0

1. When stopping PLL operation during PLL0 use, execute the following settings in the same order.

LD (PLLCR0),X0XXXXXXB ; Change the clock f_{PLL} to f_{OSCH}

LD (PLLCR1),0XXXXXXXB ; Stop PLL0

X: Don't care

2. When shifting to STOP mode during PLL use, execute the following settings in the same order.

LD (SYSCR2),XXXX01XXB ; Set the STOP mode

LD (PLLCR0), X0XXXXXXB ; Change the system clock f_{PLL} to f_{OSCH}

LD (PLLCR1), 0XXXXXXXB ; Stop PLL0

HALT ; Shift to STOP mode

X: Don't care

Examples of settings are shown below:

(1) Start Up / Change Control

(OK) High frequency oscillator operation mode(fosch)→PLL0 start up

 \rightarrow PLL0 use mode (f_{PLL})

LD (PLLCR1), 1XXXXXXXB ; PLL0 start up / lock up start

LUP: BIT 5,(PLLCR0)

JR Z,LUP ; Check for lock up end flag

LD (PLLCR0), X1XXXXXXB ; Change the system clock f_{OSCH} to f_{PLL}

X: Don't care

(2) Change / Stop Control

(OK) PLL0 use mode (f_{PLL}) \rightarrow High frequency oscillator operation mode(f_{OSCH})

→ PLL0 Stop

LD (PLLCR0),X0XXXXXXB ; Change the system clock f_{PLL} to f_{OSCH}

LD (PLLCR1),0XXXXXXXB ; Stop PLL0

X: Don't care

(OK) PLL0 use mode $(f_{PLL}) \rightarrow Set$ the STOP mode

ightarrowHigh frequency oscillator operation mode (fosch) ightarrow PLL stop

HALT(High frequency oscillator stop)

LD (SYSCR2),XXXX01XXB ; Set the STOP mode

(This command can be executed before use of PLL0)

LD (PLLCR0),X0XXXXXXB ; Change the system clock f_{PLL} to f_{OSCH}

LD (PLLCR1),0XXXXXXXB ; Stop PLL0

HALT ; Shift to STOP mode

X: Don't care

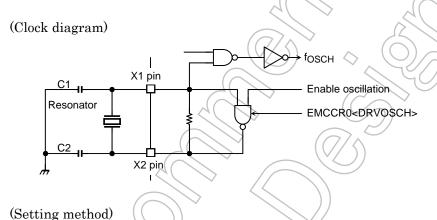
(NG) PLL0 use mode (f_{PLL}) \rightarrow Set the STOP mode

→ HALT(High frequency oscillator stop)

LD (SYSCR2),XXXX01XXB ; Set the STOP mode

(This command can be executed before use of PLL0)

HALT ; Shift to STOP mode


X: Don't care

3.3.5 Noise reduction circuits

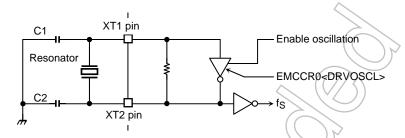
Noise reduction circuits are built in, allowing implementation of the following features.

- (1) Reduced drivability for high-frequency oscillator circuit
- (2) Reduced drivability for low-frequency oscillator circuit
- (3) Single drive for high-frequency oscillator circuit
- (4) Runaway prevention using SFR protection register These are set in EMCCR0 to EMCCR2 registers.
- (1) Reduced drivability for high-frequency oscillator circuit (Purpose)

Reduces noise and power for oscillator when a resonator is used.

The drivability of the oscillator is reduced by writing "0" to EMCCR0<DRVOSCH> register. At reset, <DRVOSCH> is initialized to "1" and the oscillator starts oscillation by normal-drivability when the power-supply is on.

Note: This function (EMCCR0<DRVODCH>= "0") is available when f_{OSCH} = 6 to 10MHz.


TOSHIBA

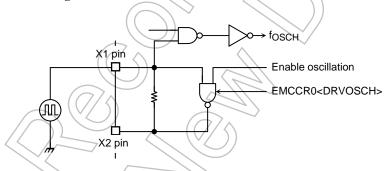
(2) Reduced drivability for low-frequency oscillator circuit

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)


The drivability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. At Reset, <DRVOSCL> is initialized to "1".

(3) Single drive for high-frequency oscillator circuit

(Purpose)

Remove the need for twin-drives and protect prevent operational errors caused by noise input to X2 pin when an external-oscillator is used.

(Block diagram)

(Setting method)

The oscillator is disabled and starts operation as buffer by writing "1" to EMCCR0<EXTIN> register. X2 pin's output is always "1".

At reset, <EXTIN> is initialized to "0".

Note: Do not write EMCCR0<EXTIN> = "1" when using external resonator.

(4) Runaway prevention using SFR protection register

(Purpose)

Prevention of program runaway caused by introduction of noise.

Write operations to a specified SFR are prohibited so that the program is protected from runaway caused by stopping of the clock or by changes to the memory control register (Memory controller, MMU) which prevent fetch operations..

Runaway error handling is also facilitated by INTP0 interruption.

Specified SFR list

1. Memory controller

BOCSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BECSL/H MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3, PMEMCR, MEMCR0, CSTMGCR, WRTMGCR, RDTMGCR0 RDTMGCR1, BROMCR

2. MMU

LOCALPX/PY/PZ, LOCALLX/LY/LZ,
LOCALRX/RY/RZ, LOCALWX/WY/WZ,
LOCALESX/ESY/ESZ, LOCALEDX/EDY/EDZ,
LOCALOSX/OSY/OSZ, LOCALODX/ODY/ODZ

- 3. Clock gear SYSCR0, SYSCR1, SYSCR2, EMCCR0
- 4. PLL PLLCR0,PLLCR1
- 5. PMC

PMCCTL

(Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 registers.

(Double key)

1st-KEY: writes in sequence, 5AH at EMCCR1 and A5H at EMCCR2 2nd-KEY: writes in sequence, A5H at EMCCR1 and 5AH at EMCCR2

Protection state can be confirmed by reading EMCCR0<PROTECT>.

At reset, protection becomes OFF.

INTPO interruption also occurs when a write operation to the specified SFR is executed with protection in the ON state.

3.3.6 Standby controller

(1) HALT Modes and Port Drive-register

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP Mode, depending on the contents of the SYSCR2<HALTM1 to 0> register and each pin-status is set according to the PxDR register, as shown below.

		7	6	5	4	3	2	_1	0
PxDR	bit symbol	Px7D	Px6D	Px5D	Px4D	Px3D	Px2D	Px1D	Px0D
(xxxxH)	Read/Write		R/W						
	System Reset State	1	1	1	1	1 <	1	1	1
	Hot Reset State	I	İ	I	-	-		<u> </u>	-
	Function		Output/Input buffer drive-register for standby-mode						

(Purpose and using)

- This register is used to set each pin-status at stand-by mode.
- All ports have this registers of the format shown above ("x" indicates the port-name.)
- For each register, refer to 3.5 Function of Ports.
- Before "HALT" instruction is executed, set each register pin status. They will be effective after the CPU has executed the "HALT" instruction.
- This is the case regardless of stand-by mode (IDLE2, IDLE1 or STOP).
- This is the case regardless of using PMC function. For details, refer to PMC section.

The Output/Input-buffer control table is shown below.

OE	PxnD	Output buffer	Input buffer
0	0	OFF	OFF
0	1	OFF	ON
1	0	OEF	OFF
1	1 /	ON	OFF

Note1: OE denotes an output enable signal before stand-by mode. Basically, PxCR is used as OE.

Note2: "n" in PxnD denotes the bit number of PORTx.

The subsequent actions performed in each mode are as follows:

a.IDLE2: Only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.3 shows the registers setting operation during IDLE2 mode.

Table 3.3.3 SFR setting operation during IDLE2 mode

Internal I/O	SFR
TMRA01	TA01RUN <i2ta01></i2ta01>
TMRA23	TA23RUN <i2ta23></i2ta23>
TMRA45	TA45RUN <i2ta45></i2ta45>
TMRA67	TA67RUN <i2ta67></i2ta67>
TMRB0	TB0RUN <i2tb0></i2tb0>
TMRB1	TB1RUN <i2tb1></i2tb1>
SIO0	SC0MOD1 <i2s0></i2s0>
SBI	SBIBR0 <i2sbi></i2sbi>
A/D converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

b.IDLE1: Only the oscillator, RTC (real-time clock), and MLD continue to operate.

c. STOP: All internal circuits stop operating.

HALT Mode IDLE2 **STOP** IDLE1 SYSCR2 <HALTM1:0> 11 10 01 CPU, MAC Stop Depends on PxDR register setting I/O ports TMRA, TMRB SIO,SBI Available to select A/D converter Operation block **Block** WDT 12S, LCDC, SDRAMC, Interrupt controller, SPIC, DMAC, NDFC, Operate USB

The operation of each of the different Halt Modes is described in Table 3.3.4.

Table 3.3.4 I/O operation during Halt Modes

(2) How to release the Halt mode

RTC, MLD

These HALT states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination of the states of the interrupt mask register <IFF2:0> and the halt modes. The details for releasing the HALT status are shown in Table 3.3.5.

Operate

• Release by interrupt requesting

The HALT mode release method depends on the status of the enabled interrupt. When the interrupt request level set before executing the HALT instruction exceeds the value of the interrupt mask register, the interrupt is processed depending on its status after the HALT mode is released, and the CPU status executing the instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, HALT mode release is not executed. (in non-maskable interrupts, interrupt processing is processed after releasing the halt mode regardless of the value of the mask register.) However only for INTO to INT5, INT6, INT7 (unsynchronous interrupt), INTREY,INTRTC, INTALM interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, HALT mode release is executed. In this case, the interrupt is processed, and the CPU starts executing the instruction following the HALT instruction, but the interrupt request flag is held at "1".

Release by resetting

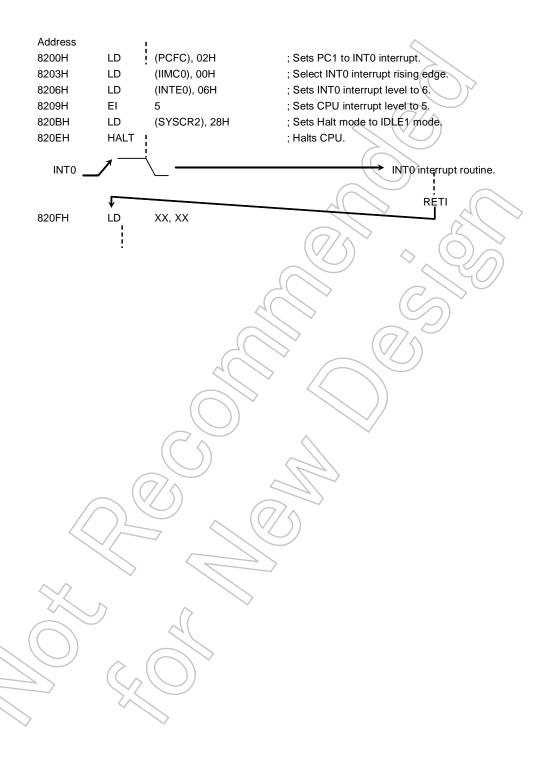
Release of all halt statuses is executed by resetting.

When the STOP mode is released by RESET, it is necessary to allow enough resetting time for operation of the oscillator to stabilize.

When releasing the halt mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the "HALT" instruction is executed.)

Ş	Statu	us of Received Interrupt	Interrupt Enabled (interrupt level) ≥ (interrupt mask)			Interrupt Disabled (interrupt level) < (interrupt mask)		
		HALT mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
		INTWDT	0	×	×	-	-	-
		INT0 to 5 (Note1) INTKEY	©	©	⊚ ^{*1}	6	0	0*1
ф		INTUSB	0	⊚ ^{*2}	×	0(o*2	×
ranc		INT6 to 7(PORT) (Note1)	0	0	⊚ ^{*1}	0	J) o	0*1
clea		INT6 to 7(TMRB)	0	×	×	(×)	×	×
ate	nterrupt	INTALM, INTRTC	0	0	×		0	×
Source of Halt state clearance		INTTA0 to 7, INTTP0 INTTB00 to 01, INTTB10 to 11 INTRX,INTTX, INTSBI INTI2S0 to 1, INTLCD, INTAD, INTADHP INTSPIRX,INTSPITX INTRSC, INTRDY INTDMA0 to 5	©	×		×	X	×
	RES	SET	Reset initializes the LSI					

Table 3.3.5 Source of Halt state clearance and Halt clearance operation


- ②: After clearing the Halt mode, CPU starts interrupt processing.
- O: After clearing the Halt mode, CPU resumes executing starting from instruction following the HALT instruction.
- x: Cannot be used to release the halt mode.
- -: The priority level (interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. This combination is not available.
- *1: Release of the HALT mode is executed after warm-up time has elapsed.
- *2: 6 interrupts of all 24 INTUSB sources can release Halt state from IDLE1 mode, allowing for the construction of low power dissipation systems. However, the method of use is limited as below.
 - Shift to IDLE1 mode:

 Execute Halt instruction when the flag of INT_SUS or INT_CLKSTOP is "1" (SUSPEND state)
 - Release from IDLE1 mode:
 Release Halt state by INT_RESUME or INT_CLKON request (release SUSPEND request)
 Release Halt state by INT_URST_STR or INT_URST_END request(RESET request)

Note: When the Halt mode is cleared by an INTO interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

(Example - releasing IDLE1 Mode)

An INTO interrupt clears the Halt state when the device is in IDLE1 Mode.

(3) Operation

a. IDLE2 Mode

In IDLE2 Mode, only specific internal I/O operations, as designated by the IDLE2 Setting Register, can take place. Instruction execution by the CPU stops.

Figure 3.3.7 illustrates an example of the timing for clearance of the IDLE2 Mode Halt state by an interrupt.

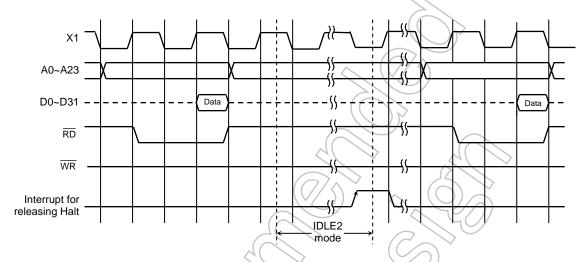


Figure 3.3.7 Timing chart for IDLE2 Mode Halt state cleared by interrupt

b. IDLE1 Mode

In IDLE1 Mode, only the internal oscillator and the RTC and MLD continue to operate. The system clock stops.

In the Halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the Halt state (i.e. restart of operation) is synchronous with it.

Figure 3.3.8 illustrates the timing for clearance of the IDLE1 Mode Halt state by an interrupt.

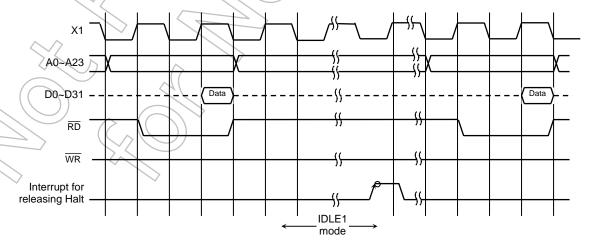


Figure 3.3.8 Timing chart for IDLE1 Mode Halt state cleared by interrupt

c. STOP Mode

When STOP Mode is selected, all internal circuits stop, including the internal oscillator.

After STOP Mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize.

Figure 3.3.9 illustrates the timing for clearance of the STOP Mode Halt state by an interrupt.

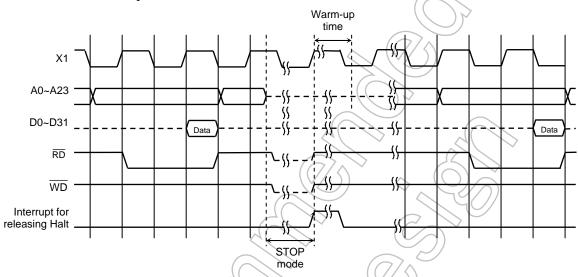


Figure 3.3.9 Timing chart for STOP Mode Halt state cleared by interrupt

Table 3.3.6 Example of warming-up time after releasing STOP-mode

		@f _{OSCH} =10 MHz
	SYSCR2 <wuptm1:0></wuptm1:0>	\
01 (28)	10 (2 ¹⁴)	11 (2 ¹⁶)
25.6 μs	1.6384 ms	6.5536 ms

Table 3.3.7 Input Buffer State Table

		10	ible 3.3.7 Inp		Buffer State			
				При		LIAIT made //	IDI FO/4/STOD	`
Port Name	Input Function		When the CP	U is operating	<pxd< td=""><td></td><td>DLE2/1/STOP <pxd< td=""><td></td></pxd<></td></pxd<>		DLE2/1/STOP <pxd< td=""><td></td></pxd<>	
	Name	During Reset	When Used as	When Used as	When Used as	When Used as		1
			function Pin	Input port	function Pin	Input port	function Pin	Input port
D0-D7	D0-D7	OFF			Turiotion 1 in	ilipat port	Turiotion 1 m	- -
D0-D1		16bit Start OFF	ON upon	_	OFF		OFF	
P10-P17	D8-D15	Boot Start ON	external read		5. .			
P60-P67	-	16bit Start OFF Boot Start ON	-		-		J -	
P71-P74	_		-		7	(7/4)	_	
P75	NDR/\overline{w}		ON		ON	(OFF	
P76	WAIT		ON		ON		OFF	
P90	_		_		- ((_	
P91	RXD0					J) .		
P92	CTS0 ,SCLK0		ON	ON	ON		OFF	
P96 *1	INT4				41 0	ON	4	
P97	_	ON	_		1-1	/	>//-	
PA0-PA7 *1	KI0-KI7			(1	77^~			
PC0	INT0				(/))	S ((
PC1	INT1,TA0IN		ON		ØN	1	ØFF)	
PC2	INT2			700				
PC3	INT3,TA2IN				<u> </u>		✓	
PC4-PC7	_		_	9()	_		_	
PF0-PF5								
PG0-PG2 PG4,PG5 *2	-	OFF	- (ON upon	- ((OFF	-	
PG3 *2	ADTRG	OFF	ON	port read	ON		ON	
PJ5-PJ6	ADTRG —		ON		OIV		ON	
PN0-PN7	_		-	<	< _ \ \		_	OFF
PP1-PP2	_							
PP3	INT5		(())					
PP4	INT6,TB0IN0			^				
PP5	INT7,TB1IN0	((ON		ON		OFF	
PR0	SPDI							
PR1-PR3	_				\rightarrow			
PT0-PT7	_	_ ((//-	\cap	711				
PU0-PU4,	_		// -		_		_	
PU6,PU7	- /	(/)		(]		
PU5	<	ON		ON		ON		
PV0-PV2		1						
PV6-PV7	SDA, SCL						OFF	
PW0-PW7	- ^	~						
PX5	X1USB			>				
PX7	- (\searrow	→ ON		ON			
	EI_PODDATA,		71					
	EI_SYNCLK, EI_PODREQ,							
PZ0-PZ5	EI_PODREQ, EI_REFCLK,	<u> </u>					ON	
	EI_TRGIN,	\nearrow (())					
4	EI_COMRESET		<i>-)</i>					
PZ6-PZ7	-		_		_	1	_	1
DBGE	//-			•	•	•	•	
D+, D-	_	_			luova ON			
RESET	_			A	lways ON			
AM0,AM1	-							
X1,XT1	_					IDLE2/DI	LE1: ON	

ON: The buffer is always turned on. A current flows through the input buffer if

*1: Port having a pull-up/pull-down resistor. the input pin is not driven.

OFF: The buffer is always turned off.

Not applicable

^{*2:} AIN input does not cause a current to flow through the buffer.

Table 3.3.8 Output buffer State Table (1/2)

		Tab	le 3.3.8 Outp		,			
				Ou	tput Buffer Stat			
	Output Function		When the CP	U is operating	I	n HALT mode	(IDLE2/1/STOF	
Port Name	Name	During Reset	Whom the Ci	o to operating	<pxdi< td=""><td>R> = 1</td><td><pxdi< td=""><td>R> = 0</td></pxdi<></td></pxdi<>	R> = 1	<pxdi< td=""><td>R> = 0</td></pxdi<>	R> = 0
	Hamo	Duning Neset	When Used as	When Used as	When Used as	When Used as	When Used as	When Used as
			function Pin	Output port	function Pin	Output port	function Pin	Output port
D0-7	D0-D7	OFF		_		_		_
		16bit Start OFF	ON upon		OFF			
P10-17	D8-D15	Boot Start OFF	external write	ON		ON		
P40-P47	A0-A7	ON					15	
P50-P57	A8-A15	ON					J)'	
P60-67	A16-A23	16bit Start ON				(Ω)		
		Boot Start OFF				((/ /))	OFF	
P70	RD	ON	ON		ON			
P71	WRLL , NDRE		0.1					
P72	WRLU , NDWE					() Y		
P73	EA24	OFF						
P74	EA25				1			
P75	R/ W					~	74/	OFF
P76	-		_	ON		ON	12 /-	
P80	CS0			((// \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_ ($\bigcirc)$	
P81	CS1, SDCS				(U)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$\leq l/n$	
P82	CS2 , CSZA SDCS						401	
P83 P84	CS3, CSXA	ON	ON	7	ON		OFF	
P85	CSZB CSZC		ON		ON		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
P86	CSZC , ND0CE				~)	
P87	CSZB , ND1CE				/			
P90	TXD0			7(/> .	((// 5)		
P91	- -	OFF	- 40				_	
P92	SCLK0	0						
P96	PX		ØN		ON		OFF	
P97	PY			_		/ -	-	_
PC0-PC3	_			/	- \		_	
PC4	EA26			/	V			
PC5	EA27		(_				
PC6	EA28			(=	7/			
PC7	KO8	OFF	7_					
PF0	I2S0CKO	$\sim (\vee / $))	ON		ON		OFF
PF1	I2S0DO			(7/		ON		OFF
PF2	I2S0WS / /)		$(\vee/)$				
PF3	I2S1CKO							
PF4	I2S1DO			_//				
PF5	I2S1WS	\rightarrow						
PF7	SDCLK	ON						
PG2	MX			→ _		_		_
PG3	MY	//	(7					
PJ0	SDRAS , SRLLB		WI.					
PJ1	SDCAS , SRLUB	0	ON		ON		OFF	
PJ2	SDWE , SRWR	ON						
PJ3	SDLLDQM	((~ \))					
PJ4	SDLUDQM							
PJ5	NDALE NDCLE	OFF						
PJ6	NDCLE		>					
PJ7	SDCKE			ON		ON		OFF
PK0	LCP0			ON		ON		OFF
PK1	LLOAD							
PK2 PK3	LFR LVSYNC							
PK3 PK4	LHSYNC	ON						
PK5	LGOE0							
PK6	LGOE0							
PK7	LGOE2							
PL0-PL7	LD0-LD7							
0/				i	i	i		

Table 3.3.9 Output buffer state table (2/2)

				Oı	utput Buffer Sta	ite			
					ı	n HALT mode ((IDLE2/1/STOF	P)	
Port Name	Output Function	During	When the CPU is operating		<pxdr>=1</pxdr>			<pxdr>=0</pxdr>	
	Name	Reset	When Used as	When Used as	When Used as	When Used as	When Used as	When Used as	
			function Pin	Output port	function Pin	Output port	function Pin	Output port	
PM1	MLDALM,TA1OUT								
PM2	MLDALM , ALARM	ON				((
PM7	PWE						J)~		
PN0-PN7	KO0-KO7		ON		ON		OFF		
PP1	TA3OUT				\wedge				
PP2	TA5OUT	OFF				$\langle \langle \rangle \rangle$			
PP3	TA7OUT								
PP4-PP5	_		_		_ ((_		
PP6	TB0OUT0		2	1	-			1	
PP7	TB1OUT0	ON	ON		ON		OFF		
PR0	-		_		41	\triangleright	75	<u> </u>	
PR1	SPDO							~	
PR2	SPCS				\bigcirc	/			
PR3	SPCLK		ON	ON		\ (
PT0-PT7	LD8-LD15					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OFF)		
PU0-PU6	LD16-LD22	OFF			ON	ON	70/	OFF	
	LD23				\rightarrow				
PU7	EO_TRGOUT			4()			ON		
PV0	SCLK0				~		OFF		
PV1	-				/	O			
PV2	-		- (7(>>	_ \	V/))	_		
PV3-PV4	_	ON	7(
PV6	SDA		011		// 011		0.55		
PV7	SCL	OFF	ON		ON)	OFF		
PW0-PW7	_		((1	7		_		
PX4	CLKOUT, LDIV	ON	ON	/	ON	1	OFF		
PX5	_			(]]	
PX7	_		((5)	_ `	\\ -		_		
PZ0-PZ5	-	OFF		(=	7/				
PZ6-PZ7	EO_MCUDATA, EO_MCUREQ		ON		ON		ON		
D+, D-	- //	QFF	7)	(77,0	N/OF depend or	USBC operation	1	•	
X2	- <			Always ON		·	IDI	E2/1:ON, P: output "H"	
XT2	-			Always Olv				E2/1:ON, : output "HZ"	

ON: The buffer is always turned on. When the bus is released, however, output buffers for some pins are turned off.

*1: Port having a pull-up/pull-down resistor.

92CF26A-41

OFF: The buffer is always turned off.

: Not applicable

3.4 Boot ROM

The TMP92CF26A contains boot ROM for downloading a user program, and supports two kinds of downloading methods.

3.4.1 Operation Modes

The TMP92CF26A has two operation modes: MULTI mode and BOOT mode. The operation mode is selected according to the AM1 and AM0 pin levels when $\overline{\text{RESET}}$ is asserted.

(1) MULTI mode: After reset, the CPU fetches instructions from external memory and

executes them.

(2) BOOT mode: After reset, the CPU fetches instructions from internal boot ROM

and executes them. The boot ROM loads a user program into internal RAM from USB, or via UART, and then branches to the internal RAM. In this way the user program starts boot operation. Table 3.4.2

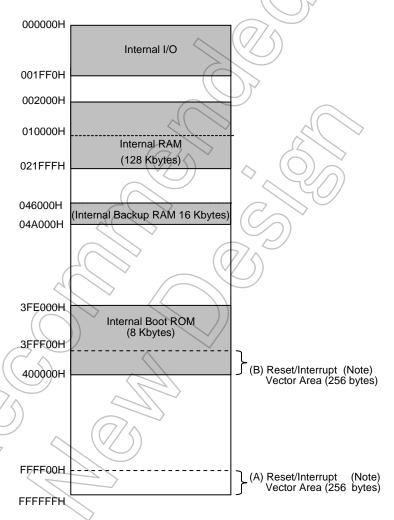
shows an outline of boot operation.

Table 3.4.1 Operation Modes

Mode Setting Pins			Operation Mode			
RESET	AM1	AM0	Operation Mode			
	0	1	MULTI Start from external 16-bit bus memory			
1	1	0	TEST (Setting prohibited)			
	1	1	BOOT (Start from internal boot ROM)			
	0	0	TEST (Setting prohibited)			

Table 3.4.2 Outline of Boot Operation

Name	Priority		Loading		Operation after
IName	Filolity	Source	I/F	Destination	Loading
(a)	1/	PC (UART)	UART	Internal RAM	Branch to internal
(b)	2 /	PC (USB_HOST)	USB	Internal IVAIVI	RAM


3.4.2 Hardware Specifications of Internal Boot ROM

(1) Memory map

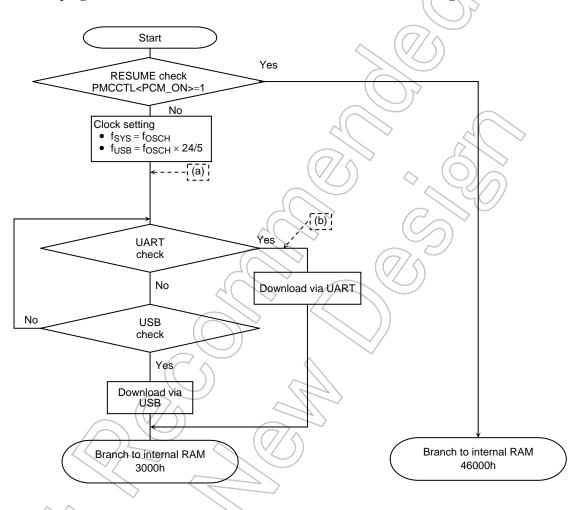
Figure 3.4.1 shows a memory map of BOOT mode.

The boot ROM incorporated in the TMP92CF26A is an 8-Kbyte ROM area mapped to addresses 3FE000H to 3FFFFFH.

In MULTI mode, the boot ROM is not mapped and the above area is mapped as an external area.

Note: BROMCR<VACE> = "1": (B) when booting BROMCR<VACE> = "0": (A) when multi mode

Figure 3.4.1 Memory Map of BOOT Mode


(2) Switching the boot ROM area to an external area

After the boot sequence is executed in BOOT mode, an application system program may start running without a reset being asserted. In this case, it is possible to switch the boot ROM area to an external area.

3.4.3 Outline of Boot Operation

The method for downloading a user program can be selected from two types: from UART, or via USB.

After reset, the boot program on the internal boot ROM executes as shown in Figure 3.4.2. Regardless of the downloading method used, the boot program downloads a user program into the internal RAM and then branches to the internal RAM. Figure 3.4.3 shows how the boot program uses the internal RAM (common to all the downloading methods).

Note 1: To download a user program via USB, a USB device driver and special application software are needed on the PC.

Note 2: To download a user program via UART, special application software is needed on the PC.

Note 3: The (a), (b) in the above flowchart indicate points where the settings of external port pins are changed. For details, see Table 3.4.3.

Figure 3.4.2 Flowchart for Internal Boot ROM Operation

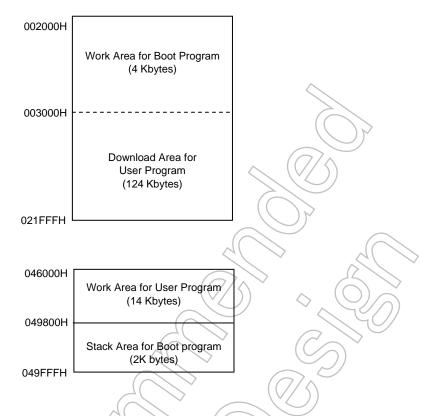


Figure 3.4.3 How the Boot Program Uses Internal RAM

(1) Port settings

Table 3.4.3 shows the port settings by the boot program. When designing your application system, please also refer to Table 3.4.4 for recommended pin connections for using the boot program.

The boot program only sets the ports shown in the table below; other ports are left as they are after reset or at startup of the boot program.

Table 3.4.3 Port Settings by the Boot Program

Port	Name	Function I/C		Description				
FOI	IName	Name	1/0	(a)	(b)	(c)		
UART	P90	TXD0	Output	No change from after reset state (input port)	No change from (a)	Set as TXD0 output pin		
	P91	RXD0	Input	Set as RXD0 input pin		No change from (b)		
USB		D+	I/O		No change			
		D-	I/O		INO Change			
	PU6	PUCTL	Output	No change from after reset state (input port)	Set as output port	No change from (b)		

Table 3.4.4 Recommended Pin Connections

Port Name		Function Name	I/O		ections for Each Download hod
		INAITIE		UART	USB
UART	P90	TXD0	Output	Connect to the level shifter.	No special setting is needed for booting via USB.
	P91	RXD0	Input		Add a pull-up resistor (100 kΩrecommended) to prevent transition to UART processing.
USB		D+	I/O	No special setting is needed for booting via UART.	Connect to the USB connector by adding a dumping resistor (27Ωrecommended) and a programmable pull-up resistor (1.5 kΩrecommended). When USB is not accessed, the pin level should be fixed with a resistor to prevent flow-through current.
		D-	I/O	If USB is not used, add a pull-up or pull-down resistor to prevent flow-through current on the D+/D- pins.	Connect to the USB connector by adding a dumping resistor (27Ω recommended). When USB is not accessed, the pin level should be fixed with a resistor to prevent flow-through current.
	PU6	PUCTL	Output	-	This pin is used to control ON/OFF of the D+ pin's pull-up resistor. Add a switch externally so that the pull-up is turned on when "1". Reset sets this pin as an input port, so add a pull-down resistor $(100k\Omega$ recommended).

Note 1: When a user program is downloaded from UART and USB is used in the system, the pull-up resistor for USB's D+ pin should not be turned on in BOOT mode.

Note 2: When a user program is downloaded via USB, do not start the UART application software on the PC.

Note 3: When a user program is downloaded via UART, do not connect a USB connector.

Note 4: When USB is not used, the D+ and D- pins must be pulled up or down to prevent flow-through current.

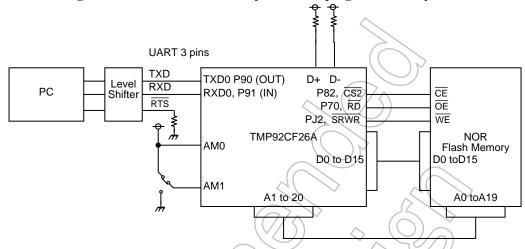
(2) I/O register settings

Table 3.4.5 shows the I/O registers that are set by the boot program.

After the boot sequence, if execution moves to an application system program without a reset being asserted, the settings of these I/O registers must be taken into account. Also note that the registers in the CPU and the internal RAM remain in the state after execution of the boot program.

Table 3.4.5 I/O Register Settings by Boot Program

Register Name	Set Value	Description
WDMOD	00H	Watchdog timer not active
WDCR	B1H	Watchdog timer disabled
SYSCR0	70H	High-frequency and low-frequency oscillators operating
SYSCR1	00H	Clock gear = 1/1
SYSCR2	2CH	Initial value
PLLCR0	00H	PLL clock not used
PLLCR1	00H	Normally PLL is disabled.
	or	However, only in the case of booting via USB, PLL is
	60H	activated for USB.
INTEUSB	04H	USB interrupt level setting
INTETC01	44H	INTTC interrupt level setting


Note: The values to be set in the I/O registers for UART and USB are not described here. If these functions are needed in a user program, set each I/O register as necessary.

3.4.4 Downloading a User Program via UART

(1) Connection example

Figure 3.4.4 shows an example of connections for downloading a user program via UART (using a 16-bit NOR Flash memory device as program memory).

Note: When USB is not used, add a pull-up or pull-down resistor to the D+ and D- pins to prevent flow-through current.

Figure 3.4.4 UART Connection Example

(2) UART interface specifications

SIO channel 0 is used for downloading a user program.

The UART communication format in BOOT mode is shown below. Before booting, the PC must also be set up with the same conditions.

Although the default baud rate is 9600 bps, this can be changed as shown in Table 3.4.8.

Serial transfer mode:

Data length

Parity bit

STOP bit

Handshake

Baud rate (default)

: UART (asynchronous) mode, full-duplex

8 bits

None

1 bit

None

9600 bps

(3) UART data transfer format

Table 3.4.6 to Table 3.4.11 show the supported frequencies, data transfer format, baud rate modification command, operation command, and version management information, respectively.

Please also refer to the description of boot program operation later in this section.

Table 3.4.6 Supported Frequencies (X1)

Table 3.4	.o Supported	i requericies (<u> </u>
6.00 MHz	8.00 MHz	9.00 MHz	10.00 MHz

Note: The built-in PLL (clock multiplier) is not used regardless of the oscillation frequency.

Table 3.4.7 Transfer Format

	Byte Number to Transfer	Transfer data from PC to TMP92CF26A	Baud Rate	Transfer data from TMP92CF26A to PC
Boot	1st byte	Matching data (5AH)	9600 bps	(Frequency measurement and baud rate auto setting)
ROM	2nd byte	-		OK: Echo back data (5AH) Error: No transfer
	3rd byte	-		Version management information
	6th byte	40		(See Table 3,4.10)
	7th byte	-	> /	Frequency information
	8th byte	Baud rate modification command		$(\checkmark/))$
	9th byte	(See Table 3.4.8.)		OK: Echo back data
		-		Error: Error code x 3
	10th byte	User program	New baud rate	NG: Operation stop by checksum error
	to	Intel Hex format (binary)		
	(n – 4)th byte			
	(n – 3)th byte	- ((` \)		OK: SUM (High)
				(See (4)-c).)
	(n – 2)th byte	-		OK: SUM (Low)
	(n – 1)th byte	User program start command (C0H)	→	_
		(See Table 3.4.9.)		OK: Echo back data (C0H)
	n'th byte		/	Error: Error code x 3
RAM	_	Branch to user program start address		

"Error code x 3" means that the error code is transmitted three times. For example, if the error code is 62H, the TMP92CF26A transmits 62H three times. For error codes, see (4)-b).

Table 3.4.8 Baud Rate Modification Command

Baud Rate (bps)	9600	19200	38400	57600	115200
Modification Command	28H	18H	07H	06H	03H

Note 1: If f_{OSCH} (oscillation frequency) is 10.0 MHz, 57600 and 115200 bps are not supported.

Note 2: If f_{OSCH} (oscillation frequency) is 6.00, 8.00, or 9.00 MHz, 38400, 57600, and 115200 bps are not supported.

Table 3.4.9 Operation Command

Operation Command	Operation	
C0H	User program start	$(\vee/)$

Table 3.4.10 Version Management Information

Version Information	ASCII Code	
FRM1	46H, 52H, 4DH, 31H	

Table 3.4.11 data of measuring frequency

X1-X2 oscillator frequency (MHz)	6.000 8.000	9.000	10.000
	09H 0AH	08H	OBH)

(4) Description of the UART boot program operation

The boot program receives a user program sent from the PC via UART and transfers it to the internal RAM. If the transfer ends normally, the boot program calculates SUM and sends the result to the PC before executing the user program. The execution start address is the first address received. The boot program enables users to perform customized on-board programming.

When UART is used to download a user program, the maximum allowed program size is 124 Kbytes (3000H-21FFFH). (The extended Intel Hex format is supported.)

- a) Operation procedure
 - 1. Connect the serial cable. This must be done before the microcontroller is reset.
 - 2. Set the AM1 and AM0 pins to "1" and reset the microcontroller.
 - 3. The receive data in the 1st byte is matching data (5AH). Upon starting in BOOT mode, the boot program goes to a state in which it waits for matching data. When matching data is received, the initial baud rate of the serial channel is automatically set to 9600 bps.
 - 4. The 2nd byte is used to echo back 5AH to the PC upon completion of the automatic baud rate setting in the 1st byte. If automatic baud rate setting fails, the boot program stops operation.
 - 5. The 3rd through 6th bytes are used to send the version management information of the boot program in ASCII code. The PC should check that the correct version of the boot program is used.
 - 6. The 7th byte is used to send information on the measured frequency. The PC should check that the frequency of the resonator is measured correctly.

- 7. The receive data in the 8th byte is baud rate modification data. The five kinds of baud rate modification data shown in Table 3.4.8 are available. Even when the baud rate is not changed, the initial baud rate data (28H: 9600 bps) must be sent. Baud rate modification becomes effective after the echo back transmission is completed.
- 8. The 9th byte is used to echo back the received data to the PC when the data received in the 8th byte is one of the baud rate modification data corresponding to the operating frequency of the microcontroller. Then, the baud rate is changed. If the received baud rate data does not correspond to the operating frequency, the boot program stops operation after sending the baud rate modification error code (62H).
- 9. The receive data in the 10th to (n-4)th bytes is received as binary data in Intel Hex format. No echo back data is returned to the PC.
 - The boot program ignores received data and does not send error code to the PC until it receives the start mark (3AH for ":") of Intel Hex format. After receiving the start mark, the boot program receives a range of data from record length to checksum and writes the received data to the specified RAM addresses successively.
 - If a receive error or checksum error occurs, the boot program stops operation without sending error code to the PC.
 - The boot program executes the SUM calculation routine upon detecting the end record. Thus, after sending the end record, the PC should be placed in a state in which it waits for SUM data.
- 10. The (n-3)th and (n-2)th bytes are used to send the SUM value to the PC in the order of upper byte and lower byte. For details on how to calculate SUM, see "SUM calculation" to be described later. SUM calculation is performed after detecting the end record only when no receives error or checksum error has occurred. Immediately after SUM calculation is completed, the boot program sends the SUM value to the PC. After sending the end record, the PC should determine whether or not writing to RAM has completed successfully based on whether or not the SUM value is received from the boot program.
- 11. After sending the SUM value, the boot program waits for the user program start command (C0H). If the SUM value is correct, the PC should send the user program start command in the (n-1)th byte.
- 12. The n'th byte is used to echo back the user program start command to the PC. After sending the echo back data, the boot program sets the stack pointer to 4A000H and jumps to the address that is received first as Intel Hex format data.
- 13. If the user program start command is not correct or a receive error has occurred, the boot program stops operation after sending the error code to the PC three times.

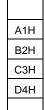
b) Error codes

The boot program uses the error codes shown in Table 3.4.12 to notify the PC of its processing status.

Table 3.4.12 Error Codes

Error Code		Meaning
62H	Unsupported baud rate	
64H	Invalid operation command	
A1H	Framing error in received data	$\langle \langle \langle \rangle \rangle \rangle$
АЗН	Overrun error in received data	

Note 1: If a receive error occurs while a user program is being received, no error code will be sent to the PC.


Note 2: After sending an error code, the boot program stops operation:

c) SUM calculation

1. Calculation method

SUM is calculated by adding data in bytes and is returned in words, as explained below.

If the data to be calculated consists of the 4 bytes shown to the left, SUM is calculated as follows:

SUM (LOW) = EAH

2. Data to be calculated

SUM is calculated from the data at the first received address through the last received address.

Even if received addresses are not continuous, unwritten addresses are also included in SUM calculation. The user program should not contain unwritten gaps.

- d) Notes on Intel Hex format (binary)
 - 1. After receiving the checksum of a record, the boot program waits for the start mark (3AH for ":") of the next record. If data other than 3AH is received between records, it is ignored.
 - 2. Once the PC program has finished sending the checksum of an end record, it must wait for 2 bytes of data (upper and lower bytes of SUM) before sending any other data. This is because after receiving the checksum of an end record, the boot program calculates SUM and returns the result to the PC in 2 bytes.
 - 3. Writing to areas other than internal RAM may cause incorrect operation. To transfer a record, set the paragraph address to 0000H.
 - 4. Since the address pointer is initially set to 00H, the record type to be transferred first does not have to be an address record.
 - 5. Addresses 3000H to 21FFFH are allocated as the user program download area.
 - 6. A user program in Intel Hex format (ASCII codes) must be converted into binary data in advance, as explained in the example below.

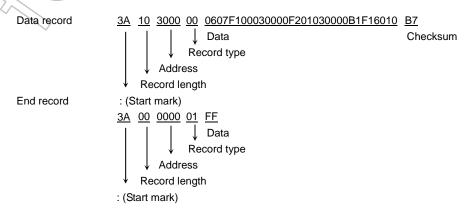
Example: How to convert an Intel Hex file into binary format

The following shows how an Intel Hex format file is displayed on a text editor.

: 10300000607F100030000F201030000B1F16010B7

: 00000001FF

However, the actual data consists of ASCII codes, as shown below.


3A31303330303030303036303746313030303333030304632303130333030303

423146313630313042370D0A3A303030303030303146460D0A

Thus, the ASCII codes must be converted into binary data based on the conversion rules shown in the table below.

ASCII Code	Binary Data
3A	3A (Only 3A remains the same.)
30 to 39	0 to 9
41 or 61	A
42 or 62	В
43 or 63	С
44 or 64	D
45 or 65	E
46 or 66	F
0D0A	Delete

Intel Hex forma

e) User program receive error

If either of the following error conditions occurs while a user program is being received, the boot program stops operation.

If the record type is other than 00H, 01H, or 02H

If a checksum error occurs

f) Measured frequency/baud rate error

When the boot program receives matching data, it measures the oscillation frequency. If an error is within plus or minus 3%, the boot program decides on that frequency.

Each baud rate includes a setting error as shown in Table 3.4.13. For example, in the case of $10.00\,\mathrm{MHz}$ /9600 bps, the baud rate is actually set at 9615.38 bps. To establish communication, the sum of the baud rate setting error and the measured frequency error must be within plus or minus $3\,\%$.

Table 3.4.13 Baud Rate Setting Errors (%)

	9600 bps	19200 bps 38400 bps	57600 bps	115200 bps
6.000 MHz	0.2	0.2		-
8.000 MHz	0.2	0.2	(- U	-
9.000 MHz	0.2			_
10.000 MHz	0.2	0.2	(\mathcal{O})	-

-: Not supported

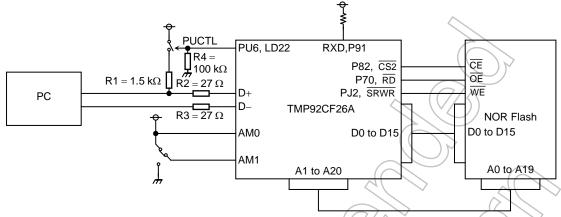
(5) Others

a) Handshake function

Although the $\overline{\text{CTS}}$ pin is available in the TMP92CF26A, the boot program does not use it for transfer control.

b) RS-232C connector

The RS-232C connector must not be connected or disconnected while the boot program is running.


c) Software on the PC

When downloading a user program via UART, special application software is needed on the PC.

3.4.5 Downloading a User Program via USB

(1) Connection example

Figure 3.4.5 shows an example of connections for downloading a user program via USB (using a 16-bit NOR Flash memory device as program memory).

Note 1: The value of pull-up and pull-down resistors are recommended values.

Note 2: The PU6 and LD22 pins are assigned as PUCTL (pull-up control) output for USB. Be careful about this if the system uses the 24-bit TFT display function.

Note 3: Since the input gates of the D+ and D- pins are always open even at unused (unaccessed) times, these pins must be set to a fixed level to prevent flow-through current. Although the level setting is not specified in the above diagram, be sure to fix the level of the D+ and D- pins by referring to the chapter on USB.

Figure 3.4.5 USB Connection Example

(2) USB interface specifications

When a user program is downloaded via USB, the oscillation frequency should be set to 10.00 MHz. The transfer speed should be fixed to full speed (12 Mbps).

The boot program uses the following two transfer types.

Table 3.4.14 Transfer Types Used by the Boot Program

Transfer Type	Description	
Control Transfer	Used for transmitting standard requests and vendor requests.	
Bulk Transfer	Used for responding to vendor requests and transmitting a user program.	

The following shows an overview of the USB communication flow.

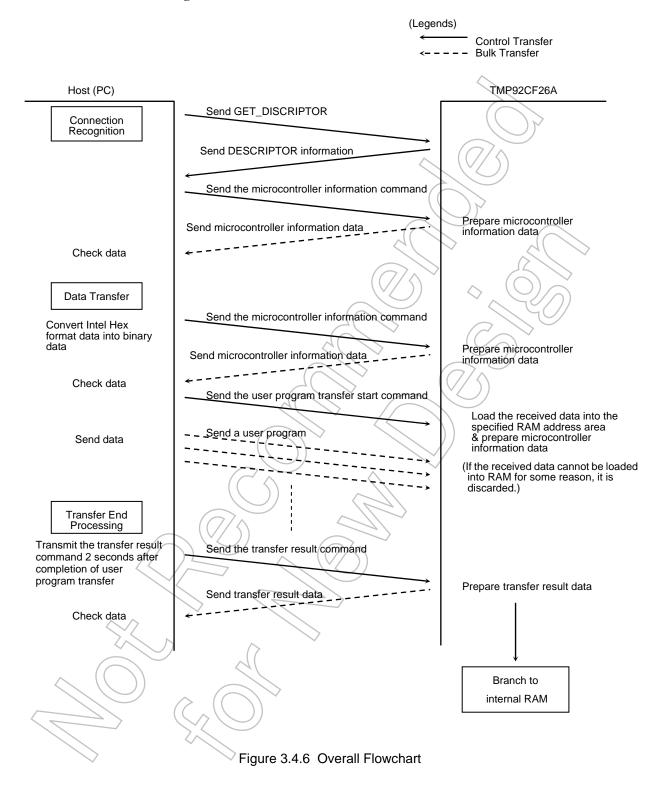


Table 3.4.15 Vendor Request Commands

Command Name	Value of bRequest	Operation	Notes
Microcontroller information command	00H	Send microcontroller information	Microcontroller information data is sent by bulk IN transfer after the setup stage is completed.
User program transfer start command	02H	Receive a user program	Set the size of a user program in windex. The user program is received by bulk OUT transfer after the setup stage is completed.
User program transfer result command	04H	Send the transfer result	Transfer result data is sent by bulk IN transfer after the setup stage is completed.

Table 3.4.16 Setup Command Data Structure

Field Name	Value	Meaning
bmRequestType	40H	D7 0: Host to Device
	4	D6-D5 2: Vendor
		D4-D0 0: Device
bRequest	00H, 02H, 04H	00H: Microcontroller information
		02H: User program transfer start
	4()	04H: User program transfer result
wValue	00H~EFFFH	Own data number
		(Not used by boot program)
wIndex	00H~FFFFH	User program size
		(Used when starting a user program transfer)
wLength	0000H	Fixed

Table 3.4.17 Standard Request Commands

Standard Request	Response Method
GET_STATUS	Automatic response by hardware
CLEAR_FEATURE	Automatic response by hardware
SET_FEATURE	Automatic response by hardware
SET_ADDRESS	Automatic response by hardware
GET_DISCRIPTOR	Automatic response by hardware
SET_DISCRIPTOR	Not supported
GET_CONFIGRATION	Automatic response by hardware
SET_CONFIGRATION	Automatic response by hardware
GET_INTERFACE	Automatic response by hardware
SET_INTERFACE	Automatic response by hardware
SYNCH_FRAME	Ignored

Table 3.4.18 Information Returned by GET_DISCRIPTOR

DeviceDescriptor

Field Name	Value	Meaning
Blength	12H	18 bytes
BdescriptorType	01H	Device descriptor
BcdUSB	0110H	USB Version 1.1
BdeviceClass	00H	Device class (Not in use)
BdeviceSubClass	H00	Sub command (Not in use)
BdeviceProtocol	00H	Protocol (Not in use)
BmaxPacketSize0	40H	EP0 maximum packet size (64 bytes)
IdVendor	0930H	Vendor ID
IdProduct	6504H	Product ID (0)
BcdDevice //	0001H	Device version (v0.1)
Imanufacturer	00H	Index value of string descriptor indicating manufacturer name
Iproduct	H00	Index value of string descriptor indicating product name
IserialNumber	00H	Index value of string descriptor indicating product serial number
BnumConfigurations	01H	There is one configuration.

ConfigrationDescriptor

Field Name	Value	Meaning
bLength	09H	9 bytes
bDescriptorType	02H	Configuration descriptor
wTotalLength	0020H	Total length (32 bytes) which each descriptor of both configuration descriptor, interface and endpoint is added.
bNumInterfaces	01H	There is one interface.
bConfigurationValue	01H	Configuration number 1
iConfiguration	00H	Index value of string descriptor indicating configuration name (Not in use)
bmAttributes	80H	Bus power
MaxPower	31H	Maximum power consumption (49 mA)

InterfaceDescriptor

Field Name	Value	Meaning
bLength	09H	9 bytes
bDescriptorType	04H	Interface descriptor
bInterfaceNumber	00H	Interface number 0
bAlternateSetting	00H	Alternate setting number 0
bNumEndpoints	02H	There are two endpoints.
bInterfaceClass	FFH	Specified device
bInterfaceSubClass	00H	
bInterfaceProtocol	50H	Bulk only protocol
ilinterface	00H	Index value of string descriptor indicating interface name (Not in use)

EndpointDescriptor

Field Name	Value	Meaning
<endpoint1></endpoint1>		
blength	07H	7 bytes
bDescriptorType	05H	Endpoint descriptor
bEndpointAddress	01H	EP1= OUT
bmAttributes	02H	Bulk transfer
wMaxPacketSize	0040H	Payload 64 bytes
binterval	00H	(Ignored for bulk transfer)
<endpoint2></endpoint2>		
bLength	07H	7 bytes
bDescriptor	05H	Endpoint descriptor
bEndpointAddress	82H	EP2 = IN
bmAttributes	02H	Bulk transfer
wMaxPacketSize	0040H	Payload 64 bytes
bInterval	00H	(Ignored for bulk transfer)

Table 3.4.19 Information Returned for the Microcontroller Information Command

Microcontroller Information	ASCII Code	
TMP92CZ26	54H, 4DH, 50H, 39H, 32H, 43H, 5AH, 32H, 36H,20H, 20H, 20H, 20H, 20H	

Note: TMP92CF26AXBG share ROM code with TMP92CZ26AXBG. Please be careful.

Table 3.4.20 Information Returned for the User Program Transfer Result Command

Transfer Result	Value	Error Conditions
No error	00H	
User program not received	02H	The user program transfer result is received without the user program transfer start command being received first.
Received file not in Intel Hex format	04H	The first data of a user program is not ":" (3AH).
User program size error	06H	The size of a received user program is larger than the value set in windex of the user program transfer start command.
Download address error	08H	The specified user program download address is not in the designated area.
Protocol error or other error	OAH	The user program transfer start or user program transfer result command is received first. A checksum error is detected in the Intel Hex file. A record type error is detected in the Intel Hex file. The length of an address record in the Intel Hex file is 3 or longer. The length of an end record in the Intel Hex file is other than 0.

(3) Description of the USB boot program operation

The boot program loads a user program in Intel Hex format sent from the PC into the internal RAM. When the user program has been loaded successfully, the user program starts executing from the first address received.

The boot program thus enables users to perform customized on-board programming.

- a. Operation procedure
 - 1. Connect the USB cable.
 - 2. Set the AM0 and AM1 pins to "1" and reset the microcontroller.
 - 3. After recognizing USB connection, the PC checks the information on the connected device using the GET_DISCRIPTOR command.
 - 4. The PC sends the microcontroller information command by control transfer (vendor request). After the setup stage is completed, the PC checks microcontroller information data by bulk IN transfer.
 - 5. Upon receiving the microcontroller information command, the boot program prepares microcontroller information in ASCII code.
 - 6. The PC prepares the user program to be loaded by converting an Intel Hex file into binary format.
 - 7. The PC sends the user program transfer start command by control transfer (vendor request). After the setup stage is completed, the PC transfers the user program by bulk OUT transfer.
 - 8. After the user program has been transferred, the PC waits for about two seconds and then sends the user program transfer result command by control transfer (vendor request). After the setup stage is completed, the PC checks the transfer result by bulk IN transfer.
 - 9. Upon receiving the user program transfer result command, the boot program prepares the transfer result value to be returned.
 - 10. If the transfer result is other than OK, the boot program enters the error processing routine and will not automatically recover from it. In this case, terminate the device driver on the PC and retry from step 2.

- b. Notes on the user program format (binary)
 - 1. After receiving the checksum of a record, the boot program waits for the start mark (3AH for ":") of the next record. If data other than 3AH is received between records, it is ignored.
 - 2. Since the address pointer is initially set to 00H, the record type to be transferred first does not have to be an address record.
 - 3. Addresses 3000H to 21FFFH (124 Kbytes) are allocated as the user program download area. The user program should be contained within this area.

Note: In USB transfer, the size of program is set by windex from addresses 0000H to FFFFH. Therefore, the transferred Object size becomes 64K byte max. Please be careful.

4. A user program in Intel Hex format (normally written in ASCII code) must be converted into binary data before it can be transferred. See the example below for how to convert an Intel Hex file into binary format.

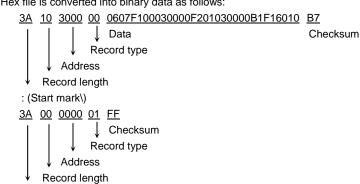
When a user program is downloaded via USB, the maximum allowed record length is 250 bytes.

Example: Transfer data when writing 16-byte data in Intel Hex format from address 3000H

The following shows how an Intel Hex format file is displayed on a text editor.

: 10300000607F100030000F201030000B1F16010B7

: 0000001FF


423146313630313042370D0A3A30303030303030303146460D0A

Thus, the ASCII codes must be converted into binary data based on the conversion rules shown in the table below.

ASCII Code	Binary Data		
(//<3A	3A (Only 3A remains the same.)		
30~39	0~9		
41 or 61	(\(\sqrt{ \sqrt{ \chi} \) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
42 or 62	В		
43 or 63	C		
44 or 64	D		
45 or 65	E		
46 or 66	F		
0D0A	Delete		

The above Intel Hex file is converted into binary data as follows:

: (Start mark)

TOSHIBA

(4) Others

a) USB connector

The USB connector must not be connected or disconnected while the boot program is running.

b) Software on the PC

To download a user program via USB, a USB device driver and special application software are needed on the PC.

3.5 Interrupts

Interrupts are controlled by the CPU Interrupt Mask Register <IFF2 to 0> (bits 12 to 14 of the Status Register) and by the built-in interrupt controller.

TMP92CF26A has a total of 56 interrupts divided into the following five types:

Interrupts generated by CPU: 9 sources

- Software interrupts: 8 sources
- Illegal Instruction interrupt: 1 source

Internal interrupts: 38 sources

- Internal I/O interrupts: 30 sources
- Micro DMA Transfer End interrupts /HDMA Transfer End interrupts: 6 sources
- Micro DMA Transfer End interrupts: 2 source

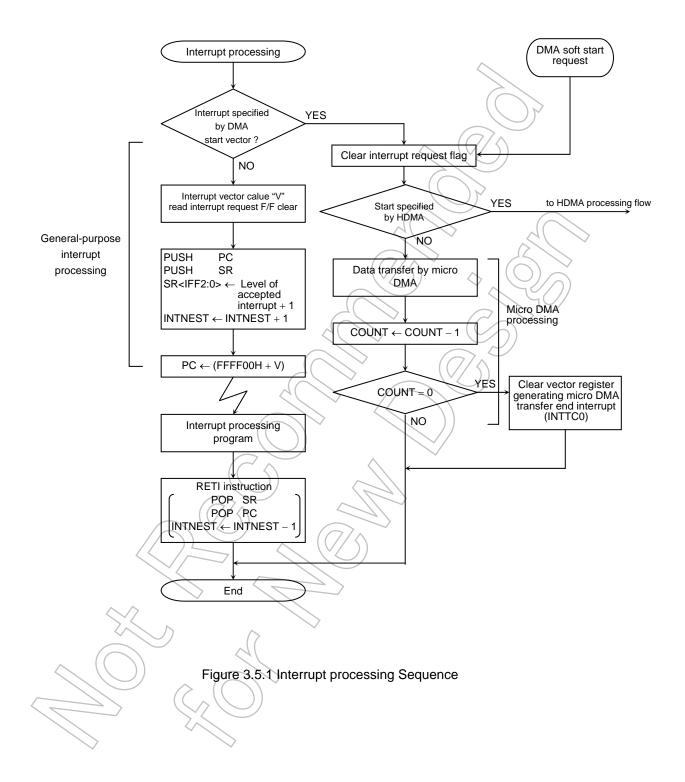
External interrupts: 9 sources

Interrupts on external pins (INT0 to INT7, INTKEY)

A fixed individual interrupt vector number is assigned to each interrupt source. Any one of six levels of priority can also be assigned to each maskable interrupt. Non maskable interrupts have a fixed priority level of 7, the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. When more than one interrupt is generated simultaneously, the interrupt controller sends the priority value of the interrupt with the highest priority to the CPU. (The highest priority level is 7, the level used for non-maskable interrupts.)

The CPU compares the interrupt priority level which it receives with the value held in the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is greater than or equal to the value in the interrupt mask register, the CPU accepts the interrupt.


However, software interrupts and illegal instruction interrupts generated by the CPU, and are processed irrespective of the value in <IFF2:0>.

The value in the interrupt mask register <IFF2:0> can be changed using the EI instruction (EI num sets <IFF2:0> to num). For example, the command EI3 enables the acceptance of all non-maskable interrupts and of maskable interrupts whose priority level, as set in the interrupt controller, is 3 or higher. The commands EI and EI0 enable the acceptance of all non-maskable interrupts and of maskable interrupts with a priority level of 1 or above (hence both are equivalent to the command EI1).

The DI instruction (Sets <1FF2:0> to 7) is exactly equivalent to the EI7 instruction. The DI instruction is used to disable all maskable interrupts (since the priority level for maskable interrupts ranges from 0 to 6). The EI instruction takes effect as soon as it is executed.

In addition to the general-purpose interrupt processing mode described above, there is also a micro DMA processing mode that can transfer data to internal/external memory and built-in I/O, and HDMA processing mode. In micro DMA mode the CPU, and in HDMA mode the DMA controller automatically transfers data in 1byte, 2byte or 4byte blocks. HDMA mode allows transfer faster than Micro DMA mode.

In addition, the TMP92CF26A also has a software start function in which micro DMA and HDMA processing is requested in software rather than by an interrupt. Figure 3.5.1 is a flowchart showing overall interrupts processing.

3.5.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips steps (1) and (3), and executes only steps (2), (4), and (5).

- (1) The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same priority level has been generated simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt requests. (The default priority is determined as follows: The smaller the vector value, the higher the priority.)
- (2) The CPU pushes the program counter (PC) and status register (SR) onto the top of the stack (Pointed to by XSP).
- (3) The CPU sets the value of the CPU's interrupt mask register <IFF2:0> to the priority level for the accepted interrupt plus 1. However, if the priority level for the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increments the interrupt nesting counter INTNEST by 1.
- (5) The CPU jumps to the address given by adding the contents of address FFFF00H + the interrupt vector, then starts the interrupt processing routine.

On completion of interrupt processing, the RETI instruction is used to return control to the main routine. RETI restores the contents of the program counter and the status register from the stack and decrements the interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.) If an interrupt request is received for an interrupt with a priority level equal to or greater than the value set in the CPU interrupt mask register <IFF2:0>, the CPU will accept the interrupt. The CPU interrupt mask register <IFF2:0> is then set to the value of the priority level for the accepted interrupt plus 1.

If during interrupt processing, an interrupt is generated with a higher priority than the interrupt currently being processed, or if, during the processing of a non-maskable interrupt processing, a non-maskable interrupt request is generated from another source, the CPU will suspend the routine which it is currently executing and accept the new interrupt. When processing of the new interrupt has been completed, the CPU will resume processing of the suspended interrupt.

If the CPU receives another interrupt request while performing processing steps (1) to (5), the new interrupt will be sampled immediately after execution of the first instruction of its interrupt processing routine. Specifying DI as the start instruction disables nesting of maskable interrupts.

A reset initializes the interrupt mask register <IFF2:0> to 111, disabling all maskable interrupts.

Table 3.5.1 shows the TMP92CF26A interrupt vectors and micro DMA start vectors. FFFF00H to FFFFFFH (256 bytes) is designated as the interrupt vector area.

Table 3.5.1 TMP92CF26A Interrupt Vectors and Micro DMA/HDMA Start Vectors

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA /HDMA Start Vector
1		Reset or [SWI0] instruction	0000H	FFFF00H	
2		[SWI1] instruction	0004H	FFFF04H	
3		Illegal instruction or [SWI2] instruction	0008H	FFFF08H	
4		[SWI3] instruction	000CH	FFFF0CH	
5	Non	[SWI4] instruction	0010H	FEEF10H	
6	maskable	[SWI5] instruction	0014H	FFFF14H	
7		[SWI6] instruction	<0018H ✓	FFFF18H	
8		[SWI7] instruction	001CH	FFFF1CH	
9		(Reserved)	0020H	FFFF20H	
10		INTWD: Watchdog timer	0024H	FFFF24H	
_		Micro DMA (Note 2)		=	=
11		INTO: INTO pin input	0028H	FFFF28H	0AH(Note 1)
12		INT1: INT1 pin input	002CH	FFFF2CH	0BH
13		INT2: INT2 pin input	0030H	FFFF30H	0CH
14		INT3: INT3 pin input	0034H	FFFF34H	0DH
15		INT4: INT4 pin input (TSI)	0034H 0038H	FFFF38H	0EH
16		INTALM: ALM(8192Hz, 512Hz, 64Hz, 2Hz, 1Hz)	0036H	FFFF3CH	0FH
17		INTTALW. ALW(6192112, 512112, 64112, 2112, 7112)	003CH	FFFF40H	10H
18		INTTA5: 8-bit timer 5	004011 0044H	FFFF44H	11H
19		INTTAS: 8-bit timer 6	0044H 0048H	FFFF48H	12H
20			0046H		
		INTTA7: 8-bit timer 7	004CH 0050H	FFFF4CH	13H
21		INTPO: Protect 0 (Write to SFR)	11	FFFF50H	14H
22		(Reserved)	0054H	FFFF54H	15H
23		INTTAC: 0	0058H	FFFF58H	16H
24		INTTA1: 8-bit timer 1	005CH	FFFF5CH	17H
25		INTTA2: 8-bit timer 2	0060H	FFFF60H	18H
26		INTTA3: 8-bit timer 3	0064H	FFFF64H	19H
27		INTTB0: 16-bit timer 0	0068H	FFFF68H	1AH
28		INTTB1: 16-bit timer 0	006CH	FFFF6CH	1BH
29		INTKEY: Key wakeup	0070H	FFFF70H	1CH
30	Maskable	INTRTC: RTC (Alarm interrupt)	0074H	FFFF74H	1DH
31		(Reserved)	0078H	FFFF78H	1EH
32		INTLCD: LCDC	007CH	FFFF7CH	1FH
33		INTRX: Serial receive end	0080H	FFFF80H	20H (Note 1)
34	\\\\	INTTX: Serial transmission end	0084H	FFFF84H	21H
35		INTTB10: 16-bit timer 1	0088H	FFFF88H	22H
36		INTTB11: 16-bit timer 1	008CH	FFFF8CH	23H
37		INT5: INT5 pin input	0090H	FFFF90H	24H
38		INT6: INT6 pin input	0094H	FFFF94H	25H
39		INT7: INT7 pin input	0098H	FFFF98H	26H
40		INTI2S0: I ² S (Channel 0)	009CH	FFFF9CH	27H
41		INTI2S1: I ² S (Channel 1)	00A0H	FFFFA0H	28H
42		INTADM: AD Monitor function	00A4H	FFFFA4H	29H
43		INTSBI: SBI	00A8H	FFFFA8H	2AH
44		INTSPIRX: SPIC receive	00ACH	FFFFACH	2BH
45		INTSPITX: SPIC transmission	00B0H	FFFFB0H	2CH
46		INTRSC: NAND Flash controller	00B4H	FFFFB4H	2DH
47		INTRDY: NAND Flash controller	00B8H	FFFFB8H	2EH
48		INTUSB: USB	00BCH	FFFFBCH	2FH
49		(Reserved)	00C0H	FFFFC0H	30H
50		(Reserved)	00C4H	FFFFC4H	31H

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA /HDMA Start Vector
51		INTADHP: AD most priority conversion end	00C8H	FFFFC8H	32H
52		INTAD: AD conversion end	00CCH	FFFFCCH	33H
53		INTTC0/INTDMA0: Micro DMA0 /HDMA0 end	00D0H	FFFFD0H	34H
54		INTTC1/INTDMA1: Micro DMA1 /HDMA1 end	00D4H	FFFFD4H	35H
55		INTTC2/INTDMA2: Micro DMA2 /HDMA2 end	00D8H	FFFFD8H	36H
56		INTTC3/INTDMA3: Micro DMA3 /HDMA3 end	00DCH	FFFFDCH	37H
57	Maskable	INTTC4/INTDMA4: Micro DMA4 /HDMA4 end	00E0H	FFFFE0H	38H
58		INTTC5/INTDMA5: Micro DMA5 /HDMA5 end	00E4H	FFFFE4H	39H
59		INTTC6 : Micro DMA6 end	00E8H	FFFFE8H	3AH
60		INTTC7 : Micro DMA7 end	00ECH	FFFFECH	3ВН
_			00F0H	FFFFF0H	_
to		(Reserved)		: (to
_			00FCH	FFFFFCH	→ -

Note 1: When initiating micro DMA/HDMA, set at edge detect mode.

Note 2 : Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupt.

3.5.1 Micro DMA processing

In addition to general-purpose interrupt processing, the TMP92CF26A also includes a micro DMA function and HDMA function. This section explains about Micro DMA function. For the HDMA function, please refer 3.23 DMA controller.

Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (Level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented through the CPU, when the CPU is placed in a stand-by state (IDLE2, IDLE1, STOP) by a HALT instruction, the requirement of the micro DMA will be ignored (Pending).

Micro DMA supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

Note: When using the micro DMA transfer end interrupt, always write "1" to bit 7 of SIMC register.

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source that specified by the micro DMA /HDMA start vector register, and Micro DMA start is specified by DMA selection register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. When IFF = 7, Micro DMA request cannot be accepted.

The 8 micro DMA channels allow micro DMA processing to be set for up to 8 types of interrupt at once.

When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by "1". If the value of the counter after it has been decremented is not "0", DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is "0", a micro DMA transfer end interrupt (INTTC0 to INTTC7) is sent from the CPU to the interrupt controller.

In addition, the micro DMA/HDMA start vector register is cleared to "0", the next micro DMA operation is disabled and micro DMA processing terminates.

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA/HDMA start vector is cleared and the next setting, general-purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA/HDMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (i.e, interrupt requests should be disabled).

If micro DMA and general-purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. In this case, edge-triggered interrupts are the only kinds of general interrupts which can be accepted.

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number: The lower the channel number, the higher the priority (Channel 0 thus has the highest priority and channel 7 the lowest).

Note1: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows.

In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.5.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

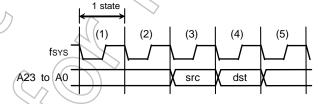
This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA

INTyyy: level 6 with micro DMA

Note2:Don't start any micro DMAs by one interrupt. If any micro DMA are set by it, micro DMA that channel number is biggest (priority is lowest) is not started. (Because interrupt flag is cleared by micro DMA that priority is highest)


Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes (The upper 8 bits of a 32-bit address are not valid).

Three micro DMA transfer modes are supported: 1byte transfer, 2byte (One word) transfers and 4byte transfers. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from memory to memory, from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.5.2 (4) "Detailed description of the transfer mode register".

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (Provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 48 different interrupts – the 47 interrupts shown in the micro DMA start vectors in Table 3.5.1 and a micro DMA soft start.

Figure 3.5.2 shows a 2-byte transfer carried out using a micro DMA cycle in Transfer Destination Address INC Mode (micro DMA transfers are the same in every mode except Counter Mode). (The conditions for this cycle are as follows: both source and destination memory are internal RAM and multiple of 4 numbered source and destination addresses).

Note: In fact, src and dst address are not outputted to A23-A0 pins because they are internal RAM address.

Figure 3.5.2 Timing for micro DMA cycle

States (1) and (2): Instruction fetch cycle (Prefetches the next instruction code)

State (3): Micro DMA read cycle.

State (4): Micro DMA writes cycle.

State (5): (The same as in state (1), (2).)

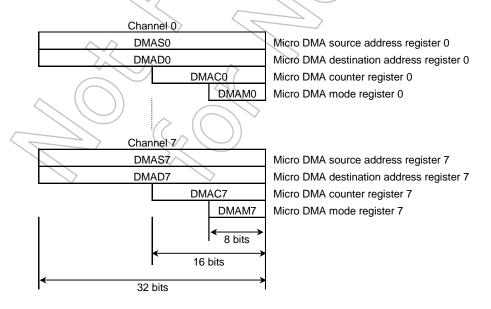
(2) Soft start function

The TMP92CF26A can initiate micro DMA/HDMA either with an interrupt or by using the micro DMA /HDMA soft start function, in which micro DMA or HDMA is initiated by a Write cycle which writes to the register DMAR.

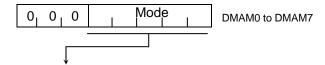
Writing "1" to each bit of DMAR register causes micro DMA or HDMA to be performed once (If write "0" to each bit, micro DMA doesn't operate). On completion of the transfer, the bits of DMAR for the completed channel are automatically cleared to "0".

When writing again "1" to it, soft start can execute continuously until the DMA transfer counter (DMACn) or HDMA transfer counter B (HDMACBn) become "0".

When a burst is specified by the register DMAB, data is transferred continuously from the initiation of micro DMA until the value in the micro DMA transfer counter is "0". If execatee soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writign to other bits by mistake.


Note1: If it is started by software, don't set any channels to start in same time.

Note2: If be started sequentially, restart it after confirming micro DMA of all channels is completed (all micro DMA are set to "0").


Symbol	Name	Address	7	6	5	4	(3//<	2	1	0
			DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAD	DMA	109H				// F	R/W			
DMAR	Request	(Prohibit RMW)	0	0	\ \ 0	0	0	0	0	0
		KIVIVV)				1: Sta	art DMA			

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. An instruction of the form LDC cr,r can be used to set these registers.

(4) Detailed description of the transfer mode register

DMAMn[4:0]	Mode Description	Execution Time
0 0 0 z z	Destination INC mode (DMADn +) ← (DMASn) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	5 states
0 0 1 z z	Destination DEC mode (DMADn -) ← (DMASn) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	5 states
0 1 0 z z	Source INC mode (DMADn) ← (DMASn +) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	5-states
0 1 1 z z	Source DEC mode (DMADn) ← (DMASn -) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	5 states
1 0 0 z z	Source and destination INC mode (DMADn +) ← (DMASn +) DMACn ← DMACn − 1 If DMACn = 0 then INTTCn	6 states
1 0 1 z z	Source and destination DEC mode (DMADn -) ← (DMASn -) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	6 states
1 1 0 z z	Destination and fixed mode (DMADn) ← (DMASn) DMACn ← DMACn − 1 If DMACn = 0 then INTTCn	5 states
11100	Counter mode DMASn ← DMASn + 1 DMACn ← DMACn − 1 If DMACn = 0 then INTTCn	5 states

ZZ: 00 = 1-byte transfer

01 = 2-byte transfer

10 = 4-byte transfer

11 = Reserved

Note 1: n stands for the micro DMA channel number (0 to 7).

DMADn+/DMASn+: Post increment (Register value is incremented after transfer).

DMADn-/DMASn-: Post decrement (Register value is decremented after transfer).

"I/O" signifies fixed memory addresses; "memory" signifies incremented or decremented memory addresses.

Note 2: The transfer mode register should not be set to any value other than those listed above.

Note 3: The execution state number shows number of best case (1-state memory access).

3.5.2 Interrupt Controller Operation

The block diagram in Figure 3.5.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 59 interrupts channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA /HDMA start vector register. The interrupt request flag latches interrupt requests from the peripherals.

The flag is cleared to "0" in the following cases: when a reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when the CPU receives a HDMA request (when HDMA is set), when a micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed (by writing a micro DMA start vector to the INTCLR register).

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEO or INTE12). Six interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source.

If more than one interrupt request with a given priority level are generated simultaneously, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first. The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

If several interrupts are generated simultaneously, the interrupt controller sends the interrupt request for the interrupt with the highest priority and the interrupt's vector address to the CPU. The CPU compares the mask value set in <IFF2:0> of the status register (SR) with the priority level of the requested interrupt; if the latter is higher, the interrupt is accepted. Then the CPU sets SR<IFF2:0> to the priority level of the accepted interrupt + 1. Hence, during processing of the accepted interrupt, new interrupt requests with a priority value equal to or higher than the value set in SR<IFF2:0> (e.g., interrupts with a priority higher than the interrupt being processed) will be accepted.

When interrupt processing has been completed (e.g., after execution of a RETI instruction), the CPU restores to SR<IFF2:0> the priority value which was saved on the stack before the interrupt was generated.

The interrupt controller also includes eight registers which are used to store the micro DMA /HDMA start vector. Writing the start vector of the interrupt source for the micro DMA or /HDMA processing (See Table), enables the corresponding interrupt to be processed by micro DMA or HDMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) or HDMA parameter registers (e.g., HDMAS, and HDMAD) prior to micro DMA or HDMA processing.

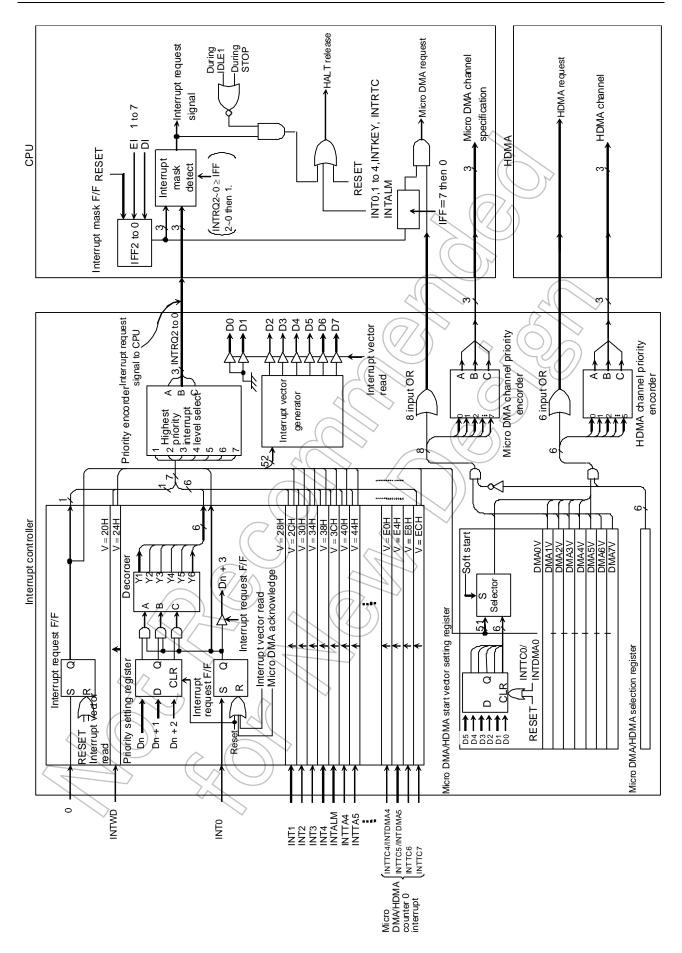
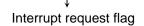



Figure 3.5.3 Block Diagram of Interrupt Controller

(1) Interrupt priority setting registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
					_			IN	IT0	
INTE0	INT0	F0H	-	-	-	-	IOC	I0M2	IOM1	IOMO
INTEU	enable	FUH	-		=		R		R/W	
				Always	write "0".		0	0	0	0
				IN	IT2			IN	IT1	
INTE12	INT1 & INT2	D0H	I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
INTETZ	enable	DUH	R		R/W		R	\mathcal{I}	R/W	
			0	0	0	0	0,	0	0	0
				IN	IT4		$(\langle \langle / \rangle)$) IN	IT3	
INTE34	INT3 & INT4	D1H	I4C	I4M2	I4M1	I4M0	I3C	I3M2	I3M1	I3M0
INTL34	enable		R		R/W		R		R/W	
			0	0	0	0) jo	0	0	0
				IN	IT6				IT5	
INTE56	INT5 & INT6	D2H	I6C	I6M2	I6M1	16M0	I5C	I5M2	15M1	I5M0
INTESO	enable	DZII	R		R/W		R	2//	R/W	
			0	0	o((/	/\n\0	_0	\bigcirc	0	0
					-		~ ~	\\I\	177	
INTE7	INT7	D3H	-	-		_	I7C	17M2	I7M1	17M0
IIN1 L 7	enable		=						R/W	
<u> </u>				Always	write "0".		0)) o	0	0
				INTTA1	(TMRA1)			INTTA0	(TMRA0)	
INTETA01	INTTA0 & INTTA1	D4H	ITA1C	ITA1M2	TA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
INTERACT	enable	D411	R /	1	R/W		ŬR		R/W	
<u></u>			0	0	0//	0	0	0	0	0
				INTTA3	(TMRA3)			INTTA2	(TMRA2)	
INTETA23	INTTA2 & INTTA3	D5H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETAZS	enable		R		R/W		R		R/W	
<u> </u>		((0)	0	0	0	0	0	0	0
				INTTA5	(TMRA5)			INTTA4	(TMRA4)	1
INTETA45	INTTA4 & INTTA5	D6H/	(TA5C	ITA5M2 4	ITA5M1	ITA5M0	ITA4C	ITA4M2	ITA4M1	ITA4M0
INTETATO	enable		// R	6	R/W	1	R		R/W	I
	//		0 /	0 (/	())0	0	0	0	0	0
					(TMRA7)	1			(TMRA6)	
INTETA67	INTTA6 & INTTA7	D7H	ITA7C	ITA7M2	ITA7M1	ITA7M0	ITA6C	ITA6M2	ITA6M1	ITA6M0
	enable	3	R		R/W	1	R		R/W	
			0	Q	0	0	0	0	0	0

- /-							
	lxxM2	lxxM1	lxxM0	Function (Write)			
	0	0	0	Disables interrupt requests			
	0	0	1	Sets interrupt priority level to 1			
	0	1	0	Sets interrupt priority level to 2			
	0	1	1	Sets interrupt priority level to 3			
	1	0	0	Sets interrupt priority level to 4			
	1	0	1	Sets interrupt priority level to 5			
	1	1	0	Sets interrupt priority level to 6			
	1	1	1	Disables interrupt requests			

Symbol	Name	Address	7	6	5	4	3	2	1	0
	INITTOOO			INTTB01	(TMRB0)			INTTB00	(TMRB0)	
INTETB0	INTTB00 &	D8H	ITB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0
INTETEU	enable	Боп	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
	IN ITTE 40.0			INTTB11	(TMRB1)			INTTB10	(TMRB1)	
INITETD4	INTTB10 & INTTB11	DOLL	ITB11C	ITB11M2	ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0
INTETB1	enable	D9H	R		R/W		R		R/W	
	enable		0	0	0	0	0	9	0	0
	INITENAN O			INT	TX0	^	(O)	√ INT	RX0	
INTES0	INTRX0 &	DBH	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTESU	enable	חסח	R		R/W) A		R/W	
	enable		0	0	0	0	(0)	0	0	0
	INITODI O			INT	ADM)	INŢ	SBL	
INTESBIADM	INTSBI & INTADM	E0H	IADM0C	IADMM2	IADMM1	IADMM0	ISBI0C	ISBIM2	ISBIM1	ISBIM0
INTESDIADIVI	enable	EUH	R		R/W		R		R/W	
	enable		0	0	0 (7)0\\	0	0	0	0
				INTS	SPITX	$\langle \rangle \rangle$	\Diamond	INTS	PIRX	
INTESPI	INTSPI	E1H	ISPITC	ISPITM2	ISPITM1	ISPITM0	ISPIRC	ISPIRM2	ISPIRM1	ISPIRM0
INTESPI	enable	ETH	R		R/W		R		R/W	
			0	0 🗸	(0)	0	0()		0	0
					-//			// INT	USB	
INTEUSB	INTUSB	E3H	Ш	(=	IUSBC	IUSBM2	IUSBM1	IUSBM0
INTEUSE	enable	ESIT	ı				R		R/W	
				Always	write "0".)0	0	0	0
					_			INT	ALM	
INTEALM	INTALM	E5H	_((1	=		IALMC	IALMM2	IALMM1	IALMM0
IIN I EALIVI	enable	□ □ □ □	())	= .		R		R/W	
			(Always	write "0".		0	0	0	0
					- (7/		INT	RTC	
INTERTC	INTRTC	E8H)	-	<u> </u>	→	IRC	IRM2	IRM1	IRM0
INTERIC	enable	COLL	())			\rangle	R		R/W	
				Always	write "0".		0	0	0	0
			7					INT	KEY	
INTEKEY	INTKEY	EOL			_	-	IKC	IKM2	IKM1	IKM0
INTERET	enable	E9H			> -		R		R/W	
	\wedge	*		Always	write "0".		0	0	0	0

Interrupt request flag

lxxM2	lxxM1	lxxM0	Function (Write)
0	0	0	Disables interrupt requests
0	0	1	Sets interrupt priority level to 1
0	1	0	Sets interrupt priority level to 2
0	1	1	Sets interrupt priority level to 3
1	0	0	Sets interrupt priority level to 4
1	0	1	Sets interrupt priority level to 5
1	1	0	Sets interrupt priority level to 6
1	1	1	Disables interrupt requests

Symbol	Name	Address	7	6	5	4	3	2	1	0
				-	_		INTLCD			
INTELCD	INTLCD	EAH		=	=	=	ILCD1C	ILCDM2	ILCDM1	ILCDM0
INTELCD	enable	EAR	ı				R		R/W	
				Always	write "0".		0	0	0	0
	INTI2S0 &			INT	<u>12S1</u>	1		INT	12S0	
INTEI2S01	INTI2S0 &	EBH	II2S1C	II2S1M2	II2S1M1	II2S1M0	1 12S0C	II2S0M2	II2S0M1	II2S0M0
1111212001	enable	LDII	R		R/W	_	R/W	(())	R/W	1
	0.140.16		0	0	0	0	0	0	0	0
	INTRSC &			INT	RSC	^	-(C)	/ INT	RDY	
INTENDEC	INTROC	ECH	IRSCC	IRSCM2	IRSCM1	IRSCM0	IRDYC	JRDYM2	IRDYM1	IRDYM0
INTENDIO	enable	LOIT	R		R/W	/	R		R/W	
	01.4010		0	0	0	0	(0)	0	0	0
				-	_			IN	TP0	
INTEP0	INTP0	EEH	-	-	-	4	IP0C	IP0M2	IP0M1	IP0M0
1111210	enable		-				R		R/W	
				Always	write "0".	$O(\Lambda)$	0	0	0	
	INTAD &			INTA	DHP \	()	\Diamond	JIN.	TAD	
OINTEAD	INTADHP	EFH	IADHPC	IADHPM2	IADHPM1	JADHPM0	IADC	IADM2	(IADM1	IADM0
-	enable		R		R/W	\searrow	R/W	7	R/W	1
onable			0	0 (4(0)	0	0 (0	0	0
)		

Interrupt request flag

	lxxM2	lxxM1	lxxM0	Function (Write)			
>))	0	0	Disables interrupt requests			
	O	0	1	Sets interrupt priority level to 1			
	// o	1(9	Sets interrupt priority level to 2			
	0	7	7	Sets interrupt priority level to 3			
	1		0	Sets interrupt priority level to 4			
	1(70	1	Sets interrupt priority level to 5			
	7	1 0		Sets interrupt priority level to 6			
_	1	1	1	Disables interrupt requests			

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INTTC1/	INTDMA1		INTTC0/INTDMA0			
INTETC01	INTTC0/INTDMA0 & INTTC1/INTDMA1	F1H	ITC1C /IDMA1C	ITC1M2	ITC1M1	ITC1M0 /IDMA1M0	ITC0C	ITC0M2	ITC0M1	ITCOMO
/INTEDMA01	enable		R	/IDIVI/ (TIVIZ	R/W	//IBIVI/ (TIVIO	R	/IBIVII/ (OIVIZ	R/W	/IDIVI/ (OIVIO
			0	0	0	0	0 <	0	0	0
				INTTC3/	INTDMA3			INTTC2	/INTDMA2	
INTETC23	INTTC2/INTDMA2 &		ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
/INTEDMA23	INTTC3/INTDMA3	F2H	/IDMA3C	/IDMA3M2	/IDMA3M1	/IDMA3M0	/IDMA2C	/IDMA2M2	/IDMA2M1	/IDMA2M0
/IIVI EDIVIAZS	enable		R R/W			(R7/		R/W		
			0	0	0	0	0)) o	0	0
				INTTC5/	INTDMA5	INTTC4	INTDMA4			
INTETC45	INTTC4/INTDMA4 & INTTC5/INTDMA5	F3H	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
/INTEDMA45			/IDMA5C	/IDMA5M2	/IDMA5M1	/IDMA5M0	/IDMA4C	/IDMA4M2	/IDMA4M1	/IDMA4M0
/II T L DIVI/ (+O	enable		R		R/W	4()	R	- (RW	,
			0	0	0	0	0	0	0	0
				INTTC7	(DMA7)	77/\		INTTC	6 (DMA6)	
INTETC67	INTTC6 & INTTC7	F4H	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETCO	enable	F411	R		R/W		R		/R/W	
			0	0	$\mathcal{L}(0)$	0	0	0	0	0
				^	+	•		N.	TWD	
INTWDT INTWD	INTWD	F7H	1	-	\ <u></u>	-	ITCWD	J)_	-	_
IINIVVDI	enable	F/11					(PR)			
				Always	write "0".		$\langle \langle 0 \rangle \rangle$	-	_	_

Interrupt request flag

) lxxM2	lxxM1	1xxM0	Function (Write)
0	0		Disables interrupt requests
0	0	1	Sets interrupt priority level to 1
0	$\bigcirc 1$	0	Sets interrupt priority level to 2
<u>(0</u>	(\(\sigma_1\))	1	Sets interrupt priority level to 3
1)9	0	Sets interrupt priority level to 4
	0	1	Sets interrupt priority level to 5
1	1	0	Sets interrupt priority level to 6
1	1	1	Disables interrupt requests

(1) External interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			15EDGE	I4EDGE	I3EDGE	I2EDGE	I1EDGE	I0EDGE	IOLE	_
						R/W				
	Interrupt	F6H	0	0	0	0	0	0	0	0
	input mode	-	INT5EDGE	INT4EDGE	INT3EDGE	INT2EDGE	INT1EDGE	INT0EDGE	INT0	Always
	control 0		0: Rising	0:Edge	write "0".					
		,	1: Falling	mode						
									1: Level	
									mode	
							711	ZA	17EDGE	I6EDGE
		5							V	V
	Interrupt input mode	FAH (Prohibit					4		0	0
	control 0	RMW)							INT7EDGE	INT6EDGE
	0001								0: Rising	0: Rising
						M		^	1; Falling	1: Falling

Note 1: Disable INT0 request before changing INT0 pin mode from level sense to edge sense. (change <I0LE>from

Wait EI execution

"1" to "0")

DI

LD (IIMC0), XXXXXX0-B ; Switches from level to edge.

LD (INTCLR), 0AH ; Clears interrupt request flag.

NOP

NOP

NOP

EI X: Don't care, -: No change

Note 2: See electrical characteristics in section 4 for external interrupt input pulse width.

Note 3: In port setting, if 16 bit timer input is selected and capture control is executed, INT6 and INT7 don't depend on IIMC1 register setting. INT6 and INT7 operate by setting TBnMOD<TBnCPM1:0>.

Settings of External Interrupt Pin Function

Interrupt	Pin Name	Mode	Setting Method
<		Rising edge	<i0le> = 0,<i0edge> = 0</i0edge></i0le>
INT0	PC0	Falling edge	<i0le> = 0, <i0edge> = 1</i0edge></i0le>
		High level	<i0le> = 1</i0le>
INTÎ 🗸	PC1	Rising edge	<i1edge> = 0</i1edge>
INI	FOI	Falling edge	<l1edge> = 0</l1edge>
INT2	PC2	Rising edge	<l2edge> = 0</l2edge>
11912	F 02	Falling edge	<l2edge> = 1</l2edge>
INTO	DC2	Rising edge	<l3edge> = 0</l3edge>
INT3	PC3	Falling edge	<l3edge> = 1</l3edge>
INT4	Doc	Rising edge	<i4edge> = 0</i4edge>
11114	P96	Falling edge	<i4edge> = 1</i4edge>
INT5	PP3	Rising edge	<i5edge> = 0</i5edge>
CIVII	FF3	Falling edge	<l5edge> = 1</l5edge>
INT6	PP4	Rising edge	<i6edge> = 0</i6edge>
IINTO	FF4	Falling edge	<l6edge> = 1</l6edge>
INT7	PP5	Rising edge	<i7edge> = 0</i7edge>
IINT /	ΓΓIJ	Falling edge	<i7edge> = 1</i7edge>

(2) SIO receive interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0
			-	-						IR0LE
			\	N						W
	SIO		0	0						1
01110	interrupt	F5H	Always	Always			4			0:INTRX0
SIMC	mode	(Prohibit	write "0"	write "0"						edge
	control	RMW)	(Note)						·	mode
										1:INTRX0
								77^		level
						<		/))		mode

Note: When using the micro DMA transfer end interrupt, always write "1".

INTRX0 edge enable 0 Edge detect INTRX0 1 "H" level INTRX0	
1 "H" level INTRX0	
	(0)

(3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA /HDMA start vector, as given in Table 3.5.1 to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR ← 0AH

; Clears interrupt request flag INT0.

Symbol	Name	Address	7	6	5	4	3	2	1	0
		F8H	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3 <	CLRV2	CLRV1	CLRV0
INTCLR	Interrupt	(Prohibit		W (V)						
INTOLIX	clear control	RMW)	0	0	0	0	Q	0	0	0
		TXIVIVV)				Interrupt	vector			

(4) Micro DMA start vector registers

These registers assign micro DMA /HDMA processing to sets which source corresponds to DMA. The interrupt source whose micro DMA /HDMA start vector value matches the vector set in one of these registers is designated as the micro DMA /HDMA start source.

When the micro DMA transfer counter (DMACn) or HDMA transfer counter B (HDMACBn) value reaches "0", the micro DMA /HDMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA /HDMA start vector register is cleared, and the micro DMA /HDMA start source for the channel is cleared. Therefore, in order for micro DMA /HDMA processing to continue, the micro DMA /HDMA start vector register must be set again during processing of the micro DMA /HDMA transfer end interrupt.

If the same vector is set in the micro DMA /HDMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA/HDMA start vector registers for two different channels, the interrupt generated on the lower-numbered channel is executed until micro DMA/HDMA transfer is complete. If the micro DMA/HDMA start vector for this channel has not been set in the channel's micro DMA/HDMA start vector register again, micro DMA/HDMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA/HDMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	DMAG				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0		
DMA0V	DMA0 start	100H					R/	W				
DIVIAUV	vector	10011			0	0	0	0	0	0		
	VCOIOI						DMA0 sta	art vector				
	DMA1				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0		
DMA1V	start	101H					R/	W	1	Г		
Division	vector	10111			0	0	0	(0)	0	0		
						1	DMA1 sta	art vector	1	1		
	DMA2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0		
DMA2V	start	102H					R/		ı	Π		
	vector				0	0	0	0	0	0		
							DMA2 sta	1	ı	ı		
	DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0		
DMA3V	start	103H				4	\\ \ R/\					
	vector				0	0	0	0	0	0		
						$-(\langle // \rangle$	DMA3 sta	(()		1		
	DMA4				DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0		
DMA4V	start	104H	104H	104H					R/	_ //	10/	
	vector				0	0>	0	0	0	0		
			/				DMA4 sta	- / /	ı	I		
	DMA5				DMA5V5	DMA5V4	DMA5V3		DMA5V1	DMA5V0		
DMA5V	start	105H		\sim	7()		(//R/		I			
	vector			74	0	9	10	0	0	0		
							DMA5 sta		I			
	DMA6				DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0		
DMA6V	start	106H		T)		R/\	W	ı			
	vector	4	~~~	0	0	0	0	0	0			
						///	DMA6 sta	art vector	1	ı		
	DMA7				DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0		
DMA7V	start	107H				31)	R/	W	T	Т		
DIVI) (I V	vector				(07)	O O	0	0	0	0		
		(()))	DMA7 sta	art vector				

(5) Micro DMA/HDMA select register

This register selectable that is started either Micro DMA or HDMA processing.

Micro DMA /HDMA start vector register (DMAnV) shared with both functions. When interrupt which match with vector value that is set to DMA/HDMA start vector register generated, use this register.

Symbol	NAME	Address	7>	6	5	4	3	2	1	0
					DMASEL5	DMASEL4	DMASEL3	DMASEL2	DMASEL1	DMASEL0
	Micro					_	R/	W		_
DMASEL	DMA/	10AH			0	0	0	0	0	0
DIVIAGEL	HDMA	10/11			0:Micro	0:Micro	0:Micro	0:Micro	0:Micro	0:Micro
	select				DMA5	DMA4	DMA3	DMA2	DMA1	DMA0
					1:HDMA5	1:HDMA4	1:HDMA3	1:HDMA2	1:HDMA1	1:HDMA0

TOSHIBA

(6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches "0". Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to "1" specifies that any micro DMA transfer on that channel will be a burst transfer.

Symbol	Name	Address	7	6	5	4	3 (2	1	0	
			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0	
DMAD	DMAD DMA home		R/W (7)								
DMAB	DMA burst	108H	0	0	0	0	0)) o	0	0	
					1: 🗅	MA request	on Burst mo	ode			

(7) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore, if immediately before an interrupt is generated, the CPU fetches an instruction which clears the corresponding interrupt request flag, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be preceded by a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP" × 3 times). If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

INTO level mode	In level mode INT0 is not an edge-triggered interrupt. Hence, in level mode the interrupt request flip-flop for INT0 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically. If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to level mode so as to release a halt state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the halt state has been released.) When the mode changes from level mode to edge mode, interrupt request flags which were set in level mode will not be cleared. Interrupt request flags must be cleared using the following sequence. DI LD (IIMC0), 00H ; Switches from level to edge. LD (INTCLR), 0AH ; Clears interrupt request flag. NOP ; Wait El execution NOP NOP
	EI
	In level mode (The register SIMC <irxle> set to "1"), the interrupt request flip-flop can only be cleared</irxle>
INTRX	by a reset or by reading the serial channel receive buffer. It cannot be cleared by writing INTCLR register.
	/ / `

Note: The following instructions or pin input state changes are equivalent to instructions which clear the interrupt request flag.

INTO: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from high to low after an interrupt request has been generated in level mode. ("H" >

INTRX: Instructions which read the receive buffer.

3.6 DMAC (DMA Controller)

The TMP92CF26A incorporates a DMA controller (DMAC) having six channels. This DMAC can realize data transfer faster than the micro DMA function by the 900/H1 CPU.

The DMAC has the following features:

- 1) Six independent channels of DMA
- 2) Two types of transfer start requests

Hardware request (using an interrupt source connected with the INTC) or software request can be selected for each channel.

3) Various source/destination combinations

The combination of transfer source and destination can be selected for each channel from the following four types: memory to memory, memory to I/O, I/O to memory, I/O to I/O.

4) Transfer address mode

Only the dual address mode is supported.

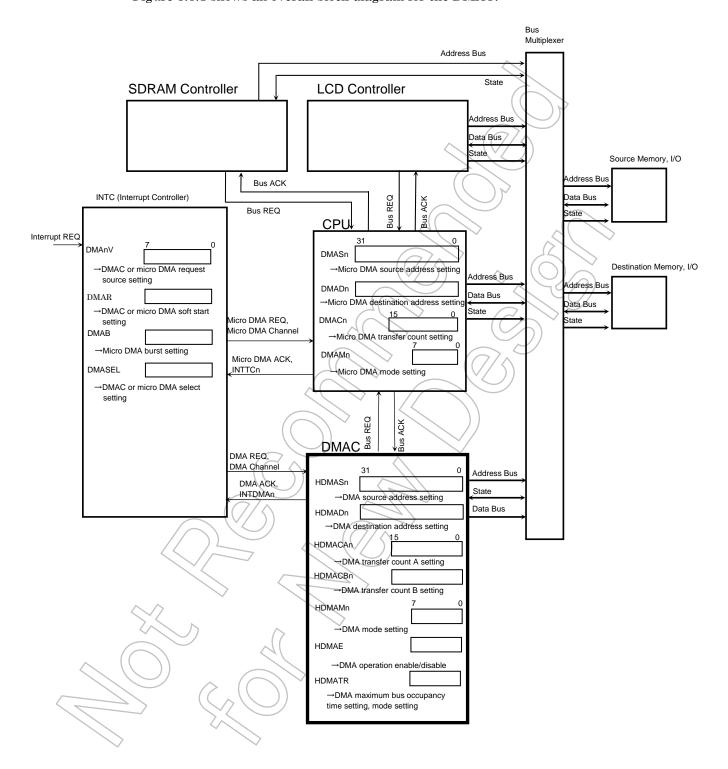
5) Dual-count mechanism and DMA end interrupt

Two count registers are provided to execute multiple DMA transfers by one DMA request and to generate multiple DMA requests at a time. The DMA end interrupt (INTDMA0 to INTDMA5) is also provided so that a general purpose interrupt routine can be used to prepare for the next processing.

6) Priorities among DMA channels (the same as the micro DMA acceptance specifications of the INTC)

DMA requests are basically accepted in the order in which they are asserted. If more than one request is asserted simultaneously or it looks as if two requests were asserted simultaneously because one of the requests has been put on hold while other processing was being performed, the smaller-numbered channel is given a higher priority.

7) DMAC bus occupancy limiting function


The DMAC incorporates a special timer for limiting its bus occupancy time to avoid excessive interference with the CPU or LCDC operation.

8) The DMAC can be used in HALT (IDLE2) mode.

3.6.1 Block Diagram

Figure 3.6.1 shows an overall block diagram for the DMAC.

Note: "n" denotes a channel number. Micro DMA has eight channels (0 to 7) and DMA has six channels (0 to 5).

Figure 3.6.1 Overall Block Diagram

3.6.2 SFRs

HDMASn

The DMAC has the following SFRs. These registers are connected to the CPU via a 16-bit data bus.

(1) HDMASn (DMA Transfer Source Address Setting Register)

The HDMASn register is used to set the DMA transfer source address. When the source address is updated by DMA execution, HDMASn is also updated.

HDMAS0 to HDMAS5 have the same configuration.

Although the bus sizing function is supported, the address alignment function is not supported. Therefore, specify an even-numbered address for transferring 2 bytes and an address that is an integral multiple of 4 for transferring 4 bytes.

			HUMA	Sn Regist	er (
	7	6	5	4	3	2	1	0
bit Symbol	DnSA7	DnSA6	DnSA5	DnSA4	DnSA3	DnSA2	DnSA1	DnSA0
Read/Write				R/	w//))		$(\bigcirc)/$	
Reset State	0	0	0	0) •	0	000	// 0
Function			So	urce address	[7:0] for DM	1An	, // (
	15	14	13	(12)) 11	10	9	8
bit Symbol	DnSA15	DnSA14	DnSA13/	DnSA12	DnSA11	DnSA10	DnSA9	DnSA8
Read/Write		_		R/	W	$((//\langle))$		
Reset State	0	0	0	0	0		0	0
Function			Sou	ırce address	[15:8] for DI	MAn		
	23	22	21	20	19	18	17	16
bit Symbol	DnSA23	DnSA22	DnSA21	DnSA20	DnSA19	DnSA18	DnSA17	DnSA16
Read/Write			7	R/	Ŵ	-		_
Reset State	0	0))0	0 /	//0	0	0	0
Function			Sou	rce address	[23:16] for D	MAn		

Source address Source address Source address [7:0] [23:16] [15:8] HDMAS0 Channel 0 (0902H) (0901H) (0900H) HDMAS1 Channel 1 (0912H) (0911H)(0910H) HDMAS2 Channel 2 (0922H)(0921H)(0920H)HDMAS3 Channel 3 (0932H) (0931H) (0930H)HDMAS4 Channel 4 (0942H) (0941H)(0940H) HDMAS5 Channel 5 (0952H) (0951H) (0950H)

Figure 3.6.2 HDMASn Register

(2) HDMADn (DMA Transfer Destination Address Setting Register)

The HDMADn register is used to set the DMA transfer destination address. When the destination address is updated by DMA execution, HDMADn is also updated.

HDMAD0 to HDMAD5 have the same configuration.

Although the bus sizing function is supported, the address alignment function is not supported. Therefore, specify an even-numbered address for transferring 2 bytes and an address that is an integral multiple of 4 for transferring 4 bytes.

HDMADn Register

HDMADn

				.= teg.e			/	
	7	6	5	4	3 <	2(//	<u></u>	0
bit Symbol	DnDA7	DnDA6	DnDA5	DnDA4	DnDA3	DnDA2	DnDA1	DnDA0
Read/Write				R/\	W			
Reset State	0	0	0	0	0	0	0	0
Function			Desti	nation addres	ss [7:0] for D	MAn	(
	15	14	13	12	11	10	9	80
bit Symbol	DnDA15	DnDA14	DnDA13	DnDA12	DnDA11	DnDA10	DnDA9	DnDA8
Read/Write				R/\	\mathcal{M}^{\vee}	\Diamond		
Reset State	0	0	0	0		0		// 0
Function			Destir	nation addres	s [15:8] for D	MAn /		
	23	22	21	20	> 19	18	7)17	16
bit Symbol	DnDA23	DnDA22	DnDA21 /	DnDA20	DnDA19	DnDA18	DnDA17	DnDA16
Read/Write				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W	(
Reset State	0	0	0	0	0		0	0
Function			Destin	ation address	s [23:16] for [OMA _n		

	Destination address [23:16]	Destination address [15:8]	Destination address [7:0]
Channel 0	(0906H)	(0905H)	HDMAD0 (0904H)
Channel 1	(0916H)	(0915H)	HDMAD1 (0914H)
Channel 2	(0926H)	(0925H)	HDMAD2 (0924H)
Channel 3	(0936H)	(0935H)	HDMAD3 (0934H)
Channel 4	(0946H)	(0945H)	HDMAD4 (0944H)
Channel 5	(0956H)	(0955H)	HDMAD5 (0954H)

Figure 3.6.3 HDMADn Register

(3) HDMACAn (DMA Transfer Count A Setting Register)

The HDMACAn register is used to set the number of times a DMA transfer is to be performed by one DMA request. HDMACAn contains 16 bits and can specify up to 65536 transfers (0001H = one transfer, FFFFH = 65535 transfers, 0000H = 65536 transfers). Even when the transfer count A is updated by DMA execution, HDMACAn is not updated.

HDMACA0 to HDMACA5 have the same configuration.

HDMACAn Register

HDMACAn

	7	6	5	4	3 <	2(//	<u></u>	0
bit Symbol	DnCA7	DnCA6	DnCA5	DnCA4	DnCA3	DnCA2	DnCA1	DnCA0
Read/Write				R	/W			
Reset State	0	0	0	0	0	9	0	0
Function			Tra	ansfer count	A [7:0] for DI	MAn	6	
	15	14	13	12	H	10	9	8
bit Symbol	DnCA15	DnCA14	DnCA13	DnCA12	DnCA11	DnCA10	DnCA9	DnCA8
Read/Write				R	w//))	\Diamond	(\bigcirc)	
Reset State	0	0	0	0	0	0 4	00	// o
Function	Transfer count A [15:8] for DMAn							

	Transfer count A [15:8]	Transfer count A [7:0]
Channel 0	(0909H)	HDMACA0 (0908H)
Channel 1	(0919H)	HDMACA1 (0918H)
Channel 2	(0929H)	HDMACA2 (0928H)
Channel 3	(0939H)	HDMACA3 (0938H)
Channel 4	(0949H)	HDMACA4 (0948H)
Channel 5	(Q959H)	HDMACA5 (0958H)

Figure 3.6.4 HDMACAn Register

(4) HDMACBn (DMA Transfer Count B Setting Register)

HDMACB0 to HDMACB5 have the same configuration.

HDMACBn Register

HDMACBn

							114	
	7	6	5	4	3	2		0
bit Symbol	DnCB7	DnCB6	DnCB5	DnCB4	DnCB3	DnCB2	DnCB1	DnCB0
Read/Write R/W								
Reset State	0	0	0	0	0	0	0	0
Function			Tra	ansfer count	B [7:0] for DI	MAn		
	15	14	13	12	11	10	9	8
bit Symbol	DnCB15	DnCB14	DnCB13	DnCB12	DnCB11	DnCB10	DnCB9	DnCB8
Read/Write		RW						
Reset State	0	0	0	0	((((((((((((((((((((0 🚫	(0)	0
Function	Transfer count B [15:8] for DMAn							

	Transfer count B	Transfer count B
	[15:8]	[7:0]
Characl O		HDMACB0
Channel 0	(090BH)	(090AH)
Channel 1		HDMACB1
Channel	(091BH)	(091AH)
Channel 2		HDMACB2
Channel 2	(092BH)	(092AH)
Channel 3		HDMACB3
Charmer 3	(093BH)	(093AH)
Channel 4	$(7/\wedge$	HDMACB4
Criannel 4	(094BH)	(094AH)
Channel 5		HDMACB5
Chainers	(095BH)	(095AH)

Figure 3.6.5 HDMACBn Register

(5) HDMAMn (DMA Transfer Mode Setting Register)

The HDMAMn register is used to set the DMA transfer mode.

 $\ensuremath{\mathsf{HDMAM0}}$ to $\ensuremath{\mathsf{HDMAM5}}$ have the same configuration.

HDMAMn Register

HDMAMn

	7	6	5	4	3	2 <	1	0
bit Symbol				DnM4	DnM3	DnM2	DnM1	DnM0
Read/Write						R/W		
Reset State				0	0	0	0	0
Function				DMA transf	er mode	(0)	Transfer da	nta size
				000: Destin	ation INC (I/	$O \rightarrow MEM)$	00: 1 byte	
				001: Destin	ation DEC (I/	$O \rightarrow MEM)$	01: 2 bytes	
				010: Source	e INC (MEM	→ I/O)	10: 4 bytes	
				011: Source	e DEC (MEM	→ I/O)	11: Reserve	ed
					e/destination	INC	6	
				(MEM	\rightarrow MEM)		115.	
				101: Source	e/destination	DEC	1	
				(MEM	→ MEM)		\sim	
				110: Source	e/destination	fixed)
				(1/0→	1/O)	<	1/90	//
				111: Reser	ved	(Note 2)	1)	

	Transfer mode
	[7:0]
Channal O	HDMAM0
Channel 0	(090CH)
Channel 1	HDMAM1
Channel 1	(091CH)
Channel 2	HDMAM2
Criannel 2	(092CH)
Channel 3	HDMAM3
Channers	(093CH)
Channel 4	HDMAM4
Criailnei 4	(094CH)
Channel 5	HDMAM5
Chaille 5	(095CH)

Note 1: Read-modify-write instructions can be used on all these registers.

Note 2; INC: Post-increment

Dec: Post-decrement

I/O: Fixed memory address

MEM: Memory address to be incremented or decremented

Figure 3.6.6 HDMAMn Register

(6) HDMAE (DMA Operation Enable Register)

The HDMAE register is used to enable or disable the DMAC operation.

Bits 0 to 5 correspond to channels 0 to 5. Unused channels should be set to "0".

HDMAE Register

HDMAE (097EH)

	7	6	5	4	3	2 <	1	0
bit Symbol			DMAE5	DMAE4	DMAE3	DMAE2	DMAE1	DMAE0
Read/Write				R/W				
Reset State			0	0	0	0		0
Function			DMA channel operation					
			0: Disable					
					1: E	nable		

Note: Read-modify-write instructions can be used on this register.

Figure 3.6.7 HDMAE Register

(7) HDMATR (DMA Maximum Bus Occupancy Time Setting Register)

The HDMATR register is used to set the maximum duration of time the DMAC can occupy the bus. The TMP92CF26A does not have priority levels for bus arbitration. Therefore, once the DMAC owns the bus, other masters (such as the LCDC) must wait until the DMAC completes its transfer operation and releases the bus. This could lead to problems in the system. For example, if the LCDC cannot own the bus as required, the LCD display function may not work properly. To avoid such a situation, the DMAC limits the duration of its bus occupancy by using this timer register. When the DMAC occupies the bus for the duration of time set in this register, it releases the bus even if the specified DMA operation has not been completed yet. After waiting for 16 states, the DMAC asserts a bus request again to execute the rest of the DMA operation.

The DMAC counts the bus occupancy time regardless of which channel is occupying the bus. To set the maximum bus occupancy time, ensure that the HDMAE register is set to "00H" and set HDMATR<DMATE> to "1" and <DMATR6:0> to the desired value.

Note: In case of using S/W start with HDMA, transmission start is to set to "1" DMAR register. However DMAR register can't be used to confirm flag of transmission end. DMAR register reset to "0" when HDMA release bus occupation once with HDMATR function.

HDMATR Register

HDMATR (097FH)

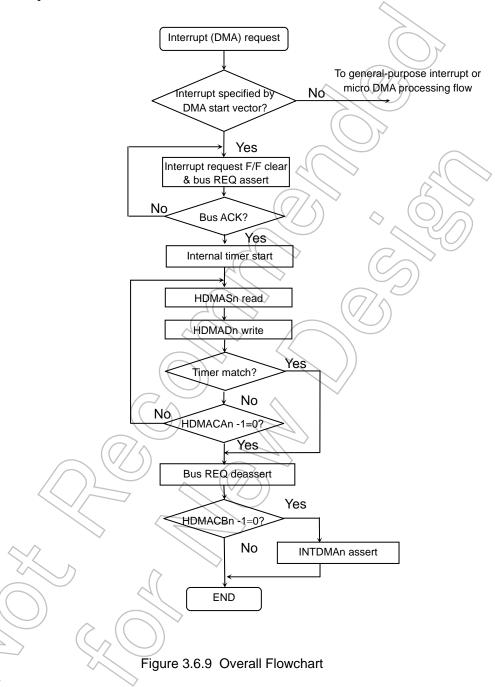

	4	7	6	5	4	3	2	1	0
۲	bit Symbol	DMATE	DMATR6	DMATR5	DMATR4	DMATR3	DMATR2	DMATR1	DMATR0
	Read/Write				R/	W			
7	Reset State	0		0	0	0	0	0	0
	Function	Timer		Maximum bus occupancy time setting					
		operation		The value to be set in <dmatr6:0> should be obtained by</dmatr6:0>					
		0: Disable	"maximum bus occupancy time / (256/f _{SYS})".						
		1: Enable			"00	OH" cannot b	e set.		

Figure 3.6.8 HDMATR Register

3.6.3 DMAC Operation Description

(1) Overall flowchart

Figure 3.6.9 shows a flowchart for DMAC operation when an interrupt (DMA) is requested.

(2) Bus arbitration

The TMP92CF26A includes three controllers (DMA controller, LCD controller, SDRAM controller) that function as bus masters apart from the CPU. These controllers operate independently and assert a bus request as required. The controller that receives a bus acknowledgement acts as the bus master. No priorities are assigned to these three controllers, and bus requests are processed in the order in which they are asserted. Once one of the controllers owns the bus, bus requests from other controllers are put on hold until the bus is released again. While one of the controllers is occupying the bus, CPU processing including non-maskable interrupt requests is also put on hold.

(3) Transfer source and destination memory setting

Either internal or external memory can be set as the source and destination memory or I/O to be accessed by the DMAC. Even when the MMU is used in external memory, the addresses to be accessed by the DMAC should be specified using logical addresses. The DMAC accesses the specified source and destination addresses according to the bus width and number of waits set in the memory controller and the bank settings made in the MMU.

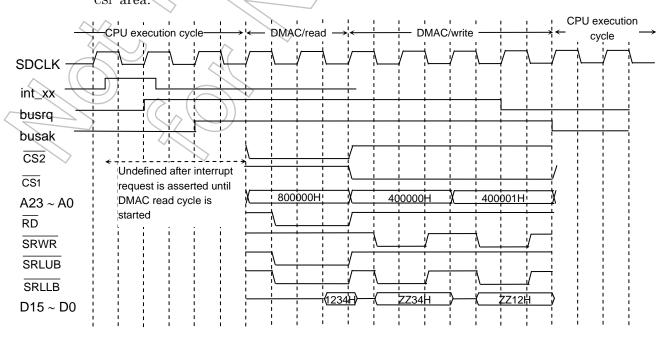

Although the bus sizing function is supported, the address alignment function is not supported. Therefore, specify an even numbered address for transferring 2 bytes and an address that is an integral multiple of 4 for transferring 4 bytes.

Table 3.6.1 Difference p	oint of address s	etting between H	IDMA and	micro DMA
	Data Langth	НОМА	(Micro

	Data Length	HDMA	Micro DMA	
	1byte	No restriction		
Source address	2byte	Even address		
	4byte	Address in multiples of 4	No restriction	
/	1byte	No restriction	NO restriction	
Destination address	2byte	Even address		
	4byte	Address in multiples of 4		

(4) Operation timing

The following diagram shows an example of operation timing for transferring 2 bytes from 16-bit memory connected with the $\overline{\text{CS2}}$ area to 8-bit memory connected with the $\overline{\text{CS1}}$ area.

3.6.4 Setting Example

This section explains how to set the DMAC using an example.

(1) Transferring music data from internal RAM to I2S by DMA transfer

The 32 Kbytes of data stored in the internal RAM at addresses 2000H to 9FFFH shall be transferred to FIFO-RAM via I2S. Each time an INTI2S request is asserted, 64 bytes (4 bytes x 16 times) shall be transferred to FIFO-RAM using DMAC channel 0. Since INTI2S is an FIFO empty interrupt, the first data must be set in advance. Therefore, only the first 64 bytes shall be transferred by DMA soft start. After 32 Kbytes have been transferred, the INTDMA0 interrupt routine shall be activated to prepare for the next processing.

(a) Main routine

No		Instruction	Comments
1	ldl	(hdmas0),2000H	; Source address = 2000H
2	ldl	(hdmad0),i2sbuf	; Destination address = i2sbuf
3	ldw	(hdmaca0),16	; Counter A = 16
4	ldw	(hdmacb0),512	; Counter B = 512 (32768/64)
5	ldb	(hdmam0),0AH	; Transfer mode = source INC, 4 bytes
6	set	0,(hdmae)	; Enable DMA channel 0.
7	ld	(dmar),01H	; Transfer the first 64 bytes by DMA soft start.
8	nop		
9	ld	(dma0v),i2s_vector	, INTI2S = DMA0
10	ld	(intedma01),xxH	; INTDMA level = x
11	ldw	(i2sctl0),xxxxH	; Set operation mode for I2S.
12	ldw	(i2sctl1),xxxxH	; Start I2S transmission.
13	ei	xx	; Enable CPU interrupts.

(b) INTDMA0 interrupt routine

_			
	No	Instruction	Comments
I	1 //	res 0,(hdmae)	; Disable DMA channel 0.
	2 //		
	3		
	4		
1	5 _		
\leq	6		>
ľ	7		
1	8	\mathcal{A}	
	9))		
	10	\Diamond	
	11	reti	,
T	7	7/	

TOSHIBA

3.6.5 Note

In case of using S/W start with HDMA, transmission start is to set to "1" DMAR register. However DMAR register can't be used to confirm flag of transmission end. DMAR register reset to "0" when HDMA release bus occupation once with HDMATR function. We recommend to use HDMACBn register (counter value) to confirm flag of transmission end.

3.6.6 Considerations for Using More Than One Bus Master

In the TMP92CF26A, the LCD controller, SDRAM controller, and DMA controller may act as the bus master apart from the CPU. Therefore, care must be exercised to enable each of these functions to operate smoothly.

To facilitate explanation of DMA operation performed by each bus master, the DMA transfer operation performed by the DMA controller is defined as "HDMA", the display RAM read operation performed by the LCD controller as "LDMA", and the SDRAM auto refresh operation performed by the SDRAM controller as "ARDMA".

The following explains various cases where two or more bus masters may operate at the same time.

(1) CPU + HDMA

The DMA controller performs DMA transfer (HDMA) after issuing a bus request to the CPU and getting a bus acknowledgement. The DMA controller may be active while the CPU is in HALT mode (IDLE2 mode only), in which case HDMA does not interfere with the CPU operation. However, if HDMA is started while the CPU is active, the CPU cannot execute instructions while HDMA is being performed.

Before activating the DMA controller, therefore, it is necessary to estimate the CPU stop time (defined as "tstop (HDMA)") based on the transfer time, transfer start interval, and number of channels to be used.

CPU bus stop rate = tstop (HDMA)[s] / HDMA start interval[s]

HDMA start interval [s] = HDMA start interrupt period [s]

Note: The HDMA start interval depends on the period of the HDMA start interrupt source. However, it is also possible to start HDMA by software.

tstop (HDMA) [s] = (Source read time + Destination write time) × Transfer count + α

state/byte

Memory Type	Internal RAM	External SDRAM	External SRAM	External SRAM
Read / Write	Internal IVAIVI	16-bit bus	16-bit bus	8-bit bus
Read	1 / 4 (Note 1)	Burst 1 / 2 ^(Note 2) 1 word 6 / 2 ^(Note 2)	2 / 2 ^(Note 3)	2 / 1 ^(Note 3)
Write	1/4	Burst 1 / 2 (Note 2) 1 word 3 / 2 (Note 2)	2 / 2 ^(Note 3)	2 / 1 ^(Note 3)

Note 1: 2-1-1-1 access. Each consecutive address can be accessed in 1 state.

Note 2: The transfer speed varies depending on the combination of source and destination.

- a) When the source or destination is internal RAM or internal I/O (SFR), burst access (6-1-1-1 access) is possible. Only consecutive addresses on the same page can be accessed in 1 state. Additional 4 states are needed at the end of each burst access.
- b) When the source or destination is other than internal RAM or internal I/O, 1-word access is used.

Note 3: In the case of 0 waits

state/byte

I/O Type Read / Write	I ² S	NANDF	USB	SPI
Read	-	2/2	2/2	2/4
Write	2/4	2/2	2/2	2/4

Sample 1: Calculation example for CPU + HDMA

Conditions:

CPU operation speed (fsys) : 60 MHz

I2S sampling frequency : 48 KHz (60 MHz/25/50 = 48 KHz)

I2S data transfer bit length : 16 bits

DMAC channel 0 used to transfer 5 Kbytes from internal RAM to I2S

Calculation example:

DMAC source data read time:

Internal RAM data read time

= 1 state/4 bytes (However, the first 1 byte requires 2 states.)

DMAC destination write time:

I2S register write time = 2 states/4 bytes

Transfer count

To transfer 5 Kbytes of data in 4-byte units, the transfer count is calculated as follows:

5 Kbytes/4 bytes = 1280 [times]

Since I2S generates an interrupt for every 64 bytes, the DMAC's counter A is set to 16 (64 bytes/4 bytes = 16 times) and counter B is set to 80.)

Note: Since an interrupt is generated 80 times, the first read to internal RAM (which requires 1 additional state) occurs 80 times, requiring additional 80 states in total. In addition, from bus REQ to bus ACK, an overhead time of 2 states is also needed for each interrupt request, requiring additional 160 states in total.

$$t_{STOP}$$
 (HDMA) = (((1 \div 2) \times 16) \times 80) + 80 + 160) / t_{SYS} [S] = 68 [μ S]

HDMA start interval [s] = 1 / I2S sampling frequency [Hz] \times (64 / 16)

$$= 83.33 [mS]$$

CPU bus stop rate = tstop (HDMA)[s] / HDMA start interval [s]

$$= 68 [\mu S] / 83.33 [mS] = 0.08 [\%]$$

(2) CPU + LDMA

The LCD controller performs DMA transfer (LDMA) after issuing a bus request to the CPU and getting a bus acknowledgement.

If LDMA is not performed properly, the LCD display function cannot work properly. Therefore, LDMA must have higher priority than the CPU. While LDMA is being performed, the CPU cannot execute instructions.

To display data on the LCD using the LCD controller, it is necessary to estimate to what degree LDMA would interfere with the CPU operation based on the display RAM type, display RAM bus width, LCDD type, display pixel count, and display quality.

The time the CPU stops operation while the LCD controller transfers data for one line is defined as "tstop (LDMA)", which is calculated as shown below for each display mode.

 t_{STOP} (LDMA) = (SegNum × K / 8) × t_{LRD}

16-bit external SRAM : $t_{LRD} = (2 + wait count) / f_{SYS} [Hz] / 2$

Internal RAM : $t_{LRD} = 1 / f_{SYS} [Hz] / 4$ 16-bit external SDRAM : $t_{LRD} = 1 / f_{SYS} [Hz] / 2$

SegNum : Number of segments to be displayed

K : Number of bits needed for displaying 1 pixel

Monochrome K = 1

4 gray scales K = 2

16 gray scales K = 4

256 colors K = 8

4096 colors $\langle K = 12 \rangle$

65536 colors K = 16

262144/16777216 colors K = 24

Note 1: When SDRAM is used, the overhead time is added as shown below.

 t_{STOP} [s] = (SegNum × K/8) × t_{LRD} + ((1/ f_{SYS}) × 8)

Note 2: When internal RAM is used, the overhead time is added as shown below.

 $t_{STOP}[s] = (SegNum \times K/8) \times t_{LRD} + (1/f_{SYS})$

The CPU bus stop rate indicates what proportion of the 1-line data update time tLP is taken up by tstop (LDMA) and is calculated as follows:

CPU bus stop rate = t_{STOP} (LDMA) [s] / LHSYNC [period: s]

Sample 2: Calculation examples for CPU + LDMA

Conditions 1:

CPU operation speed (fsys) : 60 MHz Display RAM : Internal RAM

Display size : QVGA (320seg × 240com)

: 65536 colors (TFT) Display quality

Refresh rate : 70 Hz (including 20 clocks of dummy cycles)

Calculation example 1:

t_{STOP} (LDMA) = $((SegNum \times K / 8) \times t_{LRD}) + (1 / f_{SYS} [Hz])$

 $= ((320 \times 16 / 8) \times 1 / f_{SYS} [Hz] / 4) + (1 / f_{SYS} [Hz])$

 $= ((640) \times 16.67 [ns] / 4) + 16.67 [ns]$

 $= 2.68 \, [\mu s]$

 $= 1/70 \text{ [Hz]} / (\text{COM} + 20 = 260) = 54.95 \text{ [}\mu\text{s]}$ LHSYNC [period: s]

= t_{STOP} (LCD)[s] / LHSYNC [period: s] CPU bus stop rate

 $= 2.68 \,[\mu s] / 54.95 \,[\mu s] = 4.88 \,[\%]$

Conditions 2:

CPU operation speed (fsys)

: 10 MHz

Display RAM

; 16-bit external SRAM (0 waits)

Display size

 $QVGA (240seg \times 320com)$

Display quality : 4096 colors (STN)

Refresh rate

: 100 Hz (0 dummy cycles)

Calculation example 2:

tstop (LDMA)

 $= (SegNum \times K / 8) \times t_{LRD}$

= $(240 \times 12 / 8) \times (2 + \text{wait count}) / f_{SYS} [Hz] / 2$

 $= (360) \times 200 [ns] / 2$

 $= 36 [\mu s]$

LHSYNC [period: s]

 $= 1/100 \text{ [Hz]} / (\text{COM} = 240) = 41.67 \text{ [}\mu\text{s]}$

CPU bus stop rate

= t_{STOP} (LCD)[s] / LHSYNC [period: s]

 $= 36 [\mu s] / 41.67 [\mu s] = 86.40 [\%]$

(3) CPU + LDMA + ARDMA

The SDRAM controller owns the bus not only when SDRAM is used as the LCD display RAM but also when SDRAM is used as work, data, or stack area. The SDRAM controller occupies the bus (ARDMA) while it refreshes SDRAM data by the auto refresh function.

No special consideration is needed for the ARDMA time normally as it ends within several clocks per specified number of states. However, if the LCD controller occupies the bus continuously, ARDMA cannot be executed at normal intervals and refresh data is stored in a counter specifically provided in the SDRAM controller. In this case, ARDMA is executed successively after the LCD controller releases the bus.

The priorities among the three bus masters should be set in the order of LCDC > SDRAMC > CPU. The time the CPU stops operation while the LCD controller and SDRAM controller are transferring data for one line is defined as "tstop (LDMA·ARDMA)", which is calculated as follows:

 t_{STOP} (LDMA·ARDMA) = t_{STOP} (LDMA)[s] - (t_{STOP} (LDMA)[s] / AR interval [s] \times 2 / t_{SYS} [Hz])

CPU bus stop rate = tSTOP (LDMA·ARDMA)[s] / LHSYNC [period: s]

Auto Refresh Intervals

Unit: [µs]

SDRCR <srs2: 0=""></srs2:>			Auto Frequency (System Clock)						
SRS2	SRS1	SRS0	Refresh Interval (states)	6 MHz	10MHz	20MHz	40MHz	60MHz	80MHz
0	0	0	47	7.8	4.7	2.4	1.18	0.78	0.59
0	0	1	78	13.0	7.8	3.9	1.95	1.30	0.98
0	1	0	156	26.0	15.6	7.8	3.90	2.60	1.95
0	1	10	312	52.0	31.2	15.6	7.80	5.20	3.90
1	0	0	// 468	78.0	46.8	23.4	11.70	7.80	5.85
1	0//)4	624	104.0	62.4	31.2	15.60	10.40	7.80
1	1	// 0	936	156.0	93.6	46.8	23.40	15.60	11.70
1	1	1	1248	208.0	124.8	62.4	31.20	20.80	15.60

Sample 3: Calculation example for CPU + LDMA + ARDMA

Conditions:

CPU operating speed (f_{SYS}) : 60 MHz

Display RAM : 16-bit external SDRAM Display size : $QVGA (320seg \times 240com)$

Display quality : 65536 colors (TFT)

Refresh rate : 70 Hz (including 20 clocks of dummy cycles)

SDRAM auto refresh : Every 936 states (15.6 µs)

Calculation example:

$$t_{STOP}$$
 (LDMA) =((SegNum × K / 8) × t_{LRD}) + (8 / f_{SYS} [Hz])

$$= ((320 \times 16 / 8) \times 1 / f_{SYS} [Hz] / 2) + (8 / f_{SYS} [Hz])$$

$$= ((640) \times 16.67 [ns] / 2) + 133.33 [ns]$$

 $= 5.47 [\mu s]$

LHSYNC [period:s]

= 1/70 [Hz] / (COM + 20 = 260) = 54.95 [µs]

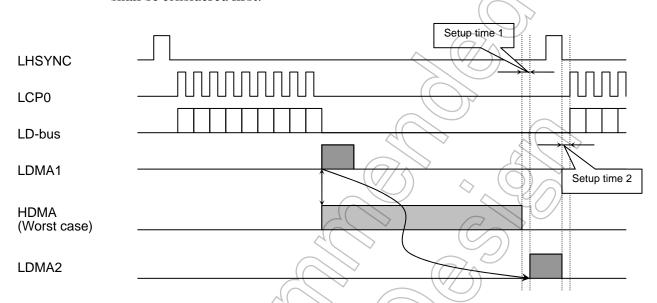
Since SDRAM is auto-refreshed once or less in 5.47 [µs]:

tstop (ARDMA)

 $= 2 / f_{SYS} [Hz] = 33.33 [ns]$

CPU bus stop rate

tstop (LDMA·ARDMA) [s] / LHSYNC [period:s]


= $(5.47 [\mu s] + 33.33 [ns]) / 54.95 [\mu s] = 10.01 [%]$

(4) CPU + LDMA+ ARDMA + HDMA

This is a case in which all the bus masters are active at the same time.

Since the LCD display function cannot work properly if the LCD controller cannot perform LDMA properly, the priorities among the four bus masters should be set in the order of LDMA > ARDMA > HDMA > CPU.

Before calculating the CPU bus stop rate, the conditions for proper LCD display shall be considered first.

The above diagram shows the LHSYNC signal, LCP0 signal, and LD-bus signal for transferring data from the LCD controller to the LCD driver, and the transfer operation (LDMA1) for reading data from the display RAM into the FIFO buffer in the LCD controller.

LDMA is started immediately after data has been transferred to the LCD driver. If HDMA is started immediately before LDMA1 is started, LDMA must wait until HDMA has finished before it can be started (LDMA2). LDMA2 must finish operation before the LCD driver output for the next stage is started.

LHSYNC [period: s] – LCD driver data transfer time [s] – t_{STOP} (LCD) [s]

= HDMA continuous time [s] + CPU operation time [s]

In the case of STN display

LCD driver data transfer time [s] = SegNum/8 \times (1/fSYS) \times (LD bus transfer speed)

In the case of TFT display

LCD driver data transfer time [s] = SegNum \times (1/fSYS) \times (LD bus transfer speed)

Sample 4: Calculation example for CPU + LDMA+ ARDMA + HDMA

Conditions:

CPU operation speed (fsys) : 60 MHz

Display RAM : QVGA $(320 \text{seg} \times 240 \text{com})$

Display quality : 65536 colors (TFT)

Refresh rate : 70 Hz (including 20 clocks of dummy cycles)

SDRAM Auto Refresh : Every 936 states (15.6 µs)

SDRAM : 16-bit width

HDMA : Transfers 5 Kbytes from internal RAM to I2S

Calculation example:

tstop (LDMA) = ((SegNum × K / 8) × tLRD) + (1 / fsys [Hz])
= ((320 ×16 / 8) × 1 / fsys [Hz] / 4) + (1 / fsys [Hz])
= ((640) ×16.67 [ns] / 4) + 16.67 [ns]
= 2.68 [
$$\mu$$
s]

LHSYNC [period: s] =
$$1/70$$
 [Hz] $/(COM+20 = 260) = 54.95$ [µs] tstop (HDMA) = $(((1 + 2) \times 16) \times 80) + 80 + 160)$ /fsys [s] = 68 [µs]

LCD driver data transfer time [s]

= SegNum × (1/f_{SYS}) × (LD bus transfer speed)
=
$$320 \times (1/60 \text{ MHz}) \times 16 = 85 \text{ [}\mu\text{s]}$$

Since LHSYNC [period: s] < LCD driver data transfer time [s], this setting is not possible.

When the transfer speed is changed to x4, the LCD driver data transfer time is calculated as follows:

(The transfer speed should be adjusted according to the required specifications.)

LCD driver data transfer time [s]

= SegNum × (1/ fsys) × (LD bus transfer speed)
=
$$320 \times (1 / 60 \text{MHz}) \times 4 = 21.3 \text{ [}\mu\text{s]}$$

LHSYNC [period: s] – LCD driver data transfer time [s] – t_{STOP} (LDMA)
=
$$54.95 \, [\mu s] - 21.3 \, [\mu s] - 2.68 \, [\mu s] = 30.94 \, [\mu s]$$

To realize proper LCD display, the maximum time HDMA can occupy the bus at a time (maximum HDMA time) must be set to $30.92~[\mu S]$ or less. Although transferring all 5 Kbytes from the internal RAM to I2S requires t_{STOP} (HDMA) = $68~[\mu s]$, the maximum HDMA time should be limited by using the HDMATR register.

HDMATR Register

HDMATR (097FH)

TIDMATIC Register										
	7	6	5	4	3	2	1	0		
bit Symbol	DMATE	DMATR6	DMATR5	DMATR4	DMATR3	DMATR2	DMATR1	DMATR0		
Read/Write	R/W									
Reset State	0	0	0	0	0	0	0	0		
	Timer	Maximum bus occupancy time setting								
Function	operation	The value to be set in <dmatr6:0> should be obtained by</dmatr6:0>								
Function	0: Disable		"Ma	aximum bus (occupancy tir	me / (256/ f _S	rs)".			
	1: Enable			"00	H" cannot be	set.				

Note: Read-modify-write instructions can be used on this register.

By writing "87H" to the HDMATR register, the maximum HDMA time is set to 29.9 [μ s] (256 × 7 × (1 / f_{SYS})). Since HDMA start interval [period:s] = 83.33 [ms] is longer than LHSYNC [period:s] = 54.95 [μ s], it is assumed that HDMA transfer occurs once during LHSYNC [period:s].

Since SDRAM is auto-refreshed once or less in 5.47 [μ s]: t_{STOP} (ARDMA) = 2 / f_{SYS} [Hz] = 33.33 [ns]

The time LDMA, ARDMA, and HDMA all occupy the bus is defined as: tstop (LDMA·ARDMA·HDMA)

Based on the above, the CPU bus stop rate is calculated as follows:

CPU bus stop rate = tSTOP (LDMA·ARDMA·HDMA) [s] / LHSYNC [period:s]

= (5.47 [μs] + 33.33 [ns] + 29.9 [μs]) / 54.95 [μs] = 64.42 [%]

Note: To be precise, the bus assert time and RAM access time are added each time the HDMA transfer time is forcefully terminated at 29.9 [µs].

3.7 Function of ports

The TMP92CF26A I/O port pins are shown in Table 3.7.1. In addition to functioning as general-purpose I/O ports, these pins are also used by the internal CPU and I/O functions. Table 3.7.2 lists the I/O registers and their specifications.

Table 3.7.1 Port Functions (1/3) (R: PD= with programmable pull-down resistor, U= with pull-up resistor)

Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for built-in function
Port 1	P10 to P17	8	I/O	_	bit	D8 to D15
Port 4	P40 to P47	8	Output	_	(Fixed)	A0 to A7
Port 5	P50 to P57	8	Output	_	(Fixed)	A8 to A15
Port 6	P60 to P67	8	I/O	_	bit C	A16 to A23
Port 7	P70	1	Output	_	(Fixed)	RD
	P71	1	I/O	_	bit	WRLL,NDRE
	P72	1	I/O	_	bit	WRLU, NDWE
	P73	1	I/O	- ,	bit	EA24
	P74	1	I/O	-((7/bit	EA25
	P75	1	I/O	_ \	bit	R/W, NDR/B
	P76	1	I/O		bit	WAIT
Port 8	P80	1	Output		(Fixed)	CSO CSO
	P81	1	Output		(Fixed)	CS1, SDCS
	P82	1	Output	\ <u></u>	(Fixed)	CS2, CSZA
	P83	1 _	Output	\ _	(Fixed)	CS3, CSXA
	P84	1 📈	Output	_	(Fixed)	CSZB
	P85	1	Output	- /	(Fixed)	CSZC
	P86	1	Output	-	(Fixed)	CSZD, ND0CE
	P87	(1)	Output	_	(Fixed)	CSXB, ND1CE
Port 9	P90 /	\bigcirc	I/O		bit	TXD0
	P91	(1)	I/O	_	bit	RXD0
	P92		I/O	1-1	bit	SCLK0, CTSO
	P96 (7/		Input	PD	(Fixed)	INT4, PX
/	P97	// 1	Input	/ ><	(Fixed)	PY
Port A	PA0 to PA7	8 🔨	Input)ù	(Fixed)	KI0 to KI7
Port C	PC0	1) <u> </u>	bit	INT0
	PC1	1	7/0	_	bit	INT1, TAOIN
	PC2	1	I/O	_	bit	INT2
\sim	PC3	1	<i>)</i> /0	-	bit	INT3, TA2IN
	PC4		I/O	_	bit	EA26
	PC5	d(1	I/O	-	bit	EA27
	PC6		I/O	_	bit	EA28
	PC7>	1	I/O	_	bit	KO8
Port F	PF0	<i>J)</i> 1	I/O	_	bit	I2S0CKO
	PF1	1	I/O	-	bit	12S0DO
	PF2	1	I/O	-	bit	12S0WS
*	PF3	1	I/O	_	bit	I2S1CKO
	PF4	1	I/O	-	bit	I2S1DO
	PF5	1	I/O	_	bit	I2S1WS
	PF7	1	Output	_	(Fixed)	SDCLK
Port G	PG0 to PG1	2	Input		(Fixed)	AN0 to AN1
	PG2	1	Input	-	(Fixed)	AN2, MX
	PG3	1	Input		(Fixed)	AN3, ADTRG, MY
	PG4 to PG5	2	Input		(Fixed)	AN4 to AN5

Table 3.7.1 Port Functions (2/3)

Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for built-in function
Port J	PJ0	1	Output	_	(Fixed)	SDRAS, SRLLB
	PJ1	1	Output	-	(Fixed)	SDCAS, SRLUB
	PJ2	1	Output	_	(Fixed)	SDWE, SRWR
	PJ3	1	Output	_	(Fixed)	SDLLDQM
	PJ4	1	Output	_	(Fixed)	SDLUDQM
	PJ5	1	I/O	_	bit	NDALE
	PJ6	1	I/O	-	(bit \	NDCLE
	PJ7	1	Output	_	(Fixed)	SDCKE
Port K	PK0	1	Output	_	(Fixed)	LCP0
	PK1	1	Output	-	(Fixed)	LLOAD
	PK2	1	Output	-	(Fixed)	LFR
	PK3	1	Output	_	(Fixed)	LVSYNC
	PK4	1	Output	- ((Fixed)	LHSYNC
	PK5	1	Output	_(((Fixed)	LGOE0
	PK6	1	Output		(Fixed)	LGOE1
	PK7	1	Output		(Fixed)	LGOE2
Port L	PL0 to PL7	8	Output		(Fixed)	LD0 to LD7
Port M	PM1	1	Output		(Fixed)	MLDALM, TA1OUT
	PM2	1	Output	\searrow	(Fixed)	ALARM, MLDALM
	PM7	1 (Output	> _	(Fixed)	PWE
Port N	PN0 to PN7	8 🗸 (1/0	_	bit	KO0 to KO7
Port P	PP1	1	1/0	/	bit	TA3OUT
	PP2		1/0	_	bit	TA5OUT
	PP3) I/O	_	bit	INT5, TA7OUT
	PP4	7 7	I/O		bit	INT6, TB0IN0
	PP5	1)	I/O	~	bit	INT7, TB1IN0
	PP6		Output	1	(Fixed)	TB0OUT0
	PP7 (7/4	1	Output	16	(Fixed)	TB1OUT0
Port R	PR0	1	1/0	> .=	bit	SPDI
T OILIK	PR1	1<	1/0/	Ω	bit	SPDO
	PR2	1	1/0	<u> </u>	bit	SPCS
	PR3	1	7/0	_	bit	SPCLK
Port T	PT0 to PT7	8	I/O	_	bit	LD8 to LD15
Port U	PU0 to PU4	6	1/0	_	bit	LD16 to LD20 , LD22
	PU5	1	I/O	_	bit	LD21
(())	PU7	1	I/O	_	bit	LD23, EO_TRGOUT
Port V	PV0	1	I/O	_	bit	SCLK0
	RV1)) ₁	I/O	_	bit	_
	PV2	1	I/O	_	bit	_
	PV3	1	Output	_	(Fixed)	_
~	PV4	1	Output	_	(Fixed)	_
	PV6	1	I/O	_	bit	SDA
	PV7	1	I/O	_	bit	SCL
Port W	PW0 to PW7	8	I/O	_	bit	_
Port X	PX4	1	Output	_	(Fixed)	CLKOUT, LDIV
	1 // 7					·
	PX5	1	I/O		bit	X1USB

Table 3.7.1 Port Functions (3/3)

Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for built-in function
Port Z	PZ0	1	I/O	-	bit	EI_PODDATA
	PZ1	1	I/O	-	bit	EI_SYNCLK
	PZ2	1	I/O	-	bit	EI_PODREQ
	PZ3	1	I/O	-	bit	EI_REFCLK
	PZ4	1	I/O	-	bit	EI_TRGIN
	PZ5	1	I/O	-	bit	EI_COMRESET
	PZ6	1	I/O	-	(bit. (EO_MCUDATA
	PZ7	1	I/O	-	bit	EO_MCUREQ

Table 3.7.2 I/O Port and Specifications (1/4)

X: Don't care

Port	Pin name	Specification		I/O re	gister	
FUIT	Fill flame	Specification	Pn	PnCR	PnFC	PnFC2
Port 1	P10 toP17	Input port	Х	0	0	
		Output port	Х	Û	U	None
		D8 to D15 bus	Х	x	1	
Port 4	P40 to P47	Output port	Х	None	0	None
		A0 to A7 Output	X	None	\mathcal{I}	None
Port 5	P50 to P57	Output port	X	None	0	None
		A8 to A15 Output	X	None	1	None
Port 6	P60 to P67	Input port	X	0	0	
		Output port	X) [U	None
		A16 to A23 Output	X	\mathcal{I} x	1 _	
Port 7	P70 to P76	Output port	X	1	0	
	P71 to P76	Input port	X	0	0	
	P70	RD Output	X	None	7	
	P71	WRLL Output)) 1	\Diamond_1	(\bigcirc)	
		NDRE Output	0	*1	71/	//
	P72	WRLU Output	1			Nana
		NDWE Output	0	(1/		None
	P73	EA24 Output	Х		/ 1	
	P74	EA25 Output	X(774	1	
	P75	R/W Output	$x \vee x$	()1)	1	
		NDR/B Input	X	0	1	
	P76	WAIT Input	x \	0	1	
Port 8	P80 to P87	Output port	\ x//		0	0
	P80	CSO Output	X/		1	None
	P81	CS1 Output	X		1	0
		SDCs Output	Х		Х	1
	P82	CS2 Output	Х		1	0
		CSZA Output	Х		0	1
		SDCS Output	Х		1	1
	P83	CS3 Output	Х	None	1	0
		CSXA Output	Х		Х	1
	P84	CSZBOutput	Х	1	1	
	P85	CSZCOutput	Х	1	1	None
	P86	CSZD Output	Х	1	1	0
4		NDOCE Output	Х	1	1	1
	P87	CSXB Output	Х	1	1	0
/ ((ND1CE Output	X	1	1	1
1 1 1		וזטוטר למיולמיי	^		1	

Table3.7.2 I I/O Port and Specifications (2/4)

X: Don't care

Dort	Din nama	Charification		I/O re	gister		
Port	Pin name	Specification	Pn	PnCR	PnFC	PnFC2	
Port 9	P90, P92	Input port	Х	0	0	None	
	P91	Input port, RXD0 Input	Х	0	None	None	
	P96	Input port	Х	None	0	None	
	P97	Input port	Х	None	None	None	
	P90 to P92	Output port	Х	_1	0	0	
	P90	TXD0 Output	X	(7)	1	0	
		TXD0 Output (Open-drain)	X	(1)	1	1	
	P92	SCLK0 Output	X)	1	0	
		SCLK0, CTS0 Input	(x	100	0	0	
	P96	INT4 Input	X	None	1 _	None	
Port A	PA0 to PA7	Input port	X	Nissa	0		
		KI0 to KI7 Input	X	None	A	None	
Port C	PC0 to PC7	Input port	X	0	140		
		Output port)) x	⊘ 1 (\bigcirc		
	PC0	INTO Input	X	0<	4/	//	
	PC1	INT1 Input	Χ	0	10^{-1}		
		TA0IN Input	Χ	(1/>	1		
	PC2	INT2 Input	X	0,	/ 1	None	
	PC3	INT3 Input	X(7/0	1	None	
		TA2IN Input	$x \setminus x$	()1)	1		
	PC4	EA26 Output	X	0	1		
	PC5	EA27 Output	x\\	0	1		
	PC6	EA28 Output	x//	0	1		
	PC7	KO8 Output (Open-drain)	X/	1	1		
Port F	PF0 to PF5	Input/port	X	0	0		
	PF0 to PF5	Output port	X	1	0		
	PF7	Output port	Χ	None	0		
	PF0	I2S0CKO Output	Χ	X	1		
	PF1	12S0DO Output	Χ	X	1	Nicos	
	PF2	I2S0WS Output	Х	Х	1	None	
	PF3	I2S1CKO Output	1	Х	1		
	PF4	I2S1DO Output	Х	Х	1		
A.	PF5	I2S1WS Output	Х	Х	1		
	PF7	SDCLK Output	Х	None	1		

Table3.7.2 I/O Port and Specifications (3/4)

X: Don't care

	145160.7.2	I/O Port and Specifications (3/4)	X: Don't care				
Port	Pin name	Specification		I/O re	gister		
FUIT	i iii iiaiile	Ореспісаціон	Pn	PnCR	PnFC	PnFC2	
Port G	PG0 to PG5	Input port			0		
		AN0 to AN5 Input					
	PG3	ADTRG Input	Х	None	1	None	
	PG2	MX Output Note:			0		
	PG3	MY Output Note:) y		
Port J	PJ5 to PJ6	Input port	Х	0	0		
	PJ5 to PJ6	Output port	⟨X	(V/1))	0		
	PJ0 to PJ4, PJ7	Output port	X	None	0		
	PJ0	SDRAS, SRLLB Output	_ X) ۲	1		
	PJ1	SDCAS, SRLUB Output	X		1		
	PJ2	SDWE, SRWR Output	X	None	7	None	
	PJ3	SDLLDQM Output	×	140110	21		
			^ ~	/		\supset	
	PJ4	SDLUDQM Output) x x	\Diamond	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5)	
	PJ5	NDALE Output		1	4	//	
	PJ6	NDCLE Output	X	(m)			
	PJ7	SDCKE Output	X	None	1		
Port K	PK0 to PK7	Output port	X) 0		
	PK0	LCP0 output	X	77/	1		
	PK1	LLOAD output	X\V	$(\))$	1		
	PK2	LFR output	X		1		
	PK3	LVSYNC output	X	None	1	None	
	PK4	LHSYNC output	x))		1		
	PK5	LGOE0 output	X		1		
	PK6	LGOE1 output	X		1		
	PK7	LGOE2 output	X		1		
Port L	PL0 to PL7	Output port	Х	None	0	None	
	PL0 to PL7	LD0 to LD7 Output	Х	None	1	None	
Port M	PM1 to PM2	Output port	Х		0		
	PM1/	TA10UTOutput	0		1		
		MLDALM Output	1		1		
	PM2	MLDALM Output	0	None	1	None	
		ALARM Output	1		1		
	PM7	PWE Output	Х		1		
Port N	PN0 to PN7	Input port	X	0	0		
		Output port (CMOS Output)	X		0	None	
_ ((KO Output (Open-drain Output)	X	1	1		
Port P	PP1 to PP5	Input port	X	0	0		
IONE	PP1 to PP5	Output port	X	1	0		
	PP6 to PP7			None			
	PP6 to PP7	Output port	X		0		
		TASOUT output		1	1		
	PP2	TA5OUT output	X	1	1		
	PP3	INT5 input	X	0	1	None	
	DD4	TA7OUT output	X	1		None	
	PP4	INT6 input	X	0	1		
	DDC	TB0IN0 input	X	1			
	PP5	INT7 input	X	0	1		
		TB1IN0 input	X	1			
	PP6	TB0OUT0 output	X	None	1		
	PP7	TB1OUT1 output	Χ		1		

Note: Case of using touch screen

Table 3.7.2 I/O Port and Specifications (4/4)

X: Don't care

_		and openioalistic (1, 1)		I/O re	gister	
Port	Pin name	Specification	Pn	PnCR	PnFC	PnFC2
Port R	PR0 to PR3	Input port	Х	0	0	
	PR0 to PR3	Output port	Х	1	0	
	PR0	SPDI Input	Х	0	1	
	PR1	SPDO Output	Х	1((1	None
	PR2	SPCS Output	Х	_1	$\cup j$	
	PR3	SPCLK Output	X	(7V \)	1	
Port T	PT0 to PT7	Input port	X	(40)	0	
	PT0 toPT7	Output port	X	1	0	None
	PT0 to PT7	LD8 to LD15 Output	X) M	1	
Port U	PU0 to PU7	Input port	X	0	0 _	
	PU0 to PU7	Output port	X	1	0(
	PU0 to PU7	LD16 to LD23 Output	X	1	7	None
	PU7	EO_TRGOUT (DBGE = "0") Note:	X	Х	X	\supset
Port V	PV0 to PV2	Input port)) x	♦0	\bigcirc	
	PV0 to PV4	Output port	Х	1	0	None
	PV6 to PV7	Input port	Х	0	0	
	PV6 to PV7	Output port	Х	(6/	0	0
	PV6 to PV7	Output port (Open-drain)	X	1/-	0	1
	PV0	SCLK0 Output	X(()	7//1	1	None
	PV6	SDA I/O	-x	<u></u>	1	0
		SDA I/O (Open-drain)	X	1	1	1
	PV7	SCL I/O	x	1	1	0
		SCL I/O (Open-drain)	\ x//	1	1	1
Port W	PW0 to PW7	Input port	×	0	0	None
	PW0 to PW7	Output port	Х	1	0	
Port X	PX5, PX7	Input port	Х	0	0	
	PX4	Output port	Х	None	0	
	PX5, PX7	Output port	Х	1	0	None
	PX4	CLKOUT Output	0	None	1	None
		LDtV Output	1	None	1	
	PX5	X1USB Input	Х	0	1	
Port Z	PZ0 to PZ7	Input port	Х	0	0	None
\wedge	\wedge	Output port	X	1	0	NONE
	PZ0	EI_PODDATA (DBGE = "0") Note:	Х	Х	Χ	
	PZ1	EI_SYNCLK (DBGE = "0") Note:	Х	Х	Х	None
_ ((PZ2	EI_PODREQ (DBGE = "0") Note:	Х	X	Χ	
	PZ3	EI_REFCLK (DBGE = "0") Note:	Х	X	Χ	
	PZ4	EI_TRGIN (DBGE = "0") Note:	Х	X	Χ	
	PZ5	ELCOMRESET (DBGE = "0") Note:	Х	X	Χ	
	PZ6	EO_MCUDATA (DBGE = "0") Note:	Х	X	Χ	
	PZ7	EO_MCUREQ (DBGE = "0") Note:	Х	Χ	Χ	

Note: When Debug mode, it is set to the Debug pin regardless of port setting.

3.7.1 Port 1 (P10 to P17)

Port1 is an 8-bit general-purpose I/O port. Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC.

In addition to functioning as a general-purpose I/O port, port1 can also function as a data bus (D8 to D15).

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 1 to the following function pins:

AM1	AM0	Function Setting after reset is released
0	0	Don't use this setting
0	1	Data bus (D8 to D15)
1	0	Don't use this setting
1	1	Input port (P10 to P17)

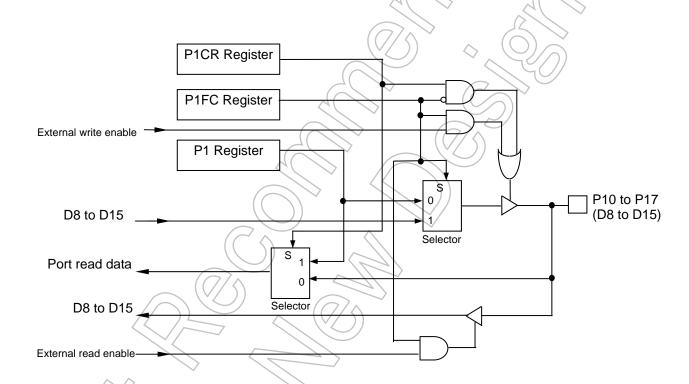


Figure 3.7.1 Port1

P1		Port 1 register										
Read/Write System Data from external port (Output latch register is cleared to "0")			7	6	5	4	3	2	1	0		
System Reset State	P1	bit Symbol	P17	P16	P15	P14	P13	P12	P11	P10		
Reset State	(0004H)			R/W								
State		Reset State		Data f	rom external	port (Outpu	t latch registe	er is cleared t	o "0")			
P1CR						-	_					
P1CR		Port 1 Control register										
(0006H) Read/Write System Reset State			7	6	5	4	3	2) 1	0		
System Reset State O O O O O O O O O	P1CR	bit Symbol	P17C	P16C	P15C	P14C	P13C	P12C) P11C	P10C		
Reset State	(0006H)					V	٧					
State		Reset State	0	0	0	0	0		0	0		
P1FC (0007H)			-	_	-	-	-	<u>-</u>	- (-		
P1FC (0007H) System Reset State (Note2) Hot Reset State Function P1FD P16D P15D P14D P13D P12D P11D P10D P10D		Function				0: Input	1: Output		11			
P1FC (0007H) System Reset State (Note2) Hot Reset State Function P1FD P16D P15D P14D P13D P12D P11D P10D P10D					Port 1 Fu	unction re	gister	\supset	5			
Read/Write System Reset State (Note2) Hot Reset State State Function Port 1 Drive register Port 1 Drive regist			7	6	5	4	(3)	2 🔷		0		
System Reset State (Note2)	P1FC	bit Symbol				4	M		1	//P1F		
Reset State (Note2)	(0007H)						7	\mathcal{A}		W		
Hot Reset State		Reset State							\gg	0/1		
P1DR (0081H)		Hot Reset			7			THE STATE OF THE S		-		
P1DR (0081H)		Function								1:Data bus		
P1DR (0081H) bit Symbol					Port 1	Drive regi	ster			· · · · · · · · · · · · · · · · · · ·		
(0081H) Read/Write System Reset State 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7	6	5	4	3	2	1	0		
System Reset State 1 2 2 2	P1DR	bit Symbol	P17D	P16D	P15D	P14D	R13D	P12D	P11D	P10D		
Reset State	(0081H)	Read/Write				R	W					
State //		System Reset State	1	$(\bigcirc/\bigcirc$	1	1	1	1	1	1		
Function Input/Output buffer drive register for standby mode					_	(7/1)	_	_	-			
		Function		7	Input/Output	buffer drive	register for s	tandby mode				

Note1: A read-modify-write operation cannot be performed for P1CR, P1FC.

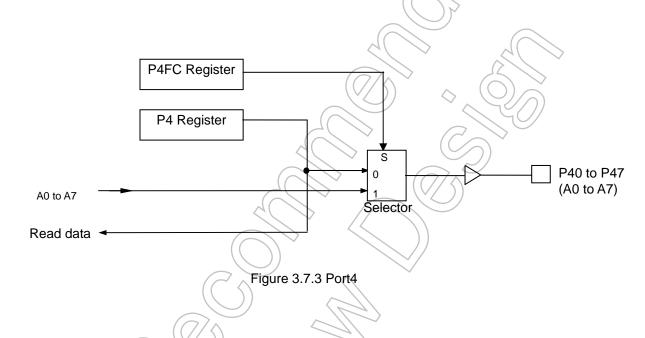

Note2: It is set to "Port" or "Data bus" by AM pins state.

Figure 3.7.2 Register for Port1

3.7.2 Port 4 (P40 to P47)

Port4 is an 8-bit general-purpose Output ports. In addition to functioning as a general-purpose Output port, port4 can also function as an address bus (A0 to A7). Each bit can be set individually for function. Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 4 to the following function pins:

AM1	AM0	Function Setting after reset is released
0	0	Don't use this setting
0	1	Address bus (A0 to A7)
1	0	Don't use this setting
1	1	Output port (P40 to 47)

Port 4 register

P4 (0010H)

	7	6	5	4	3	2	1	0		
bit Symbol	P47	P46	P45	P44	P43	P42	P41	P40		
Read/Write		R/W								
System Reset State	0	0	0	0	0	0 <	0	0		
Hot Reset State	_	_	_	_	_	_		_		

Port 4 Function register

P4FC (0013H)

			1 011 7 1	unction re	giotoi				
	7	6	5	4	3	2	>_1	0	
bit Symbol	P47F	P46F	P45F	P44F	P43F	P42F) P41F	P40F	
Read/Write		_		V	V	7//			
System Reset State (Note2)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
Hot Reset State	_	_	-	-	4	\	- 🗸(
Function		0:Port 1:Address bus (A0 to A7)							

Port 4 Drive register

P4DR (0084H)

			1 011 7	Dilve regi	3(Çi /)			
	7	6	5	4	3	2	17	<i>/)/</i> o
bit Symbol	P47D	P46D	P45D	P44D	P43D	P42D	P41D	P40D
Read/Write				R	W	((
System Reset State	1	1	1 /	1	1		\mathcal{O}_1	1
Hot Reset State	_	-	- (-		-	_
Function			Input/Output	buffer drive	register for s	tandby mode)	

Note1: A read-modify-write operation cannot be performed for P4FC.

Note2: It is set to "Port" or "Data bus" by AM pins state.

Figure 3.7.4 Register for Port1r

3.7.3 Port 5 (P50 to P57)

Port5 is an 8-bit general-purpose Output ports. In addition to functioning as a general-purpose I/O port, port5 can also function as an address bus (A8 to A15). Each bit can be set individually for function. Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 5 to the following function pins:

AM1	AM0	Function Setting after reset is released
0	0	Don't use this setting
0	1	Address bus (A8 ~ A15)
1	0	Don't use this setting
1	1	Output port (P50 ~ P57)

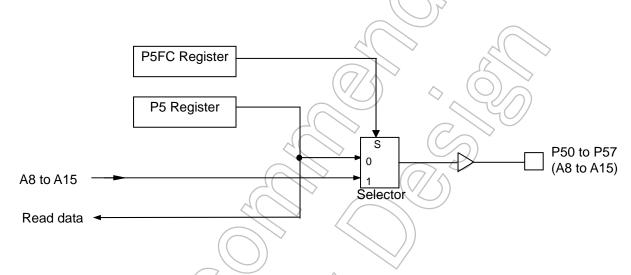


Figure 3.7.5 Port5

Port 5 register

P5 (0014H)

	7	6	5	4	3	2	1	0			
bit Symbol	P57	P56	P55	P54	P53	P52	P51	P50			
Read/Write		R/W									
System Reset State	0	0	0	0	0	0 <	0	0			
Hot Reset State	_	_	_	_	_	-		_			

Port 5 Function register

P5FC (0017H)

				ariotion ro	9.010.				
	7	6	5	4	3	2	1	0	
bit Symbol	P57F	P56F	P55F	P54F	P53F	P52F) P51F	P50F	
Read/Write				٧	٧	7//			
System Reset State (Note2)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1	
Hot Reset State	_	-	-	-	4	\	- \(
Function		0:Port 1:Address bus (A8 to A15)							

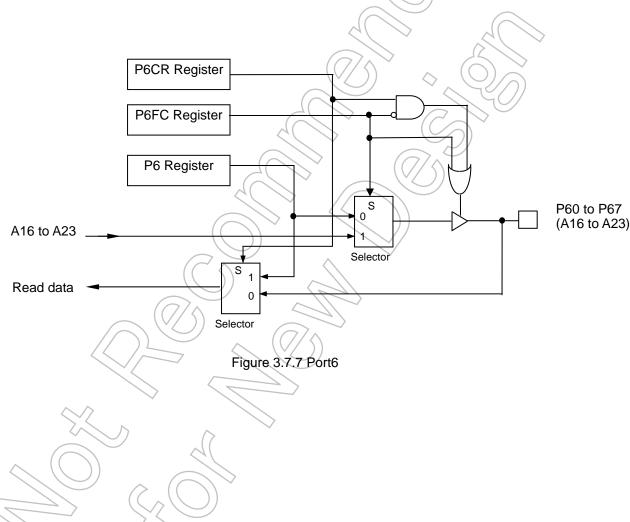
Port 5 Drive register

P5DR (0085H)

			. 0	Dilive regi	4.6./			
	7	6	5	4	3	2	17	<i>/)/</i> o
bit Symbol	P57D	P56D	P55D	P54D	P53D	P52D	P51D	P50D
Read/Write				R	W	((
System Reset State	1	1	1 /	1	1		\mathcal{O}_1	1
Hot Reset State	_	-	- (-		_	-
Function			Input/Output	buffer drive	register for s	tandby mode)	

Note1: A read-modify-write operation cannot be performed for P5FC.

Note2: It is set to "Port" or "Data bus" by AM pins state.


Figure 3.7.6 Register for Port5

3.7.4 Port 6 (P60 to P67)

Port6 is an 8-bit general-purpose I/O ports. Bits can be individually set as either inputs or outputs and function by control register P6CR and function register P6FC.

In addition to functioning as a general-purpose I/O port, port6 can also function as an address bus (A16 to A23). Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 6 to the following function pins:

AM1	AM0	Function Setting after reset is released
0	0	Don't use this setting
0	1	Address bus(A16 ~ A23)
1	0	Don't use this setting
1	1	Input port(P60 ~ P67)

Port 6 register

P6 (0018H)

	7	6	5	4	3	2	1	0	
bit Symbol	P67	P67 P66 P65 P64 P63 P62 P61							
Read/Write		R/W							
System Reset State		Data from external port (Output latch register is cleared to "0")							
Hot Reset State				-	_				

Port 6 Control register

P6CR (001AH)

			1 011 0	orna or rog				
	7	6	5	4	3	2) <u></u>	0
bit Symbol	P67C	P66C	P65C	P64C	P63C	P62C) P61C	P60C
Read/Write				V	V	7//		
System Reset State	0	0	0	0	0	(0)	0	0
Hot Reset State	-	-	-	-	-(<u> </u>	- (-
Function				0:Input	1:Output		11	

Port 6 Function register

P6FC (001BH)

			1 011 0 1	unction re	giştçi / /	*	$-\langle \circ \rangle$			
	7	6	5	4	(3)	2 🔷		0		
bit Symbol	P67F	P66F	P65F	P64F	P63F	P62F	P61F	/P60F		
Read/Write				V	v		7			
System Reset State (Note2)	0/1	0/1	0/1	0/1	0/1	0/1	20/1	0/1		
Hot Reset State	-	-	- 6		-(_	_		
Function		0: Port 1:Address bus (A16 to A23)								

Port 6 Drive buffer register

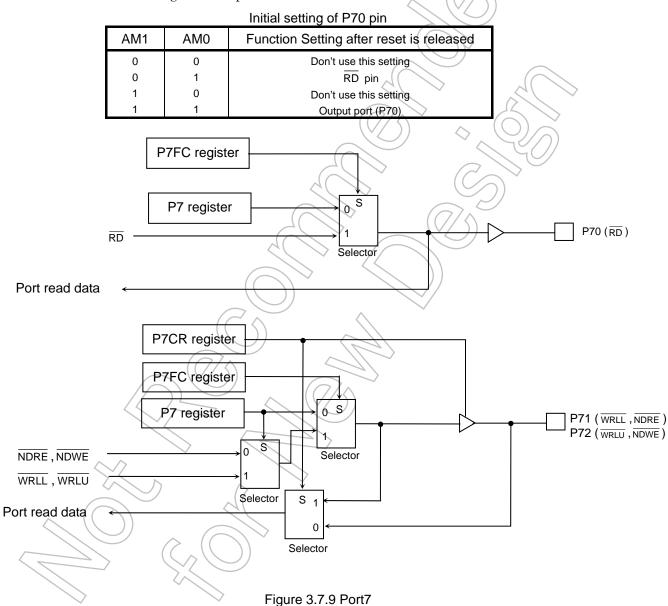
P6DR (0086H)

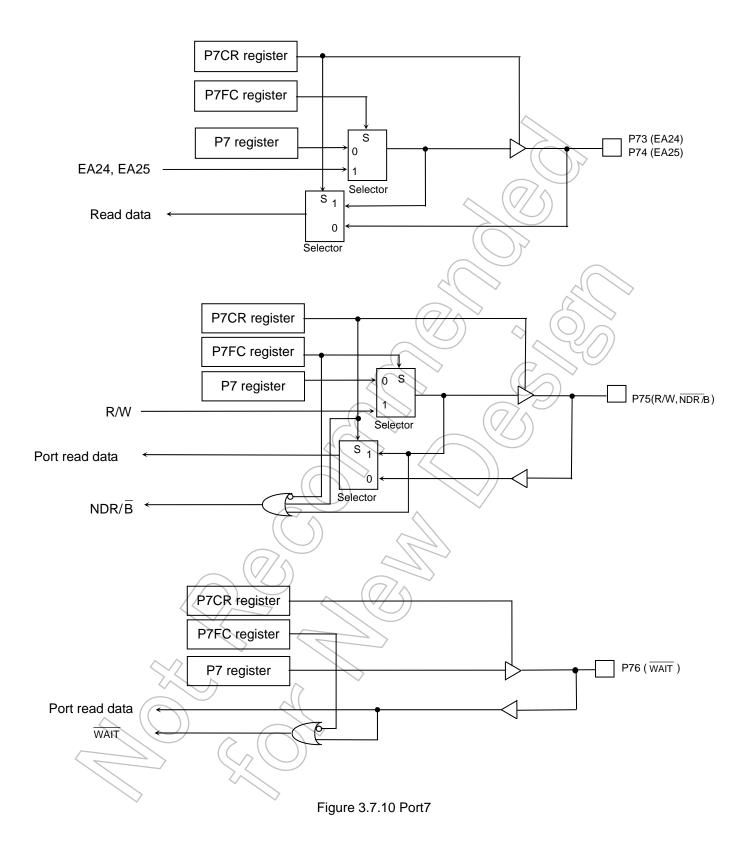
	7	6 (5)	4	3	//2	1	0
bit Symbol	P67D	P66D P65D	P64D	_ P63D	P62D	P61D	P60D
Read/Write	_		R	w	_		
System Reset State	1	1 1	1 5		1	1	1
Hot Reset State	_	((/ /) -		<u> </u>	_	-	-
Function		Input/Qutput	buffer drive	register for s	standby mode)	

Note1: A read-modify-write operation cannot be performed for P6CR, P6FC.

Note2: It is set to "Port" or "Data bus" by AM pins state.

Figure 3.7.8 Register for Port 6


3.7.5 Port 7 (P70 to P76)


Port7 is a 7-bit general-purpose I/O port (P70 is used for output only). Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, P70 to P76 pins can also function as interface-pins for external memory.

A reset initializes P70 pin to output port mode, and P71 to P76 pins to input port mode.

Setting the AM1 and AM0 pins as shown below and resetting the device initialize port 7 to the following function pins:

				Por	t 7 regi	ster				
		7	6	5	4	3		2	1	0
P7	bit Symbol		P76	P75	P74	P73		P72	P71	P70
(001CH)	Read/Write				1	R/W				
	System Reset State			external port h register is o "1")	Data from external port (Output latch register is cleared to "0")			ita from utput lat set	ort is 1	
	Hot Reset State		-	-		_		<	-	_
			•	Port 7 (Control	register	•			
		7	6	5	4	3		2	(\1)	7 0
P7CR	bit Symbol		P76C	P75C	P74C	P730	;	P72C	P71C	
(001EH)	Read/Write					W	\wedge		73)	
	System Reset State		0	0	0	0		0	0	
	Hot Reset State		-	-	-	_		<u>-)}</u>	_	
	Function				0: Inp	ut 1: Outpu	ıt			
				Port 7 F	unction	register		\supset		11
		7	6	5	4	3		2	1/2	0
P7FC	bit Symbol		P76F	P75F	P74F	. ((P73F	Ω	P72F	P71F	P70F
(001FH)	Read/Write					W	<u>// </u>		7	<u>///)</u>
	System Reset State		0	0	0	9		0	0	0/1 Note3:
	Hot Reset State		_	_	4	> -		-((\bigcirc	-
	Function		0:Port 1: WAIT			ving table	1; at <u><p< u=""> ₩R</p<></u>	ort NDWE 72>=0 RLU at 72>=1	0:Port 1: NDRE at <p71>=0 WRLL at <p71>=1</p71></p71>)
					Drive r			/	1 4	
		7	6	5	4	3		2	1	0
P7DR	bit Symbol	_	P76D	P75D	P740) P73E)	P72D	P71D	P70D
(0087H)	Read/Write System	$\overline{}$		<i>))</i>	1	R/W			1	
	Reset State		(A)	1	1	4>		1	1	1
	Hot Reset State			-				_	_	-
	Function	//)		(Input/0	Output bu	uffer drive re	gister fo	r standb	y mode	
P73 set	ting	///	P72 se	etting			P71 s	etting		
<p73f></p73f>	3C> 0	1	<p72f< td=""><td>72C> 0</td><td></td><td>1</td><td><p71i< td=""><td>P71C></td><td>0</td><td>1</td></p71i<></td></p72f<>	72C> 0		1	<p71i< td=""><td>P71C></td><td>0</td><td>1</td></p71i<>	P71C>	0	1
0	Input Port	Output Por	t 0	Input F	Port O	utput Port		0	Input Port	Output Port
1	Reserved	EA24Outpu	1 1	Reser	(at -	WE Output <p72>=0) CLU Output t <p72>=1)</p72></p72>		1	Reserved	NDRE Output (at <p71>=0) WRLL Output (at <p71>=1)</p71></p71>
P76 se	tting))	P75 se	etting			P74 s	ettina		
	'6C> 0	1 (275C> 0		1		<p74c></p74c>	0	1
<p76f></p76f>		((<p75f:< td=""><td>} </td><td></td><td></td><td><p74f< td=""><td>, 0</td><td></td><td></td></p74f<></td></p75f:<>	} 			<p74f< td=""><td>, 0</td><td></td><td></td></p74f<>	, 0		
1	Input Port WAIT Input	Output Po	nt'	Input		Output Port			Input Port	Output Port
	T VVAI INDUI	Reserved		NDR/B	IIIDULI K	/W Output		1	Reserved	EA25Output

Note1: A read-modify-write operation cannot be performed for P7CR, P7FC.

Note2: When $\overline{\text{NDRE}}$ and $\overline{\text{NDWE}}$ are used, set registers in the following order to avoid outputting a negative glitch.

Order	Registser	bit2	bit1
(1) (2) (3)	P7 P7FC P7CR	0 1 1	0 1 1

Note3: It is set to "Port" or "Data bus" by AM pins state.

Figure 3.7.11 Register for Port 7

3.7.6 Port 8 (P80 to P87)

Ports 80 to 87 are 8-bit output ports. Resetting sets the output latch of P82 to "0" and the output latches of P80 to P81, P83 to P87 to "1". But if it is started at boot mode (AM [1:0]= "11"), output latch of P82 is set to "1".

Port 8 can also be set to function as an interface pin for external memory using function register P8FC.

Writing "1" in the corresponding bit of P8FC and P8FC2 enables the respective functions.

Resetting P8FC to "0" and P8FC2 to "0", sets all bits to output ports.

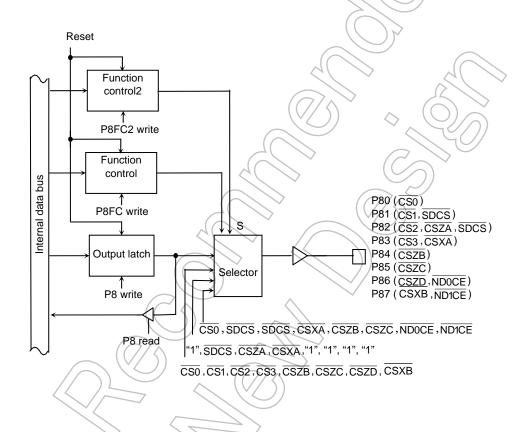


Figure 3.7.12 Port 8

				Por	t 8 registe	r								
		7	6	5	4	3	2	1	0					
P8	bit Symbol	P87	P86	P85	P84	P83	P82	P81	P80					
(0020H)	Read/Write				R/	W								
	System Reset State	1	1	1	1	1	0 (Note3)	1	1					
	Hot Reset State	_	_	_	-	_	- <	-	-					
		Port 8 Function register												
		7	6	5	4	3	2	(1)>	0					
P8FC	bit Symbol	P87F	P86F	P85F	P84F	P83F	P82F	P81F	P80F					
(0023H)	Read/Write	1 071	1 001	1 001		N /	((7)	/ /	1 001					
(,	System Reset State	0	0	0	0	0	Q	90	0					
	Hot Reset State	-	-	-	-	-	((-))	_	-					
	Function	0: Port 1: <p87f2></p87f2>	0: Port 1: <p86f2></p86f2>	0: Port 1: CSZC	0: Port 1: CSZB	Refer to fol	lowing table	0: Port 1: CS1	0: Port 1: CS0					
					nction regi	sters 2		741						
		7	6	5	4	(3)	2	15	>0					
P8FC2	bit Symbol	P87F2	P86F2			P83F2	P82F2	P81F2						
(0021H)	Read/Write		N		4		W	17	////					
	System Reset State	0	0		7	0	0 (0						
	Hot Reset State	_	_		4	_		(2)						
	Function	0: CSXB	0: CSZD			Refer to fo	llowing table	0: <p81f></p81f>						
		1: NDICE	1: NDOCE	DO (O				1: SDCS						
					Drive regi		1//0							
		7	6	5	\rightarrow 4	3) 2	1	0					
P8DR	bit Symbol	P87D	P86D	P85D	P84D	P83D	/P82D	P81D	P80D					
(H8800)	Read/Write System			7	R/	W	<u> </u>							
	Reset State	1	1 (()1	1 ~	1	1	1	1					
	Hot Reset State	-		<u> </u>			-	-	_					
	Function		((/ /))	Input/Output	buffer drive	register for s	standby mode	e						
P86 settii	ng		P83 se	etting /	(7/1)	F	P82 setting							
<p86f2></p86f2>	286F> 0	1/		P83F>		1	<p82f></p82f>	0	1					
0	Output p	CSZD			tput C	CS3	0	Output port	CS2 Output					
- 0		Output		P		utput		CSZA	SDCS					
1	Don't setting			^	CSXA Outpo	ut	1	Output	Output					
P87 settir		\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>												
	87F> 0)) 1												
_ 0	Output p	ort CSXB O	utput)) ~										
15	Don't set			//										
		read-modify		on cannot he	nerformed f	or P8FC and	1 P8FC2							

Note1: A read-modify-write operation cannot be performed for P8FC and P8FC2.

Note2: Do not write "1" to P8<P82> register before setting P82-pin to $\overline{\text{CS2}}$ or $\overline{\text{CSZA}}$ because, on reset, P82-pin outputs "0" as $\overline{\text{CE}}$ for program memory.

Note3: If it is started at boot mode (AM [1:0] = "11"), output latch of P82 is set to "1".

Note4: When $\overline{\text{NDOCE}}$ and $\overline{\text{ND1CE}}$ are used, set registers by following order.

Order	Registser	bit2	bit1	
(1)	P8	1	1	
(2)	P8FC2	1	1	
(3)	P8FC	1	1	

Figure 3.7.13 Register for Port 8

3.7.7 Port 9 (P90 to P92, P96, P97)

P90 to P92 are 3-bit general-purpose I/O port. I/O can be set on a bit basis using the control register. Each bit can be set individually for input or output. Resetting sets P90 to P92 to input port and all bits of output latch to "1".

P96 to P97 are 2-bit general-purpose input port.

Writing "1" the corresponding bits of P9FC enables the respective functions.

Resetting resets the P9FC to "0", and sets all bits to input ports.

(1) Port 90 (TXD0), Port 91 (RXD0), Port 92 (SCLK0, CTS0)

Ports 90 to 92 are general-purpose I/O port. They also function as either SIO0. Each pin is detailed below.

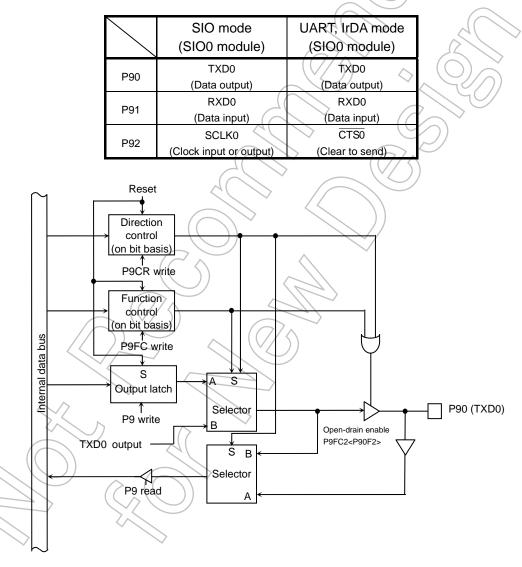


Figure 3.7.14 P90

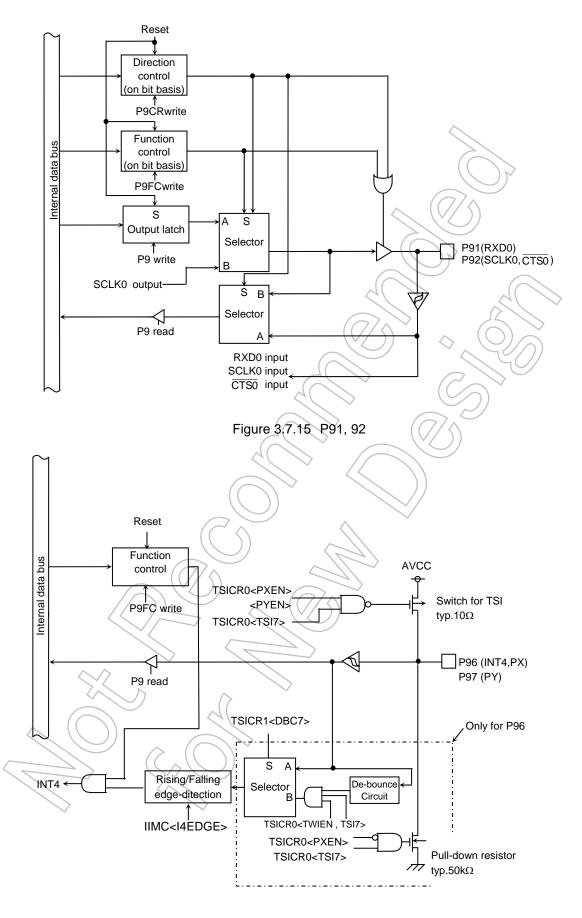


Figure 3.7.16 Port 96,97

				Por	t 9 registe	r				
		7	6	5	4	3	2	1	0	
P9	bit Symbol	P97	P96				P92	P91	P90	
(0024H)	Read/Write	R						R/W		
	System	Data from						om external p		
	Reset State Hot Reset	ро	rt		$\overline{}$		latch register is set to "1")			
	State	=					<	-		
				Port 9 c	control reg	ister				
		7	6	5	4	3	2	((1))	0	
P9CR	bit Symbol						P92C	P91C	P90C	
0026H)	Read/Write					/		/ () w		
	System Reset State						0	0	0	
	Hot Reset							>		
	State						(-)	_	_	
	Function						Ref	er to followin	g table	
				Port 9 fu	unction reg	gister	\rightarrow	N		
		7	6	5	4	3	> 2	12)	0	
P9FC	bit Symbol		P96F				P92F	70	P90F	
(0027H)	Read/Write		W			X	w	7	(/)/w	
	System Reset State		0		\mathcal{M}		0		0	
	Hot Reset		_				((
	State					\vee	- (-	
	Function		0: Input	(Refer to following		Refer to following	
			port 1: INT4	C			table)]	table	
			1. 11114	Port 0 Eur	action rogi	otoro 2				
		7	6	Port 9 Fur	4	3	2	1	0	
D0E00	hit O and al			+		3	\			
P9FC2 (0025H)	bit Symbol Read/Write						W		P90F2 W	
(002311)	System									
	Reset State	0	1		W.		0		0	
	Hot Reset State	-	772				_		_	
	Function	Always	$(\vee \langle \rangle)$			\rightarrow	Always		0:CMOS	
		write "0"		^	$((// \land)$		write "0"		1:Open-drain	
				Port 9	drive regis	ster		•	•	
		7	6	5	4,	3	2	1	0	
P9DR	bit Symbol	P97D	P96D				P92D	P91D	P90D	
(0089H)	Read/Write	7	W					R/W		
	System		1 (1	1	1	
	Reset State Hot Reset		. <				•	<u>'</u>		
	State)) -					=	=	=	
	Function	/ /	> (C	Input/Output	buffer drive	register for s	tandby mod	de		
P92 settii	ng		1	91 setting		P90	setting			
₽ 92F	·C2> 0			<f< td=""><td>91C></td><td></td><td><p90c></p90c></td><td>0</td><td>1</td></f<>	91C>		<p90c></p90c>	0	1	
<p92f></p92f>				0	1	<p90< td=""><td></td><td></td><td></td></p90<>				
0	Input po		ut port	Input port	Output p	ort L	0	Input port	Output port	
J	Input			RXD0 Input	Catput p		1	Don't setting	TXD0 Output	
1	Don't set		O Output	•	•			55ig	- a.put	

Note 1: A read-modify-write operation cannot be performed for P9CR, P9FC and P9FC2.

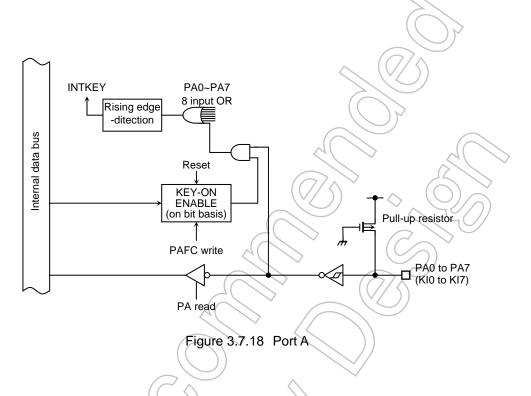
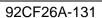

Note 2: When setting P96 pin to INT4 input, set P9DR<P96D> to "0" (prohibit input), and when driving P96 pin to "0", execute HALT instruction. This setting generates INT4 inside. If don't using external interrupt in HALT condition, set like an interrupt don't generated. (e.g. change port setting)

Figure 3.7.17 Register for Port 9


3.7.8 Port A (PA0 to PA7)

Ports A0 to A7 are 8-bit general-purpose input ports with pull-up resistor. In addition to functioning as general-purpose I/O ports, ports A0 to A7 can also, as a Keyboard interface, operate a Key-on wake-up function. The various functions can each be enabled by writing a "1" to the corresponding bit of the Port A Function Register (PAFC).

Resetting resets all bits of the register PAFC to "0" and sets all pins to be input port.

When PAFC = "1", if the input of any of KIO-KI7 pins falls down, an INTKEY interrupt is generated. An INTKEY interrupt can be used to release all HALT modes.

Port A register

PA (0028H)

. G. C. C. C. G.												
	7	6	5	4	3	2	1	0				
bit Symbol	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0				
Read/Write		R										
System Reset State		Data from external port										
Hot Reset State	-											

Port A Function register

PAFC (002BH)

	1 of 741 dilotion register												
	7	6	5	4	3 _	2(//	² \(\) 1	0					
bit Symbol	PA7F	PA6F	PA5F	PA4F	PA3F	PA2F	PA1F	PA0F					
Read/Write		W											
System Reset State	0	0	0	0	0		0	0					
Hot Reset State	_	_	-	-	~((((<u> </u>					
Function		0: KEY IN disable 1: KEY IN enable											

Port A Drive register

PADR (008AH)

	1 3117121113 139,14(3)												
	7	6	5	4	3	2	1-0	$\bigcirc)$ 0					
bit Symbol	PA7D	PA6D	PA5D	PA4D	PA3D	PA2D	PA1D	PA0D					
Read/Write		RW											
System Reset State	1	1	1	1	1	1	\mathcal{L}_1	1					
Hot Reset State	ı	ı	- ($(\sqrt{/})$	_	-					
Function		Input/Output buffer drive register for standby mode											

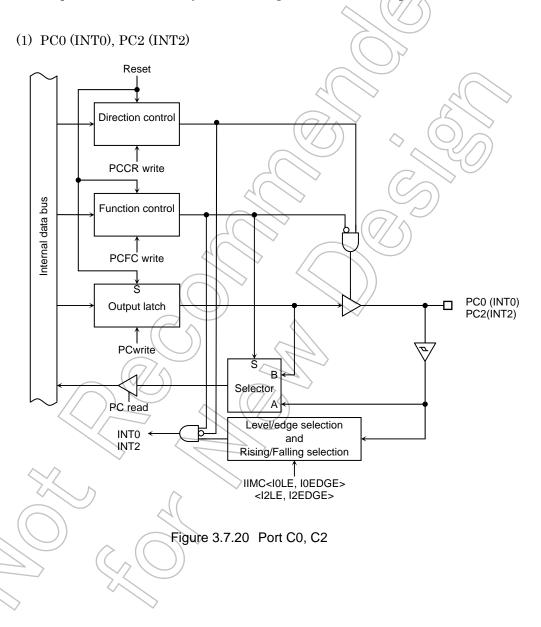

Note: A read-modify-write operation cannot be performed for PAFC.

Figure 3.7.19 Register for Port A

3.7.9 Port C (PC0 to PC7)

PC0 to PC7 are 8-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets Port C to an input port. It also sets all bits of the output latch register to "1".

In addition to functioning as a general-purpose I/O port, Port C can also function as an input pin for timers (TA0IN, TA2IN), input pin for external interruption (INT0 to INT3), Extension address function (EA26, EA27, EA28) and output pin for Key (KO8). These settings are mode using the function register PCFC. The edge select for external interruption is determined by the IIMC register in the interruption controller.

(2) PC1 (INT1, TA0IN), PC3 (INT3, TA2IN)

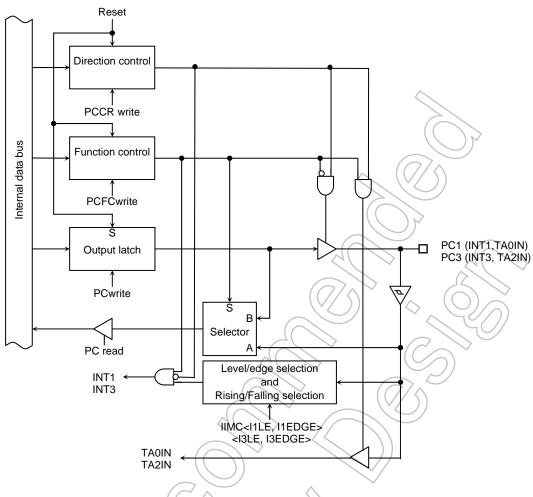
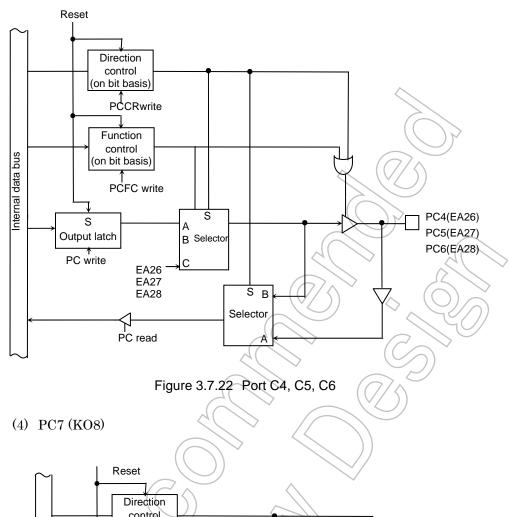



Figure 3.7.21 Port C1,C3

(3) PC4 (EA26), PC5 (EA27), PC6 (EA28)

Reset

PCCR write

PCFC write

PCFC write

PCFC write

PC read

PC read

PC read

PC Reset

PC read

PC7(KO8)

Open-drain enable

Figure 3.7.23 Port C7

				Por	t C registe	er				
		7	6	5	4	3	2	1	0	
PC	bit Symbol	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	
(0030H)	Read/Write				R	/W				
	System Reset State		Dat	a from exteri	nal port (Out	put latch re	egister is set	to "1")		
	Hot Reset State					_				
				Port C	control reg	gister				
		7	6	5	4	3	2	(1)	0	
PCCR	bit Symbol	PC7C	PC6C	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C	
(0032H)	Read/Write				\	N		())		
	System Reset State	0	0	0	0	0	0	0	0	
	Hot Reset State	-	-	_	_	- /		_	-	
	Function	•			0: Input	1: Output		•		
				Port C f	unction re	gister				
		7	6	5	4	(73)	2	(1)	0	
PCFC	bit Symbol	PC7F	PC6F	PC5F	PC4F	PC3F	PC2F	PC1F	PC0F	
(0033H)	Read/Write					W		116	10/	
	System Reset State	0	0	0	0	0	0 (0	0	
	Hot Reset State	-	_	-	<u></u>	_		<u> </u>	-	
	Function				Refer to fol	lowing tab	le (//	$\langle \rangle$		
				Port C	drive regi	ster				
		7	6	5	4	⟨⟨3	/2	1	0	
PCDR	bit Symbol	PC7D	PC6D	PC5D	PC4D	PC3D	PC2D	PC1D	PC0D	
(008CH)	Read/Write				R	R/W				
	System Reset State	1	1 ((<u>\</u> 1	1	1	1	1	1	
	Hot Reset State	_		<u> </u>	- ((2)	_	_	_	
	Function		(0/5)	I Input/Output	buffer drive	register fo	r for standby mode			
PC2 setting	g		PC1 set		(7/	1	PC0 setting			
PC2C:	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PC	1C> 0			PC0C>	0	1	
<pc2f></pc2f>	Input port	Output port	<pc1f></pc1f>	Input p	ort Outpu	ıt port	<pc0f></pc0f>	Input port	Output port	
1	INT2	Don't setting	1	TAI			1	INT0	Don't setting	
PC5 setting	>		PC4 sett	ing	\rightarrow		PC3 setting			
PC5C> <pc5f></pc5f>	0	1	<pc4f></pc4f>	4C> 0	,	1	PC3C> <pc3f></pc3f>	0	1	
0	Input port	Output port	0	Input p		ıt port	0	Input port	Output port	
1	EA27 output	Reserved	((1	EA26	Rese	erved	1	INT3	TA2IN input	
	Output		PC7 sett	7			PC6 setting			
		4	₽ C		1		PC6C>	0	1	
			<pc7f></pc7f>	Input p			<pc6f></pc6f>	Input port	Output port	
			1	Don' settin	t KO8ou	itput	1	EA28 output	Reserved	
				JUILII	a Lobert	aranı)		υσιραί		

Note 1: A read-modify-write operation cannot be performed for the registers PCCR, PCFC.

Note 2: When setting PC3-PC0 pins to INT3-INT0 input, set PCDR<PC3D: PC0D> to "0000"(prohibit input), and when driving PC3-PC0 pins to "0", execute HALT instruction. This setting generates INT3-INT0 inside. If don't use external interrupt in HALT condition, set like an interrupt don't generated. (e.g. change port setting)

Figure 3.7.24 Register for Port C

3.7.10 Port F (PF0 to PF5, PF7)

Ports F0 to F5 are 6-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets PF0 to PF5 to be input ports. It also sets all bits of the output latch register to "1". In addition to functioning as general-purpose I/O port pins, PF0 to PF5 can also function as the output for I²S0, I²S1. A pin can be enabled for I/O by writing a "1" to the corresponding bit of the Port F Function Register (PFFC).

Port F7 is a 1-bit general-purpose output port. In addition to functioning as general-purpose output port, PF7 can also function as the SDCLK output. Resetting sets PF7 to be an SDCLK output port.

(1) Port F0 (I2S0CKO), Port F1 (I2S0DO), Port F2 (I2S0WS), Port F3 (I2S1CKO), Port F4 (I2S1DO), Port F5 (I2S1WS)

Ports F0 to F5 are general-purpose I/O port. They also function as either I²S. Each pin is detailed below.

	l ² Smode (l ² S0 Module)
PF0	I2S0CKO (Clock output)
PF1	I2S0DO (Data output)
PF2	I2S0WS (Word-select output)

	l ² Smode (l ² S1 Module)
RF4	I2S1CKO (Clock output)
PF5	I2S1DO (Data output)
PF6	I2S1WS (Word-select output)
,	

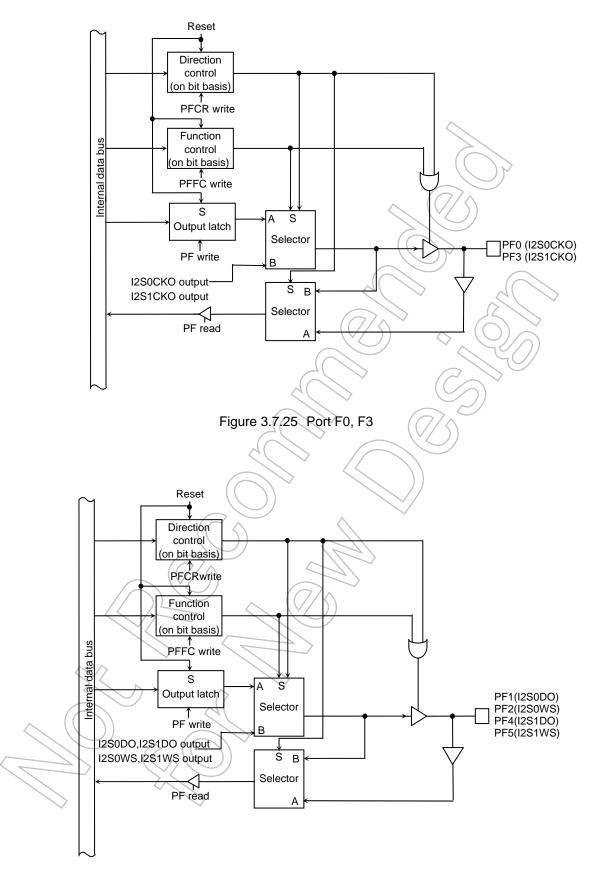
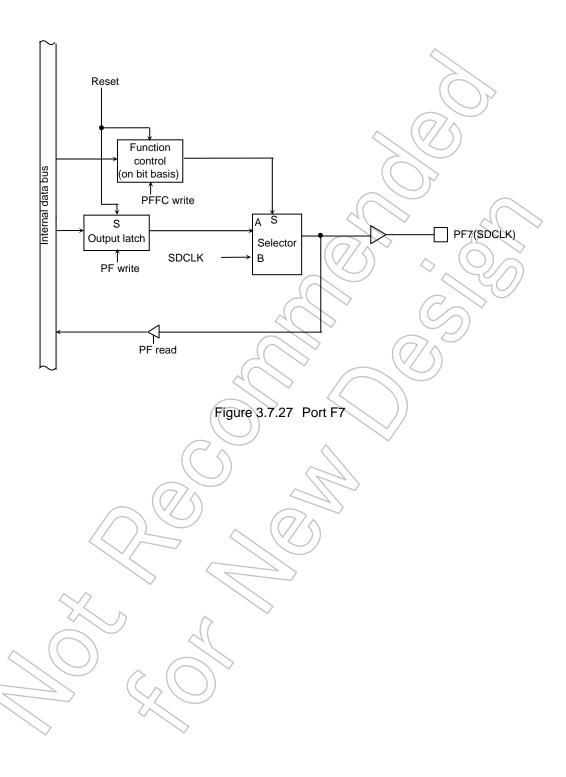
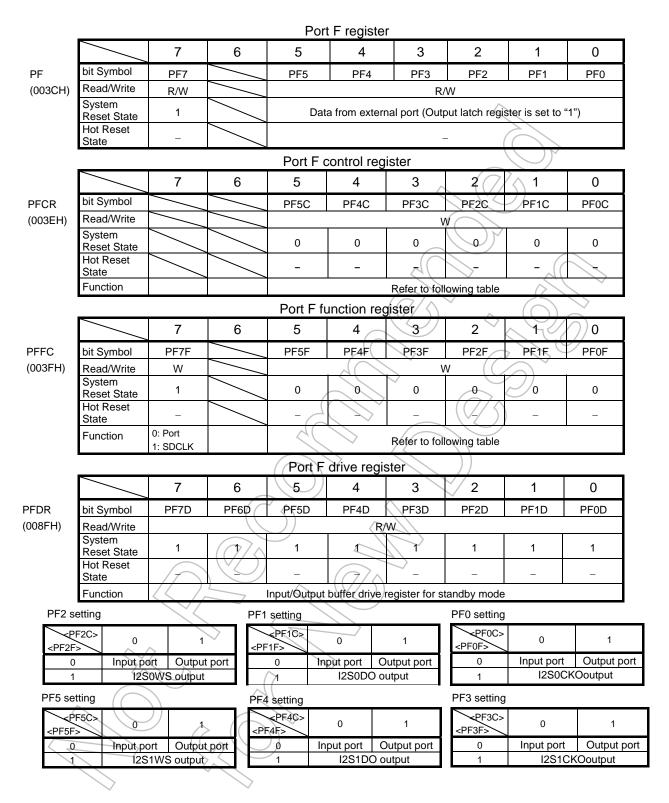




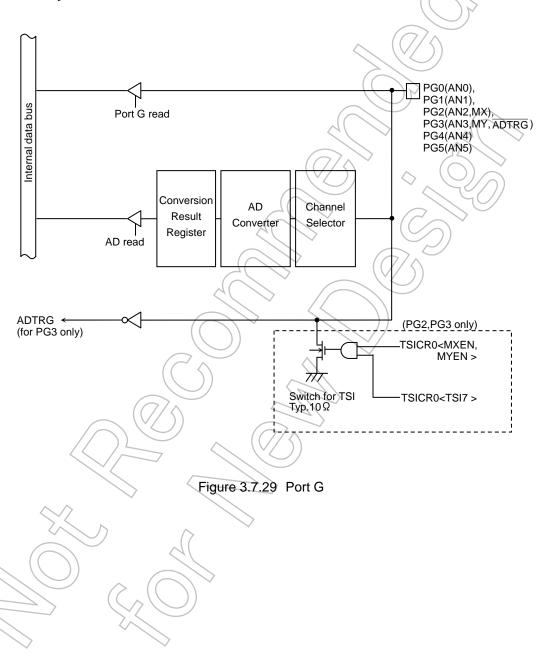
Figure 3.7.26 Port F1, F2, F4, F5

(2) Port F7 (SDCLK),

Port F7 is general-purpose output port. In addition to functioning as general-purpose output port, PF7 can also function as the SDCLK output.

Note 1: A read-modify-write operation cannot be performed for the registers PFCR, PFFC and PFFC2.

Figure 3.7.28 Register for Port F


3.7.11 Port G (PG0 to PG5)

PG0 to PG5 are 6-bit input ports and can also be used as the analog input pins for the internal AD converter. PG3 can also be used as the ADTRG pin for the AD converter.

PG2 and PG3 can also be used as the MX and MY pins for a Touch screen interface.

(PG) register is prohibited to access by byte. All the instruction (Arithmetic/Logical/

Bit operation and rotate/shift instruction) access by byte are prohibited. Word access is always needed.

Port G register

PG (0040H)

		7	6	5	4	3	2	1	0		
E	Bit Symbol			PG5	PG4	PG3	PG2	PG1	PG0		
F	Read/Write			R							
Ş	System Reset State			Data from external port							
	Hot Reset State					_	-				

Note: The input channel selection of the AD converter and the permission of for ADTRG input are set by AD converter mode register ADMOD1.

Port G Function register

PGFC (0043H)

	Total of a month regions.												
	7	6	5	4	3	2	1	0					
Bit Symbol					PG3F	The state of the s							
Read/Write					W	\mathcal{N}	7						
System Reset State					0	7/	74						
Hot Reset State					(775)								
Function					0: Input port or AN3 1: ADTRG			9)					

Port G driver register

PGDR (0090H)

7 6 5 4 3 2 1 0 Bit Symbol PG3D PG2D PG2D Read/Write R/W System Reset State 1 </th <th colspan="10"></th>										
Read/Write System Reset State Hot Reset State Function Reset State Reset State Function Reset State Input/Output buffer drive register for		7	6	5 (4	3	2	1	0	
System Reset State Hot Reset State Function Input/Output buffer drive register for	Bit Symbol			Y		PG3D	PG2D			
Reset State Hot Reset State Function Input/Output buffer drive register for	Read/Write			A A		R/	W			
State Function Input/Output buffer drive register for					5	<u></u>))1			
drive register for				D		-	//-			
	Function				\(\frac{1}{2}\)	drive reç	gister for			

Note 1: A read-modify-write operation cannot be performed for the registers PGFC.

Note 2: PG register is prohibited to access by byte. All the instruction (Arithmetic/ Logical/ Bit operation and rotate/ shift instruction) access by byte are prohibited. Word access is always needed.

Example: LD wa, (PG) : Using only "a" register data, and cancel "w" register data.

Note 3: Don't use PG register at the state that mingles Analog input and Digital input.

Figure 3.7.30 Register for Port G

3.7.12 Port J (PJ0 to PJ7)

PJ0 to PJ4 and PJ7 are 6-bit output port. Resetting sets the output latch PJ to "1", and they output "1". PJ5 to PJ6 are 2-bit input/output port. In addition to functioning as a port, Port J also functions as output pins for SDRAM (\$\overline{SDRAM}\$, \$\overline{SDCAS}\$, \$\overline{SDWE}\$, \$SDLLDQM, SDLUDQM, and SDCKE), SRAM (\$\overline{SRWR}\$, \$\overline{SRLUB}\$) and NAND-Flash(NDALE and NDCLE).

The above settings are made using the function register PJFC.

However, either SDRAM or SRAM output signal for PJO to PJ2 are selected automatically according to the setting of the memory controller.

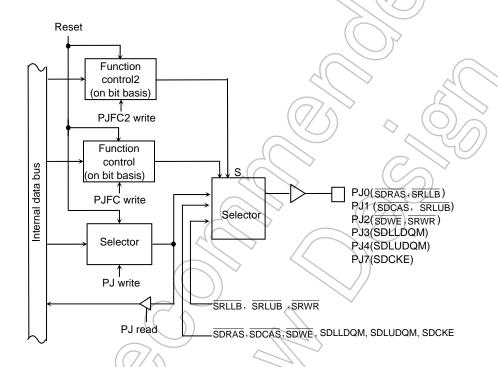
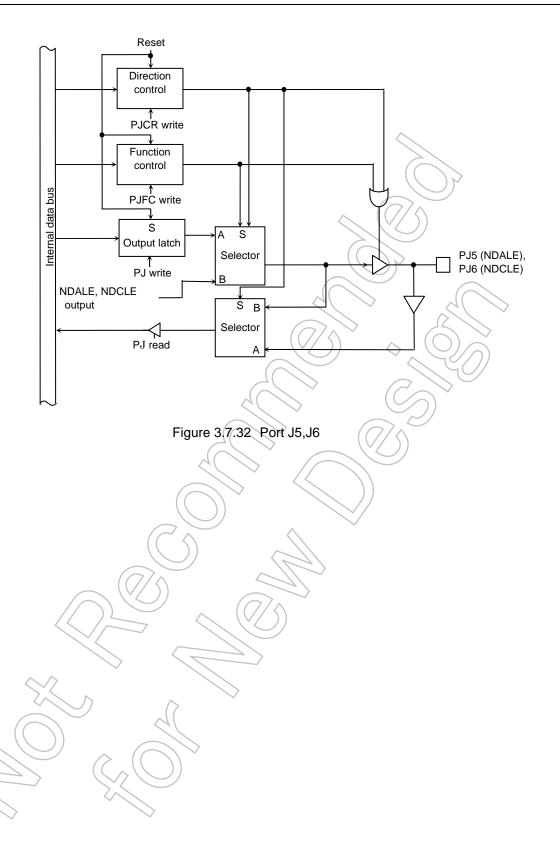



Figure 3.7.31 Port J0 to J4 and J7

				Por	t J registe	r			
		7	6	5	4	3	2	1	0
PJ	bit Symbol	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
(004CH)	Read/Write				R	W			
	System Reset State	1		external port th register is o "1")	1	1	1	1	1
	Hot Reset State	_	=	-	=	-	- (_
				Port J	control reg	gister	(7/	$\langle \rangle$	
		7	6	5	4	3	2	少1	0
PJCR	bit Symbol		PJ6C	PJ5C					
(004EH)	Read/Write		V	٧			Z		
	System Reset State		0	0		\mathcal{H}			
	Hot Reset State		_	-				1	
	Function		0: Input,	1: Output					
				Port J f	unction re	gister)
		7	6	5	4	3	2	7	0
PJFC	bit Symbol	PJ7F	PJ6F	PJ5F	PJ4F	PJ3F	PJ2F	PJ1F	PJ0F
(004FH)	Read/Write					V			•
	System Reset State	0	0	0	0	0	((0/)	0	0
	Hot Reset State	-	-	4	\ <u>\</u>	<u></u>	\ <u>-</u>	_	-
	Function	0: Port 1: SDCKE	0: Port 1: NDCLE	0: Port 1: NDALE	0: Port 1:SDLUDQM	0: Port 1:SDLLDQM	0: Port 1: SDWE , SRWR	0: Port 1: SDCAS, SRLUB	0: Port 1: SDRAS, SRLLB
				Port J	drive regi	ster			
		7	6		4	3	2	1	0
PJDR	bit Symbol	PJ7D	PJ6D 🔷	PJ5D	PJ4D	PJ3D	PJ2D	PJ1D	PJ0D
(0093H)	Read/Write			.	R/	W			
	System Reset State	<1 /	1	1	(1	1	1	1
	Hot Reset State	- (-	_		_	-	_	-
	Function		<u> </u>	Input/Output	buffer drive	register for s	tandby mode	!	

Note: A read-modify-write operation cannot be performed for the registers PJCR and PJFC.

Figure 3.7.33 Register for Port J

3.7.13 Port K (PK0 to PK7)

PK0 to PK7 are 8-bit output ports. Resetting sets the output latch PK to "0", and PK0 to PK7 pins output "0".

In addition to functioning as an output port function, port K also functions as output pins for an LCD controller (LCP0, LHSYNC, LLOAD, LFR, LVSYNC, and LGOE0 to LGOE2).

The above settings are made using the function register PKFC.

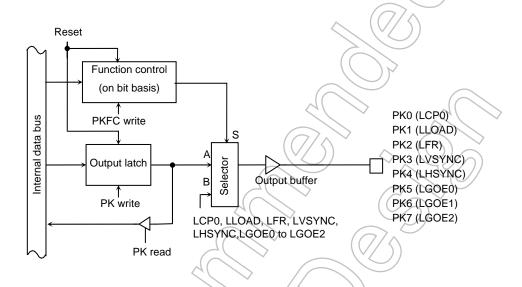


Figure 3.7.34 Port K0 to K7

Port K register

PK (0050H)

				titiogioto						
	7	6	5	4	3	2	1	0		
bit Symbol	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0		
Read/Write		R/W								
System Reset State	0	0	0	0	0	0 <	0	0		
Hot Reset State	_	_	_	_	_	-		_		

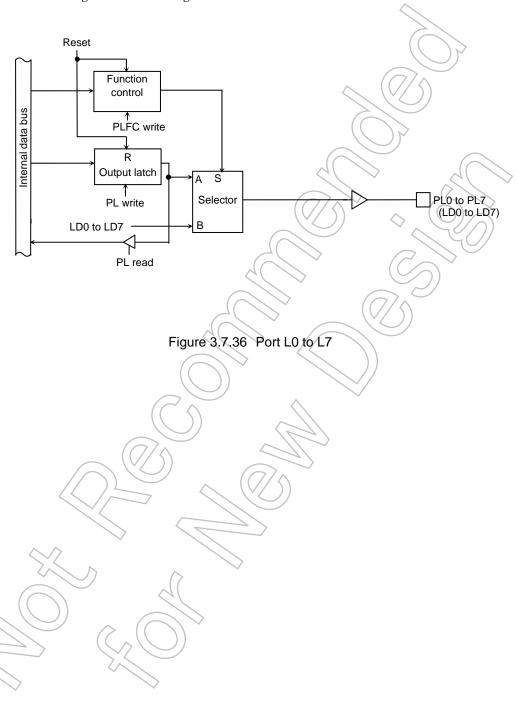
Port K function register

PKFC (0053H)

			I OILIN II	unction reg	JISICI _		′ ⟨ \					
	7	6	5	4	3	2	IJ 1	0				
bit Symbol	PK7F	PK6F	PK5F	PK4F	PK3F	PK2F	PK1F	PK0F				
Read/Write		w										
System Reset State	0	0	0	0	0	0	0 (0				
Hot Reset State	_	_	-	_		_	-591	\ <u>\</u>				
Function	0:Port	0:Port	0:Port	0:Port	0(Port	0: Port	0: Port	0: Port				
	1:LGOE2	1:LGOE1	1:LGOE0	1: LHSYNC	1: LVSYNC	1: LFR	1: LLOAD	1: LCP0				

Port K drive register

PKDR (0094H)


		7	6	5	4	3	2	<u>//</u> 1	0	
	bit Symbol	PK7D	PK6D	PK5D	PK4D	PK3D	PK2D 〈	PK1D	PK0D	
)	Read/Write			.(R/	W	()		
	System Reset State	1	1	1	1	/(1	1	1	1	
	Hot Reset State	_	_		_	1))-	_	=	
	Function		Input/Output buffer drive register for standby mode							

Note: A read-modify-write operation cannot be performed for the registers PKFC.

3.7.14 Port L (PL0 to PL7)

PL0 to PL7 are 8-bit output ports. Resetting sets the output latch PL to "0", and PL0 to PL7 pins output "0". In addition to functioning as a general-purpose output port, port L can also function as a data bus for an LCD controller (LD0 to LD7). The above settings are made using the function register PLFC.

Port L register

			1 of E regioter							
		7	6	5	4	3	2	1	0	
PL	bit Symbol	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	
(0054H)	Read/Write				R/	W				
	System Reset State	0	0	0	0	0	0 <	0	0	
	Hot Reset State	-	ı	-	_	_	-		_	

Port L function register

PLFC (0057H)

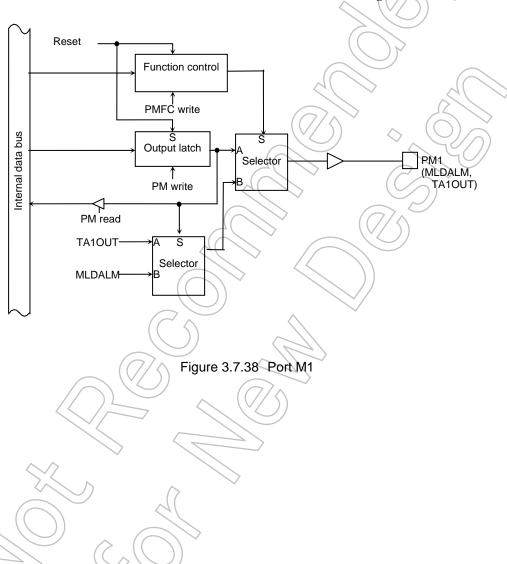
	7	6	5	4	3 _	2(7)	\(\) 1	0				
bit Symbol	PL7F	PL6F	PL5F	PL4F	PL3F	PL2F	PL1F	PL0F				
Read/Write		W										
System Reset State	0	0	0	0	0		0	0				
Hot Reset State	_	ı	ı	-	~((<u></u>	- 🗸					
Function	0: Port 1: Data bus for LCDC (LD7 toLD0)											

Port L drive register

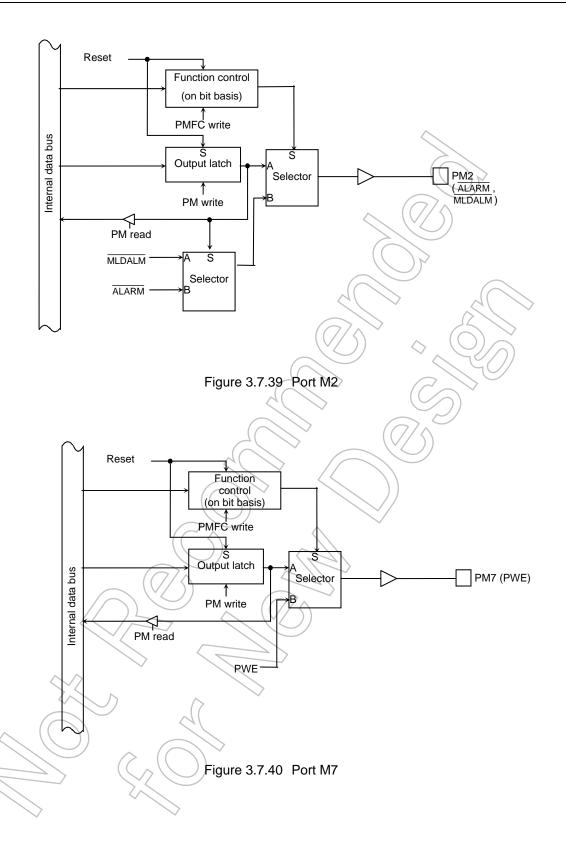
PLDR (0095H)

		7	6	5	4	3	2 4	10	<i>)</i>) o			
	bit Symbol	PL7D	PL6D	PL5D	PL4D	PL3D	PL2D	PL1D	PL0D			
)	Read/Write	_			R	W	(C	\bigcirc				
	System Reset State	1	1	1	7	1	1	<u></u>	1			
	Hot Reset State	-	-	- (-	$(\sqrt{2})$	-	-			
	Function		Input/Output buffer drive register for standby mode									

Note: A read-modify-write operation cannot be performed for the registers PLFC.


Figure 3.7.37 Register for Port L

3.7.15 Port M (PM1, PM2, PM7)


PM1, PM2 and PM7 are 3-bit output ports. Resetting sets the output latch PM to "1", and PM1, PM2 and PM7 pins output "1".

In addition to functioning as an output ports, port M also functions as output pin for the timers (TA1OUT), output pins for the RTC alarm (\overline{ALARM}), and as the output pin for the melody/alarm generator (MLDALM, \overline{MLDALM}) and as the Power control pin (PWE). The above settings are made using the function register PMFC.

PM1 has two output function which MLDALM and TA1OUT, and PM2 has two output functions \overline{ALARM} and \overline{MLDALM} . These are selected using PM<PM1>, PM<PM2>.

TOSHIBA

				Port	: M registe	r			
		7	6	5	4	3	2	1	0
PM	bit Symbol	PM7					PM2	PM1	
(0058H)	Read/Write	R/W					R/	W	
	System Reset State	1					1 <	1	
	Hot Reset State	-					=		
				Port M f	function re	gister			
		7	6	5	4	3	2(7)	<u>^</u> 1	0
PMFC	bit Symbol	PM7F					PM2F	PM1F	
(005BH)	Read/Write	W						V	
	System Reset State	0						0	
	Hot Reset State	-				H	<u></u>	- ((
	Function	0: Port 1: PWE					0: Port 1: ALARM at <pm2>=1, MLDALM at <pm2>=0</pm2></pm2>	0: Port 1: MLDALM at <pm1>=1, TA1OUT at <pm1>=0</pm1></pm1>	9
				Port M	drive regi	ster			
		7	6	5	4>	3	(2/)	1	0
PMDR	bit Symbol	PM7D		A		*	PM2D	PM1D	
(0096H)	Read/Write	R/W					R	W	
	System Reset State	1		A			//1	1	
	Hot Reset State	-	X	\mathcal{K}			_	-	
	Function	Input /Output buffer drive register for standby mode					Input/Outpu drive registe standby mo	er for	

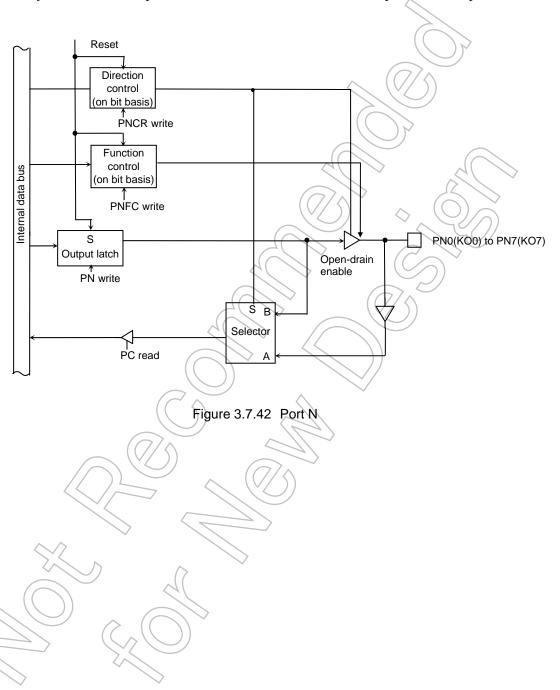

Note: A read-modify-write operation cannot be performed for the registers PMFC.

Figure 3.7.41 Register for Port M

3.7.16 Port N (PN0 to PN7)

PN0 to PN7 are 8-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets Port N to an input port.

In addition to functioning as a general-purpose I/O port, Port N can also function as key-board interface pin (KO0 to KO7) which can be set to open-drain output buffer.

				Por	t N registe	r			
		7	6	5	4	3	2	1	0
PN	bit Symbol	PN7	PN6	PN5	PN4	PN3	PN2	PN1	PN0
(005CH)	Read/Write	 			R/	W			
	System Reset State	ı	Dat	a from exterr	nal port (Outp	out latch regi	ster is set to	"1")	
	Hot Reset State				-	-			
				Port N	control reg	ister			
		7	6	5	4	3 _	2(7)	\(\sigma 1	0
PNCR	bit Symbol	PN7C	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C
(005EH)	Read/Write	· · · · · · · · · · · · · · · · · · ·	1	П	V	V			
	System Reset State	0	0	0	0	0		0	0
	Hot Reset State	-	-	-	-	2(\ <u>\</u> -	- (
	Function				0: Input	1: Output			
				Port N f	function re	gister 🔷			
		7	6	5	4	3	2	1-0/	$\bigcirc)$ 0
PNFC	bit Symbol	PN7F	PN6F	PN5F	PN4F	PN3F	PN2F	PN1F	PN0F
(005FH)	Read/Write	· · · · · · · · · · · · · · · · · · ·	 	 	40	V	((<u>a</u>	
	System Reset State	0	0	0	0	0	0	<u></u> 0	0
	Hot Reset State	-	-	-		-	$\left(\left(\frac{1}{2}\right)^{2}\right)$	<u> </u>	_
	Function			0; CMC	OS output 1	: Open-drain	output		
				Port N	drive regi	ister			
		7	6	((5))	4	3	//2	1	0
PNDR	bit Symbol	PN7D	PN6D	PN5D	PN4D	∧ PN3D	PN2D	PN1D	PN0D
(0097H)	Read/Write	_	((R/	w		-	
	System Reset State	1	1	1	1 5	1	1	1	1
	Hot Reset State		$(\checkmark/)$			<u> </u>	_	_	

Note: A read-modify-write operation cannot be performed for the registers PNCR and PNFC.

Function

Figure 3.7.43 Register for Port N

Input/Output buffer drive register for standby mode

3.7.17 Port P (PP1 to PP7)

Ports P1 to P5 are 6-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets port P1 to P5 to input port and output latch to "0".

In addition to functioning as general-purpose I/O port, P0 to P5 can also function as an output pin for timers (TA3OUT, TA5OUT, TA7OUT), as an input pin for timers (TB0IN0, TB1IN0), and as an input pin for external interruption (INT5 to INT7).

Port P6 and P7 are 2-bit output port. Resetting sets output latch to "0".

In addition to functioning as an output port, PP6 and PP7 can also function as an output pin for timers (TB0OUT0, TB1OUT1).

Setting in the corresponding bits of PPCR and PPFC enables the respective functions.

The edge select for external interruption is determined by the IIMC register in the interruption controller.

In port setting, if 16 bit timer input is selected and capture control is executed, INT6 and INT7 don't depend on IIMC1 register setting. INT6 and INT7 operate by setting TBnMOD<TBnCPM1:0>.

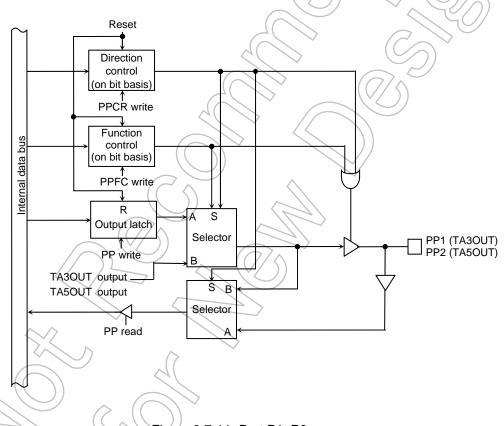


Figure 3.7.44 Port P1, P2

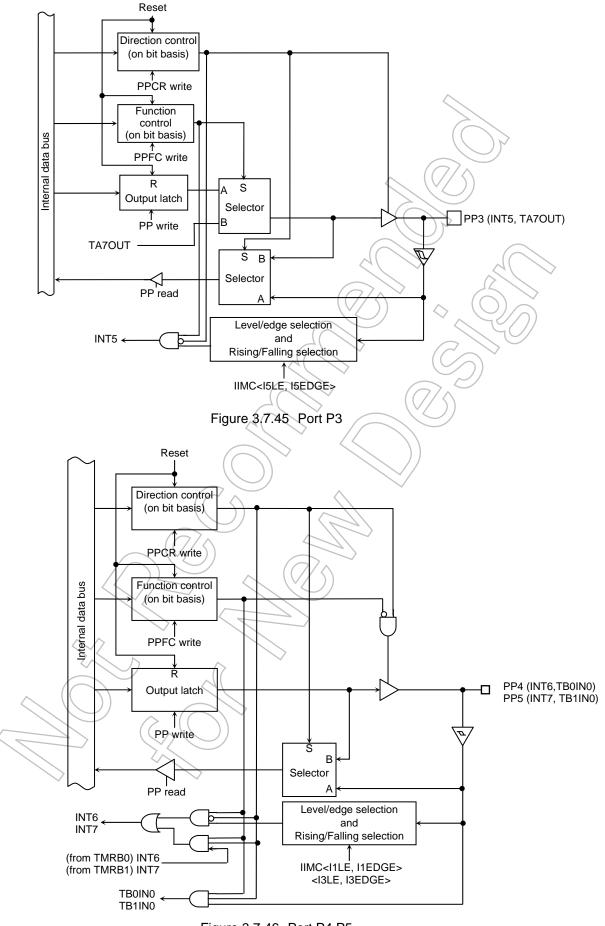
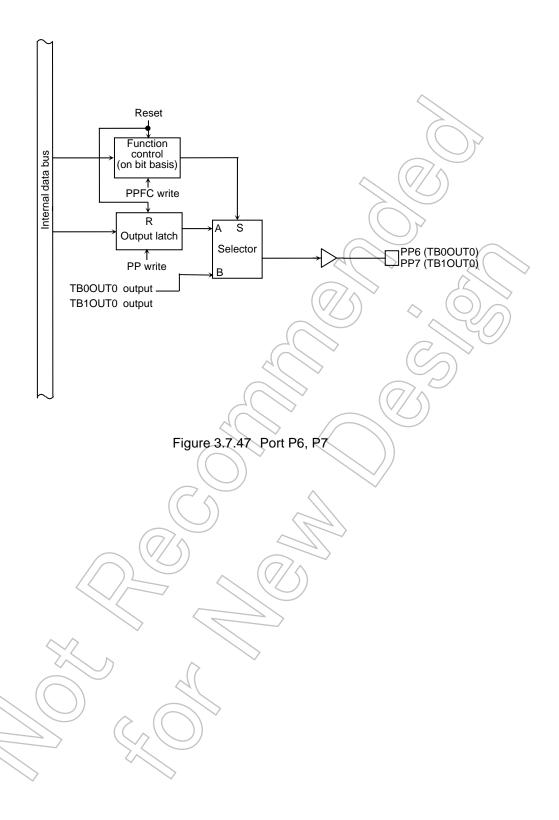
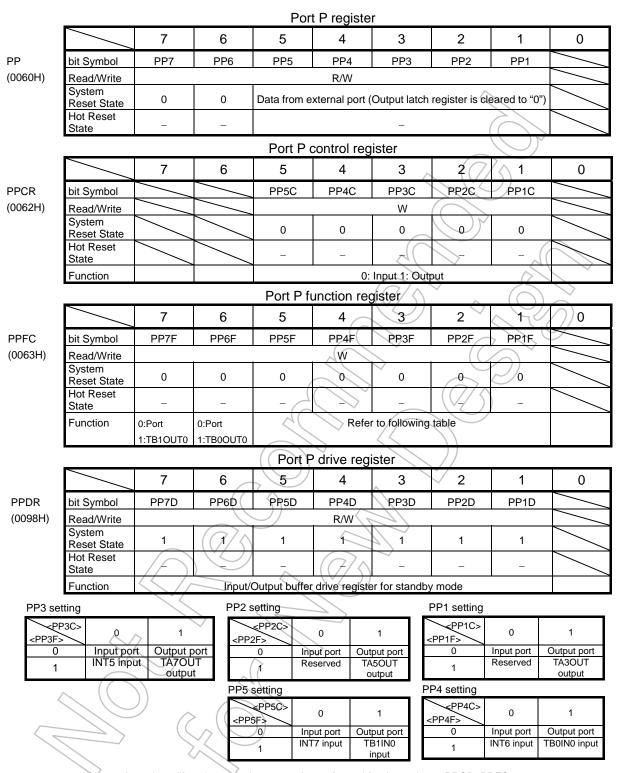




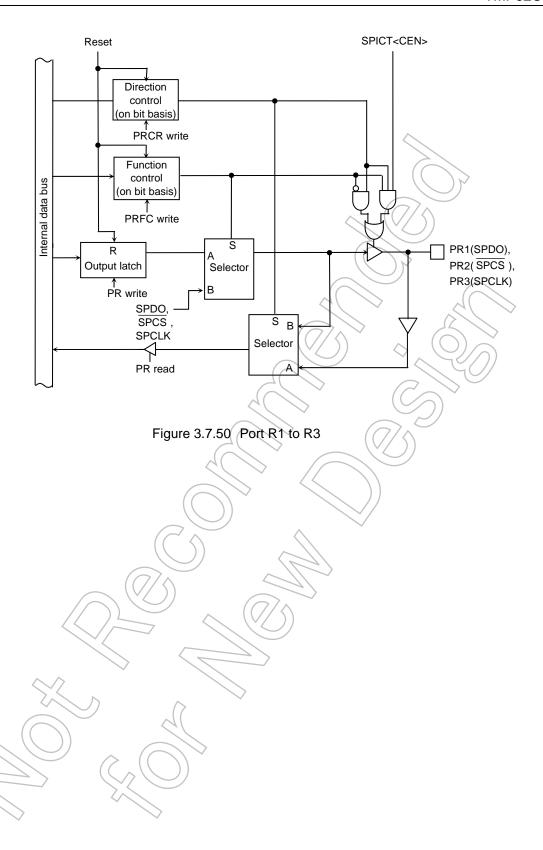
Figure 3.7.46 Port P4,P5

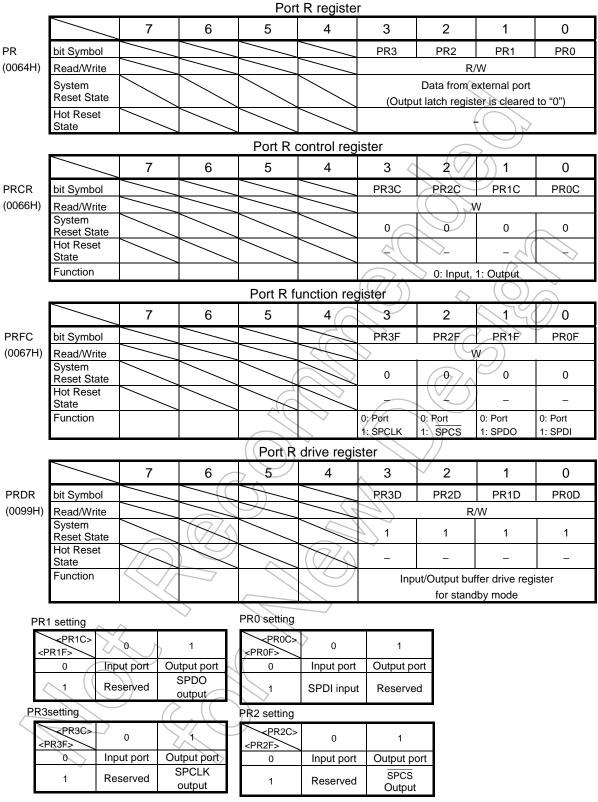
Note1: A read-modify-write operation cannot be performed for the registers PPCR, PPFC.

Note2: When setting PP5, PP4, PP3 pins to INT7,INT6,INT5 input, set PPDR<PP5D:3D> to "0000" (prohibit input), and when driving PP5,PP4,PP3 pins to "0", execute HALT instruction. This setting generates INT7, INT6, and INT5 inside. If don't using external interrupt in HALT condition, set like an interrupt don't generated.


Figure 3.7.48 Register for Port P

3.7.18 Port R (R0 to R3)

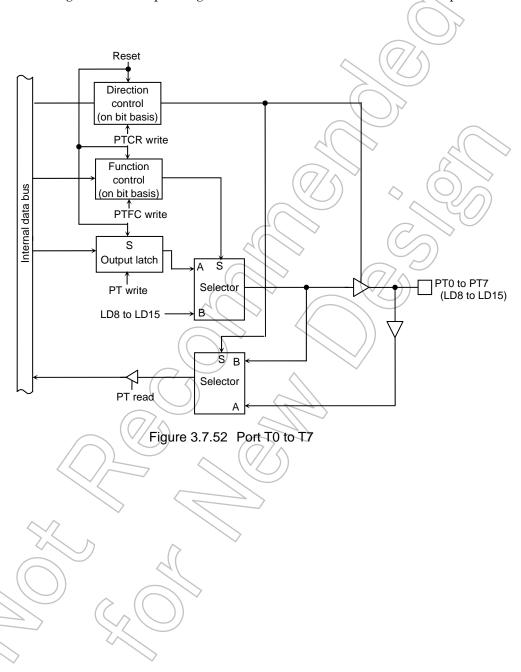

Ports R0 to R3 are 4-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets port R0 to R3 to input port and output latch to "0".


In addition to functioning as general-purpose I/O port, PR0 to PR3 can also function as the SPI controller pin (SPCLK, \overline{SPCS} , SPDO and SPDI).

Setting in the corresponding bits of PFCR and PFFC enables the respective functions.

TOSHIBA

Note: A read-modify-write operation cannot be performed for the registers PRCR, PRFC.


Figure 3.7.51 Register for Port R

3.7.19 Port T (PT0 to PT7)

Ports T0 to T7 are 8-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets ports T0 to T7 to input port and output latch to "0".

In addition to functioning as general-purpose I/O port, PT0 to PT7 can also function as a data bus pin for LCD controller (LD8 to LD15).

Setting in the corresponding bits of PTCR and PTFC enables the respective functions.

				Port	t T registe	r			
		7	6	5	4	3	2	1	0
PT	bit Symbol	PT7	PT6	PT5	PT4	PT3	PT2	PT1	PT0
(00A0H)	Read/Write				R/	W			
	System Reset State		Data f	rom external	port (Output	t latch registe	er is cleared	to "0")	
	Hot Reset State				_	-			
				Port T c	ontrol reg	ister			
		7	6	5	4	3 _	2(7/	^ <u>\</u> 1	0
PTCR	bit Symbol	PT7C	PT6C	PT5C	PT4C	PT3C	PT2C	PT1C	PT0C
(00A2H)			Ţ		V	V			
	System Reset State	0	0	0	0	0	(O)	0	0
	Hot Reset State	-	-	-	-	2	<u></u>	- (
	Function				0: Input '	1: Output			
Port T function register							\searrow		
		7	6	5	4	3	2	1	$\bigcirc)$ o
PTFC	bit Symbol	PT7F	PT6F	PT5F	PT4F	PT3F	PT2F	PITE	PT0F
(00A3H)					N/V	V		A *	,
	System Reset State	0	0	0	0	0	0	<u></u> 0	0
	Hot Reset State	-	-	-		_	((//)	_	-
	Function			0: Port 1:	: Data bus fo	r LCDC (LD	15 to LD8)		•
				Port T	drive regis	ster			
		7	6	((5))	4	3	//2	1	0
PTDR	bit Symbol	PT7D	PT6D	PT5D	PT4D	∧ PT3D	PT2D	PT1D	PT0D
(009BH)	Read/Write		((R/	W			
	System Reset State	1	1	<u></u>	1	1	1	1	1
	Hot Reset State			-		<u> </u>	_	-	_
	Function			nput/Output	buffer drive	register for s	tandby mode		

Note1: A read-modify-write operation cannot be performed for the registers PTCR, PTFC.

Note2: When PT is used as LD15 to LD8, set applicable PTnC to"1".

Figure 3.7.53 Register for Port T

3.7.20 Port U (PU0 to PU7)

Ports U0 to U7 are 8-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets port U0 to U7 to input port and output latch to "0".

In addition to functioning as general-purpose I/O port, PU0 to PU7 can also function as a data bus pin for LCD controller (LD16 to LD23) and as the SDCLK input function.

Setting in the corresponding bits of PUCR and PUFC enables the respective functions.

In addition to functioning as above function, PU7 can also function as the communication for debug mode (EO_TRGOUT). These functions are operated when it is started in debug mode. In this case, PU7 can not be used as LD23 function.

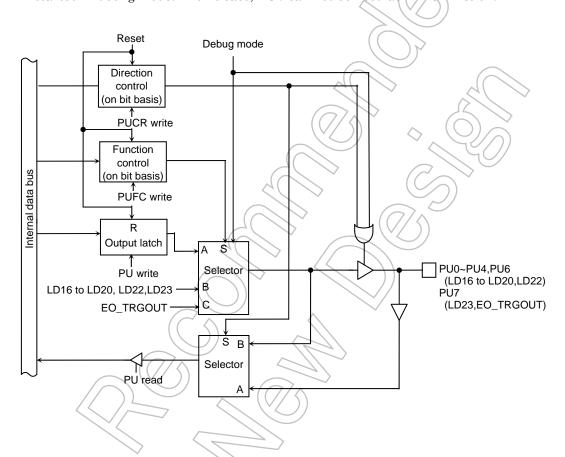
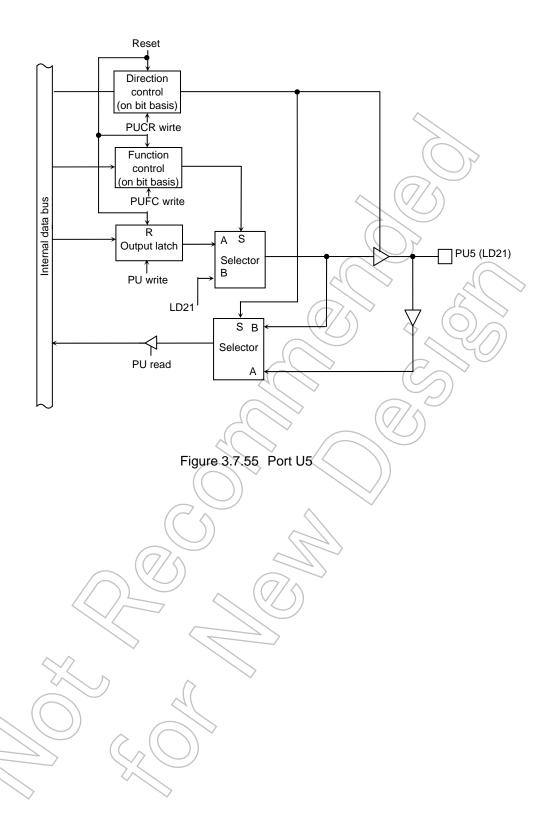



Figure 3.7.54 Port U0 to U4, U6, U7

Port U register

PU (00A4H)

	7	7 6 5 4 3 2 1 0											
Bit Symbol	PU7	PU7 PU6 PU5 PU4 PU3 PU2 PU1 PU0											
Read/Write		R/W											
System Reset State		Data from external port (Output latch register is cleared to "0")											
Hot Reset State		_											

Port U control register

PUCR (00A6H)

	7	6	5	4	3 _	2(7/	^ <u>\</u> 1	0
Bit Symbol	PU7C	PU6C	PU5C	PU4C	PU3C	PU2C	PU1C	PU0C
Read/Write				٧	V			
System Reset State	0	0	0	0	0	(O)	0	0
Hot Reset State	_	-	_	-	2	<u> </u>	- ((1
Function				0: Input	1: Output			

Port U function register

PUFC (00A7H)

					X 3.7.7			\sim
	7	6	5	4	3	2	1	$\bigcirc)$ 0
Bit Symbol	PU7F	PU6F	PU5F	PU4F	PU3F	PU2F	PU1F	PU0F
Read/Write					V	. (C		_
System Reset State	0	0	0	0	0	0	<u></u> 0	0
Hot Reset State	-	_	- (_ ((4)	-	_
Function	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
	1: LD23	1: LD22	1: LD21@	1: LD20	1: LD19	1: LD18	1: LD17	1: LD16
			<pu5c>=1</pu5c>))		

Note: When PU is used as LD23 to LD16, set applicable PUnC to "1".

Port U drive register

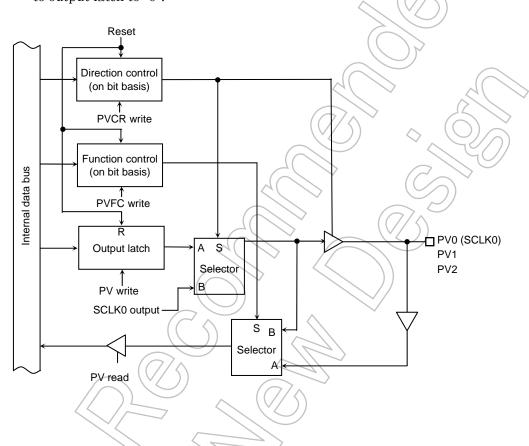
PUDR (009CH)

	7	6	<u>)</u> 5	4 (5	3	2	1	0
Bit Symbol	PU7D	PU6D A	PU5D	PU4D	PU3D	PU2D	PU1D	PU0D
Read/Write		$(\vee ())$		R/	M			
System Reset State	/(1)		1	((/1/5)	1	1	1	1
Hot Reset State			_	\ <u>-</u>	-	_	_	_
Function		\supset	Input/Output	buffer drive	register for s	tandby mode	;	

Note1: A read-modify-write operation cannot be performed for the registers PUCR, PUFC.

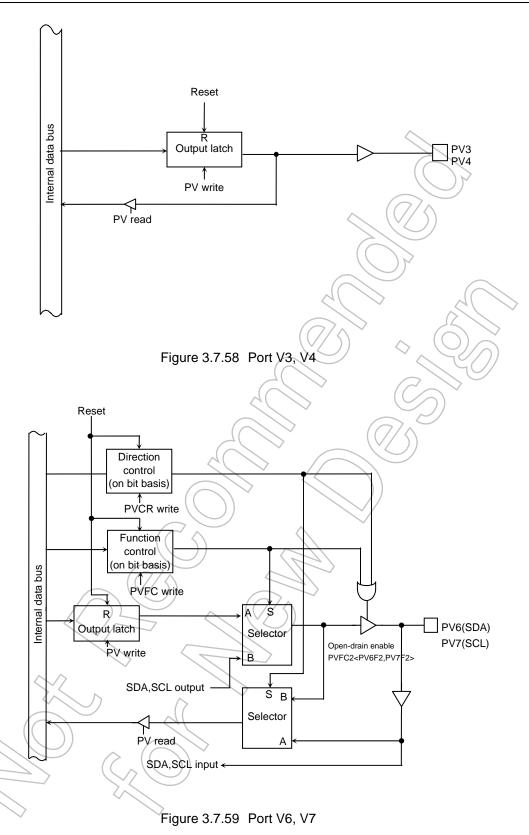
Note2: When use PU as LD23 to LD16, set PUnC to "1". When use PU5 as LD21, set PU5C to "1".

Figure 3.7.56 Register for Port U


3.7.21 Port V (PV0 to PV4, PV6, PV7)

Ports V0 to V2, V6 and V7 are 5-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets port V0 to V2, V6 and V7 to input port and output latch to "0".

In addition to functioning as general-purpose I/O port, PV can also function as a input or output pin for SBI (SDA, SCL) and an output for SIO(SCLK0) (Note).


Setting in the corresponding bits of PVCR and PVFC enables the respective functions.

Ports V3 and V4 are 2-bit general-purpose output ports. Resetting clear ports V3 and V4 to output latch to "0".

Note: SIO function support function that input clock from SCLK0, basically. However, if setting to PV0 pin, this function supports only the output function.

Figure 3.7.57 Port V0 to V2

				Po	rt V registe	er			
		7	6	5	4	3	2	1	0
PV	bit Symbol	PV7	PV6		PV4	PV3	PV2	PV1	PV0
(H8A00)	Read/Write		/W				R/W		
	System		external port ch register is			Data	from externa	al port	
	Reset State		d to "0")			(Output latch	register is c	leared to "0")	
	Hot Reset						_ <		
	State			5 1		• .			
		T -	1 0		/ control re	-	0		_
		7	6	5	4	3	2	7	0
PVCR	bit Symbol	PV7C	PV6C			\rightarrow	PV2C	PV1C	PV0C
(00AAH)	Read/Write System						7//) w	
	Reset State	0	0				0	0	0
	Hot Reset State	_	_					_	_
	Function	0: Input	1: Output				0:	Input 1: Outp	ūt
				Port V	function re	egister		77	
		7	6	5	4	(3/^	2	1	0
VFC	bit Symbol	PV7F	PV6F	\		(4)	PV2F	PV1F	PV0F
OABH)	Read/Write		<u> </u>	$\left \right $			FVZFV	W)F)VUF
707 (B) 1)	System						0 (6		
	Reset State Hot Reset	0	0				0 (0	0
	State	_	-				_	<u> </u>	-
	Function	Refer to fol	lowing table				Refe	r to following t	table
				Port V	function re	aister 2		1	
		7	6	5	4	//3	2	1	0
PVFC2	bit Symbol	PV7F2	PV6F2	\sim	D		#		
00A9H)	Read/Write		N	H			***		
	System	0	0 (1		
	Reset State Hot Reset								
	State	_	- //			1/1			
	Function	0: CMOS 1: Open	0; CMOS 1; Open			7/			
		-drain	-drain		\bigcap_{Λ}				
		(()		Port	/ drive reg	ister			
		7//	6	5	4	3	2	1	0
PVDR	bit Symbol	PV7D	PV6D		PV4D	PV3D	PV2D	PV1D	PV0D
(009DH)	Read/Write		W		FV4D	FVSD	R/W	FVID	FVUD
(0002)	System				1	4		4	4
	Reset State Hot Reset	1	1	\downarrow	1	1	1	1	1
	State	-	- <		-	-	-	-	-
	Function))		Input/Outpu	ut buffer drive	register for s	tandby mode)	
PV2 se	tting		PV1	setting			PV0 settir	ng	
P	V2C> 0	1	<u> </u>	≪PV1C>	0	4	PV0	OC> 0	1
<pv2f< td=""><td></td><td></td><td></td><td>′1F></td><td></td><td>1</td><td><pv0f></pv0f></td><td></td><td>1</td></pv2f<>				′1F>		1	<pv0f></pv0f>		1
0				0	Input port	Output port	0	Input po	
1	Reserve	ed Reser	ved	1	Reserved	Reserved	1	Reserve	ed SCLK0 output
PV7 se	ettina		D\/6	setting			Note: SCI	K0 is only ou	
	/7C>		\neg $\stackrel{\sim}{\vdash}$	∠PV6C>	0	, 1			• **
<pv7f></pv7f>	. "	1	<pv< td=""><td>_</td><td>0</td><td>1</td><td></td><td></td><td></td></pv<>	_	0	1			
0	Input po			0	Input port	Output port			
1	Reserve			1	Reserved	SDA I/O			
	Noto: A r	ood modify y	urita anaratia	a aannat ha	norformed f	ar tha ragistar	A DIVICE DIV	EC and DVEC	· C)

Reserved SCL I/O 1 Reserved SDA I/O

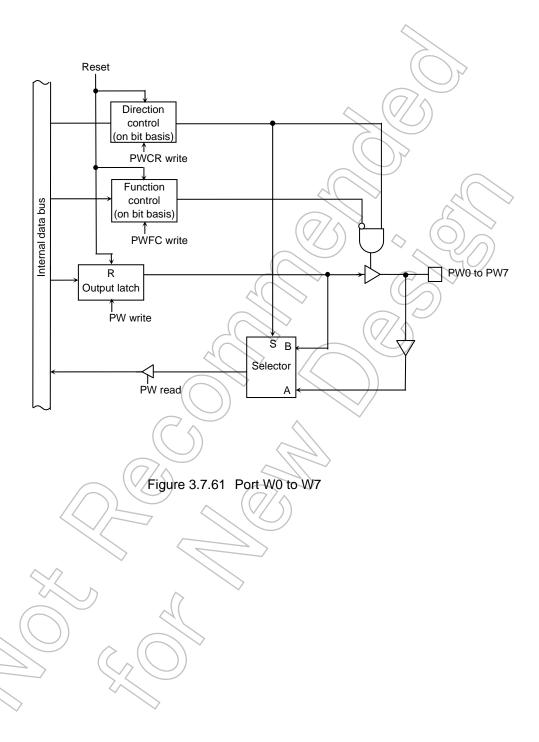

Note: A read-modify-write operation cannot be performed for the registers PVCR, PVFC and PVFC2.

Figure 3.7.60 Register for Port V

3.7.22 Port W (PW0 to PW7)

Ports W0 to W7 are 8-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets ports W0 to W7 to input port and output latch to "0".

Setting in the corresponding bits of PWCR and PWFC enables the respective functions.

Port W register

PW (00ACH)

	7	6	5	4	3	2	1	0
bit Symbol	PW7	PW6	PW5	PW4	PW3	PW2	PW1	PW0
Read/Write				R/	W			
System Reset State		Data	from externa	l port (Outpu	t latch registe	er is cleared	to "0")	
Hot Reset State				-	-			

Port W control register

PWCR (00AEH)

	7	6	5	4	3 ^	2(7/	^ <u>\</u> 1	0
bit Symbol	PW7C	PW6C	PW5C	PW4C	PW3C	PW2C	PW1C	PW0C
Read/Write				٧	٧			
System Reset State	0	0	0	0	0		0	0
Hot Reset State	-	-	-	-	~((- (
Function				0: Input	1: Output			

Port W function register

PWFC (00AFH)

	7	6	5	4	3	2	170	$\bigcirc)$ 0
bit Symbol	PW7F	PW6F	PW5F	PW4F	PW3F	PW2F	PW1F	PW0F
Read/Write				V	V	. ((
System Reset State	0	0	0	0	0	0	<u></u>	0
Hot Reset State	-	_	- (-	((/_/ 5)	-	=
Function			4(0: Port 1:	Reserved			

Port W drive register

PWDR (009EH)

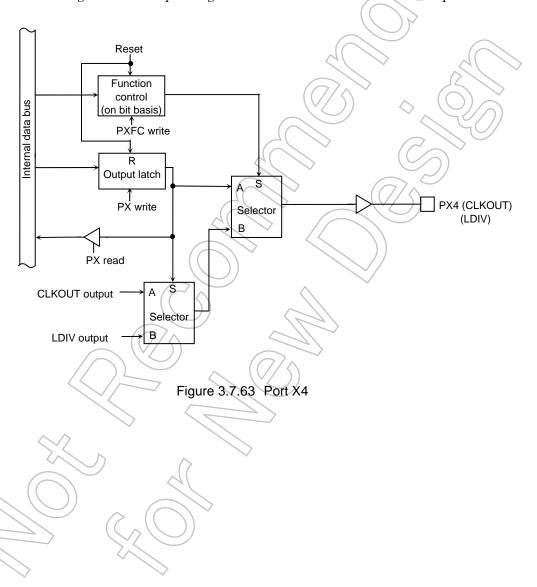
	7	6	((5))	4	3	//2	1	0
bit Symbol	PW7D	PW6D	PW5D	PW4D	∧ PW3D	PW2D	PW1D	PW0D
Read/Write		((R/	W	_		
System Reset State	1	1	<u> </u>	1	1	1	1	1
Hot Reset State		$(\sqrt{2})$	-		<u> </u>	_	_	-
Function			nput/Qutput	buffer drive	register for s	tandby mode)	

Note1: A read-modify-write operation cannot be performed for the registers PWCR, PWFC.

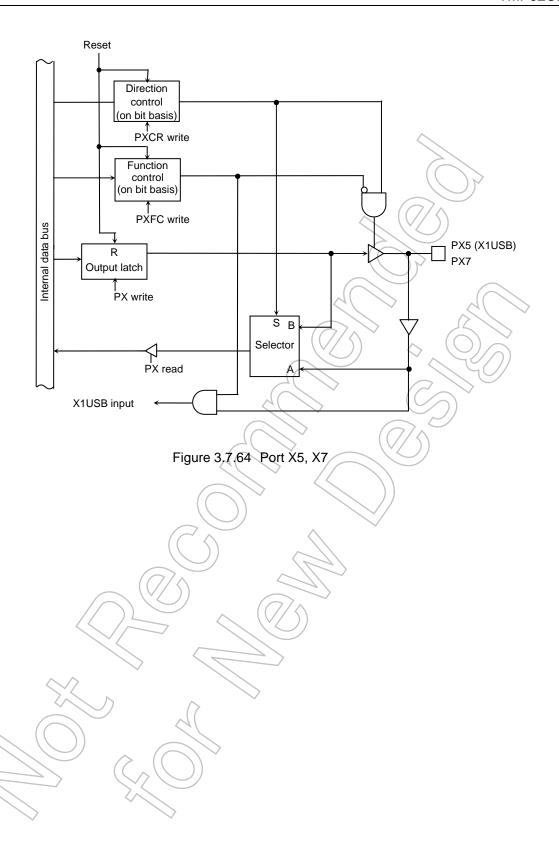
Figure 3.7.62 Register for Port W

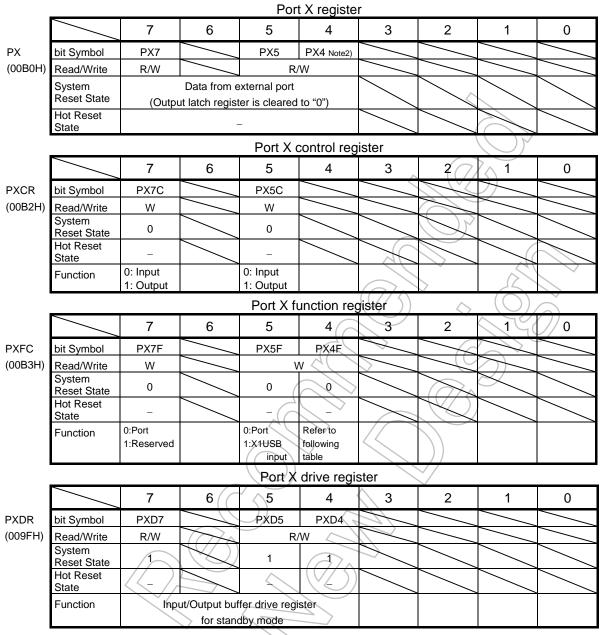
3.7.23 Port X (PX4, PX5 and PX7)

Ports X5 and X7 are 2-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets ports X5 and X7 to input port and output latch to "0".


In addition to functioning as general-purpose I/O port, PX5 and PX7 can also function as the USB clock input pin (X1USB).

Setting in the corresponding bits of PXCR and PXFC enables the respective functions.


Port X4 is 1-bit general-purpose output port. Resetting sets output latch to "0".

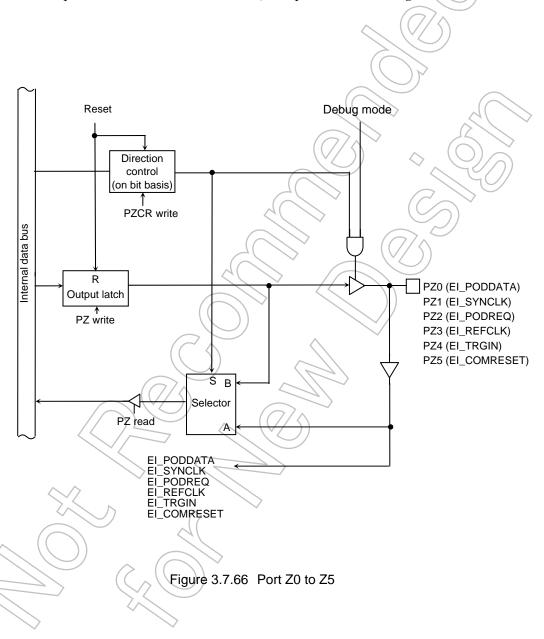

In addition to functioning as general-purpose output port, PX4 can also function as a system clock output pin (CLKOUT) and as an output pin (LDIV).

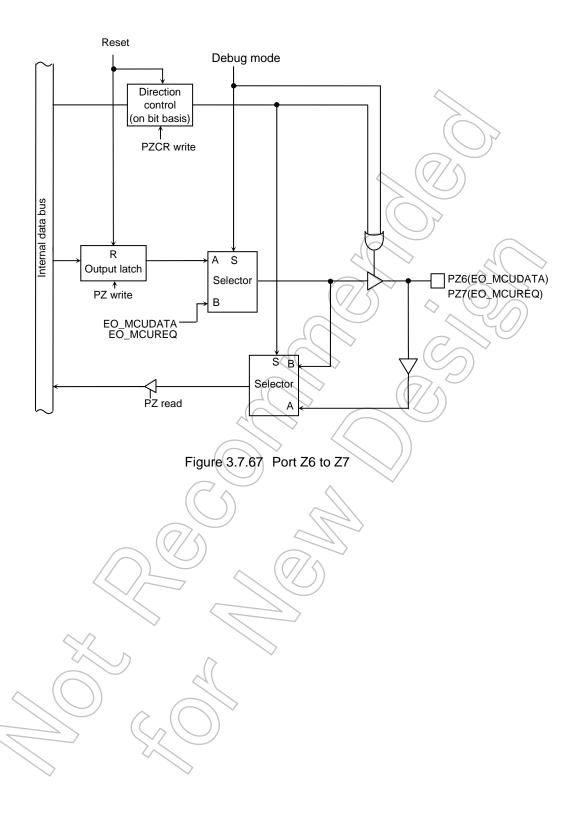
Setting in the corresponding bits of PX and PXFC enables the respective functions.

TOSHIBA

Note 1: A read-modify-write operation cannot be performed for the registers PXCR, PXFC.

Note 2: When PXFC<PX4F>= "1", Function is changed by PX<PX4> setting. Refer to following PX4 setting table.


PX4 setting		
<px4></px4>	0	
0	Outpo	ut port
0	Outpo CLKOUT	ut port


Figure 3.7.65 Register for Port X

3.7.24 Port Z (PZ0 to PZ7)

Ports Z0 to Z7 are 8-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets ports Z0 to Z7 to input port and output latch to "0".

In addition to functioning as general-purpose I/O port, ports Z can also function as a communication pin for debug mode (EI_PODDATA, EI_SYNCLK, EI_PODREQ, EI_REFCLK, EI_TRGIN, EI_COMRESET, EO_MCUDATA and EO_MCUREQ). These functions are operated when it is started in debug mode. (There is not Function register in this port. When \overline{DBGE} is set to "0", this port is set to debug communication function.)

	Port	Ζ	register	٠
--	------	---	----------	---

		7	6	5	4	3	2	1	0			
PZ	bit Symbol	PZ7	PZ6	PZ5	PZ4	PZ3	PZ2	PZ1	PZ0			
(0068H)	Read/Write		R/W									
	System Reset State		Data from external port (Output latch register is cleared to "0")									
	Hot Reset State				_	-						

Port Z control register

PZCR (006AH)

		7	6	5	4	3 ^	2(7)	⁷	0
bit Symbo		PZ7C	PZ6C	PZ5C	PZ4C	PZ3C	PZ2C	PZ1C	PZ0C
Read/Writ	e				V	V			
System Reset Sta	te	0	0	0	0	0		0	0
Hot Reset State		=	-	_	-	~(\ \	- ((1
Function					0: Input	1: Output			

Port Z drive register

PZDR (009AH)

		7	6	5	4	3	2	170	())o
	bit Symbol	PZ7D	PZ6D	PZ5D	PZ4D	PZ3D	PZ2D	PZ1D	PZ0D
)	Read/Write	/rite R/W							
	System Reset State	1	1	1	1	1	1	21	1
	Hot Reset State	-	-	- () –	-
Function Input/Output buffer drive register for standby)	

Note: A read-modify-write operation cannot be performed for the registers PZCR.

3.8 Memory Controller (MEMC)

3.8.1 Functional Overview

The TMP92CF26A has a memory controller with the following features to control four programmable address spaces:

(1) Four programmable address spaces

The MEMC can specify a start address and a block size for each of the four memory spaces (CS0 to CS3 spaces).

- * SRAM or ROM: All CS spaces (CS0 to CS3) can be assigned.
- * SDRAM: Either the CS1 or CS2 space can be assigned.
- * Page-ROM: Only the CS2 space can be assigned.
- * NAND-Flash: It is not required to setup the CS lines. However, when using NAND-Flash, set the BROMCR<CSDIS> bit to 1 to assign an external area to avoid data conflicts with CS spaces.
- (2) Memory specification

The MEMC can specify the type of memory, SRAM, ROM, SDRAM to associate with the selected address spaces.

(3) Data bus width specification

The data bus width is selectable from 8 and 16 bits for the respective chip select spaces.

(4) Wait control

The number of wait states to be inserted into an external bus cycle is determined by the wait state bits of the control register and the WAIT input pin. The number of wait states of a read cycle and that of a write cycle can be specified individually. The number of wait states can be selected from the following 15 options:

0 to 10 wait states, 12 wait states,

16 wait states, 20 wait states

4+N wait states (controlled by the WAIT pin)

3.8.2 Control Rregisters and Memory Access Operations After Reset

This section describes the registers to control the memory controller, their reset states and the necessary settings after reset.

(1) Control Registers

The control registers of the memory controller are listed below.

- Control registers: BnCSH/BnCSL(n = 0 to 3, EX)
 Configures the basic settings of the memory controller, such as the memory type specification and the number of wait states to be inserted into a read or write cycle.
- · Memory Start Address register: MSARn(n = 0 to 3) Specifies a start address for a selected address space.
- Memory Address Mask register: MAMR (n = 0 to 3)
 Specifies a block size for a selected address space.
- Page ROM Control register: PMEMCR Selects a method of accessing Page-ROM.
- •Timing control registers: CSTMGCR, WRTMGCR, RDTMGCRn
 Adjust the timing of rising and falling edges of control signals.
- · On-chip Boot ROM Control register: BROMCR Selects a method of accessing Boot-ROM.

			Tab	le 3.8.1 C	ontrol Reg	isters			
		7	6	5	4	3	2	1	0
B0CSL	Bit Symbol	B0WW3	B0WW2	B0WW1	B0WW0	B0WR3	B0WR2	B0WR1	B0WR0
(0140H)	Read/Write				R	/W			
	Reset State	0	0	1	0	0	0_	1	0
B0CSH	Bit Symbol	B0E			B0REC	B0OM1	B0OM0	B0BUS1	B0BUS0
(0141H)	Read/Write	R/W					R/W		
	Reset State	0			0	0	0)0>	0
MAMR0	Bit Symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-V9	M0V8
(0142H)	Read/Write				R	W	$((// \le$		
	Reset State	1	1	1	1	1		1	1
MSAR0	Bit Symbol	M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
(0143H)	Read/Write			-	R.	W		1	
	Reset State	1	1	1	1	1	1	1	1
B1CSL	Bit Symbol	B1WW3	B1WW2	B1WW1	B1WW0	B1WR3	B1WR2	B1WR1	B1WR0
(0144H)	Read/Write					W			
	Reset State	0	0	1	0 ((// 0	0	$(\bigcirc 1)$	0
B1CSH	Bit Symbol	B1E			B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
(0145H)	Read/Write	R/W					R/W		/
	Reset State	0			0	0	0/	Ó	0
MAMR1	Bit Symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8
(0146H)	Read/Write				\ \ \ \ R	W	7		
	Reset State	1	1	1-1	\1	1 \	(/_1))	1	1
MSAR1	Bit Symbol	M1S23	M1S22	M1\$21	M1S20	M1S19	M1S18	M1S17	M1S16
(0147H)	Read/Write		. /			W			_
	Reset State	1	1 (1	1	1	/	1	1
B2CSL	Bit Symbol	B2WW3	B2WW2	B2WW1	B2WW0	B2WR3	B2WR2	B2WR1	B2WR0
(0148H)	Read/Write	0	(6			W	0		
Boooli	Reset State	0		1	0	0	0	1	0
B2CSH (0149H)	Bit Symbol	B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
(014911)	Read/Write Reset State	TK/	W// \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0	0	R/W 0	0	1
MAMDO		M2V22		M0)/00	M2V19		M2V17	M2V16	
MAMR2 (014AH)	Bit Symbol Read/Write	IVIZVZZ	M2V21	M2V20	· / / /	M2V18 /W	IVIZ V I /	IVIZV 16	M2V15
(014/11)	Reset State	1	1 /	1	1	1	1	1	1
MSAR2	Bit Symbol	M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
(014BH)	Read/Write	IVIZOZO	IVIZOZZ	IVIZOZI		/W	WIZOTO	IVIZOTI	IVIZOTO
(0::2::)	Reset State	√1	1 🔿	1	1	1	1	1	1
B3CSL	Bit Symbol	B3WW3	B3WW2	B3WW1	B3WW0	B3WR3	B3WR2	B3WR1	B3WR0
(014CH)	Read/Write	DOWWO	DOVIVE	BOWWI		/W	BOWNE	BOWIE	DOWING
(*****	Reset State	0_	0	1	0	0	0	1	0
B3CSH	Bit Symbol	B3E			B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
(014DH)	Read/Write	R/W			BOILEO	Boomi	R/W	Вовост	Bobooo
()	Reset State	0			0	0	0	0	0
MAMR3	Bit Symbol	M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
(014EH)	Read/Write					/W			
,	Reset State	1	1	1	1	1	1	1	1
MSAR3	Bit Symbol	M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
(014FH)	Read/Write					/W			
, ,	Reset State	1	1	1	1	1	1	1	1

			Tab	le 3.8.2 C	ontrol Reg	isters			
		7	6	5	4	3	2	1	0
BEXCSL	Bit Symbol	BEXWW3	BEXWW2	BEXWW1	BEXWW0	BEXWR3	BEXWR2	BEXWR1	BEXWR0
(0158H)	Read/Write				R/	W	_		
	Reset State	0	0	1	0	0	0 _	1	0
BEXCSH	Bit Symbol				BEXREC	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
(0159H)	Read/Write					-	R/W		
	Reset State				0	0	0) o >	0
PMEMCR	Bit Symbol				OPGE	OPWR1	OPWR0	PR1	PR0
(0166H)	Read/Write				R/W	∠R.	w ((//	R/	W
	Reset State				0	0	0	1	0
CSTMGCR	Bit Symbol			TACSEL1	TACSEL0	7		TAC1	TAC0
(0168H)	Read/Write			R/	W		W.	R/	W
	Reset State			0	0			0	0
WRTMGCR	Bit Symbol			TCWSEL1	TCWSEL0	TCWS1	TCWS0	TCWH1	TCWH0
(0169H)	Read/Write			R/	W	- R	W	R	W
	Reset State			0	0 ((// 6\ `	0	(0)	√ 0
RDTMGCR0	Bit Symbol	B1TCRS1	B1TCRS0	B1TCRH1	B1TCRH0	B0TCRS1	B0TCRS0	B0TCRH1	B0TCRH0
(016AH)	Read/Write	R/	W	R/	w ()	R	w	T/R/	w
	Reset State	0	0	0	0	√ o	0//	0	0
RDTMGCR1	Bit Symbol	B3TCRS1	B3TCRS0	B3TCRH1	B3TCRH0	B2TCRS1	B2TCRS0	B2TCRH1	B2TCRH0
(016BH)	Read/Write	R/	W	R/	w \	R	W C	/ R/	W
	Reset State	0	0	<u>o</u> _(0	0	(//0)	0	0
BROMCR	Bit Symbol						CSDIS	ROMLESS	VACE
(016CH)	Read/Write				$\int_{-\infty}^{\infty}$			R/W	
	Reset State)) 1	0/1	1/0
RAMCR	Bit Symbol			\mathcal{F}					=
(016DH)	Read/Write		A		1	/			R/W
	Reset State								Must be
					16	3)/			written as
		X	\bigcirc						1.
	<					/			

(2) Memory Access Operations After Reset

After reset, external memory is accessed using the initial data bus width that is determined by the AM1 and AM0 pins. The settings of the AM1 and AM0 pins and their corresponding operation modes are as follows:

AM1	AM0	Start Mode
0	0	Don't use this setting
0	1	Boots from external memory using a16-bit data bus (Note)
1	0	Don't use this setting
1	1	Boots from the on-chip boot ROM (32-bit on-chip-MROM)

Note: The memory that is used for booting after reset must be either NOR-Flash or Masked-ROM. NAND-Flash, SDRAM cannot be used.

The values of AM1 and AM0 are effective only upon reset. The data bus width is specified by the <BnBUS1:BnBUS0> bits of the control registers at any other timing.

Upon reset, only the control registers (B2CSH and B2CSL) for the CS2 space automatically becomes effective. (The B2CSH<B2E> bit is set to 1 upon reset.). Then, the AM1 and AM0 values that specify the data bus width are loaded into the data bus width specification bits of the control register for the CS2 space. At the same time, the address range ebtween 000000H and FFFFFFH is defined as the CS2 space. (The B2CSH<B2M> is cleared to 0.)

Then, the address spaces are configured by MSARn and MAMRn. The BnCSH and BnCSL registers are also set up. The BnCSH<8nE> must be set to 1 to enable these settings.

3.8.3 Basic Functions and Register Settings

This section describes some of the memory controller functions, such as setting the address range for each address space, associating memory to the selected space and setting the number of wait states to be inserted.

(1) Programming chip select spaces

The address ranges of CS0 to CS3 are specified by MSAR0 to MSAR3 and MAMR0 to MAMR3.

(a) Memory Start Address registers

Figure 3.8.1 shows the Memory Start Address registers. The MSAR0 to MSAR3 specify the start addresses for the CS0 to CS3 spaces. The bits S23 to S16 specify the upper 8 bits (A23 to A16) of the start address. The lower 16 bits of the start address (A15 to A0) are assumed to be 0. Accordingly, the start address can only be a multiple of 64 Kbytes, ranging from 000000H to FF0000H. Figure 3.8.2 shows the relationship between the start addresses and the Memory Start Address register values.

Memory Start Address Registers (for CS0 to CS3 spaces)

			7	6	5	\ 4	3	2)	1	0
MSAR0	MSAR1	Bit Symbol	S23	S22	S21	S20	\$19 S	18	S17	S16
(0143H) /	(0147H)	Read/Write	_		7(//)	R	w ((// 5)			
MSAR2	MSAR3	Reset State	1	1 📈 (1		1	1	1
(014BH) /	(014FH)	Function			Determin	es A23 to A	16 of the start add	ress		

→ Specifies start addresses for CS0 to CS3 spaces

Figure 3.8.1 Memory Start Address Register

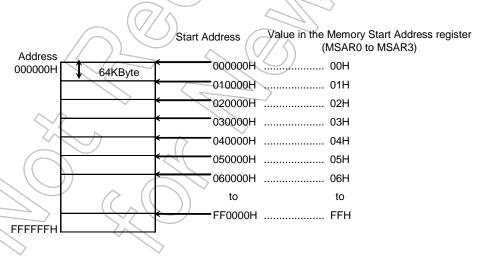


Figure 3.8.2 Relationship Between Start Addresses and the Memory Start Address Register Values

(b) Memory Address Mask Registers

Figure 3.8.3 shows the Memory Address Mask registers. MAMR0 to MAMR3 are used to determine the sizes of the CS0 to CS3 spaces by setting particular bits in MAMR0 to MAMR3 to mask the corresponding start address bits. The address compare logic uses only the address bits that are not masked (i.e., mask bit cleared to 0) to detect an address match in the CS0 to CS3 spaces. The upper bits are always compared.

Also, the address bits that can be masked by MAMR0 to MAMR3 differ between CS0 to CS3 spaces as follows:

CS0 space: A20 to A8 $\,$

CS1 space: A21 to A8

CS2 and CS3 spaces: A22 to A15

Accordingly, the block size that can be assigned to each space is also different.

Note: After reset, only the control register for the CS2 space is effective. The control register for the CS2 space has the B2M bit. If the B2M bit is cleared to 0, the address range between 000000H and FFFFFH is defined as the CS2 space. (The B2M bit is cleared to 0after reset.) By setting the B2CSH<B2M> bit to 1, the start address and the block size can be arbitrarily specified, as in the other spaces.

Memory Address Mask Register (for CS0 space)

MAMR0 (0142H)

	7	6	5	4	3	<i>))</i> 2	1	0
Bit Symbol	V20	V19	V18	V17/	V16	V15	V14~9	V8
Read/Write				R/	w))			
Reset State	1	(1() 1	1	1/	1	1	1
Function		CS0 bloc	ck size 0: Th	ne address co	ompare logic	uses this ad	dress bit	

The CS0 block size can vary from 256 Bytes to 2 Mbytes

Memory Address Mask Register (for CS1 space)

MAMR1 (0146H)

4	\\ \times_\(\times_\)	// 6	5	4	3	2	1	0		
Bit Symbol	V21	V20 <	V19))V18	V17	V16	V15~9	V8		
Read/Write		R/W								
Reset State	1			1	1	1	1	1		
Function		CS1 block size 0: The address compare logic uses this address bit								

The CS1 block size can vary from 256 Bytes to 4 Mbytes

Memory Address Mask Register (for CS2 and CS3 spaces)

MAMR2 MSAR3 (014AH) (014FH)

	7	6	5	4	3	2	1	0
Bit Symbol	V22	V21	V20	V19	V18	V17	V16	V15
Read/Write	R/W							
Reset State	1	1	1	1	1	1	1	1
Function	C	S2 or CS3	block size 0:	The addres	s compare lo	ogic uses this	address bit.	

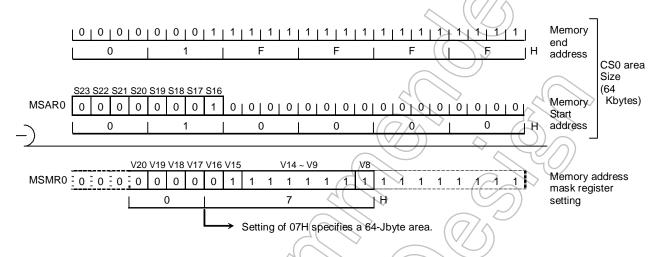

The CS2 and CS3 block sizes can vary from 32 Kbytes to 8 Mbytes

Figure 3.8.3 Memory Address Mask Registers

(c) Setting the start addresses and address ranges

An example of specifying a 64-Kbyte address space starting from 010000H for the CS0 space:

Set 01H in the MSAR0<\$23:\$16> bits that corresponds to the upper 8 bits of the start address. Then, calculate the difference between the start address and the anticipated end address (01FFFFH) based on the size of the CS0 space. Bits 20 to 8 of the calculation result correspond to the mask value to be set for the CS0 space. Setting this value in the MAMR0<\$V20:\$V8> bits specifies the block size. This example sets 07H in MAMR0 to allocate a 64-Kbyte address space for the CS0 space.

(d) Programming block sizes

Table 3.8.3 shows the relationship between CS spaces and their block sizes. The "Δ" symbol indicates the size that might not be programmable depending on the combination of the values of the Memory Start Address and Memory Address Mask registers. When specifying a block size indicated as "Δ", set the start address register to a multiple of the desired block size starting from 000000H.

If the 16-Mbyte range is defined as CS2 space, or if two or more spaces overlap, the settings for the CS space with the smallest number overrides the settings for other spaces because of its highest priority.

Example: Defining 128 Kbyte area as the CS0 space:

a. Valid start addresses

The desired block size can be programmed with this configuration.

b. Invalid start addresses

This start address is not a multiple of the desired block size. Hence, the desired block size cannot be programmed with this configuration. Table 3.8.3 Valid Block Sizes for Each CS Space

Size (Byte) CS space	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	0	0	0	Δ	Δ	Δ	Δ	Δ		
CS1	0	0		0	Δ	Δ	Δ	Δ	Δ	Δ	
CS2			0	0	Δ	Δ	Δ	Δ	A	Δ	Δ
CS3			0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ

Note: The "\Delta" symbol indicates the sizes that may not be programmable depending on the combination of the values of the Memory Start Address and Memory Address Mask registers.

(e) Priorities of the address spaces

When the specified address space overlaps with the on-chip memory area, the priority order of the address spaces are as follows:

On-chip I/O > On-chip memory > CS0 space > CS1 space > CS2 space > CS3 space

(f) Specifying the number of wait states and the bus width for the address locations outside the CS0 to CS3 spaces

The BEXCSL and BEXCSH registers specify the data bus width and number of wait states when an adress outside the CS0 to CS3 spaces (CSEX space) is accessed. These registers are always enabled for the CSEX space.

(2) Memory specification

Setting the BnCSH<BnOM1:BnOM0> bits specifies the memory type that is associated with each address spaces. The interface signal that corresponds to the specified memory type is generated. The memory type is specified as follows:

BnCSH<BnOM1:0>

BnOM1	BnOM0	Memory Type
0	0	SRAM/ROM (Default)
0	1	(Reserved)
1	0	(Reserved)
1	1	SDRAM

Note 1: SDRAM can be associated with the CS1 or CS2 space.

(3) Data bus width specification

The data bus width can be specified for each address space by the BnCSH<BnBUS1:BnBUS0> bits as follows:

BnCSH<BnBUS1:BnBUS0>

<bnbus1></bnbus1>	<bnbus0></bnbus0>	Bus Width
0	0	8-bit bus mode (Default)
0	1	16-bit bus mode
1	0	Reserved
1	1	Don't use this setting

Note1: The data bus width for SDRAM should be defined as 16 bits by setting BnCSH<BnBUS1:BnBUS0> to 01.

As described above, the TMP92CF26A supports dinamic bus sizing, which allows the controller to transfer operands to or from the selected address spaces while automatically determining the data bus width. On which part of the data bus the data is actually placed is determined by the data size, bus width and start address. The table below provides a detailed description of the actual bus operation.

The TMP92CF26A has only 16 external data bus pins. Therefore, please ignore the setting information of when the memory bus width is set to be 32 bits in the table.

Note: If two memories with different bus widths are assigned to consecutive addresses, do not execute an instruction that accesses the addresses crossing the boundary between those memories. Otherwise, a read/write operation might not be performed correctly.

Operand Data Size (bit)	Address 4n + 0 4n + 1 4n + 2 4n + 3	(bit) 8/16/32 8 16/32 8/16 32 8 16	4n + 0 4n + 1 4n + 1 4n + 2 4n + 2 4n + 3	D31 to D24 xxxxx xxxxx xxxxx xxxxx	D23 to D16 xxxxx xxxxx xxxxx	D15 to D8 xxxxx xxxxx	D7 to D0 b7 to b0 b7 to b0
	4n + 0 4n + 1 4n + 2	8/16/32 8 16/32 8/16 32 8	4n + 1 4n + 1 4n + 2 4n + 2	xxxxx xxxxx	xxxxx	xxxxx	b7 to b0
8	4n + 1 4n + 2	8 16/32 8/16 32 8	4n + 1 4n + 1 4n + 2 4n + 2	xxxxx	xxxxx		
8	4n + 2	16/32 8/16 32 8	4n + 1 4n + 2 4n + 2	xxxxx		ххххх	57 10 50
8		8/16 32 8	4n + 2 4n + 2			b7 to b0	xxxxx
8		32 8	4n + 2		XXXXX	XXXXX	b7 to b0
	4n + 3		4n + 2	xxxxx	b7 to b0	xxxxx	XXXXX
	4n + 3	16	411 + 3	xxxxx	xxxxx	xxxxx	b7 to b0
			4n + 3	xxxxx	xxxxx	b7 to b0	xxxxx
		32	4n + 3	b7 to b0	xxxxx	xxxxx	xxxxx
		8	(1) 4n + 0	xxxxx	xxxxx	xxxxx	b7 to b0
	4n + 0		(2) 4n + 1	xxxxx	XXXXX	xxxxx	b15 to b8
		16/32	4n + 0	xxxxx	xxxxx	b15 to b8	b7 to b0
		8	(1) 4n + 1	xxxxx	XXXXX	xxxxx	b7 to b0
	44		(2) 4n + 2	XXXXX	xxxxx	XXXXX	b15 to b8
	4n + 1	16	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
	-	32	(2) 4n + 2	XXXXX	XXXXXX	XXXXX	b15 to b8
<u> </u>		32	4n + 1 (1) 4n + 2	xxxxx	b15 to b8	b7 to b0	b7 to b0
16		8	(1) 4n + 2 (2) 4n + 1	XXXXX	xxxxx	XXXXX	b15 to b8
	4n + 2	16	4n +2	XXXXX	XXXXX	b15 to b8	b7 to b0
	-	32	4n +\2	b15 to b8	b7 to b0	XXXXX	XXXXX
			(1) 4n + 3	xxxxx	xxxxx	xxxxx	b7 to b0
		8	(2) 4n + 4	xxxxx	xxxxx	×xxxx	b15 to b8
	4n + 3	16	(1) 4n + 3	xxxxx	xxxxx	b7 to b0	xxxxx
	411 + 3	10	(2) 4n + 4	xxxxx	XXXXX	xxxxx	b15 to b8
		32	(1) 4n + 3	b7 to b0	xxxxx	xxxxx	xxxxx
		02	(2) 4n + 4	xxxxx	XXXXX	xxxxx	b15 to b8
			(1) 4n + 0	xxxx//) xxxxx	xxxxx	b7 to b0
		8	(2) 4n + 1	xxxxx	xxxxx	xxxxx	b15 to b8
			(3) 4n + 2	xxxxx	xxxxx	xxxxx	b23 to b16
	4n + 0		(4) 4n + 3	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 0 (2) 4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
	-	32	4n + 0	b31 to b24	b23 to b16	b31 to b24 b15 to b8	b23 to b16 b7 to b0
		32	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
		(())	(2) $4n + 1$	XXXXX	XXXXX	XXXXX	b15 to b8
		8	(3) 4n + 2	xxxxx	xxxxx	xxxxx	b23 to b16
	/	\bigcap	(4) 4n + 3	xxxxx	xxxxx	xxxxx	b31 to b24
	4n + 1	V/	(1) 4n + 1	xxxxx	xxxxx	b7 to b0	xxxxx
		16	(2) 4n + 2	xxxxx	xxxxx	b23 to b16	b15 to b8
	(().4		(3) 4n + 4	xxxxx	xxxxx	xxxxx	b31 to b24
		32	(1) 4n + 1	b23 to b16	b15 to b8	b7 to b0	xxxxx
		02	(2) 4n + 4	XXXXX	XXXXX	XXXXX	b31 to b24
32			(1) 4n + 2	XXXXX	xxxxx	xxxxx	b7 to b0
		8	(2) 4n + 3	XXXXX	XXXXX	XXXXX	b15 to b8
	~ \		(3) 4n + 4	XXXXX	XXXXX	XXXXX	b23 to b16
4	4n + 2	\rightarrow	(4) 4n + 5	XXXXX	XXXXX	XXXXX	b31 to b24
		(16	(1) 4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
			(2) $4n + 4$	h15 to h8	h7 to h0	b31 to b24	b23 to b16
	\cup / $\overline{}$	32	(1) 4n + 2 (2) 4n + 4	b15 to b8	b7 to b0 xxxxx	b31 to b24	xxxxx b23 to b16
		(())	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
	\rightarrow		(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8	(3) 4n + 5	XXXXX	XXXXX	XXXXX	b23 to b16
	~		(4) 4n + 6	XXXXX	XXXXX	XXXXX	b31 to b24
	4n + 3		(1) 4n + 3	XXXXX	XXXXX	b7 to b0	XXXXX
		16	(2) 4n + 4	xxxxx	xxxxx	b23 to b16	b15 to b8
			(3) 4n + 6	xxxxx	xxxxx	xxxxx	b31 to b24
		32	(1) 4n + 3	b7 to b0	xxxxx	xxxxx	xxxxx
		J2	(2) 4n + 4	xxxxx	b31 to b24	b23 to b16	b15 to b8

xxxxx: The input data placed on the data bus indicated by this symbol is ignored during a read operation. During a write operation, the bus is in the high-impedance state, and the write strobe signal remains inactive.

(4) Wait control

The external bus cycle completes in two states at minimum (25 ns at fsys = 80 MHz) without inserting a wait state.

Setting up the BnCSL<BnWW3:BnWW0> bits specifies the number of wait states to be inserted in a write cycle, and setting the BnCSL<BnWR3:BnWR0> bits specifies the number of wait states to be inserted in a read cycle. The external bus cycle can be programmed as follows;

BnCSL<BnWW>/<BnWR>

<bnww3> <bnwr3></bnwr3></bnww3>	<bnww2></bnww2>	<bnww1> <bnwr1></bnwr1></bnww1>	<bnww0></bnww0>	Number of Wait States
0	0	0	1	2 states (0 wait state), fixed wait-state mode
0	0	1	0	3 states (1 wait state), fixed wait-state mode (Default)
0	1	0	1	4 states (2 wait states), fixed wait-state mode
0	1	1	0	5 states (3 wait states), fixed wait-state mode
0	1	1	1	6 states (4 wait states), fixed wait-state mode
1	0	0	0	7 states (5 wait states), fixed wait-state mode
1	0	0	1	8 states (6 wait states), fixed wait-state mode
1	0	1	0 (9 states (7 wait states), fixed wait-state mode
1	0	1	1 (10 states (8 wait states), fixed wait-state mode
1	1	0	000	11 states (9 wait states), fixed wait-state mode
1	1	0		12 states (10 wait states), fixed wait-state mode
1	1	1	<u>(0</u>	14 states (12 wait states), fixed wait-state mode
1	1	1 ,		18 states (16 wait states), fixed wait-state mode
0	1	0	0	22 states (20 wait states), fixed wait-state mode
0	0	1	7	6 states + WAIT pin input mode
	Other than	the above		(Reserved)

Note 1:For SDRAM, the above settings are not effective. Refer to Section 3.16, SDRAM controller.

Note 2:For NAND flash memory, the above settings are not effective.

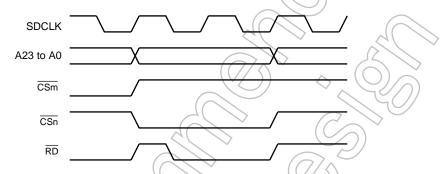
(a) Fixed wait-state mode

The bus cycle is completed in the specified number of states. The number of states can be selected from 2 (0 wait state) through 12 (10 wait states), 14 (12 wait states), 18 (16 wait states) and 22 (20 wait states).

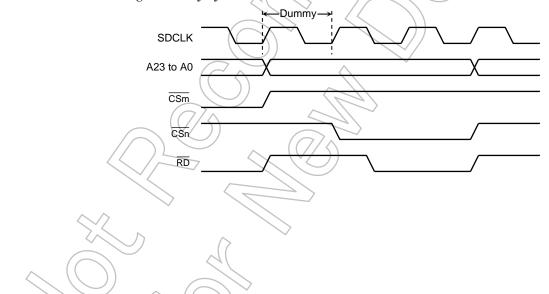
(b) WAIT pin input mode

In this mode, the $\overline{\text{WAIT}}$ signal is sampled. A wait state is continued to be inserted while the $\overline{\text{WAIT}}$ signal is sampled active. The minimum bus cycle in this mode is six states. The bus cycle is completed if the $\overline{\text{WAIT}}$ signal is sampled High at the rising edge of SDCLK in the sixth state. The bus cycle is extended as long as the $\overline{\text{WAIT}}$ signal remains active after sixth state.

(5) Recovery cycle (data hold time) control


For some memory, the data hold time after when the $\overline{\text{CE}}$ or $\overline{\text{OE}}$ signal is asserted in a read cycle is defined by the AC specification. This may lead to data conflicts. Thus, to avoid this problem, a single dummy cycle can be inserted immediately after an access cycle for the CSm space by setting the BmCSH<BmREC> bit to 1.

This single dummy cycle is inserted when another CS space is accessed in the next bus cycle.


BnCSH<BnREC>

	1///
0	No dummy cycle is inserted (Default).
1	Dummy cycle is inserted.

• When no dummy cycle is inserted (0 wait state)

• When a single dummy cycle is inserted (0 wait state)

(6) Timing adjustment function for control signals

This function allows for the timing adjustment of the rising and falling edges of the \overline{CSn} , \overline{CSZx} , \overline{CSXx} , R/\overline{W} , \overline{RD} , \overline{WRxx} , \overline{SRWR} and \overline{SRxxB} signals based on the setup and hold time requirements of memories.

As for the $\overline{\text{CSn}}$, $\overline{\text{CSZx}}$, $\overline{\text{CSZx}}$ and R/\overline{W} signals, and also for the $\overline{\text{WRxx}}$, $\overline{\text{SRWR}}$ and $\overline{\text{SRxxB}}$ signals (generated in a write cycle), their timing can be adjusted for only one CS space. As for the $\overline{\text{RD}}$ and $\overline{\text{SRxxB}}$ signals (generated in a read cycle), their timing can be adjusted individually for each of all CS spaces. As for the CS and EX spaces for which the timing adjustment is not performed, the buses connected to them operate with basic bus timing. (Refer to (7).)

This function can not be used while the BnCSH<BnREC> bit is enabled.

The control signals of SDRAM can be adjusted by setting up the SDRAM controller.

CSTMGCR<TxxSEL1:TxxSEL0>, WRTMGCR<TxxSEL1:TxxSEL0>

00	Change the bus timing for CS0 space
01	Change the bus timing for CS1 space
10	Change the bus timing for CS2 space
11	Change the bus timing for CS3 space

CSTMGCR<TAC1:TAC0>

00	TAC = $0 \times 1/f_{SYS}$ (Default)
01	$TAC = 1 \times 1/f_{SYS}$
10	$TAC = 2 \times 1/f_{SYS}$
11	(Reserved)

TAC: The delay from A23-A0 to CSn, CSZx, CSXx, R/W.

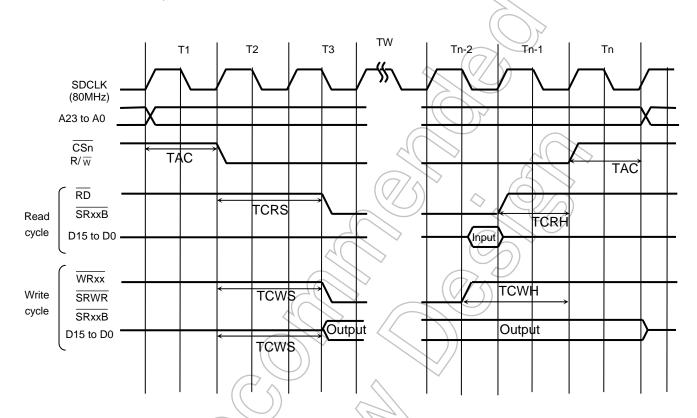
WRTMGCR<TCWS/H1:TCWS/H0>

	9711177,61197,107
00	TCWS/H = $0.5 \times 1/f_{SYS}$ (Default)
01	TCWS/H = $1.5 \times 1/f_{SYS}$
10	TCWS/H = $2.5 \times 1/f_{SYS}$
11	TCWS/H = 3,5 × 1/f _{SYS}

TCWS:The delay from CSn to WRxx,SRWR,SRxxB.

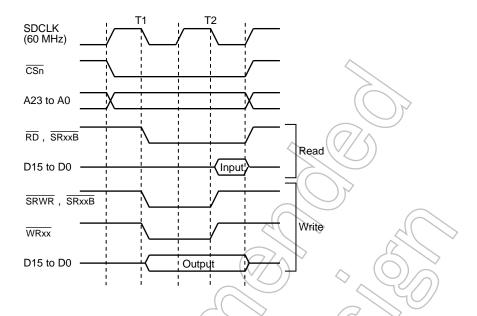
TCWH: The delay from WRxx, SRWR, SRxxB to CSn.

RDTMGCR0/1<BnTCRH1:BnTCRH0>

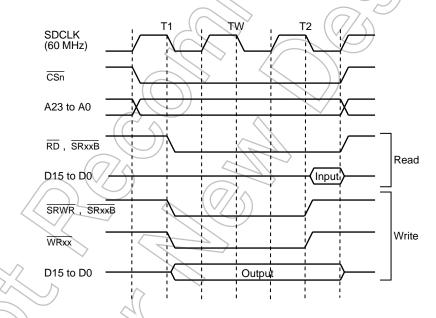

	/- /	
· /	00	$TCRH = 0 \times 1/f_{SYS}$ (Default)
/	01	$TCRH = 1 \times 1/f_{SYS}$
	10	$TCRH = 2 \times 1/f_{SYS}$
)) 11	$TCRH = 3 \times 1/f_{SYS}$

TCRH: The delay from RD, SRxxB to CSn.

RDTMGCR0/1<BnTCRS1:BnTCRS0>

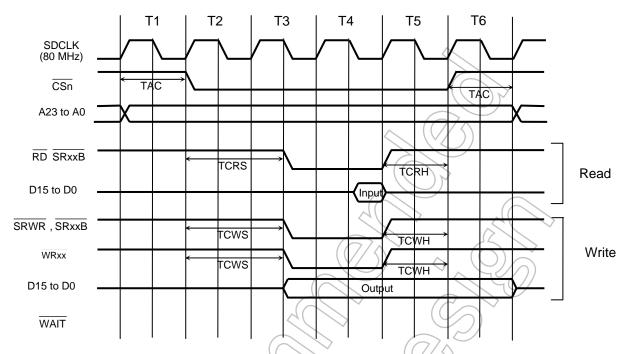

00	TCRS = $0.5 \times 1/f_{SYS}$ (Default)
01	$TCRS = 1.5 \times 1/f_{SYS}$
10	TCRS = $2.5 \times 1/f_{SYS}$
11	TCRS = $3.5 \times 1/f_{SYS}$

TCRS:The delay from CSn to RD,SRxxB.

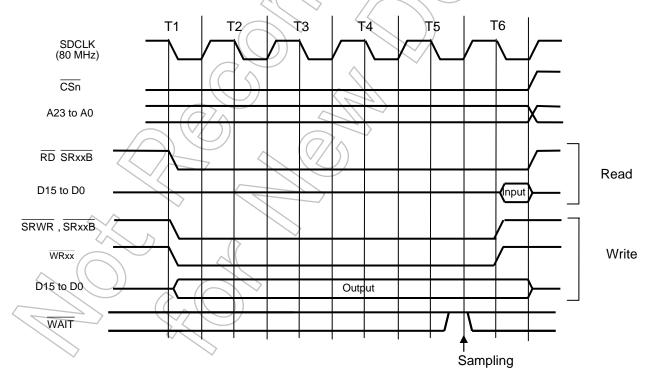


Note: Wait states (TWs) are inserted as specified by the BnCSL register. No TW is inserted if the number of wait state is specified as zero.

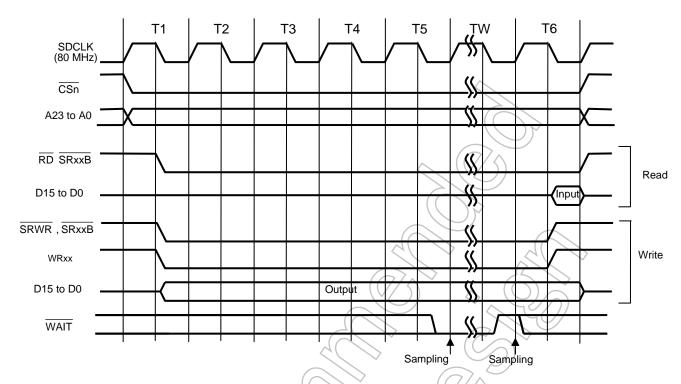
- (7) Basic bus timing
 - (a) External bus read/write cycle (0 wait state)



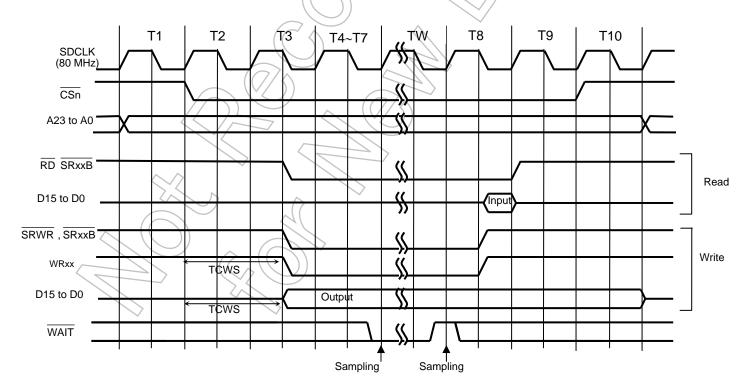
(b) External bus read/write cycle (1 wait state)



(c) External bus read cycle (1 wait state + TAC: $1\times1/f_{SYS}$ + TCRS: $1.5\times1/f_{SYS}$ + TCRH: $1\times1/f_{SYS}$)


External bus write cycle (1 wait state + TAC: 1×1/f_{SYS} + TCWS/H: 1.5×1/f_{SYS})

(d) External bus read/write cycle (4 wait states + WAIT pin input mode)


(e) External bus read/write cycle (4 wait states + WAIT pin input mode)

(f) External bus read cycle (4 wait states + $\overline{\text{WAIT}}$ pin input mode +TAC: $1\times1/f_{\text{SYS}}$ + TCRS: $1.5\times1/f_{\text{SYS}}$ + TCRH: $1\times1/f_{\text{SYS}}$)

External bus write cycle

(4 wait states + WAIT pin input mode + TAC: 1×1/f_{SYS} + TCWS/H: 1.5×1/f_{SYS})

(8) External memory connections

Figure 3.8.4 shows an example of how to connect external 16-bit SRAM and 16-bit NOR flash to the TMP92CF26A.

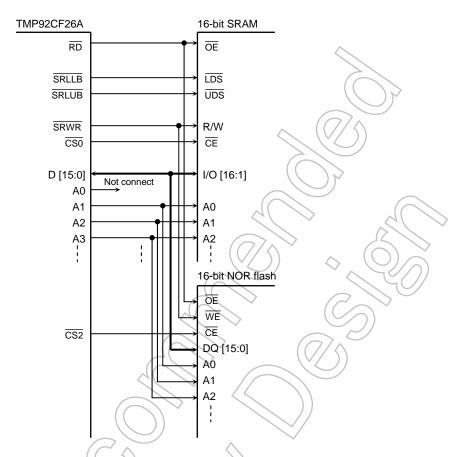


Figure 3.8.4 Example of External 16-Bit SRAM and NOR Flash Connection

3.8.4 Controlling the Page Mode Access to ROM

This section describes page mode access operations to ROM and the required register settings. The page mode operation to ROM is specified by PMEMCR.

(1) Operations and register settings

The TMP92CF26A supports page mode accesses to ROM. Only the CS2 space can be configured for this mode of access. The page mode operation to ROM is specified by the Page ROM Control register, PMEMCR.

Setting the PMEMCR<OPGE> bit to 1 sets the mode of memory access to the CS2 space to page mode.

The number of cycles required for a read cycle is specified by the PMEMCR<OPWR1:OPWR0> bits.

PMEMCR<OPWR1:OPWR0>

		741 3
<opwr1></opwr1>	<opwr0></opwr0>	Number of Cycles in Page Mode
0	0	1 cycle (n-1-1-1 mode) (n ≥ 2)
0	1	2 cycles (n-2-2-2 mode) (n ≥ 3)
1	0	3 cycles (n-3-3-3 mode) (n ≥ 4)
1	1	4 cycles (n-4-4-4 mode) (n ≥ 5)

Note: Specify the number of wait states (n) using the control register (BnCSL) for each address space.

The page size (the number of bytes) of ROM as seen from the CPU is determined by PMEMCR<PR1:PR0>. When the specified page boundary is reached, the controller terminates the page read operation. The first data of the next page is read in the normal mode. Then, the following data is read again in page mode.

PMEMCR<PR1:PR0>

<pr1></pr1>	<pr0></pr0>	ROM Page Size
0	0	64 bytes
0	(17/4	32 bytes
1		16 bytes (Default)
1 //		8 bytes

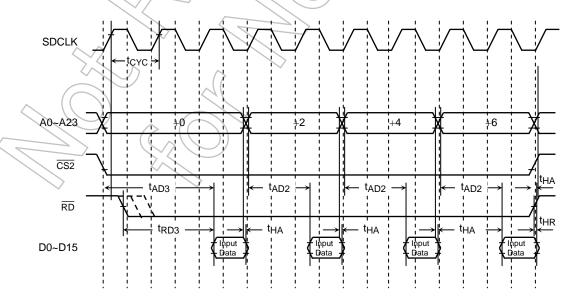
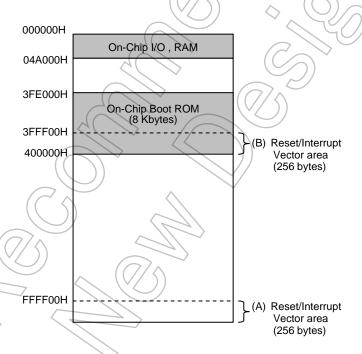


Figure 3.8.5 Page Mode Access Timing (when using a 8-byte page size)

3.8.5 On-Chip Boot ROM Control

This section describes the on-chip boot ROM.

For the program specification of boot ROM, refer to Section 3.4, Boot ROM.


(1) BOOT mode

The TMP92CF26A boots in BOOT mode following the AM1 and AM0 settings upon reset.

AM1	AM0	Start mode
0	0	Don't use this setting
0	1	Boots from external memory using a 16-bit data bus
1	0	Don't use this setting
1	1	Boots from the on-chip Boot ROM (32-bit on-chip MROM)

(2) Memory map of the boot ROM

The Boot ROM consists of 8-Kbyte masked ROM and is located in the memory area from 3FE000H to 3FFFFFH.

(3) Reset/interrupt address select circuitry

The reset/interrupt vector area is located in the memory area from FFFF00H to FFFFEFH (area (A)) in the TLCS-900/H1.

Since the boot ROM is located in the different area, the TMP92CF26A supports reset/interrupt vector address select circuitry.

In BOOT mode, the reset/interrupt vector area is located in the memory area from 3FFF00H to 3FFFEFH (area (B)). By clearing the BROMCR<VACE> bit to 0 after the boot sequence, the vector area can be remapped to the area (A). Therefore, the area (A) can be used only for the system routine.

This BROMCR<VACE> bit is initialized to 1 in BOOT mode. In any other start mode, this register has no effect.

Note: Since the last 16-byte area (FFFFF0H to FFFFFFH) is reserved for an emulator, this area is not remapped by clearing the BROMCR<VACE> bit.

(4) Bypassing boot ROM

The application system program may continue to run without asserting a reset signal even after completing the boot sequence in BOOT mode. In this case, the external memory area from 3FE000H to 3FFFFFH can not be accessed because the boot ROM already resides in the same area.

To avoid such a situation, the on-chip boot ROM can be bypassed by setting the BROMCR<ROMLESS> bit to 1.

This BROMCR<ROMLESS> bit is initialized to 0 in BOOT mode, while it is initialized to 1 in other start modes.

If this bit has been set to 1, writing a 0 to this bit is prohibited.

BROMCR
(016CH)

	7	6	5	4	3) 2	1	0
Bit Symbol					H	CSDIS	ROMLESS	VACE
Read/Write					// */	>	R/W	
Reset State					1	1	0/1 (note)	1/0 (note)
Function					7/^	Nand_Flash	Boot ROM	Vector
				_ (\	()	area	0: Use	address
						CS output	1: Bypass	conversion
				2		0: Enable	\Diamond	0: Disable
				4()/		1: Disable	·	1: Enable

Note: Reset states differ depending on start modes

3.8.6 Notes

(1) Timing for the $\overline{\text{CS}}$ and $\overline{\text{RD}}$ signals

If the load capacitance of the $\overline{\text{RD}}$ (Read) signal line is greater than that of the $\overline{\text{CS}}$ (Chip Select) signal line, the deassertion timing of the read signal is delayed, which may lead to an unintentional extension of a read cycle. Such an unintended read cycle extention, which is indicated as (a) in Figure 3.8.6, may cause a problem.

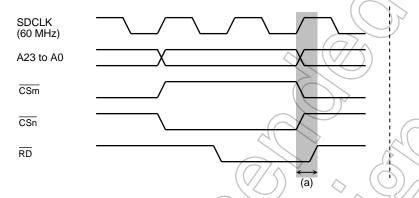


Figure 3.8.6 Read Cycle of When the Read Signal is Delayed

Example: When using an externally connected NOR flash whose commands are compatible with the standard JEDEC commands, the toggle bit may not be read correctly. If the rising edge of the read signal in the cycle immediately preceding the NOR flash access cycle does not occur in time, a read cycle may be extended unintentilnally as indicated as (b) in Figure 3.8.7.

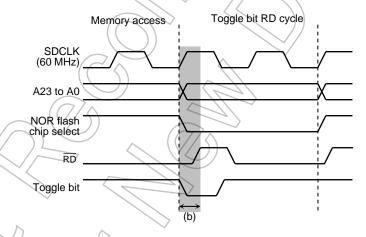


Figure 3.8.7 NOR Flash Toggle Bit Read Cycle

When the toggle bit is inverted due to this unexpected read cycle extension, the CPU cannot read the toggle bit properly and it always reads the same value from the toggle bit.

To avoid this situation, it is recommended to perform data polling or to use the timing adjustment function for the rising edge of the $\overline{\text{RD}}$ signal (RDTMGCRn <BnTCRH1:BnTCRH0>).

(2) Setting up the NAND flash area

Figure 3.8.8 shows a memory map for the NAND flash memory.

Since it is recommended that the CS3 space be located in the memory area from 000000H to 3FFFFFH, the following description is provided for such condition. In this case, the NAND flash area overlaps with the CS3 space. However, the $\overline{\text{CS3}}$ pin is not asserted by setting the BROMCR<CSDIS> bit to 1. Likewise, the $\overline{\text{CS0}}$ through $\overline{\text{CS3}}$ pins, the $\overline{\text{CSXA}}$ through $\overline{\text{CSXB}}$ pins and the $\overline{\text{CSZA}}$ through $\overline{\text{CSZD}}$ pins are not asserted either.

Note 1: In the above setting, 296 Kbytes out of the memory area for the CS3 (000000H to 049FFFH) cannot be used.

Note 2: The 16-byte area (001FF0H to 001FFFH) is predefined asNAND Flash area as shown below regardless of which CS space is selected. Therefore, the setting of the CS3 space does not affect the NAND flash area. (NAND-Flash area specification)

1. Bus width : Specified by NDFMCR1<BUSW> in the NAND Flash controller.

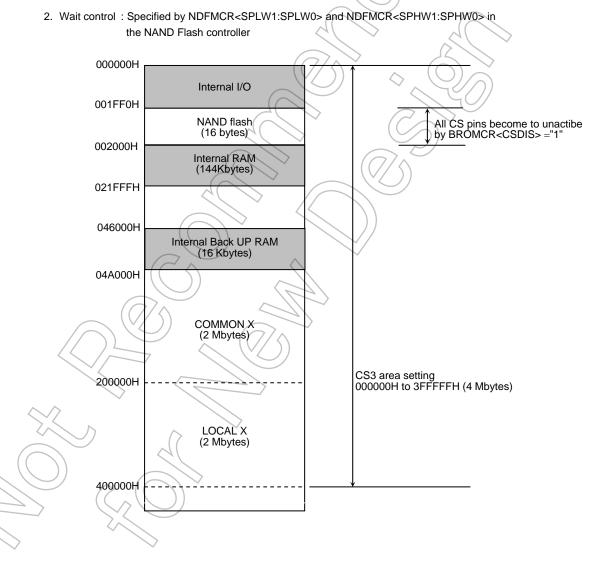


Figure 3.8.8 Recommended CS3 Space Assignment

(3) Setting up the NAND flash area

In case of using SDRAM (SDCS) and NAND flash together, the BROMCR<CSDIS> bit cannot be used. This section provides an example of such cases.

It is recommended that the memory area from 000000H to 3FFFFH be assigned to the CS2 or CS1 (SDCS) space. A detailed description is provided below.

In this case, the NAND flash area overlaps with the CS2 or CS1 (SDCS) space.

So, if a program accesses NAND flash, the CS2 or CS1 space and NAND flash space are accessed at the same time, which leads to problems such as a data conflict.

To avoid this, it is recommended that the 32-Kbyte memory area from 000000H to 007FFFH be assigned to the CSO space. (The \overline{CSO} pin is not required.)

Since the CS0 setting has higher priority over the settings of the CS2 and CS1 spaces, only NAND flash will be accessed without causing data conflicts.

Note: In this case, the 32-Kbyte memory area from 000000H to 007FFFH within the SDCS space cannot be used.

000000H Internal I/O 001FF0H NAND flash CS0 area setting 000000H to (16 bytes) 007FFFH (32 Kbytes) 002000H Internal RAM (128 Kbytes) 021FFFH 046000H Internal Back UP RAM (16 Kbytes) 04A000H **COMMON X** (2 Mbytes) SDCS: CS2 or CS1 area setting 000000H to 3FFFFFH (4 Mbytes) 200000H LOCAL X (2 Mbytes) 400000H

Figure 3.8.9 Recommended Assignment for the SDCS and CS0 Spaces

3.9 External Memory Extension (MMU)

The MMU allows for memory expansion by providing three local memory areas, the MMU function allows for the expansion of the program/data area to 3.1Gbytes.

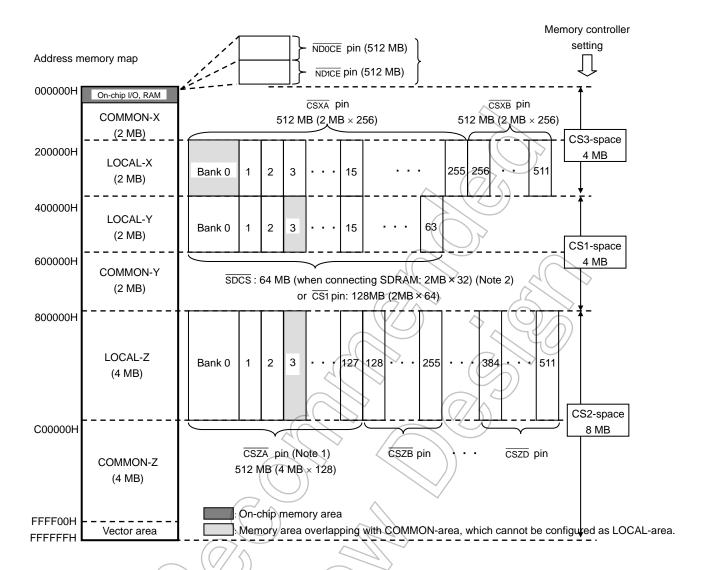
For recommended address memory maps, refer to Figure 3.9.1 and Figure 3.9.3.

However, when the amount of memory being used is less than 16 Mbytes, it is not necessary to configure the MMU register. For such cases, please refer to the section on the Memory controller.

A memory area which can be configured into banks is called the LOCAL area. The address range assigned to the LOCAL area is predefined and cannot be changed.

And the rest of the memory area is called the COMMON area.

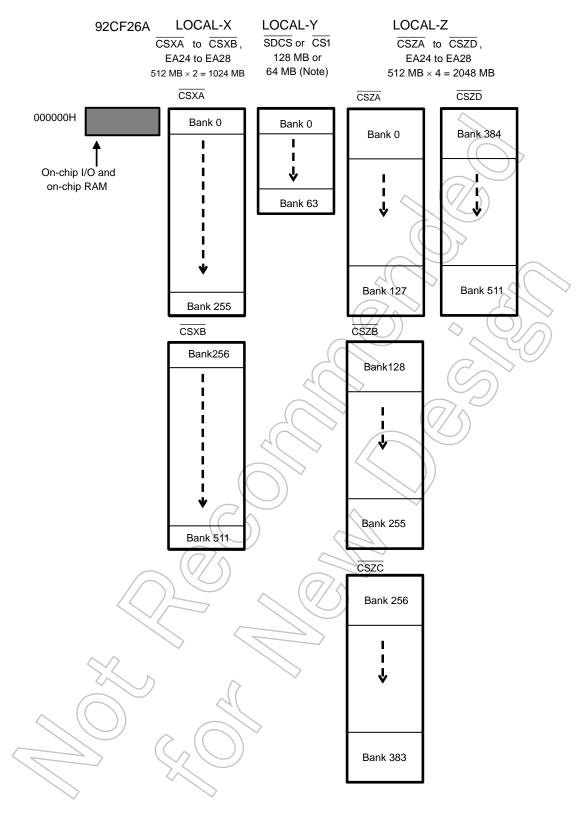
Basically, a series of program routines should be stored entirely within one bank. The program execution cannot be branched between different banks of the same LOCAL area using the JP instruction. For more details, refer to the following programming examples.


The TMP92CF26A has the following external pins for connecting external memory.

- Address bus: EA28, EA27, EA26, EA25, EA24 and A23 to A0
- Chip Select: $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$, $\overline{\text{CSXA}}$ to $\overline{\text{CSXB}}$, $\overline{\text{CSZA}}$ to $\overline{\text{CSXD}}$, $\overline{\text{SDCS}}$, $\overline{\text{NDOCE}}$ and $\overline{\text{NDICE}}$
- Data bus: D15 to D0

3.9.1 Recommended Memory Map

Figure 3.9.1 shows one of recommended address memory maps. This is an example of when memory is expanded to the maximum size.


Figure 3.9.3 shows a memory address map example for a simple memory system consisting of on-chip boot ROM, NAND-Flash and SDRAM.

Note1: CSZA is a chip-select signal for not only bank 0 through bank 127 of the LOCAL-Z area, but also for the COMMON-Z area.

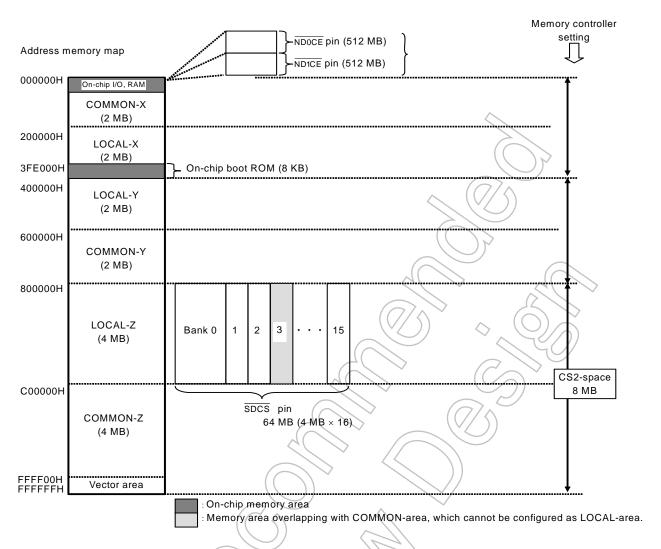

Note2: In case of connecting SDRAM to the Y-area, the maximum expanded memory size is 64 MB (2 MB × 32).

Figure 3.9.1 Recommended Memory Map for the Maximum Expansion (Logical address)

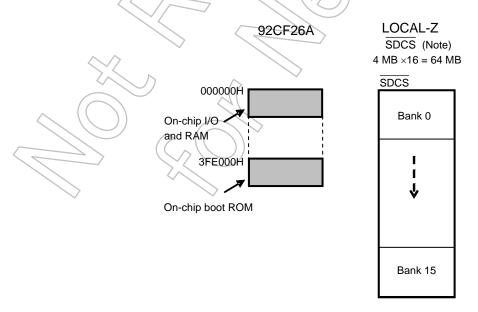

Note: In case of connecting SDRAM to the Y-area, the maximum expanded memory size is 64MB (2MB×32).

Figure 3.9.2 Recommended Memory Map for the Maximum Expansion (Physical address)

Note: In case of connecting SDRAM to the Z-area, the maximum expanded memory size is 64 MB (4 MB \times 16).

Figure 3.9.3 Recommended Memory Map for a Simple System (Logical address)

Note: In case of connecting SDRAM to the Z-area, the maximum expanded memory size is 64 MB (4 MB × 16).

Figure 3.9.4 Recommended Memory Map for a Simple System (Physical address)

3.9.2 Control registers

The TMP92CF26A MMU has 24 registers. These registers are used for storing eight types of data (program, read data, write data, LCD-display data, source data for DMA channels of odd/even number, destination-data for DMA channels of odd/even number) for each of three-LOCAL areas (LOCAL-X through LOCAL-Z). These registers allow for easy data access.

(How to use the control registers)

First, load the control registers for each LOCAL area with the desired bank number and enable/disable the specified bank. Then, configure the external pins to be used and also the Memory Controller. Then, when the CPU or LCDC accesses a logical address in the LOCAL area, the MMU translates the logical address to the corresponding physical address according to the programmed bank configuration. The physical address is then placed on the external address bus pin, which enables external memory accesses. Thus, even when a program accesses the same logical address, its physical address changes depending on the bank specified by the program bank register. This enables memory accesses to the different memory banks.

Note1: When programming the bank registers, the bank area that is overlapping with the COMMON area must not be specified (because addresses of those areas are converted to the same physical addresses).

Note2: In the LOCAL area, changing Program bank number (LOCALPX, Y or Z) is disabled. Program bank setting of each LOCAL area must change in COMMON area. (But bank setting of data-Read, data-Write and LCDC-display data can change also in LOCAL area.)

Note3: After setting values specifying the data bank number into bank registers for the read, write, DMA and LCD display data (LOCALRn, LOCALWn or LOCALLn, LOCALEDn, LOCALSn, LOCALODn; the symbol "n" indicates X, Y or Z), the specified bank requires a certain setup time to be enabled. Thus, the bank cannot be accessed by an instruction immediately following the register setting instructions. In this case, insert a dummy instruction which accesses SFR or another memory area as shown in the following example.

Note4: When the LOCAL-Z area is used, pin P82 should be assigned as the chip select signal $\overline{\text{CSZA}}$. In this case, $\overline{\text{CSZA}}$ works as the chip select signal for the bank 0 through the bank 15, and also for the COMMON-Z area. After reset, pin P82 should be properly configured following the procedure below.

```
ldw
       (localpz), 8000h
                                   ; Enable the banks in LOCAL-Z for program
ldw
       (localrz), 8000h
                                   ; Enable the banks in LOCAL-Z for read data
ldw
       (localwz), 8000h
                                   ; Enable the banks in LOCAL-Z for write data (*1)
Idw
       (localiz), 8000h
                                   ; Enable the banks in LOCAL-Z for LCD display memory
                                     (*2)
                     _ _ _ o _ _ B ; Assign P82 as the CSZA output
ĺd
ld
       (P8FC2), ----1--B;
```

- (*1) This setting is not required if the COMMON-Z area is not used to store write data.
- (*2) This setting is not required if the COMMON-Z area is not used to store display data for LCD.

3.9.2.1 Program bank registers

These registers should be loaded with bank number values to specify the bank to be used as program memory. As described above, the program execution cannot be directly branched to a different bank in the same LOCAL area. The bank switching within the same LOCAL area is prohibited.

			LO	CAL-X Reg	ister for Pro	ogram				
		7	6	5	4	3	2) 1	0	
LOCALPX	Bit Symbol	X7	X6	X5	X4	Х3	X2	// X1	X0	
(H0880)	Read/Write				R/	W	(07)			
	Reset State	0	0	0	0	0	((0))	0	0	
	Function				e bank numbe					
		(Sinc	e bank 0 is o	verlapping wit	h the COMMO	ON area, this t	filed must no	be specified a	ıs 0.)	
		15	14	13	12	11		9	8	
(0881H)	Bit Symbol	LXE				# 7			X8	
,	Read/Write	R/W						The	R/W	
	Reset State	0			7				0	
	Function	Bank for		Sp	ecify the bank	number for th	ne LOCAL-X	area		
		LOCAL-X	Sett	tings of the X8	through X0 b	its and their c	corresponding	chip select si	gnals	
		0: Disable				00 to 011111		90/		
		1: Enable			1000000	00 to 1111111	111 CSXB			
					4(/>					
			LO	CAL-Y Reg	ister for Pro	ogram	\sim	/		
		7	6	5(4	3 ((// 2	1	0	
LOCALPY	Bit Symbol			Y5	Y4	Y3	Y2	Y1	Y0	
(0882H)	Read/Write		$\left \cdot \right $		V		/W			
(/	Reset State			0	0	0	0	0	0	
	Function			())	Specify	the bank nu	mber for the	LOCAL-Y area		
				(Since bar				rea, this filed n		
				\wedge			ed as 3.)	•		
		15	14	<i>))</i> 13	12	11	10	9	8	
(0883H)	Bit Symbol	LYE	7							
(000011)	Read/Write	R/W	WAT							
	Reset State	(0)		$\overline{}$	77/A					
	Function	Bank for		1	(())					
		LOCAL-Y								
		0: Disable								
		1: Enable	7							
	\sim	7								
	4		LØ	CAL-Z Reg	ister for Pro	ogram				
	4	7	6	5	4	3	2	1	0	
LOCALPZ	Bit Symbol)) z ₇	Z6	Z5	Z4	Z3	Z2	Z1	Z0	
(0884H)	Read/Write		20	\		W			20	
	Reset State	0		0	0	0	0	0	0	
	Function		\leftarrow				•	th the COMMO		
	Tunction	Specify the/t	arik fluffiber		ed must not be			th the Colvilvic	n alea, IIIIS	
		45	4.4					0	0	
		15	14	13	12	11	10	9	8	
(0885H)	Bit Symbol	LZE							Z8	
	Read/Write	R/W							R/W	
	Reset State	0							0	
	Function	Bank for	Bank for Specify the bank number for the LOCAL-Z area							
		LOCAL-Z	Settings of the Z8 through Z0 bits and their corresponding chip select signals							
		0: Disable 1: Enable		000000000 to	o 0011111110	CSZA 1000	000000 to 10°	1111111 CSZC	;	

3.9.2.2 LCD Display Data Bank Registers

These registers should be loaded with bank number values to specify the bank to be used as LCD display data memory. Since the data bank registers for CPU and LCDC are prepared independently, the banks that are accessed by the CPU (for program, read and write data) can be switched while the LCD display is on.

			LOC	CAL-X Regi	ster for LCI	D Data					
		7	6	5	4	3	2	1	0		
LOCALLX	Bit Symbol	X7	X6	X5	X4	Х3	X2	// X1	X0		
(H8880)	Read/Write	R/W (7)									
	Reset State	0	0	0	0	0	\\\((0))	0	0		
	Function	Specify the b	Specify the bank number for the LOCAL-X area (Since bank 0 is overlapping with the COMMON area, this filed must not be specified as 0.)								
		15	14	13	12	_11	10	9	8		
(0889H)	Bit Symbol	LXE				1			X8		
(000011)	Read/Write	R/W	//			4		THE T	R/W		
	Reset State	0							0		
	Function	Bank for LOCAL-X 0: Disable 1: Enable	Sett		through X0 b 0000000	number for the its and their conditions of the c	orresponding 11 CSXA	area chip select sig	nals		
			LOC	CAL-Y Regi	ster for LCI	O Data		/			
		7	6	5(4	3 ((// 2	1	0		
LOCALLY	Bit Symbol			Y5	Y4	-Y3	Y2	Y1	Y0		
(HA880)	Read/Write				~ /	R	W				
	Reset State		0 0 0 0								
	Function			(Since bar		e bank numbe oping with the specifie	COMMON a	CAL-Y area rea, this filed m	ust not be		
		15	14	<i>))</i> 13	12	11	10	9	8		
(088BH)	Bit Symbol	LYE			\mathcal{A}						
	Read/Write	R/W									
	Reset State	//0		\rightarrow							
	Function	Bank for LOCAL-Y 0: Disable 1: Enable									
	7		LQÇ	CAL-Z Regi	ster for LCI	Data					
	4	7	6	5	4	3	2	1	0		
LOCALLZ	Bit Symbol)) z7	Z6	Z5	Z4	Z3	Z2	Z1	Z0		
(088CH)	Read/Write			\	R/	W					
(=	Reset State	0	$\langle \rangle \langle \rangle$	0	0	0	0	0	0		
	Function	7/		Specify th	e bank numbe	er for the LOC	AL-Z area				
		(Sinc	e bank 3 is o	verlapping wit	h the COMMO	ON area, this f	iled must not	t be specified a	s 3.)		
		15	14	13	12	11	10	9	8		
(088DH)	Bit Symbol	LZE							Z8		
	Read/Write	R/W							R/W		
	Reset State	0							0		
	Function	Bank for LOCAL-Z 0: Disable 1: Enable	Specify the bank number for the LOCAL-Z area CAL-Z Settings of the Z8 through Z0 bits and their corresponding chip select signals Disable 000000000 to 001111111 CSZA 100000000 to 1011111111 CSZC								

3.9.2.3 Read-Data Bank Registers

These registers should be loaded with bank number values to specify the banks to be used as read-data memory. The following example shows how to specify bank 1 for storing read data in the LOCAL-X area. The instruction, "Idw wa, (xix)," reads the data from the memory location at the address xix and stores it into the wa register of the CPU. When loading the address xix into the read-data bank register, the bank is only enabled upon a data (operand) read operation for the memory location at the address xix.

(Example)

ld xix, 200000h ;

ld (localrx), 8001h ; Specify the read-data bank number.

 Idw
 wa, (localrx)

 ;
 ← Insert a dummy instruction that accesses SFR

ldw wa, (xix) ; Read bank 1 of the LOCAL-X area

LOCAL-X Register for Read Data

			LOC	AL-A Negi		au Dala				
		7	6	5	4	3	2	1	0	
LOCALRX	Bit Symbol	X7	X6	X5	X4	Х3	X2	X1	X0	
(0890H)	Read/Write				R	AW \		14 //		
	Reset State	0	0	0	0 (// 50	0 (() 0	0	
	Function			Specify th	e bank numb	er for the LOC	AL-X area	70/1)		
		(Sinc	e bank 0 is o	verlapping wi	th the COMM	ON area, this	filed must not	be specified a	s 0.)	
		15	14	13	12	11	(10)	9	8	
(0891H)	Bit Symbol	LXE			$\overline{\mathcal{M}}$		7		X8	
	Read/Write	R/W		7		\mathcal{A}			R/W	
	Reset State	0					<i>*************************************</i>		0	
	Function	Bank for		Sp	ecify the ban	k number for th	ne LOCAL-X a	area		
		LOCAL-X	Settings of the X8 through X0 bits and their corresponding chip select signals							
		0: Disable	000000000 to 011111111 CSXA							
		1: Enable			1000000	000 to 111111/	111 CSXB			

LOCAL-Y Register for Read Data

			400	AL I Rogic	ici ioi itca	a Data			
		7	6	<i>))</i> 5	4	3	2	1	0
LOCALRY	Bit Symbol		77 / A	Y5	Y4.	Y3	Y2	Y1	Y0
(0892H)	Read/Write		\			R/	W		
	Reset State	7)	ζ0 ((// 0)	0	0	0	0
	Function	\\ /r			Specify th	e bank numbe	er for the LOC	AL-Y area	
		~~ <	,	(Since bar	nk 3 is overlap			ea, this filed m	nust not be
			<		, >	specifie	d as 3.)		
	/	15	14	13	12	11	10	9	8
(0893H)	Bit Symbol	LYĘ							
	Read/Write	R/W	7				/		
	Reset State	0	7						
	Function	Bank for							
		LOCAL-Y		\					
		0: Disable	$\gamma \setminus \bigcup$)					
		1: Enable							

LOCALRZ (0894H)

(0895H)

	LOCAL-Z Register for Read Data										
	7	6	5	4	3	2	1	0			
Bit Symbol	Z 7	Z6	Z5	Z4	Z3	Z2	Z1	Z0			
Read/Write			R/W								
Reset State	0	0	0	0	0	0	0	0			
Function	Specify the b	cify the bank number for the LOCAL-Z area (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.)									
	15	14	13	12	11	10	9	8			
Bit Symbol	LZE					#	7	Z8			
Read/Write	R/W						}	R/W			
Reset State	0					777A		0			
Function	Bank for	Specify the bank number for the LOCAL-Z area									
	LOCAL-Z	Settings of the Z8 through Z0 bits and their corresponding chip select signals									
	0: Disable	000000000 to 0011111111 CSZA 100000000 to 1011111111 CSZC									
	1: Enable		010000000 to	011111111	CSZB 1100	000000 to 111	111111 CSZI)			

3.9.2.4 Write-Data Bank Registers

ldw

These registers should be loaded with bank number values to specify the banks to be used as write data memory. The following example shows how to specify bank 1 for storing write data in the LOCAL-X area. The instruction, "ldw (xix), wa," writes the wa register value of the CPU into the memory location at the address xix. When loading the address xix into the read-data bank register, the bank is only enabled upon a data (operand) write operation for the memory location at the address xix.

(Example)

ld xix, 200000h ;

wa, (localwx)

ld (localwx), 8001h ; Specify the write-data bank number.

ldw (xix), wa ; Write to bank 1 of the LOCAL-X area

← Insert a dummy instruction that accesses SFR

LOCAL-X Register for Write Data

LOCALWX (0898H)

			7 t= 7 t 1 t 0 g it	OLOI TOI VVII	io Baia	<u> </u>				
	7	6	5	4	3	2	1	0		
Bit Symbol	X7	X6	X5	X4	Х3	X2	X1	✓ X0		
Read/Write				Ŕ	AW		14	_		
Reset State	0	0	0	0 ((// 50	0 (() 0	0		
Function			Specify the bank number for the LOCAL-X area							
	(Sinc	(Since bank 0 is overlapping with the COMMON area, this filed must not be specified as 0.)								
	15	14	13	12	11	(10	9	8		
Bit Symbol	LXE			\angle				X8		
Read/Write	R/W		7		4			R/W		
Reset State	0		H		1	#		0		
Function	Bank for	Specify the bank number for the LOCAL-X area								
	LOCAL-X	Settings of the X8 through X0 bits and their corresponding chip select signals								
	0: Disable			0000000	00 to 011111	11 CSXA				
	1. Enable	(100000	00 to 111111	11 CSYR				

(0899H)

LOCAL-Y Register for Write Data

LOCALWY (089AH)

(089BH)

		7	6	5	4	\ 3	2	1	0		
/Υ	Bit Symbol		A	Y5	Y4	Y3	Y2	Y1	Y0		
	Read/Write	$\rightarrow \rightarrow $. (O/\Diamond	R	W				
	Reset State	T /-		0	(0)	0	0	0	0		
	Function			Specify the bank number for the LOCAL-Y area							
			>	(Since ba	nk 3 is overlap		COMMON ared as 3.)	ea, this filed n	nust not be		
		15	14	13	12	11	10	9	8		
	Bit Symbol	LYE									
	Read/Write	R/W									
	Reset State)) 0									
	Function	Bank for		\							
		LOCAL-Y	\sim)		l					
		0: Disable		1		l					
		1: Enable		1							

LOCAL-Z Register for Write Data 7 6 5 3 2 1 0 **Z**5 Z1 LOCALWZ **Z**7 Z6 Z4 Z3 Z2 Z0 Bit Symbol (089CH) Read/Write R/W Reset State 0 0 0 0 0 0 0 0 Specify the bank number for the LOCAL-Z area Function (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.) 9 15 14 13 12 11 10 8 (089DH) LZE Z8 Bit Symbol Read/Write R/W R/W Reset State 0 0

BBI Symbol L2E
Reset State 0 Specify the bank number for the LOCAL-2 area
LOCAL-2 0. Disable 0100000000 to 0011111111 CSZB 1100000000 to 101111111 CSZB 1100000000 to 111111111 CSZB

3.9.2.5 DMA-Function Bank Registers

The TMP92CF26A supports not only the read and write operations of the CPU, but also the high-speed data transfer by enabling the internal DMAC to become the bus master. (Please refer to Section 3.6, "DMA Controller".)

These registers are provided specially for the DMA operation, separately from the bank registers for the CPU and LCDC. Regardless of the settings of the bank registers for program, read and write data of the CPU, the banks to be used as source address memory and destination address memory are specified individually during DMA operations.

The DMAC of the TMP92CF26A supports six channels, and the bank control is performed by dividing those channels into 2 groups. The DMA channels with the even-channel number, 0, 2 and 4, are classified into the E-group (ES and ED groups); while the channels with the odd-channel number, 1 and 3, are classified into the O-group (OS and OD groups). These registers cannot specify bank numbers for each channel, but specifies one bank number for all the channels in the same group.

The following example shows how to specify bank 1 for storing DMA source addresses in the LOCAL-X area, and also specify bank 2 for storing DMA destination addresses in the LOCAL-Y area. If the DMA operation for channel 0 is initiated Assume that the source and destination addresses specified by the DMA operation, which is described in Section 3.6, are set into the LOCAL-X and LOCAL-Y areas, respectively. Then, if the DMA operation for channel 0 is initiated, bank 1 in the LOCAL-X area is configured as the source address memory, and bank 2 in the LOCAL-Y area is configured as the destination address memory.

(Example)

ldw (localesx), 8001h ; Specify DMA-source bank number for channel 0 ldw (localedy), 8002h ; Specify DMA-destination bank number for channel 0

DMA operation for channel 0 is started

LOCAL-X Register for the E-group DMA Source

7 2 3 1 0 6 **LOCALESX** Bit Symbol X7 (X6) Х5 Х4 ХЗ Χ2 Χ1 X0 (H0A80) Read/Write R/W Reset State 0 ø. 0 0 0 Specify the bank number for the LOCAL-X area **Function** (Since bank 0 is overlapping with the COMMON area, this filed must not be specified as 0.) 15 14 13 12 11 10 9 8 (08A1H) Bit Symbol LXE X8 R/W R/W Read/Write Reset State 0 0 Function Bank for Specify the bank number for the LOCAL-X area LOCAL-X Settings of the X8 through X0 bits and their corresponding chip select signals 0: Disable 000000000 to 011111111 CSXA 100000000 to 111111111 CSXB 1: Enable

TOSHIBA

	K	Lo	OCAL-Y R	egister for	the E-group	DMA Sou	rce					
		7	6	5	4	3	2	1	0			
LOCALESY	Bit Symbol			Y5	Y4	Y3	Y2	Y1	Y0			
(08A2H)	Read/Write					R	/W					
	Reset State			0	0	0	0	0	0			
	Function				Specify th	e bank numb	er for the LO	CAL-Y area				
				(Since bar	(Since bank 3 is overlapping with the COMMON area, this filed must r specified as 3.)							
		15	14	13	12	11	10	9	8			
(08A3H)	Bit Symbol	LYE						2)				
,	Read/Write	R/W					777/4					
	Reset State	0					TAND.					
	Function	Bank for										
		LOCAL-Y										
		0: Disable					$\bigcup Y$					
		1: Enable										
			'			11	>					
		L	OCAL-Z R	egister for	the E-group	DMA Sou	rce		<i></i>			
		7	6	5	4 ((// \3	2 ($\bigcirc)$ 1 $\stackrel{\checkmark}{\sim}$	0			
LOCALESZ	Bit Symbol	Z7	Z6	Z5	Z4		Z2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z0			
(08A4H)	Read/Write				R	W						
	Reset State	0										
	Function	Specify the bank number for the LOCAL-Z area										
		(Sinc	(Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3)									
		15	14	13	12	11 ((// 10	9	8			
(08A5H)	Bit Symbol	LZE		74(-)	\int				Z8			
	Read/Write	R/W			7				R/W			
	Reset State	0							0			
	Function	BANK for Specify the bank number for the LOCAL-Z area										
		LOCAL-Z					orresponding	g chip select sig	ınals			
		0: Disable		1 1	001111111		000000 to 10	1111111 CSZC	;			
		1: Enable		010000000 to	011111111	SZB 1100	000000 to 11	1111111 CSZD)			
		FOC	SAL-X Reg	ister for th	e E-group [DMA Destin	ation					
		//7	6	5	(//4)	3	2	1	0			
LOCALEDX	Bit Symbol	X7//	X6	X5	X4	Х3	X2	X1	X0			
(H8A80)	Read/Write				R/	W						
	Reset State	0	0	0	o	0	0	0	0			
	Function	\rightarrow	•	Specify th	e bank numbe	er for the LOC	AL-X area	-				
		(Sinc	e bank 0 is ov					t be specified a	s 0.)			
		15	14 (13	12	11	10	9	8			
(08A9H)	Bit Symbol	LXE							X8			
(30/10/1)	Read/Write	R/W		₩		$\overline{}$			R/W			
	Reset State	0	467			$\overline{}$			0			
(-	Function	Bank for		- Cn	ecify the bank	number for the		2102	U			
	i unclidit	LOCAL-X	Sett					area g chip select sig	ınals			
			Jell	ings of the AC				a only select sig	jiiais			
	~		0: Disable 000000000 to 011111111 CSXA									
		1. ⊢nanio	Enable 1000000000 to 011111111 CSXA									

-		LO	CAL-Y Reg	jister for the	e E-group [MA Destin	ation		
		7	6	5	4	3	2	1	0
LOCALEDY	Bit Symbol			Y5	Y4	Y3	Y2	Y1	Y0
(HAA80)	Read/Write					R/	W		
	Reset			0	0	0	_Q	0	0
	Function				Specify th	e bank numbe	er for the LOC	AL-Y area	
				(Since bar	nk 3 is overlap	ping with the	COMMON are	ea, this filed m	ust not be
						specifie	d as 3.)	75	
		15	14	13	12	11	10	9	8
(08ABH)	Bit Symbol	144							
(,	Read/Write	R/W							
	Reset	0				4			
	Function	Bank for)		
		LOCAL-Y							
		0: Disable				$\mathcal{A}(\mathcal{A})$	>		
		1: Enable				1.//			>
		1.00	041.70	tatan fan de				5)	
Ī					e E-group [7(//)	
		7	6	5	4	3	2	(Y	0
LOCALEDZ	Bit Symbol	Z7	Z6	Z5	Z4	Z3	(Z2	Z1	Z0
(08ACH)	Read/Write				Ŕ/	-			
	Reset State	0	0	0	(0)	0	7,0	0	0
	Function	(0:			e bank numbe				0.)
				verlapping wit				be specified a	·
		15	14	13	12 🕢	11 \\	10	9	8
(08ADH)	Bit Symbol	LZE							Z8
	Read/Write	R/W				\sim			R/W
	Reset State	0	\sim		A	, v			0
	Function	Bank for	()		ecify the bank				
		LOCAL-Z 0: Disable			s tnrougn 20 b 5 001111111 (chip select sig	
		1: Enable			011111111			111111 CSZC	
		1. Lilable	$\langle \langle \langle \rangle \rangle$	01000000010	O	702D 1100	00000 10 111	111111 0020	
		//)]		< ((// 5)				
		/\L	OCAL-X R	egister for	the O-group	DMA Sou	rce		
		7	6	5	4	3	2	1	0
LOCALOSX	Bit Symbol	Z X7	X6	X5	X4	Х3	X2	X1	X0
(08B0H)	Read/Write		\wedge		R/	W		J.	
	Reset State	0	0 🗸 (0	0	0	0	0	0
^	Function			Specify th	e bank numbe	r for the LOC	AL-X area		
		(Sinc	e bank 0 is o	verlapping wit	h the COMMO	ON area, this f	iled must not	be specified a	s 0.)
		15(\(\14\)	13	12	11	10	9	8
(08B1H)	Bit Symbol	LXE							X8
	Read/Write	R/W	1						R/W
	Reset State	0							0
	Function	Bank for		Sp	ecify the bank	number for th	ne LOCAL-X a	area	
		LOCAL-X	Sett	ings of the X8	through X0 b	its and their c	orresponding	chip select sig	nals
		0: Disable				00 to 0111111			
		1: Enable			1000000	00 to 1111111	11 CSXB		

TOSHIBA

		L	OCAL-Y R	egister for	the O-grou	p DMA Sou	rce					
		7	6	5	4	3	2	1	0			
LOCALOSY	Bit Symbol			Y5	Y4	Y3	Y2	Y1	Y0			
(08B2H)	Read/Write					R	W					
	Reset State			0	0	0	0	0	0			
	Function			Specify the bank number for the LOCAL-Y area								
				(Since ba	nk 3 is overlar	pping with the	COMMON a	rea, this filed m	ust not be			
					1	specifie	ed as 3.)					
		15	14	13	12	11	10	J) 9	8			
(08B3H)	Bit Symbol	LYE					777A					
	Read/Write	R/W					TAY I					
	Reset State	0				7						
	Function	Bank for				((
		LOCAL-Y					<i>J)</i> *					
		0: Disable										
		1: Enable				41	>	191	>			
								\mathcal{L}				
					the O-grou	p DMA Sou	7	$\bigcirc)$				
		7	6	5	4	<u></u>	2	7/1)	0			
LOCALOSZ	Bit Symbol	Z 7	Z6	Z 5	Z 4	Z3	Z2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Z0			
(08B4H)	Read/Write				4	/W	$-(C_{\triangle})$					
	Reset State	0	0	0	0	0	0	0	0			
	Function	Specify the bank number for the LOCAL-Z area (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.)										
		4.5	4.4									
		15	14		12	11	<u></u>	9	8			
(08B5H)	Bit Symbol	LZE			1				Z8			
	Read/Write	R/W		\longrightarrow					R/W			
	Reset State	0					100417		0			
	Function	Bank for LOCAL-Z	Specify the bank number for the LOCAL-Z area Settings of the Z8 through Z0 bits and their corresponding chip select signals									
		0: Disable			001111111			11111111 CSZC				
		1: Enable		_ /	011111111	-1 /		1111111 CSZD				
			((7/{\})		(1)							
					\bigcap_{Λ}	/						
		// LOC	CAL-X Reg	ister for the	e O-group I	DMA Destir	ation	1				
		7//	6	5	4	3	2	1	0			
LOCALODX	Bit Symbol	X7	X6 <	X5	X4	Х3	X2	X1	X0			
(08B8H)	Read/Write		/		R	/W						
	Reset State	Z 0	0	0	0	0	0	0	0			
	Function <		\wedge			er for the LOC						
		(Sinc	e bank 0 is o	verlapping wit	th the COMM	ON area, this f	iled must not	be specified as	3 0.)			
() \ 15	14	13	12	11	10	9	8			
(08B9H)	Bit Symbol	LXE	Ħ						X8			
	Read/Write	R/W	V / V						R/W			
	Reset State	0							0			
Ì	Function	Bank for				k number for th						
		LOCAL-X	Sett	ings of the X8				chip select sig	nals			
		0: Disable				000 to 0111111						
		1: Enable			1000000	00 to 1111111	TTTCSXB					

		LO	CAL-Y Reg	gister for th	e O-group [DMA Destin	ation		
		7	6	5	4	3	2	1	0
LOCALODY	Bit Symbol			Y5	Y4	Y3	Y2	Y1	Y0
(08BAH)	Read/Write					R	W		
	Reset State			0	0	0	Q	0	0
	Function			(Since ba	Specify th nk 3 is overlap		/ /		oust not be
		15	14	13	12	11	10	9	8
(08BBH)	Bit Symbol	LYE				f	TA TA		
	Read/Write	R/W					X		
	Reset State	0				4			
	Function	BANK for LOCAL-Y							
		0: Disable 1: Enable				41 /	>	$\mathcal{A}(\ \ \ \ \ \)$	>
		1: Enable						γ	~
		LO	CAL-Z Reç	gister for th	e O-group [OMA Destin	nation		
		7	6	5	4	3	2		0
LOCALODZ	Bit Symbol	Z 7	Z6	Z5	Z4	Z3	(Z2	Z1	Z0
(08BCH)	Read/Write				R/	W			
	Reset State	0	0	0 (0	0 (77/0	0	0
	Function		•	Specify th	ne bank numbe	er for the LOC	AL-Z area	•	
		(Sinc	e bank 3 is o	1 / 1	th the COMMO			be specified a	s 3.)
		15	14	13	12 <	11	10	9	8
(08BDH)	Bit Symbol	LZE		7		A			Z8
	Read/Write	R/W		J		K			R/W
	Reset State	0	4		4				0
	Function	Bank for LOCAL-Z 0: Disable 1: Enable	Set	tings of the Z8 0000000000 to	pecify the bank 3 through Z0 b 5 001111111 (5 011111111 (its and their co		chip select sig 111111 CSZC	;
		//) L		^ \	V/))				

3.9.3 Programming example

The conditions listed in this table apply the following programming examples.

No.	Used as	Memory	Setting	MMU area	Logical address	Physical address
(a)	Main Routine	NOR-Flash (16 MB, 1 pcs)	CSZA,	COMMON-Z	C000 FFFF	00H to FFH
(b)	Character- ROM		1 wait state	Bank 0 in LOCAL-Z	800000H to BFEFFFH	000000H to 3FFFFFH
(c)	Subroutine	SRAM	CS1,	Bank 0 in LOCAL-Y	400000H to 5FFFFFH	000000H to 1FFFFFH
(d)	LCD Display-RAM	(16 MB, 1 pcs)	16 bit, 0 wait state	Bank 1 in LOCAL _T Y		200000H to 3FFFFFH
(e)	Stack- RAM	On-chip-RAM (144KB)	- (32 bit, 2-1-1-1clk)	Bank 2 in LOCAL-Y	0020 049F	00H to

(a) Main Routine (COMMON-Z)

(/		110 (001)11)1		
Logical Address	Physical Address	Instruction No.	Instruction	Comment
		1	org C00000H	; ((
C00000H	<-(Same)	2	ldw (mamr2),80FFH	; CS2 800000-FFFFFF/8MB
C000xxH	<-	3	ldw (b2csl), C222H	; CS2 32-bit ROM, 1 wait state
		4	ldw (mamr1),40FFH	; CS1 400000-7FFFFF/4MB
		5	ldw (b1csl), 8111H	; CS1 16-bit RAM, 0 wait state
		5.1	ldw (localpz),8000H	; Enable LOCAL-Z bank for program
		5.2	ldw (localrz),8000H	; Enable LOCAL-Z bank for read-data
		6	ld (p8fc), 02H	·/
		7	ld (p8fc2), 04H	•
		9 ((ld) xsp,48000H	; Stack Pointer = 48000H
		10	ldw (localpy),8000H	; Bank 0 in LOCAL-Y is configured as the program bank for subroutines
		(11/)		
C000yyH	<- //) 12	call 400000H	; Call a subroutine
		13		
		14		
		15		

- The instructions No.2 through No.8 configure external pins and the Memory Controller.
- The instruction No.9 specifies the stack pointer value. The stack pointer is herein specified to point to the memory location in on-chip RAM.
- The instruction No.10 configures the setting used for a subroutine call instruction of No.12.
- The instruction No.12 calls a subroutine. When the CPU generates the address 400000H, the MMU translates it to the physical address 000000H, which is then placed onto the external address bus: A23 to A0. Since the logical address is within the address range of the CS1 space, $\overline{\text{CS1}}$ for SRAM is asserted at the same time. By using these instructions, the program execution of the CPU can be branched to the subroutine.

Note: This example assumes that the subroutine program is already written into SRAM.

(b) Subroutine (Bank 0 in LOCAL-Y)

Logical address	Physical address	Instruction No.		Instruction	Comment
		16	org 400	0000H	;
400000H	000000H	17	ldw (lo	ocalwy),8001H	; Bank 1 in LOCAL-Y is configured as write-data memory for LCD Display RAM
4000xxH	0000xxH	18	ldw (lo	cally), 8001H	; Bank 1 in LOCAL-Y is configured as LCD display RAM
		19	ldw (lo	ocalrz), 8001H	; Bank 0 in LOCAL-Z is configured as read-data memory for Character-RAM
		20	ld xiy	H000008	; Index address register for reading Character-ROM
		21	ld wa	,(xiy)	; Read Character-ROM
		22	:		; Convert the read data to display-data
		23	Id (loc	alpy), 82H	
		24		, 400000H	; Index address register for writing LCD Display data
		25	ld (xix), bc	; Write LCD Display data
		26	:		; Configure the LCD Controller
		27	:	((// \)	$\langle (0) \rangle$
		28	ld xiz	, 400000H	; Load the LCD Start address into LCDC
		29	ld (Isa	rcl), xiz	;
		30	ld (lcd	ctl0),01H	; Start LCD Display operation
		31	:		;
5000yyH	1000yyH	32	ret		;

- The instructions No.17 and No.18 configure bank 1 of the LOCAL-Y area. In this case, the CPU writes the LCD Display data to Display RAM, and the data is then read by the LCDC. Thus, the LOCALWY and LOCALLY registers should be programmed to specify the same bank, bank1.
- The instruction No.19 configures Bank 0 of the LOCAL-Z area to read data from character-ROM.
- The instructions No.20 and No.21 are used to read data from character-ROM. When the CPU generates the address 800000H, the MMU translates it to the physical address 000000H, which is then placed onto the external address bus: A23 to A0. Since the logical address is within the address range of the CS2 space, CSZA for NOR-Flash is asserted at the same time. By using these instructions, the CPU can read data from character ROM.
- The instruction No.23switches the program bank in the LOCAL area. Since the program bank switching within the same LOCAL area is prohibited, this is a bad example.
- The instructions No.24 and No.25 are used to write data to SRAM. When the CPU generates the address 400000H, the MMU translates it to the physical address 200000H, which is then placed onto the external address bus: A23 to A0. Since the logical address is within the address range of the CS1 space, $\overline{\text{CS1}}$ for SRAM is asserted at the same time. By using these instructions, the CPU can write data to SRAM.
- The instructions No.28 and No.29 load the LCD starting address into the LCD Controller. When the LCDC generates the address 400000H in a DMA cycle, the MMU translates it to the physical address 200000H, which is then placed onto the external address bus: A23 to A0. Since the logical address is within the address range of the CS1 space, CS1 for SRAM is asserted at the same time. By using these instructions, the LCDC can read data from SRAM.
- The instruction No.30 starts LCD display operation.

3.10 SDRAM Controller (SDRAMC)

The TMP92CF26A incorporates an SDRAM controller (SDRAMC) for accessing SDRAM that can be used as data memory, program memory, or display memory.

The SDRAMC has the following features:

(1) Supported SDRAM

Data rate type : SDR (single data rate) type only

Memory capacity : 16 / 64 / 128 / 256 / 512 Mbits

Number of banks : 2 banks / 4 banks

Data bus width : 16 bits

Read burst length : 1 word / full page

Write mode : Single mode / Burst mode

(2) Supported initialization sequence commands

Precharge All command

Eight Auto Refresh commands

Mode Register Set command

(3) Access mode

	CPU Cycle	HDMA Cycle	LCDC Cycle
Burst length	1 word	1 word or full page selectable	Full page
Addressing mode	Sequential	Sequential	Sequential
CAS latency (clock)	2	2	2
Write mode	Single	Single or burst selectable	

(4) Access cycles

CPU access cycles

Read cycle (1 word, 4-3-3-3 states (minimum)

Write cycle : Single, 3-2-2-2 states (minimum)

Data size 1 byte / 1 word / 1 long-word

HDMA access cycles

Read cycle : 1 word, 4-3-3-3 states / full page, 4-1-1-1 states (minimum)

Write cycle : Single, 3-2-2-2 states (minimum) / burst, 2-1-1-1 states (minimum)

Data size : 1 byte / 1 word / 1 long-word

LCDC access cycles

Read cycle : Full page, 4-1-1-1 states (minimum)

Data size : 1 word

- (5) Auto generation of refresh cycles
 - Auto Refresh is performed while the SDRAM is not being accessed.
 - The Auto Refresh interval is programmable.
 - The Self Refresh function is also supported.

Note: The SDRAM address area is determined by the CS1 or CS2 setting of the memory controller. However, the number of bus cycle states is controlled by the SDRAMC.

TOSHIBA

3.10.1 Control Registers

The SDRAMC has the following control registers.

SDRAM Access Control Register

SDACR (0250H)

					or regiotor			
	7	6	5	4	3	2 _	1	0
Bit symbol	SRDS	=	SMUXW1	SMUXW0	SPRE			SMAC
Read/Write			R/W					R/W
Reset State	1	0	0	0	0		K K K	0
Function	Read data	Always	Address m	ultiplex	Read/Write			SDRAM
	shift	write "0"	type		commands		(controller
	function		00: Type A	(A9-)	0: Without	7//5		0: Disable
	0: Disable		01: Type B	(A10-)	auto /			1: Enable
	1: Enable		10: Type C	(A11-)	precharge	\bigcirc		
			11: Reserv	ed	1: With auto			
					precharge		. ((

SDRAM Command Interval Setting Register

SDCISR (0251H)

					7777971			
	7	6	5	4	(3)	2		//)
Bit symbol		STMRD	STWR	STRP	STRCD	STRC2	STRC1	STRC0
Read/Write			_		R/W			-
Reset State		1	1	1	√ 1	1	(0)	0
Function		TMRD	TWR	TRP	TRCD	TRC	^	
		0: 1 CLK	0: 1 CLK	0: 1 CLK	0: 1 CLK	000: 1 CLK)) 100:	5 CLK
		1: 2 CLK	1: 2 CLK	1: 2 CLK	1: 2 CLK	001: 2 CLK	101:	6 CLK
						010: 3 CLK	110:	7 CLK
						011) 4 CLK	111:	8 CLK

SDRAM Refresh Control Register

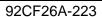
SDRCR (0252H)

					•• • • · · · · ·				
		7	6	5	4 <	3	2	1	0
	Bit symbol	-		$\left\langle \right\rangle$	SSAE	SRS2	SRS1	SRS0	SRC
)	Read/Write	R/W	# A			7)	R/W		
	Reset State	0			(O)	0	0	0	0
	Function	Always			Self ()	Refresh inte	rval		Auto
		write "0"			Refresh	000: 47 stat	es 100: 46	8 states	Refresh
					auto exit	001: 78 stat	es 101: 62	4 states	0:Disable
	^		~		function	010: 156 sta	ites 110: 93	6 states	1:Enable
					0:Disable	011: 312 sta	ites 111: 12	48 states	
	\		/		1:Enable				

SDRAM Command Register

SDCMM (0253H)

	7	6	5	4	3	2	1	0
Bit symbol						SCMM2	SCMM1	SCMM0
Read/Write							R/W	
Reset State						0	0	0
Function						000: Don't ca 001: Initializa a. Precha b. Eight A c. Mode F 010: Precha 100: Reserv 101: Self Re	ation sequence rge All common tuto Refresh of Register Set of rge All common ed fresh Entry con fresh Exit cor	ce land commands command and


Note 1: <SCMM2:0> is automatically cleared to "000" after the specified command is issued. Before writing the next command, make sure that <SCMM2:0> is "000". In the case of the Self Refresh Entry command, however, <SCMM2:0> is not cleared to "000" by execution of this command. Thus, this register can be used as a flag for checking whether or not Self Refresh is being performed.

Note 2: The Self Refresh Exit command can only be specified while Self Refresh is being performed.

SDRAM HDMA Burst Length Select Register

	7	6	5	4	3	2	1	0	
Bit symbol			SDBL5	SDBL4	SDBLS	SDBL2	SDBL1	SDBL0	
Read/Write				`	N R	w			
Reset State			((0))	0	0	0	0	0	
Function			For	For	For	For	For	For	
		((HDMA5	HDMA4	HDMA3	HDMA2	HDMA1	HDMA0	
		HDMA burst length							
		0: 1 Word read / Single write							
		(\		<u> </u>	Full page re	ad / Burst wri	te		
	Read/Write Reset State	Read/Write Reset State	Bit symbol Read/Write Reset State	Bit symbol SDBL5 Read/Write Reset State 0 Function For	7 6 5 4 Bit symbol SDBL5 SDBL4 Read/Write Reset State 0 0 0 For For HDMA5 HDMA4	7 6 5 4 3	7 6 5 4 3 2	7 6 5 4 3 2 1 Bit symbol SDBL5 SDBL4 SDBLS SDBL2 SDBL1 Read/Write R/W Reset State 0 0 0 0 0 Function For For For For For For HDMA3 HDMA2 HDMA1 HDMA4 HDMA4 HDMA5 HDMA1	

Figure 3.10.1 Control Registers

3.10.2 Operation Description

(1) Memory access control

The SDRAMC is enabled by setting SDACR<SMAC> to "1".

When one of the bus masters (CPU, LCDC, DMAC) generates a cycle to access the SDRAM address area, the SDRAMC outputs SDRAM control signals.

Figure 3.10.2 to Figure 3.10.5 shows the timing for accessing the SDRAM. The number of SDRAM access cycles is controlled by the SDRAMC and does not depend on the number of waits controlled by the memory controller.

(a) Command issue function

The SDRAMC issues commands as specified by the SDCMM register. The SDRAMC also issues commands automatically for each SDRAM access cycle generated by each bus master.

Table 3.10.1 shows the commands that are issued by the SDRAMC

Table 3.10.1 Commands Issued by the SDRAMC

Command	CKEn-1	CKEn	SDxxDQM	A10	A15-11 A9-0	SDCS	SDRAS	SDCAS	SDWE
Bank Activate	Н	Н	H	RA	RA	(7)	\L	Н	Н
Precharge All	Н	Η	Ŧ	Н	X)) L	Н	L
Read	Н	Н	1/4	` L /	CA) 	Н	L	Н
Read with Auto Precharge	Н	H		Н	CA)]_	Н	L	Н
Write	Н	H	<i>_))</i> L	L	CA	//L	Н	L	L
Write with Auto Precharge	н /	CH\	L	H	CA	L	Н	L	L
Mode Register Set	н	H	Н	(F)	M	L	L	L	L
Burst Stop	(H7)) {	Н	X	\searrow_{X}	L	Н	Н	L
Auto Refresh	(H/)) н	Н /	X	X	L	L	L	Н
Self Refresh Entry) <u>H</u>	L <	_ н(∨	(x)	Х	L	L	L	Н
Self Refresh Exit	L	Н	H	×	Χ	Н	Н	Н	Н

Note 1: H = High level, L = Low level, RA = Row address, CA = Column address, M = Mode data, X = Don't care Note 2: CKE_{n} = CKE level in the command input cycle

CKE_{n-1} = CKE level in a cycle immediately before the command input cycle

(b) Address multiplex function

In access cycles, the A0 to A15 pins output low/column multiplexed addresses. The multiplex width is set by SDACR<SMUXW1:0>. Table 3.10.2 shows the relationship between the multiplex width and low/column addresses.

	Tabl	le 3.10.2 Addres	s Multiplex					
	SDRAM Access Cycle Address							
92CF26A								
Pin Name	Type A	Type B	Type C	Column Address				
	<smuxw> = 00</smuxw>	<smuxw> = 01</smuxw>	<smuxw> = 10</smuxw>					
A0	A9	A10	A11 (A1				
A1	A10	A11	A12	√ A2				
A2	A11	A12	A13	A3 (
A3	A12	A13	A14	A4 🔨				
A4	A13	A14	A15	A5				
A5	A14	A15	(/A16)	A6				
A6	A15	A16	A17	A7 7				
A7	A16	A17 (A18	A8				
A8	A17	A18	A19	A9				
A9	A18	A19	A20	A10				
A10	A19	A20	A21	AP *				
A11	A20	A21	A22	// 5)				
A12	A21	A22	A23					
A13	A22	A23	EA24	Row Address				
Δ14	Δ23 /	ΕΔ24	FA25)				

Table 3.10.2 Address Multiplex

EA24

(c) Burst length

When the CPU accesses the SDRAM, the burst length is fixed to 1-word read/single write. When the LCDC accesses the SDRAM, the burst length is fixed to full page.

EA26

The burst length can be selected for SDRAM read and write accesses by HDMA if the following conditions are satisfied:

- The HDMA transfer mode is an increment mode.
- Transfers are made between the SDRAM and internal RAM or internal I/O.

(In other cases, HDMA operation can only be performed in 1-word read/single write mode. Use SDBLS<SDBL5:0> to set the burst length for each HDMA channel.

A15
*AP: Auto Precharge

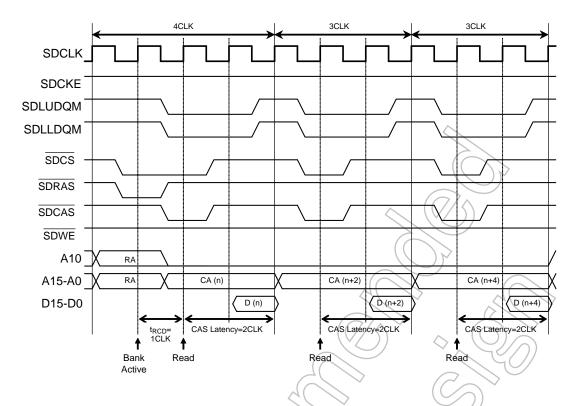


Figure 3.10.2 1-Word Read Cycle Timing

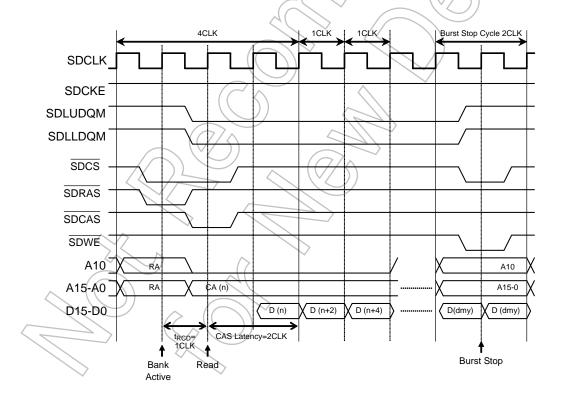


Figure 3.10.3 Full-Page Read Cycle Timing

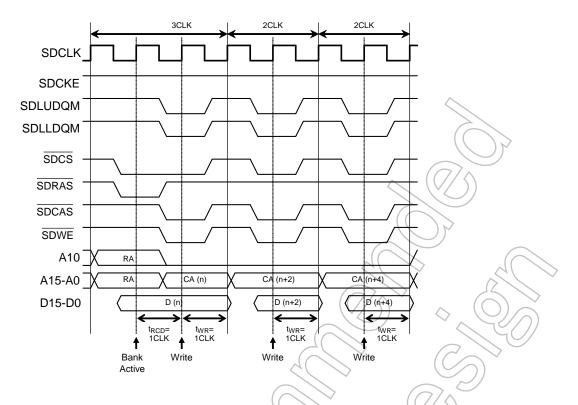


Figure 3.10.4 Single Write Cycle Timing

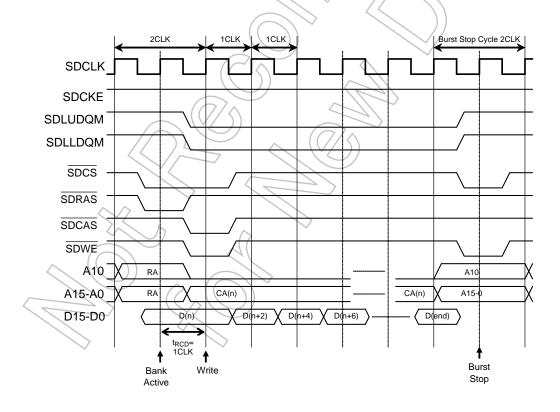


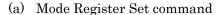
Figure 3.10.5 Burst Write Cycle Timing

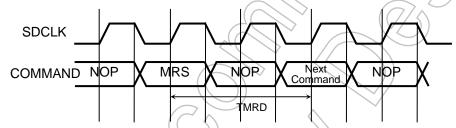
(2) Execution of instructions on SDRAM

The CPU can execute instructions that are stored in the SDRAM. However, the following operations cannot be performed.

- a) Executing the HALT instruction
- b) Changing the clock gear setting
- c) Changing the settings in the SDACR, SDCMM, and SDCISR registers

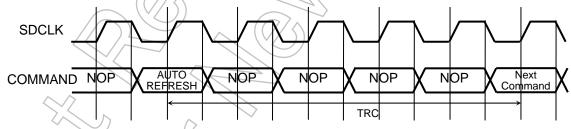
These operations, if needed, must be executed by branching to other memory such as internal RAM.

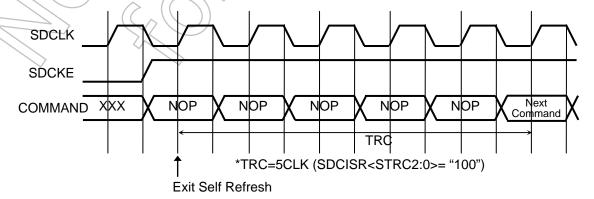

(3) Command interval adjustment function


Command execution intervals can be adjusted for each command. This function enables the SDRAM to be accessed at optimum cycles even if the operation frequency is changed by clock gear.

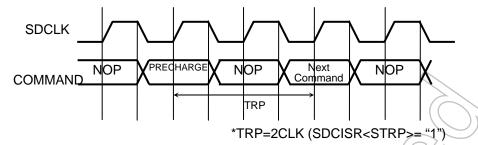
Command intervals should be set in the SDCISR register according to the operating frequency of the TMP92CF26A and the AC specifications of the SDRAM.

The SDCICR register must not be changed while the SDRAM is being accessed.

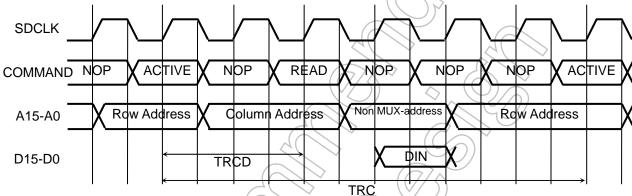

The timing waveforms for various cases are shown below.


*TMRD=2CLK (SDCISR<STMRD>= "1")

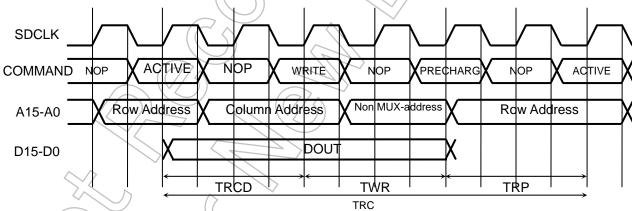
(b) Auto Refresh command



*TRC=5CLK (SDCISR<STRC2:0>= "100")


(c) Self Refresh Exit

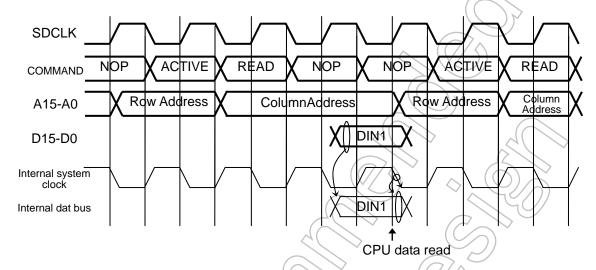
(d) Precharge command



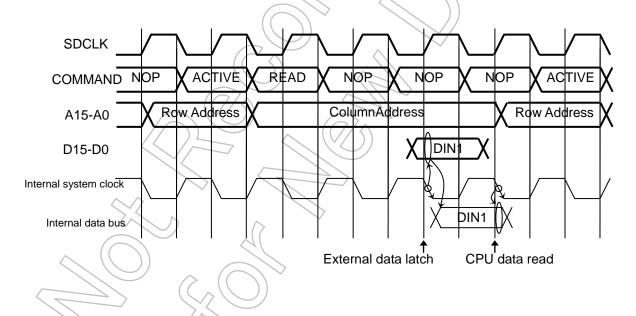
*TRCD=2CLK (SDCISR<STRCD>= "1")
*TRC=6CLK (SDCISR<STRC2:0>= "101")

*TRCD=2CLK (SDCISR<STRCD>= "1")

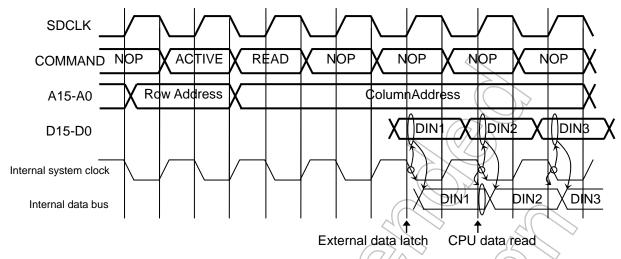
*TWR=2CLK (SDCISR<STWR>= "1")


*TRP=2CLK (SDCISR<STRP>= "1")

*TRC=6CLK (SDCISR<STRC2:0>= "101")


(4) Read data shift function

If the AC specifications of the SDRAM cannot be satisfied when data is read from the SDRAM, the read data can be latched in a port circuit so that the CPU can read the data in the next state. When this read data shift function is used, the read cycle requires additional one state. The write cycle is not affected. The timing waveforms for various cases are shown below.


(a) 1-word read, the read data shift function disabled (SDACR<SRCS> = "0")

(b) 1-word read, the read data shift function enabled (SDACR<SRDS> = "1", <SRDSCK>= "0")

(c) Full-page read, the read data shift function enabled (SDACR<SRDS> = "1", <SRDSCK> = "0")

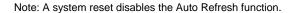
(5) Read/Write commands

The Read/Write commands to be used in 1-word read/single write mode can be specified by using SDACR<SPRE>.

When SDACR<SPRE> is set to "1", the Read/Write commands are executed with Auto Precharge. When Auto Precharge is enabled, the SDRAM is automatically precharged internally at every access cycle. Thus, the SDRAM is always in a "bank idle" state while it is not being accessed. This helps reduce the power consumption of the SDRAM but at the cost of degradation in performance as the Bank Active command is needed at every access cycle.

When SDACR<SPRE> is set to "0", the Read/Write commands are executed without Auto Precharge. In this case, the SDRAM is not precharged at every access cycle and is always in a "bank active" state. This increases the power consumption of the SDRAM, but improves performance as there is no need to issue the Bank Active command at every access cycle. If an access is made to outside the SDRAM page boundaries or if the Auto Refresh command is issued, the SDRAMC automatically issues the Precharge All command.

And this micro has LCD controller and DMA controller, in case of using below condition, there is one limitation. When SDRAM is set as VRAM for LCD controller and DMA controller is operated at the same time, always set to "1" to SDACR<SPRE>.


(6) Refresh control

The TMP92CF26A supports two kinds of refresh commands: Auto Refresh and Self Refresh.

(a) Auto Refresh

When SDRCR<SRC> is set to "1", the Auto Refresh command is automatically issued at intervals specified by SDRCR<SRS2:0>. The Auto Refresh interval can be specified in a range of 47 states to 1248 states (0.78 μ s to 20.8 μ s at f sys = 60 MHz).

The CPU operation (instruction fetch and execution) is halted while the Auto Refresh command is being executed. Figure 3.10.6 shows the Auto Refresh cycle timing, and Table 3.10.3 shows the Auto Refresh interval settings. The Auto Refresh function cannot be used in IDLE1 and STOP modes. In these modes, use the Self Refresh function to be explained next.

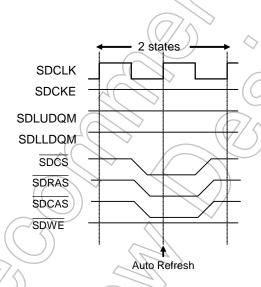


Figure 3.10.6 Auto Refresh Cycle Timing

Note1: Set the interval of Auto Refresh as below table for your reference. Note2: Take care SDRAM specification and CPU operation speed, please.

Table 3.10.3 System clock speed & auto refresh interval

			/ /		,		/ / /	7000 u				-			
SDRCR <srs2:0></srs2:0>						>	Fre	equenc	y: syst	em clo	ck [MH	lz]			
CDCO	CDC4	2020	interval	1	2	3	4	6	8	10	20	30	40	60	80
SRS2 SRS1 SRS0 state		^			Tir	ne: aut	o refre	sh inte	rval [μ	S]					
0_	0	9	47	47.0	23.5	15.67	11.75	7.83	5.88	4.70	2.35	1.57	1.18	0.78	0.59
0	6	1	78	78.0	39.0	26.0	19.5	13.0	9.75	7.80	3.9	2.60	1.95	1.30	0.98
0	1	0	156	156.0	78.0	52.0	39.0	26.0	19.5	15.60	7.8	5.20	3.90	2.60	1.95
0	1	1	312	312.0	156.0	104.0	78.0	52.0	39.0	31.2	15.60	10.4	7.80	5.20	3.90
1	0	0	468	468.0	234.0	156.0	117.0	78.0	58.5	46.8	23.4	15.60	11.7	7.80	5.85
1	0	1	624	624.0	312.0	208.0	156.0	104.0	78.0	62.4	31.2	20.8	15.60	10.4	7.80
1	1	0	936	936.0	468.0	312.0	234.0	156.0	117.0	93.6	46.8	31.2	23.4	15.60	11.70
1	1	1	1248	1248.0	624.0	416.0	312.0	208.0	156.0	124.8	62.4	41.6	31.2	20.8	15.60

Note: Above gray zone is prohibited to set. SDRAM request: 4096 times per 64mS.

(b) Self Refresh

The Self Refresh Entry command is issued by setting SDCMM<SCMM2:0> to "101". Figure 3.10.7 shows the Self Refresh cycle timing. Before entering Self-refresh mode, issue the all Bank Pre-charge Command. Once Self Refresh is started, the SDRAM is refreshed internally without the need to issue the Auto Refresh command.

Note 1: When standby mode is released by a system reset, the I/O registers are initialized and the Self Refresh state is exited. Note that the Auto Refresh function is also disabled at this time.

Note 2: The SDRAM cannot be accessed while it is in the Self Refresh state.

Note 3: To execute the HALT instruction after the Self Refresh Entry command, insert at least 10 bytes of NOP or other instructions between the instruction to set SDCMM<SCMM2:0> to "101" and the HALT instruction.

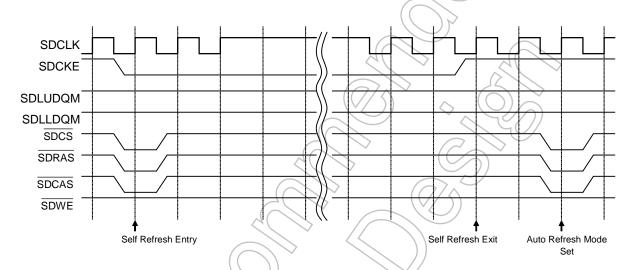
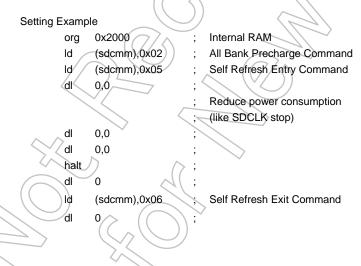



Figure 3.10.7 Self Refresh Cycle Timing

The Self Refresh state can be exited by the Self Refresh Exit command. The Self Refresh Exit command is executed when SDCMM<SCMM2:0> is set to "110". It is also executed automatically in synchronization with HALT mode release. In either of these two cases, Auto Refresh is performed immediately after the Self Refresh state is exited. Then, Auto Refresh is executed at specified intervals. Exiting the Self Refresh state clears SDCMM<SCMM2:0> to "000".

			SD	RAM Refr	esh Contro	ol Registei	<u> </u>		
		7	6	5	4	3	2		0
SDRCR	Bit symbol	-			SSAE	SRS2	SRS1	/\\$RS0	SRC
(0252H)	Read/Write	R/W					R/W	<i>))</i>	
	Reset State	0			1	0	0	0	0
	Function	Always			Self	Refresh inte	erval	,	Auto
		write "0"			Refresh	000: 47 stat	es 100: 4	68 states	Refresh
					auto exit	001: 78 stat	es 101: 6	24 states	0:Disable
					function	010: 156 sta	ates 110: 9	36 states	1:Enable
					0:Disable	011: 312 sta	ates 111:1	248 states	
					1:Enable	(\wedge		Ň

Setting SDRCR<SSAE> to "1" enables automatic execution of the Self Refresh Exit command in synchronization with HALT release.

Setting SDRCR<SSAE> to "0" disables automatic execution of the Self Refresh Exit command in synchronization with HALT release. The auto exit function should also be disabled in cases where the SDRAM operation requirements cannot be met as the operation clock frequency is reduced by clock gear down, as shown in Figure 3.10.8.

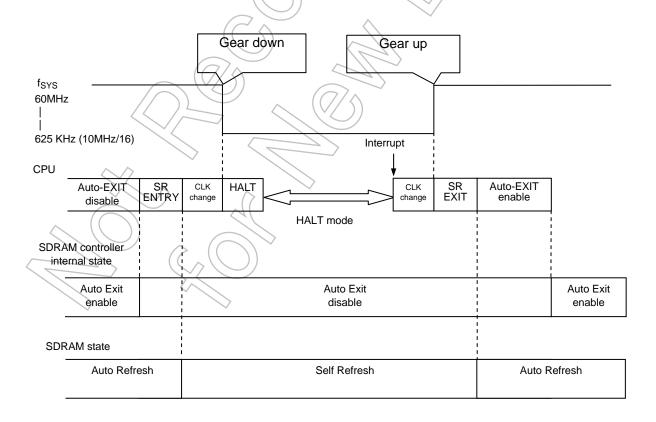


Figure 3.10.8 Execution Flow for Executing HALT Instruction after Clock Gear Down

(7) SDRAM initialization sequence

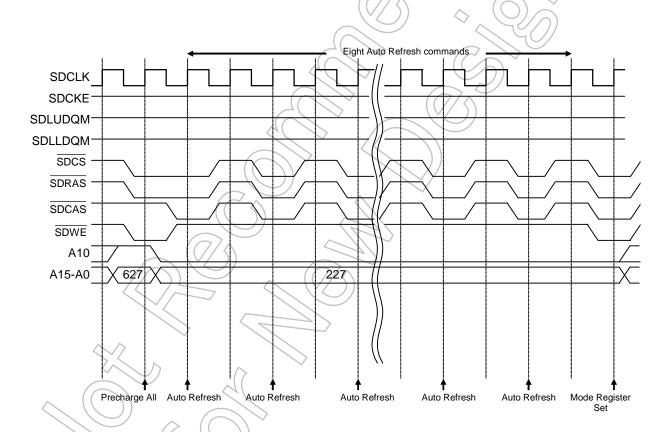
After reset release, the following sequence of commands can be executed to initialize the SDRAM.

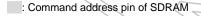
Precharge All command
Eight Auto Refresh commands

Mode Register Set command

The above commands are issued by setting SDCMM<SCMM2:0> to "001". While these commands are issued, the CPU operation (instruction fetch, execution) is halted. Before executing the initialization sequence, appropriate port settings must be made to enable the SDRAM control signals and address signals (A0 to A15).

After the initialization sequence is completed, SDCMM<SCMM2:0> is automatically cleared to "000".




Figure 3.10.9 Initialization Sequence Timing

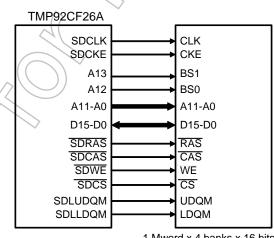
(8) Connection example

Figure 3.10.10 shows an example of connections between the TMP92CF26A and SDRAM.

SDRAM Pin Name 92CF26A Data Bus Width 16 bits Pin Name 16M 64M 128M 256M 512M Α0 Α0 Α0 A0 Α0 A0 Α1 Α1 Α1 Α1 Α1 A1 Α2 Α2 Α2 A2 Α2 A2 АЗ АЗ АЗ АЗ АЗ A3 A4 Α4 Α4 Α4 Α4 A4 A5 Α5 Α5 Α5 Α5 A5 Α6 A6 Α6 A6 A6 A6 Α7 Α7 Α7 A7 A7 **A7** Α8 Α8 Α8 Α8 Á8 A8 Α9 A9 A9 A9 A9 A9 <u>A</u>10 A10 A10 A10 A10 A10 A11 BS A11 A11 A11 A11 A12 BS0 BS0 A12 A12 A13 BS1 BS1 BŠ0 BS0 A14 BS1 BS1 A15 SDCS CS CS. cs CS' CS SDLUDQM **UDQM** UDQM UDQM **UDQM UDQM** SDLLDQM LDQM LDQM LDQM LDQM LDQM SDRAS RAS RAS RAS RAS RAS SDCAS CAS CAS CAS CAS CAS WΕ SDWE WE WE WE WE **SDCKE** CKE CKE CKE CKE CKE SDCLK CLK CLK CLK CLK CLK

Table 3.10.4 Pin Connections

SDACR


<SMUXW>

00:

TypeA

00:

TypeA

01:

TypeB

01:

/TypeB

10:

TypeC

1 Mword x 4 banks x 16 bits

Figure 3.10.10 An Example of Connections between TMP92CF26A and SDRAM

3.10.3 An Example of Calculating HDMA Transfer Time

The following shows an example of calculating the HDMA transfer time when SDRAM is used as the transfer source.

• Transfer from SDRAM to internal SRAM

Conditions:

System clock (f_{SYS}) : 60 MHz

SDRAM read cycle : Full page (5-1-1-1), 16-bit data bus

16-bit data bus

SDRAM Auto Refresh interval: 936 states (15.6 µs)

Internal RAM write cycle : 1 state, 32-bit data bus

Number of bytes to transfer : 512 bytes

Calculation example:

Transfer time = (SDRAM read time + SRAM write time) × transfer count

+ (SDRAM burst start + stop time)

+ (Precharge time + Auto Refresh time) × Auto Refresh count

(a) Read/write time

(SDRAM read 1 state \times 2 + Internal RAM write 1 state) \times 512 bytes/4 bytes

$$= 384 \text{ states} \times 1/60 \text{ MHz}$$

$$=6.4~\mu s$$

(b) Burst start/stop time

Start (TRCD: 2CLK) 5 states + Stop 2 states

$$= 0.117 \, \mu s$$

(c) Auto Refresh time

Based on the above (a), Auto Refresh occurs once or zero times in 384 states. It is assumed that Auto Refresh occurs once here.

(Precharge (TRP: 2CLK) 2 states + AREF (TRC: 5CLK) 5 states) ×AREF once

$$= 7 \text{ states} \times 1/60 \text{ MHz}$$

$$= 0.117 \, \mu s$$

Total transfer time = (a) + (b) + (c)
=
$$6.4 \mu s + 0.117 \mu s + 0.117 \mu s$$

= $6.634 \mu s$

3.10.4 Considerations for Using the SDRAMC

This section describes the points that must be taken into account when using the SDRAMC. Please carefully read the following to ensure proper use of the SDRAMC.

1) WAIT access

When SDRAM is used, the following restriction applies to memory access to other than the SDRAM.

In the external WAIT pin input setting of the memory controller, the maximum external WAIT period that can be set is limited to "Auto Refresh interval × 8190".

2) Execution of the Self Refresh Entry, Initialization Sequence, or Precharge All command before the HALT instruction

Execution of the commands issued by the SDRAMC (Self Refresh Entry, Initialization Sequence, Precharge All) requires several states after the SDCMM register is set.

Therefore, to execute the HALT instruction after one of these commands, be sure to insert at least 10 bytes of NOP or other instructions.

3) Auto Refresh interval setting

When SDRAM is used, the system clock frequency must be set to satisfy the minimum operation frequency and minimum Auto Refresh interval of the SDRAM to be used.

In a system in which SDRAM is used and the clock is geared up and down, the Auto Refresh interval must be set carefully.

Before changing the Auto Refresh interval, ensure that SDRCR<SRC> is set to "0" to disable the Auto Refresh function.

4) Changing SFR settings

Before changing the settings of the SDACR<SPRE> and SDCISR registers, ensure that the SDRAMC is disabled (SDACR<SMAC> ="0").

5) Disabling the SDRAMC

Set the following procedure, when disable the SDRAMC.

LOOP: LD A,(SDCMM),0x02 ; Issue to All Bank Precharge ; Read SDCMM

CP A,0x00 ; Palling it until the All Bank Precharge command is finished

JP NZ,LOOP :

LD (SDACR),0x00 ; Stop the SDRAM controller

6) Using LCDC, DMAC with SDRAMC

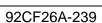
And this micro has LCD controller and DMA controller, in case of using below condition, there is one limitation. When SDRAM is set as VRAM for LCD controller and DMA controller is operated at the same time, always set to "1" to SDACR<SPRE>.

3.11 NAND Flash Controller (NDFC)

3.11.1 Features

The NAND Flash Controller (NDFC) is provided with dedicated pins for connecting with NAND Flash memory.

The NDFC also has an ECC calculation function for error correction and supports two types of ECC calculation methods. The ECC calculation method using Hamming codes can be used for NAND Flash memory of SLC (Single Level Cell) type and is capable of detecting a single-bit error for every 256 bytes. The ECC calculation method using Reed-Solomon codes can be used for NAND Flash memory of MLC (Multi Level Cell) type and is capable of detecting four error addresses for every 518 bytes.


Although the NDFC has two channels (channel 0, channel 1), all pins except for Chip Enable are shared between the two channels. Only the operation of channel 0 is explained here.

The NDFC has the following features:

- 1) Controls the NAND Flash memory interface through registers.
- 2) Supports 8-bit and 16-bit NAND Flash memory devices.
- 3) Supports page sizes of 512 bytes and 2048 bytes.
- 4) Supports large-capacity block sizes over 256 Kbytes.
- 5) Includes an ECC generation circuit using Hamming codes (for SLC type).
- 6) Includes a 4-address (4-byte) error detection circuit using Reed-Solomon coding/encoding techniques (for MLC type).

Note 1: The WP (Write Protect) pin of NAND Flash is not supported. If this function is needed, prepare it on an external circuit.

Note 2: The two channels cannot be accessed simultaneously. It is necessary to switch between the two channels.

3.11.2 Block Diagram

NAND Flash Controller Channel 0 (NDFC0)

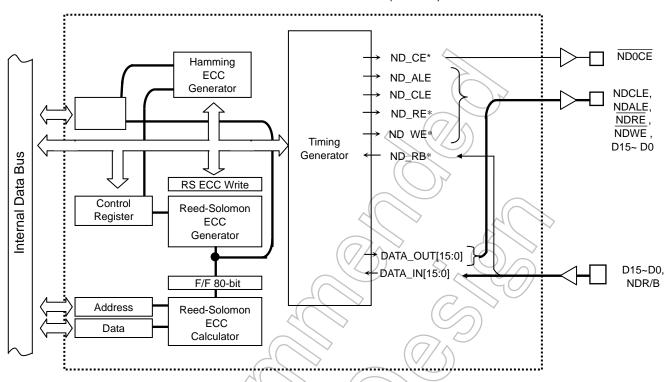
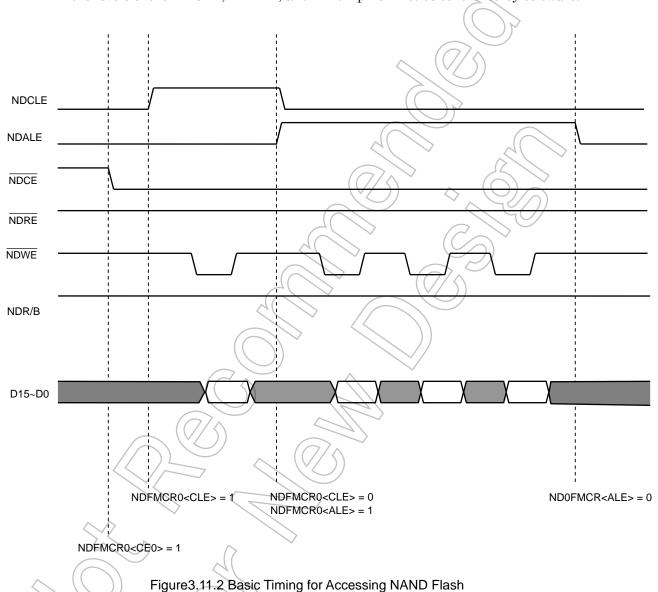


Figure 3.11.1 Block Diagram for NAND Flash Controller



3.11.3 Operation Description

3.11.3.1 Accessing NAND Flash Memory

The NDFC accesses data on NAND Flash memory indirectly through its internal registers. This section explains the operations for accessing the NAND Flash.

Since no dedicated sequencer is provided for generating commands to the NAND Flash, the levels of the NDCLE, NDALE, and $\overline{\text{NDCE}}$ pins must be controlled by software.

The NDRE and NDWE signals are explained next. Write and read operations to and from the NAND Flash are performed through the ND0FDTR register. The actual write operation completes not when the ND0FDTR register is written to but when the data is written to the external NAND Flash. Likewise, the actual read operation completes not when the ND0FDTR register is read but when the data is read from the external NAND Flash.

At this time, the Low and High widths of $\overline{\text{NDRE}}$ and $\overline{\text{NDWE}}$ can be adjusted according to the CPU operating speed (fsys) and the access time of the NAND Flash. (For details, refer to the electrical characteristics.)

The following shows an example of accessing the NAND Flash in 6 clocks by setting NDFMCR0<SPLW1:0>=2 and NDFMCR0<SPHW1:0>=2. (In write cycles, the data drive time also becomes longer.)

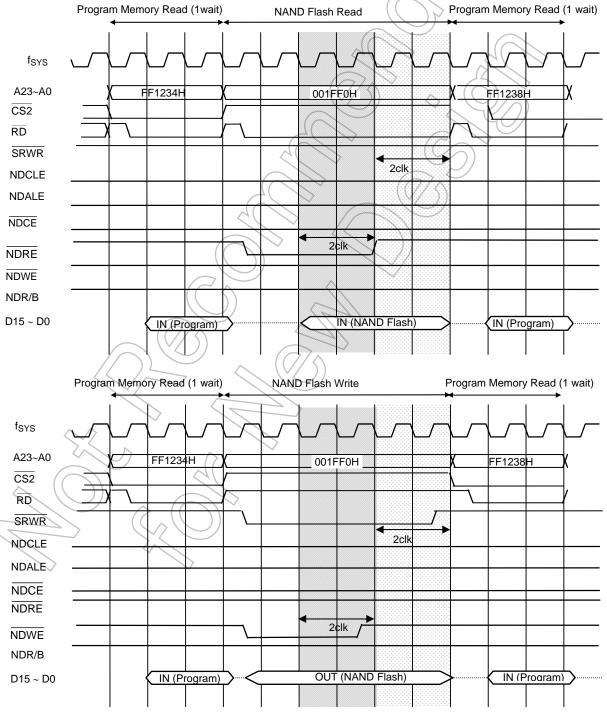


Figure 3.11.3 Read/Write Access to NAND Flash

TOSHIBA

3.11.4 ECC Control

NAND Flash memory devices may inherently include error bits. It is therefore necessary to implement the error correction processing using ECC (Error Correction Code).

Figure 3.11.4 shows a basic flowchart for ECC control.

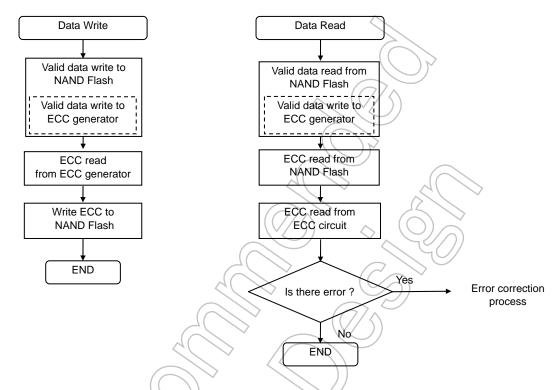


Figure 3.11.4 Basic Flow of ECC Control

Write:

- 1. When data is written to the actual NAND Flash memory, the ECC generator in the NDFC simultaneously generates ECC for the written data.
- 2. The ECC is written to the redundant area in the NAND Flash separately from the valid data.

Read:

- 1. When data is read from the actual NAND Flash memory, the ECC generator in the NDFC simultaneously generates ECC for the read data.
- 2. The ECC for the written data and the ECC for the read data are compared to detect and correct error bits.

3.11.4.1 Differences between Hamming Codes and Reed-Solomon Codes

The NDFC includes an ECC generator supporting NAND Flash memory devices of SLC (or 2LC: two states) type and MLC (or 4LC: four states) type.

The ECC calculation using Hamming codes (supporting SLC) generates 22 bits of ECC for every 256 bytes of valid data and is capable of detecting and correcting a single-bit error for every 256 bytes. Error bit detection calculation and correction must be implemented by software. When using SmartMediaTM, Hamming codes should be used.

The ECC calculation using Reed-Solomon codes (supporting MLC) generates 80 bits of ECC for every 1 byte to 518 bytes of valid data and is capable of detecting and correcting error bits at four addresses for every 518 bytes. When using Reed-Solomon codes, error bit detection calculation is supported by hardware and only error bit correction needs to be implemented by software.

The differences between Hamming codes and Reed-Solomon codes are summarized in Table 3.11.1.

Table 0.11.1	Differences between Hamiling Opt	acs and recea colombil codes
	Hamming	Reed-Solomon
Maximum number of correctable errors	1 bit	4 addresses (All the 8 bits at one address are correctable.)
Number of ECC bits	22 bits/256 bytes	80 bits/up to 518 bytes
Error bit detection method	Software	Hardware
Error bit correction method	Software	Software
Error bit detection time	Depends on the software to be used.	See the table below.
Others	Supports SmartMediaTM	

Table 3.11.1 Differences between Hamming Codes and Reed-Solomon Codes

Number of Error Bits	Reed-Solomon Error Bit Detection Time (Unit: Clocks)	Notes
4 //	813 (max)	//))
3	648 (max)	These values indicate the total number of clocks for
2	358 (max)	detecting error bit(s) not including the register read/write
1,	219 (max)	time by the CPU.
0	1	

3.11.4.2 Error Correction Methods

Hamming ECC

• The ECC generator generates 44 bits of ECC for a page containing 512 bytes of valid data. The error correction process must be performed in units of 256 bytes (22 bits of ECC). The following explains how to implement error correction on 256 bytes of valid data using 22 bits of ECC.

- If the NAND Flash to be used has a large-capacity page size (e.g. 2048 bytes), the error correction process must be repeated several times to cover the entire page.
- 1) The calculated ECC and the ECC in the redundant area are rearranged, respectively, so that the lower 2 bytes represent line parity (LPR15:0) and the upper 1 byte (of which the upper 6 bits are valid) represents column parity (CPR7:2).
- 2) The two rearranged ECCs are XORed.
- 3) If the XOR result is 0 indicating an ECC match, the error correction process ends normally (no error). If the XOR result is other than 0, it is checked whether or not the error data can be corrected.
- 4) If the XOR result contains only one ON bit, it is determined that a single-bit error exists in the ECC data itself and the error correction process terminates here (error not correctable).
- 5) If each pair of bits 0 to 21 of the XOR result is either 01B or 10B, it is determined that the error data is correctable and error correction is performed accordingly. If the XOR result contains either 00B or 11B, it is determined that the error data is not correctable and the error correction process terminates here.

	An Exampl	e of Correctable	An Example of Uncorrectable			
	XOI	R Result 🔷	XOR Result			
Binary	10-01/10 00	Column parity		Column parity		
$\downarrow (\bigcirc /)$	10 10 01 10 01 01 10 10	Line parity	10 10 01 10	Line parity		

6) The line and bit positions of the error are detected using the line parity and column parity of the XOR result, respectively. The error bit thus detected is then inverted. This completes the error correction process.

Example: When the XOR result is 10011010101101011010

Convert two bytes of line parity into one byte $(10\rightarrow 1, 01\rightarrow 0)$.

Convert six bits of column parity into three bits $(10\rightarrow1, 01\rightarrow0)$.

Line parity: 10 10 01 10 01 01 10 10

0000000

1 1 0 1 0 0 1 1 = D3H *Error at D3/FF H

Column parity: 10 01 10

ÛÛÛ

 $1 \ 0 \ 1 = 5$

*Error in bit 5

Based on the above, error correction is performed by inverting the data in bit 5 at address 212.

Reed-Solomon ECC

• The ECC generator generates 80 bits of ECC for up to 518 bytes of valid data. If the NAND Flash to be used has a large-capacity page size (e.g. 2048 bytes), the error correction process must be repeated several times to cover the entire page.

- Basically no calculation is needed for error correction. If error detection is performed properly, the NDFC only needs to refer to the error address and error bit. However, it may be necessary to convert the error address, as explained below.
- 1) If the error address indicated by the NDRSCAn register is in the range of 000H to 007H, this error exists in the ECC area and no correction is needed in this case.
 (It is not able to correct the error in the ECC area. However, if the error exists in the ECC area, only 4symbol (include the error in the ECC area) can correct the error to this LSI. Please be careful.)
- 2) If the error address indicated by the NDRSCAn register is in the range of 008H to 20DH, the actual error address is obtained by subtracting this address from 20 DH. (If the valid data is processed as 512 byte, the actual error address is obtained by subtracting this address from 207H when the error address in the range of 008H to 207H.)

Example 1:

NDRSCAn = 005H, NDRSCDn = 04H = 00000100B

As the error address (005H) is in the range of 000H to 007H, no correction is needed.

(Although an error exists in bit 2, no correction is needed.)

Example 2

NDRSCAn = 083H, NDRSCDn = 81H = 10000001B

The actual error address is obtained by subtracting 083H from 20DH. Thus, the error correction process inverts the data in bits 7 and 0 at address 18AH.

(If the valid data is 512 byte, the actual error address is obtained by subtracting 083H from 207H. Thus, the error correction process inverts the data in bits 7 and 0 at address 184H.)

Note: If the error address (after converted) is in the range of 000H to 007H, it indicates that an error bit exists in redundant area (ECC). In this case, no error correction is needed. If the number of error bits is not more than 4 symbols, Reed-Solomon codes calculate each error bit precisely even if it is the redundant area (ECC).

3.11.5 Description of Registers

NAND Flash Control 0 Register

NDFMCR0 (08C0H)

A read-modify -write operation cannot be performed

(08C1H)

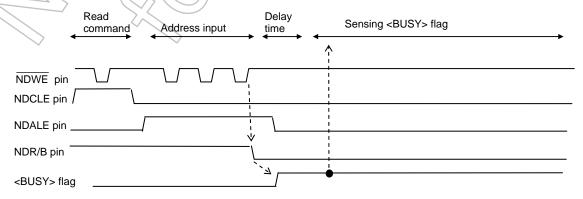
A read-modifywrite operation cannot be performed

NAND Flash Control 0 Register									
	7	6	5	4	3	2	1	0	
bit Symbol	WE	ALE	CLE	CE0	CE1	ECCE	BUSY	ECCRST	
Read/Write			R	W			R	W	
Reset State	0	0	0	0	0	0	0	0	
Function	WE enable 0: Disable 1: Enable	ALE control 0: "L" out 1: "H" out	CLE control 0: "L" out 1: "H" out	CEO control 0: "H" out 1: "L" out	CE1 control 0: "H" out 1: "L" out	ECC circuit control 0: Disable 1: Enable	NAND Flash state 1: Busy 0: Ready	ECC reset control 0: – 1: Reset *Always read as "0".	
	15	14	13	12		<i>J)</i> 10	9	8	
bit Symbol	SPLW1	SPLW0	SPHW1	SPHW0	RSECCL	RSEDN	RSESTA	RSECGW	
Read/Write			R	W		>	W	R/W	
Reset State	0	0	0	0	0	0	0	0	
Function	Strobe puls (Low width NDWE) Inserted wid = (fSYS) ×	of NDRE,	Strobe pulse width (High width of NDRE) NDWE) Inserted width		Reed- Solomon ECC latch 0: Disable 1: Enable	Reed-Solomon operation 0: Encode (Write) 1: Decode (Read)	Reed-Solomon error calculation start 0: – 1: Start *Always read as "0".	Reed-Solomon ECC generator write control 0: Disable 1: Enable	

Figure 3.11.5 NAND Flash Mode Control 0 Register

(a) <ECCRST >

The <ECCRST> bit is used for both Hamming and Reed-Solomon codes.


When NDFMCR1<ECCS>="0", setting this bit to "1" clears the Hamming ECC in the ECC generator. When NDFMCR1<ECCS>="1", setting this bit to "1" clears the Reed-Solomon ECC. Note that this bit is ineffective when NDFMCR0<ECCE>="0". Before writing to this bit, ensure that NDFMCR0<ECCE>="1".

(b) <BUSY>

The <BUSY> bit is used for both Hamming and Reed-Solomon codes.

This bit is used to check the state of the NAND Flash memory (NDR/B pin). It is set to "1" when the NAND Flash is "busy" and to "0" when it is "ready".

Since the NDFC incorporates a noise filter of several states, a change in the NDR/B pin state is reflected on the <BUSY> flag after some delay. It is therefore necessary to inert a delay time by software (e.g. ten NOP instructions) before checking this flag.

(c) <ECCE>

The <ECCE> bit is used for both Hamming and Reed-Solomon codes.

This bit is used to enable or disable the ECC generator. To reset the ECC in the ECC generator (to set <ECCRST> to "1"), the ECC generator must be enabled (<ECCE> = "1").

(d) <CE1:0>, <CLE>, <ALE>

The <CE1:0>, <CLE>, and <ALE> bits are used for both Hamming and Reed-Solomon codes to control the pins of the NAND Flash memory.

(e) <WE>

The <WE> bit is used for both Hamming and Reed-Solomon codes to enable or disable write operations.

(f) <RSECGW>

The <RSECGW> bit is used only for Reed-Solomon codes. When Hamming codes are used, this bit should be set to "0".

Since valid data and ECC are processed differently, the NDFC needs to know whether valid data or ECC is to be read. This control is implemented by software using this bit.

To read valid data from the NAND Flash, set <RSECGW> to "0". To read ECC written in the redundant area in the NAND Flash, set <RSECGW> to "1".

Note 1: Valid data and ECC cannot be read continuously by DMA transfer. After valid data has been read, DMA transfer should be stopped once to change the <RSECGW> bit from "0" to "1" before ECC can be read.

Note 2: Immediately after ECC is read from the NAND Flash, the NAND Flash access operation or error bit calculation cannot be performed for a duration of 20 system clocks (f_{SYS}). It is necessary to insert 20 NOP instructions or the like.

(g) <RSESTA>

The <RSESTA> bit is used only for Reed-Solomon codes.

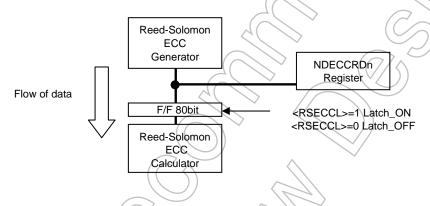
The error address and error bit position are calculated using an intermediate code generated from the ECC for written data and the ECC for read data. Setting <RSESTA> to "1" starts this calculation.

(h) <RSEDN>

The <RSEDN> bit is used only for Reed-Solomon codes. When using Hamming codes, this bit should be set to "0".

For a write operation, this bit should be set to "0" (encode) to generate ECC. The ECC read from the NDECCRDn register is written to the redundant area in the NAND Flash. For a read operation, this bit should be set to "1" (decode). In this case, valid data is read from the NAND Flash and the ECC written in the redundant area is also read to generate an intermediate code for calculating the error address and error bit position.

(i) <RSECCL>


The <RSECCL> bit is used only for Reed-Solomon codes. When using Hamming codes, this bit should be set to "0".

The Reed-Solomon processing unit is comprised of two elements: an ECC generator and an ECC calculator. The latter is used to calculate the error address and error bit position.

The error address and error bit position are calculated using an intermediate code generated from the ECC for written data and the ECC for read data. At this time, no special care is needed if ECC generation and error calculation are performed serially. If these operations need to be performed parallely, the intermediate code used for error calculation must be latched while the calculation is being performed. The <RSECCL> bit is provided to enable this latch operation.

When <RSECCL> is set to "1", the intermediate code is latched so that the ECC generator can generate the ECC for another page without problem while the ECC calculator is calculating the error address and error bit position. At this time, the ECC generator can perform both encode (write) and decode (read) operations.

When <RSECCL> is set to "0", the latch is released and the contents of the ECC calculator are updated as the data in the ECC generator is updated.

(j) <SPHW1:0>

The <SPHW1:0> bits are used for both Hamming and Reed-Solomon codes.

These bits are used to specify the High width of the $\overline{\text{NDRE}}$ and $\overline{\text{NDWE}}$ signals. The High width to be inserted is obtained by multiplying the value set in these bits by f SYS.

(k) <SPLW1:0>

The <SPLW1:0> bits are used for both Hamming and Reed-Solomon codes.

These bits are used to specify the Low width of the $\overline{\text{NDRE}}$ and $\overline{\text{NDWE}}$ signals. The Low width to be inserted is obtained by multiplying the value set in these bits by fsys.

NAND Flash Control 1 Register

NDFMCR1 (08C2H)

		, ., .,	1 10011 001		J			
	7	6	5	4	3	2	1	0
bit Symbol	INTERDY	INTRSC				BUSW	ECCS	SYSCKE
Read/Write	R	/W					R/W	_
Reset State	0	0				0	0	0
Function	Ready interrupt 0: Disable 1: Enable	Reed-Solomon calculation end interrupt 0: Disable 1: Enable				Data bus width 0: 8-bit 1: 16-bit	ECC calculation 0:Hamming 1: Reed- Solomon	Clock control 0: Disable 1: Enable
	15	14	13	12	11	10	9	8
bit Symbol	STATE3	STATE2	STATE1	STATE0	SEER1	\$EER0		
Read/Write			F	?		J Y		
Reset State	0	0	0	0	Undefined	Undefined		
Function		Statu	us read (See	the table bel	ow.)	>		

(08C3H)

Table3.11.2 Reed-Solomon Calculation Result Status Table

STATE<3:0>	Meaning
0000	Calculation ended 0 (No error)
0001	Calculation ended 1(5 or more symbols in error; not correctable)
0010	Calculation ended 2 (Error found)
0011	Calculation ended 2 (Entri Todina)
0100~1111	Calculation in progress

Note: The <STATE3:0> value becomes effective after the calculation has started.

SEER<1:0>	Meaning	
00	1-address error	/
01	2-address error	>
10	3-address error	
11	4-address error	

Note: The <SEER1:0> value becomes effective after the calculation has ended.

(a) <SYSCKE>

The <SYSCKE> bit is used for both Hamming and Reed-Solomon codes.

When using the NDFC, this bit must be set to "1" to enable the system clock. When not using the NDFC, power consumption can be reduced by setting this bit to "0".

(b) <ECCS>

The <ECCS> bit is used to select whether to use Hamming codes or Reed-Solomon codes. This bit is set to "0" for using Hamming codes and to "1" for using Reed-Solomon codes. It is also necessary to set this bit for clearing ECC.

(c) <BUSW>

The <BUSW> bit is used for both Hamming and Reed-Solomon codes.

This bit specifies the bus width of the NAND Flash to be accessed ("0" = 8 bits, "1" = 16 bits). No other setting is required in the memory controller.

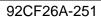
(d) <INTRSC>

The <INTRSC> bit is used only for Reed-Solomon codes. When using Hamming codes, this bit should be set to "0".

This bit is used to enable or disable the interrupt to be generated when the calculation of error address and error bit position has ended.

The interrupt is enabled when this bit is set to "1" and disabled when "0".

(e) <INTRDY>


The <INTRDY> bit is used for both Hamming and Reed-Solomon codes.

This bit is used to enable or disable the interrupt to be generated when the status of the NDR/B pin of the NAND Flash changes from "busy" (0) to "ready" (1). The interrupt is enabled when this bit is set to "1" and disabled when "0".

(f) <STATE3:0>, <SEER1:0>

The <STATE3:0> and <SEER1:0> bits are used only for Reed-Solomon codes. When using Hamming codes, they have no meaning.

These bits are used as flags to indicate the result of error address and error bit calculation. For details, see Table 3.11.2.

			NAN	D Flash Da	ata Regist	er 0			
		7	6	5	4	3	2	1	0
)	bit Symbol	D7	D6	D5	D4	D3	D2	D1	D0
	Read/Write	ead/Write R/W							
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
	Function	tion NAND Flash Data Register (7-0)							
		15	14	13	12	11	10	9	8
	bit Symbol	D15	D14	D13	D12	D11	D10	D9	D8
	Read/Write		_	_	R/	W			
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
	Function			NAN	ND Flash Dat	a Register (1	5-8)		

NAND Flash Data Register 1

NDFDTR1 (1FF2H)

NDFDTR0 (1FF0H)

(1FF1H)

6 2 0 5 3 1 D7 D6 D5 D4 D3 D2 D1 D0 bit Symbol Read/Write R/W Undefined Undefined Undefined Undefined Undefined Undefined Undefined Reset State Function NAND Flash Data Register (7-0) 15 14 13 12 11 10 9 8 bit Symbol D15 D14 D13 D12 D11 D10 D9 D8 Read/Write R/W Reset State Undefined Undefined Undefined Undefined Undefined Undefined Undefined NAND Flash Data Register (15-8) **Function**

(1FF3H)

Note: Although these registers allow both read and write operations, no flip-flop is incorporated. Since write and read operations are performed in different manners, it is not possible to read out the data that has been just written.

Figure 3.11.6 NAND Flash Data Registers (NDFDTR0, NDFDTR1)

Write and read operations to and from the NAND Flash memory are performed by accessing the NDFDTR0 register. When you write to this register, the data is written to the NAND Flash. When you read from this register, the data is read from the NAND Flash. The NDFDTR0 register is used for both channel 0 and channel 1.

A total of 4 bytes are provided as data registers to enable 4-byte DMA transfer. For example, 4 bytes of data can be transferred from 32-bit internal RAM to 8-bit NAND Flash memory by DMA operation by setting the destination address as NDFDTR0. (NDFDTR1 cannot be set as the destination address.) The actual DMA operation is performed by first reading 4 bytes from the internal RAM and then writing 1 byte to the NAND Flash four times from the lowest address.

To access data in the NAND Flash, be sure to access NDFDTR0 (at address 1FF0). For details, see Table 3.11.3.

Table3.11.3 How to Access the NAND Flash Data Register

Write

Access Data Size	Example of instruction	8-bit NAND Flash	16-bit NAND Flash	
1-byte access	ld (0x1FF0),a	Supported	Not supported	
2-byte access	ld (0x1FF0),wa	Supported	Supported	
4-byte access	ld (0x1FF0),xwa	Supported	Supported	

R	മ	Ч
\mathbf{r}	50	u

Access Data Size	Example of instruction	8-bit NAND Flash	16-bit NAND Flash
1-byte access	ld a,(0x1FF0)	Supported	Not supported
2-byte access	ld wa,(0x1FF0)	Supported	Supported
4-byte access	ld xwa,(0x1FF0)	Supported	Supported

			NANI	D Flash E	CC Regist	er 0							
		7	6	5	4	3	2	1	0				
NDECCRD0	bit Symbol	ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0				
(08C4H)	Read/Write				F	₹							
	Reset State	0	0	0	0	0	0	0	0				
	Function			NAI	ND Flash EC	C Register (7	7-0)						
		15	14	13	12	11	10	9	8				
(08C5H)	bit Symbol	ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8				
	Read/Write				F	₹							
	Reset State	0	0	0	0	0	$(\bigcirc 0 \land \bigcirc$	0	0				
	Function			NAN	ND Flash EC	C Register (1	5-8)						
NAND Flash ECC Register 1													
		7	6	5	4	3		1	0				
NDECCRD1	bit Symbol	ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0				
(08C6H)	Read/Write					1/5		2//					
	Reset State	0	0	0	0 ((/	//\0	0 (0	0				
	Function	NAND Flash ECC Register (7-0)											
		15	14	13	12	11	10	9//	8				
(08C7H)	bit Symbol	ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8				
	Read/Write			~	F	₹							
	Reset State	0	0	0	0	0	\supset 0 \sim	0	0				
	Function			NAN (NAN	ND Flash EC	C Register (1	5-8)						
			NANI	O Flash E	CC Regist	er 2							
		7	6 ((5	4	3	2	1	0				
NDECCRD2	bit Symbol	ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0				
(08C8H)	Read/Write							L					
	Reset State	0	((0)	0	0	0	0	0	0				
	Function			NAI	ND Flash EC	Register (7	7-0)						
		15 ((7/14	13	12	11	10	9	8				
(08C9H)	bit Symbol /	ECCD15	ECCD14	ECCD16			=000.40		ECCD8				
			LOODIT	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCDO				
	Read/Write /)	200514	ECCDIS	// \ \	ECCD11	ECCD10	ECCD9	ECCD6				
	Read/Write Reset State	0	0	0	0 F	0	0	0 ECCD9	0				
		0	7	0	0 F	₹	0						
	Reset State	0	0	0 NAM	0 ND Flash EC	0 C Register (1	0						
	Reset State	7	0	0 NAM	0 F	0 C Register (1	0						
NDECCRD3	Reset State Function	7	NANI	O NAM O Flash E0	O ND Flash ECO CC Registo 4	R 0 C Register (1 er 3	0 5-8)	0	0				
NDECCRD3 (08CAH)	Reset State Function	<i></i>	0 NANI	O NAM	CC Registe 4 ECCD4	R 0 C Register (1 er 3	0 5-8)	0	0				
NDECCRD3 (08CAH)	Reset State Function bit Symbol Read/Write	7	NANI	O NAM O Flash E0	CC Registe 4 ECCD4	R 0 C Register (1 er 3 3 ECCD3	0 5-8)	0	0				
	Reset State Function	7 ECCD7	NANI 6 ECCD6	D Flash E0 5 ECCD5	CC Registe 4 ECCD4 6	er 3 ECCD3	0 5-8) 2 ECCD2	0 1 ECCD1	0 0 ECCD0				

ECCD15 ECCD14 ECCD13 ECCD12 ECCD11

R

NAND Flash ECC Register (15-8)

0

0

(08CBH)

bit Symbol Read/Write

Reset State

Function

0

0

ECCD8

0

ECCD10

0

ECCD9

0

NAND Flash ECC Register 4

NDECCRD4 (08CCH)

0 7 2 6 5 4 3 1 ECCD6 ECCD4 ECCD2 ECCD0 bit Symbol ECCD7 ECCD5 ECCD3 ECCD1 Read/Write Reset State 0 0 0 0 0 NAND Flash ECC Register (7-0) Function 15 14 13 12 11 10 9 8 ECCD13 ECCD12 ECCD9 ECCD8 bit Symbol ECCD15 ECCD14 ECCD11 ECCD10 Read/Write 0 Reset State 0 O 0 0 /0/ NAND Flash ECC Register (15-8) **Function**

(08CDH)

Figure 3.11.7 NAND Flash ECC Registers

The NAND Flash ECC register is used to read ECC generated by the ECC generator.

After valid data has been written to or read from the NAND Flash, setting NDFMCR0<ECCE> to "0" causes the corresponding ECC to be set in this register. (The ECC in this register is updated when NDFMCR0<ECCE> changes from "1" to "0".)

When Hamming codes are used, 22 bits of ECC are generated for up to 256 bytes of valid data. In the case of Reed-Solomon codes, 80 bits of ECC are generated for up to 518 bytes of valid data. A total of 80 bits of registers are provided, arranged as five 16-bit registers. These registers must be read in 16-bit units and cannot be accessed in 32-bit units.

After ECC calculation has completed, in the case of Hamming codes, the 16-bit line parity for the first 256 bytes is stored in the NDECCRD0 register, the 6-bit column parity for the first 256 bytes in the NDECCRD1 register (<ECCE7:2>), the 16-bit line parity for the second 256 bytes in the NDECCRD2 register, and the 6-bit column parity for the second 256 bytes in the NDECCRD3 register (<ECCD7:2>). In this case, the NDECCRD4 register is not used.

In the case of Reed Solomon codes, 80 bits of ECC are stored in the NDECCRD0, NDECCRD1, NDECCRD2, NDECCRD3 and NDECCRD4 registers.

Note: Before reading ECC from the NAND Flash ECC register, be sure to set NDFMCR0<ECCE> to "0". The ECC in the NAND Flash ECC register is updated when NDFMCR0<ECCE> changes from "1" to "0". Also note that when the ECC in the ECC generator is reset by NDFMCR0<ECCRST>, the contents of this register are not reset.

	Register Name	Hamming	Reed-Solomon
	NDECCRD0	[15:0] Line parity (for the first 256 bytes)	[15:0] Reed-Solomon ECC code 79:64
	NDECCRD1	[7:2] Column parity (for the first 256 bytes)	[15:0] Reed-Solomon ECC code 63:48
I	NDECCRD2	[15:0] Line parity (for the second 256 bytes)	[15:0] Reed-Solomon ECC code 47:32
	NDECCRD3	[7:2] Column parity (for the second 256 bytes)	[15:0] Reed-Solomon ECC code 31:16
	NDECCRD4	Not in use	[15:0] Reed-Solomon ECC code 15:0

The table below shows an example of how ECC is written to the redundant area in the NAND Flash memory when using Reed-Solomon codes.

When using Hamming codes with SmartMediaTM, the addresses of the redundant area are specified by the physical format of SmartMediaTM. For details, refer to the SmartMediaTM Physical Format Specifications.

Register Name	Reed-Solomon	NAND Flash Address
NDECCRD0	[15:0]	Upper 8 bits [79:72]→ address 518
	Reed-Solomon ECC code 79:64	Lower 8 bits [71:64] → address 519
NDECCRD1	[15:0]	Upper 8 bits [63:56] → address 520
	Reed-Solomon ECC code 63:48	Upper 8 bits [55:48] → address 521
NDECCRD2	[15:0]	Upper 8 bits [47:40] → address 522
	Reed-Solomon ECC code 47:32	Lower 8 bits [39:32] → address 523
NDECCRD3	[15:0]	Upper 8 bits [31:24] → address 524
	Reed-Solomon ECC code 31:16	Lower 8 bits [23:16] → address 525
NDECCRD4	[15:0]	Upper 8 bits [15:8] → address 526
	Reed-Solomon ECC code 15:0	Lower 8 bits [7:0] → address 527

	NA	ND Flash	Reed-Sol	omon Calc	ulation Ne	Suit Addre	ss Registe	 	
		7	6	5	4	3	2	1	0
NDRSCA0	bit Symbol	RS0A7	RS0A6	RS0A5	RS0A4	RS0A3	RS0A2	RS0A1	RS0A0
(08D0H)	Read/Write				F	₹			
	Reset State	0	0	0	0	0	0	0	0
	Function		NAND Fla	ash Reed-Sol	omon Calcul	ation Result	Address Reg	ister (7-0)	
		15	14	13	12	11	10	9	8
(08D1H)	bit Symbol						4	RS0A9	RS0A8
,	Read/Write						£) P F	?
	Reset State							0	0
	Function					_	$((7/\land)$	NAND	Flash
							(Reed-S	olomon
								Calculation	on Result
								Address Re	
		7	6	5	4	3	J)2	1	0
NDRSCA1	bit Symbol	RS1A7	RS1A6	RS1A5	RS1A4	RS1A3	RS1A2	R\$1A1	RS1A0
(08D4H)	Read/Write				F	$\langle \langle \rangle \rangle$	7	41)	
	Reset State	0	0	0	0	0	0	0	0
	Function		NAND Fla	ash Reed-Sol	omon Calcul	ation Result	Address Reg	ister (7-0)	
		15	14	13	12	<i>√1</i> 1	40,	(9)	8
(08D5H)	bit Symbol							R\$1A9	RS1A8
	Read/Write						Ž	√ F	₹
	Reset State			7			A A	0	0
	Function						~ []	NAND Fla	sh Reed-
						((7/^	Solomon (Calculation
									Address
				4 //	> /			Registe	er (9-8)
		7	6	5	4 🗸	3 \\	2	1	0
NDRSCA2	bit Symbol	RS2A7	RS2A6	RS2A5	RS2A4	RS2A3	RS2A2	RS2A1	RS2A0
(08D8H)	Read/Write				F	₹ \\/			
	Reset State	0	6	0	0_	0	0	0	0
	Function		NAND Fla	sh Reed-Sol	omon Calcul	ation Result	Address Reg	ister (7-0)	
		15	14	13	12	11	10	9	8
(08D9H)	bit Symbol	A	7/\		44	7		RS2A9	RS2A8
	Read/Write	1	$\nearrow \nearrow$					F	₹
	Reset State	7	$\left\langle \right\rangle$	7	7/4			0	0
	Function <	7	7					NAND Fla	sh Reed-
			7					Solomon (Calculation
					>			Result /	Address
								Registe	er (9-8)
	~/>								$^{\circ}$
		7	6	5	4	3	2	1	0
NDRSCA3	bit Symbol	RS3A7	6 RS3A6	5 RS3A5	4 RS3A4	3 RS3A3	2 RS3A2	1 RS3A1	RS3A0
NDRSCA3 (08DCH)	bit Symbol Read/Write	-		\rightarrow	RS3A4			•	
	, ,	-		\rightarrow	RS3A4	RS3A3		•	
	Read/Write	RS3A7 0	RS3A6	RS3A5 0 ash Reed-Sol	RS3A4 F	RS3A3 R 0	RS3A2 0 Address Reg	RS3A1 0	RS3A0 0
	Read/Write Reset State	RS3A7	RS3A6	RS3A5 0	RS3A4 F	RS3A3 R 0	RS3A2 0	RS3A1 0	RS3A0
	Read/Write Reset State	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	RS3A1 0 ister (7-0)	RS3A0 0
(08DCH)	Read/Write Reset State Function	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	RS3A1 0 ister (7-0) 9	0 8 RS3A8
(08DCH)	Read/Write Reset State Function bit Symbol	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	0 ister (7-0) 9 RS3A9	0 8 RS3A8
(08DCH)	Read/Write Reset State Function bit Symbol Read/Write	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	RS3A1 0 ister (7-0) 9 RS3A9	RS3A0 0 8 RS3A8
(08DCH)	Read/Write Reset State Function bit Symbol Read/Write Reset State	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	RS3A1 0 ister (7-0) 9 RS3A9 F 0 NAND Fla	RS3A0 0 8 RS3A8
(08DCH)	Read/Write Reset State Function bit Symbol Read/Write Reset State	RS3A7 0	RS3A6 0 NAND Fla	RS3A5 0 ash Reed-Sol	RS3A4 F 0 omon Calcul	RS3A3 R 0 ation Result	RS3A2 0 Address Reg	RS3A1 0 ister (7-0) 9 RS3A9 F 0 NAND Fla Solomon (Result /	RS3A0 0 8 RS3A8 0 onsh Reed-

Figure 3.11.8 NAND Flash Reed-Solomon Calculation Result Address Register

If error is found at only one address, the error address is stored in the NDRSCA0 register. If error is found at two addresses, the NDRSCA0 and NDRSCA1 registers are used to store the error addresses. In this manner, up to four error addresses can be stored in the NDRSCA0 to NDRSCA3 registers.

The number of error addresses can be checked by NDFMCR1<SEER1:0>.

	N	IAND Flas	h Reed-So	nomon Ca	iculation r	tesuit Data	Registet	<i>J</i>)					
		7	6	5	4	3	(2)	1	0				
NDRSCD0	bit Symbol	RS0D7	RS0D6	RS0D5	RS0D4	RS0D3	RS0D2	RS0D1	RS0D0				
(08D2H)	Read/Write				F	2							
	Reset State	0	0	0	0	0(() 0	0	0				
	Function		NAND Flash Reed-Solomon Calculation Result Data Register (7-0)										
		7	6	5	4	3	2	1	0				
NDRSCD1	bit Symbol	RS1D7	RS1D6	RS1D5	RS1D4	RS1D3	RS1D2	RS1D1	RS1D0				
(08D6H)	Read/Write		R										
	Reset State	0	0	0	0 (🗸	/) <u>)</u> 0	⊘ 0 (0 0	0				
	Function		NAND Flash Reed-Solomon Calculation Result Data Register (7-0)										
		7	6	5	4	> 3	9		0				
		•	U	•	(T	7 3	2	\rightarrow	U				
NDRSCD2	bit Symbol	RS2D7	RS2D6	RS2D5	RS2D4	RS2D3	RS2D2	RS2D1	RS2D0				
NDRSCD2 (08DAH)	bit Symbol Read/Write	•	_			RS2D3	-	RS2D1					
	· ·	•	_		RS2D4	RS2D3	-	RS2D1					
	Read/Write	RS2D7	RS2D6 0	RS2D5	RS2D4 F	RS2D3	RS2D2	0	RS2D0				
	Read/Write Reset State	RS2D7	RS2D6 0	RS2D5	RS2D4 F	RS2D3	RS2D2	0	RS2D0				
	Read/Write Reset State	RS2D7 0	RS2D6 0 NAND F	RS2D5 0 Tash Reed-S	RS2D4 F 0 olomon Calc	RS2D3 R 0 ulation Resul	RS2D2 0 t Data Regis	0 ster (7-0)	RS2D0 0				
(08DAH)	Read/Write Reset State Function	0 7	0 NAND F	RS2D5 0 ilash Reed-S	RS2D4 F 0 olomon Calc	RS2D3 R 0 ulation Resul	RS2D2 0 t Data Regis	0 ster (7-0)	0 0				
(08DAH)	Read/Write Reset State Function bit Symbol	0 7	0 NAND F	RS2D5 0 ilash Reed-S	RS2D4 F 0 olomon Calc 4 RS3D4	RS2D3 R 0 ulation Resul	RS2D2 0 t Data Regis	0 ster (7-0)	0 0				
(08DAH)	Read/Write Reset State Function bit Symbol Read/Write	0 7 RS3D7	0 NAND F 6 RS3D6	RS2D5 0 Ilash Reed-S RS3D5	RS2D4 F 0 olomon Calc 4 RS3D4 F 0	RS2D3 R 0 ulation Resul	RS2D2 0 t Data Regis 2 RS3D2	0 ster (7-0) 1 RS3D1	0 0 RS3D0				

Figure 3.11.9 NAND Flash Reed-Solomon Calculation Result Data Register

If error is found at only one address, the error data is stored in the NDRSCD0 register. If error is found at two addresses, the NDRSCD0 and NDRSCD1 registers are used to store the error data. In this manner, the error data at up to four addresses can be stored in the NDRSCD0 to NDRSCD3 registers.

The number of error addresses can be checked by NDFMCR1<SEER1:0>.

3.11.6 An Example of Accessing NAND Flash of SLC Type

```
1.
    Initialization
    ; ***** Initialize NDFC *****
             Conditions: 8-bit bus, CEO, SLC, 512 (528) bytes/page, Hamming codes
                     (ndfmcr1),0001h ; 8-bit bus, Hamming ECC, SYSCK-ON
            ld
                     (ndfmcr0),2000h ; SPLW1:0=0, SPHW1:0=2
            1d
2.
    Write
    Writing valid data
    ; ***** Write valid data*****
            ldw
                     (ndfmcr0),2010h ; CE0 enable
                     (ndfmcr0),20B0h ; WE enable, CLE enable
            ldw
            ld
                     (ndfdtr0),80h
                                       ; Serial input command
            ldw
                     (ndfmcr0),20D0h ; ALE enable
            ld
                     (ndfdtr0),xxh
                                       ; Address write (3 or 4 times)
            ldw
                     (ndfmcr0),2095h ; Reset ECC, ECCE enable, CE0 enable
            1d
                     (ndfdtr0).xxh
                                       Data write (512 times)
    Generating ECC → Reading ECC
    ; ***** Read ECC *****
            ldw
                     (ndfmcr0),2010h ; ECC circuit disable
            ldw
                     xxxx.(ndeccrd0)
                                       Read ECC from internal circuit
                     1'st Read:
                                     D15-0 > LPR15:0
                                                                 For first 256 bytes
            ldw
                     xxxx,(ndeccrd1)
                                     Read ECC from internal circuit
                     2'nd Read:
                                       D15-0 > FFh+CPR5:0+11b For first 256 bytes
            4dw
                     xxxx,(ndeccrd0)
                                      Read ECC from internal circuit
                     3'rd Read:
                                       D15-0 > LPR15:0
                                                                 For second 256 bytes
            ldw
                     xxxx,(ndeccrd1)
                                       ; Read ECC from internal circuit
                     4'th Read:
                                       D15-0 > FFh+CPR5:0+11b For second 256 bytes
    Writing ECC to NAND Flash
    ; **** Write dummy data & ECC****
            ldw
                     (ndfmcr0),2090h ; ECC circuit disable, data write mode
            ld
                     (ndfdtr0),xxh
                                       ; Redundancy area data write (16 times)
                     Write to D520:
                                       LPR7:0
                                                        > D7-0
                                                               For second 256 bytes
                     Write to D521:
                                       LPR15:8
                                                        > D7-0
                                                                 For second 256 bytes
                     Write to D522:
                                       CPR5:0+11b
                                                        > D7-0
                                                                 For second 256 bytes
                     Write to D525:
                                       LPR7:0
                                                        > D7-0 For first 256 bytes
                     Write to D526:
                                                        > D7-0 For first 256 bytes
                                       LPR15:8
                     Write to D527:
                                       CPR5:0+11b
                                                        > D7-0 For first 256 bytes
```

```
Executing page program
; **** Set auto page program****
                 (ndfmcr0),20B0h \, ; WE enable, CLE enable
        ldw
        ld
                 (ndfdtr0),10h
                                   ; Auto page program command
                 (ndfmcr0),2010h ; WE disable, CLE disable
        ldw
        Wait setup time (from Busy to Ready)
                 1. Flag polling
                 2. Interrupt
Reading status
; ***** Read Status*****
                 (ndfmcr0),20B0h ; WE enable, CLE enable
        ldw
                                   ; Status read command
        ld
                 (ndfdtr0),70h
        ldw
                 (ndfmcr0),2010h
                                  ; WE disable, CLE disable
        ld
                 xx,(ndfdtr0)
                                   ; Status read
```

3. Read

```
Reading valid data
; ***** Read valid data*****
         ldw
                  (ndfmcr0),2010h ; CE0 enable
        ldw
                  (ndfmcr0),20B0h ; WE enable, CLE enable
        ld
                  (ndfdtr0),00h
                                    ; Read command
        ldw
                  (ndfmcr0),20D0h ; ALE enable
                  (ndfdtr0),xxh
                                    ; Address write (3 or 4 times)
        ld
         Wait setup time (from Busy to Ready)
                  1. Flag polling
                  2. Interrupt
                  (ndfmcr0),2015h ; Reset ECC, ECCE enable, CE0 enable
        ldw
                                    ; Data read (512 times)
        ld
                  xx,(ndfdtr0)
                  (ndfmcr0),2010h
                                   ; ECC circuit disable
        ldw
        ld
                  xx,(ndfdtr0)
                                    Redundancy data read (8 times)
                                    ; ECC data read (3 times)
         ld
                  xx,(ndfdtr0)
                                    Redundancy data read (2 times)
        ld
                  xx,(ndfdtr0)
                                    ; ECC data read (3 times)
                  xx,(ndfdtr0)
        ld
Generating ECC \rightarrow Reading ECC
; ***** Read ECC *****
                                   ; ECC circuit disable
                  (ndfmcr0),2010h
         ldw
         ldw
                  xxxx,(ndeccrd0)
                                    ; Read ECC from internal circuit
                  1'st Read:
                                    D15-0 > LPR15:0
                                                               For first 256 bytes
         ldw
                  xxxx,(ndeccrd1)
                                    Read ECC from internal circuit
                  2'nd Read:
                                    D15-0 > FFh+CPR5:0+11b For first 256 bytes
         ldw
                  xxxx,(ndeccrd0)
                                   ; Read ECC from internal circuit
                                    D15-0 > LPR15:0
                  3'rd Read:
                                                               For second 256 bytes
         ldw
                  xxxx,(ndeccrd1)
                                    ; Read ECC from internal circuit
                  4'th Read:
                                    D15-0 > FFh+CPR5:0+11b For second 256 bytes
```

Software processing

The ECC data generated for the read operation and the ECC in the redundant area in the NAND Flash are compared. If any error is found, the error processing routine is performed to correct the error data. For details, see 3.11.4.2 "Error Correction Methods".

TOSHIBA

4. ID Read

The ID read routine is as follows:

ldw (ndfmcr0),20B0h ; WE Enable, CLE enable ld (ndfdtr0),90h ; Write ID read command ldw (ndfmcr0),20D0h ; ALE enable, CLE disable

ld (ndfdtr0),00h ; Write 00

ldw (ndfmcr0),2010h ; WE disable, CLE disable ld xx,(ndfdtr0) ; Read 1'st ID maker code ld xx,(ndfdtr0) ; Read 2'nd ID device code

3.11.7 An Example of Accessing NAND Flash of MLC Type (When the valid data is processed as 518byte)

```
Initialization
    ; ***** Initialize NDFC *****
             Conditions: 16-bit bus, CE1, MLC, 2048 (2112) bytes/page, Reed-Solomon codes
                     (ndfmcr1),0007h ; 16-bit bus, Reed-Solomon ECC, SYSCK-ON
            ld
            ld
                     (ndfmcr0),5000h ; SPLW1:0=1, SPHW1:0=1
2.
    Write
    Writing valid data
    ; ***** Write valid data****
            ldw
                     (ndfmcr0),5008h ; CE1 enable
                     (ndfmcr0),50A8h ; WE enable, CLE enable
            ldw
            ldw
                     (ndfdtr0),0080h
                                       ; serial input command
                     (ndfmcr0),50C8h (;ALE enable
            ldw
                     (ndfdtr0),00xxh ; Address write (4 or 5 times)
            ldw
                     (ndfmcr0),508Dh; Reset ECC code, ECCE enable
            ldw
                     (ndfdtr0),xxxxh ; Data write (259-times/:518byte)
             ldw
                                                   (256-times/512byte)
    Generating ECC → Reading ECC
    ; ***** Read ECC *****
                     (ndfmcr0),5008h ; ECC circuit disable
             ldw
             ldw
                     (ndfmcr0),50A8h; WE enable, CLE enable
             ldw
                     (ndfdtr0),0080h /; serial input command
                     (ndfmcr0),50C8h ; ALE enable
             ldw
                     (ndfdtr0),00xxh ; Address write (4 or 5 times)
             ldw
                     xxxx,(ndeccrd0)
             ldw
                                       ; Read ECC from internal circuit
                              D79-64
                     Read:
             ldw
                     xxxx,(ndeccrd1)
                                       ; Read ECC from internal circuit
                     Read:
                              D63-48
             ldw
                     xxxx,(ndeccrd2)
                                       ; Read ECC from internal circuit
                     Read:
                              D47-32
                     xxxx,(ndeccrd3)
                                       ; Read ECC from internal circuit
             ldw
                     Read:
                              D31-16
                                       ; Read ECC from internal circuit
             ldw
                     xxxx,(ndeccrd4)
                              D15-0
                     Read:
```

```
Writing ECC to NAND Flash
; ***** Write dummy data & ECC *****
        ldw
                 (ndfmcr0),5088h ; ECC circuit disable, data write mode
        ldw
                 (ndfdtr0),xxxxh
                                  ; Redundancy area data write
                 Write to 207-206hex address:
                                                    > D79-64
                 (ndfdtr1),xxxxh ; Redundancy area data write
        ldw
                 Write to 209-208hex address:
                                                    > D63-48
        ldw
                 (ndfdtr0),xxxxh
                                 ; Redundancy area data write
                 Write to 20B-20Ahex address:
                                                    > D47-32
                 (ndfdtr1),xxxxh ; Redundancy area data write
        ldw
                 Write to 20D-20Chex address:
                                                    > D31-16
        ldw
                 (ndfdtr0),xxxxh
                                  Redundancy area data write
                 Write to 20F-20Ehex address:
                                                    > D15-0
        The write operation is repeated four times to write 2112 bytes
Executing page program
; ***** Set auto page program****
                 (ndfmcr0),50A8h ; WE enable, CLE enable
        ldw
        ldw
                 (ndfdtr0).0010h
                                  ; Auto page program command
        ldw
                 (ndfmcr0),5008h ; WE disable, CLE disable
        Wait set up time (from Busy to Ready)
                 1. Flag polling
                 2./Interrupt
```

Note: In case of LB type NANDF, programming page size is normally each 2112 bytes and ECC calculation is processed each 518 (512) bytes. Please take care of programming flow. In details, refer the NANDF memory specifications.

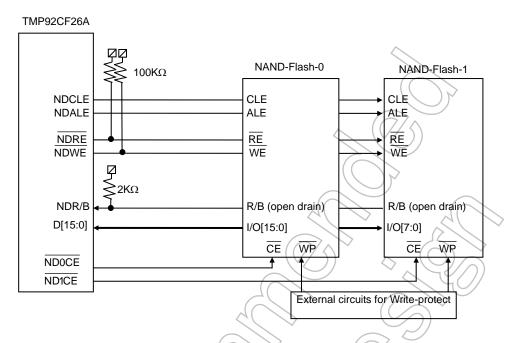
Reading status

ldw (ndfmcr0),50A8h ; WE enable, CLE enable ldw (ndfdtr0),0070h ; Status read command ldw (ndfmcr0),5008h ; WE disable, CLE disable ldw xxxx,(ndfdtr0) ; Status read

3. Read (including ECC data read)

```
Reading valid data
; ***** Read valid data****
         ldw
                  (ndfmcr0),5008h ; CE1 enable
        ldw
                  (ndfmcr0),50A8h ; WE enable, CLE enable
                  (ndfdtr0),0000h ; Read command 1
        ldw
        ldw
                  (ndfmcr0),50C8h ; ALE enable
        ldw
                  (ndfdtr0),00xxh ; Address write (4 or 5 times)
                  (ndfmcr0),50A8h ; WE enable, CLE enable
        ldw
        ldw
                  (ndfdtr0),0030h ; Read command 2
         Wait set up time (from Busy to Ready)
                  1. Flag polling
                  2. Interrupt
         ldw
                  (ndfmcr0),540Dh ; ECC reset, ECC circuit enable, decode mode
                                    Data read (259 times: 518 bytes)
        ldw
                  xxxx,(ndfdtr0)
                                               (256-times:512 byte)
         ldw
                  (ndfmcr0),550Ch; RSECGW enable
                                   Read ECC (5 times: 80 bits)
        ldw
                  xxxx,(ndfdtr0)
         Wait set up time (20 system clocks)
(1) Error bit calculation
         ldw
                  (ndfmcr1),0047h ; Error bit calculation interrupt enable
                  (ndfmcr0),560Ch ; Error bit calculation circuit start
         ldw
         Wait set up time
         Interrupt routine (End of calculation for Reed-Solomon Error bit)
INT:
         ldw
                  xxxx,(ndfmcr1)
                                   ; Check error status "STATE3:0, SEER1:0"
        If error is found, the error processing routine is performed to
         correct the error data. For details see 3.11.4.2 "Error Correction
         Methods".
         The read operation is repeated four times to read 2112 bytes.
```

TOSHIBA

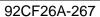

4. ID Read

The ID read routine is as follows:

ldw (ndfmcr0),50A8h ; WE enable, CLE enable
ldw (ndfdtr0),0090h ; Write ID read command
ldw (ndfmcr0),50C8h ; ALE enable, CLE disable
ldw (ndfdtr0),0000h ; Write 00
ldw (ndfmcr0),5008h ; WE disable, CLE disable

ldw xxxx,(ndfdtr0) ; Read 1'st ID maker code ldw xxxx,(ndfdtr1) ; Read 2'ndID device code

3.11.8 An Example of Connections with NAND Flash



Note 1: A reset sets the NDRE and NDWE pins as input ports, so pull-up resistors are needed.

Note 2: The pull-up resistor value for the NDR/B pin must be set appropriately according to the NAND Flash memory to be used and the capacity of the board (typical: $2 \text{ K}\Omega$).

Note 3: The WP (Write Protect) pin of NAND Flash is not supported. When this function is needed, prepare it on an external circuit.

Figure 3.11.10 An Example of Connections with NAND Flash

3.12 8 Bit Timer (TMRA)

The TMP92CF26A features 8 channel built-in 8-bit timers (TMRA0 to TMRA7).

These timers are paired into 4 modules: TMRA01, TMRA23, TMRA45 and TMRA67. Each module consists of 2 channels and can operate in any of the following 4 operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM Variable duty cycle with constant period)

Figure 3.12.1 to Figure 3.12.4 show block diagrams for TMRA01 to TMRA67.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by a 5bytes registers SFRs (Special-function registers).

Each of the 4 modules (TMRA01 to TMRA67) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

The contents of this chapter are as follows.

Table 3.12.1 Registers and Pins for Each Module

Specificat	Module	TMRA01	TMRA23	TMRA45	TMRA67
External	Input pin for external clock	TA0IN (Shared with PC1)	TA2IN (Shared with PC3)	Low-frequency clock fs	Low-frequency clock fs
pin	Output pin for timer flip-flop	TA1OUT (Shared with PM1)	TA3OUT (Shared with PP1)	TA5OUT (Shared with PP2)	TA7OUT (Shared with PP3)
	Timer run register	TA01RUN (1100H)	TA23RUN (1108H)	TA45RUN (1110H)	TA67RUN (1118H)
SFR	Timer register	TA0REG (1102H) TA1REG (1103H)	TA2REG (110AH) TA3REG (110BH)	TA4REG (1112H) TA5REG (1113H)	TA6REG (111AH) TA7REG (111BH)
(Address)	Timer mode register	TA01MOD (1104H)	TA23MOD (110CH)	TA45MOD (1114H)	TA67MOD (111CH)
	Timer flip-flop control register	TA1FFCR (1105H)	TA3FFCR (110DH)	TA5FFCR (1115H)	TA7FFCR (111DH)

3.12.1 **Block Diagram** Timer flip-flop output: TA10UT **TA1FFCR** Timer flip-flop TA1FF TMRA1 Interrupt output: INTTA1 Match detect TA01RUN<TA1RUN> 8-bit up counter (UC1) Internal data bus 8-bit comparator 8-bit timer register TA1REG (CP4) TMRA0 Interrupt output: TA0TRG Selector TA01MOD <TA1CLK1:0> $\phi T1 \longrightarrow \phi T16 \longrightarrow \phi T256 \longrightarrow$ TA01MOD <TA01M1:0> TMRA0 Interrupt output: INTTA0 TAOTRG Match detect TA01MOD <PWM01:00> 2° Over flow TA01RUN<TA0RUN> Internaldata bus 8-bit timer register TA0REG 8-bit up counter (CP0) 8-bit up counter Register buffer 0 (0C0) 64 Prescaler 32 16 TA01MOD <TA0CLK1:0> Selector TA01RUN <TA0RDE> ω External input clock: TA0IN -Prescaler clock \$T0TMR

Figure 3.12.1 TMRA01 Block Diagram

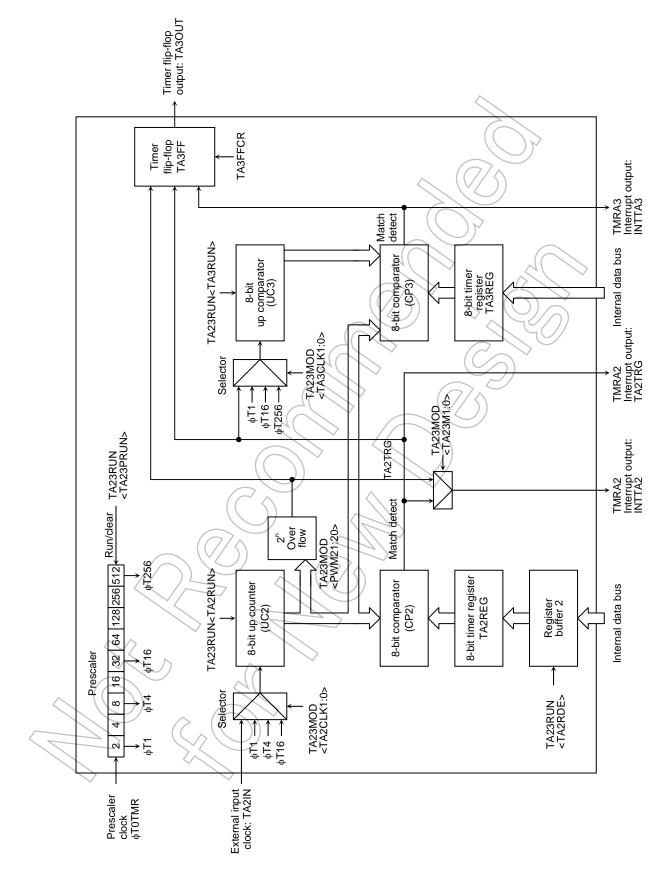


Figure 3.12.2 TMRA23 Block Diagram

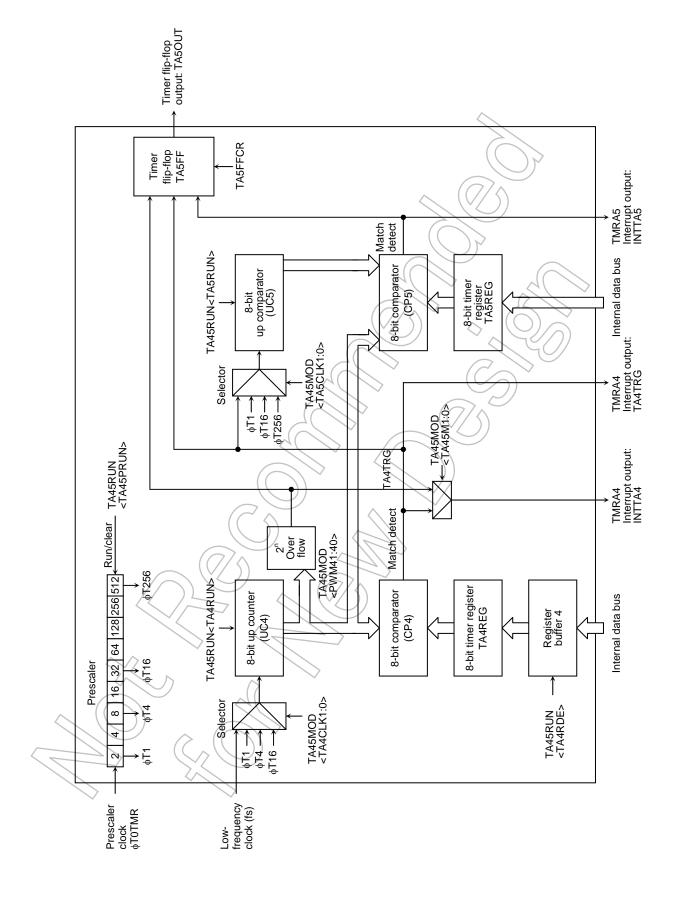


Figure 3.12.3 TMRA45 Block Diagram

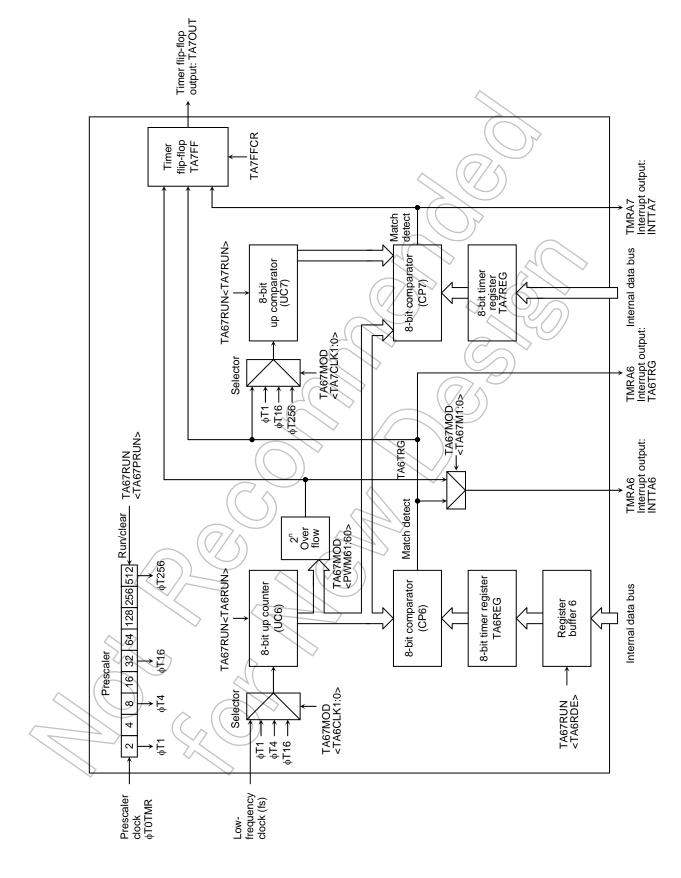


Figure 3.12.4 TMRA67 Block Diagram

3.12.2 Operation of Each Circuit

(1) Prescaler

A 9-bit prescaler generates the input clock to TMRA01. The clock φT0TMR is selected using the prescaler clock selection register SYSCR0<PRCK>.

The prescaler operation can be controlled using TA01RUN<TA0PRUN> in the timer control register. Setting <TA01PRUN> to "1" starts the count; setting <TA01PRUN> to "0" clears the prescaler to "0" and stops operation. Table 3.12.2 shows the various prescaler output clock resolutions.

(Although the prescaler and the timer counter can be started separately, the timer counter's operation depends on the prescaler's input timing.)

	Clock gear selection SYSCR1	Prescaler of clock gear SYSCR0	_	(Presc	unter input clocaler of TMRA DO <taxclk1:0< th=""><th>200</th></taxclk1:0<>	200
	<gear2:0></gear2:0>	<prck></prck>		φT1(1/2) \	φT4(1/8)	φT16(1/32)	φT256(1/512)
	000(1/1)			fc/8	fc/32	fc/128	fc/2048
	001(1/2)	0(1/2)		fc/16	fc/64	fc/256	fc/4096
	010(1/4)			fc/32	fc/128	fc/512	fc/8192
	011(1/8)			fc/64	fc/256	fc/1024	fc/16384
fc	100(1/16)		1/2	fc/128	fc/512	fc/2048	fc/32768
IC	000(1/1)		112	fc/32	fc/128	fc/512	fc/8192
	001(1/2)			fc/64	fc/256	fc/1024	fc/16384
	010(1/4)	1(1/8)		c/128	fc/512	fc/2048	fc/32768
	011(1/8)			fc/256	fc/1024	fc/4096	fc/65536
	100(1/16)		fc/512	fc/2048	fc/8192	fc/131072	

Table 3.12.2 Prescaler Output Clock Resolution

(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks φT1, φT4 or φT16. The clock setting is specified by the value set in TA01MOD<TA01CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16 or ϕ T256, or the comparator output (The match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN <TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

Note: TMR45 and TMR67 can be selected low-frequency clock(fs) instead of external clock input.

(3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TA0REG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes active. If the value set in the timer register is 00H, the signal goes active when the up counter overflows.

TAOREG has a double buffer structure, making a pair with the register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

(When using the double buffer, method of renewing timer register is only overflow in PWM mode or frequency agreement in PPG mode.)

A reset initializes <TA0RDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to "1", and write the following data to the register buffer. Figure 3.12.5 shows the configuration of TA0REG.

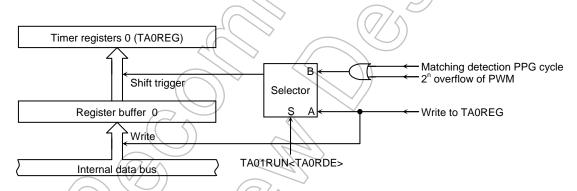


Figure 3.12.5 Configuration of timer register (TA0REG)

Note: The same memory address is allocated to the timer register and the register buffer 0. When <TAORDE> = "0", the same value is written to the register buffer 0 and the timer register; when <TAORDE> = "1", only the register buffer 0 is written to.

(4) Comparator (CP0, CP1)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

Note: If a value smaller than the up-counter value is written to the timer register while the timer is counting up, this will cause the timer to overflow and an interrupt cannot be generated at the expected time. (The value in the timer register canbe changed without any problem if the new value is larger than the up-counter value.) In 16-bit interval timer mode, be sure to write to both TAOREG and TA1REG in this order (16 bits in total), The compare circuit will not function if only the lower 8 bits are set.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detect signals (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register. A reset clears the value of TA1FF to "0". Writing "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to "0" or "1". Writing "00" to these bits inverts the value of TA1FF. (This is known as software inversion.)

The TA1FF signal is output via the TA1OUT pin. When this pin is used as the timer output, the timer flip flop should be set beforehand using the port function registers.

The condition for TA1FF inversion varies with mode as shown below

8-bit interval timer mode

UC0 matches TA0REG or UC1 matches TA1REG

(Select either one of the two)

16-bit interval timer mode

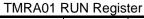
: UC0 matches TA0REG or UC1 matches TA1REG

80bit PWM mode

: UC0 matches TA0REG or a 2ⁿ overflow occurs

8-bit PPG mode

: UC0 matches TA0REG or UC0 matches TA1REG


Note: If an inversion by the match-detect signal and a setting change via the TMRA1 flip-flopcontrol register occur simultaneously, the resultant operation varies depending on the situation, as shown below.

- If an inversion by the match-detect signal and an inversion via the register occur simultaneously, the flip-flop will be inverted only once.
- If an inversion by the match-detect signal and an attempt to set the flip-flop to 1 via the register occur simultaneously, the timer flip-flop will be set to 1.
- If an inversion by the match-detect signal and an attempt to clear the flip-flop to 0 via the register occur simultaneously the flip-flop will be cleared to 1.

Be sure to stop the timer before changing the flip-flop incersion setting.

If the setting is chaged while the timer is counting, proper operation cannot be obtained.

3.12.3 SFR

TA01RUN (1100H)

				1011119				
	7	6	5	4	3	2	1	0
Bit symbol	TA0RDE				I2TA01	TA01PRUN	TA1RUN	TA0RUN
Read/Write	R/W					R	/W	
Reset State	0				0	0	0	0
Function	Double				In IDLE2	TMRA01	Up counter	Up counter
	buffer				mode	prescaler	(UC1)	(UC0)
	0: Disable				0: Stop	0: Stop and	clear	
	1: Enable				1: Operate	1: Run (Coui	nt up)	
		-					·	

TAOREG double buffer control

0 Disable 1 Enable Count control

Stop and clear
Run (Count up)

Note: The values of bits 4 to 6 of TA01RUN are "1" when read.

TMRA23 RUN Register

7 4 3 6 5 0 TA23RUN TA2RDE I2TA23 TA23PRUN TA3RUN TA2RUN Bit symbol (1108H) Read/Write R/W R/W 0 Reset State Function Double In IDLE2 TMRA23 Up counter Up counter buffer prescaler (UC3) (UC2) mode 0: Stop 0: Disable 0: Stop and clear 1: Operate 1: Enable 1: Run (Count up)


TA3REG double buffer control

0 Disable 1 Enable Count control

0 Stop and clear 1 Run (Count up)

Note: The values of bits 4 to 6 of TA23RUN are "1" when read.

Figure 3.12.6 Register for TMRA

TMRA45 RUN Register 7 6 5 4 3 2 1 0 TA45RUN Bit symbol TA4RDE I2TA45 TA45PRUN TA5RUN TA4RUN (1110H) Read/Write R/W R/W Reset State 0 0 Function Double In IDLE2 TMRA45 Up counter Up counter buffer mode prescaler (UC5) (UC4) 0: Stop 0: Disable 0: Stop and clear 1: Enable 1: Operate 1: Run (Count up) TA4REG double buffer control Count control Disable 0 Stop and clear Enable Run (Count up) 1 Note: The values of bits 4 to 6 of TA45RUN are "1" when read. TMRA67RUN Register 7 6 5 3 2 0 TA67RUN TA6RDE **I2TA67** TA67PRUN TA7RUN TA6RUN Bit symbol (1118H)Read/Write R/W R/W Reset State 0 0 0 0 Function In IDLE2 TMRA67 Double Up counter Up counter buffer mode prescaler (UC6) 0: Disable 0: Stop 0: Stop and clear 1: Operate 1: Enable 1: Run (Count up) TA6REG double buffer control Count control Stop and clear Disable 1 enable Run (Count up) Note: The values of bits 4 to 6 of TA67RUN are "1" when read. Figure 3.12.7 Register for TMRA

TMRA01 Mode Register

TA01MOD (1104H)

				TIVIKAUT	wode Re	gister			
		7	6	5	4	3	2	1	0
5	Bit symbol	TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0
	Read/Write		_	_	R/W				
	Reset State	0	0	0	0	0	0	0	0
	Function	Operation mode		PWM cycle		Source clock for TMRA1		Source clock for TMRA0	
		00: 8-bit tim	er mode	00: Reserve	ed	00: TA0TR0	3	00: TA0IN p	oin
		01: 16-bit timer mode		01: 2 ⁶		01: φT1		01: φT1	
		10: 8-bit PPG mode		10: 2 ⁷		10: φT16		10: φT4	
		11: 8-bit PV	VM mode	11: 2 ⁸		11: φT256		11: ∮T16	

TMRA0 input clock

	00	TA0IN (External input)
<ta0clk1:0></ta0clk1:0>	01	φT1
	10	φТ4
	11	фТ16

TMRA1 input clock

		TA01MOD <ta01m1:0>#01</ta01m1:0>	TA01MOD <ta01m1:0>=01</ta01m1:0>
	00	Comparator output from	\$ (O)
		TMRA0	Overflow output from
<ta1clk1:0></ta1clk1:0>	01	φT1	TMRA0
	10	φT16	(16-bit timer mode)
	11	φT256	
PWM cycle selection			(7/4)
			1177 11

	00 (Reserved
.D\\/\\04.00	01	2 ⁶ × Source clock
<pwm01:00></pwm01:00>	10	2 ⁷ × Source clock
	((11	2 ⁸ × Source clock

TMRA01 operation mode selection

	7	·
	(00	8 timer × 2ch
	-01	16-bit timer
<ta01ma1:0></ta01ma1:0>	10	8-bit PPG
	11	8-bit PWM (TMRA0),
		8-bit timer (TMRA1)

Figure 3.12.8 Register for TMRA

TMRA23 Mode Register

TA23MOD (110CH)

	TMINA25 Mode Negistei							
	7	6	5	4	3	2	1	0
Bit symbol	TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0
Read/Write		R/W					-	
Reset State	0	0	0	0	0	0	0	0
Function	Operation mode 00: 8-bit timer mode 01: 16-bit timer mode 10: 8-bit PPG mode 11: 8-bit PWM mode		PWM cycle 00: Reserved 01: 2 ⁶ 10: 2 ⁷ 11: 2 ⁸		TMRA3 clock 00: TA2TR0 01: φT1 10: φT16 11: φT256		TMRA2 clock 00: TA2IN p 01: \phiT1 10: \phiT4 11: \phiT16	-

TMRA2 input clock

<ta2clk1:0></ta2clk1:0>	00	TA2IN (External input)
	01	φT1
	10	φТ4
	11	φT16

TMRA3 input clock

<u> </u>			
		TA23MOD <ta23m1:0>#01</ta23m1:0>	TA23MOD <ta23m1:0>=01</ta23m1:0>
	00	Comparator output from	\Diamond (\bigcirc)
		TMRA2	Overflow output from
<ta3clk1:0></ta3clk1:0>	01	φT1	TMRA2
	10	φT16	(16-bit timer mode)
	11	φT256	

PWM cycle selection

<pwm21:20></pwm21:20>	00 Reserved
	01 2 ⁶ × Source clock
	10 2 ⁷ × Source clock
	11 28 × Source clock

TMRA23 operation mode selection

TWINAZO OPCIALION MODE SCIEGLION	/
00	8 timer × 2ch
()01	16-bit timer
<ta23ma1:0> 10</ta23ma1:0>	8-bit PPG
((//_\)11	8-bit PWM (TMRA2),
	8-bit timer (TMRA3)

Figure 3.12.9 Register for TMRA

TMRA45 Mode Register

TA45MOD (1114H)

	TWRA45 Wode Register							
	7	6	5	4	3	2	1	0
Bit symbol	TA45M1	TA45M0	PWM41	PWM40	TA5CLK1	TA5CLK0	TA4CLK1	TA4CLK0
Read/Write	R/W							
Reset State	0	0	0	0	0	0	0	0
Function	Operation mode 00: 8-bit timer mode		PWM cycle 00: Reserved		TMRA5 clock for TMRA5 00: TA4TRG		TMRA4 clock for TMRA4 00: low-frequency clock	
	01: 16-bit timer mode		01: 2 ⁶		01: φΤ1		01: φT1	
	10: 8-bit PPG mode		10: 2 ⁷		10: φT16		10: ϕ T4	
	11: 8-bit PV	VM mode	11: 2 ⁸		11: φT256		11: ∮ T16	

TMRA4 input clock

<ta4clk1:0></ta4clk1:0>	00	low-frequency clock(fs)
	01	φT1
	10	φТ4
	11	φT16

TMRA5 input clock

		TA45MOD <ta45m1:0>=01</ta45m1:0>	TA45MOD <ta45m1:0>=01</ta45m1:0>
	00	Comparator output from	\$ (O)
		TMRA4	Overflow output from
<ta5clk1:0></ta5clk1:0>	01	φT1	TMRA4
	10	φT16	(16-bit timer mode)
	11	φT256	

PWM cycle selection

	00 Reserved
DWM44.40	01 2 ⁶ × Source clock
<pwm41:40></pwm41:40>	10 2 ⁷ × Source clock
	11 28 × Source clock

TMRA45 operation mode selection

TWINA45 Operation mode	SCICCION	A
	00	8 timer × 2ch
	1 01	16-bit timer
<ta45ma1:0></ta45ma1:0>	10	8-bit PPG
	11	8-bit PWM (TMRA4),
		8-bit timer (TMRA5)

Figure 3.12.10 Register for TMRA

TMRA67 Mode Register

TA67MOD (111CH)

	TMRA67 Mode Register							
	7	6	5	4	3	2	1	0
Bit symbol	TA67M1	TA67M0	PWM61	PWM60	TA7CLK1	TA7CLK0	TA6CLK1	TA6CLK0
Read/Write	R/W							
Reset State	0	0	0	0	0	0	0	0
Function	Operation n 00: 8-bit tim 01: 16-bit tir 10: 8-bit PP	er mode mer mode G mode	PWM cycle 00: Reserve 01: 2 ⁶ 10: 2 ⁷	ed	TMRA7 clock 00: TA6TR0 01: φT1 10: φT16		01: φT1 10: φT4	for TMRA6 uency clock
	11: 8-bit PV	/M mode	11: 2 ⁸		11: φT256		11: φT16	

TMRA6 input clock

<ta6clk1:0></ta6clk1:0>	00	low-frequency clock(fs)
	01	φT1
	10	φΤ4
	11	φT16

TMRA1 input clock

		TA67MOD <ta67m1:0>=01</ta67m1:0>	TA67MOD <ta67m1:0>=01</ta67m1:0>
	00	Comparator output from	\$ (O)
		TMRA6	Overflow output from
<ta7clk1:0></ta7clk1:0>	01	φT1	TMRA6
	10	φT16	(16-bit timer mode)
	11	φT256	

PWM cycle selection

	00 Reserved
DWMC4.co	01 2 ⁶ × Source clock
<pwm61:60></pwm61:60>	10 2 ⁷ × Source clock
	11 28 × Source clock

TMRA67 operation mode selection

	7	
	0 0	8 timer × 2ch
	01	16-bit timer
<ta67ma1:0></ta67ma1:0>	10	8-bit PPG
	11	8-bit PWM (TMRA6),
		8-bit timer (TMRA7)

Figure 3.12.11 Register for TMRA

TMRA1 Flip-Flop Control Register

TA1FFCR (1105H) A readmodify-write operation cannot be performed

TWINAT T lip-i lop Control Register								
	7	6	5	4	3	2	1	0
Bit symbol					TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS
Read/Write					R	W	R/	W
Reset State					1	1	0	0
Function					00: Invert T	A1FF	TA1FF	TA1FF
					01: Set TA1	FF	control for	inversion
					10: Clear T/	A1FF	inversion	select
					11: Don't ca	ire	0: Disable	0: TMRA0
							1: Enable	1: TMRA1

Inversion signal for timer flip-flop 1 (TA1FF) (Don't care except in 8-bit timer mode)

TAAFFIC	0	Inversion by TMRA0
TA1FFIS	1	Inversion by TMRA1
Inversion of TA1FF		
TA1FFIE	0	Disabled
	1	Enabled
Control of TA1FF		(\vee)
	00	Inverts the value of TA1FF (Software inversion)
<ta1ffc1:0></ta1ffc1:0>	01	Sets TA1FF to "1"
	10	Clears TA1FF to "0"
	11	Don't care

Note: The values of bits 4 to 6 of TA1FFCR are "1" when read.

Figure 3.12.12 Register for TMRA

TMRA3 Flip-Flop Control Register

TA3FFCR (110DH)
A read-modify-write operation cannot be performed

			rt/to r lip r			=		
	7	6	5	4	3	2	1	0
Bit symbol					TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS
Read/Write					R.	/W	R	W
Reset State					1	1	0	0
Function					00: Invert T	A3FF	TA3FF	TA3FF
					01: Set TA3	3FF	control for	inversion
					10: Clear T	A3FF	inversion	select
					11: Don't ca	are	0: Disable	0: TMRA2
							1: Enable	1: TMRA3

Inversion signal for timer flip-flop 3 (TA3FF) (Don't care except in 8-bit timer mode)

•		
TAREFIC	0	Inversion by TMRA2
TA3FFIS	1	Inversion by TMRA3
Inversion of TA3FF		
TA3FFIE	0	Disabled
	1	Enabled
Control of TA3FF		(\vee)
	00	Inverts the value of TA3FF (Software inversion)
<ta3ffc1:0></ta3ffc1:0>	01	Sets TA3FF to "1"
	10	Clears TA3FF to "0"
	11	Don't care

Note: The values of bits 4 to 6 of TA3FFCR are "1" when read.

Figure 3.12.13 Register for TMRA

TMRA5 Flip-Flop Control Register

TA5FFCR (1115H) A readmodify-write operation cannot be performed

	Time to Filip Flop Control Register								
	7	6	5	4	3	2	1	0	
Bit symbol					TA5FFC1	TA5FFC0	TA5FFIE	TA5FFIS	
Read/Write					R	R/W		W	
Reset State					1	1	0	0	
Function					01: Set TA5FF 10: Clear TA5FF		TA5FF	TA5FF	
							control for	inversion	
							inversion	select	
							0: Disable	0: TMRA4	
							1: Enable	1: TMRA5	

Inversion signal for timer flip-flop 5 (TA5FF) (Don't care except in 8-bit timer mode)

TAFFFIC	0	Inversion by TMRA4				
TA5FFIS	1	Inversion by TMRA5				
Inversion of TA5FF						
TAFFFIF	0	Disabled				
TA5FFIE	1	Enabled				
Control of TA5FF		$(\vee/)$				
	00	Inverts the value of TA5FF (Software inversion)				
TAFFF04.0	01	Sets TA5FF to "1"				
<ta5ffc1:0></ta5ffc1:0>	10	Clears TA5FF to "0"				
	11	Don't care				

Note: The values of bits 4 to 6 of TA5FFCR are "1" when read.

Figure 3.12.14 Register for TMRA

TMRA7 Flip-Flop Control Register

TA7FFCR (111DH) A readmodify-write operation cannot be performed

	Tivil (AT 1 lip 1 lop Gottliof Register								
	7	6	5	4	3	2	1	0	
Bit symbol					TA7FFC1	TA7FFC0	TA7FFIE	TA7FFIS	
Read/Write					R/W		R/W		
Reset State					1	1	0	0	
Function							TA7FF	TA7FF	
							control for	inversion	
					10: Clear TA7FF		inversion	select	
					ľ		0: Disable	0: TMRA6	
							1: Enable	1: TMRA7	

Inversion signal for timer flip-flop 7 (TA7FF) (Don't care except in 8-bit timer mode)

` '						
TAZEEIO	0	Inversion by TMRA6				
TA7FFIS	1	Inversion by TMRA7				
Inversion of TA7FF						
TAZEELE	0	Disabled				
TA7FFIE	1	Enabled				
Control of TA7FF		$(\vee/)$				
	00	Inverts the value of TA7FF (Software inversion)				
TATEFO4 0	01	Sets TA7FF to "1"				
<ta7ffc1:0></ta7ffc1:0>	10	Clears TA7FF to "0"				
	11	Don't care				

Note: The values of bits 4 to 6 of TA7FFCR are "1" when read.

Figure 3.12.15 Register for TMRA

	Timer Registers										
		7	6	5	4	3	2	1	0		
TA0REG	bit Symbol	=	=	=	=	=	-	=	=		
(1102H)	Read/Write	W									
	Reset State	0	0	0	0	0	0	0	0		
TA1REG	bit Symbol	-	-	_	-	-	_	_	-		
(1103H)	Read/Write	W									
	Reset State	0	0	0	0	0	0	(0)	0		
TA2REG	bit Symbol	=	=	=	=	=	-		-		
(110AH)	Read/Write				\	N ^					
	Reset State	0	0	0	0	0	0	// 0	0		
TA3REG	bit Symbol	=	=	=	=	=		=	-		
(110BH)	Read/Write				\	N	()	,			
	Reset State	0	0	0	0	0	0	0	0		
TA4REG	bit Symbol	=	=	=	=	4	\ <u></u>	- 1			
(1112H)	Read/Write			1	١	N					
	Reset State	0	0	0	0	((/0 <	0	(0)	0		
TA5REG	bit Symbol	_	-	_	-		_ <		<u> </u>		
(1113H)	Read/Write			1		W		11/20	//		
	Reset State	0	0	0	0	0	0 (0>	0		
TA6REG	bit Symbol	_	-	_	GT ,	◇ -	- 0	\bigcirc	_		
(111AH)	Read/Write	w									
	Reset State	0	0	0	0	0	((0/)	0	0		
TA7REG	bit Symbol	_	_	7(<u> </u>			_	_		
(111BH)	Read/Write				<u> </u>	N/ (
	Reset State	0	0	0	> 0	0)) o	0	0		

Note: A read-modify-write operation cannot be performed for All registers.

3.12.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

a. Generating interrupts at a fixed interval (Using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 20 us at f_{SYS}= 50 MHz, set each register as follows;

* Clock state Clcok gear : 1/1
Prescaler of clock gear :1/2

MSB LSB 0 TA01RUN Stop TMRA1 and clear it to 0. TA01MOD Select 8-bit timer mode and select φT1 (0.16 μs at f_{SYS} = 50 MHz) as the input clock. TA1REG 0 Set TA1REG to 20 μ s $\div \phi$ T1 = 125(7DH) INTETA1 Enable INTTA1 and set it to level 5. TA01RUN Start TMRA1 counting. X: Don't Care, -: No change

Select the input clock using Table 3.12.2.

Note: The input clocks for TMRA0 and TMRA1 are different from as follows.

TMRA0: TA0IN input, ϕ T1, ϕ T4 or ϕ T16.

TMRA1: Matches output of TMRA0, ϕ T1, ϕ T16, and ϕ T256.

TOSHIBA

b. Generating a 50% duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a $3.2\mu s$ square wave pulse from the TA1OUT pin at $f_{SYS} = 50$ MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used. * Clock state Clcok gear: 1/1 Prescaler of clock gear: 1/2 2 6 TA01RUN Stop TMRA1 and clear it to "0". Select 8-bit timer mode and select φT1 (0.16 μs at f_{SYS} = TA01MOD 50 MHz) as the input clock. Set the timer register to 3.2 μ s ÷ ϕ T1 ÷ 2 = 0AH TA1REG 0 0 Clear TA1FF to "0" and set it to invert on the match detect TA1FFCR signal from TMRA1. ΡМ Set PM1 to function as the TA1OUT pin. **PMFC** Χ TA01RUN Start TMRA1 counting. X: Don't care, -: No change TA01RUN <TA01RUN> Bit7 to Bit2 Up Bit1 counter Bit0 Comparator Comparator output (Match detect) INTTA1 UC1 clear TA1FF TA1OUT $1.6 \mu s$ at $f_C = 50 MHz$

Figure 3.12.17 Square Wave Output Timing Chart (50% duty)

c. Making TMRA1 count up on the match signal from the TMRA0 comparator Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

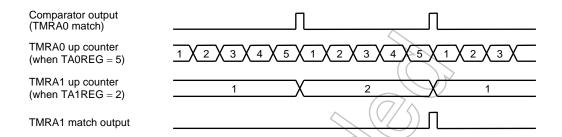


Figure 3.12.18 TMRA1 Count Up on Signal from TMRA0

(2) 16 bit timer mode

Pairing the two 8-bit timers TMRA0 and TMRA1 configures a 16-bit interval timer. To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to 01.

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.12.2shows the relationship between the timer (Interrupt) cycle and the input clock selection.

Example: To generate an INTTA1 interrupt every 0.13 s at $f_{SYS} = 50$ MHz, set the timer registers TA0REG and TA1REG as follows:

* Clock state Clcok gear : 1/1
Prescaler of clock gear : 1/2

If $\phi T16$ (2.6 μs at $f_{SYS}=50$ MHz) is used as the input clock for counting, set the following value in the registers: 0.13 s + 2.6 $\mu s=50000=C350H$; e.g. set TA1REG to C3H and TA0REG to 50H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

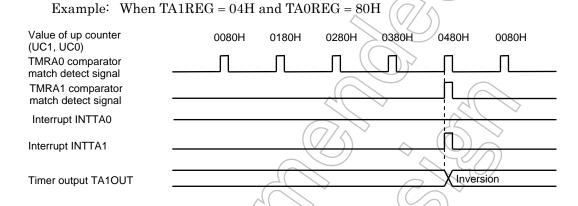


Figure 3.12.19 Timer Output by 16-Bit Timer Mode

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active-low or active-high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin.

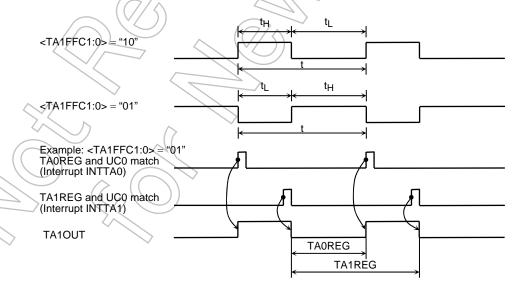


Figure 3.12.20 8-Bit PPG Output Waveforms

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UCO) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to 1 so that UC1 is set for counting.

Figure 3.12.21 shows a block diagram representing this mode.

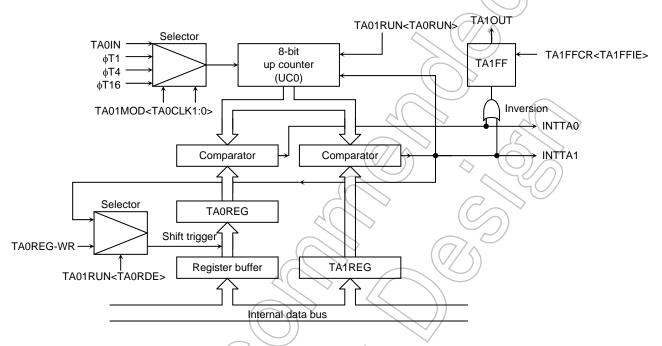
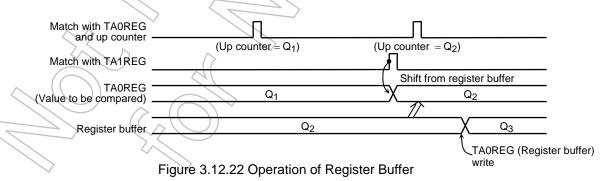
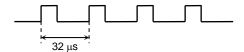



Figure 3.12.21 Block Diagram of 8-Bit PPG Output Mode


If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TA1REG matches UCO.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).

Note: The values that can be set in TAxREG renge from 01h to 00h (equivalent to 100h). If the maximum value 00h is set, the match-detect signal goes active when the up-counter overfolws.

Example: To generate 1/4 duty 31.25 kHz pulses (at f_{SYS}= 50 MHz)

* Clock state

Clcok gear : 1/1
Prescaler of clock gear : 1/2

Calculate the value which should be set in the timer register.

To obtain a frequency of 31.25 kHz, the pulse cycle t should be: t = 1/31.25kHz = 32 μs

 $\phi T1 = 0.16 \ \mu s$ (at 50 MHz);

 $32 \; \mu s \div 0.16 \; \mu s = 200$

Therefore set TA1REG to 200 (C8H)

The duty is to be set to 1/4: $t\times 1/4=32~\mu s\times 1/4=8~\mu s$

 $8 \mu s \div 0.16 \mu s = 50$

Therefore, set TA0REG = 50 = 32H.

Stop TMRA0 and TMRA1 and clear it to "0".

Set the 8-bit PPG mode, and select \$TT\$ as input clock.

Write 32H. Write C8H.

TA1FFCR \leftarrow X X X X Q 1 1 X PM \leftarrow - X X X X - 0 X

Set TA1FF, enabling both inversion and the double buffer.

Writing 10 provides negative logic pulse.

virtuing to provides negative logic pur

X: Don't care, -: No change

Set PM1 as the TA1OUT pin.

Start TMRA0 and TMRA1 counting.

(4) 8-bit PWM (Pulse width modulation) output mode

Value set in TA0REG $\neq 0$

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (Shared with PM1). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.

Value set in TA0REG \leq Value set for 2n counter overflow

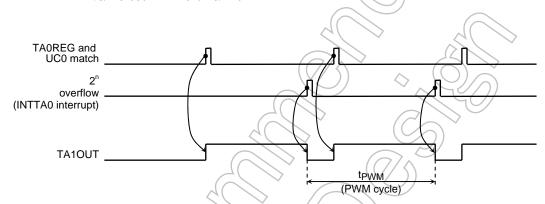


Figure 3.12.23 8-Bit PWM Waveforms

Figure 3.12.24 shows a block diagram representing this mode.

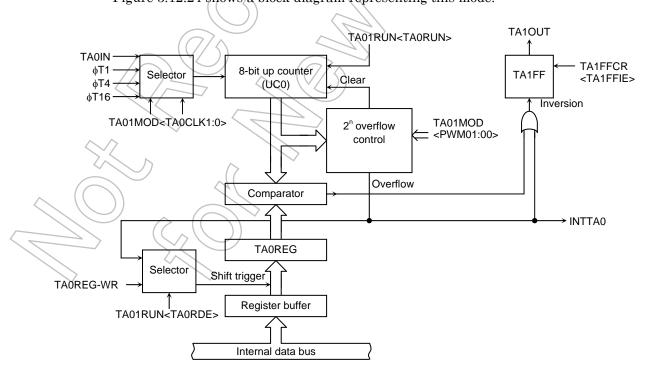


Figure 3.12.24 Block Diagram of 8-Bit PWM Mode

TOSHIBA

In this mode the value of the register buffer will be shifted into TAOREG if 2ⁿ overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

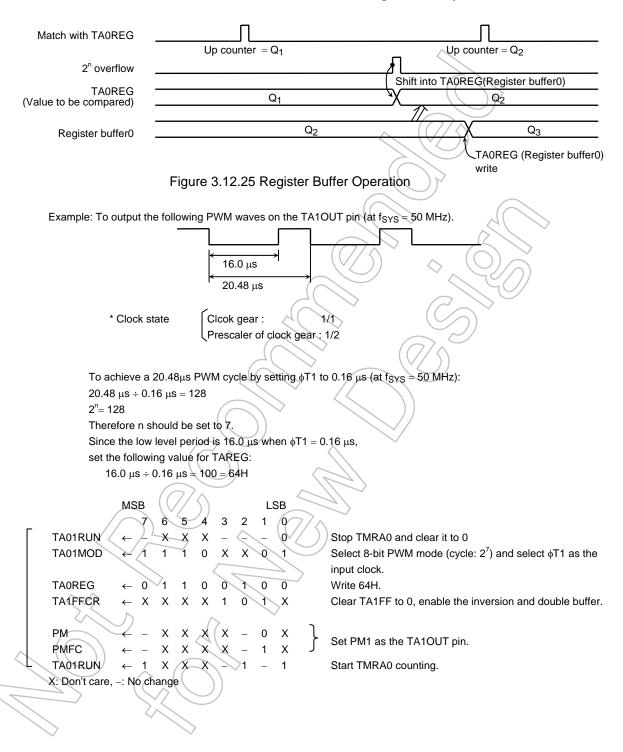


Table 3.12.3 PWM Cycle

	Clock gear selection	Prescaler of clock gear					TA	PWM cyc				
	SYSCR1	SYSCR0			2 ⁶ (x64)			2 ⁷ (x128)			28(x256)	
	<gear2:0></gear2:0>	<prck></prck>		TAxx	MOD <taxc< td=""><td>LK1:0></td><td>TAxxN</td><td>ЛОD<taxcl< td=""><td>K1:0></td><td>TAxx</td><td>MOD<taxcl< td=""><td>K1:0></td></taxcl<></td></taxcl<></td></taxc<>	LK1:0>	TAxxN	ЛОD <taxcl< td=""><td>K1:0></td><td>TAxx</td><td>MOD<taxcl< td=""><td>K1:0></td></taxcl<></td></taxcl<>	K1:0>	TAxx	MOD <taxcl< td=""><td>K1:0></td></taxcl<>	K1:0>
				φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)
	000(x1)			512/fc	2048/fc	8192/fc	1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc
	001(x2)			1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc
	010(x4)	0(x2)		2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc
	011(x8)			4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc
1/fc	100(x16)		vo	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	/32768/fc	131072/fc	524288/fc
1/10	000(x1)		x2	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc
	001(x2)			4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc
	010(x4)	1(x8)		8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc
	011(x8)			16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	65536/fc	262144/fc	1048576/fc
	100(x16)			32768/fc	131072/fc	524288/fc	65536/fc	262144/fc	1048576/fc	131072/fc	524288/fc	2097152/fc

(5) Settings for each mode

Table 3.12.4 shows the SFR settings for each mode.

Table 3.12.4 Timer Mode Setting Registers

Register Name		TA01	MOD	(U)	TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	TA1FFIS
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00) -	Lower timer match \$\phi T1, \$\phi T16, \$\phi T256\$ (00, 01, 10, 11)	External clock \$\phi\$T1, \$\phi\$T4, \$\phi\$T16 (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01) - (2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	External clock φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit PPG × 1 channel	10		> -	External clock φT1, φT4, φT16 (00, 01, 10, 11)	-
8-bit PWM × 1 channel) 11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	_	External clock \$\phi\$T1, \$\phi\$T4, \$\phi\$T16 (00, 01, 10, 11)	-
8-bit timer × 1 channel	11	_	φT1, φT16, φT256 (01, 10, 11)	-	Output disabled

-: Don't care

3.13 16 bit timer / Event counter (TMRB)

The TMP92CF26A incorporates two multifunctional 16-bit timer/event counter (TMRB0, TMRB1) which have the following operation modes:

- 16 bit interval timer mode
- 16 bit event counter mode
- 16 bit programmable pulse generation mode (PPG)

Can be used following operation modes by capture function.

- Frequency measurement mode
- Pulse width measurement mode

The timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (one of them with a double-buffer structure), a 16-bit capture registers two comparators, a capture input controller, a timer flip-flop and a control circuit.

The timer/event counter is controlled by an 11-byte control SFR.

Each channel (TMRB0,TMRB1) operate independently. In this section, the explanation describes only for TMRB0 because each channel is identical operation except for the difference as follows;

Table 3.13.1 Difference between TMRB0 and TMRB1

Specification	Channel	TMRB0	TMRB1
Futament mine	External clock/ capture trigger input pins	TB0IN0 (Shared with PP4)	TB1IN0 (Shared with PP5)
External pins	Timer flip-flop output pins	TB0OUT0 (Shared with PP6)	TB1OUT0 (Shared with PP7)
	Timer run register	TB0RUN (1180H)	TB1RUN (1190H)
	Timer mode register	TB0MOD (1182H)	TB1MOD (1192H)
	Timer flip-flop control register	TB0FFCR (1183H)	TB1FFCR (1193H)
		TB0RG0L (1188H)	TB1RG0L (1198H)
SFR 🔾	Timer register	TB0RG0H (1189H)	TB1RG0H (1199H)
(Address)	TitleFregister	TB0RG1L (118AH)	TB1RG1L (119AH)
\ (()		TB0RG1H (118BH)	TB1RG1H (119BH)
		TB0CP0L (118CH)	TB1CP0L (119CH)
	Continuo voluintiir (TB0CP0H (118DH)	TB1CP0H (119DH)
	Capture register	TB0CP1L (118EH)	TB1CP1L (119EH)
	\\	TB0CP1H (118FH)	TB1CP1H (119FH)

TOSHIBA

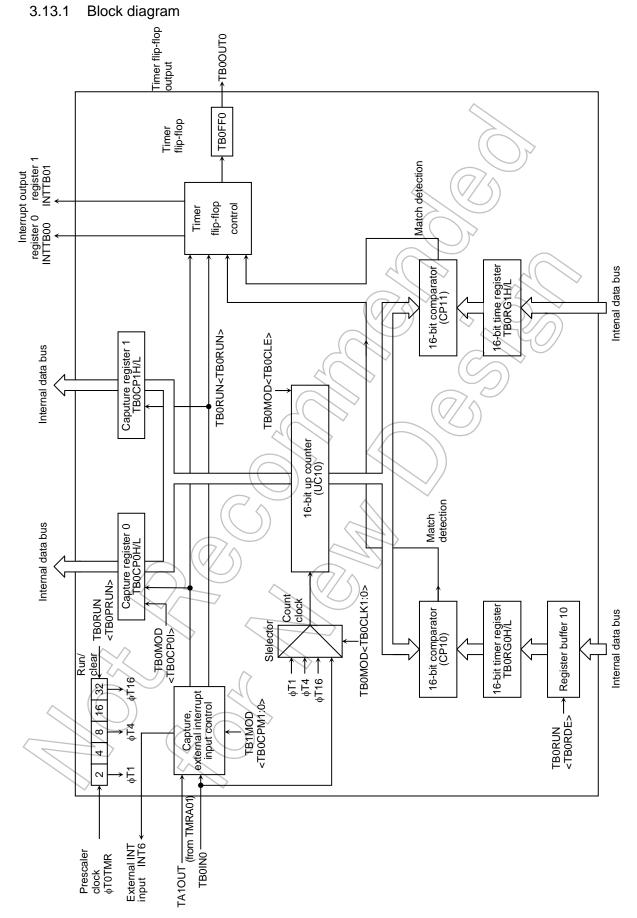


Figure 3.13.1 Block diagram of TMRB0

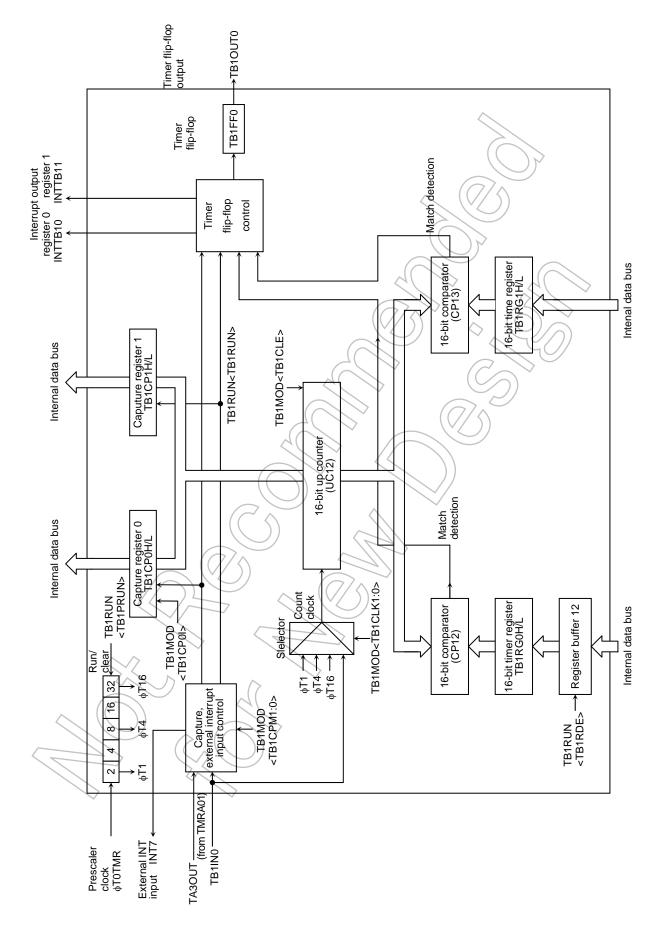


Figure 3.13.2 Block diagram of TMRB1

3.13.2 Operation

(1) Prescaler

The 5-bit prescaler generates the source clock for TMRB0. The prescaler clock (ϕ T0TMR) is selected by the register SYSCR0<PRCK> of clock gear. This prescaler can be started or stopped using TB0RUN<TB0PRUN>. Counting starts when <TB0RUN> is set to "1"; the prescaler is cleared to "0" and stops operation when <TB0RUN> is cleared to "0".

The resolution of prescaler is showed in the Table 3.13.2.

					2	*
	Clock gear selection SYSCR1	Prescaler of clock gear SYSCR0	_	F	er counter input Prescaler of TMI xMOD <tbxclf< td=""><td>RB</td></tbxclf<>	RB
	<gear2:0></gear2:0>	<prck></prck>		φT1(1/2)	фТ4(1/8)	φT16(1/32)
	000(1/1)			fc/8	c/32	fc/128
	001(1/2)			(fc/16	fc/64	fc/256
	010(1/4)	0(1/2)		fc/32	fc/128	fc/512
	011(1/8)		1	fc/64	fc/256	fc/1024
fc	100(1/16)		1/2	fc/128	fc/512	fc/2048
IC	000(1/1)		1/2	fc/32	fc/128	// fc/512
	001(1/2)	(c/64	fc/256	fc/1024
	010(1/4)	1(1/8)		fc/128	fc/512	fc/2048
	011(1/8)	4(fc/256	fc/1024	fc/4096
	100(1/16)		>	fc/512	fc/2048	fc/8192

Table 3.13.2 Prescaler Clock Resolution

(2) Up counter (UC10)

UC10 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1:0>.

Any one of the prescaler internal clocks $\phi T1$, $\phi TB0$ and $\phi T16$ or an external clock input via the TB0IN0 pin can be selected as the input clock. Counting or stopping and clearing of the counter is controlled by TB0RUN<TB0RUN>.

When clearing is enabled, the up counter UC10 will be cleared to "0" each time its value matches the value in the timer register TB0RG1H/L. If clearing is disabled, the counter operates as a free running counter.

Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

(3) Timer registers (TB0RG0H/L, TB0RG1H/L)

These two 16-bit registers are used to set the interval time. When the value in the up counter UC10 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both upper and lower timer registers is always needed. For example, eithre using a 2-byte data transfer instruction or using a 1-byte data transfer instruction twice for the lower 8 bits and upper 8 bits in order.

(The compare circuit will not operate if only the lower 8 bits are written. Be sure to write to both timer registers (16 bits) from the lower 8 bits followed by the upper 8 bits.)

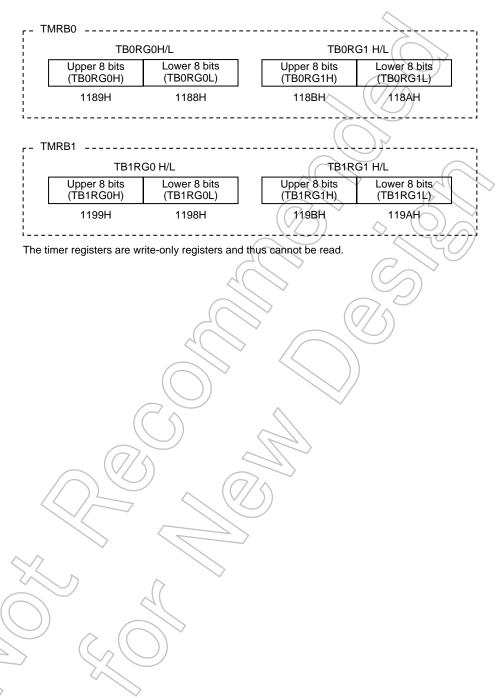
The TB0RG0H/L timer register has a double-buffer structure, which is paired with a register buffer 10. The value set in TB0RUN<TB0RDE> determines whether the double-buffer structure is enabled or disabled: it is disabled when <TB0RDE> = "0", and enabled when <TB0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer 10 to the timer register when the values in the up counter (UC10) and the timer register TB0RG1H/L match.

The double buffer circuit incorporates two flags to indicate whether or not data is written to the lower 8 bits and the upper 8 bits of the register buffer, respectively. Only when both flags are set can data be transferred from the register buffer to the timer register by a match between the up-counter UC10 and the timer register TB0RG1H/L. This data transfer is performed so long as 16-bit data is written in the register buffer regardless of the register buffer to the timer register unexpectedly as explained below.

For example, let us assume that an interrupt occurs when only the lower 8 bits (L1) of the register buffer data (H1L1) have been written and the interrupt routine includes writes to all 16 bits in the register buffer and a transfer of the data to the timer register. In this case, if the higher 8 bits (H1) are written after the interrupt routine is completed, only the flag for the higher 8 bits will be set, the flag for the lower 8 bits having been cleared in the interrupt routine. Therefore, even if a match occurs between UC10 and TB0RG1H/L, no data transfer will be performed.

Then, in an attempt to set the next set of data (H2L2) in the register buffer, when the lower 8 bits (L2) are written, this will cause the flag for the lower 8 bits to be set as well as the flag for the higher 8 bits which has been set by writing the previous data (H1). If a match between UC10 and TB0RG1H/L occurs before the higher 8 bits (H2) are written, this will cause unexpected data (H1L2) to be sent to the timer register instead of the intended data (H2L2).

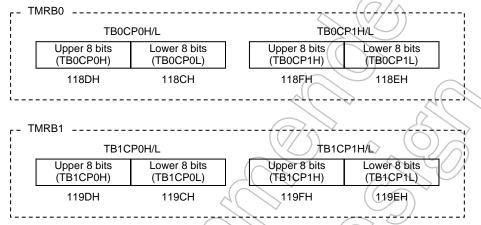

To avoid such transfer timing problems due to interrupts, the DI instruction (disable interrupts) and the EI (enable interrupts) can be executed before and after setting data in the register buffer, respectively.

After a reset, TB0RG0H/L and TB0RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB0RDE> is initialized to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TB0RDE> to "1", then write data to the register buffer 10 as shown below.

TB0RG0H/L and the register buffer 10 both have the same memory addresses (1188H and 1189H) allocated to them. If <TB0RDE> = "0", the value is written to both the timer register and the register buffer 10. If <TB0RDE> = "1", the value is written to the register buffer 10 only.

The addresses of the timer registers are as follows:


(4) Capture registers (TB0CP0H/L, TB0CP1H/L)

These 16-bit registers are used to latch the values in the up counter (UC10).

All 16 bits of data in the capture registers should be read. For example, using a 2-byte data load instruction or two 1-byte data load instructions. The least significant byte is read first, followed by the most significant byte.

(during capture is read, capture operation is prohibited. In that case, the lower 8 bits should be read first, followed by the 8 bits.)

The addresses of the capture registers are as follows;

The capture registers are read-only registers and thus cannot be written to.

(5) Capture input and external interrupt control

This circuit controls the timing to latch the value of the up-counter UC10 into TB0CP0H/L and TB0CP1H/L, and generates external interrupt. The latch timing of capture register and selection of edge for external interrupt is controlled by TB0MOD<TB0CPM1:0>.

The value in the up-counter (UC10) can be loaded into a capture register by software. Whenever 0 is written to TB0MOD<TB0CP0I>, the current value in the up counter (UC10) is loaded into capture register TB0CP0H/L. It is necessary to keep the prescaler in RUN mode (i.e., TB0RUN<TB0PRUN> must be held at a value of 1).

(6) Comparators (CP10, CP11)

CP10 and CP11 are 16-bit comparators which compare the value in the up counter UC10 with the value set in TB0RG0H/L or TB0RG1H/L respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flops (TB0FF0)

These flip-flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB1C1T1, TB0C0T1, TB0E1T1, TB0E0T1>.

After a reset the value of TB0FF0 is undefined. If "00" is written to TB0FFCR <TB0FF0C1:0>, TB0FF0 will be inverted. If "01" is written to the capture registers, the value of TB0FF0 will be set to "1". If "10" is written to the capture registers, the value of TB0FF0 will be set to "0".

Note: If an inversion by the match-detect signal and a setting change via the TB0FFCR register occurs simultaneously, the resultant operation varies depending on the situation, as shown below.

- If an inversion by the match-detect signal and an inversion via the register occur simultaneously, the flip-flop will be inverted only once.
- If an inversion by the match-detect signal and an attempt to set the flip-flop to 1 via the register occur simultaneously, the flip-flop will be set to 1.
- If an inversion by the match-detect signal and an attmept to cleare the flip-flop to 0 via the register occur simultanerously, the flip-flop will be cleared to 0.

If an inversion by match-detect signal and inversion disable setting occur simultaneously, two case (it is inverted and it is not inverted) are occurred. Therefore, if changing inversion control (inversion enable/disable), stop timer operation beforehand.

The values of TB0FF0 can be output via the timer output pins TB0OUT0 (which is shared with PP6) and TB0OUT1 (which is shared with PP7). Timer output should be specified using the port P function register.

3.13.3 SFR

TMRB0 RUN Register

TB0RUN (1180H)

				11011112011		-			
		7	6	5	4	3	2	1	0
V	Bit symbol	TB0RDE	=			I2TB0	TB0PRUN		TB0RUN
	Read/Write	R/W	R/W			R/W	R/W		R/W
	Reset State	0	0			0	0		0
	Function	Double	Always write			In IDLE2	TMRB0		Up counter
		buffer	"0"			mode	prescaler	15	(UC10)
		0: disable				0: Stop	0: Stop and c	lear	
		1: enable				1: Operate	1: Run (Coun	t up)	

Count operation

TDODDIN, TDODIN,	0	Stop and clear	(()>
<tb0prun>, <tb0run></tb0run></tb0prun>	1	Count up	

Note: 1, 4 and 5 of TB0RUN are read as "1" values.

TMRB1 RUN Register

TB1RUN (1190H)

		7	6	5	4	> 3	(2)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0
1	Bit symbol	TB1RDE	=			I2TB1	TB1PRUN		TB1RUN
	Read/Write	R/W	R/W	<i>y</i>	H	R/W	R/W		R/W
	Reset State	0	0	H		0 (((// (0)		0
	Function	Double	Always write		/	In IDLE2	TMRB1		Up counter
		buffer	"O"		\vee /	mode	prescaler		(UC12)
		0: disable				0: Stop	0: Stop and c	lear	
		1: enable				1: Operate	1: Run (Coun	t up)	

Count operation

TD4DDUN TD4DUN	0	Stop and clear
<tb1prun>, <tb1run></tb1run></tb1prun>	1	Count up

Note: 1, 4 and 5 of TB1RUN are read as "1" values.

Figure 3.13.3 Register for TMRB

TMRB0 Mode Register 2 7 6 5 3 1 0 TB0MOD TB0CP0I TB0CPM1 ТВ0СРМ0 TB0CLE TB0CLK1 TB0CLK0 Bit symbol (1182H)Read/Write R/W W* R/W Reset State A read-0 0 0 0 04 0 0 modify-write Function TMRB0 source clock Always write "0". Software Capture timing Control operation 00:Disable 00: TB0IN0 input Up counter capture INT6 occurs at cannot be control 0:Disable 01: ∳T1 rising edge performed 0: Software 1:Enable 10: φT4 01:TB0IN0 ↑ capture 11: _{\$\phi\$T16} INT6 occurs at 1:Undefined rising edge 10: TB0IN0 ↑ TB0IN0 ↓ INT6 occurs at falling edge 11: TA1OUT ↑ TA1OUT ↓ INT6 occurs at rising edae

TMRB0 source clock		$\mathcal{A}(\mathcal{A})$
	00	TB0IN0 pin input
*TD0CL K4+0-	01	φT1 (7/Δ)
<tb0clk1:0></tb0clk1:0>	10	φT4
	11 <	фТ16

Control clearing for up counter (UC10)

<TB0CLE>

0 Disable
1 Enable clearing by match with TB0RG1H/L

Capture/interrupt timing Capture control INT6 control 00 Disable INT6 occurs at the rising edge of TB0IN0 -01 Capture to TB0CP0H/L at rising edge of TB0IN0 Capture to TB0CP0H/L at rising edge of TB0IN0 INT6 occurs at the rising <TB0CPM1:0> 10 Capture to TB0CP1H/L at falling edge of TB0IN0 edge of TB0IN0 Capture to TB0CP0H/L at rising edge of TA1OUT INT6 occurs at the rising 11 Capture to TB0CP1H/L at falling edge of TA1OUT edge of TB0IN0

Software capture	J)	
TDOCDOL	0	The value of up counter is captured to TB0CP0H/L
<tb0cp0i></tb0cp0i>	1	Undefined

Figure 3.13.4 Register for TMRB

TMRB1 Mode Register

TB1MOD (1192H) A readmodify-write operation cannot be performed

	TMRB1 Mode Register							
	7	6	5	4	3	2	1	0
Bit symbol	-	=	TB1CP0I	TB1CPM1	TB1CPM0	TB1CLE	TB1CLK1	TB1CLK0
Read/Write	R/	W	W*			R/W		
Reset State	0	0	1	0	0	0	0	0
Function	Always write	e "0".	Software capture control 0: Software capture 1:Undefined	Capture timin 00:Disable INT7 occurs rising edge 01:TB1IN0 ↑ INT7 occurs rising edge 10: TB1IN0 ↑ INT7 occurs falling edge 11: TA3OUT INT7 occu edge	s at TB1IN0 ↓ s at ↑ TA3OUT ↓	Control Up counter 0:Disable 1:Enable	TMRB1 source 00: TB1IN0 in 01: \$\phiT4 10: \$\phiT4 14: \$\phiT16	

TMRB1 source clock

	00	TB1IN0 pin input	~
<tb1clk1:0></tb1clk1:0>	01	φT1	
<ibicekt:0></ibicekt:0>	10	φТ4	
	11	φT16	

Control clearing for up counter (UC12)

TD4OLE:	0 Disable
<tb1cle></tb1cle>	1 Enable clearing by match with TB1RG1H/L

Capture/interrupt timing

		Capture control	INT7 control
_ (7/	\00	Disable	INT7 occurs at the rising
	//01	Capture to TB1CP0H/L at rising edge of TB1IN0	edge of TB1IN0
<tb1cpm1:0></tb1cpm1:0>	10	Capture to TB1CP0H/L at rising edge of TB1IN0	INT7 occurs at the rising
13/0	10	Capture to TB1CP1H/L at falling edge of TB1IN0	edge of TB1IN0
	14 5	Capture to TB1CP0H/L at rising edge of TA3OUT	INT7 occurs at the rising
	11	Capture to TB1CP1H/L at falling edge of TA3OUT	edge of TB1IN0 —

Software capture

<tb1cp0i></tb1cp0i>	0	The value of up counter is captured to TB1CP0H/L
<1B1CP0I>	1	Undefined

Figure 3.13.5 Register for TMRB

TMRB0 Flip-Flop Control Register

TB0FFCR (1183H) A read -modify-write operation cannot be performed

		1 1711	ו-קוו ו טעז	iop Contro				
	7	6	5	4	3	2	1	0
Bit symbol	-	-	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
Read/Write	W	/ *	R/W				V	/ *
Reset State	1	1	0	0	0	0	1	1
Function	Always wri	te "11" ad as "11".	TB0FF0 inversion trigger 0: Disable trigger 1: Enable trigger			Control TB 00: Invert 01: Set 10: Clear	0FF0	
			When capture UC10 to TB0CP1H/L	When capture UC10 to TB0CP0H/L	When UC10 matches with TB0RG1H/L	When UC10 matches with TB0RG0H/L	11: Undefir *Always re	

Timer flip-flop control(TB0FF0)

	00	Invert
<tb0ff0c1:0></tb0ff0c1:0>	01	Set to "11"
	10	Clear to "00"
	11	Undefined (Always read as "11")

TB0FF0 control

Inverted when UC10 value matches the valued in TB0RG0H/L

1 Enable trigger	<tb0f0t1></tb0f0t1>	0	Disable trigger
	<1B0E011>		Enable trigger

TB0FF0 control

Inverted when UC10 value matches the valued in TB0RG1H/L

<tb0f171></tb0f171>	0	Disable trigger
<1B0E1/11>	1	Enable trigger

TB0FF0 control

Inverted when UC10 value is captured into TB0CP0H/L

TD000T1		Disable trigger
<tb0c0t1></tb0c0t1>	1	Enable trigger

TB0FF0 control

Inverted when UC10 value is captured into TB0CP1H/L

4	onto a milion o o royala	<i>-</i> 10 0apta.0a	
	<tb0c1t1< th=""><th>0</th><th>Disable trigger</th></tb0c1t1<>	0	Disable trigger
	<1B0C11/1>	· .	
	/> (())	, 1	Enable trigger

Figure 3.13.6 Register for TMRB

TB1FFCR (1193H)

A readmodify-write operation cannot be performed

		IMRB1 Flip-Flop Control Register						
	7	6	5	4	3	2	1	0
Bit symbol	_	_	TB1C1T1	TB1C0T1	TB1E1T1	TB1E0T1	TB1FF0C1	TB1FF0C0
Read/Write	W	/ *	R/W			_	W	/ *
Reset State	1	1	0	0	0	0 _	1	1
Function	Always write	e "11"	TB1FF0 inv	TB1FF0 inversion trigger			Control TB1FF0	
			0: Disable to	rigger			00: Invert	
			1: Enable trigger				01: Set	
	*Always rea	ıd as "11".	When	When	When UC12	When UC12	10: Clear	
			capture	capture	matches	matches	11: Don't ca	are
			UC12 to	UC12 to	with	with	/	
			TB1CP1H/L	TB1CP0H/L	TB1RG1H/L	TB1RG0H/L	*Always rea	ıd as "11".

Timer flip-flop control(TB1FF0)

	00	Invert
<tb1ff0c1:0></tb1ff0c1:0>	01	Set to "11"
<1B1FF0C1.0 <i>></i>	10	Clear to "00"
	11	Don't care

TB1FF0 control

Inverted when UC12 value matches the valued in TB1RG0H/L

<tr1f0t1></tr1f0t1>	0 Disable trigger	(0)
<ibie011></ibie011>	1 Enable trigger	$(\vee \langle \ \rangle)$

TB1FF0 control

Inverted when UC12 value matches the valued in TB1RG1H/L

<tb1e1t1></tb1e1t1>	(0)	Disable trigger
)	Enable trigger

TB1FF0 control

Inverted when UC12 value is captured into TB1CP0H/L

<tb1c0t1≥< th=""><th>0</th><th>Disable trigger</th></tb1c0t1≥<>	0	Disable trigger
	. 1	Enable trigger

TB1FF0 control

inverted when OC12 value is captured into TBTCF ITI/L						
TD4C4T4	0	Disable trigger				
<tb1c1t1></tb1c1t1>	1	Enable trigger				

Figure 3.13.7 Register for TMRB

	TMRB0 register								
		7	6	5	4	3	2	1	0
TB0RG0L	bit Symbol	=	=	=	=	=		=	=
(1188H)	Read/Write								
	Reset State	0	0	0	0	0	0	0	0
TB0RG0H	bit Symbol	-	-	-	_	-	-	-	-
(1189H)	Read/Write				١	N			
	Reset State	0	0	0	0	0	0	((0))	0
TB0RG1L	bit Symbol	-	-	-	_	-	-(-
(118AH)	Read/Write				\	N _			
	Reset State	0	0	0	0	0	0	// o	0
TB0RG1H	bit Symbol	-	-	-	-	-		П	-
(118BH)	Read/Write				\	N	() }		
	Reset State	0	0	0	0	0		0	0
TB1RG0L	bit Symbol	=	-	=	=	M		- 🗸 (
(1198H)	Read/Write				\	N			, ,
	Reset State	0	0	0	0	(70/\)	0	0	\searrow_0
TB1RG0H	bit Symbol	=	=	=	- (_ <		<u></u>
(1199H)	Read/Write					N		119	
	Reset State	0	0	0	0	0	0	7 0	0
TB1RG1L	bit Symbol	=	-	=	47	\\ -	-	$\langle \gamma \rangle$	=
(119AH)	Read/Write	w G							
	Reset State	0	0	0	0	0	((0/ \)	0	0
TB1RG1H	bit Symbol	-	-	-\((-\)	//-	-		-	-
(119BH)	Read/Write				1	N//			
	Reset State	0	0	0	○ 0	0) 0	0	0

Note: A read-modify-write operation cannot be performed for All registers.

3.13.4 Operation in Each Mode

(1) 16 bit timer mode

Generating interrupts at fixed intervals

In this example, the interrupt INTTB01 is set to be generated at fixed intervals. The interval time is set in the timer register TB0RG1H/L.

```
TB0RUN
                     0
                         Χ
                                                        Stop TMRB0
INTETB0
                                                        Enable INTTB01and set interrupt level 4.
                                                        Disable INTTB00
TB0FFCR
                         0
                                                        Disable the trigger
TB0MOD
                                                        Select internal clock for input and
                     0
                                                        disable the capture function.
TB0RG1H/L
                                                        Set the interval time
                                                        (16 bits).
TB0RUN
                                                        Start TMRB0.
                     0
                         Х
                             Х
```

X: Don't care, -: No change

(2) 16 bit event counter mode

In 16 bit timer mode as described in above, the timer can be used as an event counter by selecting the external clock (TB0IN0 pin input) as the input clock. Up counter (UC10) counts up at the rising edge of TB0IN0 input. To read the value of the counter, first perform "software capture" once and read the captured value.

```
TB0RUN
                                                      Stop TMRB0
PPCR
                                            Х
                                                      Set PP4 to input mode for TB0IN0
                    Х
PPFC
                                           X
INTETB0
                                                      Enable INTTB01 and sets interrupt level 4
                                                      Disable INTTB00
TB0FFCR
                                                      Disable trigger
TB0MOD
                                                      Select TB0IN0 as the input clock
TB0RG1H/L
                                                      Set the number of counts
                                                      (16 bit)
                                                      Start TMRB0
TB0RUN
                        Χ
X: Don't care, -: No change
```

When used as an event counter, set the prescaler in RUN mode.

(TB0RUN < TB0PRUN > = "1")

(3) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip-flop TB0FF0 that is enabled by the match of the up counter UC10 with timer register TB0RG0H/L or TB0RG1H/L and is output to TB0OUT0. In this mode the following conditions must be satisfied.

(Value set in TB0RG0H/L) < (Value set in TB0RG1H/L)

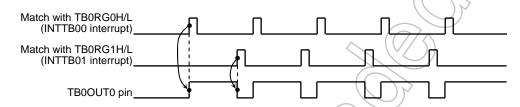


Figure 3.13.9 Programmable Pulse Generation (PPG) Output Waveforms

When the TB0RG0H/L double buffer is enabled in this mode, the value of register buffer 10 will be shifted into TB0RG0H/L at match with TB0RG1H/L. This feature facilitates the handling of low-duty waves.

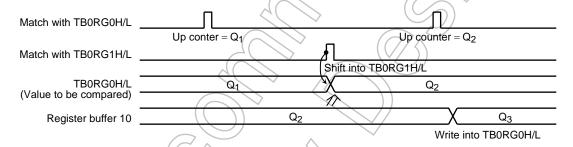


Figure 3.13.10 Operation of double buffer

Note: The values that can be set in TBxRGx range from 0001h to 0000h (equivalent to 10000h). If the maximum value 000h is set, the match-detect signal goes active when the up-counter overflows.

The following block diagram illustrates this mode.

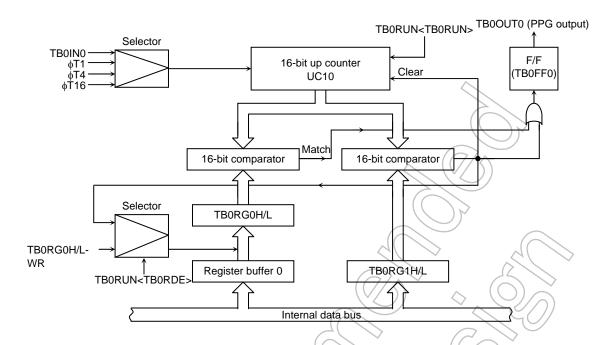
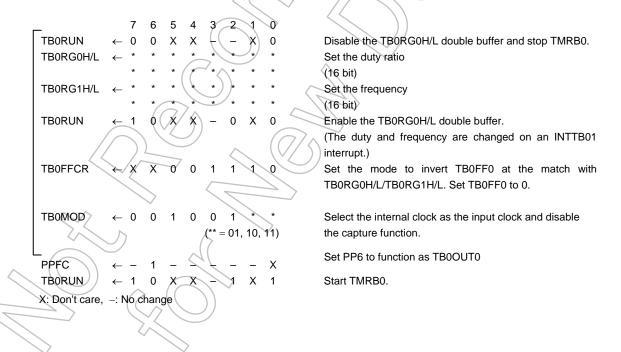



Figure 3.13.11 Block Diagram of 16-Bit Mode

The following example shows how to set 16-bit PPG output mode:

TOSHIBA TMP92

(4) Application examples of capture function

Used capture function, they can be applied in many ways, for example;

- 1. One-shot pulse output from external trigger pulse
- 2. Frequency measurement
- 3. Pulse width measurement

1. One-shot pulse output from external trigger pulse

Set the up counter UC10 in free-running mode with the internal input clock, input the external trigger pulse from TB0IN0 pin, and load the value of up counter into capture register TB0CP0H/L at the rising edge of the TB0IN0 pin.

When the interrupt INT6 is generated at the rising edge of TB0IN0 input, set the TB0CP0H/L value (c) plus a delay time (d) to TB0RG0H/L (=c+d), and set the above set value (c+d) plus a one-shot pulse width (p) to TB0RG1H/L (=c+d+p).

The TB0FFCR<TB0E1T1, TB0E0T1> register should be set "11" and that the TB0FF0 inversion is enabled only when the up counter value matches TB0RG0H/L or TB0RG1H/L. When interrupt INTTB01 occurs, this inversion will be disabled after one-shot pulse is output.

The (c), (d) and (p) correspond to c, d, and p in the Figure 3.13.12.

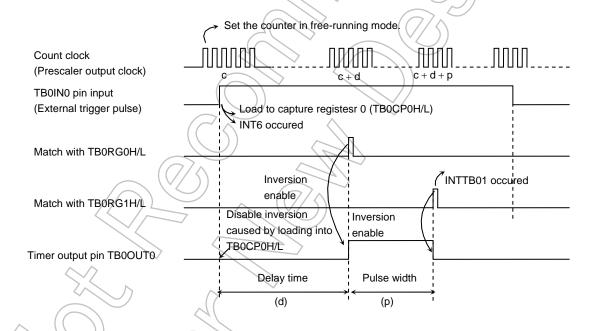
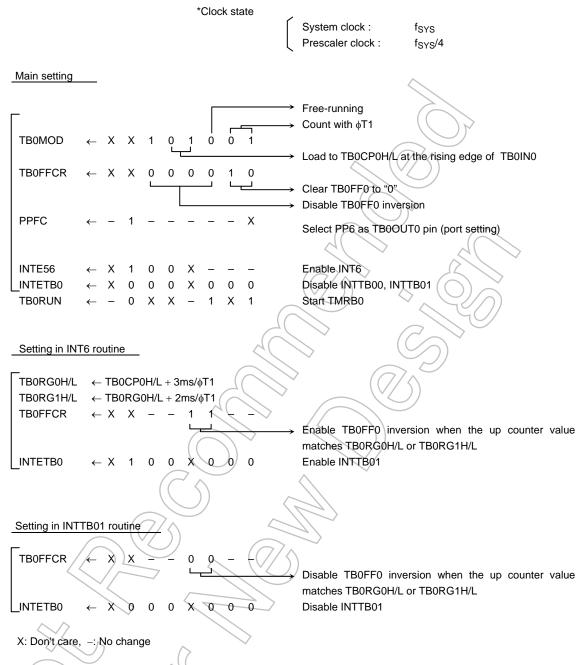



Figure 3.13.12 One-shot Pulse Output (with delay)

Example: To output 2ms one-shot pulse with 3ms delay to the external trigger pulse to TB0IN0pin

When delay time is unnecessary, invert timer flip-flop TB0FF0 when the up counter value is loaded into capture register (TB0CP0H/L), and set the TB0CP0H/L value (c) plus the one—shot pulse width (p) to TB0RG1H/L when the interrupt INT6 occurs. The TB0FF0 inversion—should be enabled when the up counter (UC10) value matched TB0RG1H/L, and disabled when generating the interrupt INTTB01.

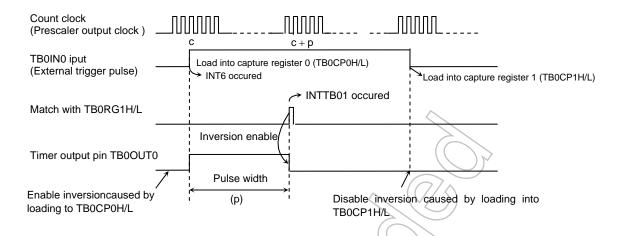


Figure 3.13.13 One-shot Pulse Output (without delay)

2. Frequency measurement

The frequency of the external clock can be measured in this mode. The clock is input through the TB0IN0 pin, and its frequency is measured by the 8 bit timers TMRA01 and the 16 bit timer/event counter (TMRB0).

The TB0IN0 pin input should be selected for the input clock of TMRB0. Set to TB0MOD<TB0CPM1:0>=711". The value of the up counter is loaded into the capture register TB0CP0H/L at the rising edge of the timer flip-flop TA1FF of 8bit timers (TMRA01), and TB0CP1H/L at its falling edge.

The frequency is calculated by the difference between the loaded values in TB0CP0H/L and TB0CP1H/L when the interrupt (INTTA0 or INTTA1) is generated by either 8 bit timer.

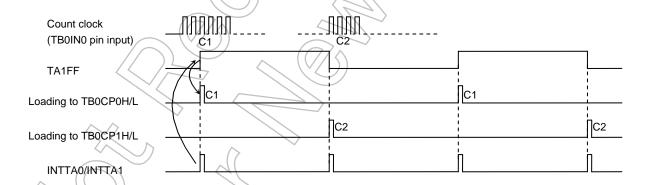


Figure 3 13.14 Frequency Measurement

For example, if the value for the level 1 width of TA1FF of the 8 bit timer is set to 0.5[s] and the difference between TB0CP0H/L and TB0CP1H/L is 100, the frequency will be 100/0.5[s] = 200[Hz].

Note: The frequency in this examole is calculated with 50% duty.

3. Pulse width measurement

This mode allows measuring the H level width of an external pulse. While keeping the 16 bit timer/event counter counting (free-running) with the internal clock input, the external pulse is input through the TB0IN0 pin. Then the capture function is used to load the UC10 values into TB0CP0H/L and TB0CP1H/L at the rising edge and falling edge of the external trigger pulse respectively. The interrupt INT6 occurs at the falling edge of TB0IN0.

The pulse width is obtained from the difference between the values of TB0CP0H/L and TB0CP1H/L and the internal clock cycle.

For example, if the internal clock is 0.8[us] and the difference between TB0CP0H/L and TB0CP1H/L is 100, the pulse width will be $100 \times 0.8[\mu s] = 80\mu s$

Additionally, the pulse width which is over the UC10 maximum count time specified by the clock source can be measured by changing software.

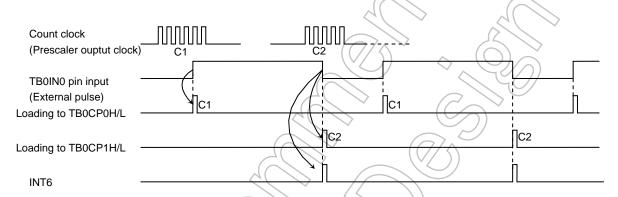


Figure 3.13.15 Pulse Width Measurement

Note: Only in this pulse width measuring mode(TB0MOD<TB0CRM1:0> "10"), external interrupt INT6 occurs at the falling edge of TB0IN0 pin input. In other modes, it occurs at the rising edge.

The width of L level can be measured by multiplying the difference between the first C1 and the second C0 at the second INT6 interrupt and the internal clock cycle together.

3.14 Serial Channels (SIO)

The TMP92CF26A includes 1 serial I/O channel (SIO0). For channel either UART mode (Asynchronous transmission) or I/O interface mode (Synchronous transmission) can be selected. And, SIO0 includes data modulator that supports the IrDA 1.0 infrared data communication specification.

• I/O interface mode — Mode 0: For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.

In mode 1 and mode 2, a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (A multi-controller system).

Figure 3.14.1 is block diagrams for channel.

SIO0 is compounded mainly prescaler, serial clock generation circuit, receiving buffer and control circuit, transmission buffer and control circuit.

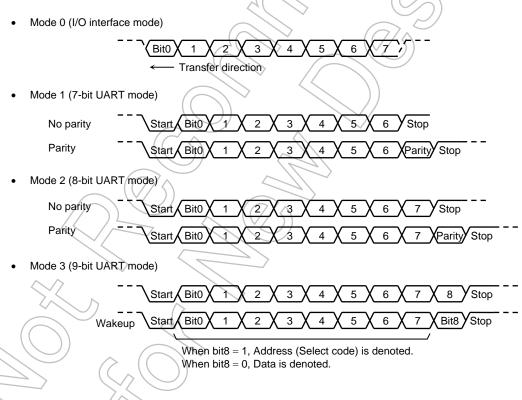


Figure 3.14.1 Data Formats

3.14.1 Block Diagram

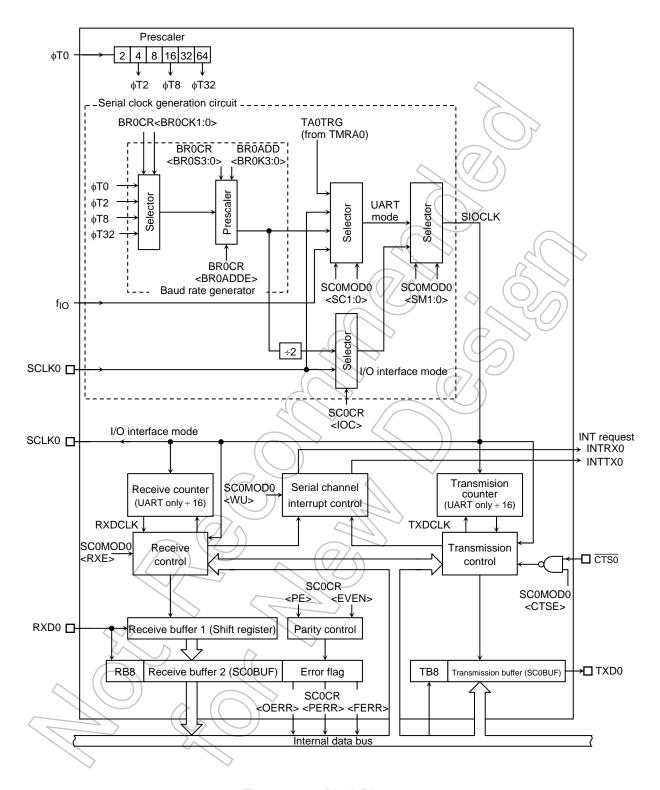


Figure 3.14.2 Block Diagram

3.14.2 Operation of Each Circuit

(1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The prescaler can be run by selecting the baud rate generator as the serial transfer clock.

Table 3.14.1 shows prescaler clock resolution into the baud rate generator.

Table 3.14.1 Prescaler Clock Resolution to Baud Rate Generator

Clock gear - SYSCR1		_	Baud Rate Generator input clock SIO Prescaler BR0CR <br0ck1:0></br0ck1:0>					
<gear2.03< td=""><td></td><td>φT0 (1/1)</td><td>φT2 (1/4)</td><td>фТ8 (1/16)</td><td>φT32 (1/64)</td></gear2.03<>		φT0 (1/1)	φT2 (1/4)	фТ8 (1/16)	φT32 (1/64)			
	000(1/1)		fc/4	fc/16	fc/64	fc/256		
fc	001(1/2)		fc/8	fc/32	fc/128	fc/512		
	010(1/4)	1/4	fc/16	fc/64	fc/256	fc/1024		
	011(1/8)		fc/32	fc/128	fc/512	fc/2048		
	100(1/16)		fc/64	fc/256	fc/1024	fc/4096		

The baud rate generator selects between 4-clock inputs $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is the circuit which generates transmission/receiving clock and determines the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$ or $\phi T32$, is generated by the 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BROCR<BROCK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 to 16 values, thereby determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

In UART mode

When BR0CR < BR0ADDE > = 0

The settings BR0ADD
 BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK
 BR0S3:0> (N = 1, 2, 3 ... 16)

When BR0CR<BR0ADDE> = 1

The N + (16 - K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N set in BR0CR<BR0S3:0> (N = 2, 3 ... 15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3 ... 15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Clear BR0CR<BR0ADDE> to 0.

In I/O interface mode

The N + (16 – K)/16 division function is not available in I/O interface mode. Clear BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

In UART mode

Baud rate Frequency divider for baud rate generator ÷ 16

In I/O interface mode

Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$

Integer divider (N divider)

For example, when the source clock frequency (f_c) is 19.6608 MHz, the input clock is ϕ T2, the frequency divider N (BR0CR<BR0S3:0>) = 8, and BR0CR<BR0ADDE> = 0, the baud rate in UART Mode is as follows:

Note: The N + (16 - K) / 16 division function is disabled and setting BR0ADD <BR0K3:0> is invalid.

N+(16-K)/16 divider (UART Mode only)

Accordingly, when the source clock frequency (fc) = 15.9744 MHz, the input clock is ϕ T2, the frequency divider N (BR0CR<BR0S3:0>) = 6, K (BR0ADD<BR0K3:0>) = 8, and BR0CR <BR0ADDE> = 1, the baud rate in UART Mode is as follows:

Table 3.14.2 show examples of UART Mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial Channel 0). The method for calculating the baud rate is explained below:

In UART Mode

Baud rate = external clock input frequency ÷ 16

It is necessary to satisfy (external clock input cycle) $\geq 4/f_{SYS}$

In/I/O Interface Mode

Baud rate = external clock input frequency

It is necessary to satisfy (external clock input cycle) $\geq 16/f_{SYS}$

Table 3.14.2 Transfer Rate Selection Unit (kbps) (When baud rate generator is used and BR0CR<BR0ADDE> = 0)

(0.41.1	Inpu	t Clock	φΤ0	φ T 2	φΤ8	φT32
f _{SYS} [MHz]	Frequency Divider N		(f _{SYS} /4)	(f _{SYS} /16)	(f _{SYS} /64)	(f _{SYS} /256)
7.3728	1		115.200	28.800	7.200	1.800
1	3		38.400	9.600	2.400	0.600
1	6		19.200	4.800	1.200	0.300
1	A		11.520	2.880	0.720	0.180
1	С		9.600	2.400	0.600	0.150
1	F		7.680	1.920	0.480	0.120
9.8304	1		153.600	38.400	9.600	2.400
1	2		76.800	19.200	4.800	1.200
1	4		38.400	9.600	2.400	0.600
1	5		30.720	7.680	1.920	0.480
<u> </u>	8		19.200	4.800	1.200	0.300
<u> </u>	0		9.600	2,400	0.600	0.150
44.2368	6		115.20	28.800	7,200	1.800
<u> </u>	9		76.800	19.200	4.800	1.200
58.9824	2		460.800	115.200	28.800	/7.200
<u> </u>	3	(307.200	76.800	19.200	4.800
<u> </u>	5	4	184.320	46.080	11)520	2.880
<u> </u>	6		153.600	38,400	9.600	2.400
<u> </u>	8	7()	115.200	28.800	7.200	1.800
<u> </u>	C		76.800	19.200	4.800	1.200
1	F		61.440	15.360	3.840	0.960
73.728	1		1152.000	288,000	72.000	18.000
^	3 ((384.000	96.000	24.000	6.000
<u> </u>	6	/	192,000	48.000	12.000	3.000
<u> </u>	(A		115.200	28.800	7.200	1.800
<u> </u>			96.000	24.000	6.000	1.500
↑	F		76.800	19.200	4.800	1.200

Note: Transfer rates in I/O interface mode are eight times faster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TA0TRG frequency = Baud rate \times 16

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

(3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

• In I/O Interface Mode

In SCLK Output Mode with the setting SC0CR<IOC> = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK Input Mode with the setting SC0CR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SC0CR<SCLKS> register to generate the basic clock.

• In UART Mode

The SC0MOD0 <SC1:0> setting determines whether the baud rate generator clock, the internal clock fio, the match detect signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART Mode, which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times - on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

(5) Receiving control

• In I/O Interface Mode

In SCLK Output Mode with the setting SC0CR<IOC> = 0, the RXD0 signal is sampled on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SC0CR<SCLKS> setting.

In SCLK Input Mode with the setting SC0CR<IOC> = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SC0CR<SCLKS> setting

In UART Mode

The receiving control block has a circuit, which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The Receiving Buffers

To prevent Overrun errors, the Receiving Buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in Receiving Buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in Receiving Buffer 1, the stored data is transferred to Receiving Buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated. The CPU only reads Receiving Buffer 2 (SC0BUF). Even before the CPU reads receiving Buffer 2 (SC0BUF), the received data can be stored in Receiving Buffer 1. However, unless Receiving Buffer 2 (SC0BUF) is read before all bits of the next data are received by Receiving Buffer 1, an overrun error occurs, the contents of Receiving Buffer 1 will be lost, although the contents of Receiving Buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit - added in 8-Bit UART Mode - or the most significant bit (MSB) - in 9-Bit UART Mode.

In 9-Bit UART Mode the wake-up function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

SIO interrupt mode is selectable by the register SIMC.

Note1: The double buffer structure does not support SC0CR<RB8>.

Note2: If the CPU reads receive buffer 2 while data is being transferred from receive buffer 1 to receive buffer 2, the data may not be read properly. To avoid this situation, a read of receive buffer 2 should be triggered by a receive interrupt.

(7) Notes for Using Receive Interrupts

- Receive interrupts can be detected either in level or edge mode. For details, see the description of the SIO/SEI receive interrupt mode select register SIMC in the section on interrupts.
- When receive interrupts are set to level mode, once an interrupt occurs, the same interrupt will occur repeatedly even after control has jumped to the interrupt routine unless interrupts are disabled.

(8) Transmission counters

The transmission counter is a 4-bit binary counter used in UART Mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

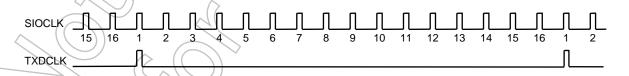


Figure 3.14.3 Generation of the transmission clock

(9) Transmission controller

• In I/O Interface Mode

In SCLK Output Mode with the setting SC0CR<IOC> = 0, the data in the Transmission Buffer is output one bit at a time to the TXD0 pin on the rising edge or falling of the shift clock which is output on the SCLK0 pin, according to the SC0CR<SCLKS> setting.

In SCLK Input Mode with the setting SCOCR<IOC> = 1, the data in the Transmission Buffer is output one bit at a time on the TXDO pin on the rising or falling edge of the SCLKO input, according to the SCOCR<SCLKS> setting.

• In UART Mode

When transmission data sent from the CPU is written to the Transmission Buffer, transmission starts on the rising edge of the next TXDCLK.

TOSHIBA

Handshake function

Use of $\overline{\text{CTS0}}$ pin allows data can to be sent in units of one frame; thus, overrun errors can be avoided. The handshake functions is enabled or disabled by the SC0MOD<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin goes high on completion of the current data send, data transmission is halted until the $\overline{\text{CTS0}}$ pin goes low again. However, the INTTX0 interrupt is generated, and it requests the next data send to from the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no \overline{RTS} pin, a handshake function can be easily configured by setting any port assigned to be the \overline{RTS} function. The \overline{RTS} should be output "high" to request send data halt after data receive is completed by software in the RXD interrupt routine.

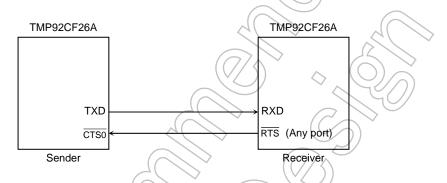
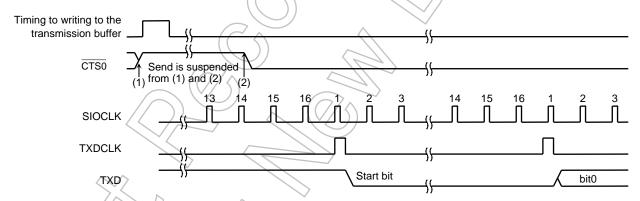



Figure 3.14.4 Handshake function

Note 1: If the CTS0 signal goes High during transmission, no more data will be sent after completion of the current

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTSO signal has fallen.

Figure 3.14.5 CTS0 (Clear to send) Timing

(10) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU in order from the least significant bit (LSB). When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(11) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SC0BUF. The data is transmitted after the parity bit has been stored in SC0BUF<TB7> in 7-bit UART mode or in SC0MODO<TB8> in 8-bit UART mode. SC0CR<PE> and SC0CR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SC0BUF), and then compared with SC0BUF<RB7> in 7-bit UART mode or with SC0CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SC0CR<PERR> flag is set.

(12) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag
- 3) If $\langle OERR \rangle = 1$

then

- a) Set to disable receiving (Write 0 to SC0MOD0<RXE>)
- b) Wait to terminate current frame
- c) Read receiving buffer
- d) Read error flag
- e) Set to enable receiving (Write 1 to SC0MOD0<RXE>)
- f) Request to transmit again
- 4) Others

Note: Overrun errors are generated only with regard to receive buffer 2 (SC0BUF). Thus, if SC0CR<RB8> is not read, no overrun error will occur.

2009-06-25

2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated.

Note: The parity error flag is cleared every time it is read. However, if a parity error is detected w¥twice in succession and the parity error flag is read between the two parity errors, it may seem as if the flag had not been cleared. To avoid this situation, a read of the parity error flag should be riggered by a receive interrupt.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a Framing error is generated.

(13) Timing generation

a. In UART Mode

Receiving

Mode	9-Bit (Note)	8-Bit + Parity (Note)	8-Bit, 7-Bit + Parity, 7-Bit
Interrupt timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing		Center of last bit (parity bit)	Center of stop bit
Overrun error timing	Center of last bit (bit 8)	Center of last bit (parity bit)	Center of stop bit

Note: In 9-Bit and 8-Bit + Parity Modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Transmitting

Mode	9-Bit	8-Bit + Parity	8-Bit, 7-Bit + Parity, 7-Bit
Interrupt timing	Just before stop bit is	Just before stop bit is	Just before stop bit is
<u> </u>	transmitted	transmitted	transmitted

b. I/O interface

Transmission	SCLK Output Mode	Immediately after last bit. (See Figure 3.14.13.)
Interrupt	SCLK Input Mode	Immediately after rise of last SCLK signal Rising Mode, or
timing	>	immediately after fall in Falling Mode. (See Figure 3.14.14.)
Receiving 🗸	SCLK Output Mode	Timing used to transfer received to data Receive Buffer 2 (SC0BUF)
Interrupt		(i.e. immediately after last SCLK). (See Figure 3.14.15.)
timing	SCLK Input Mode	Timing used to transfer received data to Receive Buffer 2 (SC0BUF)
		(i.e. immediately after last SCLK). (See Figure 3.14.16.)

3.14.3 SFR

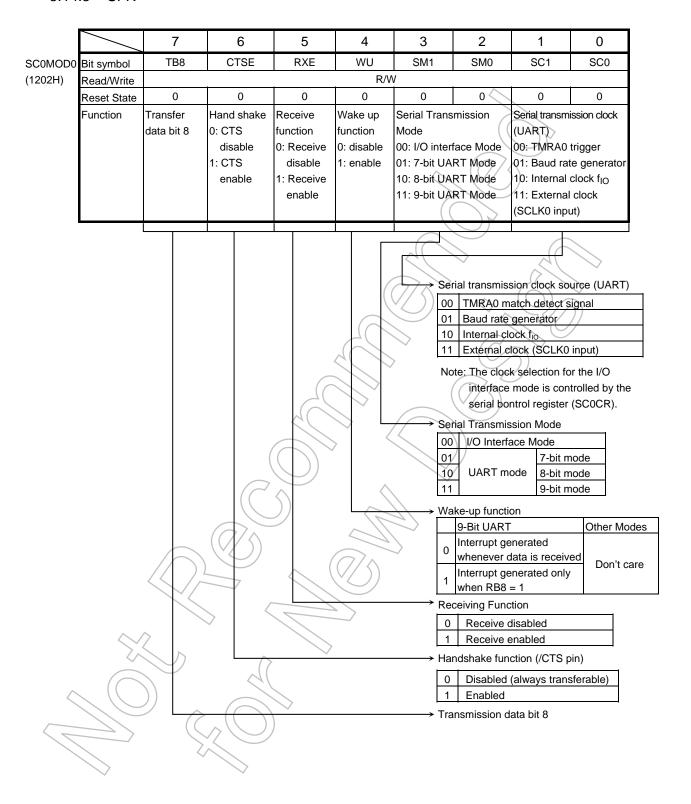
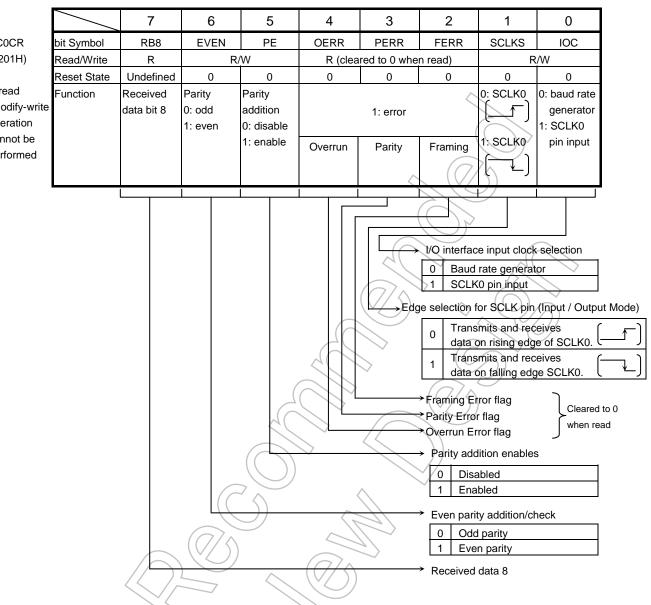
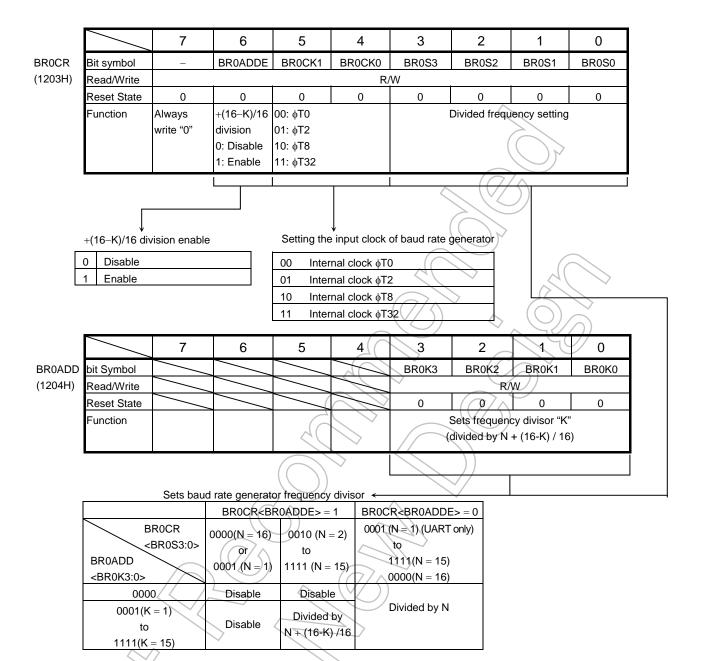



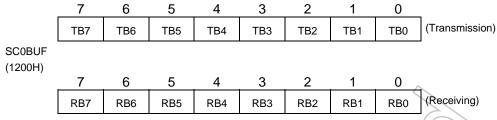
Figure 3.14.6 Serial Mode Control Register (channel 0, SC0MOD0)


SC0CR (1201H)

A read -modify-write operation cannot be performed

Note: As all error flags are cleared after reading, do not test only a single bit with a bit-testing instruction.

Figure 3.14.7 Serial Control Register (channel 0, SC0CR)


Note1:Availability of +(16-K)/16 division function

) N	UART mode	I/O mode
2 to 15	((0)	×
1 , 16	× /	×

The baud rate generator can be set to "1" in UART mode only when the +(16-K)/16 division function is not used.Do not use in I/O interface mode.

Note2:Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD

BR0K3:0> when +(16-K)/16 division function is used. If the unused bits in the BR0ADD register is written, it does not infect o operation. If that bits is read, it becomes undefined.

Figure 3.14.8 Baud rate generator control (channel 0, BR0CR, BR0ADD)

Note: Prohibit read-modify-write for SC0BUF.

Figure 3.14.9 Serial Transmission/Receiving Buffer Registers (channel 0, SC0BUF)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	1280	FDPX0						
(1205H)	Read/Write	R/W	R/W		7			Ž	
	Reset State	0	0			7/]		
	Function	IDLE2	duplex				\$2		
		0: Stop	0: half		((// 4		~ (C		
		1: Run	1: full			<i>'</i>	7, 5	$U(\Lambda)$	

Figure 3.14.10 Serial Mode Control Register 1 (channel 0, SC0MOD1)

3.14.4 Operation in each mode

(1) Mode 0 (I/O Interface Mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

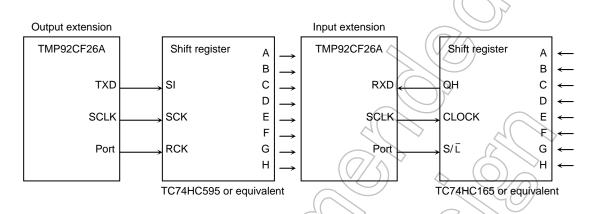


Figure 3.14.11 SCLK Output Mode connection example

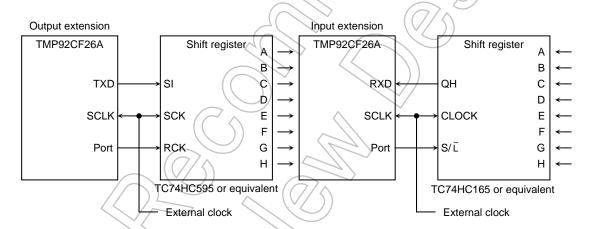


Figure 3.14.12 Example of SCLK Input Mode Connection

a. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the Transmission Buffer. When all data is output, INTESO <ITXOC> will be set to generate the INTTX0 interrupt.

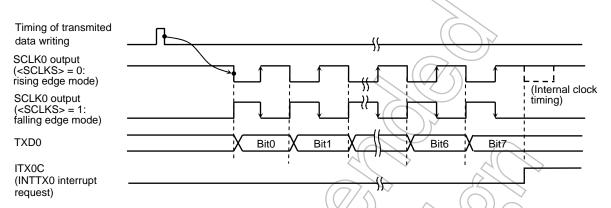


Figure 3.14.13 Transmitting Operation in I/O Interface Mode (SCLK0 Output Mode)

In SCLK Input Mode, 8-bit data is output on the TXD0 pin when the SCLK0 input becomes active after the data has been written to the Transmission Buffer by the CPU.

When all data is output, INTESO <ITXOC> will be set to generate INTTX0 interrupt.

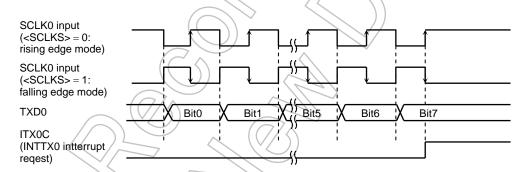


Figure 3.14.14 Transmitting Operation in I/O Interface Mode (SCLK0 Input Mode)

b. Receiving

In SCLK Output Mode the synchronous clock is output on the SCLK0 pin and the data is shifted to Receiving Buffer 1. This is initiated when the Receive Interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is transferred to Receiving Buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Setting SC0MOD0<RXE> to 1 initiates SCLK0 output.

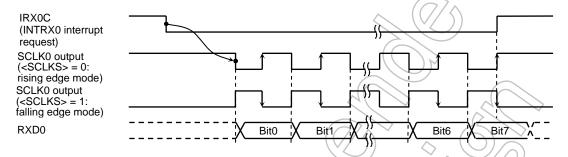


Figure 3.14.15 Receiving operation in I/O Interface Mode (SCLK0 Output Mode)

In SCLK Input Mode the data is shifted to Receiving Buffer 1 when the SCLK input goes active. The SCLK input goes active when the Receive Interrupt flag INTES0 <IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is shifted to Receiving Buffer 2 (SC0BUF) following the timing shown below and INTES0 <IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

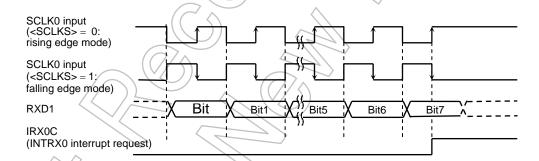


Figure 3.14.16 Receiving/Operation in I/O interface Mode (SCLK0 Input Mode)

Note: The system must be put in the receive-enable state (SC0MOD0<RXE> = 1) before data can be received.

c. Transmission and Receiving (Full Duplex Mode)

When Full Duplex Mode is used, set the Receive Interrupt Level to 0, and only set the interrupt level (from 1 to 6) of the transmit interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

Example: Channel 0, SCLK output Baud rate = 9600 bps $f_{SYS} = 2.4576 \text{ MHz}$

Main routine

INTES0 0 P9CR 0 Χ P9FC Χ Χ SC0MOD0 0 0 SC0MOD1 SC0CR 0 BR0CR 0 0 SC0MOD0 SC0BUF

INTTX0 interrupt routine

 $A_{CC} \leftarrow SC0BUF$ SC0BUF * * *

X: Don't care, -: No change

Set the INTTX0 level to 1.

Set the INTRX0 level to 0.

Set P90, P91 and P92 to function as the TXD0,

RXD0 and SCLK0 pins respectively.

Select I/O interface mode.

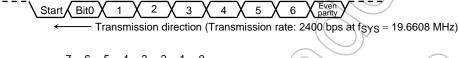
Select full duplex mode.

SCLK0 output mode, select rising edge

Baud rate = 9600 bps.

Enable receiving.

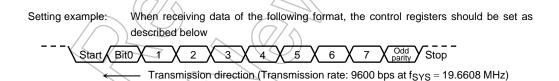
Set the transmit data and start.


Read the receiving buffer. Set the next transmit data.

(2) Mode 1 (7-bit UART Mode)

7-Bit UART Mode is selected by setting the Serial Channel Mode Register SC0MOD0<SM1:0> field to 01.

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the Serial Channel Control Register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (enabled).

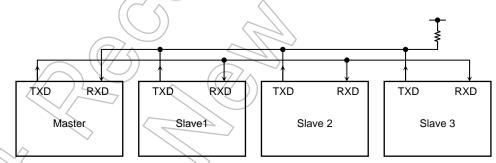

Setting example: When transmitting data of the following format, the control registers should be set as described below.


```
5
                                 3
                     6
                             4
                                     2
                                       1
P9CR
                                                   Set P90 to function as the TXD0 pin
P9FC
                                                    Select 7-bit UART mode.
SC0MOD0
                                                    Add even parity.
SC0CR
                                                    Set the transfer rate to 2400 bps.
BR0CR
                                            0
INTES0
                                                    Enable the INTTX0 interrupt and set it to interrupt level 4.
SC0BUF
                                                    Set data for transmission.
 X: Don't care, -: No change
```

(3) Mode 2 (8-Bit UART Mode)

8-Bit UART Mode is selected by setting SC0MOD0<SM1:0> to 10. In this mode a parity bit can be added (use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to 1 (enabled).

Main routine										
		7	6	5	4	3	2	1	0	
P9CR	\leftarrow	Χ	Χ	Χ	Χ	Χ	_	0	_	Set P91 to function as the RXD0 pin.
P9FC	\leftarrow	_	_	Χ	Χ	Χ	_	Χ	_	
SC0MOD0	\leftarrow	_	_	1	_	1	0	0	1	Enable receiving in 8-bit UART mode.
SC0CR	\leftarrow	_	0	1	_	_	_	_	_	Add odd parity,
BR0CR	\leftarrow	0	0	0	1	1	0	0	0	Set the transfer rate to 9600 bps.
INTES0	\leftarrow	Χ	1	0	0	Χ	0	0	0	Enable the INTTX0 interrupt and set it to interrupt
										level 4.
Interrupt routi	ne									
Acc	\leftarrow	SC	OCF	R AN	1D 0	001	110	0		301001 for (17/1)
if A _{CC} ≠ 0 the	n EF	RRC	R							Check for errors
Acc	\leftarrow	SC	OBU	JF						Read the received data
X: Don't care.	–: N	o ch	ana	е						

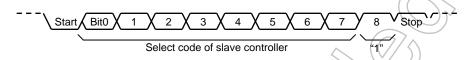

(4) Mode 3 (9-Bit UART Mode)

9-Bit UART Mode is selected by setting \$C0MOD0<\$M1:0> to 11. In this mode a parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SC0MOD0<TB8>. In the case of receiving it is stored in SC0CR<RB8>. When the buffer is written or read, <TB8> or <RB8> is read or written first, before the rest of the SC0BUF data.

Wake-up function

In 9-Bit UART Mode, the wake-up function for slave controllers is enabled by setting SC0MOD0<WU> to 1. The interrupt INTRX0 can only be generated when<RB8> = 1.

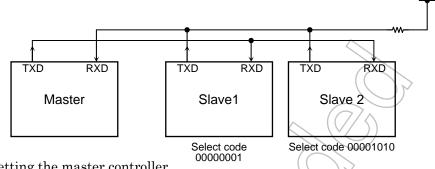


Note: The TXD pin of each slave controller must be in Open-Drain Output Mode.


Figure 3.14.17 Serial Link using Wake-up function

Protocol

- 1. Select 9-Bit UART Mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- 3. The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (bit 8) of the data (<TB8>) is set to 1.


- 4. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its <WU> bit to 0.
- 5. The master controller transmits data to the specified slave controller (the controller whose SC0MOD0<WU> bit has been cleared to 0). The MSB (bit 8) of the data (<TB8>) is cleared to 0.

6. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (bit 8 or <RB8>) are set to 0, disabling INTRX0 interrupts. The slave controller whose <WU> bit = 0 can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.

Setting example: To link two slave controllers serially with the master controller using the internal clock fio as the transfer clock.

Setting the master controller

Main routine

P9CR \leftarrow X X X X X $_{-}$ 0 1 $_{-}$ Set P90 and P91 to function as the TXD0 and RXD0 pins ← - - X X X - X 1 J P9FC respectively. INTES0 ← X 1 0 0 X 1 0 1 Enable the INTTX0 interrupt and set it to Interrupt Level 4. Enable the INTRX0 interrupt and set it to Interrupt Level 5.

Set f_{iO} as the transmission clock for 9-Bit UART Mode. SC0MOD0 $\leftarrow \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 0$

SC0BUF \leftarrow 0 0 0 0 0 0 1 Set the select code for slave controller 1.

Interrupt routine (INTTX0)

SC0MOD0 Set TB8 to 0. SC0BUF Set data for transmission.

Setting the slave controller

Main routine

P9CR Select P91 and P90 to function as the RXD0 and TXD0 pins XX P9FC X X - X 1respectively (open-drain output).

P9FC2 XXXXXXI

INTES0 X 1 0 0 X 1 0 0 Enable INTRX0 and INTTX0.

SC0MOD0 ← 0 0 1 1 1 1 1 0 Set <WU> to 1 in 9-Bit UART Transmission Mode using f_{IO} as the transfer clock.

Interrupt routine (INTRX0)

Acc ← SC0BUF if Acc =Select code

Then SC0MOD0 ← – Clear <WU> to 0.

3.14.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.14.8 shows the block diagram.

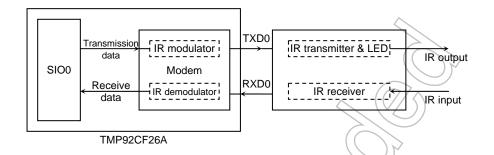


Figure 3.14.18 Block Diagram

(1) Modulation of the transmission data

When the transmit data is 0, the modem outputs 1 to TXD0 pin with either 3/16 or 1/16 times for width of baud-rate. The pulse width is selected by the SIRCR<PLSEL>. When the transmit data is 1, the modem outputs 0.

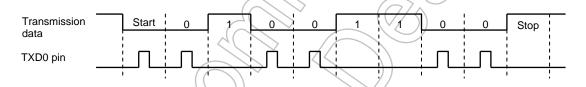


Figure 3.14.19 Transmission example

(2) Modulation of the receive data

When the receive data has an effective pulse width of pulse "1", the modem outputs "0" to SIOO. Otherwise the modem outputs "1" to SIOO. The effective pulse width is selected by SIRCR<SIRWD3:0>.

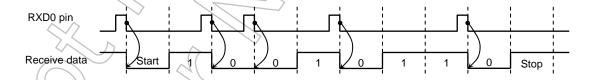


Figure 3.14.20 Receiving example

(3) Data format

The data format is fixed as follows:

Data length: 8-bit Parity bits: none

Stop bits: 1bit

(4) SFR

Figure 3.14.21 shows the control register SIRCR. Set SIRCR data while SIO0 is stopped. The following example describes how to set this register:

1) SIO setting ; Set the SIO to UART Mode.

2) LD (SIRCR), 07H ; Set the receive data pulse width to $16\times$.

3) LD (SIRCR), 37H ; TXEN, RXEN Enable the Transmission and receiving.

4) Start transmission ; The modem operates as follows:and receiving for SIO0 • SIO0 starts transmitting.

• IR receiver starts receiving.

(5) Notes

1. Baud rate for IrDA

When IrDA is operated, set 01 to SC0MOD0<SC1:0> to generate baud-rate. Setting other than the above (TA0TRG, $f_{\rm IO}$ and SCLK0-input) cannot be used.

2. The pulse width for transmission
The IrDA 1.0 specification is defined in Table 3.14.3

Table 3.14.3 Baud rate and pulse width specifications

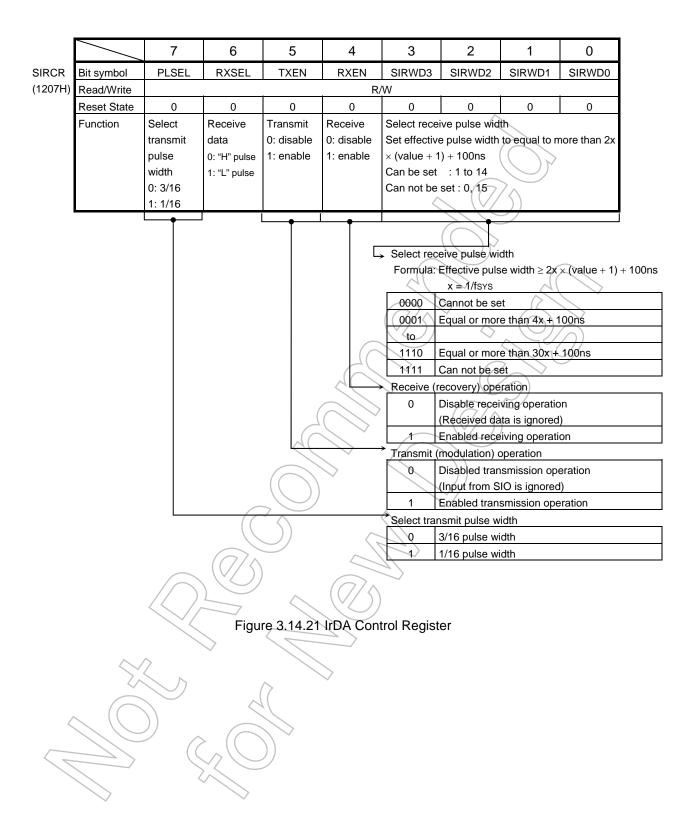
Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (minimum)	Pulse Width (typical)	Pulse width (maximum)
2.4 kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs
9.6 kbps	RZI	±0.87	1.41 μs 🤇	19.53 μs	22.13 μs
19.2 kbps	RZI	±0.87	1.41 μς	9.77 μs	11.07 μs
38.4 kbps	RZI	±0.87	1.41 µs	4.88 μs	5.96 μs
57.6 kbps	RZI	±0.87	1.41 μs	// 3.26 μs	4.34 μs
115.2 kbps	RZI	±0.87	1,41 μs	1.63 μs	2.23 μ\$

The infra-red pulse width is specified either band rate $T \times 3/16$ or 1.6 μs (1.6 μs is equal to 3/16 pulse width when band rate is 115.2 kbps).

The TMP92CF26A has a function which can select the pulse width of Transmission as either 3/16 or 1/16. However, 1/16 pulse width can only be selected when the baud rate is equal to or less than 38.4 kbps.

For the same reason, the +(16-k)/16 division function in the baud rate generator of SIO0 cannot be used to generate a 115.2 kbps baud rate. The +(16-K)/16 division function cannot be used also when the baud rate is 38.4 kbps and the pulse width is 1/16.

Table 3.14.4 Baud rate and pulse width for (16 – K) / 16 division function


Pulse Width			Baud	Rate		_
T dies Widtr	115.2 Kbps	57.6 Kbps	38.4 Kbps	19.2 Kbps	9.6 Kbps	2.4 Kbps
T×3/16	× (Note)	0	0	0	0	0
T × 1/16	Δ -	<u> </u>	×	0	0	0

o: (16 - K)/16 division function can be used.

Note: (16 - K)/16 division function can be used under special conditions.

 $[\]times$: (16 – K)/16 division function cannot be used.

^{-:} Cannot be set to 1/16 pulse width

3.15 Serial Bus Interface (SBI)

The TMP92CF26A has a 1-channel serial bus interface which an I²C bus mode. This circuit supports only I²C bus mode (Multi master).

The serial bus interface is connected to an external device through PV6 (SDA) and PV7 (SCL) in the I^2C bus mode.

Each pin is specified as follows.

	PVFC2 <pv7f2, pv6f2=""></pv7f2,>	PVCR <pv7c, pv6c=""> PVFC<pv7f, pv6f=""></pv7f,></pv7c,>
I ² C bus mode	11	11 ((// 5) 11

3.15.1 Configuration

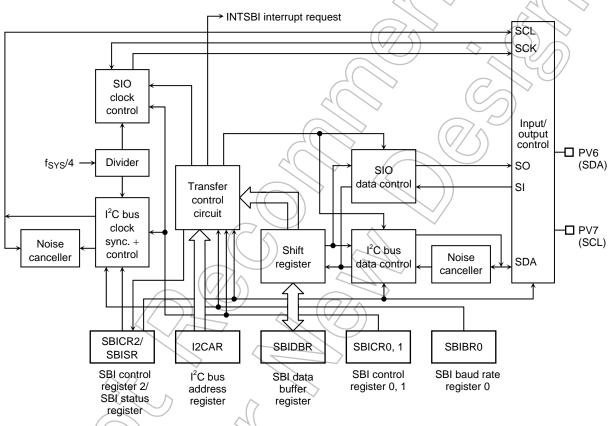
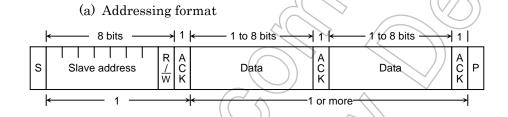
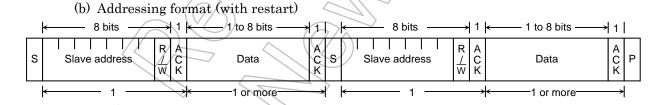
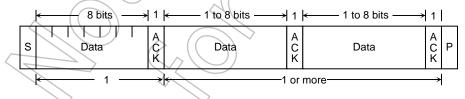


Figure 3.15.1 Serial bus interface (SBI)


3.15.2 Serial Bus Interface (SBI) Control


The following registers are used to control the serial bus interface and monitor the operation status.

- Serial bus interface control register 0 (SBICR0)
- Serial bus interface control register 1 (SBICR1)
- Serial bus interface control register 2 (SBICR2)
- Serial bus interface data buffer register (SBIDBR)
- I²C bus address register (I2CAR)
- Serial bus interface status register (SBISR)
- Serial bus interface baud rate register 0 (SBIBR0)


3.15.3 The Data Formats in the I²C Bus Mode

The data formats in the I²C bus mode is shown below.

(c) Free data format (data transferred from master device to slave device)

S: Start condition

 R/\overline{W} : Direction bit ACK: Acknowledge bit P: Stop condition

Figure 3.15.2 Data format in the I²C bus mode

TOSHIBA

I²C Bus Mode Control Register 3.15.4

The following registers are used to control and monitor the operation status when using the serial bus interface (SBI) in the I2C bus mode.

			Seria	al Bus Inte	rface Cont	rol Regist	er 0		
		7	6	5	4	3	2	1	0
SBICR0	Bit symbol	SBIEN	-	-	-	-	_	((-)	_
(1247H)	Read/Write	R/W				R			
	Reset State	0	0	0	0	0	0((/ \0	0
A read-	Function	SBI			Al	ways read "()".\		
modify-write		operation							
operation		0 : disable					(())		
cannot be		1 : enable						1	
performed						((

<SBIEN> : When using SBI, <SBIEN> should be set "1" (SBI operation enable) before setting each register of SBI module.

Figure 3.15.3 Registers for the I²C bus mode

Serial Bus Interface Control Register 1

SBICR1 (1240H) A readmodify-write operation cannot be performed

	Serial bus interface Control Register 1								
	7	6	5	4	3	2	1	0	
Bit symbol	BC2	BC1	BC0	ACK	_	SCK2	SCK1	SCK0/ SWRMON	
Read/Write	R/W			R/W	R	R/	W	R/W	
Reset State	0	0	0	0	1	0	0	0/1 (Note2)	
Function	Numbe	er of transferr (Note 1)	ed bits	Acknowledge mode	Always read as		rial clock sel		
		, ,		specification	"1".	(
				0: Not					
				generate			7		
				1:Generate))		

Internal serial clock selection <SCK2:0> at write f_{SYS}=80MHz (Output to SCL pin), Clock gear = fc/1

0.0			
000	n = 4	-(Note3)	
001	n = 5	-(Note3)	System Clock: f _{SYS}
010	n = 6	-(Note3)	1. (1)
011	n = 7	-(Note3)	(=80MHz)
100 (n/=.8\	68 kHz	Clock Gear : fc/1
101 \	(n = 9)	36 kHz	fscl = fsys/4 [Hz]
110	n = 10	19 kHz 🔷	2"+36
111	(Reserved)	(Reserved)	

Software reset state monitor <SWRMON> at read

0 During software reset
1 (Initial Data)

Acknowledge mode specification

Not generate clock pulse for acknowledge signal
 Generate clock pulse for acknowledge signal

Number of bits transferred

	Number of i	ons nansioned	4			
	^	<ack></ack>	= 0	<ack> = 1</ack>		
	<bc2:0></bc2:0>	Number of	Bits	Number of	Bits	
		clock pulses		clock pulses		
	000	√ 8	8	9	8	
	001	1	1	2	1	
	010	2	2	3	2	
	// 011	3	3	4	3	
/	100	4	4	5	4	
/		5	5	6	5	
	110	6	6	7	6	
	7 111	7	7	8	7	

Note1: For the frequency of the SCL line clock, see 3.15.5 (3) Serial clock.

Note2: The initial data of SCK0 is "0", the initial data of SWRMON is "1" if SBI operation is enable (SBICR0<SBIEN> = "1"). If SBI operation is disable (SBICR0<SBIEN> = "0"), the initial data of SWRMON is "0".

Note3: This I²C bus circuit does not support Fast-mode, it supports the Standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100kbps, the compliance with the I²C specification is not guaranteed in that case.

Figure 3.15.4 Registers for the I²C bus mode

Serial Bus Interface Control Register 2

SBICR2 (1243H) A readmodify-write operation cannot be performed

	Genal Bus interface Control Register 2								
	7	6	5	4	3	2	1	0	
Bit symbol	MST	TRX	BB	PIN	SBIM1	SBIM0	SWRST1	SWRST0	
Read/Write		V	V	_	W (N	ote 1)	W (N	ote 1)	
Reset State	0	0	0	1	0	0	0	0	
Function	Master/Slave	Transmitter	Start/Stop	Cancel	Serial bus int	erface	Software rese	et generate	
	selection	/Receiver	condition	INTSBI	operating mo	de selection	write "10" and	d "01", then	
	0:Slave	selection	Generation	interrupt	(Note 2)		an internal reset signal is		
	1:Master	0:Receiver	0:Generate	request	00: Port mode		generated.		
		1:Transmitter	stop	0:Don't care	01: Reserved	01: Reserved			
			condition	1:Cancel	10: I ² C Bus mode		\		
			1:Generate	interrupt	11: Reserved)		
			start	request					
			condition		((

Serial bus interface operating mode selection (Note2)

(00/	Port Mode (Serial Bus Interface output disabled)
01	Reserved
10	I ² C Bus Mode
.11	Reserved

Note 1: Reading this register functions as SBISR register.

Note 2: Switch a mode to port mode after confirming that the bus is free.

Switch a mode between I²C bus mode and port mode after confirming that input signals via port are high-level.

Figure 3.15.5 Registers for the I²C bus mode

Table 3.15.1Resolution of base clock

 $@f_{SYS} = 80MHz$

	Clock Gear	Base Clock
L	<gear1:0></gear1:0>	Resolution
	000(fc)	f _{SYS} /2 ² (50ns)
	001(fc/2)	f _{SYS} /2 ³ (0.1μs)
	010(fc/4)	f _{SYS} /2 ⁴ (0.2μs)
	011(fc/8)	f _{SYS} /2 ⁵ (0.4μs)
	100(fc/16)	f _{SYS} /2 ⁶ (0.8μs)

Serial Bus Interface Status Register 7 6 5 2 1 0 PIN Bit symbol **MST** TRX BB ΑL AAS AD0 LRB Read/Write R Reset State 0 0 0 0 0 0 0 Function I2C bus status INTSBI GENERAL Master/ Slave Transmitter/ Arbitration Slave Last status Receiver monitor lost detection address CALL received bit interrupt monitor status 0:Free request monitor match detection monitor 0:Slave 1:Busy 0. – monitor 0: 0 monitor detection monitor 0:Undetected 1: 1 1:Master 0:Receiver 0: Interrupt 1: Detected monitor requested 1:Tranmitter 0:Undetected 1: Detected 1: Interrupt 1: Detected canceled Last received bit monitor Last received bit was 0

Last received bit monitor

0 Last received bit was 0

1 Last received bit was 1

GENERAL CALL detection monitor

0 Undetected

1 GENERAL CALL detected

Slave address match detection monitor

0 Slave address match or Undetected

1 Slave address match or GENERAL CALL detected

Arbitration lost detection monitor

Arbitration lost

Note1: Writing in this register functions as SBICR2.

SBISR

(1243H)

A read-

modify-write

operation

cannot be

performed

Note2: The initialdata SBISR<PIN> is "1" if SBI operation is enable (SBICR0<SBIEN>="1"). If SBI operation is disable (SBICR0<SBIEN>="0"), the initialdata of SBISR<PIN> is "0".

0

Figure 3.15.6 Registers for the I²C bus mode

Serial Bus Interface Baud Rate Register 0

SBIBR0 (1244H) A readmodify-write operation cannot be performed

Genal Bus Interface Badd Nate Negister 0									
	7	6	5	4	3	2	1	0	
Bit symbol	-	I2SBI	-	-	_	-	-	-	
Read/Write	W	R/W		-	R	-	_	R/W	
Reset State	0	0	1	1	1	1	1	0	
Function	Always read "0"	IDLE2 0: Stop 1: Run						Always write "0".	

Operation during IDLE 2 mode

Stop
Operation

Serial Bus Interface Data Buffer Register

SBIDBR (1241H) A readmodify-write operation cannot be performed

Serial Bus interface Data Buller Register										
	7	6	5	4 3	2 1	0				
Bit symbol	DB7	DB6	DB5	DB4 DB3	DB2 DB1	DB0				
Read/Write	d/Write R (received)/W (transfer)									
Reset State										
		Undefined								

Note1:When writing transmitted data, start from the MSB (bit 7). Receiving data is placed from LSB(bit0).

Note2: SBIDBR can't be read the written data because of it has buffer for writing and buffer for reading individually. Therefore Read modify write instruction (e.g. "BIT" instruction) is prohibitted.

1²C Bus Address Register

I2CAR (1242H) A readmodify-write operation cannot be performed

1 C Das Address Register										
	7	6)) 5	4	3	2	1	0		
Bit symbol	SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS		
Read/Write		$(\vee/))$		R/	W					
Reset State		9	_ 0 ((/ /	0	0	0	0		
Function								Address recognition		
\wedge								specification		

Address recognition mode specification

0 Slave address recognition1 Non slave address recognition

Figure 3.15.7 Registers for the I²C bus mode

3.15.5 Control in I²C Bus Mode

(1) Acknowledge Mode Specification

When slave address is matched or detecting GENERAL CALL, and set the SBICR1<ACK> to "1", TMP92CF26A operates in the acknowledge mode. The TMP92CF26A generates an additional clock pulse for an Acknowledge signal when operating in Master Mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the Low in order to generate the acknowledge signal.

Clear the <ACK> to "0" for operation in the Non-Acknowledge Mode; The TMP92CF26A does not generate a clock pulse for the Acknowledge signal when operating in the Master Mode.

(2) Number of transfer bits

The SBICR1<BC2:0> is used to select a number of bits for next transmitting and receiving data.

Since the <BC2:0> is cleared to 000 as a start condition, a slave address and direction bit transmission are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

(3) Serial clock

a. Clock source

The SBICR1 <SCK2:0> is used to select a maximum transfer frequency outputted on the SCL pin in Master Mode. Set a communication baud rates that meets the I²C bus specification, such as the shortest pulse width of t_{Low}, based on the equations shown below.

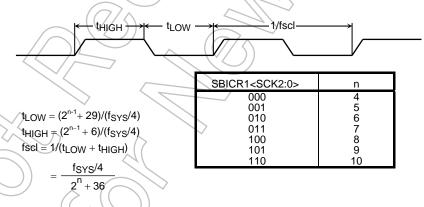


Figure 3.15.8 Clock source

b. Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock line to low-level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

The TMP92CF26A has a clock synchronization function for normal data transfer even when more than one master exists on the bus.

The example explains the clock synchronization procedures when two masters simultaneously exist on a bus.

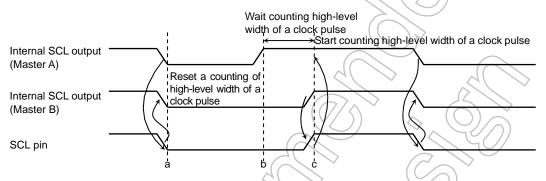


Figure 3.15.9 Clock synchronization

As Master A pulls down the internal SCL output to the Low level at point "a", the SCL line of the bus becomes the Low-level. After detecting this situation, Master B resets a counter of High-level width of an own clock pulse and sets the internal SCL output to the Low-level.

Master A finishes counting Low-level width of an own clock pulse at point "b" and sets the internal SCL output to the High-level. Since Master B holds the SCL line of the bus at the Low-level, Master A wait for counting high-level width of an own clock pulse. After Master B finishes counting low-level width of an own clock pulse at point "c" and Master A detects the SCL line of the bus at the High-level, and starts counting High-level of an own clock pulse. The clock pulse on the bus is determined by the master device with the shortest High-level width and the master device with the longest Low-level width from among those master devices connected to the bus.

(4) Slave address and address recognition mode specification

When the TMP92CF26A is used as a slave device, set the slave address <SA6:0> and <ALS> to the I2CAR. Clear the <ALS> to "0" for the address recognition mode.

(5) Master/Slave selection

Set the SBICR2<MST> to "1" for operating the TMP92CF26A as a master device. Clear the SBICR2<MST> to "0" for operation as a slave device. The <MST> is cleared to "0" by the hardware after a stop condition on the bus is detected or arbitration is lost.

(6) Transmitter/Receiver selection

Set the SBICR2<TRX> to "1" for operating the TMP92CF26A as a transmitter. Clear the <TRX> to "0" for operation as a receiver.

In Slave Mode,

- Data with an addressing format is transferred
- A slave address with the same value that an I2CAR
- A GENERAL CALL is received (all 8-bit data are "0" after a start condition)

The $\langle TRX \rangle$ is set to "1" by the hardware if the direction bit $\langle R/\overline{W} \rangle$ sent from the master device is "1", and is cleared to "0" by the hardware if the bit is "0".

In the Master Mode, after an Acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" by the hardware if a transmitted direction bit is "1", and is set to "1" by the hardware if it is "0". When an Acknowledge signal is not returned, the current condition is maintained.

The <TRX> is cleared to "0" by the hardware after a stop condition on the I2C bus is detected or arbitration is lost.

(7) Start/Stop condition generation

When the SBISR<BB> is "0", slave address and direction bit which are set to SBIDBR are output on a bus after generating a start condition by writing "1" to the SBICR2 <MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBIDBR) and set "1" to <ACK> beforehand.

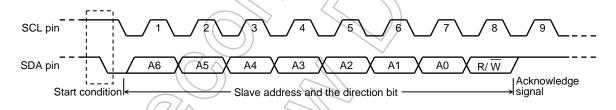
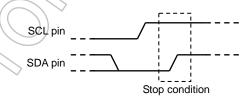



Figure 3.15.10 Start condition generation and slave address generation

When the <BB> is "1", a sequence of generating a stop condition is started by writing "1" to the <MST, TRX, PIN>, and "0" to the <BB>. Do not modify the contents of <MST, TRX, BB, PIN> until a stop condition is generated on a bus.

Figure 3.15.11 Stop condition generation

The state of the bus can be ascertained by reading the contents of SBISR<BB>. SBISR<BB> will be set to 1 if a start condition has been detected on the bus, and will be cleared to 0 if a stop condition has been detected.

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request (INTSBI) occurs, the SBICR2 <PIN> is cleared to "0". During the time that the SBICR2 <PIN> is "0", the SCL line is pulled down to the Low level.

The <PIN> is cleared to "0" when a 1-word of data is transmitted or received. Either writing/reading data to/from SBIDBR sets the <PIN> to "1".

The time from the <PIN> being set to "1" until the SCL line is released takes tLOW. In the address recognition mode (<ALS> = "0"), <PIN> is cleared to "0" when the received slave address is the same as the value set at the I2CAR or when a GENERAL CALL is received (all 8-bit data are "0" after a start condition). Although SBICR2<PIN> can be set to "1" by the program, the <PIN> is not clear it to "0" when it is written "0".

(9) Serial bus interface operation mode selection

SBICR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set SBICR2< SBIM1:0> to "10" when the device is to be used in I2C Bus Mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I2C Bus Mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

In case set start condition bit with bus is busy, start condition is not output on SCL and SDA pin, but arbitration lost is generated.

Data on the SDA line is used for I2C bus arbitration.

The following shows an example of a bus arbitration procedure when two master devices exist simultaneously on the bus. Master A and Master B output the same data until point "a". After Master A outputs "L" and Master B, "H", the SDA line of the bus is wire-AND and the SDA line is pulled down to the Low-level by Master A. When the SCL line of the bus is pulled up at point b, the slave device reads the data on the SDA line, that is, data in Master A. A data transmitted from Master B becomes invalid. The state in Master B is called "ARBITRATION LOST". Master B device which loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

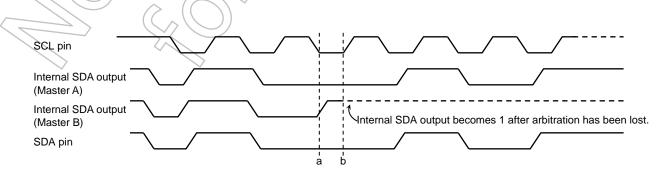


Figure 3.15.12 Arbitration lost

The TMP92CF26A compares the levels on the bus's SDA line with those of the internal SDA output on the rising edge of the SCL line. If the levels do not match, arbitration is lost and SBISR<AL> is set to "1".

When SBISR<AL> is set to "1", SBISR<MST, TRX> are cleared to "00" and the mode is switched to Slave Receiver Mode. Thus, clock output is stopped in data transfer after setting <AL>="1".

SBISR<AL> is cleared to "0" when data is written to or read from SBIDBR or when data is written to SBICR2.

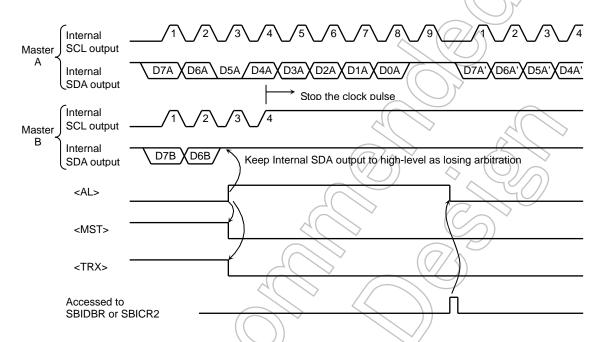


Figure 3.15.13 Example of when TMP92CF26A is a master device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

SBISR<AAS> is set to "1" in Slave Mode, in Address Recognition Mode (i.e. when I2CAR<ALS> = "0"), when a GENERAL CALL is received, or when a slave address matches the value set in I2CAR. When I2CAR<ALS> = "1", SBISR<AAS> is set to "1" after the first word of data has been received. SBISR<AAS> is cleared to "0" when data is written to or read from the data buffer register SBIDBR.

(12) GENERAL CALL detection monitor

SBISR<AD0> is set to "1" in Slave Mode, when a GENERAL CALL is received (all 8-bit received data is "0", after a start condition). SBISR<AD0> is cleared to "0" when a start condition or stop condition is detected on the bus.

(13) Last received bit monitor

The SDA line value stored at the rising edge of the SCL line is set to the SBISR<LRB>. In the acknowledge mode, immediately after an INTSBI interrupt request is generated, an acknowledge signal is read by reading the contents of the SBISR<LRB>.

(14) Software Reset function

The software Reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

An internal Reset signal pulse can be generated by setting SBICR2<SWRST1:0> to "10" and "01". This initializes the SBI circuit internally. All command registers and status registers are initialized as well.

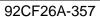
SBICR1<SWRMON>is automatically set to "1" after the SBI circuit has been initialized.

Note: If the software reset is executied, operation selection is reset, and its mode is set to port mode from I²C mode.

(15) Serial Bus Interface Data Buffer Register (SBIDBR)

The received data can be read and transferred data can be written by reading or writing the SBIDBR.

In the master mode, after the start condition is generated the slave address and the direction bit are set in this register.


(16) I²CBUS Address Register (I2CAR)

I2CAR<SA6:0> is used to set the slave address when the TMP92CF26A functions as a slave device.

The slave address output from the master device is recognized by setting the I2CAR<ALS> to "0". The data format is the addressing format. When the slave address is not recognized at the <ALS> = "1", the data format is the free data format.

(17) Setting register for IDLE2 mode operation (SBIBR0)

SBIBR0<I2SBI> is the register setting operation/stop during IDLE2-mode. Therefore, setting <I2SBI> is necessary before the HALT instruction is executed.

3.15.6 Data Transfer in I²C Bus Mode

(1) Device initialization

Set the SBICR1<ACK, SCK2:0>, Set SBIBR1 to "1" and clear bits 7 to 5 and 3 in the SBICR1 to "0".

Set a slave address <SA6:0> and the <ALS> (<ALS> = "0" when an addressing format) to the I2CAR.

For specifying the default setting to a slave receiver mode, clear "0" to the <MST, TRX, BB> and set "1" to the <PIN>, "10" to the <SBIM1:0>.

(2) Start condition and slave address generation

a. Master Mode

In the Master Mode, the start condition and the slave address are generated as follows.

Check a bus free status (when $\langle BB \rangle = "0"$).

Set the SBICR1<ACK> to "1" (Acknowledge Mode) and specify a slave address and a direction bit to be transmitted to the SBIDBR.

When SBICR2<BB> = "0", the start condition are generated by writing "1111" to SBICR2<MST, TRX, BB, PIN>. Subsequently to the start condition, nine clocks are output from the SCL pin. While eight clocks are output, the slave address and the direction bit which are set to the SBIDBR. At the 9th clock, the SDA line is released and the acknowledge signal is received from the slave device.

An INTSBI interrupt request occurs at the falling edge of the 9th clock. The <PIN> is cleared to "0". In the Master Mode, the SCL pin is pulled down to the Low-level while <PIN> is "0". When an interrupt request occurs, the <TRX> is changed according to the direction bit only when an acknowledge signal is returned from the slave device.

Setting in main routine

```
Reg. ← SBISR
Reg. ← Reg. e 0x20

if Reg. ≠ 0x00

Then

SBICR1 ← X X X X X X X X X X X Set to acknowledgement mode.

SBIDBR1 ← X X X X X X X X X Set slave address and direction bit.

SBICR2 ← 1 1 1 1 1 0 0 0 0

Generate start condition.
```

In INTSBI interrupt routine

INTCLR \leftarrow 0X2a Clear the interrupt request Process
End of interrupt

7 6 5 4 3 2 1 0

b. Slave Mode

In the Slave Mode, the start condition and the slave address are received.

After the start condition is received from the master device, while eight clocks are output from the SCL pin, the slave address and the direction bit that are output from the master device are received.

When a GENERAL CALL or the same address as the slave address set in I2CAR is received, the SDA line is pulled down to the Low-level at the 9th clock, and the acknowledge signal is output.

An INTSBI interrupt request occurs on the falling edge of the 9th clock. The <PIN> is cleared to "0". In Slave Mode the SCL line is pulled down to the Low-level while the <PIN> = "0".

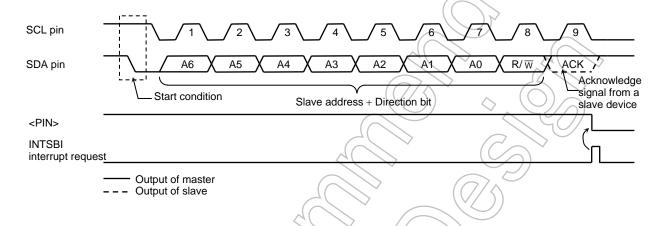


Figure 3.15.14 Start condition generation and slave address transfer

(3) 1-word Data Transfer

Check the <MST> by the INTSBI interrupt process after the 1-word data transfer is completed, and determine whether the mode is a master or slave.

a. If $\langle MST \rangle = "1"$ (Master Mode)

Check the <TRX> and determine whether the mode is a transmitter or receiver.

When the <TRX> = "1" (Transmitter mode)

Check the <LRB>. When <LRB> is "1", a receiver does not request data. Implement the process to generate a stop condition (Refer to 3.15.6 (4)) and terminate data transfer.

When the <LRB> is "0", the receiver is requests new data. When the next transmitted data is 8 bits, write the transmitted data to SBIDBR. When the next transmitted data is other than 8 bits, set the <BC2:0> <ACK> and write the transmitted data to SBIDBR. After written the data, <PIN> becomes "1", a serial clock pulse is generated for transferring a new 1-word of data from the SCL pin, and then the 1-word data is transmitted. After the data is transmitted, an INTSBI interrupt request occurs. The <PIN> becomes "0" and the SCL line is pulled down to the Low-level. If the data to be transferred is more than one word in length, repeat the procedure from the <LRB> checking above.

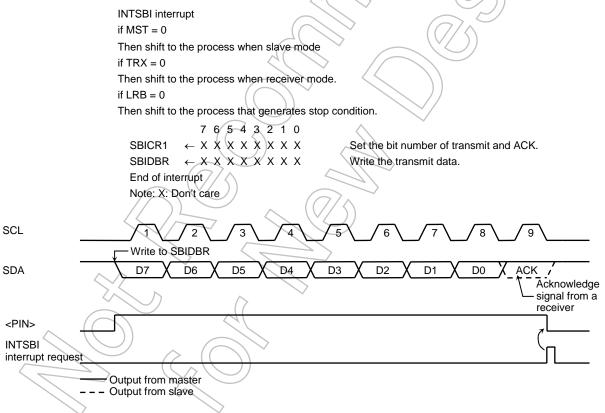


Figure 3.15.15 Example in which <BC2:0> = "000" and <ACK> = "1" in transmitter mode

When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set <BC2:0> <ACK> and read the received data from SBIDBR to release the SCL line (data which is read immediately after a slave address is sent is undefined). After the data is read, <PIN> becomes "1".

Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBI interrupt request then occurs and the <PIN> becomes "0", Then the TMP92CF26A pulls down the SCL pin to the Low-level. The TMP92CF26A outputs a clock pulse for 1-word of data transfer and the acknowledge signal each time that received data is read from the SBIDBR.

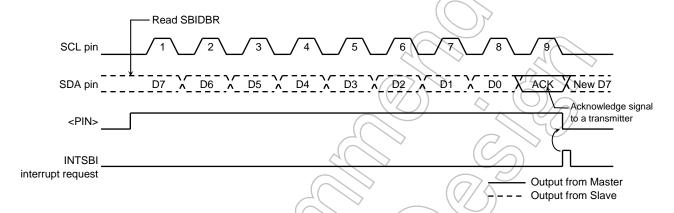


Figure 3.15.16 Example of when <BC2:0> = "000", <ACK> = "1" in receiver mode

In order to terminate the transmission of data to a transmitter, clear <ACK> to "0" before reading data which is 1-word before the last data to be received. The last data word does not generate a clock pulse as the Acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set <BC2:0> to "001" and read the data. The TMP92CF26A generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA line on the bus remains High. The transmitter interprets the High signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After the one data bit has been received and an interrupt request been generated, the TMP92CF26A generates a stop condition (see Section 3.15.6 (4) Stop condition generation) and terminates data transfer.

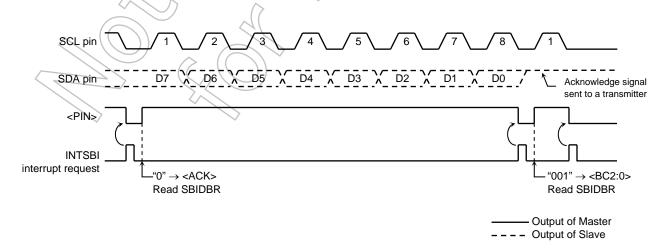


Figure 3.15.17 Termination of data transfer in master receiver mode

Example: In case receive data N times

INTSBI interrupt (After transmitting data)

7 6 5 4 3 2 1 0

SBICR1 \leftarrow X X X X X X X X

Set the bit number of receive data and ACK. Load the dummy data.

Reg. \leftarrow SBIDBR

End of interrupt

INTSBI interrupt (Receive data of 1st to (N-2) th)

7 6 5 4 3 2 1 0

Reg. \leftarrow SBIDBR

Load the data of 1st to (N-2)th.

End of interrupt

INTSBI interrupt ((N-1) th Receive data)

7 6 5 4 3 2 1 0

SBICR1 \leftarrow X X X 0 0 X X X

Not generate acknowledge signal

← SBIDBR Load the data of (N-1)th

End of interrupt

Reg.

INTSBI interrupt (Nth Receive data)

7 6 5 4 3 2 1 0

SBICR1 \leftarrow 0 0 1 0 0 X X X

Reg. \leftarrow SBIDBR

End of interrupt

Generate the clock for 1bit transmit

Receive the data of Nth.

Finish the transmit of data

INTSBI interrupt (After receiving data)

The process of generating stop

condition

End of interrupt

Note: X: Don't care

If $\langle MST \rangle = 0$ (Slave Mode)

In the slave mode the TMP92CF26A operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBI interrupt request occurs when the TMP92CF26A receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is complete, or after matching received address. In the master mode, the TMP92CF26A operates in a slave mode if it losing arbitration. An INTSBI interrupt request occurs when a word data transfer terminates after losing arbitration. When an INTSBI interrupt request occurs the <PIN> is cleared to "0" and the SCL pin is pulled down to the Low-level. Either reading/writing from/to the SBIDBR or setting the <PIN> to "1" will release the SCL pin after taking tLOW time.

Check the SBISR<AL>, <TRX>, <AAS>, and <AD0> and implements processes according to conditions listed in the next table.

Example: In case matching slave address in slave receive mode, direction bit is

INTSBI interrupt

if TRX = 0

Then shift to other process

if AL = 1

Then shift to other process

if AAS = 0

Then shift to other process

7 6 5 4 3 2 1 0

 \leftarrow X X X 1 X X X

SBIDBR \leftarrow X X X X X X X X

Note: X: Don't care

Set the bit number of transmit.

Set the data of transmit.

Table 3.15.2 Operation in the slave mode

<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
	1	1	0	The TMP92CF26A loses arbitration when transmitting a slave address and receives a slave address for which the value of the direction bit sent from another master is "1".	Set the number of bits a word in <bc2:0> and write the transmitted data to SBIDBR</bc2:0>
1		1	0	In Salve Receiver Mode, the TMP92CF26A receives a slave address for which the value of the direction bit sent from the master is "1".	
	0	0	0	In Salve Transmitter Mode, a single word of is transmitted.	Check the <lrb> setting. If <lrb> is set to "1", set <pin> to "1" since the receiver win no request the data which follows. Then, clear <trx> to "0" to release the bus. If <lrb> is cleared to "0", set <bc2:0> to the number of bits in a word and write the transmitted data to SBIDBR since the receiver requests next data.</bc2:0></lrb></trx></pin></lrb></lrb>
	1	1	1/0	The TMP92CF26A loses arbitration when transmitting a slave address and receives a slave address or GENERAL CALL for which the value of the direction bit sent from another master is "0".	
0		0	0	The TMP92CF26A loses arbitration when transmitting a slave address or data and terminates word data transfer.	Read the SBIDBR for setting the <pin> to "1" (reading dummy data) or set the <pin> to "1".</pin></pin>
0	0	1	1/0	In Slave Receiver Mode, the TMP92CF26A receives a slave address or GENERAL CALL for which the value of the direction bit sent from the master is "0". In Slave Receiver Mode, the TMP92CF26A terminates receiving word data.	Set <bc2:0> to the number of bits in a word and read the received data from SBIDBR.</bc2:0>

(4) Stop condition generation

When SBISR<BB> = "1", the sequence for generating a stop condition start by writing "1" to SBICR2<MST, TRX, PIN> and "0" to SBICR2<BB>. Do not modify the contents of SBICR2<MST, TRX, PIN, BB> until a stop condition has been generated on the bus. When the bus's SCL line has been pulled Low by another device, the TMP92CF26A generates a stop condition when the other device has released the SCL line and SDA pin rising.

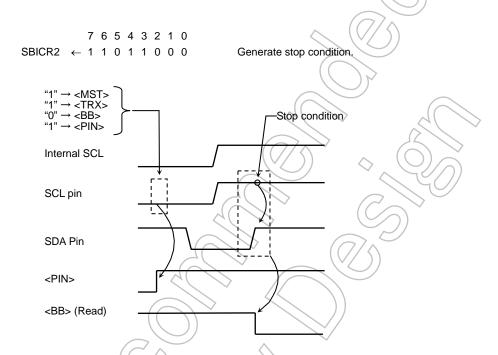


Figure 3.15.18 Stop condition generation (Single master)

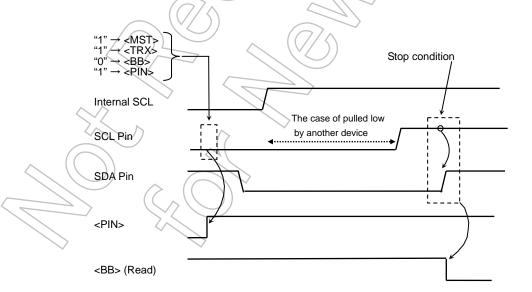


Figure 3.15.19 Stop condition generation (Multi master)

(5) Restart

Restart is used during data transfer between a master device and a slave device to change the data transfer direction.

The following description explains how to restart when the TMP92CF26A is in Master Mode.

Clear SBICR2<MST, TRX, and BB> to 0 and set SBICR2<PIN> to 1 to release the bus. The SDA line remains High and the SCL pin is released. Since a stop condition has not been generated on the bus, other devices assume the bus to be in busy state.

And confirm SCL pin, that SCL pin is released and become bus-free state by SBISR<BB> = "0" or signal level "1" of SCL pin in port mode. Check the <LRB> until it becomes 1 to check that the SCL line on a bus is not pulled down to the low-level by other devices. After confirming that the bus remains in a free state, generate a start condition using the procedure described in (2).

In order to satisfy the set-up time requirements when restarting, take at least 4.7 µs of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

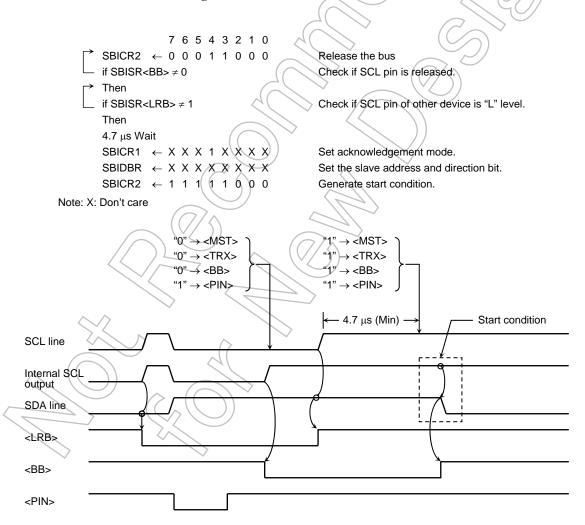


Figure 3.15.20 Timing chart for generate restart

Note: Don't write <MST> = "0", when <MST> = "0" condition. (Cannot be restarted)

3.16 USB Controller

3.16.1 Outline

This USB controller (UDC) is designed to support a variety of serial links in the construction of a USB system.

The outline is as follows:

- (1) Compliant with USB rev1.1
- (2) Full-speed: 12 Mbps (low-speed (1.5 Mbps) not supported)
- (3) Auto bus enumeration with 384-byte descriptor RAM
- (4) Supports 3 kinds of transfer type: Control, interrupt and bulk
 - Endpoint 0: Control 64 bytes × 1-FIFO
 - Endpoint 1: BULK (out) 64 bytes × 2-FIFO
 - Endpoint 2: BULK (in) 64 bytes × 2-FIFO
 - Endpoint 3: Interrupt (in) 8 bytes × 1-FIFO
- (5) Built-in DPLL which generates sampling clock for receive data
- (6) Detecting and generating SOP, EOP, RESUME, RESET and TIMEOUT
- (7) Encoding and decoding NRZI data
- (8) Inserting and discarding stuffed bit
- (9) Detecting and checking CRC
- (10) Generating and decoding packet ID
- (11) Built-in power management function
- (12) Dual packet mode supported

Note1:The TMP92CF26A does not include the pull-up resister necessary for D+pin. An external pull-up resistor plus software support is required.

Note2:There are some differences between our specifications and USB 1.1. Refer to check "3.16.11 Notice and Restrictions".

3.16.1.1 System Configuration

The USB controller (UDC) consists of the following 3 blocks.

- 1. 900/H1 CPU I/F (details given in Section 3.16.2, below).
- 2. UDC core block (DPLL, SIE, IFM and PWM), request controller, descriptor RAM and 4 endpoint FIFO (details given in Section 3.16.3, below).

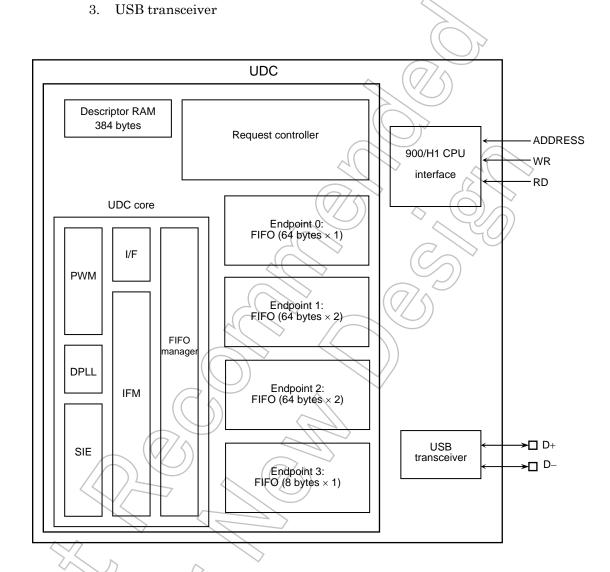
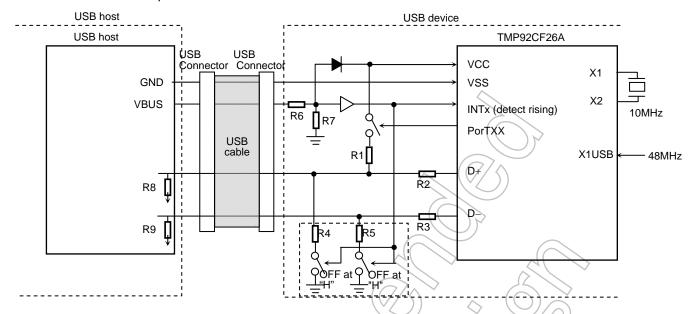



Figure 3.16.1 UDC Block Diagram

3.16.1.2 Example

The above setting is required If when using the TMP92CF26A's USB controller.

- 1) Pull-up of D⁺ pin
 - In the USB standard, in Full Speed connection, the D⁺ pin must be set to pull-up. The ON/OFF control of this pull-up must be by S/W.

Recommended value: R1=1.5k Ω

- 2) Add cascade resistor of D⁺, D⁻signal
 - In the USB standard, for a D+ or D signal, a cascade resistor must be added to each signal. Recommended value: $R2=27\Omega$, $R3=27\Omega$
- 3) Flow current provision of the Connector connection and D⁺ pin, D⁻ pin
 - For the D⁺ and D⁻ pin of the TMP92CF26A, the level must be fixed for flow current provision when not in use (when not connected to host). In this case, the connector detection signal is used to control the pull-down resistor which determines the level.

Recommended value: R4=10k Ω , R5=10k Ω

The example shows use of the connector detection method by using VBUS (5V voltage).

Note: Where waveform rise is solw, buffering of wabeform is recommended.

Recommended value: R6= $60k\Omega$, R7= $100k\Omega$

(VBUS current consumption when suspended is <500µA)

- 4) Connection of 10MHz oscillator to X1,X2, or input 48MHz clock to X1USB
 - When using USB with a combination of 10MHz external oscillator and internal PLL, the number of external hub stages which can be used is restricted by the accuracy of the internal (Max 3 stages).
 - If 5 stages connection is required for external hub, it is required that input 48MHz clock from X1USB pin (Restriction ≤±2500ppm.)

- 5) HOST side pull-down resistor
 - · In the USB standard, set pull-down D+ pin and D signal at USB_HOST side. Recommended value: R8=15k Ω , R9=15k Ω

Note: The above connections and resistor values, etc, are given as examples only. Operation is not guaranteed. Please confirm the latest USB standar specifications and operations on your system.

3.16.2 900/H1 CPU I/F

The $900/\mathrm{H}1$ CPU I/F is a bridge between the $900/\mathrm{H}1$ CPU and the UDC. Its main functions are as follow.

- INTUSB (interrupt from UDC) generation
- A bridge for SFR
- USB clock control (48 MHz)

3.16.2.1 SFRs

The 900/H1 CPU I/F incorporates the following SFRs to control the UDC and USB transceiver.

• USB control

USBCR1 (USB control register 1)

• USB interrupt control

USBINTFR1 (USB interrupt flag register 1)

USBINTFR2 (USB interrupt flag register 2)

USBINTFR3 (USB interrupt flag register 3)

USBINTFR4 (USB interrupt flag register 4)

USBINTMR1 (USB interrupt mask register 1)

USBINTMR2 (USB interrupt mask register 2)

USBINTMR3 (USB interrupt mask register 3)

USBINTMR4 (USB interrupt mask register 4)

Table 3.16.1 900/H1 CPU I/F SFR

Address	Read/Write	SFR Symbol
07F0H	R/W	USBINTFR1
(07F1H)	R/W	USBINTFR2
07F2H	R/W	USBINTFR3
07F3H	R/W	USBINTFR4
07F4H	R/W	USBINTMR1
07F5H	R/W	USBINTMR2
07F6H	R/W	USBINTMR3
07F7H	R/W	USBINTMR4
07F8H	R/W	USBCR1

TOSHIBA

3.16.2.2 USBCR1 Register

This register is used to set USB clock enables, transceiver enable etc.

USBCR1 (07F8H)

	7	6	5	4	3	2	1	0
bit Symbol	TRNS_USE	WAKEUP					SPEED	USBCLKE
Read/Write	R/W	R/W					R/W	R/W
Reset State	0	0				\J	1	0
Function							15	

• TRNS_USE (Bit7)

0: Disable USB transceiver

1: Enable USB transceiver

Always set to "1" on the application using USB.

• WAKEUP (Bit6)

0: -

1: Start remote-wakeup function

When the remote-wakeup function is needed, first check Current_Config<REMOTE WAKEUP>.

If <REMOTE WAKEUP> = "1" (meaning SUSPEND status), write "1", and "0" to <WAKEUP>. This will initiate the remote-wakeup function.

If <REMOTE WAKEUP> = "0" or EP0, 1, 2, 3_STATUS<SUSPEND> = "0", do not write "1" to <WAKEUP>.

• SPEED (Bit1)

1: Full speed (12 MHz)

0: Reserved

This bit selects USB speed.

Always set to "1"

• USBCLKE (Bit0)

0: Disable USB clock

1: Enable USB clock

This bit controls supply of USB clock.

The USB clock (" f_{USB} ": 48MHz) is generated by an internal PLL. When the USB is started, write "1" to <USBCLKE> after confirming PLL lock up is terminated.

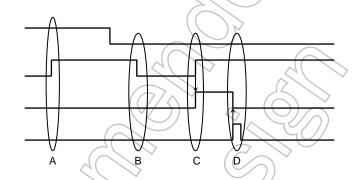
Also, write "0" to <USBCLKE> before stopping the PLL.

3.16.2.3 USBINTFRn, MRn Register

These SFRs control the INTUSB (only one interrupt to CPU) using the 23 interrupt sources output by the UDC.

The USBINTMRn are mask registers and the USBINTFRn are flag registers. In the INTUSB routine, execute operations according to generated interrupt source after checking USBINTFRn.

The common specification for all MASK and FLAG registers is shown below.


(Common specifications for all mask and flag registers.)

Mask register

Interrupt source (Set by rising edge)

Flag register

Writing "0" to flag register

- A: The flag register is not set because mask register = "1".
- B: The flag register is not set because interrupt souce changes "1" → "0".
- C: The flag register is set because mask register = "0" and interrupt souce changes "0" → "1".
- D: The flag register is reset to "0" by writing "0" to flag register.

Note 1: The "INTUSB generated number" and "bit number which is set to flag register" are not always equal. In the INTUSB interrupt routine, clear FLAG register (USBINTFRn) after checking it. The interrupt request flag, which occurrs between the INTUSB interrupt routine and flag register (USBINTFRn) read, is kept in the interrupt controller.

Therefore, after returning from the interrupt routine, the CPU jumps to INTUSB interrupt routine again. Software support is required to avoid ending in an error routine when none of the bits in the flag register (USBINTFRn) is set to "1".

Note 2: Disable INTUSB (write 00H to INTEUSB register) before writing to USBINTMRn or USBINTFRn.

USBINTFR1 (07F0H) Prohibit to readmodifywrite

	7	6	5	4	3	2	1	0
bit Symbol	INT_URST_STR	INT_URST_END	INT_SUS	INT_RESUME	INT_CLKSTOP	INT_CLKON		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W		
Reset State	0	0	0	0	0	0		
Function	When read 0: Not generate interrupt When write 0: Clear flag 1: Generate interrupt 1: -							

Note: The above interrupts can release Halt state from IDLE2 and IDLE1 mode. (STOP mode cannot be released)

*Those 6 interrupts of all 24 INTUSB sources can release Halt state from IDLE1 mode. Therefore, a low power dissipation system can be built. However, the method of use is limited as below.

Shift to IDLE1 mode:

Execute Halt instruction when the INT_SUS or INT_CLKSTOP flag is "1" (SUSPEND state)

Release from IDLE1 mode:

Release Halt state by INT_RESUME or INT_CLKON request (request of release SUSPEND.)

Release Halt state by INT_URST_STR or INT_URST_request (request of RESET.)

• INT_URST_STR (Bit7)

This is the flag register for INT_URST_STR ("USB reset" start - interrupt).

This is set to "1" when the UDC started to receive a "USB reset" signal from a USB-host.

An application program has to initialize the whole UDC with this interrupt.

• INT URST END (Bit6)

This is the flag register for INT_URST_END ("USB reset" end - interrupt).

This is set to "1" when the UDC receives a "USB reset end" signal from a USB-host.

• INT SUS (Bit5)

This is the flag register for INT_SUS (suspend - interrupt).

This is set to "1" when the USB changes to "suspend status".

• / INT_RESUME (Bit4)

This is the flag register for INT_RESUME (resume - interrupt).

This is set to "1" when the USB changes to "resume status".

◆ INT CLKSTOP (Bit3)

This is the flag register for INT_CLKSTOP (enables stopping of the clock supply interrupt).

This is set to "1" after the USB changes to "suspend status". Set USBCR1<USBCLKE> to "0" to stop the clock after detecting this interrupt if needed.

INT_CLKON (Bit2)

This is the flag register for INT_CLKON (enabled starting clock supply interrupt).

This is set to "1" after changing to "resume status" or when the UDC started to receive a "USB reset" signal from a USB-host. In case the clock has be stopped, set USBCR1<USBCLKE> to "1" to start the clock after detecting this interrupt if needed.

USBINTFR2 (07F1H) Prohibit to read -modify -write

	7	6	5	4	3	2	1	0	
bit Symbol	EP1_FULL_A	EP1_Empty_A	EP1_FULL_B	EP1_Empty_B	EP2_FULL_A	EP2_Empty_A	EP2_FULL_B	EP2_Empty_B	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset State	0	0	0	0	0	0	0	0	
Function	When read 0: Not generate interrupt When write 0: Clear flag 1: Generate interrupt								

Note: The above interrupt can release Halt state from IDLE2 mode. (IDLE1 and STOP mode cannot be released.)

		7	6	5	4	3	(7/2\)	1	0
USBINTFR3	bit Symbol	EP3_FULL_A	EP3_Empty_A	EP3_FULL_B	EP3_Empty_B		¥		
(07F2H)	Read/Write	R/W	R/W	R/W	R/W	4			
	Reset State	0	0	0	0	<i>A</i>			
Prohibit to	Function	When re	ad 0: N	ot generate inte	rrupt				
read			1: G	enerate interrup	ot	$\mathcal{A}(\mathcal{A})$		$\sqrt{}$	
-modify		When w	rite 0: C	lear flag					
-write			1: -	-					

Note: The above interrupt can release Halt state from IDLE2 mode. (IDLE1 and STOP mode cannot be released.)

• EPx_FULL_A/B:

(When transmitting)

This is set to "1" when CPU full write data to FIFO_A/B.

(When receiving)

This is set to "1" when UDC full receive data to FIFO_A/B

• EPx_Empty_A/B:

(When transmitting)

This is set to "1" when FIFO become empty after transmission.

(When receiving)

This is set to "1" when FIFO becomes empty after CPU reads all data from FIFO.

Note: The EPx_FULL_A/B and EPx_Empty_A/B flags are not status flags. Therefore, check DATASET register to determine if the FIFO-status is needed.

USBINTFR4 (07F3H) Prohibit to read -modify -write

_		7	6	5	4	3	2	1	0
4 l	oit Symbol	INT_SETUP	INT_EP0	INT_STAS	INT_STASN	INT_EP1N	INT_EP2N	INT_EP3N	
I	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ı	Reset State	0	0	0	0	0	0	0	
ı	unction	When read	0: Not genera 1: Generate in	•	When write	0: Clear flag 1: -			

Note: The above interrupt can release Halt state from IDLE2 mode. (IDLE1 and STOP mode cannot be released.)

• INT SETUP (Bit7)

This is the flag register for INT SETUP (setup - interrupt).

This is set to "1" when the UDC receives a request that S/W (software) control is needed from USB host.

Using S/W (INT_SETUP routine), first read 8-byte device requests from the UDC and execute operation according to each request.

• INT EP0 (Bit6)

This is the flag register for INT_EPO (received data of the data phase for Control transfer type - interrupt).

This is set to "1" when the UDC receives data of the data phase for Control transfer type. If this interrupt occurs during Control write transfer, data reading from FIFO is needed. If this interrupt occurs during Control read transfer, transmission data writing to FIFO is needed.

In some cases, the host may not assert "ACK" of the last packet in the data stage. In this case, this interrupt cannot be generated. Therefore, ignore this interrupt if it occurs after the last packet data has been written in the data stage because the transmission data number is specified by the host, or it depends on the capacity of the device.

• INT_STAS (Bit5)

This is the flag register for INT STAS (status stage end - interrupt).

This is set to "1" when the status stage ends.

If this interrupt is generated, it means that request ended normally.

If this interrupt is not generated and INT_SETUP is generated, EP0_STATUS <STAGE_ERR> is set to "1", and it means that request did not end normally.

• INT_STASN (Bit4)

This is the flag register for INT_STASN (change host status stage - interrupt).

This is set to "1" when the USB host changes to status stage at the Control read transfer. This interrupt is needed if data length is less than wLength (specified by the host).

• INT_EPxN (Bit3, 2, 1)

This is the flag register for INT_EPxN (NAK acknowledge to the USB host interrupt).

This is set to "1" when the Endpoint1, 2 and 3 transmit NAK.

USBINTMR1 (07F4H)

	7	6	5	4	3	2	1	0
bit Symbol	MSK_URST_STR	MSK_URST_END	MSK_SUS	MSK_RESUME	MSK_CLKSTOP	MSK_CLKON		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W		
Reset State	1	1	1	1	1	1		
Function	When read 0: not masked When write 0: Clear flag							
		1	l: masked	1	:-			

• MSK_URST_STR (Bit7)

This is the mask register for USBINTFR1<INT_URST_STR>.

• MSK_URST_END (Bit6)

This is the mask register for USBINTFR1<INT_URST_END>.

• MSK_SUS (Bit5)

This is the mask register for USBINTFR1<INT_SUS>.

• MSK_RESUME (Bit4)

This is the mask register for USBINTER1<INT_RESUME>

• MSK_CLKSTOP (Bit3)

This is the mask register for USBINTFR1<INT_CLKSTOP>,

• MSK_CLKON (Bit2)

This is the mask register for USBINTFR1<INT_CLKON>.

USBINTMR2 (07F5H)

	7	6	5	4	3	2	1	0	
bit Symbol	EP1_MSK_FA	EP1_MSK_EA	EP1_MSK_FB	EP1_MSK_EB	EP2_MSK_FA	EP2_MSK_EA	EP2_MSK_FB	EP2_MSK_EB	
Read/Write	R/W R/W R/W R/W R/W R/W								
Reset State	1	1	1	1	1	1	1	1	
Function		When read 0: not masked When write 0: Clear flag							
	1: masked 1: –								

• EP1/2_MSK_FA/FB/EA/EB

This is the mask register for USBINTFR2<EPx_FULL_A/B> or <EPx_Empty_A/B>.

USBINTMR3 (07F6H)

		7	6	5	4	3(2	1	0
3	bit Symbol	EP3_MSK_FA	EP3_MSK_EA						
	Read/Write	R/W	R/W			11 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -			
	Reset State	1	1				7	//	
	Function	When read 0:	not masked		(0)				
			masked			())	0, 0		
		When write 0: 1:	· ·						

• EP3_MSK_FA/FB/EA/EB:

This is the mask register for USBINTFR3<EP3_FULL_A> or <EP3_Empty_A>.

USBINTMR4 (07F7H)

	7	6	5	4	3	2	1	0	
4 bit Symbol	MSK_SETUP	MSK_EP0	MSK_STAS	MSK_STASN	MSK_EP1N	MSK_EP2N	MSK_EP3N		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset State	1	1	1	1	1	1	1		
Function		When read 0: Be not masked When write 0: Clear flag							
		1: Be masked 1: –							

• MSK_SETUP (Bit7)

This is the mask register for USBINTFR4<INT_SETUP>

• MSK_EP0 (Bit6)

This is the mask register for USBINTFR4<INT_EP0>

- MSK_STAS (Bit5)
- This is the mask register for USBINTFR4<INT_STAS>.
- MSK_STASN (Bit4)

This is the mask register for USBINTER4<INT_STASN>

• MSK_EP1N (Bit3)

This is the mask register for USBINTFR4<INT_EP1N>.

• MSK_EP2N (Bit2)

This is the mask register for USBINTFR4<INT_EP2N>

• MSK_EP3N (Bit1)

This is the mask register for USBINTFR4<INT_EP3N>.

3.16.3 UDC CORE

3.16.3.1 SFRs

The UDC CORE has the following SFRs to control the UDC and USB transceiver.

a)	FIFO		<u> </u>	
	Endpoint 0 to 3 FIFO	register		
b)	Device request) >
	bmRequestType	register	bRequest	register
	wValue_L	register	wValue_H	register
	wIndex_L wLength_L	register register	wIndex_H wLength_H	register register
	wcengui_c	register	WEENGILIT	register
c)	Status			
	Current_Config	register	USB_STATE	register
	StandardRequest	register	Request	register
	EPx_STATUS	register	O/A	9
d)	Setup			(1/1)
u)	EPx_BCS	register	EPx_SINGLE	register
	Standard Request Mode	register	Request Mode	register
	Descriptor RAM	register	PortStatus	register
			(7/6)	
e)	Control			
	EPx_MODE	register	EOP	register
	COMMAND Setup Received	register	INT_ Control	register
	Setup Received	register	USBREADY	register
f)	Others			
	ADDRESS	register	DATASET	register
	EPx_SIZE_L_A EPx_SIZE_L_B	register register	EPx_SIZE_H_A EPx_SIZE_H_B	register register
	FRAME_L	register	FRAME_H	register
	USBBUFF TEST	register	_	3
<				
	// (=			
^ ^				
>/<				
~				
>				
_/				

Table 3.16.2 UDC CORE SFRs (1/3)

	lable 3.16.2	UDC CORE SFRs (1/3)
Address	Read/Write	SFR Symbol
0500H	R/W	Descriptor RAM0
0501H	R/W	Descriptor RAM1
0502H	R/W	Descriptor RAM2
0503H	R/W	Descriptor RAM3
067DH	R/W	Descriptor RAM381
067EH	R/W	Descriptor RAM382
067FH	R/W	Descriptor RAM383
0780H	R/W	ENDPOINTO
0781H	R/W	ENDPOINT1
0782H	R/W	ENDPOINT2
0783H	R/W	ENDPOINT3
*0784H	R/W	ENDPOINT4
*0785H	R/W	ENDPOINT5
*0786H	R/W	ENDPOINT6
*0787H	R/W	ENDPOINT7 (//)
*0788H	_	Reserved
0789H	R/W	EP1_MODE
078AH	R/W	EP2_MODE
078BH	R/W	EP3_MODE
*078CH	R/W	EP4_MQDE
*078DH	R/W	EP5_MODE
*078EH	R/W	EP6_MODE
*078FH	R/W	EP7_MODE
0790H	R	EPO_STATUS
0791H	R	EP1_STATUS
0792H	/ B\	EP2_STATUS
0793H	(R)	EP3_STATUS
*0794H	R	EP4_STATUS
*0795H	/ R	EP5_STATUS
*0796H	// R	EP6_STATUS
*0797H	R	EP7_STATUS
0798H	R	EP0_SIZE_L_A
0799H	R —	EP1_SIZE_L_A
079AH	R	EP2_SIZE_L_A
079BH	R	EP3_SIZE_L_A
*079CH	∕R	EP4_SIZE_L_A
*079DH	(R	EP5_SIZE_L_A
*079EH	R	EP6_SIZE_L_A
*079FH (R	EP7_SIZE_L_A
07A1H),R	EP1_SIZE_L_B
07A2H	R	EP2_SIZE_L_B
07A3H	R	EP3_SIZE_L_B
*07A4H	R	EP4_SIZE_L_B
*07A5H	R	EP5_SIZE_L_B
*07A6H	R	EP6_SIZE_L_B
*07A7H	R	EP7_SIZE_L_B
*07A8H	-	Reserved

Note: "*" is not used in the TMP92CF26A.

Table 3.16.3 UDC CORE SFRs (2/3)

	1able 3.10.3	UDC CORE SFRs (2/3)
Address	Read/Write	SFR Symbol
07A9H	R	EP1_SIZE_H_A
07AAH	R	EP2_SIZE_H_A
07ABH	R	EP3_SIZE_H_A
*07ACH	R	EP4_SIZE_H_A
*07ADH	R	EP5_SIZE_H_A
*07AEH	R	EP6_SIZE_H_A
*07AFH	R	EP7_SIZE_H_A
07B1H	R	EP1_SIZE_H_B
07B2H	R	EP2_SIZE_H_B
07B3H	R	EP3_SIZE_H_B
*07B4H	R	EP4_SIZE_H_B
*07B5H	R	EP5_SIZE_H_B
*07B6H	R	EP6_SIZE_H_B
*07B7H	R	EP7_SIZE_H_B
07C0H	R	bmRequestType /
07C1H	R	bRequest
07C2H	R	wValue_L
07C3H	R	wValue_H
07C4H	R	wIndex_L
07C5H	R	wIndex_H
07C6H	R	wLength_b
07C7H	R 👌	wLength_H
07C8H	W	Setup Received
07C9H	R	Current_Config
07CAH	R	Standard Request
07CBH	R	Request
07CCH	(R)	DATASET1
07CDH	R	DATASET2
07CEH	/	USB_STATE
07CFH	// w	EOP
07D0H	W	COMMAND
07D1H	R/W	EPx_SINGLE1
*07D2H	R/W	EPx_SINGLE2
07D3H	R/W	EPx_BCS1
*07D4H	R/W	EPx_BCS2
07D5H	<u></u>	Reserved
07D6H	₹/W	INT_Control
07D7H		Reserved
07D8H	R/W	Standard Request Mode
07D9H	R/W	Request Mode
07DAH		Reserved
07DBH	_	Reserved
07DCH	_	Reserved
07DDH	_	Reserved
07DEH	W	ID_CONTROL
07DFH	R	ID_STATE

Note: "*" is not used in the TMP92CF26A.

Table 3.16.4 UDC CORE SFRs (3/3)

Address	Read/Write	SFR Symbol
07E0H	R/W	Port_Status
07E1H	R	FRAME_L
07E2H	R	FRAME_H
07E3H	R	ADDRESS
07E4H	-	Reserved
07E5H	-	Reserved
07E6H	R/W	USBREADY
07E7H	_	Reserved
07E8H	W	Set Descriptor STALL

3.16.3.2 EPx_FIFO Register (x: 0 to 3)

This register is prepared for each endpoint independently.

This is the window register from or to FIFO RAM.

In the auto bus enumeration, the request controller in UDC sets the mode, which is defined by the endpoint descriptor for each endpoint automatically. By this means, each endpoint is automatically set to each voluntary direction.

		7	6	5	4	3	2) > 1	0
Endpoint0	bit Symbol	EP0_DATA7	EP0_DATA6	EP0_DATA5	EP0_DATA4	EP0_DATA3	EP0_DATA2	EP0_DATA1	EP0_DATA0
(0780H)	Read/Write	R/W	R/W	R/W	R/W	R/W	(K/W)	R/W	R/W
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
·									
		7	6	5	4	3	<u></u>	1	0
Endpoint1	bit Symbol	EP1_DATA7	EP1_DATA6	EP1_DATA5	EP1_DATA4	EP1_DATA3	EP1_DATA2	EP1_DATA1	EP1_DATA0
(0781H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
-						/())	0 (
		7	6	5	4	3	2	7(1)/	0
Endpoint2	bit Symbol	EP2_DATA7	EP2_DATA6	EP2_DATA5	EP2_DATA4	EP2_DATA3	EP2_DATA2	EP2_DATA1	EP2_DATA0
(0782H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W)	R/W	R/W
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
_				7			// ()		
		7	6	5	\ 4	3		1	0
Endpoint3	bit Symbol	EP3_DATA7	EP3_DATA6	EP3_DATA5	EP3_DATA4	EP3_DATA3	EP3_DATA2	EP3_DATA1	EP3_DATA0
(0783H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Reset State	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined

Note: Read or write to these window registers using 1-byte load instructions only, since each register has only a 1-byte address. Do not use load instructions of 2 bytes or 4 bytes.

The device request that is received from the USB host is stored in the following 8-byte registers:

bmRequestType, bRequest, wValue_L, wValue_H, wIndex_L, wIndex_H, wLength_L and wLength_H. These are updated whenever a new SETUP token is received from the host.

When the UDC receives without error, INT_SETUP interrupt is asserted, meaning the new device request has been received.

There is also request which is operated automatically by the UDC, depending on the request received.

In that case, the UDC does not assert the INT_SETUP interrupt. Any request which the UDC is currently operating can be checked by reading STANDARD_REQUEST_FLAG and REQUEST_FLAG.

3.16.3.3 bmRequestType Register

This register shows the bmRequestType field of the device request.

bmRequestType (07C0H)

	7	6	5	4	3	2	1	0
e bit Symbol	DIRECTION	REQ_TYPE1	REQ_TYPE0	RECIPIENT4	RECIPIENT3	RECIPIENT2	RECIPIENT1	RECIPIENT0
Read/Write	R	R	R	R	R	⟨R	R	R
Reset State	0	0	0	0	0	0	0	0

DIRECTION (Bit7)

0: from host to device

1: from device to host

REQ_TYPE [1:0] (Bit6 to bit5)

00: Standard01: Class10: Vendor11: (Reserved)

RECIPIENT [4:0] (Bit4 to bit0)

00000: Device 00001: Interface 00010: Endpoint

00011: etc. Others: (Reserved)

3.16.3.4 bRequest Register

This register shows the bRequest field of the device request.

(Printer class)

bRequest (07C1H)

		7	6	5	4	3))	2	1	0
st	bit Symbol	REQUEST7	REQUEST6	REQUEST5	REQUEST4	REQUEST3	REQUEST2	REQUEST1	REQUEST0
)	Read/Write	R	R	R	R 🔨	R	R	R	R
	Reset State	0	0) 0	0	0	0	0	0

00000000: GET_DEVICE_ID

00000010: SOFT_RESET

00000001: GET_PORT_STATUS

(Standard)

00000000: GET_STATUS

00000001: CLEAR_FEATURE

00000010: Reserved

00000011: SET_FEATURE

00000100: Reserved

00000101: SET_ADDRESS

00000110; GET_DESCRIPTOR

00000111: SET_DESCRIPTOR

00001000: GET_CONFIGURATION

00001001: SET_CONFIGURATION

00001010: GET_INTERFACE

00001011: SET_INTERFACE

00001100: SYNCH_FRAME

92CF26A-386

2009-06-25

TOSHIBA

3.16.3.5 wValue Register

There are 2 registers; the wValue_L register and wValue_H register. wValue_L shows the lower-byte of the wValue field of the device request, and wValue_H register shows the upper byte.

wValue_L (07C2H)

	7	6	5	4	3	~2	1	0
bit Symbol	VALUE_L7	VALUE_L6	VALUE_L5	VALUE_L4	VALUE_L3	VALUE_L2	VALUE_L1	VALUE_L0
Read/Write	R	R	R	R	R	R	R	R
Reset State	0	0	0	0	0		0	0
			_			(\bigcirc)		

w١ (07

		7	6	5	4	3	(2)	1	0
/Value_H	bit Symbol	VALUE_H7	VALUE_H6	VALUE_H5	VALUE_H4	VALUE_H3	VALUE_H2	VALUE_H1	VALUE_H0
07C3H)	Read/Write	R	R	R	R	R) 💛 R	R	R
	Reset State	0	0	0	0	0	0	0	0

3.16.3.6 wIndex Register

There are 2 registers, the wIndex_L register and wIndex_H register, the wIndex_L register shows the lower byte of the wIndex field of the device request, and wIndex_H register shows the upper byte.

These are usually used to transfer index or offset.

wIndex_L (07C4H)

	7	6	5	⁴	3	//2	1	0
bit Symbol	INDEX_L7	INDEX_L6	INDEX_L5	INDEX_L4	INDEX_L3	INDEX_L2	INDEX_L1	INDEX_L0
Read/Write	R	R	R	R	R	R	R	R
Reset State	0	0	(0)	0	0/	0	0	0

wIndex_H (07C5H)

	7	6((5	4	3	2	1	0
bit Symbol	INDEX_H7	INDEX_H6	INDEX_H5	INDEX_H4	INDEX_H3	INDEX_H2	INDEX_H1	INDEX_H0
Read/Write	R	(R/\	R	R	R	R	R	R
Reset State	0		0 /	\bigcirc \bigcirc \bigcirc	0	0	0	0

3.16.3.7 wLength Register

There are 2 registers, the wLength_L register and wLength_H register. The wLength_L register shows the lower-byte of the wLength field of the device request and wLength_H register shows the upper byte.

In the case of data phase, these registers show the byte number to transfer.

wLength_L (07C6H)

		7 (> (6	5	4	3	2	1	0
7	bit Symbol	LENGTH_L7	LENGTH_L6	LENGTH_L5	LENGTH_L4	LENGTH_L3	LENGTH_L2	LENGTH_L1	LENGTH_L0
	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	0	0	0	0

wLength_H (07C7H)

		7	6	5	4	3	2	1	0
b	it Symbol	LENGTH_H7	LENGTH_H6	LENGTH_H5	LENGTH_H4	LENGTH_H3	LENGTH_H2	LENGTH_H1	LENGTH_H0
R	Read/Write	R	R	R	R	R	R	R	R
R	Reset State	0	0	0	0	0	0	0	0

3.16.3.8 Setup Received Register

This register informs the UDC that an application program has recognized the INT SETUP interrupt.

SetupReceived (07C8H)

	7	6	5	4	3	2	1	0
bit Symbol	D7	D6	D5	D4	D3	D2	D1	D0
Read/Write	W	W	W	W	W	(W	> W	W
Reset State	0	0	0	0	0	0	0	0

If this register is accessed by an application program, the UDC disables access to the EPO's FIFO RAM because the UDC recognizes the device request has been received.

This is to protect data stored in the EPO in the time between the completion of the previous device request and the recognition by the application program of the INT_SETUP interrupt relating to a new request f.

Therefore, write "00H" to this register when the device request in INT_SETUP routine is recognized.

Note: A recovery time of 2 clock at 12MHz is needed after writing to this register in order to access EP0_FIFO.

3.16.3.9 Current_Config Register

This register shows the present value that is set by SET_CONFIGURATION and SET_INTERFACE.

Current_Config (07C9H)

		7	6 (\	5	4	3/	2	1	0
fig	bit Symbol	REMOTEWAKEUP	Þ	ALTERNATE[1]	ALTERNATE[0]	INTERFACE[1]	INTERFACE[0]	CONFIG[1]	CONFIG[0]
	Read/Write	R	7	R	R	R	R	R	R
	Reset State	0		0	10	0	0	0	0
-						/			

CONFIG[1:0] (Bit1 to bit0)

00: UNCONFIGURED Set to UNCONFIGURED by the host.
10: CONFIGURED2 Set to CONFIGURED 1 by the host.
Set to CONFIGURED 2 by the host.

INTERFACE[1:0] (Bit3 to bit2)

00: INTERFACE0 Set to INTERFACE 0 by the host.
01: INTERFACE1 Set to INTERFACE 1 by the host.
10: INTERFACE2 Set to INTERFACE 2 by the host.

ALTERNATE[1:0] (Bit5 to bit4)

00: ALTERNATE 0 by the host.
01: ALTERNATE 1 by the host.
10: ALTERNATE 2 by the host.
Set to ALTERNATE 2 by the host.

REMOTE WAKEUP (Bit7)

0: Disable Disabled remote wakeup by the host.1: Enable Enabled remote wakeup by the host.

Note1: CONFIG, INTERFACE and ALTERNATE each support 3 kinds (0,1 and 2).

Note2: If each request is controlled by S/W, this register is not set.

3.16.3.10 Standard Request Register

This register shows the standard request currently being executed.

Any bit which is set to "1" shows a request currently being executed.

Standard Request (07CAH)

		7	6	5	4	3	2	1	0
st	bit Symbol	S_INTERFACE	G_INTERFACE	S_CONFIG	G_CONFIG	G_DESCRIPT	S_FEATURE	C_FEATURE	G_STATUS
	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	0	(6)) o	0

S_INTERFACE (Bit 7): SET_INTERFACE (Bit 6): GET_INTERFACE G_INTERFACE (Bit 5): SET_CONFIGRATION S_CONFIG **G_CONFIG** (Bit 4): GET_CONFIGRATION $G_DESCRIPT$ (Bit 3): GET_DESCRIPTOR (Bit 2): SET_FEATURE S_FEATURE (Bit 1): CLEAR FEATURE C FEATURE G STATUS (Bit 0): GET STATUS

3.16.3.11 Request Register

This register shows the device request currently being executed.

Any bit which is set to "1" shows a request currently being executed.

Request (07CBH)

		7	6	5	4 /	3	/ 2	1	0
	bit Symbol		SOFT_RESET	G_PORT_STS	G_DEVICE_ID	VENDOR	CLASS	ExSTANDARD	STANDARD
)	Read/Write		R	R	R	R	R	R	R
	Reset State		0	b	0	0/	0	0	0

SOFT_RESET
G_PORT_STS
G_DEVICE_ID
VENDOR

(Bit 6): SOFT_RESET
(Bit 5): GET_PORT_STATUS
(Bit 4): GET_DEVICE_ID
(Bit 3): Vendor class request

CLASS (Bit 2) : Class request

ExSTANDARD (Bit 1): Auto Bus Enumeration not supported (SET_DESCRIPTOR, SYNCH_FRAME)

STANDARD (Bit 0): Standard request

3.16.3.12 DATASET Register

This register shows whether FIFO contains data or not.

The application program can access this register to check whether FIFO contains data or not.

In the receiving status, when valid data transfer from the USB host has finished, the bit which corresponds to the corresponding endpoint is set to "1" and an interrupt generated. And, when the application reads the 1-packet data, this bit is cleared to "0". In transmit status, when it has completed the 1-packet data transfer to FIFO, this bit is set to "1". And when valid data is transferred to the USB host, this bit is cleared to "0" and an interrupt generated.

DATASET1 (07CCH)

	7	6	5	4	3	2	_1	0
bit Symbol	EP3_DSET_B	EP3_DSET_A	EP2_DSET_B	EP2_DSET_A	EP1_DSET_B	EP1_DSET_A	1	EP0_DSET_A
Read/Write	R	R	R	R	R	R 🔿		R
Reset State	0	0	0	0(7)	V	0	1	0

DATASET2 (07CDH)

	7	6	5	4	3	2	<u>U</u> 1	0
bit Symbol	EP7_DSET_B	EP7_DSET_A	EP6_DSET_B	EP6_DSET_A	EP5_DSET_B	EP5_DSET_A	EP4_DSET_B	EP4_DSET_A
Read/Write	R	R	R	R	R	R	R	R
Reset State	0	0	0	0	0	>>0	0	0

Note: DATASET1<EP3_DSET_B>, DATASET2 registers are not used in the TMP92CF26A.

Single packet mode

(DATASET1: Bit0, bit2, bit4 and bit6 DATASET2: Bit0, bit2, bit4 and bit6)

These bits show whether FIFO of the corresponding endpoint has data or not.

In receive mode endpoint, if the corresponding endpoint bit is "1", FIFO contains data to be read. Access EPx_SIZE register, determine the size of the data that should be read, and read data of this size. When this bit is "0", there is no data to be read.

In transmit mode endpoint, if the corresponding endpoint bit is "0", the CPU can transfer data under the FIFO payload. If this bit is "1", because FIFO has transfer data waiting, transfer data to FIFO from UDC after the corresponding bit has been cleared to "0". When a short-packet is transferred, access EOP register after writing transmission data to the corresponding endpoint.

Dual packet mode

(DATASET1: Bit3, bit5 and bit7 DATASET2: Bit1, bit3 bit5 and bit7)

These bits become effective in the dual packet mode. FIFO has 2-packets in this mode.

Each packet (packet-A and packet-B) has its own DATASET-bit.

Unlike as in the case above, in isochronous transfer, this shows the packet that can access the current frame. In this case, whether bit A or B is set to "1", it is renewed according to the shifting frame.

Note1: In receive mode, if the endpoint bits corresponding to packet-A or paclet-B are "1", read the required packet-number data after checking EPx_SIZE<PKT_ACTIVE>.

Note2: In transmit mode, if both A and B bits are not "1", this means there is space in FIFO. So, write data of payload or less to FIFO. If the transmission is short-packet, write "0" to EOP<EPn_EOPB> after writing data to the FIFO. The maximum size that can be written to A or B packet is the same as the maximum payload size. If both A and B bits are "0", continuous writing of double maximum payload size is available.

Note3: In dual packet transmit mode, if both A and B packet are empty and EOP<ERn_EOPB> is written "0", the NULL-data is set to FIFO. In single mode, the NULL-data is also set to FIFO if the above operation is executed when packet-A contains no data.

Note4:No data is set in this register when NULL-packet (0Length-packet) is received

3.16.3.13 EPx_STATUS Register (x: 0 to 7)

These registers are status registers for each endpoint. The <SUSPEND> is common to all endpoints.

		7	6	5	4	3	2	1	0
EP0_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0790H)	Read/Write		R	R	R	R	R	R	R
	Reset State		0	0	1	1	1 (0	0
		7	6	5	4	3	2	<u> </u>	0
EP1_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUŞ[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0791H)	Read/Write		R	R	R	R	$\langle R \rangle$	R	R
	Reset State		0	0	1	1)	0	0
		7	6	5	4	3	<u></u>	1	0
EP2_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0792H)	Read/Write		R	R	R	R	R	AR /	> R
	Reset State		0	0	1		1	0	0
		7	6	5	4 (3	<u>2</u> (\bigcirc)1	0
EP3_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0793H)	Read/Write		R	R	R(R	R	R	R
	Reset State		0	0	1	1		0	0
		7	6	5	4	3	2	1	0
EP4_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0794H)	Read/Write		R	R	Ř	R	(R)	R	R
	Reset State		0	0	1 /	// 1	1	0	0
		7	6	5	4	3	2	1	0
EP5_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0795H)	Read/Write		R	R	R ^	R	R	R	R
	Reset State		0 (())0	1 _ \	1	1	0	0
		7	6	5	4	3	2	1	0
EP6_STATUS	bit Symbol	/	TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0796H)	Read/Write	Ą	R	R	() R	R	R	R	R
	Reset State	eq	O	6	\\\(_1))	1	1	0	0
		7	6	5	4	3	2	1	0
EP7_STATUS	bit Symbol		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
(0797H)	Read/Write		R	R	R	R	R	R	R
	Reset State 2	A	0	0	1	1	1	0	0

Note: EP4, 5, 6 and 7_STATUS registers are not used in the TMP92CF26A.

TOGGLE Bit (Bit6)

0: TOGGLE

1: TOGGLE

Bit0 Bit1 This bit shows status of toggle sequence bit.

SUSPEND (Bit5)

0: RESUME

1: SUSPEND

This bit shows status of UDC power management.

In the SUSPEND status, access to UDC is limited.

For details, refer to 3.16.9.

STATUS [2:0] These bits show status of UDC endpoint. (Bit4 to bit2) The status shows whether transfer is possible or not, and the result of the transfer. . These depend on transfer type. (For the Isochronous transfer type, refer to 3.16.9.) 000: READY Receiving: Device can be received. In endpoints 1 to 7, this register is initialized to "READY" by setting transfer type at SET_CONFIGURATION. In endpoint 0, this register is initialized to "READY" by detecting USB reset from the This is initialized to "READY" by terminating the status stage without error. Basically, the same as with "Receiving". Transmitting: But in transmitting, when data for transmission is set to FIFO and answer to token from host and transfer data to host collect and received ACK, status register does not change, and it remains "READY". In this case, EPx_Empty_A or EPx_Empty_B interrupt terminates the transfer correctly. UDC set to DATAIN and generates EPx_FULL_A or EPx_FULL_B interrupt when 001: DATAIN data is received from the host without error. 010: FULL Refer to 3.16.8 (2) Details for the STATUS register. After transfer of data to IN token from host, UDC sets TX-ER to status register when 011: TX_ERR "ACK" is not received from host. In this case, an interrupt is not generated. The hosts re-try IN token transfer. UDC sets RX_ERR to status register without transmitting "ACK" to host when an 100: RX_ERR error (such as a CRC-error) is detected in data of received token. In this case, an interrupt is not generated. The hosts re-try and IN token transfer. In case of toggle error with normal data, UDC returns ACK and set RX_ERR of STATUS register. 101: BUSY This status is used only for the control transfer type and it is set when a status-stage token is received from the host after a terminated data-stage. When status-stage can be finished, terminates correctly and returns to READY. This is not used in the Bulk and interrupts transfer type.

110: STALL

111: INVALID

This status shows that the corresponding endpoint is in STALL status. In this status, STALL-handshake returns, except for SETUP-token. The control endpoint returns to READY from stall condition when SETUP-token is received. Other endpoints return to READY when initialization command of FIFO is received.

This status shows that the corresponding endpoint is in UNCONFIGURED status. In this status, the UDC has no effect when a token is received from the host. On reset, all endpoints are set to INVALID status. Only endpoint 0 returns to READY on receiving USB-reset. Corresponding endpoints return to READY by according to configuration.

FIFO_DISABLE (Bit1)

0: FIFO enabled

1: FIFO disabled

STAGE_ERROR (Bit0)

0: SUCCESS

1: ERROR

This bit symbol shows FIFO status except for EP0.

If the FIFO is set to disabled, the UDC transmits NAK handshake for all transfers. Disabled or enabled status is set the COMMAND register. This bit is cleared to "0" when transfer type is changed.

This bit symbol shows that the status stage has not been terminated correctly. ERROR is set when a status stage is not terminated correctly and a new SETUP token is received.

When this bit is "1", this bit is cleared to "0" by read EPO_STATUS register. This bit is not cleared even if normal control transfer or other transfer is executed after. To clear, read this bit. When software transaction is finished and UDC writes EOP register, UDC shifts to status register and waits termination of status stage. In this case, if software is needed to confirm that the status stage has been terminated correctly, when a new request flag is received, it is possible to confirm whether or not the last request has been terminated correctly. It can also be confirmed, when a new request flag is asserted, whether or not the last request has been cancelled before completion.

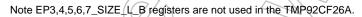
3.16.3.14 EPx_SIZE Register (x: 0 to 7)

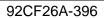
These registers have the following functions.

- a) In receive mode, showing the 1-packet data number which has been received correctly.
- b) In the transmit mode, showing payload size. Showing length value when short packet is transferred.

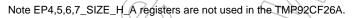
It is not necessary to read this register when it is transmitting.

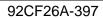
c) Showing dual packet mode and currently effective packet.


Each endpoint has an H (High)-register that shows upper bit 9 to bit7 of data size and an L (Low) register which shows lower bit 6 to bit0 and control bit of FIFO.


Each H/L register also has 2-set for dual-packet mode.

		7	6	5	4	3	2	\bigcirc 1	0
EP0 SIZE L A	bit Symbol	PKT ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2 <	DATASIZE1	DATASIZE0
(0798H)	Read/Write	R	R	R	R	R	R 🔍	R	R
	Reset State	1	0	0	o ((/)	/ \\ 1	~ 0(C	0	0
		7	6	5	4	<u></u>	(2)	(/)	0
EP1_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(0799H)	Read/Write	R	R	R ^	R	R	(R)	R	R
	Reset State	1	0	0	0	1 _		0	0
		7	6	5	4	3 (2	1	0
EP2_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4/	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079AH)	Read/Write	R	R	R	× R //	R	R	R	R
	Reset State	1	0 /	0	0	1))	0	0	0
		7	6	5	4	3//	2	1	0
EP3_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATAS(ŽE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079BH)	Read/Write	R	R)) R	R	R	R	R	R
	Reset State	1	0	0	1) 1	0	0	0
		7	((/6 \)	5	4	3	2	1	0
EP4_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079CH)	Read/Write	< R / ~	R	R	R	R	R	R	R
	Reset State	1	0	0	0	1	0	0	0
		7) 6	5	\rightarrow 4	3	2	1	0
EP5_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079DH)	Read/Write //	R	R 📐	R	R	R	R	R	R
	Reset State	7	0 📈	0	0	1	0	0	0
	4)) 7	6	5	4	3	2	1	0
EP6_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079EH)	Read/Write	R (R	R	R	R	R	R
	Reset State	1 2	0	0	0	1	0	0	0
		7	6	5	4	3	2	1	0
EP7_SIZE_L_A	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(079FH)	Read/Write	R	R	R	R	R	R	R	R
	Reset State	1	0	0	0	1	0	0	0


Note: EP4,5,6,7_SIZE_L_A registers are not used in the TMP92CF26A.


		7	6	5	4	3	2	1	0
EP1_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A1H)	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	1	0	0	0
		7	6	5	4	3	_2	1	0
EP2_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A2H)	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	1	0	Y 0	0
		7	6	5	4	3	2	1	0
EP3_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A3H)	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	1 ()>0	0	0
		7	6	5	4	3	2	1	0
EP4_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A4H)	Read/Write	R	R	R	R	R	R /	R	R
	Reset State	0	0	0	0(7	/\\ 1	0	0	0
		7	6	5	4	<i>)</i> /3	2		0
EP5_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A5H)	Read/Write	R	R	R	R	R	R	R	R
	Reset State	0	0	0	0	1	(6))	0	0
		7	6	5	4	3	2	1	0
EP6_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A6H)	Read/Write	R	R	(R	> R //	R	R	R	R
	Reset State	0	0	0	0	1	0	0	0
		7	6 ((5	4	3//	2	1	0
EP7_SIZE_L_B	bit Symbol	PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
(07A7H)	Read/Write	R	(R	R	R	R	R	R	R
	Reset State	0	0	0	0	1	0	0	0

		7	6	5	4	3	2	1	0
ED 4 017E 11 A	hit Comahal								
EP1_SIZE_H_A (07A9H)	bit Symbol Read/Write		$\overline{}$		$\overline{}$		DATASIZE9	DATASIZE8 R	DATASIZE7
(01 A911)	Reset State		$\overline{}$		$\overline{}$	//	0 0	0	R 0
	Neset State	7	6	5		3	2	1	0
		7) _	4	<u> </u>		-	
EP2_SIZE_H_A	bit Symbol						DATASIZE9	DATASIZE8	
(07AAH)	Read/Write						R	R	R
	Reset State						(0)	γ o	0
		7	6	5	4	3 /	$\frac{2}{2}$	1	0
EP3_SIZE_H_A	bit Symbol					J	DATASIZE9	DATASIZE8	DATASIZE7
(07ABH)	Read/Write						R	R	R
	Reset State					\mathcal{A}	0	0	0
		7	6	5	4	3	2	_1	0
EP4_SIZE_H_A	bit Symbol					11	DATASIZE9	DATASIZE8	DATASIZE7
(07ACH)	Read/Write				/		R 🔿	R	R
	Reset State		/		£		0	0	0
		7	6	5	4	<i>))</i> 3	2	//1)	0
EP5_SIZE_H_A	bit Symbol						DATASIZE9	DATASIZE8	DATASIZE7
(07ADH)	Read/Write			\int			R	R	R
	Reset State						(0)	0	0
		7	6	5	4	3	2	1	0
EP6_SIZE_H_A	bit Symbol			H	<i>f</i> /		DATASIZE9	DATASIZE8	DATASIZE7
(07AEH)	Read/Write			4	7/4		R	R	R
	Reset State		$\overline{}$			\mathcal{H}	0	0	0
		7	6 ((5	4	3//	2	1	0
EP7_SIZE_H_A	bit Symbol			$\left\langle \left\langle \right\rangle \right\rangle$			DATASIZE9	DATASIZE8	DATASIZE7
(07AFH)	Read/Write		4		H		R	R	R
	Reset State				M		0	0	0

		7	6	5	4	3	2	1	0
EP1_SIZE_H_B	bit Symbol						DATASIZE9	DATASIZE8	DATASIZE7
(07B1H)	Read/Write						R	R	R
	Reset State						0	0	0
		7	6	5	4	3	_ 2	1	0
EP2_SIZE_H_B	bit Symbol			/			DATASIZE9	DATASIZE8	DATASIZE7
(07B2H)	Read/Write						R	R	R
	Reset State						(0)	Y 0	0
		7	6	5	4	3 /	2	1	0
EP3_SIZE_H_B	bit Symbol						DATASIZE9	DATASIZE8	DATASIZE7
(07B3H)	Read/Write						R	R	R
	Reset State					\mathcal{H}) o	0	0
		7	6	5	4	3	2	_1	0
EP4_SIZE_H_B	bit Symbol					7	DATASIZE9	DATASIZE8	DATASIZE7
(07B4H)	Read/Write					\mathcal{M}	R 🖒	R	R
	Reset State				\mathcal{A}		0	0	0
		7	6	5	4	<i>))</i> 3	2	2//1)	0
EP5_SIZE_H_B	bit Symbol			/	F		DATASIZE9	DATASIZE8	DATASIZE7
(07B4H)	Read/Write						R	R	R
	Reset State						(0)	0	0
		7	6	5	4	3	2	1	0
EP6_SIZE_H_B	bit Symbol				4	Ĭ Ĭ	DATASIZE9	DATASIZE8	DATASIZE7
(07B6H)	Read/Write			1			R	R	R
	Reset State			$\mathcal{A}\!$		\mathcal{H}	0	0	0
		7	6 (5	4	3/	2	1	0
EP7_SIZE_H_B	bit Symbol				/		DATASIZE9	DATASIZE8	DATASIZE7
(07B7H)	Read/Write		4		H		R	R	R
	Reset State				A		0	0	0

Note EP3,4,5,6,7_SIZE_H_B registers are not used in the TMP92CF26A.

DATASIZE[9:7] (H register: Bit2 to bit0)

DATASIZE[6:0] (L register: Bit6 to bit0)

PKT ACTIVE (L register; Bit7)

1: OUT_ENABLE 0: OUT_DISABLE In receiving, the data number of the 1 packet received from the host is shown. This is renewed when data from the host is received with no error.

By setting EPx_MODE register, these bits are initialized to MAX pay load size in bulk/interrupt transfer, and "0" in isochronous transfer.

When dual-packet mode is selected, this bit show the packet that can be accessed. In this case, the UDC accesses packets that divide FIFO (Packet A and Packet B) mutually. When FIFO in UDC is accessed by CPU, refer to this bit. If receiving endpoint, start reading from that packet that this bit is "1". In single-packet mode, this bit has no effect because packet-A is always used.

3.16.3.15 FRAME Register

This register shows the frame number which is issued with SOF token from the host and is used for Isochronous transfer type.

Each HIGH and LOW register shows upper and lower bits.

FRAME_L (07E1H)

	7	6	5	4	3	2	1	0
bit Symbol	ı	T[6]	T[5]	T[4]	T[3]	T[2]	T[1]	T[0]
Read/Write	R	R	R	R	R	R	R	R
Reset State	0	0	0	0	0	0	0	0
		·	•	•		////		·

FRAME_H (07E2H)

	7	6	5	4	3	2	1	0
bit Symbol	T[10]	T[9]	T[8]	T[7]	4	CREATE	FRAME_STS1	FRAME_STS0
Read/Write	R	R	R	R	4)) r	R	R
Reset State	0	0	0	0		0		0

T[10:7] (H register: Bit7 to bit4) T[6:0] (L register: Bit6 to bit0)

These bits are renewed when SOF-token is received. They also shows the frame-number.

CREATE (H register: Bit2)

0: DISABLE 1: ENABLE These bits show whether the function that generates SOF automatically from the UDC is enabled or not. This is used in case of error in receiving SOF token.

This function is set by accessing COMMAND register.

On reset, this bit is initialized to "0".

FRAME STS[1:0]

(H register: Bit1 and bit0)

0: BEFORE

1: VALID

2: LOST

These bits show the status whether a frame number that is shown in the FRAME register is correct or not. At the LOST status, a correct frame number is undefined.

If this register is "VALID", the number that is shown to the FRAME register is correct.

If this register is "BEFORE", during SOF auto generation, BEFORE condition shows it from USB host controller inside that from SOF generation time to reception of SOF token. Correct frame-number value is the value that is selected from FRAME register value.

3.16.3.16 ADDRESS Register

This register shows the device address which is specified by the host in bus enumeration.

By reading this register, the present address can be confirmed.

ADDRESS (07E3H)

	<i>/</i>	7	6	5	4	3	2	1	0
3	bit Symbol		A6	A5	A4	А3	A2	A1	A0
	Read/Write		R	R	R	R	R	R	R
	Reset State		0	0	0	0	0	0	0

ADDRESS [6:0] (Bit6 to bit0)

The UDC compares this registers and address in all packet ID, and UDC judges whether it is an effective transaction or not.

2009-06-25

This is initialized to "00H" by USB reset.

3.16.3.17 EOP Register

This register is used when a control transfer type dataphase terminates or when a short packet is transmitting bulk-IN or interrupt-IN.

EOP (07CFH)

	7	6	5	4	3	<u> </u>	1	0
bit Symbol	EP7_EOPB	EP6_EOPB	EP5_EOPB	EP4_EOPB	EP3_EOPB	EP2_EOPB	EP1_EOPB	EP0_EOPB
Read/Write	W	W	W	W	W	W	W	W
Reset State	1	1	1	1	1	1	<i>)</i> 1	1

Note1: EOP<EP7_EOPB, EP6_EOPB, EP5_EOPB, EP4_EOPB> registers are not used in the TMP92CF26A.

Note2: When writing to this register, a recovery time of 5clocks at 12MHz is needed. After writing this register, insert dummy instruction of 420 ns or longer.

In a control transfer type dataphase, write "0" to <EP0_EOPB> when all transmission data is written to the FIFO, or read all receiving data from the FIFO. The UDC terminates its status stage on this signal.

When a short packet is transmitted by using bulk-IN or interrupt-IN endpoint, use this to terminate writing of transmission data. In this case, write "0" to <EP0_EOPB> of writing endpoint. Write "1" to other bits.

TOSHIBA

3.16.3.18 Port Status Register

This register is used when a request of printer class request is received.

In the case of a GET_PORT_STATUS request, the UDC operates automatically using this data.

Port Status (07E0H)

	7	6	5	4	3	2	1	0
bit Symbol	Reserved7	Reserved6	PaperError	Select	NotError	Reserved2	Reserved1	Reserved0
Read/Write	W	W	W	W	W	W	⇒ w	W
Reset State	0	0	0	1	1		/ o	0

Note: The TMP92CF26A doed not use this register since not support printer-class.

The data should be written before receiving request.

Write "0" to the <Reserved> bit of this register. This register is initialized to "18H" on reset.

3.16.3.19 Standard Request Mode Register

This register sets the answer for Standard Request either answering automatically in hardware, or by control through software. Each bit represents a kind of request.

When the relevant bit in this register is set to "0", the answer is executed automatically by hardware. When the relevant bit in this register is set to "1", the answer is controlled by software. If a request is received during hardware control, the interrupt signal (INT_SETUP, INT_EPO, INT_STAS, INT_STAN) is set to disable. If a request is received during software control, the interrupt signal is asserted, and it is controlled by software.

Standard Request Mode (07D8H)

	7	6	5	4	3	2	1	0
bit Symbol	S_Interface	G_Interface	S_Config	G_Config	G_Descript	S_Feature	C_Feature	G_Status
Read/Write	R/W	R/W	R/W	RAW	R/W	R/W	R/W	R/W
Reset State	0 (/\0	0 <	0	0	0	0	0

S_Intetface

(Bit 7): SET_INTERFACE

G_Interface

(Bit 6) : GET_INTERFACE

S_Config

(Bit 5): SET_CONFIGRATION

G_Config

(Bit 4): GET_CONFIGRATION

G_Descript

(Bit 3): GET_DESCRIPTOR

S_Feature

(Bit 2): SET_FEATURE

C_Feature

(Bit 1): CLEAR_FEATURE

G_Status

(Bit 0) : GET_STATUS

TOSHIBA

3.16.3.20 Request Mode Register

This register sets the answer for Class Request either automatically in hardware or by control through software. Each bit represents a kind of request.

When relevant bit in this register is set to "0", the answer is executed automatically by hardware. When relevant bit in this register is set to "1", the answer is controlled by software. If request is received during hardware control, interrupt signal (INT_SETUP, INT_EPO, INT_STAS, INT_STATUSN) is set to disable. If a request is received during software control, the interrupt signal is asserted, and it is controlled by software.

Request Mode (07D9H)

	7	6	5	4	3	2	1	0
bit Symbol		Soft_Reset	G_Port_Sts	G_DeviceId	£			
Read/Write		R/W	R/W	R/W		<i>}</i> *		
Reset State		0	0	0			72	

Note: the TMP92CF26A doed not use this register since it does not support printer-class.

Note1: SET_ADDRESS request is supported only by auto-answer.

Note2: SET_DESCRIPTOR and SYNCH_FRAME are controlled only by software

Note3: Vendor Request and Class Request (Printer Class and so on) are controlled only by software.

Note4: INT_SETUP, EP0, STAS and STASN interrupts assert only when it is software-control.

3.16.3.21 COMMAND Register

This register sets COMMAND at each endpoint. This register can be set to select of endpoint in bit6 to bit4 and kind of COMMAND in bit3 to bit0.

COMMAND for endpoint that is supported is ignored.

COMMAND (07D0H)

	7	6	5	4	3	2	1	0
bit Symbol		EP[2]	EP[1]	EP[0]	Command[3]	Command[2]	Command[1]	Command[0]
Read/Write		W	W	W	W	(w)	> w	W
Reset State		0	0	0	0		0	0

Note: When writing to this register, a recovery time of 5clock at 12MHz is needed. After writing this register, insert dummy instruction of 420 ns or longer.

EP [2:0] (Bit6 to bit4)

000: Select endpoint 0001: Select endpoint 1010: Select endpoint 2011: Select endpoint 3

COMMAND [3:0] (Bit3 to bit0)

0000: Reserved 0001: Reserved 0010: SET_DATA0

This COMMAND clear toggle sequence bit of corresponding endpoint (EP0 to EP3). If this COMMAND is input, it sets toggle sequence bit of the corresponding endpoint to "0". Data toggle for transfer is renewed automatically by UDC. However, this COMMAND execution is required if setting toggle sequence bit of endpoint to "0". If control transfer type and Isochronous transfer type, execution of this COMMAND is not

required because of hardware control.

0011: RESET

This COMMAND resets the corresponding endpoint (EP0 to EP3).

If this COMMAND is input, the corresponding endpoint is initialized. CLEAR_FEATURE request stalls endpoint. When this stall is cleared, execute this COMMAND. (This command does not affect transfer mode.)

This command initializes the following.

- · Clear toggle sequence bit of corresponding endpoint.
- · Clear STALL of corresponding endpoint.
- · Set to FIFO_ENABLE condition.
- Clear the data in FIFO

0100: STALL

This COMMAND sets corresponding endpoint to STALL (EP0 to EP3).

If STALL handshake must be return as answer for device request, execute this command.

0101: INVALID

This COMMAND sets condition to prohibition of use corresponding endpoint (EP1 to ER3).

If UDC detects USB_RESET signal from USB host, it sets all endpoints (except endpoint 0) to prohibition using it automatically. If Config and Interface are changed by device request, set endpoint that is not used to prohibit use.

0110: CREATE_SOF

This COMMAND sets quasi-SOF generation function to enable (EP0). Default is set to disable, it must be used for Isochronous transfer.

0111: FIFO_DISABLE

This COMMAND sets FIFO of corresponding endpoint to disable (EP1 to EP3). If this command is set from external, all of transfers except for toggle error for corresponding endpoint return NAK. When it is set externally while receiving packet, this becomes valid from next token. This command does not affect the packet that is transferring.

92CF26A-403

2009-06-25

1000: FIFO_ENABLE This COMMAND sets FIFO of corresponding endpoint to enable (EP1 to EP3).

If FIFO is set to disable by FIFO_DISABLE COMMAND, this command is used for release of disable condition. If set while receiving packet, this becomes valid from next token. If USB_RESET is detected from host and RESET COMMAND execute and transfer mode is set by using SET_CONFIG and SET_INTERFACE request, the

corresponding endpoint enters FIFO_ENABLE condition.

1001: INIT_DESCRIPTOR This COMMAND is used if descriptor RAM is rewritten during system operation (EP0).

If UDC detects USB_RESET from host controller, it reads content of descriptor RAM

automatically, and it performs relevant settings.

If descriptor RAM is changed during system operation, it must read setting again. Therefore, execute this command. When connected to USB host, this function starts reading automatically. Therefore, in this case, it is not necessary to execute this

command.

1010: FIFO_CLEAR This COMMAND initializes FIFO of corresponding endpoint (EP1 to EP3).

However, EPx_STATUS<TOGGLE> is not initialized. If resetting by software, execute this COMMAND.

This command Initializes the following item.

• Clear STALL of relevant endpoint.

· Set to FIFO_ENABLE condition.

· Clear the data in FIFØ

1011: STAL_CLEAR This COMMAND clear STALL of corresponding endpoint (EP1 to EP3).

If clearing only STALL of endpoint, execute this COMMAND.

3.16.3.22 INT_Control Register

INT_STASN interrupt is disabled and enabled by the value that is written to this register.

This is initialized to disable by external reset. When setup packet is received, it becomes disabled.

INT_Control (07D6H)

	7	6	5	4	3	2	1	0
l bit Symbol						£		Status_nak
Read/Write							<i></i>	R/W
Reset State						T/A_		0

In control read transfer, if the host terminates a dataphase with small data length (smaller than the data length that is specified by the host as wLength), the device side and stage management cannot be synchronized. Therefore, INT STASN interrupt signals this shift to status stage. If needed, set to "1" after receiving setup packet.

STATUS NAK (Bit0)

0: INT_STATSN interrupt disable

1: INT_STATSN interrupt enable

3.16.3.23 USB STATE Register

This register shows the current device state for connection with USB host.

USB STATE (07CEH)

		7	6	5	4	3	2	1	0
ГΕ	bit Symbol			#		A	Configured	Addressed	Default
	Read/Write		J J		/ /	\not	R/W	R	R
	Reset State		#		A	/	0	0	1

Note: When writing to this register, a recovery time of 5clocks at 12MHz is needed. After writing this register, insert dummy instruction of 420 ns or longer.

Inside the UDC, the answer for each Device Request is managed by referring to these bits (Configured, Addressed and Default). If transaction for SET_CONFIG request is executed by using software, write the present state to this register. If host appointconfig is 0, this becomes Unconfigured, and it is necessary to return to Addressed state. Therefore, if host appoint config is 0, write "0" to bit2.

When Configured bit (Bit2) is written "0", Addressed bit (bit 1) is set automatically by hardware. When host appoint config value that supported by device, device must execute mode setting for each endpoint by using the value that is appointed by endpoint descriptor in the config-descriptor. After finish mode setting, set Configured bit (Bit2) to "1" before accessing EOP register. When this bit is set to "1", Addressed bit (Bit1) is set to "0" automatically.

Bit2 to bit0

000: Default

010: Addressed

100: Configured

3.16.3.24 EPx_MODE Register (x: 1 to 3)

This register sets transfer mode of endpoint (EP1 to EP3).

If SET_CONFIG and SET_INTERFACE processing is set to software control, this control must use appointed config or interface. Access this register to set mode.

		7	6	5	4	3	2	1	0
EP1_MODE	bit Symbol		/	Payload[2]	Payload[1]	Payload[0]	Mode[1]	Mode[0]	Direction
(0789H)	Read/Write			R/W	R/W	R/W	R/W	R/W	R/W
	Reset State			0	0	0		0	0
		7	6	5	4	3	(//2)	1	0
EP2_MODE	bit Symbol		/	Payload[2]	Payload[1]	Payload[0]	Mode[1]	Mode[0]	Direction
(078AH)	Read/Write		/	R/W	R/W	R/W	R/W	R/W	R/W
	Reset State			0	0	0	ノ	0	0
		7	6	5	4	3	2	1	0
EP3_MODE	bit Symbol		/	Payload[2]	Payload[1]	Payload[0]	Mode[1] ^	Mode[0]	Direction
(078BH)	Read/Write			R/W	R/W/	R/W	R/W	R/W	R/W
	Reset State			0	0 🗸))0	00)) (0	0

There is a limitation to the timing that can be written,

If transaction for SET_CONFIG and SET_INTERFACE processing is set to software control, after INT_SETUP interrupt is received, finish writing before accessing EOP register. This register prohibits writing when it is other timing, and it is ignored.

Note1: When writing to this register, a recovery time of 5clocks at 12MHz is needed. After writing this register, insert dummy instruction of 420 ns or longer.

Note2: When writing to this register, endpoint is initialized same as RESET of COMMAND register.

DIRECTION (Bit0)

0: OUT Direction from host to device

1: IN Direction from device to host

MODE [1:0] (Bit2 and bit1)

00: Control transfer type

01: Isochronous transfer type

10: Bulk transfer type or interrupt transfer type

11: Interrupt (No toggle)

PAYLOAD [2:0] (Bit3, bit4 and bit5)

000: 8 bytes

001: 16 bytes

010: 32 bytes

011; 64 bytes

0100:128 bytes

0101:256 bytes

0110:512 bytes

0111:1023 bytes (Note1, 2)

Note1:Max packet size of Isochronous transfer type is 1023 bytes.

Note2:If wMaxPacketSize of descriptor has been set to other than 8, 16, ..., 1023, Payload more than descriptor value is set by auto-answer of Set_Configration and Set_Interface.

Others (Bit6 and bit7) Reserved

3.16.3.25 EPx_SINGLE Register

This register sets mode of FIFO in each endpoint (SINGLE/DUAL).

EPx_SINGLE1 (07D1H)

	7	6	5	4	3	2	1	0
bit Symbol	EP3_SELECT	EP2_SELECT	EP1_SELECT		EP3_SINGLE	EP2_SINGLE	EP1_SINGLE	
Read/Write	R/W	R/W	R/W		R/W	⟨R/W	R/W	
Reset State	0	0	0		0	O	0	

Note: Endpoint 3 support only SINGLE mode in the TMP92CF26A.

Bit number

- 0: No use
- 1: EP1_SINGLE
- 2: EP2_SINGLE
- 3: EP3_SINGLE
- 4: No use
- 5: EP1_SELECT
- 6: EP2_SELECT
- 7: EP3_SELECT

When EPx_SELECT bit is "1", EPx_SINGLE bit becomes valid in the following content,

0: DUAL mode

1: SINGLE mode

If setting content of EPx_SINGLE bit to valid, set EPx_SELECT bit to "1".

0: Invalid

1: Valid

3.16.3.26 EPx_BCS Register

This register sets mode of access to FIFO in each endpoint.

EPx_BCS1 (07D3H)

	7	6	5	4	3	2	1	0
bit Symbol	EP3_SELECT	EP2_SELECT	EP1_SELECT	A.	EP3_BCS	EP2_BCS	EP1_BCS	
Read/Write	R/W	R/W	R/W	A.	R/W	R/W	R/W	
Reset State	0 /	0,	0	7	0	0	0	

Bit number/

- 0: No use
- 1: EP1_BCS
- 2: EP2_BCS
- 3: EP3_BCS
- 4: No use
- 5: EP1_SELECT
- 6: EP2_SELECT
- 7: EP3_SELECT

Always write "1" to EPx_BCS bit regardless of whether endpoint is used or not.

0: Reserved

1: CPU access

If setting content of EPx_BCS bit to valid, set EPx_SELECT bit to "1".

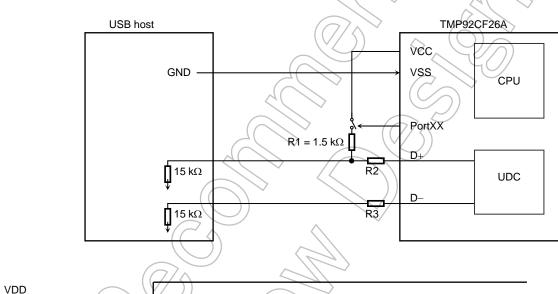
0: Invalid

1: Valid

TOSHIBA

3.16.3.27 USBREADY Register

This register informs finishing writing data to descriptor RAM on UDC.


After assigned data to descriptor RAM, write "0" to bit0.

6 5 2 4 3 1 0 USBREADY bit Symbol USBREADY (07E6H) Read/Write R/W Reset State O

USBREADY (Bit0)

- 0: Writing to descriptor RAM has finished.
- 1: Writing to descriptor RAM is enabled.

(However, writing to descriptor RAM is prohibited when connected to host.

INTXX

PortXX (Pull-up on/off)

Write signal

Descriptor RAM access Device ID RAM Register in USB

USBREADY registera access

Detect level of VDD signal from USB cable, and execute initialize sequence. In this case, UDC disable detecting USB RESET signal until USBREADY register is written "0" after release of USB_RESET.

If the pull-up resistor on D+ signal is controlled by control signal, when pull-up resistor is connected to host in OFF condition, this condition is equivalent condition with USB_RESET signal by pull-down resistor on the host side. Therefore UDC is not detected in USB RESET until "0" is written to USBREADY register

Note1: External pull-up resistor and control switch are needed with the TMP92CF26A.

Note2: The above setting is an example for when communication. A specific circuit is required to prevent cullent flow at connector detection, no-use, and no connection.

TOSHIBA

3.16.3.28 Set Descriptor STALL Register

This register sets whether returns STALL automatically in data stage or status stage for Set Descriptor Request.

Set Descriptor STALL (07E8H)

	7	6	5	4	3	2	1	0
bit Symbol						Ł		S_D_STALL
Read/Write								W
Reset State						É		0

Bit0: S_D_STALL

0: Software control (Default)

1: Automatically STALL

3.16.3.29 Descriptor RAM Register

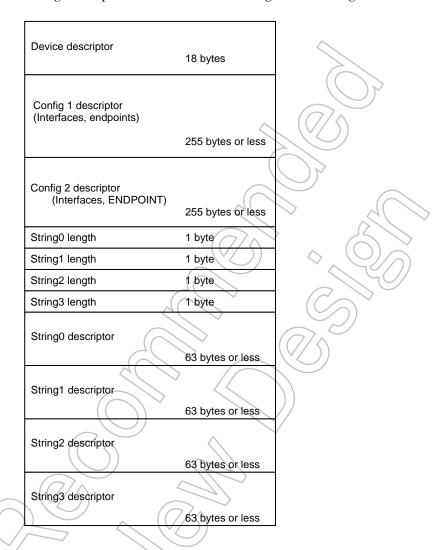
This register is used for store descriptor to RAM. The size of the descriptor is 384 bytes. However, when storing descriptor, write according to descriptor RAM structure sample.

Descriptor RAM (0500H) (067FH)

		7	6	5 <	4	3	(2)	1	0
М	bit Symbol	D7	D6	D5	D4	D3 (D2	D1	D0
	Read/Write	R/W	R/W	RAW	R/W	R/W (/	R/W	R/W	R/W
	Reset State	Undefined							

Read/Write timing is only possible before detection of USB_RESET or during processing of SET_DESCRIPTOR request.

SET_DESCRIPTOR request processes from INT_SETUP assert until access of EOP register.


If there is rewriting request of descriptor in SET_DESCRIPTOR, process the request in the following sequence.

- 1) Read every packet of the descriptor that is transferred by SET_DESCRIPTOR requests every packet.
- 2) When reading descriptor number of last packet finished, write all descriptors to RAM for descriptor.
- 3) When writing is completed, execute INIT_DESCRIPTOR of COMMAND register.
- 4) When all the process is completed, access EOP register, and finish status stage.
- 5) When INT_STAS is received, it shows normal finish of status stage.

If USB_RESET is detected, it starts reading automatically. Therefore, when it connect to the host, executing INIT_DESCRIPTOR command is not necessary.

3.16.4 Descriptor RAM

This area stores the descriptor that is defined in USB. Device, Config, Interface, Endpoint and String descriptor must set to RAM using the following format.

Note 1: If String Descriptor is supported, set StringxLength area to size0. No support String Dedcriptor is returned STALL.

Note 2: Config Descriptior refers to descriptor sample.

Note 3: Sequencer in UDC determines Config number, Interface number and Endpoint number. Therefore, if supporting Endpoint number is small, assign address according to priority.

Note 4: This function become effective only in case of store descriptor as RAM.

Note 5: RAM size is total 384 bytes.

Note 6: Possible timing in RD/WR of descriptor RAM is only before detection of USB_RESET and processing of SET_DESCRIPTOR request. (Prohibit access other than this timing.)

Writing must finish before connection to USB host and processing of SET_DESCRIPTOR request.

 ${\tt SET_DESCRIPTOR}\ request\ processes\ from\ {\tt INT_SETUP}\ assert\ until \ access\ of\ {\tt EOP}\ register.$

Note 7: The class descriptor, and the vender descriptors, etc except a standard descriptor cannnot be supported by an auto bus enumeration.

Descriptor RAM setting example:

Address	Data	Description	Description
		Description	Description
Device Des	12H	bLength	
500H 501H	01H	bDescriptorType	Device Descriptor
	00H		USB Spec 1.00
502H 503H	00H 01H	bcdUSB (L)	IFC's specify own
503H 504H	00H	bcdUSB (H) bDeviceClass	IFC's specify own
505H	00H	bDeviceSubClass	
506H	00H	bDeviceProtocol	
507H	08H	bMaxPacketSize0	· (0)
508H	6CH	bVendor (L)	Toshiba
509H	04H	bVendor (H)	100111150
50AH	01H	IdProduct (L)	(()>
50BH	10H	IdProduct (H)	
50CH	00H	bcdDevice (L)	Release 1.00
50DH	01H	bcdDevice (H)	1,0000000000000000000000000000000000000
50EH	00H	bManufacture	
50FH	00H	IProduct	
510H	00H	bSerialNumber	
511H	01H	bNumConfiguration	
Config1 De		A	(CO)
512H	09H	BLength	
513H	02H	bDescriptorType bDescriptorType	Config Descriptor
514H	4EH	wtotalLength (L)	78 bytes
515H	00H	wtotalLength (H)	
516H	01H	bNumInterfaces	
517H	01H	bConfigurationValue	
518H	00H	iConfiguration	
519H	A0H	bmAttributes	Bus-powered-remote wakeup
51AH	31H	MaxPower	98 mA
Interface0	Descriptor A	IternateSetting0	
51BH	09H(\	bLength	
51CH/	04Н	bDescriptorType	Interface Descriptor
51DH	00H	bInterfaceNumber	
51EH	00H	bAlternateSetting	AlternateSetting0
51FH	01H	bNumEndpoint	
520H	07H	bInterfaceClass	
521H	01H	bInterfaceSubClass	
522H	// 01H	bInterfaceProtocol	
523H	00H	iInterface	
Endpoint1	Descriptor		
524H	07H	bLength	
525H	05H/	bDescriptorType	Endpoint Descriptor
526H	01H	bEndpointAddress	OUT
527H	02H	bmAttributes	BULK
528H	40H	wMaxPacketSize (L)	64 bytes
529H	00H	wMaxPacketSize (H)	
52AH	00H	bInterval	

Address	Data	Description	Description
Interface0 I	Descriptor A	IternateSetting1	·
52BH	09H	bLength	
52CH	04H	bDescriptorType	Interface Descriptor
52DH	00H	bInterfaceNumber	
52EH	01H	bAlternateSetting	AlternateSetting1
52FH	02H	bNumEndpoints	7 monate coming
530H	07H	bInterfaceClass	
531H	01H	bInterfaceSubClass	
532H	02H	bInterfaceProtocol	(7) _A
533H	00H	iInterface	$\langle \langle \langle \langle \rangle \rangle \rangle$
Endoint1 D			
534H	07H	bLength	
535H	05H	bDescriptorType	Endpoint Descriptor
536H	01H	bEndpointAddress	OUT
537H	02H	bmAttributes	BULK
538H	40H	wMaxPacketSize (L)	64 bytes
539H	00H	wMaxPacketSize (H)	\$ 5,000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
53AH	00H	bInterval	
Endpoint2		Diritorval	
53BH	07H	bLength	
53CH	05H	bDescriptorType	Endpoint Descriptor
53DH	82H	bEndpointAddress	IN A
53EH	02H	bmAttributes	BULK
53FH	40H	wMaxPacketSize (L)	64 bytes
			64 bytes
540H 541H	00H 00H	wMaxPacketSize (H) bInterval	
542H	09H	IternateSetting2	
		bLength bDescriptorType	Interfere Descriptor
543H 544H	04H	bDescriptorType bInterfaceNumber	Interface Descriptor
	00H		Altornata Catting 2
545H 546H	02H	bAlternateSetting	AlternateSetting2
/ /	03H	bNumEndpoints	
547H	FFH	bInterfaceClass	
548H	00H	bInterfaceSubClass	
549H	FFH	bInterfaceProtocol	
54AH	00H	iInterface	
Endpoint1		blongth	
54BH	07H	bLength	Endnoint Descriptor
54CH	05H	bDescriptorType	Endpoint Descriptor
54DH	01H	bEndpointAddress	OUT
54EH	02H	bmAttributes	BULK
54FH	40H	wMaxPacketSize (L)	64 bytes
550H	00H	wMaxPacketSize (H)	
551H	00H	bloterval	
Endpoint2		I	
552H	07H	bLength	
553H	05H	bDescriptorType	Endpoint Descriptor
554H	82H	bEndpointAddress	IN
555H	02H	bmAttributes	BULK
556H	40H	wMaxPacketSize (L)	64 bytes
557H	00H	wMaxPacketSize (H)	
558H	00H	bInterval	

Address	DATA	Description	Description		
Endpoint3 I	Descriptor				
559H	07H	bLength			
55AH	05H	bDescriptorType	Endpoint Descriptor		
55BH	83H	bEndpointAddress	IN		
55CH	03H	bmAttributes	Interrupt		
55DH	08H	wMaxPacketSize (L)	8 bytes		
55EH	00H	wMaxPacketSize (H)			
55FH	01H	bInterval	1 ms		
String Desc	riptor Lengt	h Setup Area	• (7/4		
560H	04H	bLength	Length of String Descriptor0		
561H	10H	bLength	Length of String Descriptor1		
562H	00H	bLength	Length of String Descriptor2		
563H	00H	bLength	Length of String Descriptor3		
String Desc	criptor0	^			
564H	04H	bLength			
565H	03H	bDescriptorType	String Descriptor		
566H	09H	bString	Language ID 0x0409		
567H	04H	bString			
String Desc	criptor1				
568H	10H	bLength			
569H	03H	bDescriptorType	String Descriptor		
56AH	00H	bString	(Toshiba)		
56BH	54H	bString	I (V//))		
56CH	00H	bString			
56DH	6FH	bString	0		
56EH	00H	bString			
56FH	73H	bString	S		
570H	00H	bString	*		
571H	68H	bString	h		
572H	00H	bString			
573H	69H((6String	i		
574H /	00H	bString			
575H	62H	bString	b		
576H	Ø0H	bString			
577H	61H	bString	а		
String Desc	criptor2				
String Desc	criptor3				

3.16.5 Device Request

3.16.5.1 Standard request

UDC support automatically answer in standard request.

(1) GET_STATUS Request

This request automatically returns to status that is determined by receive side.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000000B	GET_STATUS	0	0	2	Device, interface or
10000001B			Interface		endpoint status
10000010B			endpoint	$((// \land)$	

Request to device returns according to priority of little endian as follws.

D7	D6	D5	D4	D3 D2	D1 D0
0	0	0	0	0 0	Remote Self wakeup power
D15	D14	D13	D12	D11//) D10	D9 D8
0	0	0	0	0 0	0

• Remote wakeup Reinstates current remote wakeup setting.

This bit is set or reset by SET_FEATURE or CLEAR_FEATURE request. Default is "0".

• Self power

Reinstates current power supply setting. This bit return Self or Bus Power according to value that is set to bmAttributes field in Config descriptor.

Request to interface returns 00H of 2 bytes.

Request to endpoint returns according to priority of little endian as follows.

D7	D6	D5	D4 D3	D2	D1	D0
0 /	(/ 0)	0	0 (// \)0	0	0	HALT
D15	D14	D13	D12 D11	D10	D9	D8
0	0	0	0 0	0	0	0

HALT

Returns to halt status of selected endpoint.

(2) CLEAR_FEATURE request

This request clears or disables the relevant function.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
00000000B 00000001B 00000010B	CLEAR_ FEATURE	Feature selector	0 Interface endpoint	0	None

Reception side device

Feature selector: 1

Present remote wakeup setting is disabled.

Feature selector: except 1

STALL state

• Reception side interface

STALL state

• Reception side end point

Feature selector: 0

Halt of relevant endpoint is cleared.

Note: When cleared HALT state, following is set.

·Initialize FIFO

·Clear the toggle sequence bit

·Clear STALL state

Feature selector: except 0 STALL state

Note: Stalls if request is to non-existent endpoint.

(3) SET_FEATURE request

This request sets or enables the relevant function.

bmRequestType	bRequest	wValue	windex	wLength	Data
00000000B 00000001B 00000010B	SET_ FEATURE	Feature selector	0 Interface endpoint	0	None

• Reception side device

Feature selector: 1

Present remote wakeup setting is disabled.

Feature selector: except 1

STALL state

• Reception side interface

STALL state

• Reception side end point

Feature selector: 0

Halt of relevant endpoint

Feature selector: except 0

STALL state

Note: Stalls if request is to non-existent endpoint.

(4) SET_ADDRESS request

This request sets the device address. Answer subsequent requests using this device address.

Answer requests using the current device address until the status stage of this request is terminated normally.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
00000000B	SET_ADDRESS	Device Address	0	(0)>	None

(5) GET_DESCRIPTOR request

This request returns appointed descriptor.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000000B	GET_ DESCRIPTOR	Descriptor type and Descriptor index	0 or Language ID	Descriptor length	Descriptor

- Device Device transmits device descriptor that is stored in descriptor RAM.
- Config Config transmits config descriptor that is stored in descriptor RAM.
 At this point, it transmits not only config descriptor but also interface and endpoint descriptor.
- String String transmits string descriptor of index that is specified by lower byte of wValue field.

Note: Decriptor of short data length in wLength and descriptor length is automatically transmitted by answer of Get_Descriptor.

(6) SET_DESCRIPTOR request

This request sets or enables the relevant function.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
0000000B	SET_	Descriptor type	0	Descriptor	Descriptor
	Descriptor	and	or	length	
		Descriptor index	Language ID		

Automatic answer of this request is not supported.

According to INT_SETUP interrupt, if the receiving requested has been identified as a SET_DESCRIPTOR request, take back data after confirming EP0_DSET_A bit of DATASET register is "1". When completed, access EOP register, and write "0" to EP0_EOPB bit, so, status stage is finished. The process is the same for a vendor request.

Please refer to vendor request section.

(7) GET_CONFIGURATION request

This request returns configuration value of present device.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000000B	GET_ CONFIG	0	0		Configuration value


If it is not configured, it returns "0". Otherwise, it returns the configuration value.

(8) SET CONFIGURATION request

This request sets device configuration.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
00000000B	SET_ CONFIG	Configuration value		0	None

The configuration value is that specified using lower byte of wValue field. When this value is "0", it is not configured.

(9) GET_INTERFACE request

This request returns AlternateSetting value that is set by specified interface.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000001B	GET_ INTERFACE	0	Interface	1	Alternate setting

If there is no specified interface, it enters to STALL state.

(10) SET_INTERFACE request

This request selects AlternateSetting in specified interface.

bmRequestType	bRequest	wValue	wIndex wLength	Data
00000001B	SET_ INTERFACE	Alternate setting	Interface 0	None

If there is no specified interface, it enters STALL state.

(11) SYNCH_FRAME request

This request transmits synchronous frame of endpoint.

bmRequestType	bRequest	wValue	wIndex	wLength	Data
10000010B	SYNCH_FRAME	0	Endpoint	(2))	Frame No.

Automatic answer of this request is not supported.

According to INT_SETUP interrupt, if request received has been identified as a SYNCH_FRAME request, write 2byte data in Frame No after confirming EPO_DSET_A bit of DATASET register is "0". When completed, access EOP register, and write "0" to EPO_EOPB bit, so, status stage is completed. This can be used only where the endpoint supports isochronous transfer type and supports this request. The process is the same for a vendor request.

Please refer to vendor request section.

3.16.5.2 Printer Class Request

UDC does not support "Automatic answer" of printer class request.

Processing of Class requests is the same as for vendor requests when answering INT_SETUP interrupt.

3.16.5.3 Vendor request (Class request)

UDC does not support "Automatic answer" of Vendor requests.

According to INT_SETUP interrupt, access the register in which the device request is stored, and identify the request. If this request is a Vendor request, control the UDC externally, and process the Vendor request.

Below is an explanation for the case where data phase is transmitting (Control read), and for the case where data phase is receiving (Control write).

(a) Control Read request

bmRequestType	bRequest	wValue	wIndex	wLength	Data
110000xxB	Vendor specific	Vendor specific	Vendor specific	Vendor specific	Vendor data
				(Expire 0)	/ //

When INT_SETUP is received, identify contents of request by bmRequestType, bRequest, wValue, wIndex and wLength registers and process each request. According to application, access Setup_Received register after request has been identified.UDC must also be informed that INT_SETUP interrupt has been recognized.

After transmitting data prepared in application, access DATASET register, and confirm EP0_DSET_A bit is "0". After confirming, write data FIFO of endpoint 0. If transmitting data is more than payload, write data after it confirming whether EP0_DSET_A bit in DATASET register is "0". (INT_ENDPOINT0 interrupt can be used.) If writing all data is finished, write "0" to EP0 bit of EOP register. When UDC receives this, the status stage finish automatically.

INT_STATUS interrupt is asserted when UDC finishes status stage normally. If finishing status stage normally is recognized by external application, manage this stage by using this interrupt signal. If status stage cannot be finished normally and during status stage, a new SETUP token maybe received. In this case, when INT_SETUP interrupt signal is asserted, "1" is set to STAGE_ERROR bit of EPO_STATUS register Informing externally that the status stage cannot be finished normally.

The dataphase may have finished on a data number that is shorter than the value showed to wLength by protocol of control read transfer type in USB. If the application program is configured using only the wLength value, processing cannot be carried out when the host shifts status stage without arriving at the expected data number. At this point, shifting to status stage can be confirmed by using INT_STATUSNAK interrupt signal. (However, releasing mask of STATUS_NAK bit by using interrupt control register is needed.) In Vendor Request, this problem will not occur because the receiving buffer size is set to host controller by driver (In every host, data (data that is transmitted from device by payload of 8 bytes) may be taken to be short packet until confirmation of payload size on device side. Therefore, exercise care if controlling standard requests by software.)

(b) Control write/request

There is no dataphase

bmRequestType	bRequest	wValue	wIndex	wLength	Data
010000xxB	Vendor specific	Vendor specific	Vendor specific	0	None

When INT_SETUP is received, identify contents of request by bmRequestType, bRequest, wValue, wIndex, wLength registers and process each request. According to application, access Setup_Received register after request has been identified. UDC must also be informed that the INT_SETUP interrupt has been recognized. If application processing is finished, write "0" to EP0 bit of EOP register. When UDC receives this, the status stage finish automatically.

There is dataphase

bmRequestType	bRequest	wValue	wIndex	wLength	Data
010000xxB	Vendor specific	Vendor specific	Vendor specific	Vendor specific (Except for 0)	Vendor data

When INT_SETUP is received, identify contents of device request by bmRequestType, bRequest, wValue, wIndex, wLength registers and process each request. According to application, access Setup_Received register after request has been identified. UDC must also be informed that the INT_SETUP interrupt has been recognized.

After receiving data prepared in application, access DATASET register, and confirm EPO_DSET is "1". After confirming, read data FIFO of endpoint 0. If receiving data is more than payload, write data after it confirming whether the EPO_DSET_A bit in DATASET register is "1" (INT_ENDPOINT0 interrupt can be used.) If reading all data is finished, write "0" to EPO bit of EOP register. When UDC receives this, the status stage finishes automatically.

INT_STATUS interrupt is asserted when UDC finishes status stage normally. If finishing status stage normally is recognized by external application, manage this stage by using this interrupt signal. If status stage cannot be finished normally and during status stage, a new SETUP token may be received. In this case, when INT_SETUP interrupt signal is asserted, "1" is set to STAGE_ERROR bit of EPO_STATUS register informing externally that the status stage cannot be finished normally.

Below is control flow in UDC as seen from application.

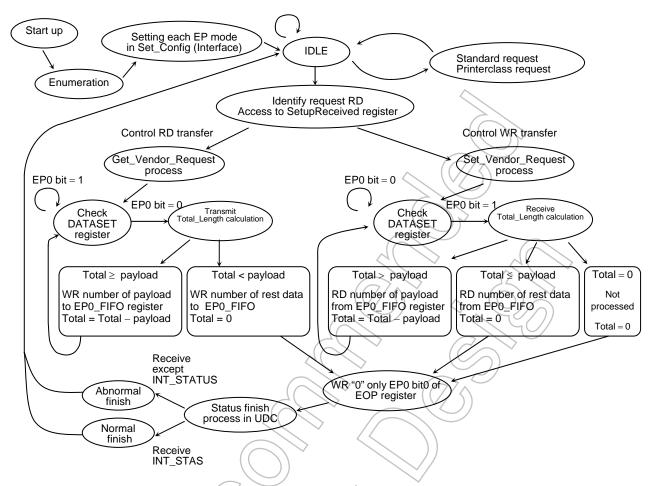


Figure 3.16.2 Control Flow in UDC as seen from Application

Note: This chart does not cover special cases in this flow such as overlap receive SETUP packet. Please refer to 3.16.6 (2) (c) Control transfer type.

3.16.6 Transfer mode and Protocol Transaction

The UDC performs the following automatically in hardware;

- Receive packet
- Determine address endpoint transfer mode
- Error process
- Confirm toggle bit CRC of data receiving packet
- Generate toggle bit CRC of data transmitting packet, etc
- Handshake answer

(1) Protocol outline

Format of USB packet is shown below. This is processed during transmission and receiving by hardware into the UDC.

SYNC field

This field always comes first in each packet, and input data and internal CLK is synchronized in the UDC.

• Packet identification field (PID)

This field follows SYNC field in every USB packet. The UDC distinguishes the PID type and determines the transfer type by decoding this code.

Address field

The UDC uses this field to confirm whether or not this function was specified by the host. The UDC compares the address with that set to the ADDRESS register. If the address accords with it, the UDC continues the process. If the address does not accord, the UDC ignores this token.

Endpoint field

If sub-channels of more than two is needed in fields of 4 bits, it decides the function. The UDC can support a maximum of seven endpoints, excluding the control endpoint. Tokens for endpoints that are not permitted are ignored.

Frame number field

A field of 11 bits is added by the host at each frame. This field follows the SOF token that is transmitted first in each frame, and the frame number is specified. The UDC reads the content of this field when the SOF token is received, and sets the frame number to the FRAME register.

Data field

This field is data of unit bytes in 0 to 1023. When receiving it, the UDC transfers only part of this data to FIFO, and after CRC is confirmed, an interrupt signal is asserted and the UDC informs FIFO that data transfer is completed. When transmitting, following IN token, FIFO data is transferred. Finally, data CRC field is attached.

• CRC function

5 bits CRC is attached to the token, and 15 bits CRC to the data. The UDC automatically compares the CRC of the received data with the attached CRC. When transmitting, CRC is generated automatically and is transmitted. This function may be compared by various transfer modes.

TOSHIBA

(2) Transfer mode

UDC supports FULL speed transfer mode.

• FULL speed device

Control transfer type

Interrupt transfer type

Bulk transfer type

Isochronous transfer type

The following is an explanation of UDC operation in each transfer mode.

The explanation is of data flow up until FIFO.

(a) Bulk transfer type

Bulk transfer type warrants transferring no error between host and function by using detect error and retry. Basically, 3 phases are used - token, data and handshake. However, with flow control and a STALL condition, data phase is changed to hand shake phase, and it become to 2 phases. The UDC holds status of each endpoint, and flow control is controlled in hardware. Each endpoint condition can be confirmed using EPx_STATUS register.

(a-1) Transmission bulk mode

Below is the transaction format for bulk transfer during transmitting.

• Token: IN

Data: DATA0/DATA1, NAK, STALL

• Handshake: ACK

Control flow

Below is the control-flow when the UDC receive an IN token.

- 1. The token packet is received and the address endpoint number error is confirmed, and it checks whether the relevant endpoint transfer mode corresponds with the IN token. If it does not correspond, the state returns to IDLE.
- 2. Condition of EPx_STATUS register is confirmed.
 - INVALID condition: State returns to IDLE.
 - STALL condition: Stall handshake is returned and state returns to IDLE.

FIFO condition is confirmed, if data number of 1 packet is not prepared, NAK handshake is returned, and state returns to IDLE.

If data number of 1 packet is prepared to FIFO, it shifts to 3.

3. Data packet is generated.

Data packet generated by using toggle bit register in UDC.

Next, data is transferred from FIFO of internal UDC to SIE, and data packet is generated. At this point, the confirms transferred data number is confirmed. And if there is more than the maximum payload size of each endpoint, bit stuff error is generated, transfer is finished and STATUS becomes STALL.

- 4. CRC bit (counted transfer data of FIFO from first to last) is attached to last.
- 5. When ACK handshake from host is received,
 - Clear FIFO.
 - Clear DATASET register.
 - Renew toggle bit, and prepare for next.
 - Set STATUS to READY.

UDC finishes normally. FIFO can receive the next data.

If a time out occurs without receiving ACK from host,

- Set STATUS to TX ERR.
- Return FIFO address pointer.

Execute above setting. And wait next retry keeping FIFO data.

This flow is shown in Figure 3.16.3.

TOSHIBA

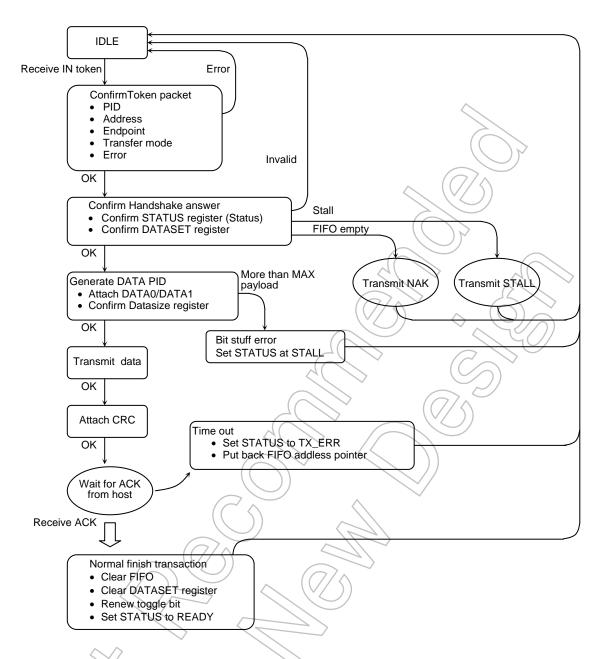


Figure 3.16.3 Control Flow in UDC (Bulk transfer type (transmission)/Interrupt transfer type (transmission))

(a-2) Receiving bulk mode

Below is the transaction format for receiving bulk transfer type.

• Token: OUT

Data: DATA0/DATA1

• Handshake: ACK, NAK, STALL

Control flow

Below is the control-flow when the UDC receive an IN token.

- The token packet is received and the address endpoint number error is confirmed, and it checks whether the relevant endpoint transfer mode corresponds with the OUT token. If it does not correspond, the state returns to IDLE.
- 2. Condition of status register is confirmed.
 - INVALID condition: State returns to IDLE.
 - STALL condition: When dataphase finishes, stall handshake is returned, the state returns to IDLE, and data is canceled.

FIFO condition is confirmed, if data number of 1 packet is not prepared, present transferred data is canceled, NAK handshake is returned after dataphase, and the state returns to IDLE.

3. Data packet is received.

Data is transferred from SIE of internal UDC to FIFO. At this point, it confirms transferred data number and if there is more than the maximum payload size of each endpoint, STATUS becomes to STALL and the state returns to IDLE. ACK handshake does not return.

4. After last data is transferred, the counted CRC is compared with the transferred CRC. If they do not correspond, STATUS is set to RX_ERR and the state returns to IDLE. At this point ACK is not returned.

After retry, when next data is received normally, STATUS changes to DATIN. If the data toggle does not correspond, it is judged not to have taken ACK in the last loading the current loading is regarded as a retry of the last loading and data is canceled. Set STATUS as RX_ERR, return to host and return to IDLE. FIFO address pointer returns and the next data can be received.

5. If CRC is compared with toggle and it finishes normally, ACK handshake is returned.

Below is the process in the UDC.

- Set transfer data number to DATASIZE register.
- Set DATASET register.
- Renew toggle bit, and prepare for next.
- Set STATUS to READY.

UDC finishes normally.

This flow is shown in Figure 3.16.4.

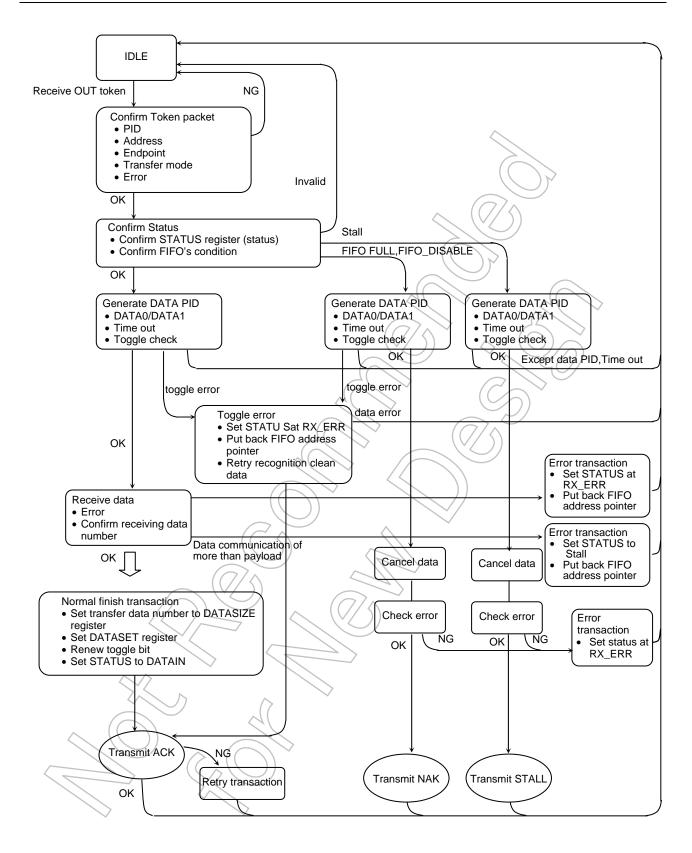


Figure 3.16.4 Control Flow in UDC (Bulk transfer type (Receiving))

(b) Interrupt transfer type

Interrupt transfer type uses the same transaction format as transmission bulk transfer.

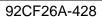
For transmission using toggle bit, hardware setting and answer in the UDC are the same as for transmission bulk transfer. Interrupt transfer can be transferred without using toggle bit. In this case, if ACK handshake from host is not received, toggle bit is renewed, and finish is normal. The UDC clears FIFO for next transfer.

(b-1) Interrupt transmitting mode (Toggle mode)

UDC operation is same as in bulk transmission mode. Please refer to section (a).

(b-2) Interrupt transmission mode (Not toggle mode)

This is basically the same as bulk transmission mode. However, if ACK handshake from host is not received, transaction is different.


When ACK handshake from host is received after transmission of data packet

- Clear FIFO.
- Clear DATASET register.
- Renew toggle bit and prepare for next.
- Set STATUS to READY.

UDC finishes normally by above transaction. FIFO can receive next data. If a time out occurs without receiving ACK from host,

- Clear FIFO.
- Clear DATASET register.
- Renew toggle bit and prepare for next.
- Set STATUS to TX_ERR.

Execute above setting. This setting is the same except for STATUS changes.

(c) Control transfer type

Control transfer type is configured in the three stages below.

- Setup stage
- Data stage
- Status stage

Data stage is sometimes skipped. Each stage is configured in one or several transactions. The UDC executes each transaction while managing three stages in hardware. Control transfer has the 3 types given below depending on whether there is data stage or not, and on direction.

- Control read transfer type
- Control write transfer type
- Control write transfer type (No data stage)

The 3 transfer sequences are shown in Figure 3.16.6, Figure 3.16.7 and

Figure 3.16.8.

The UDC automatically answers standard requests in hardware. Class request and vendor request must have an intervening CPU controlling the UDC.

Below is the control flow in the UDC and the control flow in the intervening CPU.

(c-1) Setup stage

Setup stage is the same as transmission bulk transaction except that token ID becomes SETUP.

However, control flow in the UDC is different.

- Token: SETUP
- Data: DATA 0
- Handshake: ACK

Control flow

Below is the control flow in the UDC when SETUP token is received.

- 1. SETUP token packet is received and address, endpoint number and error are confirmed. It also checks whether the relevant endpoint is in control transfer mode.
- 2. STATUS register state is confirmed.

State return to IDLE only if it is INVALID state.

In bulk transfer mode, receiving data is enabled by STATUS registers value and FIFO condition. However, in SETUP stage, STATUS is returned to READY and accessing from the CPU to FIFO is always prohibited and internal FIFO of endpoint 0 is cleared. It also prepares for following dataphase.

If the CPU accesses Setup Received registers in the UDC, it recognizes as Device request as received, and accessing from the CPU to EP0 is enabled.

This function is for receiving a new request when the current device request has not finished normally.

3. Data packet is received.

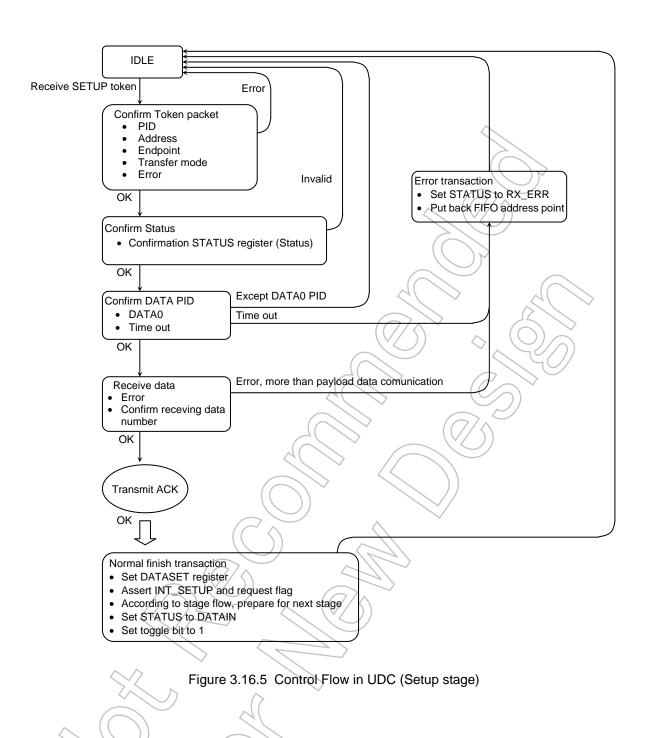
Device request of 8 bytes from SIE in UDC is transferred to the request register below.

- bmRequestType register
- bmRequest register
- wValue register
- wIndex register
- wLength register
- 4. After last data is transferred, counted CRC is compared with transferred CRC. If they do not correspond, STATUS is set to RX_ERR and the state returns to IDLE. At this point it does not return ACK, and host retries.
- 5. If CRC corresponds with toggle and it finishes normally, ACK handshake is returned to host. The process in the UDC is shown below.
 - Receiving device request is judged whether software control or hardware control. If the request needs control in software, INT_SETUP interrupt is asserted. If hardware is used, INT_SETUP interrupt is not asserted.
 - According to stage control flow, prepare for next stage.
 - Set STATUS to DATAIN.
 - Set toggle bit to "1".

The Setup stage is completed by the above.

This flow is shown in Figure 3.16.2.

8-byte data that is transferred by this SETUP stage is device request.


The CPU must process corresponding to device request.

The UDC detects the following contents only from data of 8 bytes, and it manages stage in hardware.

- Whether there is data stage or not
- Data stage direction

These are used to determine control read transfer type, control write transfer type, and control write transfer type (no data phase).

TOSHIBA TMP92CF26A

(c-2) Data stage

Data stage is configured by one or several transactions based on toggle sequence.

The transaction is the same as for format transmission or receiving bulk transaction except for the following differences;

- Toggle bit starts from "1" by SETUP stage.
- It determines whether right or not by comparing IN and OUT token with direction bit of device request. If a token of the opposite direction is received, it is recognized as status stage.
- INT_ENDPOINT0 interrupt is asserted.

(c-3) Status stage

Status stage is configured 0-data-length packet with DATA1's PID and handshake IN or OUT token. It uses a transaction in the opposite direction to the preceding stage.

The combination is given below.

- Control read transfer type: OUT
- Control write transfer type: IN
- Control write transfer type (not dataphase): IN

UDC processes status stage base of control flow in control transfer type. At this point, CPU must write "0" to EPO bit of EOP register in last transaction for status stage to finish normally.

Details of status stage are given below.

(c-3-1) IN status stage

IN status stage transaction format is given below.

- Token: IN
- Data: DATA1 (0 data length), NAK, STALL
- Handshake: ACK

Control flow

The transaction flow of IN status stage in UDC is given below.

- 1. Token packet is received and address, endpoint number and error are confirmed. If it does not correspond, the state returns to IDLE. If status stage is enabled based on stage control flow in the UDC, advance to next stage.
- 2. STATUS register state is confirmed.
 - INVALID condition: State returns to IDLE.
 - STALL condition: Stall handshake is returned and state returns to IDLE.

Confirmation of whether EOP register is accessed or not is carried out externally. If it is not accessing, NAK handshake is returned to continue control transfer and state returns to IDLE.

3. If EOP register is access is confirmed, 0-data-length data packet and CRC are transmitted.

- 4. If ACK handshake from host is received,
 - Set STATU to READY.
 - Assert INT_STATUS interrupt.

It finishes normally by the above transaction.

If a time out occurs without receiving ACK from host,

 Set STATUS register to TX_ERR and state returns to IDLE and wait for restring status stage.

At this point, if new SETUP stage is started without status stage finishing normally, the UDC sets error to STATUS register.

(c-3-2) OUT status stage

The transaction format for OUT status stage is given below.

- Token: OUT
- Data: DATA1 (0 data length)
- Handshake: ACK, NAK, STALL

Control flow

The transaction flow for OUT status stage in the UDC is given below.

- 1. Token packet is received and address, endpoint number and error are confirmed. If they do not correspond, the state returns to IDLE. If status stage is enabled base on stage control flow in the UDC, advance to next stage.
- 2. STATUS register state is confirmed.
 - INVALID condition: State returns to IDLE.
 - STALL condition: Data is cleared, stall handshake is returned, and state returns to IDLE.

Whether EOP register is accessed or not is confirmed externally. If it is not accessed, NAK handshake is returned to continue control transfer and state returns to IDLE.

- 3. If EOP register is access is confirmed, 0-data-length data packet and CRC are received.
- 4. If there is no error in data, ACK handshake is transmitted to host.
 - Set STATUS to READY.
 - Assert INT_STATUS interrupt.

It finishes normally by the above transaction.

If there is an error in data, ACK handshake is not returned.

• Set RX_ERR to STATUS register and return to IDLE. It waits to retry status stage.

At this point, if new SETUP stage is started without status stage finishing normally, the UDC sets error to STATUS register. For sequence of this protocol, refer to section supplement.

(c-4) Stage management

The UDC manages each stage of control transfer by hardware.

Each stage is changed by receiving token from USB host, or CPU accesses register. Each stage in control transfer type has to process combination software. UDC detects the following contents from 8-byte data in SETUP stage. The stage is managed by determining control transfer type.

- Whether there is data stage or not
- Data stage direction

Based on these it is determines to be either control read transfer type control write transfer type, or control write transfer type (No data stage).)

Various conditions for changing stage in control transfer are given below.

If receiving token for next stage from host before switching to next stage from state of internal UDC, NAK handshake is returned and BUSY is informed to USB host. In all control transfer types, if SETUP token is received from host current transaction is stopped, and it switches to SETUP stage in the UDC. The CPU receives new INT_SETUP even if it is processing previous control transfer.

Stage change condition of control read transfer type

- 1. Receive SETUP token from host
 - Start setup stage in UDC.
 - Receive data in request normally and judge. And assert INT_SETUP interrupt externally.
 - Change data stage in the UDC.
- 2. Receive IN token from host
 - The CPU receives a request from the request register every INT_SETUP interrupt.
 - Judge request and access Setup Received register to inform the UDC that INT_SETUP interrupt has been recognized.
 - According to Device request, monitor EPO bit of DATASET register, and write data to FIFO.
 - If the UDC is set data of payload to FIFO or CPU set short packet transfer in EOP register, EP0 bit of DATASET register is set.
 - The UDC transfers data that is set to FIFO to host by IN token interrupts.
 - When the CPU finishes transaction, it writes "0" to EPO bit of EOP register.
 - Change status stage in the UDC.
- 3. Receive OUT token from host.
 - Return ACK to OUT token, and change state to IDLE in the UDC.
 - Assert INT_STATUS interrupt externally.

These changing conditions are shown in Figure 3.16.6.

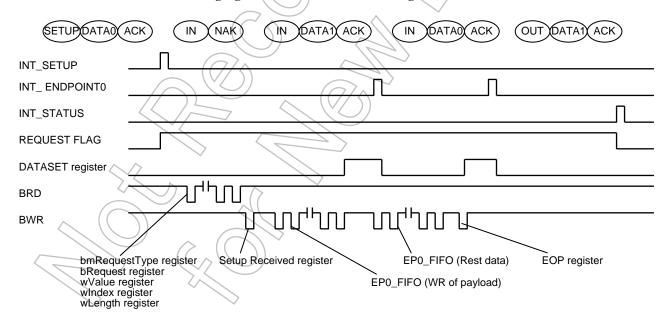
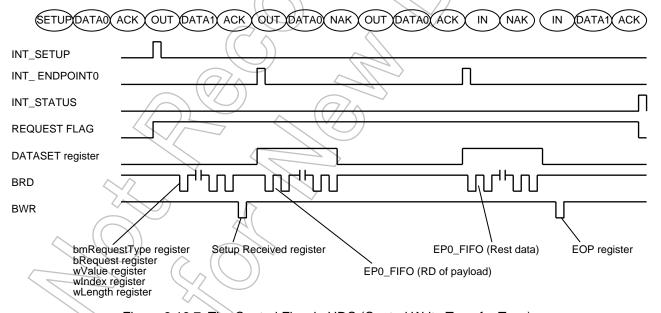


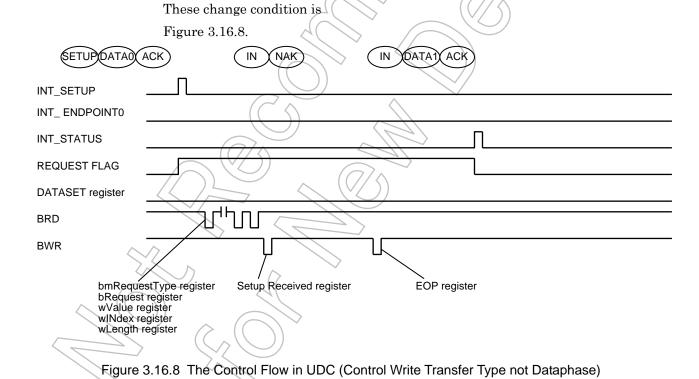
Figure 3.16.6 The Control Flow in UDC (Control Read Transfer Type)

Stage change condition of control write transfer type

- 1. Receive SETUP token from host.
 - Start setup stage in the UDC.
 - Receive data in request normally and judge. And assert INT_SETUP interrupt externally.
 - Change data stage in the UDC.
- 2. Receive OUT token from host.
 - CPU receives a request from the request register every INT_SETUP interrupt.
 - Judge request and access Setup Received register for inform the UDC that INT_SETUP interrupt has been recognized.
 - Receive dataphase data normally, and set EPO bit of DATASET register.
 - The CPU receives data in FIFO by setting DATASET.
 - The CPU processes receiving data by device request.
 - When the CPU finishes transaction, it writes "0" to EPO bit of EOP register.
 - Change status stage in the UDC.
- 3. Receive IN token from host.
 - Return data packet of 0 data to IN token, and change state to IDLE in the UDC.
 - Assert INT_STATUS interrupt externally when ACK for 0 data packet is received.

These changing conditions are shown in Figure 3.16.7.




Figure 3.16.7 The Control Flow in UDC (Control Write Transfer Type)

In control read transfer type, transaction number of data stage does not always correspond with the data number specified by the device request. The CPU can therefore process using INT_STATUSNAK interrupt. However, when class and vendor request is used, wLength value corresponds to data transfer number in data phase. With this setting, using this interrupt is not need. Data stage data can be confirmed by accessing DATASIZE register.

TOSHIBA TMP92CF26A

Stage change condition of control write (no data stage) transfer type

- 1. Receive SETUP token from host
 - Start setup stage in the UDC.
 - Receive data in request normally and judge. And assert INT_SETUP interrupt externally.
 - Change data stage in the UDC.
- 2. Receive IN token from host
 - CPU receives a request from the request register every INT_SETUP interrupt.
 - Judge request and access Setup Received register to inform the UDC that INT_SETUP interrupt has been recognized.
 - The CPU processes receiving data by device request.
 - When the CPU finishes transaction, it writes "0" to EPO bit of EOP register.
 - Change status stage in the UDC,
 - Return data packet of 0 data to IN token, and change state to IDLE in the UDC.
 - Assert INT_STATUS interrupt externally when ACK for 0 data packet is received.

92CF26A-437

(d) Isochronous transfer type

Isochronous transfer type is guaranteed transfer by data number that is limited to each frame.

However, this transfer does not retry when an error occurs. Therefore, Isochronous transfer type transfer only 2 phases (token, data) and it does not use handshake phase. And data PID for data phase is always DATA0 because of this transaction does not support toggle sequence. Therefore, UDC does not confirm when data PID is in receiving mode.

Isochronous transfer type processes data every frame. Therefore, all transaction for completed transfer use receiving SOF token. The UDC uses FIFO that is divided into two in Isochronous transfer type.

(d-1) Isochronous transmission mode

The transaction format for Isochronous transfer type format in transmitting is given below.

• Token : IN

• Data : DATA0

Control flow

Isochronous transfer type is frame management. And data that is written to FIFO in endpoint is transmitted by IN token in the next frame.

Below are two conditions in FIFO of Isochronous transmission mode transferring.

- X. FIFO for storing data that transmits to host in present frame (DATASET register bit = 1)
- Y. FIFO for storing data for transmitting host in next frame (DATASET register bit = 0)

FIFO that is divided into two (packet A and packet B) conditions is whether X condition or Y condition. The flow below is explained as X Condition (packet A), Y Condition (packet B) in present frame.

X and Y conditions change one after the other by receiving SOF.

Control flow in the UDC when receiving IN token is shown below.

- Token packet is received and address endpoint number error is confirmed, and it checks whether the relevant endpoint transfer mode corresponds with the IN token. If it does not correspond, the state returns to IDLE.
- 2. Condition of status register is confirmed.

INVALID condition: State returns to IDLE.

3. Data packet is generated.

Data packet is generated. At this point, data PID is always attached to DATAO. Next, data is transferred from FIFO (X condition) of packet A in UDC to SIE and DATA packet is generated.

4. CRC bit (counted transfer data of FIFO from first to last) is attached to last.

- 5. Below is transaction when SOF token is received from host.
 - Change the packet A's FIFO from X Condition to Y Condition and clear data.
 - Change the packet B from Y Condition to X Condition.
 - Set frame number to frame register.
 - Assert SOF and inform externally that frame is incremented.
 - DATASET register clears packet A bit and it sets packet B bit arrangement loading in present frame.
 - Set STATUS to READY.

The UDC finishes normally by above transaction.

Packet A's FIFO can be received with next data.

In renewed frame, Packet A's FIFO interchanges with packet B's FIFO, and transaction uses same flow.

If SOF token is not received by error and so on, this data is lost because frame is not renewed. There is no problem in receiving PID if frame data is received with CRC error, USB sets LOST to STATUS on FRAME register, and exact frame number is unknown. However, in this case, SOF is asserted and FIFO condition is renewed. If SOF token is received without transmit and transfer Isochronous in frame, UDC clears FIFO (X Condition) and sets STATUS to FULL.

Note: EPx_DATASETA,B change at 3 clocks of 12MHz after receiving SOF. Write data to FIFO after EPx_DATASETA,B are changing.

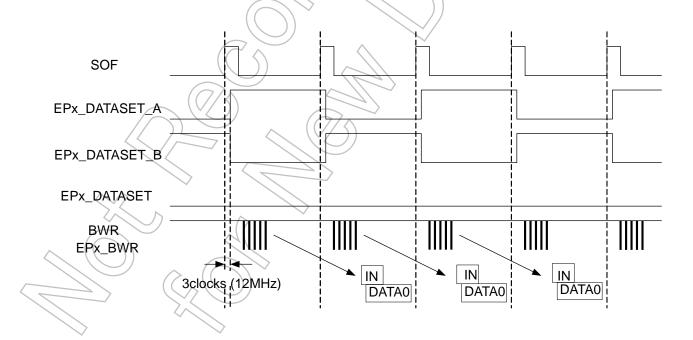


Figure 3.16.9 Isochronous transfer Mode

TOSHIBA

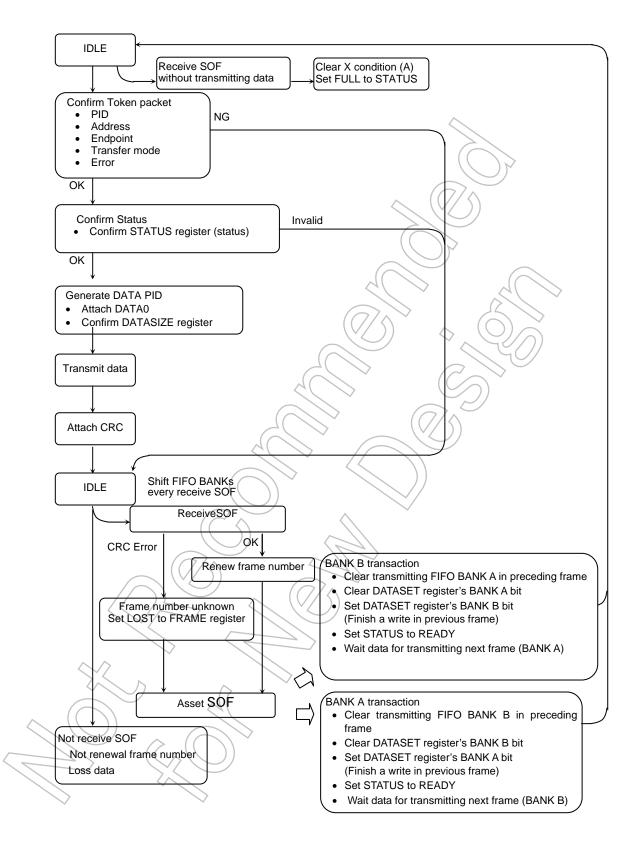


Figure 3.16.10 Control Flow in UDC (Isochronous transfer type (Transmission))

(d-2) Isochronous receiving mode

Transaction format for Isochronous transfer type in receiving is given below.

Token :OUTData : DATA0

Control flow

Isochronous transfer type is frame management. And data that is written to FIFO by OUT token is received to the CPU in the next frame.

Below are two conditions in FIFO of Isochronous receiving mode transferring

X. FIFO for storing data received from host in present frame (DATASET register bit = 0)

Y. FIFO for storing data for transmitting host in previous frame (DATASET register bit = 1)

FIFO that is divided into two (packet A and packet B) conditions is whether X condition or Y condition. The flow below explains X Condition (packet A) and Y Condition (packet B) in present frame.

X and Y conditions change one after the other by receiving SOF.

Below is control flow in the UDC when receiving OUT token.

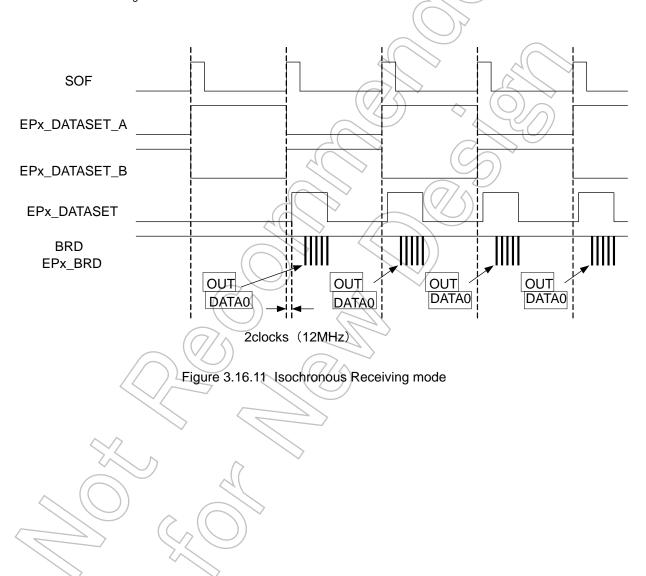
The whole transaction is processed by hardware.

- 1. Token packet is received and address endpoint number error is confirmed, and it checks whether the relevant endpoint transfer mode corresponds with the OUT token. If it does not correspond, the state returns to IDLE.
- 2. Condition of status register is confirmed.
 - INVALID condition: State return to IDLE.
- 3. Data packet is received.

Data is transferred from SIE into the UDC to packet A's FIFO (X Condition).

- 4. After last data has been transferred, and counted CRC is compared with transferred CRC. When transfer is finished, the result is reflected to STATUS. However, data is stored FIFO, data number that packet A is received is set to DATASIZE register of packet A.
- 5. The transaction when SOF token from host is received is given below.
 - Change packet A's FIFO from X Condition to Y Condition.
 - Change packet B from Y Condition to X Condition, and clear data. Prepare for next transfer.
 - Set frame number to frame register.
 - Assert SOF and inform externally that frame is incremented.
 - DATASET register set packet A bit and clear packet B bit arrangement loading in present frame.
 - If CRC comparison result agrees it, DATAIN is set to STATUS. If result does not agree, RX_ERR is set to STATUS.

The UDC finishes normally by the above transaction.


The CPU takes back packet A's data.

In renewed frame, Packet A's FIFO interchanges with packet B's FIFO, and the transaction uses the same flow.

If SOF token is not received by error and so on, this data is lost because the frame is not renewed. There is no problem in receiving PID and if frame data is received with CRC error, USB sets LOST to STATUS on FRAME register, and exact frame number is unknown. However, in this case, SOF is asserted and FIFO condition is renewed. If SOF token is received without transmit and transfer Isochronous in frame, UDC clears FIFO (X Condition) and sets STATUS to FULL.

These are shown in Figure 3.16.12.

Note: EPx_DATASET changes at 2 clocks of 12MHz after receiving SOF. Read data from FIFO after EPx_DATASET is rising.

TOSHIBA TMP92CF26A

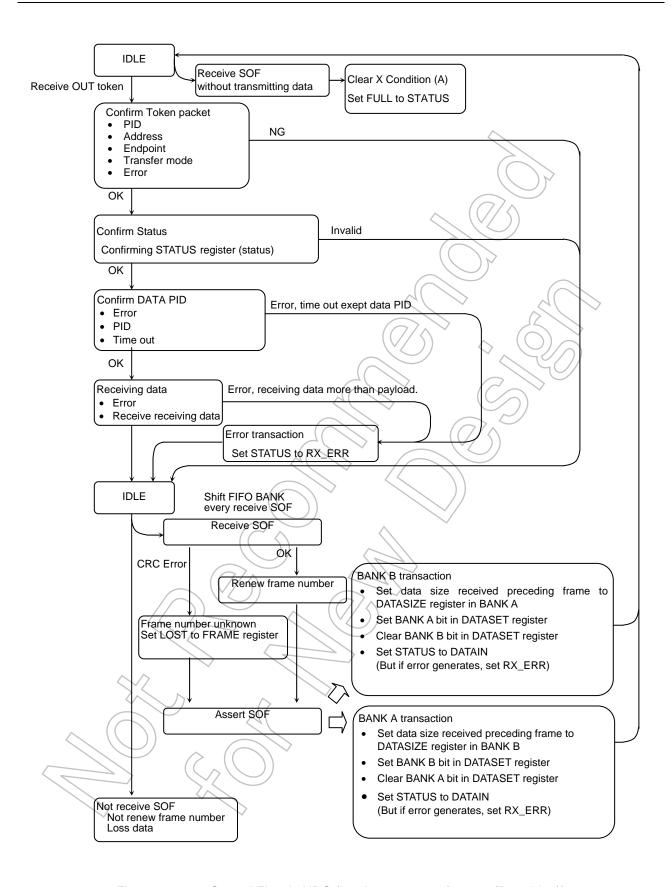


Figure 3.16.12 Control Flow in UDC (Isochronous transfer type (Receiving))

3.16.7 Bus Interface and Access to FIFO

(1) CPU bus interface

The UDC prepares two types of FIFO access, single packet and dual packet. In single packet mode, FIFO capacity that is implemented by hardware is used as large FIFO. In dual packet mode, FIFO capacity is divided into two and used as two FIFOs. It is also used as an independent FIFO. Even if the UDC is transmitting and receiving to USB host, it can be used as an efficient bus by possible load to FIFO.

But control transfer type receives only single packet mode.

EPx_SINGLE signal in dual packet mode must be fixed to "0". If this signal is fixed to "0", FIFO register runs in single mode.

Hold 0

Optional

64 bytes

Optional

Sample: Where endpoint 1 is used to dual packet of payload 64 bytes. Prepare 128 bytes

EP1_FIFO size

EP1_SINGLE signal

EP1 Descriptor setting Direction

Max payload size

Transfer mode

92CF26A-444

(a) Single packet mode

This is data sequence of single packet mode when CPU bus interface is used. Figure 3.16.13 is receiving sequence. Figure 3.16.14 is transmitting sequence. This chapter focuses on access to FIFO. For Data sequence with USB host refer to chapter 5.

Endpoint 0 cannot be changed to exclusive single packet mode. Endpoints 1 to 3 can be changed between single packet and dual packet by setting EPx_SINGLE register. Do not change packet when transferring.

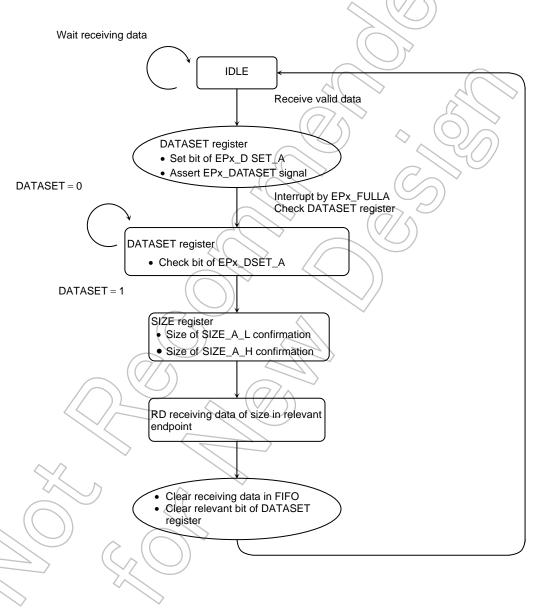


Figure 3.16.13 Receiving Sequence in Single Packet Mode

TOSHIBA TMP92CF26A

Below is the transmitting sequence in single packet mode.

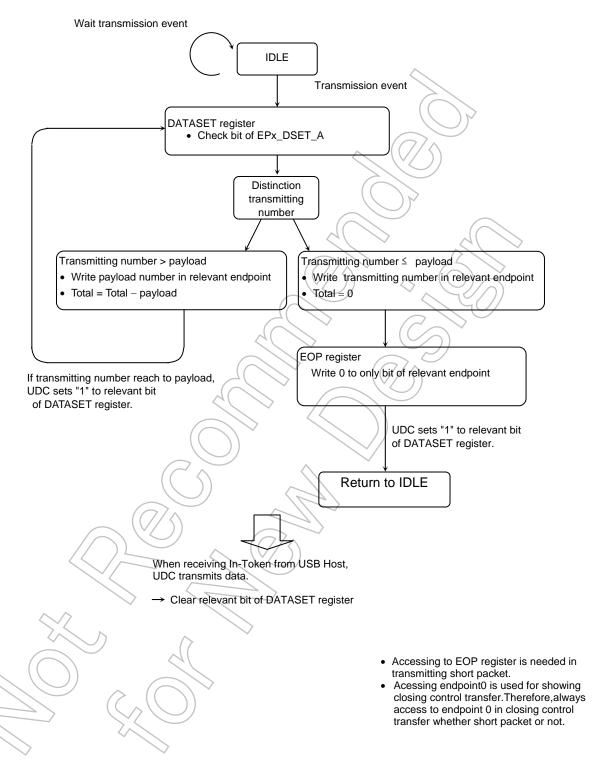


Figure 3.16.14 Transmitting Sequence in Single Packet Mode

(b) Dual packet mode

In dual packet mode, FIFO is divided into A and B packet, and is controlled according to priority in hardware. It can be performed at once, transmitting and receiving data to USB host and exchanges to external of UDC.

When it reads out data from FIFO for receiving, confirm condition of two packets, and consider the order of priority. If it has received data to two packets, the UDC outputs from first receiving data by FIFO that can be accessed are common in two packets. EPx_SIZE register is prepared for both packet A and packet B. First, the CPU must recognize the data number of first receiving packet by PKT_ACTIVE bit. If PKT_ACTIVE bit has been set to 1, that packet is received first. Packet A and packet B set data turn about always.

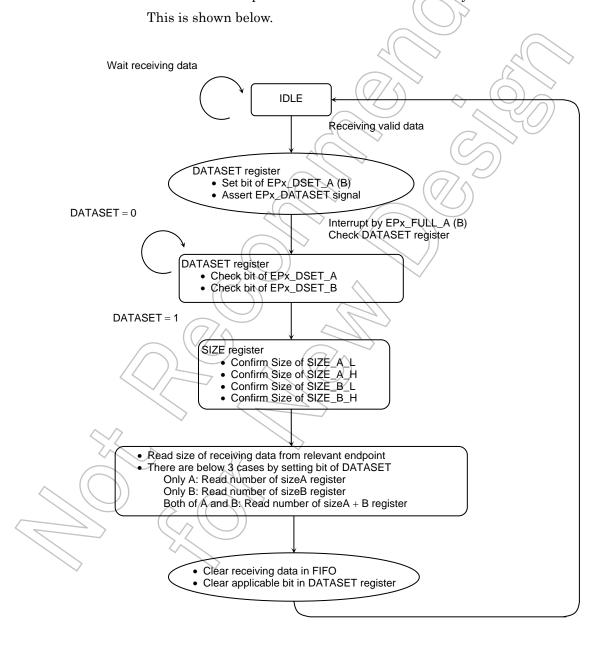


Figure 3.16.15 Receiving Sequence in Dual Packet Mode

TOSHIBA TMP92CF26A

Data can be set to available FIFO when transmitting regardless of packet A or B.

Below is the Transmitting Sequence in Dual Packet Mode.

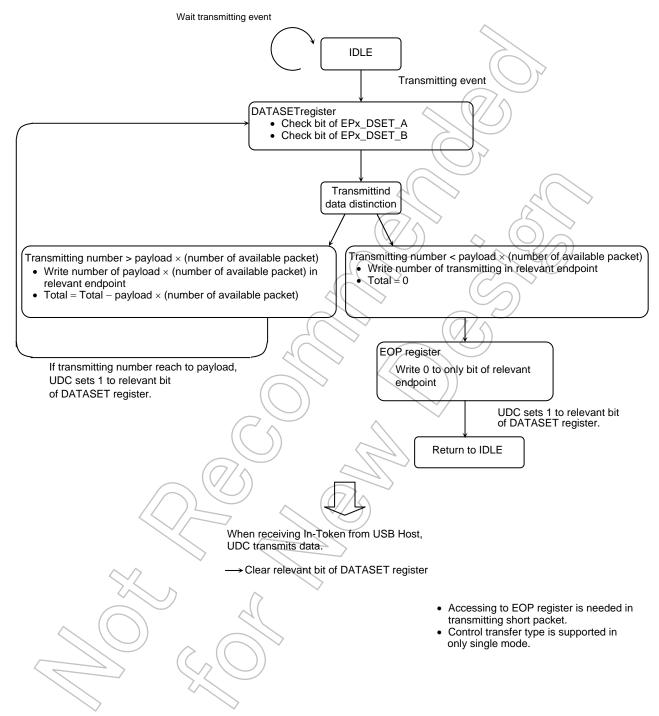
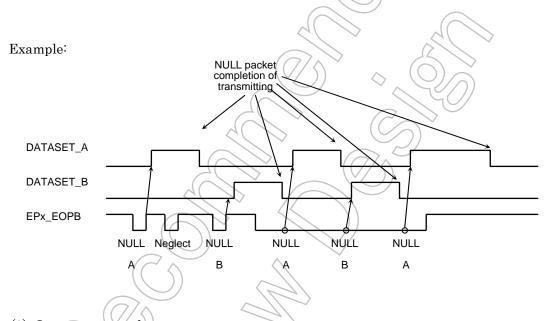


Figure 3.16.16 Transmitting Sequence in Dual Packet Mode


(c) Issuance of NULL packet

If transmitting NULL packet, by input L pulse from EPx_EOPB signal, data of 0 length is set to FIFO, and NULL packet can be transferred to IN token.

But if NULL data is set to FIFO, it is valid only in the case whole SET signal is L level condition (where FIFO is empty). If it answer to receiving IN token by using NULL packet in a certain period, it is answered by keeping EPx_EOPB signal to L level.

However, if mode is dual packet mode, EPx_DATASET signal assert L level for showing space of data. Therefore, data condition (whether either has data or not) cannot be confirmed externally.

Note: NULL packet can also be set by accessing EOP register.

(2) Interrupt control

Interrupt signal is prepared. This function use adept system.

For detail refer to 3.16.2 900/H1 CPU I/F.

3.16.8 USB Device answer

The USB controller (UDC) sets various register and initialization in the UDC in detecting of hardware reset, detecting of USB bus reset, and enumeration answer.

Each condition is explained below.

(1) bus reset detect condition.

When the UDC detects a bus reset on the USB signal line, it initializes internal register, and it prepares enumeration operation from USB host. After detecting a USB reset, the UDC sets ENDPOINTO to control transfer type 8-byte payload and default address for using default pipe. Any endpoint other than this is prohibited.

Register name Initial value
ENDPOINT STATUS EP0 00H
Except for EP0 1CH

(2) Detail of STATUS register

Status register that has been prepared for each endpoint shows the condition of each endpoint in the UDC.

Each condition affects the various USB transfers. Refer to chapter 5 for the changing conditions for each transfer type.

EPx_STATUS register value is 0 to 3, and its shows conditions are shown. 0 to 4 are the results of various transfers. It can be confirmed previous result that is transferred to endpoint by confirming from external of UDC.

- 0 READY
- 1 DATAIN
- 2 FULL
- 3 TX ERR
- 4 RX_ERR

These conditions mean that the endpoint is operating normally. The meaning that is showed is different for each transfer mode. Therefore, please refer to each transfer mode column below.

ISO transfer mode

Below is the transfer condition for the previous frame. Receiving SOF renews this.

	OUT (RX)	IN (TX)
Initial	READY	READY
Not transfer	READY	FULL
Finish normally	DATAIN	READY
Detect anerror	RXERR	TXERR

Transfer modes other than ISO transfer

This is the result of the previous transfer. When transfer is finished, this is renewed.

	OUT, SETUP	IN (
Initial	READY	READY
Transfer finish normally	DATAIN	READY
Status stage finish	READY	READY
Transfer error	RXERR	TXERR

"Initial" is that renew RESET, USB reset, Current_Config register. In detect error, it does not generate EPx_DATASET except in toggle transfer mode and Isochronous transfer mode of interrupt.

5 to 7 in shows the status register means that the endpoint is in special condition.

5 BUSY

BUSY is generated only at endpoint of control transfer. If UDC transfer in control writes transfer, when CPU has not finished enumeration transaction, and if it receives ID of status stage from USB host, BUSY is set. STATUS is BUSY until CPU finishes enumeration transaction and EP0 bit of EOP register is written 0 in UDC. If CPU enumeration transaction finishes and EP0 bit of EOP register is written 0 and status stage from USB host finishes normally, it displays READY.

6 STALL

STALL shows that endpoint is in STALL condition.

This condition is generated if it violates protocol or error in bus enumeration. To return endpoint to normal transfer condition, USB device request is needed. This request returns to normal condition. But control endpoint returns to normal condition by receiving SETUP token. And it becomes to SETUP stage.

7> INVALID

This condition shows condition that endpoint cannot be used. UDC sets condition that isn't designated in ENDPOINT to INVALID condition, and it ignores all tokens for this endpoint. In initializing, this condition is always generated. When UDC detects hardware reset, it sets all endpoints to INVALID condition. Next, if USB reset is received, endpoint 0 only is renewed to READY. Other endpoints that are defined on disruptor are renewed if SET_CONFIG request finishes normally.

3.16.9 Power Management

USB controller (UDC) can be switched from optional resume condition (turn on the power supply condition) to suspend (Suspension) condition, and it can be returned from suspend condition to turn on the power supply condition.

This function can be set to low electricity consumption by operating CLK supplying for UDC.

(1) Switch to suspend condition

The USB host can set the USB device to suspend condition by maintaining IDLE state. The UDC switches to suspend condition by the following process.

- UDC switches to suspend condition if it detects IDLE state of more than 3 ms (about 3.07ms) on USB signal. At this point, UDC sets SUSPEND bit of STATUS register to "1".
- UDC renews USBINTFR1<INT_SUS> and <INT_CLKSTOP> from "0" to "1" if it detects IDLE state of more than 5 ms (about 5.46ms) on USB signal. Afterward reset USBCR1<USBCLKE> to "0" to stop USB clock.
- In this condition, all register values into the UDC are kept. However, external access is not possible except for reading of STATUS register, Current_Config register, and USBINTFR1, USBINTFR2, USBINTMR1, USBINTMR2 and USBCR1.
- (2) Return from suspend condition by host resume

When activity of bus on USB signal is restored by resume condition output from USB host, the UDC release SUSPEND condition, and it resets SUSPEND bit of STATUS register to "0". The system is thereby resumed. The resume condition output from the host is maintained for at least 20 ms. Therefore effective protocol occurs on USB signal line after this time has elapsed.

(3) Return from suspend condition by remote wakeup

Remote wakeup is system for prompt resume from suspended USB device to USB host. Some applications do not support remote wakeup. Remote wakeup is also limited using from USB host by bus enumeration.

UDC remote wakeup function can be used when it is permitted.

Setting remote wakeup by bus can be confirmed by bit7 of Current_Config register. When this bit is "1", remote wakeup can be used. Remote wakeup is not disabled by this bit. Therefore, if this bit shows disabled, remote wakeup must not be set. If it fill the conditions, output resume condition output to USB host by writing USBCR1<WAKEUP> from "1" to "0" of UDC in suspend condition. And it prompts resume from UDC to host. After UDC changes to suspend condition, WAKEUP input is ignored for 2 ms. Therefore, remote wakeup becomes effective when USBINTFR1<INT_SUS> is set to "1".

(4) Low power consumption by control of CLK input signal

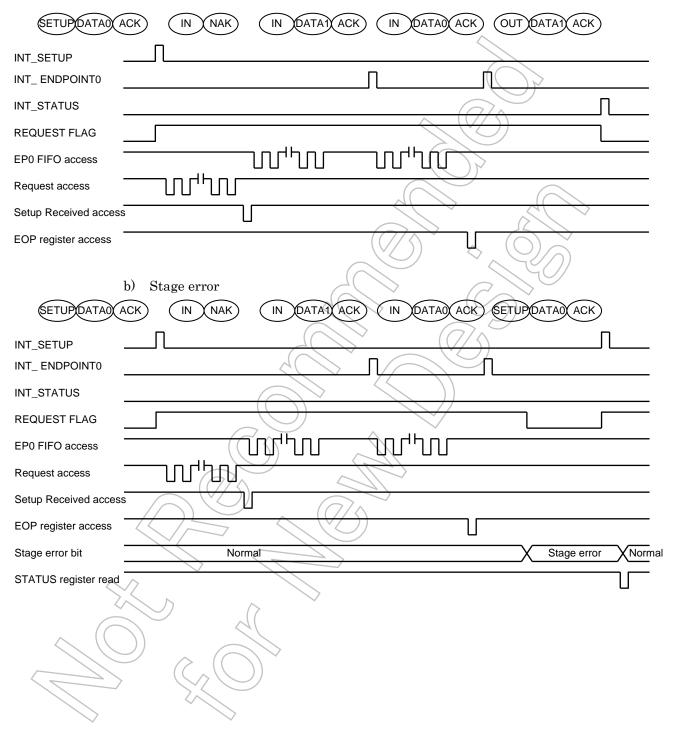
When the UDC switches to suspend condition, it stops CLK and switches to low power consumption condition. But as system, this function enables low power consumption by stopping source of CLK. CLK that is supplied to the UDC can be controlled by using USBINTFR1<INT_SUS>, <INT_CLKSTOP> and USBCR1<USBCLKE>.

If UDC switches to suspend condition, USBINTFR1<INT_SUS> is set to "1", and <INT_CLKSTOP> is set to "1". After confirmation, stop CLK supply (USBCLK) by setting "0" to USBCR1<USBCLKE>. If SUSPEND condition is released by resuming from host, supply normal CLK to UDC within 3 ms.

When remote wakeup is used, it is necessary to supply a stable CLK to the UDC before use. When doubler circuit is used as generation source, the above control is needed.

• Return from suspend condition by USB reset (by INT_CLKON interrupt)

When UDC stops CLK in suspend condition, UDC can not detect USB reset and control CLK in suspend condition as above mentioned.


In case CLK is stopped in suspend condition, UDC can detect USB reset and return from suspend condition by supplying CLK (USBCR1<USBCLKE>=1) after detecting INT_CLKON interrupt.

3.16.10 Supplement

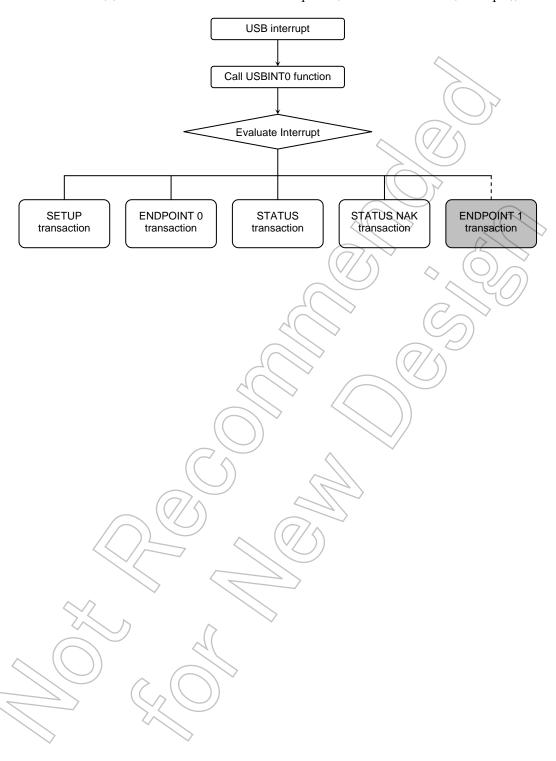
(1) External access flow to USB communication

a) Normal movement

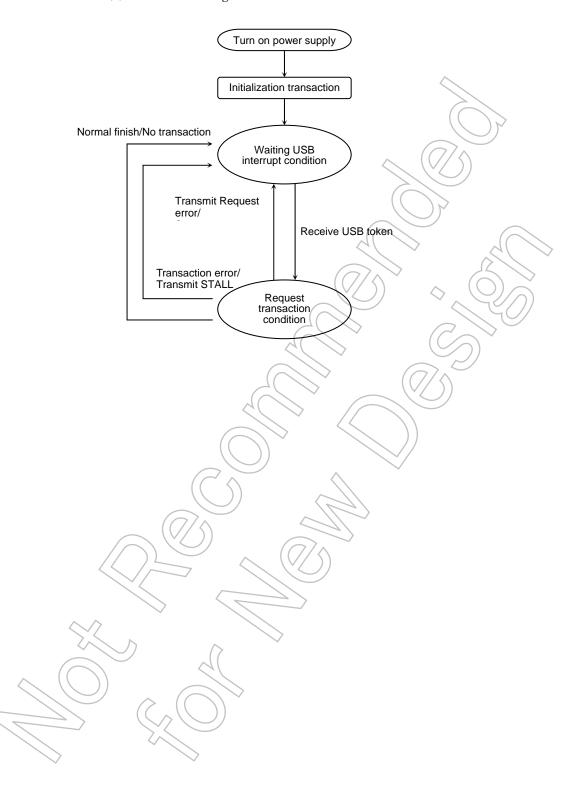
(2) Register Initial value

Register Name	Initial Value OUTSIDE Reset	Initial Value USB_RESET
bmRequestType	0x00	0x00
bRequest	0x00	0x00
wValue_L	0x00	0x00
wValue_H	0x00	0x00
wIndex_L	0x00	0x00
wIndex_H	0x00	0x00
wLength_L	0x00	0x00
wLength_H	0x00	0x00
Current_Config	0x00	0x00
Standard request	0x00	0x00
Request	0x00	0x00
DATASET	0x00	0x00
Port Status	0x18	Hold
Standard request mode	0x00	Hold
Request mode	0x00	Hold

Register Name	Initial Value OUTSIDE Reset	Initial Value USB_RESET
INT control	0x00	0x00
USBBUFF_TEST	0x00	Hold
USB state	0x01	0x01
EPx_MODE	(0x00)	0x00
EPx_STATUS	0x1C	0x1C
EPx_SIZE_L_A	0x88	0x88
EPx_SIZE _L_B	0x08	0x08
EPx_SIZE_H_A	0x00	0x00
EPx_SIZE_H_B	0x00	0x00
FRAME_L	0x00	0x00
FRAME_H	0x02	0x02
ADRESS	0x00	0x00
EPx_SINGLE	0×00	Hold
EPx_BCS	Ox00)/	Hold
ID_STATE	0x01	0x00

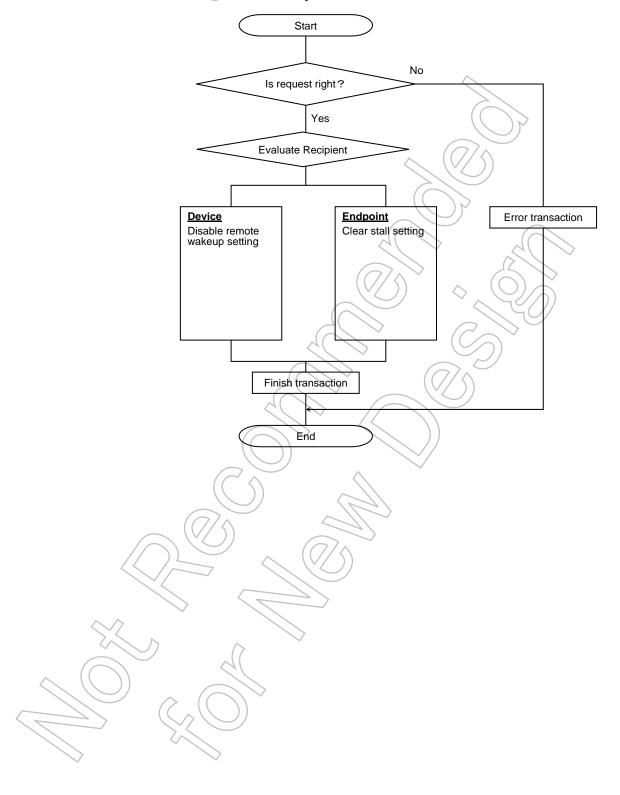

Note 1: The above initial value is the value that is initialized by external reset, USB_RESET. This value may differ from that displayed depending on conditions.

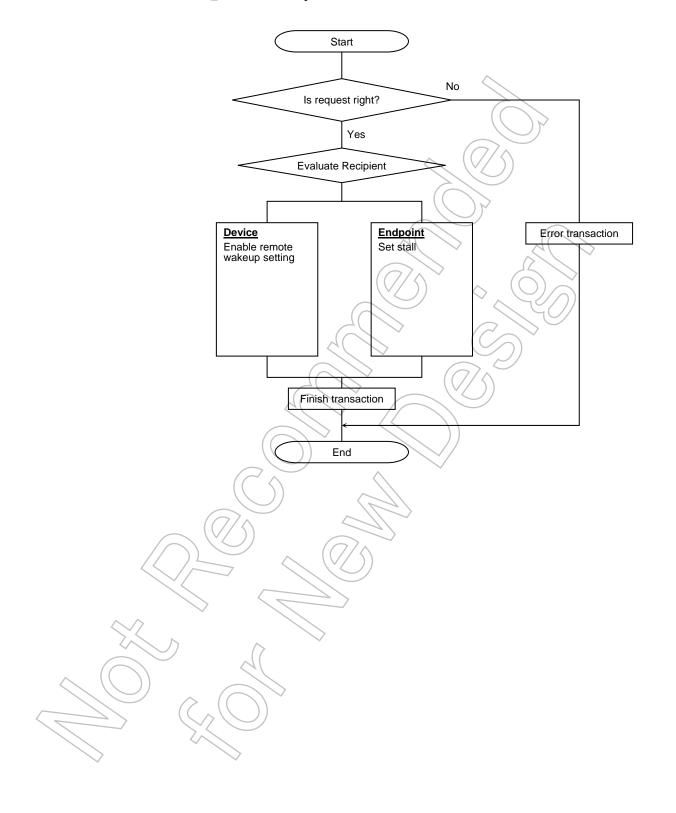
Please refer to register configure in chapter 2.

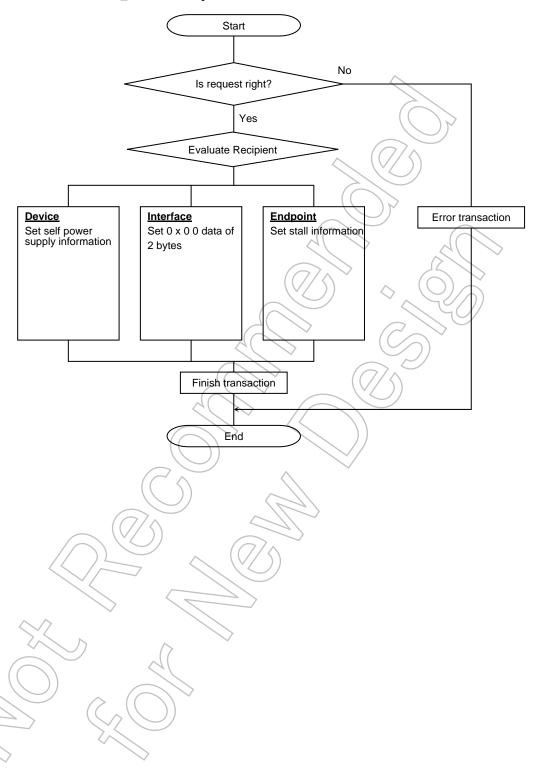

Note 2: EP0_STATUS register is initialized to 0x00 after USB_RESET is received.

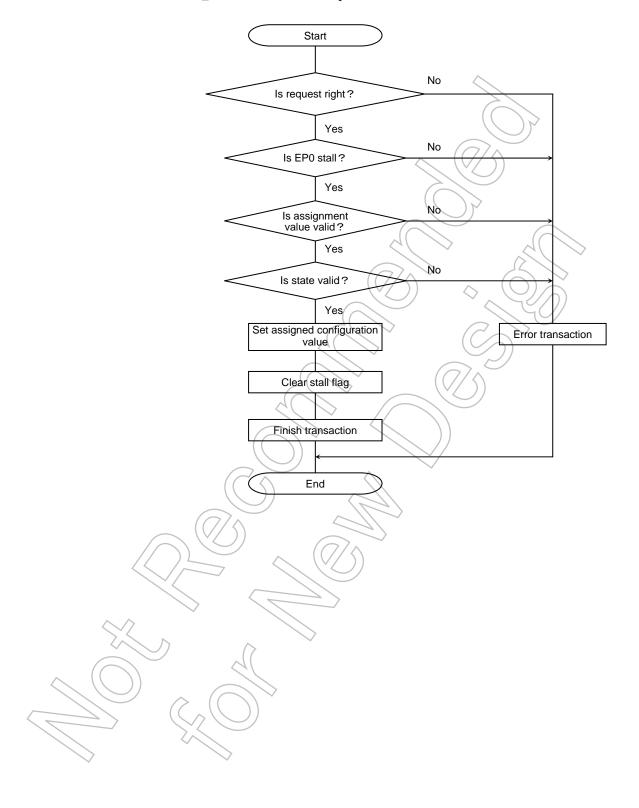
Note 3: Initial value of ID_STATE register is initialized by external reset, BRESET. When USB_RESET signal is received from host, it is initialized to 0x00.

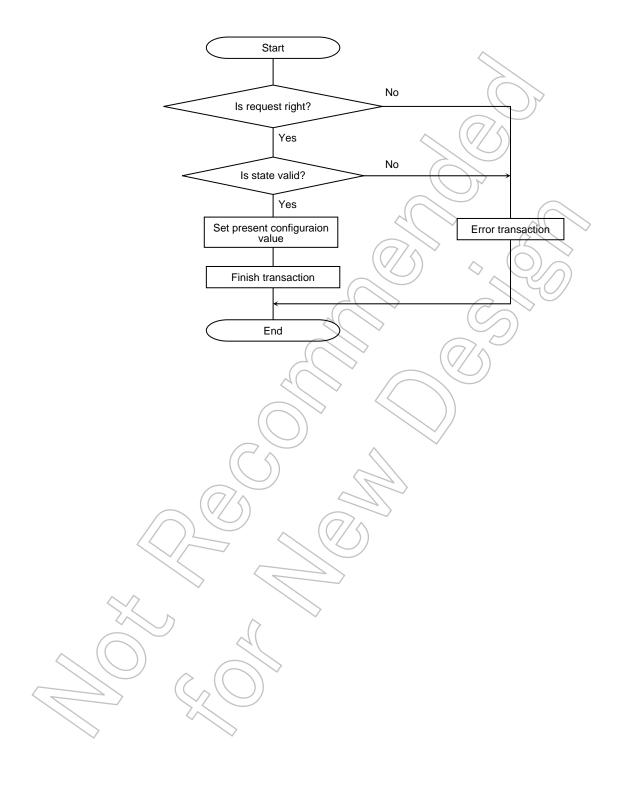

- (3) USB control flow chart
 - (a) Transaction for standard request (Outline flowchart (Example))

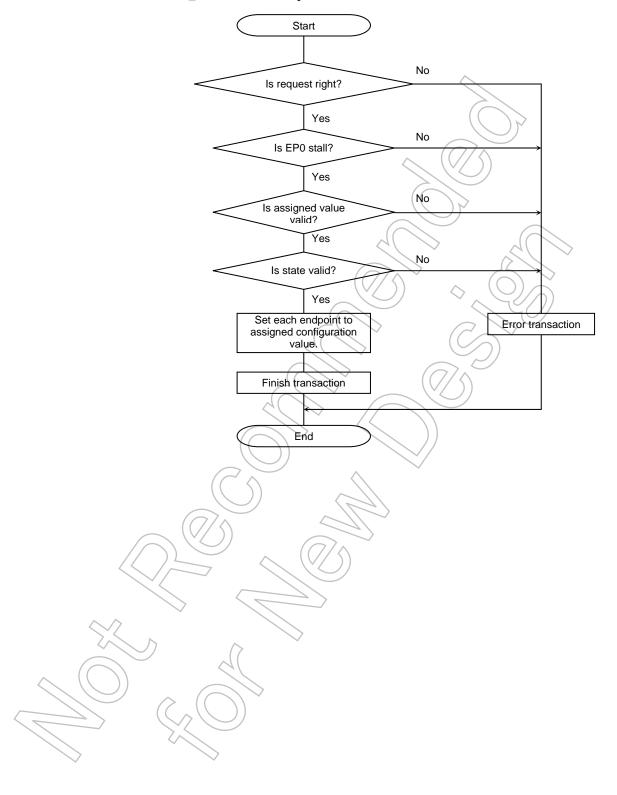

(b) Condition change

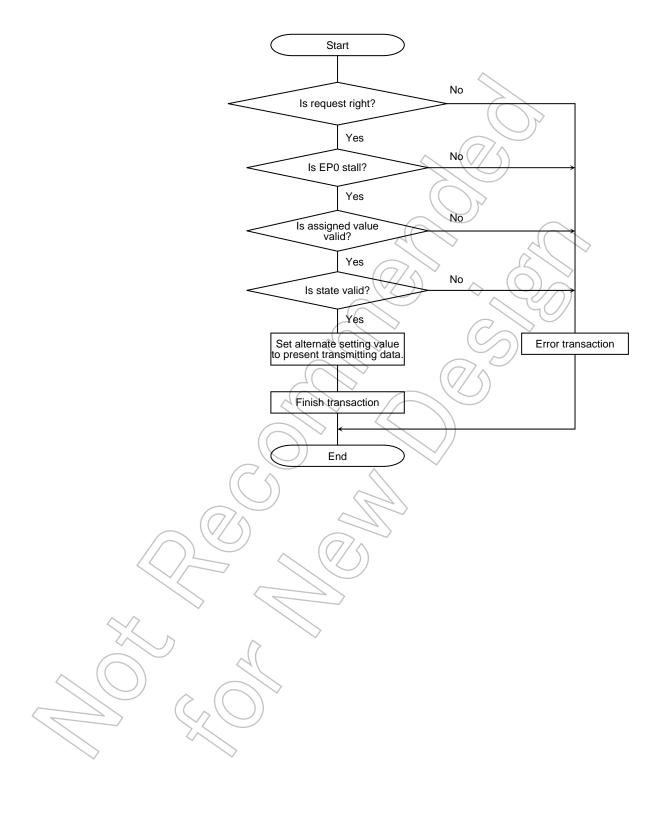

(c) Device request and evaluation of various requests

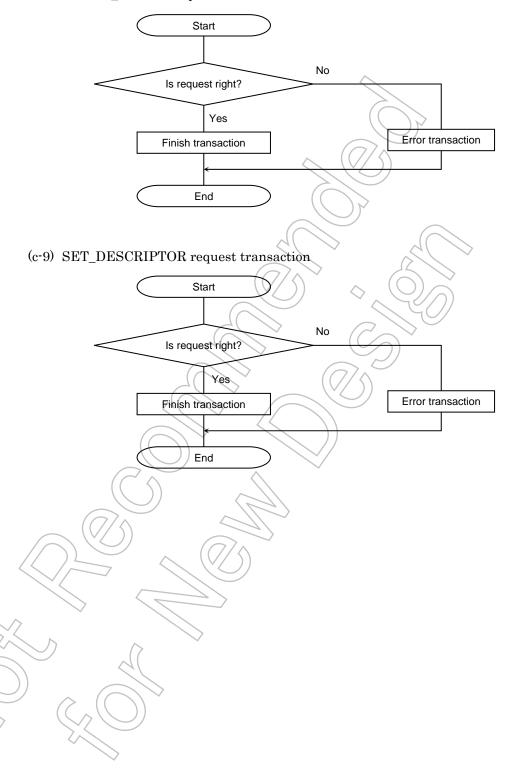

(c-1) CLEAR_FEATURE request transaction

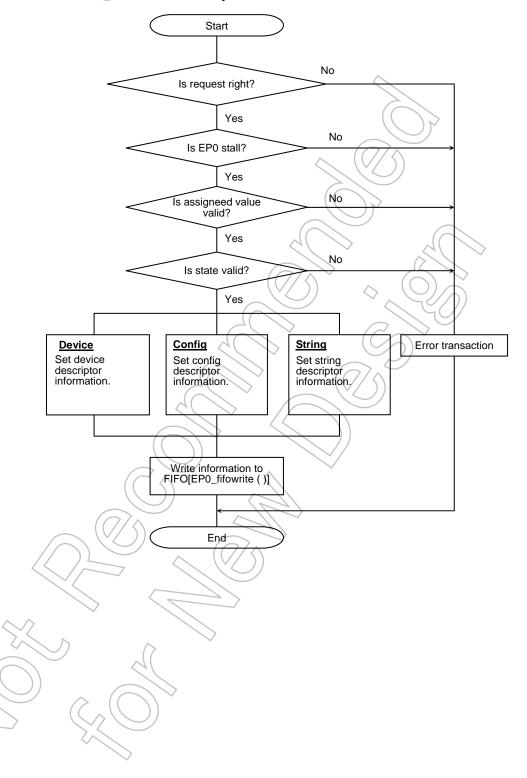

(c-2) SET_FEATURE request transaction

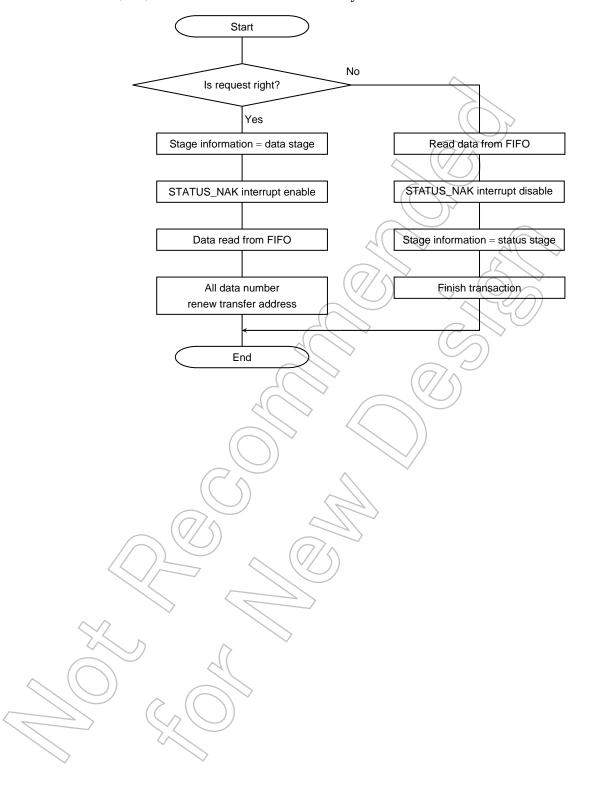

(c-3) GET_STATUS request transaction

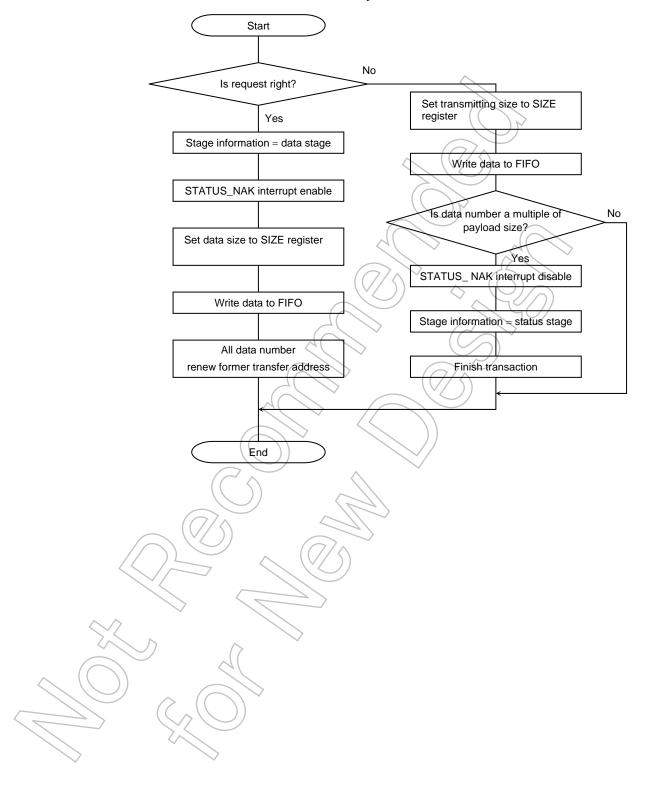

(c-4) SET_CONFIGRATION request transaction

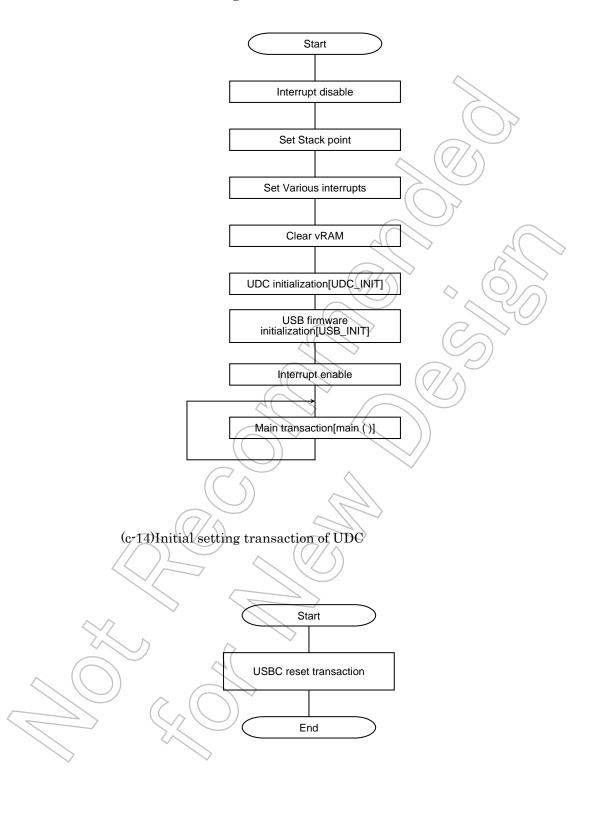

(c-5) GET_CONFIGRATION request transaction

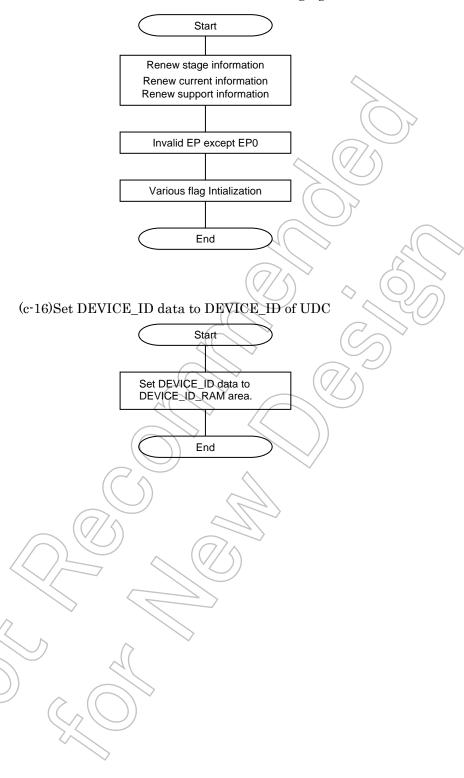

(c-6) SET_INTERFACE request transaction

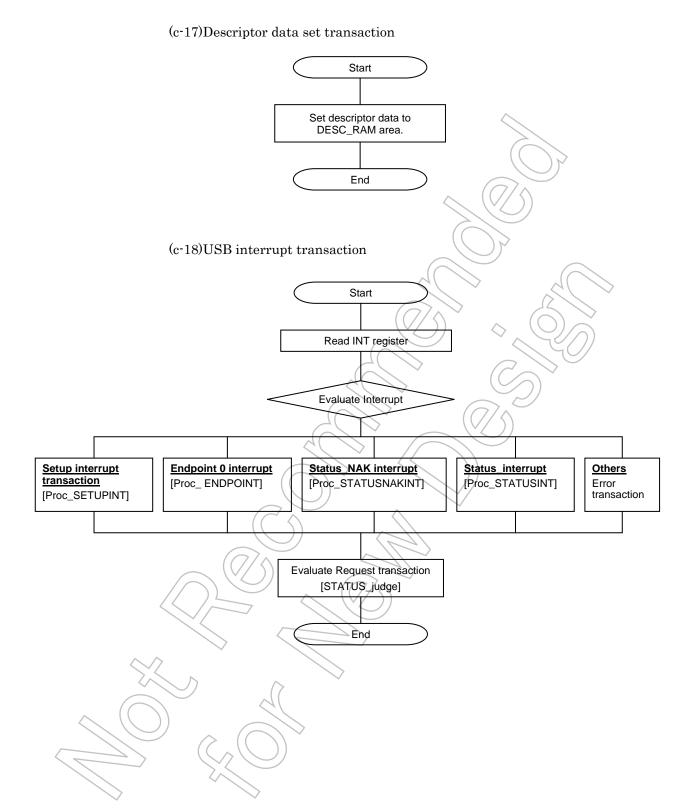

(c-7) SYNCH_FRAME request transaction


(c-8) SYNCH_FRAME request transaction

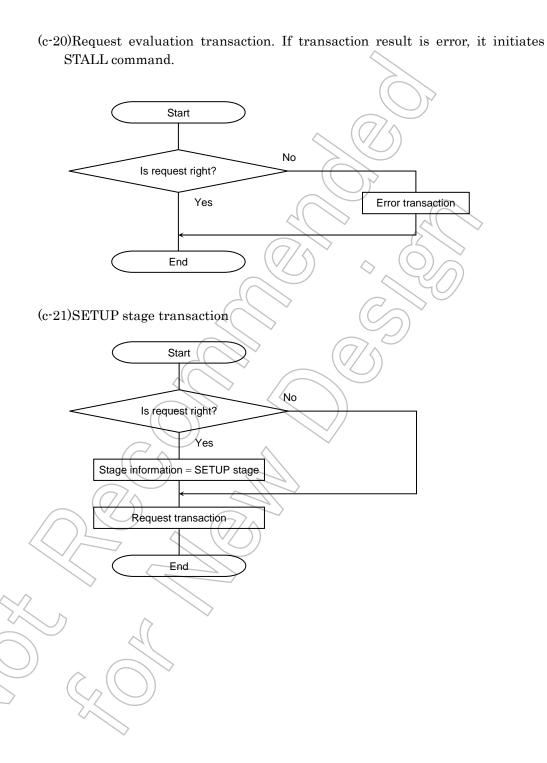

$(c-10)GET_DESCRIPTOR$ request transaction

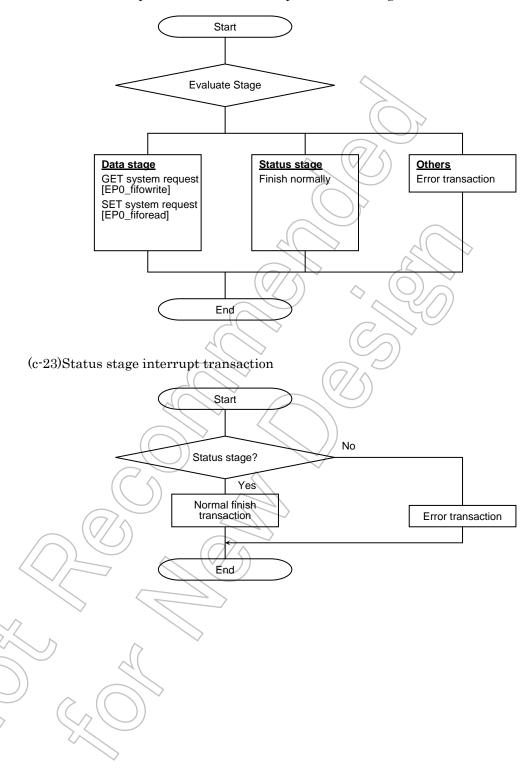

(c-11) Data read transaction to FIFO by EP0 $\,$


(c-12)Data write transaction to FIFO by EP0

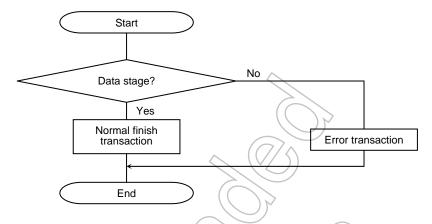


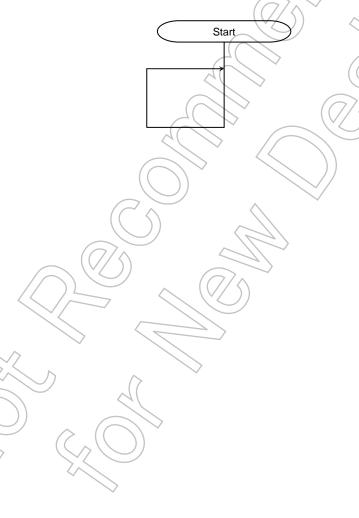
(c-13)Initial setting transaction of microcontroller

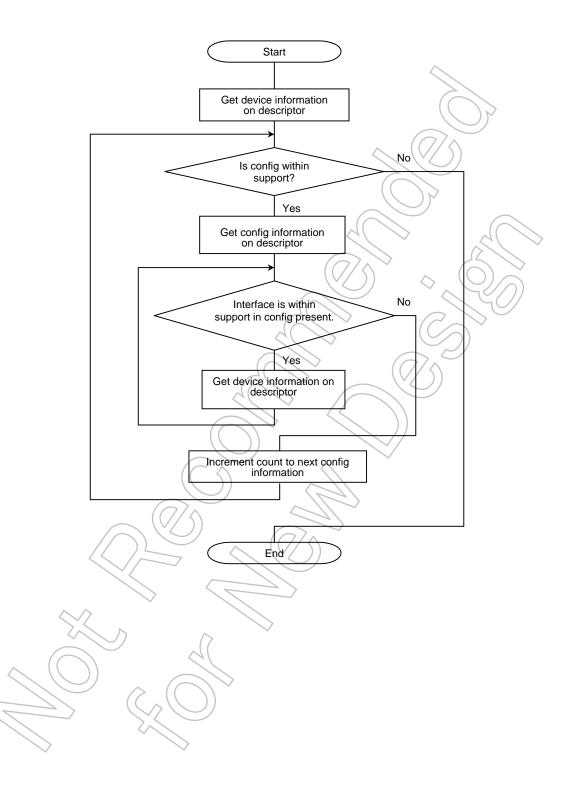

(c-15) Initial transaction of USB number changing firmware



(c-19)Dummy function for not using maskable interrupts.


• Transaction performs nothing, therefore outline flow is skipped.


(c-22)Perform endpoint 0 transaction except in SETUP stage.


$(c-24)STATUS_NAK$ interrupt transaction

(c-25)This transaction is a non-transaction for USB interrupts.

(c-26)Getting descriptor information (related to standard request)

3.16.11 Notice and Restrictions

1. When using the USB device controller in the TMP92CF26A, a crystal oscillator is recommended (USB standard ≤ 10 MHz±2500ppm). In this case, a maximum of 3 stages of external hub can be due to the precision of this USB device controller and the internal clock. If USB compliance (USB logo) is needed, the 5 stages connection is needed for external hub. And it is needed that input 48MHz clock from X1USB pin (USB standard ≤ ±2500ppm.)

2. Precaution for using the USB dual packet mode in the TMP92CF26A

In the dual packet mode, each FIFO is divided into two independent packets (A and B) to be controlled alternately by hardware.

When reading data from a receive FIFO, it is necessary to check the state of the two packets to determine which packet should be processed first. At this time, the following precaution is required.

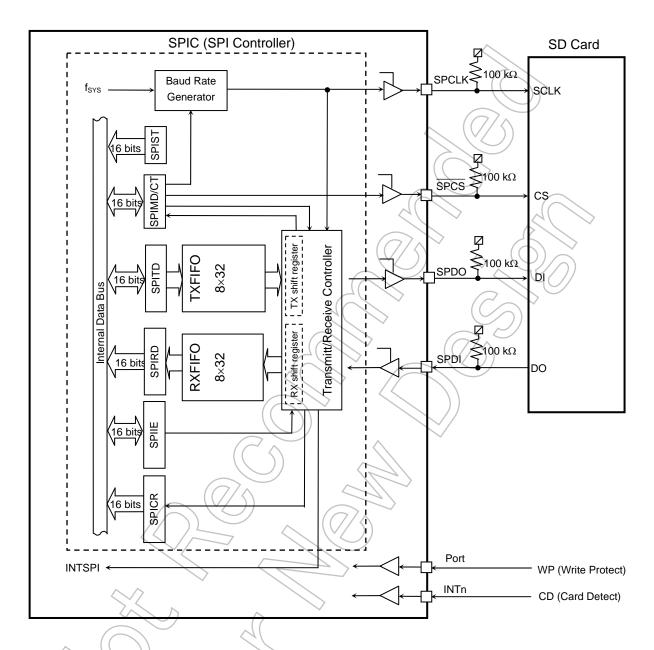
The EPx_SIZE register that indicates the presence of valid data is provided separately for packets A and B. The CPU is required to check the respective PKT_ACTIVE bits to determine which packet was accessed first and then to know the number of data in this packet. The packet with its PKT_ACTIVE bit set to "1" is the packet which was received first.

In determining whether only packet A is active, only packet B is active, or both packets A and B are active, if the respective PKT_ACTIVE bits are read sequentially, the state of each bit may change between each read. If this happens, the packets may not be processed in proper order.

Therefore, the PKT_ACTIVE bit information in the EPx_SIZE register should be captured and saved in another location such as RAM by using an interrupt request. Then, use this saved information to perform branch processing.

3.17 SPI Controller (SPIC)

The SPIC is a Serial Peripheral Interface Controller that supports only master mode.


It can be connected to the SD card, MMC (Multi Media Card) etc. in SPI mode.

Its features are summarized as follows:

- 1) On-chip 32-byte FIFOs for both transmission and reception
- 2) Generates the CRC-7 and CRC-16 values for transmission and reception
- 3) Baud Rate: 20 Mbps (max)
- 4) Can be connected to multiple SD cards and the MMC. (Since there is only oen chip select signal preassigned as SPCS, use other output ports to allow for more than two connections.)
- 5) Operates as the general synchronous SIO
 Selects the followings: MSB/LSB-first, 8/16-bit data length, rising/falling edge
- 6) Two types of interrupts: INTSPITX (Transmit interrupt), INTSPIRX (receive interrupt) Select Read/Mask for interrupts: RFUL, TEMP, REND and TEND

3.17.1 Block Diagram

Figure 3.17.1 shows a block diagram of the SPIC and its connections with a SD card.

Note 1: The SPCLK, SPCS, SPDO and SPDI pins are configured as input ports (Ports PR3, PR2, PR1 and PR0) upon reset.

Thus, these pins require pull-up resisters to fix their voltage levels. The pull-up resistor values should be adjusted under real-world conditions.

Note 2: Any one of general inputs and interrupt should be used as the WP (Write Protect) and CD (Card Detect) inputs, respectively.

Figure 3.17.1 Block Diagram and Connection Example

Special Function Registers (SFRs) 3.17.2

This section describes the SFRs of the SPIC. These are connected to the CPU with 16 bit data buses.

(1) SPIMD (SPI Mode Select register)

The SPIMD register specifies the operating mode, clock operation, etc.

				SPIM	1D Registe	er	(
		7	6	5	4	3	2		0
SPIMD	Bit Symbol	SWRST	XEN			1	CLKSEL2	CLKSEL1	CLKSEL0
(820H)	Read/Write	W	R/W					// R/W	
A read-	Reset State	0	0					0	0
modify-write operation cannot be performed	Function	Software Reset 0: Don't care 1: Reset		42	40		Select Baud F 000: Reserve 001: fsys/2 010: fsys/3 011: fsys/4	d 100: fs 101: fs 110: fs 111: fs	ys/16 ys/64 ys/256
		15	14	13	12	(11))	10\	9)/	8
(821H)	Bit Symbol	LOOPBACK	MSB1ST	DOSTAT	4	TCPOL	RCPOL	TDINA	//RDINV
	Read/Write		R/W	.			R	w	
	Reset State	0	1	1	74	0	0)0	0
	Function	Test Mode 0:Disbale 1:Enable	Start Bit for Transmission / Reception 0: LSB 1: MSB	SPDO Pin State When Not Transmitting 0: Fixed to 0 1:Fixed to 1		Synchronizati -on Clock Edge Select for Transmission 0: Falling edge 1: Rising edge	ion Clock Edge Select for Reception	Inversion for Transmissio	Data Inversion for Reception 0: Disable 1: Enable

Note: The SD card of the TMP92CF26A supports a baud rate of up to 20 Mbps in SPI mode. The baud rate should be adjusted with the operating frequency of the CPU (f_{SYS}) so that it does not exceed 20 MHz.

Figure 3.17.2 SPIMD Register

(a) LOOPBACK

Setting the XEN and LOOPBACK bits to 1 enables the internal SPDO output to be internally connected to the SPDI input. This setup can be used for testing.

Also, a clock sigal is generated from the SPCLK pin, regardless of whether data transmission or receptionis in progress.

Data transmission or reception must not be performed while changing the state of this bit.

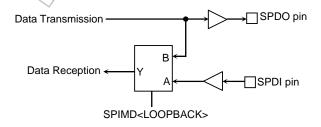


Figure 3.17.3 LOOPBACK Bit Configuration

(b) MSB1ST

This bit specifies whether to transmit/receive byte with the MSB first or with the LSB first. Data transmission or reception must not be performed while changing the state of this bit.

(c) DOSTAT

This bit specifies the status of the SPDO pin of when data transmission is not performed (i.e., after completing data transmission or during data reception). Data transmission or reception must not be performed while changing the state of this bit.

(d) TCPOL

This bit specifies the polarity of the active edge of the synchronization clock for data transmission

The XEN bit should be cleared to 0 for changing the state of this bit. At the same time, RCPOL should also be cleared to 0.

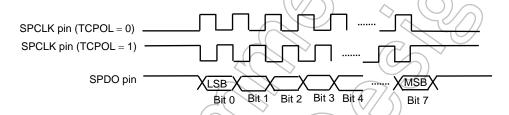


Figure 3.17.4 Timing Diagram of Data Transmissions Controlled by the TCPOL Bit

(e) RCPOL

This bit specifies the polarity of the active edge of the synchronization clock for data reception.

The SPIMD<XEN> bit should be cleared to 0 for changing the state of this bit. TCPOL should also be cleared to 0.

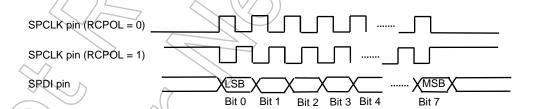


Figure 3.17.5 Timing Diagram of Data Receptions Controlled by the TCPOL Bit

(f) TDINV

This bit specifies whether to logically invert the data transmitted from the SPDO pin or not. Data transmission or reception must not be performed while changing the state of this bit.

(g) RDINV

This bit specifies whether to logically invert the data received from the SPDI pin or not. Data transmission or reception must not be performed while changing the state of this bit.

(h) SWRST

This bit is used to performs a software reset of the read and write pointers for data transmission and reception. Stop the data transmission after writing a 0 to the SPICT<TXE> bit where XEN = 1. Then, write a 1 to the SWRST bit to initialize the read and write pointers of transmit and receive FIFO buffers.

Writing a 0 to the SPICT<TXE> bit stops data transmission after transmitting the UNIT data that is currently being transmitted. Then, writing a 1 to the SWRST bit invalidate the data in the transmit FIFO buffer. Therefore, the data is not output even if the data transmission is restarted after performing a software reset.Do not write a 1 to the SWRST bit in the middle of data transmission.

In case of performing data reception, the received data contained in the receive FIFO buffer becomes invalid.

However, when performing Sequential-mode data reception, data reception continues even if the data in the receive FIFO buffer becomes invalid. Therefore, stop data reception by writing a 0 to the SPICT<RXE> bit after receiving the data that is currently being received. Then, (after confirming there is no UNIT data currently being received, or) the receive operation can be stopped completely by writing a 1 to the SWRST bit after checking no UNIT data in receiving (namely after REND interrupt or the time to receive 1UNIT).

Do not write a 1 to the SWRST bit during a data reception. Software reset can be performed in a single-shot operation, which is to write a 1 to the SWRST bit (it is not required to write a 0 to the SWRST bit). Simultaneous writing of 1s to the XEN and SWRST bits is also supported.

(i) XEN

This bit enables or disables the internal clock signal. Always set this bit to 1 when using the SPI controller.

(j) CLKSEL2:0

This bti selects the baud rate. The baud rate is generated using the system clock fsys and is programmable as shown below according to the system clock settings.

Data transmission or reception must not be performed while changing the state of these bits

Note: The SD card of the TMP92CF26A supports a baud rate of up to 20 Mbps. This field should be programmed so that SPCLK signal does not exceed 20 MHz When setting the baud rates, select less than 20 Mbps according to the operation speed of CPU (f_{SYS}).

Baud Rate [Mbps] <CLKSEL2:0> fsys = 60 MHz fsys = 80 MHz f_{SYS}/2 f_{SYS}/3 20 f_{SYS} /4 15 20 f_{SYS} /8 7.5 10 f_{SYS} /16 3.75 5 1.25 f_{SYS} /64 0.9375 f_{SYS} /256 0.234375 0.3125

Table 3.17.1 Example of Baud Rate

(2) SPI Control Register (SPICT)

The SPICT register specifies data length, CRC, etc.

00	\sim τ	- · ·
SP	ICT.	Register

		7	6	5	4	3	2	1	0
SPICT	Bit Symbol	CEN	SPCS_B	UNIT16	TXMOD	TXE	FDPXE	RXMOD	RXE
(822H)	Read/Write				R	/W			
	Reset State	0	1	0	0	0	0	2 0	0
	Function	Communicati-	SPCS Pin	Data Length	Transmit	Transmission	Alignment	Receive	Receive
		on	Control	Select	Mode Select	Enable	Enable in	Mode Select	Enable
		Control	0: Set to "0"	0: 8 bits	0: UNIT	0: Disable	Fullduplex	0: UNIT	0: Disable
		0: Disable	1: Set to "1"	1: 16 bits	1: Sequential	1: Enable	mode	1: Sequential	1: Enable
		1: Enable				/	0: Disable		
						(1: Enable		
		15	14	13	12	11	10	9	8
	Bit Symbol	CRC16_7_B	CRCRX_TX_B	CRCRESET_B		\mathcal{H}		4	
(823H)	Read/Write		R/W						
	Reset State	0	0	0					2
	Function	CRC Select	CRC Data	CRC		$(\vee/)$	\Diamond	$(\bigcirc)/$	
		0: CRC7	0: Transmit	Calculation			` <	751	//
		1: CRC16	1: Receive	Register	7			110	
				Control	4			\bigcap	
				0: Reset		~			
				1:Reset			(070		
				Release			$(\vee \langle \ \rangle)$		

Figure 3.17.6 SPICT Register

(a) CRC16_7_B

This bit selects the CRC calculation algorithm from the CRC7 and CRC16.

(b) CRCRX_TX_B

This bit selects the data to be sent to the CRC generator. When CRCRX_TX_B = 0, the CRC calculation is performed on the transmit data. Otherwise, it is performed on the received data.

(c) CRCRESET_B

This bit is used to initialize the CRC calculation register.

This section describes how to calculate the CRC16 of the transmit data and to append the calculated CRC value at the end of the transmit data. Figure 3.17.7 below illustrates the flow chart of the CRC calculation procedures.

- (1) Program the SPICT<CRC16_7_B> bit to select the CRC algorithm from CRC7 and CRC16. Then, also program the CRCRX_TX_B bit to specify the data on which the CRC calculation is performed.
- (2) To reset the SPICR register, write a 0 to the CRCRESET_B bit and then write a 1 to the same bit.
- (3) Load the SPITD register with the transmit data, and wait until transmission of all data is completed.
- (4) Read the SPICR register and obtain the result of the CRC calculation.
- (5) Transmit the CRC obtained in step (4) in the same way as step (3).

The CRC calculation on the receive data can be performed in the same procedures.

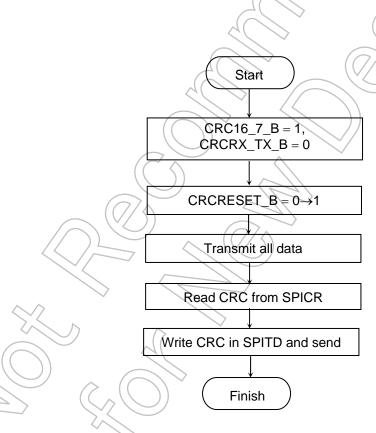


Figure 3.17.7 Flow Chart of the CRC Calculation Procedures

(d) CEN

This bit enables or disables the pins for the SD card and MMC connections.

When the card is not inserted or when it is not powered on, a shoot through current might flow in the SPDI pin, for it enters the floating state. Also, currents may unintentionally flow into the card from the \overline{SPCS} , SPCLK and SPDO pins when they generate a logic 1. This bit can be used to avoid these problems.

If write <CEN> to "0" with PRCR and PRFC selecting SPCS, SPCLK, SPDO and SPDI signal, SPDI pin is prohibited to input (avoiding penetrated current) and SPCS, SPCLK, SPDO pin become high impedance.

When writing a 1 to the CEN bit, ensure that a card is properly inserted and powered on, as well as that the clock signal is supplied to the SPIC (SPIMD<XEN> = 1).

(e) SPCS B

This bit specified the logic stateof the SPCS output.

(f) UNIT16

This bit selects the data length for transmission and reception. The data length is hereafter refered to as the UNIT. Data transmission or reception must not be performed while changing the state of this bit

(g) FDPXE

This bit should be set to 1 when performing the full duplex communication. This bit specifies whether to align the transmit and receive data on the UNIT-size boundaries.

Data transmission or reception must not be performed while changing the state of this bit.

(h) TXMOD

This bit selects the data transmission mode from UNIT and Sequential modes. During transmission, it is prohibited to change the transmission mode from Sequential to UNIT, or vice versa.

For UNIT mode transmission, the transmit FIFO buffer is disabled. The TEMP interrupt is generated when the data is loaded from the transmit data register (SPITD) to the transmit shfit register.

For sequential-mode transmission, the 32-byte FIFO is enabled. The TEMP interrupt is generated when the empty space of the FIFO becomes 16 bytes or 32 bytes.

(i) TXE

This bit enables or disables data transmission. Data transmission is started when this bit set to 1 after loading the transmit data into the transmit FIFO, or when loading the transmit data to the transmit FIFO when this bit is already set to 1. The state of this bit can be changed even during data transmission. If this bit is cleared to 0 during a data transmission, the transmission is stopped after completing the transmission of the UNIT data currently being transmitted.

Important Note:

When in UNIT mode (TXMOD = 0), the following restriction is imposed on the system operation.

When the SPICT<TEX> bit is set to 1, the state of any bits must not be changed until the data transmission is completed.

```
Sample Program 1:
         LD
                      (SPITDx), A
                                          ; Load the tranmit data
         DI
                                          ; Disable the interrupt
                                          ; Start transmission by setting the TXE bit to 1
         SET 3,
                      (SPICT)
Wait:
         BIT 1,
                       (SPIST)
                                          ; Wait for the completion of the transmission
         JPZ.
                      Wait
                                          ; Disable the transmission by clearing the TXE bit to 0
         RES 3,
                      (SPICT)
                                          ; Enable the interrupt
Sample Program 2 (Recommend):
         Check the transmission end flag. (SPIST<TEND> = 1)
                                        ; Load "A" the tranmit data
         LD
                    (SPITDx), A
         DI
                                          Disable the interrupt
         SET 3,
                    (SPICT)
                                         Start transmission be setting the TXE bit to 1
                    (SPICT)
                                         Disable the transmission by clearing the TXE bit to 0
         RES 3.
                                          Enable the interrupt
         ΕI
```

(j) RXMOD

This bit selects the data reception mode from UNIT and Sequential modes. During reception, it is prohibited to change the reception mode from Sequential to UNIT, or vice versa.

For UNIT mode reception, the receive FIFO buffer is disabled and the RFUL interrupt is generated when the received data is loaded from the receive shift register to the receive data register (SPIRD).

For sequential-mode reception, the 32-byte receive FIFO is enabled and the RFUL interrupt is generated when the size of received data stored in the receive FIFO reaches 16 or 32 bytes.

(k) RXE

In the UNIT–mode reception, writing a 1 to this bit enables the reception of only one UNIT-size data.

When reading the receive data register (SPIRD) while this bit is kept enabled, one more UNIT data is additionally received.

In Sequential mode, writing a 1 to this bit enables the sequential data reception until the 32-byte FIFO buffer becomes full. The state of this bit can be changed even during the data reception. If this bit is cleared to 0 during a data reception, the reception is stopped after completing the reception of the UNIT data currently being received.

[Data Transmission/Reception Modes]

This SPI Controller supports six operating modes as listed below.

These are specified by the FDPXE, RXMOD, RXE, TXMOD, TXE bits.

Table 3.17.2 Data Transmission Reception Modes

Operatiing Mode		Bit	Settings	3		Description
Operating Mode	<fdpxe></fdpxe>	<txmod></txmod>	<txe></txe>	<rxmod></rxmod>	∢RXE>	Bosoliption
(1) UNIT transmission	0	0	1	4(x)	Х	Transmit the SPITD data per UNIT
(2) Sequential transmission	0	1	1 _	X	х	Transmit the FIFO data sequentially
(3) UNIT reception	0	Х	x	Q	1	Receive only one UNIT-size data
(4) Sequential reception	0	х	×	ĭ	1	Automatically receive data if FIFO buffer
				\searrow		has any empty space
(5) UNIT transmission and	1	0	=	0	1	Transmit/receive one UNIT-size data with
reception		((the addresses of transmit/receive data
						aligned on UNIT-size boundaries
(6)Sequential transmission	1	(1-/ \	1	1 🔷	1	Transmit/receive data sequentially with the
and reception)			addresses of transmit/receive data aligned
			7			on UNIT-size boundaries

TOSHIBA

Differences Between the UNIT-mode and Sequential-mode transmissions

The UNIT mode for the data transmission can be selected by writing a 0 to the SPICT<TXMOD> bit.

The transmit FIFO buffer is disabled in UNIT mode. The UNIT-mode transmission starts when the UNIT-size data is loaded into the SPITD register where SPICT<TXE> = 1, or when the SPICT<TXE> is set to 1 after loading one UNIT-size data into the SPITD register. During the data transmission, it is prohibited to change the transmission mode from Sequential to UNIT, or vice versa.

In the UNIT-mode transmission, the TEMP interrupt is generated when the transmit data is loaded from the transmit data register (SPITD) to the transmit shift register. Also, the TEND interrupt is generated upon completion of the transmission of the last UNIT data.

Important Note:

In case of using UNIT mode: TXMOD=0, there is one restriction.

Don't touch to all other SFRs, TXE=1 and UNIT transmission will finish completely.

```
Program Sample1:
         LD
                      (SPITDx), A
                                           "A" is tranmission data
         DI
                                           Disable Interrupt
                      (SPICT)
                                          TXE=1: Enable and Start
         SET 3,
                                          ; Wait to finish transmission.
Wait:
         BIT 1,
                      (SPIST)
         JPZ,
                      Wait
                       (SPICT)
         RES 3.
                                          ; TXE=0: Disable
                                          ; Enable Interrupt
         ΕI
Program Sample2 (Recommend):
         Check to transmission end flag! (SPIST<TEND>=1)
         LD
                    (SPITDx), A
                                          "A" is tranmission data
         DL
                                        ; Disable Interrupt
         SET 3,
                    (SPICT)
                                         ; TXE=1: Enable and Start
         RES 3,
                                        ; TXE=0: Disable
                    (SPICT)
         ĚΙ
                                        ; Enable Interrupt
```

The Sequential mode for the data transmission can be selected by writing a 1 to the SPICT<TXMOD> bit. The 32-byte FIFO is enabled in Sequential mode.

In this mode, the data writes to the transmit FIFO must be performed in 16-byte units. Otherwise, the TEMP interrupt is not properly generated.

In the Sequential-mode transmission, transmit data written into the SPITD is loaded sequentially when SPICT<TXE> = 1. The transmission in this mode can also be started by setting the SPICT<TXE> bit to 1 after writing the transmit data into the transmit FIFO. The transmit data is transmitted in the same order as they were written into the FIFO.

This mode of transmission keeps transmitting data as long as the transmit data exists. Therefore, the Sequential-mode transmission continues as long as the transmit FIFO (32 bytes) has any valid data. During the data transmission, it is prohibited to change the transmission mode from Sequential to UNIT, or vice versa.

The state of the SPICT<TXE> bit can be changed even during the data transmission. Writing a 0 to the SPICT<TXE> bit during a transmission stops the transmission after completing the transmission of the UNIT data currently being transmitted.

The TEMP interrupt is generated when the empty space size of the FIFO becomes 16 or 32 bytes. The TEND interrupt is generated upon completion of the transmission of the last UNIT data.

Differences Between the UNIT-mode and Sequential-mode Receptions

The UNIT-mode reception receives only one UNIT-size data. The UNIT mode for the data reception can be selected by writing a 0 to the SPICT<RXMOD> bit.

The receive FIFO is disabled in UNIT mode. Writing a 1 to the SPICT<RXE> bit initiates a receive operation of one UNIT data. Then, the transmission is terminated after storing the received data into the receive data register (SPIRD). To perform one-UNIT data reception, read the SPIRD register after writing a 0 to the SPICT<RXE> bit. If the SPIRD register is read again when the SPICT<RXE> bit is set to 1, one-UNIT data is additionally received. During the data reception, it is prohibited to change the reception mode from Sequential to UNIT, or vice versa.

In this mode, the RFUL and REND interrupts are generated when the receive data is loaded into the SPIRD register from the receive shift register.

The Sequential-mode reception automatically receives the data as long as the receive FIFO has any empty space. The Sequential mode is selected by writing a 1 to the SPICT<RXMOD> bit.The 32-byte receive FIFO is disabled in this mode. In this reception mode, the data reads from the receive FIFO must be performed in 16-byteunits. Otherwise, the RFUL interrupt is not properly generated.

Received data is stored into the receive FIFO by writing a 1 to the SPICT<RXE> bit.

This mode of receptionkeeps receiving the next data automatically unless the data receive FIFO becomes full (32 bytes). Therefore, the reception continues sequentially without stopping at every UNIT-sized reception. During the data reception, it is prohibited to change the reception mode from Sequential to UNIT, or vice versa.

Writing a 0 to the SPICT<RXE> bit during a receptionstops the data reception after completingthe reception of the UNIT data currently being received.

The RFUL interrupt is generated when the size of data stored into the FIFO reaches 16 or 32 bytes. The REND interrupt is generated when the 32-byte receive FIFO becomes full.



Transmit and Receive Operation

When performing a data transmissionand reception simultaneously, the FDPXE bit must be set to 1.

Write a 1 to the SPICT<RXE> bit after writing a 1 to the FDPXE bit to put the receiver into standby mode for the UNIT-mode reception. Writing a 1 to the SPICT<RXE> bit after writing a 1 to the <FDPXE> bit does not immediately initiate the receive operation. This is because the data to be transmitted at the same time has not been prepared. Transmit and receive operation is started only after the transmit data is written into the SPITD register where SPICT<TXE> = 1.

The figure below shows the operations of the receiver and transmitter for the simultaneous transmit and receive operation.:

Note: If the data transmission and reception are not performed simultaneously, data communication should be performed with the FDPXE bit cleared to 0.

Figure 3.17.8 Transmit and Receive Operation

(3) Interrupts

The SPIC generates two types of interrupt requests to the Interrupt Controller (INTC), which are the transmit interrupt (INTSPITX) and receive interrupt (INTSPIRX) requests. Also, the SPIC has four types of interrupts; two for transmission and two for reception.

(a) Transmit interrupts

TEMP (Transmit FIFO Empty interrupt) and TEND (Transmit End interrupt)

As for the TEMP interrupt, the timing of the interrupt generation differs depending on the transmission mode, which is UNIT or Sequential.

In the Sequencial-mode transmission, the data writes to the transmit FIFO must be performed in 16-byte units. Otherwise, the TEMP interrupt is not properly generated.

UNIT-mode transmission

Since the transmit FIFO is disabled in this mode, the TEMP interrupt is generated when the data written in the transmit data register (SPITD) is loaded into the transmit shift register.

The TEND interrupt is generated when the transmission of the last UNIT data is completed with the FIFO being empty (i.e., after the falling edge of the last bit clock where SPIMD<TCPOL> = 0).

Sequential-mode transmission

The TEMP interrupt is generated by the following two conditions: One is when the empty space size of the transmit FIFO reaches 16 bytes, and the other is when it reaches 32 bytes.

The TEND interrupt is generated when the transmission of the last UNIT data is completed with the FIFO being empty (i.e., after the falling edge of the last bit clock where SPIMD<TCPOL $> \neq 0$).

(b) Receive interrupts

RFUL (Receive FIFO interrupt) and REND (Receive End interrupt).

As for the RFUL interrupt, the timing of the interrupt generation differs depending on the reception mode; which is UNIT or Sequential.

In the Sequencial-mode transmission, the data reads from the receive FIFO must be performed in 16-byte units. Otherwise, the RFUL interrupt is not properly generated.

<u>UNIT-mode reception</u>

Since the receive FIFO is disabled in this mode, the RFUL interrupt is generated at the same timing as the REND interrupt is generated.

The RFUL and REND interrupts are generated when the data is loaded from the receive shift register into the receive data register (SPIRD).

Sequential-mode reception

The RFUL interrupt is generated by the following two conditions: One is when the size of data stored into the receive FIFO reaches 16 bytes, and the other is when it reaches 32 bytes.

The REND interrupt is generated when the 32-byte receive FIFO becomes full.

(3-1) SPI Status Register (SPIST)

The SPIST register contains three bits that indicates the status of data communication.

SPIST Register 7 6 5 3 2 1 0 Bit Symbol **TEMP TEND** REND Read/Write R Reset State 0 Function Transmit Transmission Reception FIFO Status Status Status 0 0: Reception in progress 0: No empty Transmission space in progress or not having receive data 1: Hasan or having empty space transmit data 1: Reception Ended or FIFO full Transmission 15 14 13 12 11 10 9 8 Bit Symbol Read/Write Reset State Function

Figure 3.17.9 SPIST Register

(a) TEMP

SPIST

(824H)

(825H)

For UNIT-mode transmission, this bit is cleared to 0 when the transmit register (SPITD) contains valid data; otherwise, it is set to 1.

For Sequential mode transmission, this bit is set to 1 when the transmit FIFO buffer contains no valid data.

(b) TEND

This bit is cleared to 0 when the SPITD register or the transmit FIFO contains valid transmit data, and also when the transmission is in progress. This bit is set to 1 after completing the data transmission where the SPITD register and the transmit FIFO contain no valid data.

(c) REND

For UNIT-mode reception, this bit is set to 1 when completing the data reception and valid data is stored into the receive data register (if there is any valid data). This bit is cleared to 0 when the receive register (SPIRD) contains no valid data, or when the reception is in progress.

For Sequential-mode reception, this bit is set to 1 when the 32-byte receive FIFO is full with the valid data after completing the reception of the last data. This bit is cleared to 0 when there is still an empty space of one byte or more in the FIFO.

The RFUL flag does not exist because its function is exactly the same as the REND flag.

SPIIE (82CH)

(82DH)

(3-2) SPI Interrupt Enable Register (SPIE)

The SPIIE register enables or disables the generation of four types of interrupts.

			SPII	E Registe	r			
	7	6	5	4	3	2	1	0
Bit Symbol					TEMPIE	RFULIE	TENDIE	RENDIE
Read/Write						R	W	
Reset State					0	0	2	0
Function					TEMP	RFUL	TEND	REND
					interrupt	interrupt	interrupt	interrupt
					0:Disable	0:Disable	0:Disable	0:Disable
					1:Enable	1:Enable	1:Enable	1:Enable
	15	14	13	12	11	10	9	8
Bit Symbol						THE STATE OF THE S		
Read/Write							\sim	
Reset State					\mathcal{H}		7	
Function						> \\		

Figure 3.17.10 SPIIE Register

(a) TEMPIE

This bit enables or disables the TEMP interrupt.

(b) RFULIE

This bit enables or disables the RFUL interrupt.

(c) TENDIE

This bit enables or disables the TEND interrupt.

(d) RENDIE

This bit enables disables the REND interrupt.

Note: The SPIC supports four types of interrupts; two transmit interrupts (TEMP, and TEND, both of which causes the generation of the INTSPITX interrupt request) and two receive interrupts (RFUL and REND, both of which causes the generation of the INTSPIRX interrupt request). However, for the proper operation, select either one of the TEMP and TEND interrupts and also select either one of the RFUL and REND interrupts. (Simultaneous use of the TEMP and TEND interrupts is prohibited, as well as the simultaneous usage of the RFUL and REND interruptsy.)

00100 D - - '- (- -

(4) SPI CRC Register (SPICR)

The SPICR register contains the CRC calculation result for transmit/receive data.

ĺ	SPICR Register											
	7	6	5	4	3	2	1	0				
Bit Symbol	CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0				
Read/Write		R										
Reset State	0	0	0	0	0	0	20	0				
Function	CRC result bits [7:0]											
	15	14	13	12	11	10	9	8				
Bit Symbol	CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8				
Read/Write	R											
Reset State	0	0	0	0	0 (Ø	0	0				
Function	CRC result bits [15:8]											

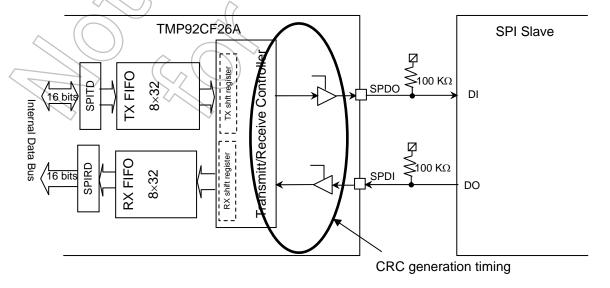
Figure 3.17.11 SPICR Register

(a) CRCD15:0

SPICR (826H)

(827H)

The CRC result which is calculated according to the settings of the CRC16_7_b, CRCRX_TX_B and CRCRESET_B bits in the SPICT register are loaded into this register. When using the CRC16 algorithm, all the bits participate in the CRC generation. When using the CRC7 algorithm, only the lower seven bits participates in the CRC generation. The following describes the steps required to calculate the CRC16 for the transmit data.


First, initialize the CRC calculation register by writing a 1 to the CRCRESET_B bit after programming three bits as follows: CRC16_7_b = 1, CRCRX_TX_B = 0, and CRCRESET_B = 0.

Then, by writing the transmit data into the SPITD register, complete the transmission of all bits, for which the CRC should be calculated.

The SPIST<TEND> bit should be checked to confirm whether the reception is completed.

By reading the SPICR register after the transmission is completed, the CRC16 for the transmit data can be obtained.

Note: The CRC is generated upon data input and output of the TMP92CF26A as illustrated below. The timing of the CRC comparison should be fully considered when performing Sequential-mode transmit and receive operation using the FIFOs.

TOSHIBA

(5) SPI Transmit Data Register (SPITD)

The SPITD0 and SPITD1 registers are used for writing the transmit data.

SPITD0 Register

SPITD0 (830H)

	7	6	5	4	3	2	1	0			
Bit Symbol	TXD7	TXD6	TXD5	TXD4	TXD3	TXD2	TXD1	TXD0			
Read/Write		R/W									
Reset State	0	0	0	0	0	0	20	0			
Function		Transmit data bits [7:0]									
	15	14	13	12	11	10	9	8			
Bit Symbol	TXD15	TXD14	TXD13	TXD12	TXD11	TXD10	TXD9	TXD8			
Read/Write	RW										
Reset State	0	0	0	0	0 (0	0	0			
Function	Transmit data bits [15:8]										

(831H)

SPITD1

(832H)

(833H)

	SPITD1 Register												
	7	6	5	4	3	> 2	1	0					
Bit Symbol	TXD7	TXD6	TXD5	TXD4	TXD3	TXD2	(TXD1)	TXD0					
Read/Write		RW											
Reset State	0	0	0	0/	0	0	6	0					
Function		Transmit data bits [7:0]											
	15	14	13	12	11	10	9	8					
Bit Symbol	TXD15	TXD14	TXD13	TXD12	TXD11	TXD10	TXD9	TXD8					
Read/Write		RW											
Reset State	0	0	0/	0	// 0	0	0	0					
Function	Transmit data bits [15:8]												

Figure 3.17.12 SPITD Register

This register is used for writing the transmit data. When this register is read, the last-written data is read out. This register is overwritten if the next data is written with the transmit FIFO being full.

Since the transmit data registers can contain data of up to four bytes, it can support write operations that are performed by using four-byte instructions, such as the parallel operation of the SPI and DMA.

When writing the data, the transmit data at the address 830 must always be the first to be written.

There are several restrictions of the data writing methods (i.e., instructions to be used). For more details, please refer to the following table.

Transmit Data Write Size	Instruction		Transmission isabled)	Sequential-mode Transmission (FIFO Enabled)		
	Instruction Example	1-byte transmission unit16 = 0	2-byte transmission unit16 = 1	1-byte transmission unit16 = 0	2-byte transmission unit16 = 1	
1-byte write	ld (0x830),a	0	•	Prohibited	•	
2-byte write	ld (0x830),wa	•	0	0	0	
4-byte write	ld (0x830),xwa	•	•	0	0	

o: All data that are written by the CPU are transmitted.

^{•:} Invalid data are also transmitted along with the data written by the CPU.

TOSHIBA

(6) SPI Receive Data Register (SPIRD)

The SPIRD0 and SPIRD1 registers are used for reading the received data.

				SPIRI	D0 Registe	er					
		7	6	5	4	3	2	1	0		
SPIRD0	Bit Symbol	RXD7	RXD6	RXD5	RXD4	RXD3	RXD2	RXD1	RXD0		
(834H)	Read/Write				F	₹					
	Reset State	0	0	0	0	0	0	<u> </u>	0		
	Function		Receive data bits [7:0]								
		15	14	13	12	11	10	9	8		
(835H)	Bit Symbol	RXD15	RXD14	RXD13	RXD12	RXD11	RXD10	RXD9	RXD8		
	Read/Write				F	₹					
	Reset State	0	0	0	0	0 (0	0	0		
	Function				Receive dat	a bits [15:8]	()				

				SPIRI	D1 Registe	er			
		7	6	5	4	3	> 2	T	0
SPIRD1	Bit Symbol	RXD7	RXD6	RXD5	RXD4	RXD3	RXD2	RXD1	RXD0
(836H)	Read/Write					₹		170/	
	Reset State	0	0	0	0	0	0	6	0
	Function				Receive da	ta bits [7:0]	(C	\bigcirc	
		15	14	13	12	11	10	9	8
(837H)	Bit Symbol	RXD15	RXD14	RXD13	RXD12	RXD11	RXD10	RXD9	RXD8
	Read/Write				F	?			
	Reset State	0	0	0	0	// 0	0	0	0
	Function				Receive dat	ta bits [15:8]			
		•	•		•		//	•	

Figure 3.17.13 SPIRD Register

This register is used for reading the received data. Please check the state of the RFUL or REND bit before starting a read operation.

Since the receive data registers can contain data of up to four bytes, it can support read operations that are performed by using four-byte instructions, such as the parallel operation of the SPI and DMA.

When reading the data, the receive data at the address 834 should be the first to be read. (There are some exceptions.)

There are several restrictions of the data reading methods (i.e., instructions to be used). For mode details, please refer to the following table.

Receive Data	Instruction		le Reception Disabled)	Sequential-mode Reception (FIFO Enabled)		
Read Size	Example	1-byte reception unit16 = 0	2-byte reception unit16 = 1	1-byte reception unit16 = 0	2-byte reception unit16 = 1	
1-byte read	ld a,(0x834)	0	0	Prohibited	Prohibited	
	ld a,(0x835)	•	0	Prohibited	Prohibited	
2-byte read	ld wa,(0x834)	♦ *1	0	0	0	
4-byte read	ld xwa,(0x834)	♦ *2	♦ *3	0	0	

- o: Only the valid data are read when the CPU is reading.
- ♦: Valid data + invalid data are read when the CPU is reading. Invalid data must be deleted later.
- •: Only the invalid data are read when the CPU is reading.
- *1: Address 834 = Valid data, address 835 = Invalid data,
- *2: Address 834 = Valid data, address 835 = Invalid data, address 836 = Invalid data, address 837 = Invalid data
- *3: Address 834 = Valid data, address 835 = Valid data, address 836 = Invalid data, address 837 = Invalid data

3.17.3 Notes on the Operations Using the FIFO Buffers

Things to be noted when using the SPIC are as follows:

1) Transmission

The transmit FIFO buffer is overwritten if the new data is written with the transmit FIFO buffer being full. Also, since the FIFO write pointer does not point to the correct write position, interrupts and transmissions are not properly executed. Therefore, the number of writes should be controlled by using software.

In the Sequential-mode transmission, the data writes to the transmit FIFO must be performed in 16-byte units. Otherwise, the TEMP interrupt is not properly generated.

Note: For data transmission in units of other than 16 bytes, UNIT mode must be selected.

2) Reception

If a read operation is performed when the receive FIFO is empty, undefined data is read. Also, since the FIFO read pointer does not point to the correct read position, interrupts and receptions are not properly executed. Therefore, the number of reads should be controlled by using software.

In the Sequential-mode reception, the data reads from the receive FIFO must be performed in 16-byte units. Otherwise, the RFUL interrupt is not properly generated.

Note: For data reception in units of other than 16 bytes, UNIT mode must be selected.

3) CRC

The CRC is generated upon transmission and reception to/from the SPI slave device. (Refer to the section on the SPICRC register fro more details.) The timing of the CRC comparison should be fully considered when performing Sequential-mode transmit and receive operation using the FIFOs.

Example: Sequential-mode reception

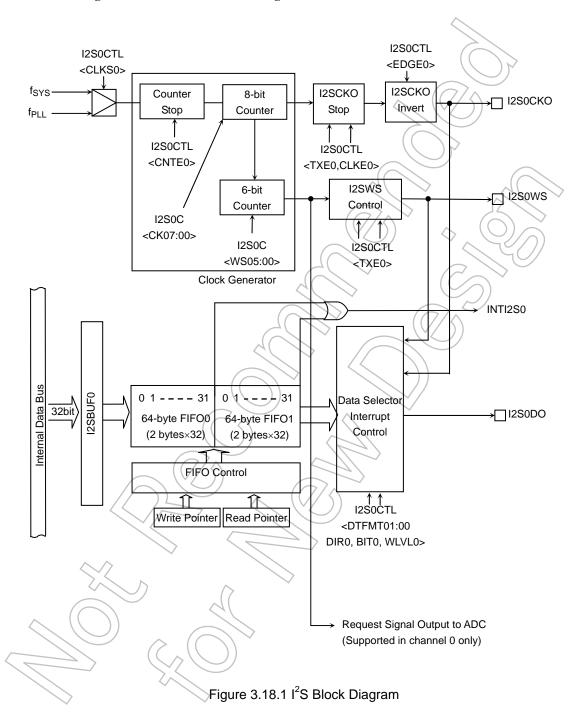
- 1. Start Sequential-mode reception
- 2. finish valid data receive (FIFO_Full)
- 3. Stop data reception
- 4. Read valid data from the FIFO to a temporary buffer (internal RAM, etc.)
- 5. Read CRC1 from the CRC generator in the SPIC
- 6. Start CRC2 reception (upon UNIT-mode reception from the SD-CARD)
- 7. Compare CRC1 and CRC2

Note: The steps 2 to 4 of the above sequence can be used DMAC. However, to perform the CRC comparison, the receive operation must be stopped once as described in step 3. Otherwise, the CRC1 value obtained from the internal CRC generator unintentionally contains CRC2 as well as the valid data, which leads to an incorrect CRC comparison.

3.18 I²S (Inter-IC Sound)

The TMP92CF26A incorporates serial output circuitry that is compliant with the I^2S format. This function enables the TMP92CF26A to be used for digital audio systems by connecting an LSI for audio output such as a DA converter.

The I^2S unit has the following features:


Table 3.18.1 I²S Operation Features

Item	Description
Number of Channels	2 channels
Format	1 ² S-format compliant
	Right-justified and left-justified formats supported
	Stereo / monaural
	Master transmission only
Pins used	1. I2SnCKO (clock output)
	2. I2SnDO (output)
	3. I2SnWS (Word Select output)
WS frequency	Refer to "Setting the transfer clock generator and Word Select signal".
Data transfer rate	Refer to Setting the failster clock generator and word Select signal .
Transmission buffer	64 bytes × 2
Direction of data	MSB-first or LSB-first selectable
Data length	8 bits or 16 bits
Clock edge	Rising edge or falling edge
Interrupt	INTI2Sn
	(64-byte FIFO empty interrupt)

3.18.1 Block Diagram

The I²S unit contains two channels: channel 0 and channel 1. Each channel can be controlled and made to output independently.

Figure 3.18.1 shows a block diagram for I²S channel 0.

3.18.2 SFRs

Read/Write

Reset State

Function

cannot be

performed

The I²S unit is provided with the following registers. These registers are connected to the CPU via a 32-bit data bus. The transmission buffers I2S0BUF and I2S1BUF must be accessed using 4-byte load instructions.

I2S0 Control Register 7 2 6 1 0 I2S0CTL TXE0 *CNTE0 DIR0 DTFMT01 DTFMT00 SYSCKE0 it Symbol BIT0 (1808H) Read/Write R/W R/W Reset State 0 0 0 0 Bit length Output format System Function Transmission Counter Transmission clock 00: I2S 10: Right 0: 8 bits 0: Stop control start bit 0:MSB 1: 16 bits 01: Left 11: Reserved 0: Disable 1: Start 0: Clear 1:LSB 1: Enable 1: Start 15 14 13 12 11 10 9 8 CLKS0 FSEL0 TEMP0 **WLVL0** EDGE0 CLKE0 (1809H) bit Symbol Read/Write R/W R/W R/W R Reset State /1 0 / (0) 0 0 0 Function Source Stereo Transmission WS level Data output Clock clock FIFO state clock edge /monaural 0: Low left operation 0: f_{SYS} 0: Stereo 0: Data 1: High left 0: Falling (after 1: f_{PLL} 1: Monaural 1: No data 1: Rising transmission) 0: Enable 1: Disable 12S0 Divider Value Setting Register 7 5 6 4 2 1 0 I2S0C CK07 CK06 CK05 CK04 CK03 CK02 CK01 CK00 oit Symbol Read/Write R/W (180AH) Reset State 0 0 0 0 0 0 0 unction Divider value for CK signal (8-bit counter) 14 15 13 12 11 10 9 8 WS05 WS04 WS03 WS02 WS01 WS00 (180BH) Bit symbol Read/Write R/W Reset State 0 0 0 Divider value for WS signal (6-bit counter) -unction< I2S0 Buffer Register 4 15 14 13 12 11 10 6 5 3 2 0 bit Symbol I2S0BUF B014 B010 B007 B015 B013 B012 B011 B009 B008 B006 B005 B004 B003 B002 B000 (1800H) Read/Write W Reset State Undefined A read-Function Transmission buffer register (FIFO) modify-30 27 26 25 24 23 22 20 19 16 31 29 28 21 18 write B030 bit Symbol B031 B09 B028 B027 B026 B025 B024 B023 B022 B021 B020 B019 B018 B017 B016 operation

Figure 3.18.2 I²S Channel 0 Control Registers

W

Undefined

Transmission buffer register (FIFO)

The I^2S unit is provided with the following registers. These registers are connected to the CPU via a 32-bit data bus. The transmission buffers I2S0BUF and I2S1BUF must be accessed using 4-byte load instructions.

						12	S1 C	ontrol	Regi	ister							
		7		6		5	5	4			3		2 <		1		0
I2S1CTL	bit Symbol	TXE1		*CNT	E1			DIF	₹1	В	IT1	DTF	MT11	TD<	EMT10	SY	SCKE
(1818H)	Read/Write		R/V	٧								R	/W (
	Reset State	0		0		_		C)		0		0		0)		0
	Function	Transmiss		Counte				Transm		Bit le	-		ut form	< \		Sys	
		0: Stop		control				start b		0: 8 b		00: I ²	\ <	10: R	-	cloc	
		1: Start		0: Clea				0: MSE		1:16	oits	01: L	ett	11:Re	eserved		isable
		15		1: Star 1 4		1:	3	1: LSB		,	11		10		9	1: E	nable 8
(1819H)	bit Symbol	CLKS1			•		<u>, </u>	FSE			MP1		.VL1	E	OGE1	1	LKE1
(101911)			<u>_</u>	_			_				- 1	VVL	_VLI		3/W	/0	FLUE
	Read/Write	R/W		_		_	$\overline{}$	R/			R	>	^	- '			
	Reset State	0					<u> </u>	Ctanaa			1	1	0	D.	0		0
	Function	Source clock						Stereo /mona		FIFO	mission		w left		coutput cedge	411	ration
		0: f _{SYS}						0: Ster		0: Da			gh left	0: Fa	7	(afte	
		1: f _{PLL}						1: Mor				1.1110	JII IOIL	1: Ri	\	`	smis-
		1. IPLL						1. 100	laulai	5	uata			((ch	Sirig	sion	
																	nable
									$\backslash \backslash$			((/	$// \wedge$				isable
		7		6		((5		/alue :			3		2		1		0
I2S1C	bit Symbol	CK17		CK′	16	CK	15	CK	14	CI	K 13	/ CI	K12	C	K11	(CK10
(181AH)	Read/Write				(C	$^{\prime}$ \wedge			<	R	2/W						
	Reset State	0		0		0 0				0		0		0	0		
	Function				$\overline{\mathcal{I}}$		Divider	value	or CK	signa	l√8-bit	counte	er)				
		15		(1/	()	1	3	1	12 11		11	10			9		8
	Bit symbol	_//_	\langle		\setminus	WS15		(ws	W\$14 WS13		S13	WS12		WS11		\	NS10
(181BH)	Read/Write		4		Z_			1				/W				1	
	Reset State		-	$\overline{}$	_	(>		0		0		0		0
	Function	^		<u> </u>	ļ			D	ivider	value	for WS	signa	l (6-bit	count	er)		
			7				2S1 E	Suffer	Regis	ster							
	4	15	14	13	12	(11	10	9	8	7	6	5	4	3	2	1	0
2S1BUF	bit Symbol	B115 B	114	B113	B112	B111	B110	B109	B108	B107	B106	B105	B104	B103	B102	B101	B100
1810H)	Read/Write	_	0	>					٧	V							
< =	Reset State			~/ \		//			Unde	fined							
	Function		Transmission buffer register (FIFO)														
read-	1	31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
odify-	1000	_															
rite	bit Symbol	B131 B	130	B129	B128	B127	B126	B125	B124	B123	B122	B121	B120	B119	B118	B117	B116
peration	Read/Write	-							V								
annot be	Reset State	-							Unde								
erformed	Function	1					Tran	smissic	n buff	er regi	ister (F	IFO)					

Figure 3.18.3 I²S Channel 1 Control Registers

(a) <SYSCKEn>

This bit controls to connect source clock to I2S circuit.

In case of this circuit is operated, it must enable: <SYSCKEn>= "1". And except operating, for reduce the power consumption, we recommends to disable: <SYSCKEn>= "0".

(b) $\langle DTFMTn1:n0 \rangle$

This bit controls data format: I²S, right justify and left justify.

It is not possible to change data format during data transmission. Before changing the data format, set <SYSCKEn>= "1", <CNTEn>="0" and <TXEn>= "0".

(c) <BITn>

This bit controls data length: 8/16 bits.

It is not possible to change data length during data transmission. Before changing the data format, set <SYSCKEn>= "1", <CNTEn>= "0" and <TXEn>= "0".

(d) $\langle DIRn \rangle$

This bit controls direction: LSB_Fast or MSB_Fast

It is not possible to change data direction during data transmission. Before changing the data format, set <SYSCKEn>="1", <CNTEn>="0" and <TXEn>="0".

(e) <CNTEn>

This bit controls clock generator counter: Clear/Start.

Clock generator counter will clear by <TXEn>="0" and <CNTEn>="0", However, Clock generator counter will not clear by <TXEn>="0" and <CNTEn>="1"

(f) $\langle TXEn \rangle$

This bit controls data transmission and Fi/Fo buffer clear: Trans/Stop and Clear Transmission is stopped by <TXEn>="0", started by <TXEn>="1".

Output Fi/Fo buffer is cleared by <TXEn>="0".

(g) <CLKEn>

This bit controls CLK out period.

<CLKEn>="0": always out I2SnCKO clock, <CLKEn>="1": I2SnCKO clock out during effective data out period.

Note: In case of I²S format, firstly I2SnWS signal change and after 1clock period, effective data out. If set to <CLKEn>= "1" with I²S format, 1 clock pulse after I2SnWS don't out. It is not possible <CLKEn>="0" setting with I²S format.

(h) <EDGEn>

This bit controls relation of phase between I2SnCKO and data.

<EDGEn>="0": the data is changed in the falling of clock, and the data is latched in the rising edge of clock.

<EDGEn>="1": the data is changed in the rising of clock, and the data is latched the falling edge of clock.

It is not possible to change phase during data transmission. Before changing the data format, set <SYSCKEn>="1", <CNTEn>="0" and <TXEn>="0".

(i) <WLVLn>

This bit controls phase of Word Select signal: I2SnWS

I2SnWS signal always out "1" level first. The order of data output changes by <WLVLn>. Refer the "Fi/Fo buffer and data format" in details.

It is not possible to change phase of Word Select signal during data transmission. Before changing the data format, set <SYSCKEn>= "1", <CNTEn>= "0" and <TXEn>="0".

(j) <TEMPn>

This bit is empty flag of output Fi/Fo buffer.

<TEMPn>="1": Fi/Fo buffer is empty, <TEMPn>="0": remain data in Fi/Fo buffer.

This bit is read only. Fi/Fo buffer is cleared by <TXEn>="0"

(k) <FSELn>

This bit controls sound mode: Stereo / Monaural

<FSELn>="0": Stereo, <FSELn>="1": Monaural. Refer the chapter of "Data format" in details.

It is not possible to change sound mode during data transmission. Before changing the data format, set <SYSCKEn>="1", <CNTEn>="0" and <TXEn>="0".

(l) <CLKSn>

This bit controls source clock to I2S circuit: fsys / fpll.

<CLKSn>="0": fsys is supplied, <CLKSn>="1": fpll is supplied.

In case of using fpLL, before set fpLL clock, please take care set -up time: Lock-Up time. In details, refer the chapter of PLL, please.

(m) < CKn7:n0>

These bits are set counter value of clock generator. [I2SnCK]

It is not possible to change these counter value during data transmission. Before changing the counter value, set <SYSCKEn>="1", <CNTEn>="0" and <TXEn>="0".

(n) <WSn5:n0>

These bits are set counter value of clock generator. [I2SnWS]

It is not possible to change these counter value during data transmission. Before changing the counter value, set <SYSCKEn>="1", <CNTEn>="0" and <TXEn>="0".

3.18.3 Description of Operation

(1) Settings the transfer clock generator and Word Select signal

In the I^2S unit, the clock frequencies for the I2SnCKO and I2SnWS signals are generated using the system clock (f_{SYS}) as a source clock. The system clock is divided by a prescaler and a dedicated clock generator to set the transfer clock and sampling frequency.

The counters are started by setting I2SnCTL<CNTEn> to "1" and are stopped and cleared by setting <CNTEn> to "0".

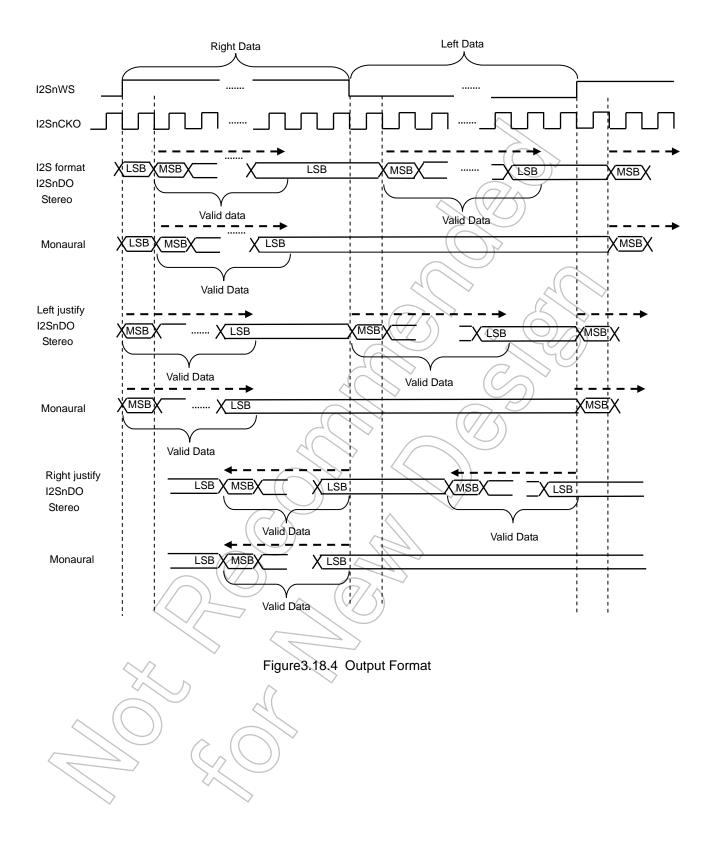
A) Clock generator

• 8-bit counter

This is an 8-bit counter that generates the I2SnCKO signal by dividing the clock selected by I2SnCTL<CLKSn>.

• 6-bit counter

This is a 6-bit counter that generates the I2SnWS signal by dividing the I2SnCKO signal.


B) Word Select

• Word Select signal (I2SnWS)

The I2SnWS signal is used to distinguish the position of valid data and whether left data or right data is being transmitted in the I2S format. This signal is clocked out in synchronization with the data transfer clock. In only channel 0, this signal can be used as an AD conversion trigger signal for the ADC. How valid data is to be output in relation to the WS signal can be specified as I2S format, left-justified, or right-justified. In only channel 0, an interrupt request can be output to the ADC on the rising edge of the WS signal. (This is controlled by the ADC's control register.)

(2) Data format

This circuit support I²S format, left justify and right justify format by setting I2SnCTL<DTFMTn1:n0> register. And support stereo and monaural both, controlled by I2SnCTL<FSELn> register.

(3) Setting example for the clock generator (8-bit counter/6-bit counter)

The clock generator generates the reference clock for setting the data transfer speed and sampling frequency.

I2S0C (180AH)

	7	6	5	4	3	2	1	0			
bit Symbol	CK07	CK06	CK05	CK04	CK03	CK02 <	CK01	CK00			
Read/Write		R/W									
Reset State	0	0	0	0	0	0 (0	0			
Function	Divider value for CK signal (8-bit counter)										
	15	14	13	12	11	107/	9	8			
Bit symbol			WS05	WS04	WS03	WS02	WS01	WS00			
Read/Write					R/	Ŵ					
Reset State			0	0	0	(0)	0	0			
Function			Divider value for WS signal (6-bit counter)								

(180BH)

Setting the transfer clock I2SnCKO

The transfer clock is generated by dividing the clock selected by I2SnCTL <CLKSn>. An 8-bit counter is provided to divide the source clock by 3 to 256. (The divider value cannot be set to 1 or 2.)

Note: The transfer clock must not exceed 10 MHz. Make sure that the transfer clock is set to within 10 MHz by an appropriate combination of source clock frequency and divider value.

8-bit counter set value	Divider value
00000000	256
00000001	1
11111111	\bigcirc 255

When $f_{SYS} = 60$ MHz and I2SnC < CKn7:0 > = 150, the data transfer speed is set as follows:

$$12$$
SnCKO = $f_{SYS}/150$
= 60 [MHz]/150 = 400 [kbps]

Note: It is recommended that the value to be set in I2SnC<CKn7:0> be an even number. Although it is possible to set an odd number, the clock duty of the CK signal does not become 50%. Setting an odd number causes the High width of the I2SnCK0 signal to become longer by one f_{SYS} or f_{PLL} pulse than the Low width. (When <EDGE> = 0, the Low width becomes longer than the High width.)

• Setting the sampling frequency WS

The sampling frequency is set by dividing the transfer clock (CK) described above. A 6-bit counter is provided to divide the transfer clock by 16 to 64. (The divider value cannot be set to 1 to 15.)

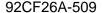
6-bit counter set value	<u>Divider value</u>
000000	64
000001	1
111111	63

When $f_{SYS} = 60$ MHz, I2SnC < CKn7:0 > = 150, and I2SnC < WSn5:0 > = 50, the sampling frequency is set as follows:

$$I2SnCKO = f_{SYS} / 150 / 50$$

= 60 [MHz] / 150 / 50 = 8 [kHz]

Based on the above, the transfer clock is set to 400 kbps, and the sampling frequency is set to 8 kHz in this example.


Note 1: The value to be set in I2SnC<WSn5:0> must be 16 or larger (18 or larger for I²S transfer) when the data length is 8 bits and 32 or larger (34 or larger for I²S transfer) when the data length is 16 bits.

Note 2: It is recommended that the value to be set in I2SnC<WSn5:0> be an even number. Although it is possible to set an odd number, the clock duty of the WS signal does not become 50%. Setting an odd number causes the High width of the WS signal to become longer by one I2SnCK0 pulse than the Low width.

• Special function

As a special function available only in channel 0, the rising edge of the WS signal can be used as an AD conversion start trigger for the AD converter in this LSI. Setting I2SOCTL<SYSKE0>=1 and I2SOCTL<CNTE0>=1 enables the WS signal to be sent to the AD converter. This can be done regardless of the setting of I2SOCTL<TXE0>.

For details about AD conversion using the WS signal, refer to the chapter on the AD converter.

(4) FIFO buffer and data format

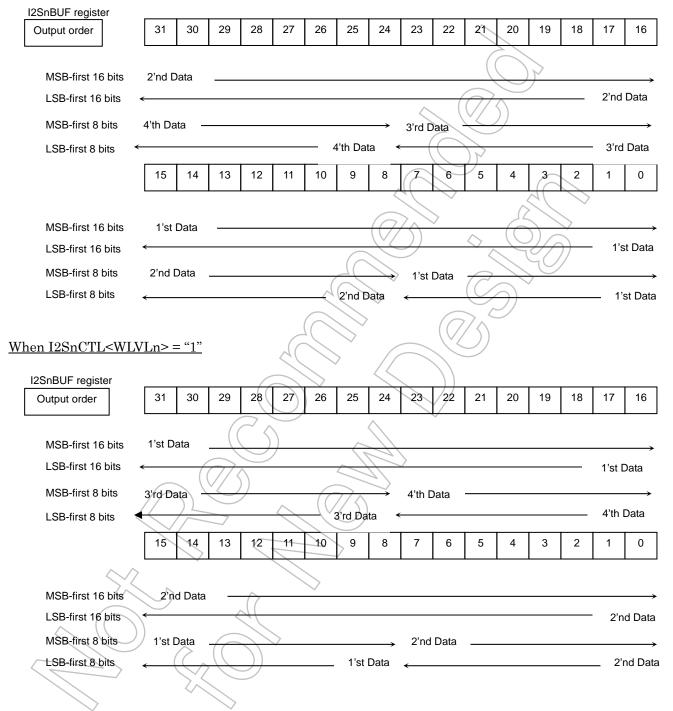
The I²S unit is provided with a 128-byte FIFO buffer (32-bit wide \times 32-entry). The data written to the 4 bytes (32 bits) of the I2SnBUF register is written to this FIFO buffer. This FIFO must be written in units of 4 bytes. It is also necessary to consider the output order and to distinguish between right data and left data.

To write data to the I2SnBUF register, be sure to use a 4-byte load instruction. If a 1-byte load instruction is used, invalid data will be transmitted. In case of using 1-byte or 2-byte transmission instruction, FIFO buffer isn't renewed and transmission isn't started.

And window addresses are 1800H (channel 0) and 1810H (channel1).

Write Data Size	Example instruction	8-bit width	16-bit width
1-byte access	ld (0x1800),a	Not allowed	Not allowed
2-byte access	ld (0x1800),wa	Not allowed	Not allowed
4-byte access	ld (0x1800),xwa	OK	OK

Also note that data must be written in units of 64 bytes using the following sequence:

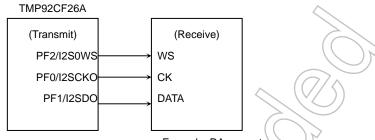

4-byte load instruction \times 16 times = 64-byte data write

If data is not written in units of 64 bytes, interrupts cannot be generated at the normal timing.

The I2SnCTL<TEMPn> flag is set to "1" when the FIFO buffer for each channel contains no valid data. If there is even one byte of valid data in the FIFO, the flag is cleared to "0". (The <TEMPn> flag is set to "1" as soon as the last valid data in the FIFO is sent to the transmission shift register.)

The following shows how written data is output under various conditions.

When I2SnCTL < WLVLn > = "0"



Note: In case of using monaural setting, and change right / left: I2SnCTL<WLVLn>, data output order change off 1'st data and 2'nd data.

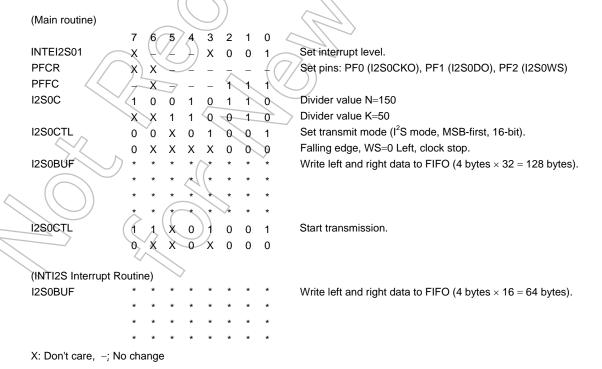
3.18.4 Detailed Description of Operation

(1) Connection example

Figure 3.18.5 shows an example of connections between the TMP92CF26A and an external LSI (DA converter) using channel 0.

Example: DA converter

Note: After reset, PF0 to PF2 are placed in a high-impedance state. Connect each pin with a pull-up or pull-down resistor as necessary.


Figure 3.18.5 Connection Example between the TMP92CF26A and an External LSI

(2) Operation procedure

The I²S unit incorporates a 128-byte FIFO buffer that is divided into two 64-byte units. Whenever each 64-byte buffer space becomes empty, an INTI2Sn interrupt is generated. The next data to be transmitted should be written to the FIFO in the interrupt routine.

Example settings and timing diagram are shown below.

(Example settings) I2S0WS = 8 kHz, I2SnCKO = 400 kHz, data transmission on the rising edge (at f_{SYS} = 50 MHz)

TOSHIBA

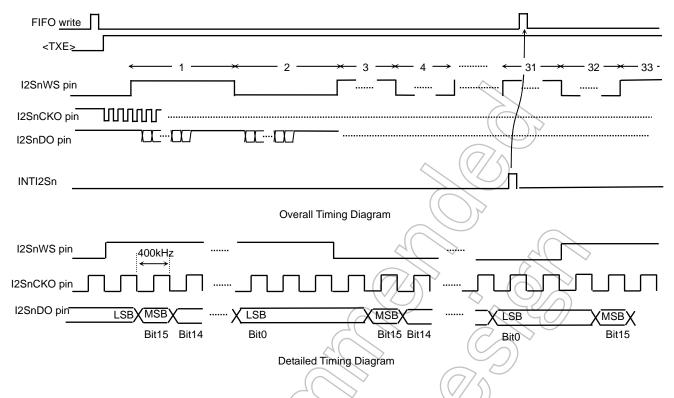


Figure 3.18.6 Timing Diagrams (I2S FMT/Stereo/16bit/MSB first)

(3) Considerations for using the I²S unit

1) INTI2Sn generation timing

Every 4bytes data trance from FIFO buffer to shift register per one time.

An INTI2Sn interrupt is generated under two conditions. One is when there are 64 bytes of empty space in the FIFO (after 61-64th byte has been transferred to the shift register). The other is when the FIFO becomes completely empty (after 125-128th byte has been transferred to the shift register). Therefore, INTI2Sn indicates that there are 64 bytes or 128 bytes of empty space in the FIFO, enabling the next data to be written.

The FIFO must be written in units of 64 bytes. Since the FIFO can contain 128 bytes of data, I²S output can be performed continuously as long as there are 64 bytes of data in the FIFO. It is also possible to check the FIFO state by using the I2SnCTL<TEMPn> flag.

2) I2SnCTL<TXEn>

Transmission is started by setting I2SnCTL <TXEn> to "1". Once <TXEn> is set to "1", transmission is continued automatically as long as the FIFO contains the data to be transmitted. While <TXE> is set to "1" (transmission in progress), the other bits in the I2SnCTL register must not be changed.

To stop transmission, make sure that the FIFO is empty by checking the I2SnCTL<TEMPn> flag. Then, after waiting for two periods of the I2SWS signal (after all the data has been transmitted), set <TXEn> to "0". In case monaural setting, make sure that the FIFO is empty by checking the I2SnCTL<TEMPn> flag. Then, after waiting for four periods of the I2SWS signal (after all the data has been transmitted), set <TXEn> to "0".

If <TXEn> is set to "0" while data is being transmitted, the transmission is stopped immediately. At the same time, the read and write pointers of the FIFO, the data in the output shift register and the clock generator are all cleared. (However, when I2SnCTL<CNTEn>=1, the clock generator is not cleared. To clear the clock generator, I2SnCTL<CNTEn> must be set to "0"). Therefore, if transmission is stopped and then resumed, no data will be output.

The WS signal stops at Low level and the CK signal stops at Low level when the rising edge is selected and at High level when the falling edge is selected.

3) I2SnCTL<CNTEn>

I2SnCTL<CNTEn> is used to control the clock generator (8-bit counter, 6-bit counter) for generating the I2SnCKO and I2SnWSOsignals.

Setting I2SnCTL<CNTEn> to "1" starts the counters, and setting this bit to "0" stops the counters. Normally, I2S data transmission is executed by setting both I2SnCTL<TXEn> and <CNTEn> to "1". When transmission is stopped by setting I2SnCTL<TXEn> to "0" with I2SnCTL<CNTEn>=1, the clock generator is not cleared. To clear the clock generator, I2SnCTL<CNTEn> must be set to "0".

4) FIFO buffer

The I²S unit is provided with a 128-byte FIFO. Although it is not necessary to use all 128 bytes in the FIFO, data should basically be written in units of 64 bytes using an INTI2Sn interrupt as a trigger. If data is written to the FIFO without waiting for an INTI2Sn interrupt or in units other than 64 bytes, interrupts cannot be generated properly.

If the last set of data, for which an interrupt is not needed, contains less than 64 bytes, set I2SnCTL<TXEn> to "0" to stop the transmission after writing the data, then checking that the <TEMPn> flag is set to "1", and waiting for two I2SWS periods (i.e., after all the data has been transmitted). In case monaural setting, make sure that the FIFO is empty by checking the I2SnCTL<TEMPn> flag. Then, after waiting for four periods of the I2SWS signal (after all the data has been transmitted), set <TXEn> to "0".

5) I2SnBUF

When writing data to the I2SnBUF register, be sure to use long word data load instructions. Word data load or byte data load instructions cannot be used.

Examples)

ld	(I2SnBUF), xwa;	OK
ld	(I2SnBUF), wa;	NG
1,1	(Iacabile) a.	NC

6) Share with HALT instruction

 I^2S circuit is not operated at IDLE1/STOP modes. Therefore, maybe PLL clock that operate at IDLE1 mode affects to this circuits. If mode is shifted to HALT mode, set it after I^2S circuit is stopped.

When the CPU is shifted to the HALT mode after transmission is stopped, the time to stop completely is necessary before execution of HALT instruction.

It's time is NOP×10.

Example: Id (I2SCTL), 0x00 ; Stop transmission

NOP×10

HALT

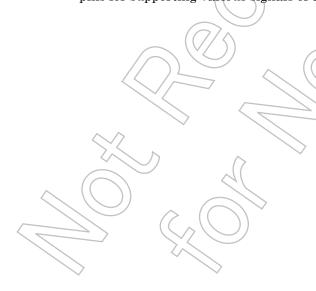
3.19 LCD Controller (LCDC)

The TMP92CF26A incorporates an LCD controller (LCDC) for controlling an LCD driver LSI (LCD module). This LCDC supports monochrome, grayscale, from 256-color to 16777216-color and display sizes from 64×64 to 640×480 dots. The supported LCD driver (LCD module) types are STN (Super Twisted Nematic) and digital RGB input TFT (Thin Film Transistor).

STN support

With LCD drivers supporting STN, an 8-bit data interface is used to realize monochrome, 4-graysale, 16-grayscale, 64-grayscale, 256-color, 4096-color, 65536-color display.

After required settings such as the operation mode, display RAM start address, and LCD size (common, segment) are made in the I/O registers, the start register is set to enable the LCDC. The LCDC outputs a bus request to the CPU, reads data from the display RAM, converts the data as necessary, and writes it to a dedicated FIFO buffer.


TFT support

With LCD drivers supporting digital RGB input TFT, an 8- to 24-bit data interface is used to realize 4096-color, 65536-color, 262144-color, and 16777216-color display. The data transfer method is the same as in the case of STN.

The LCDC controls LCD display operations using 8-bit RGB (R3:G3:B2), 12-bit RGB (R4:G4:B4), 16-bit RGB (R5:G6:B5), 18-bit RGB (R6:G6:B6), or 24-bit RGB (R8:G8:B8) display data, the shift clock LCP0 for capturing data, the frame signal LFR, the data load signal LLOAD, and the LDIV signal for indicating the inversion of data output. The LDIV signal can be used effectively in reducing noise and power consumption.

The LCDC also has horizontal synchronization signal LHSYNC and vertical synchronization signal LVSYNC for controlling gate drivers, and three programmable OE pins for supporting various signals of the TFT driver to be used.

92CF26A-516

TOSHIBA

3.19.1 LCDC Features according to LCD Driver Type

Table 3.19.1 LCDC Features according to LCD Driver Type

(This table assumes the connection with a TOSHIBA-made LCD driver.)

	LCD Driver	Shift Re	gister Type						
	LCD Dilvei	TFT	STN						
Displa	y colors	256/4096/65536/262144/16777216 colors	Monochrome, 4/16/64 grayscale levels 256/4096/65536 colors						
Numbe display	er of pixels that can be yed	For 4096 colors or less Rows (Commons): 64, 96, 128, 160, 200, 240, 320, 480 Columns (Segments): 64, 128, 160, 240, 320, 480, 640 For 65536 colors or less Rows (Commons): 64, 96, 128, 160, 200, 240, 320, 480 Columns (Segments): 64, 128, 160, 240, 320, 480	For Monochrome/grayscale/4096 colors or less Rows (Commons): 64, 96, 120, 128, 160, 200, 240, 320, 480 Columns (Segments): 64, 120, 128, 160, 240, 320, 480, 640 For 65536 colors or less Rows (Commons): 64, 96, 128, 160, 200, 240, 320, 480 Columns (Segments): 64, 128, 160, 240, 320						
		16777216 colors or less ROW(common): 64,96,128,160,200,240,320,480 Column (Segment): 64,128,160,240,320							
Data r	otation function	Horizontal flip, vertical flip, horizontal and vertical flip, 90-degree rotation (supported for QVGA size, 65536 colors only)							
PIP function support		A sub window can be inserted.							
Source data bus width (SRAM, SDRAM)		16 bits (32 bits: internal RAM)	16 bits (32 bits: internal RAM)						
Destin (LCD o	ation data bus width driver)	8 to 24 bits	8 bits						
	um transfer rate // read)	1-clk / 4byte at internal RAM							
	LCD driver data bus: LD23 to LD0 pins	To be connected to LCD driver data bus. • 8-bit mode: LD7 to LD0 • TFT mode: LD23 to LD0	~						
	LCP0 pin	Data shift clock for TFT source driver	Shift clock pulse output pin 0. To be connected to column driver's CP pin. The LCD driver latches the data bus value on the falling edge of this pin.						
Pins	LHSYNC pin	Vertical shift clock for TFT gate driver	Latch pulse output pin. To be connected to the LCD driver's LP pin. The display data in the LCD driver's output line register is updated on the rising edge of this pin.						
External Pins	LLOAD pin	Enable signal for TFT source driver to load data to TFT panel	N/A						
Ex	LGOE0 to LGOE2 pins	Adjustment signal for TFT gate driver's gate control signal	N/A						
	LFR pin	LCD alternate signal output pin. To be connected to column/row driver's FR pin.	LCD alternate signal output pin. To be connected to column/row driver's FR pin.						
	LVSYNC pin	This signal indicates the start of shift clock capture by TFT gate driver.	Frequency that sets LCD refresh rate						
	LDIV pin	This signal indicates the inversion of data. To be connected to TFT source driver having the data inversion function.	N/A						

TOSHIBA

3.19.2 SFRs

LCDMODE0 Register

LCDMODE0 (0280H)

	EODWODE Register										
	7	6	5	4	3	2	1	0			
bit Symbol	RAMTYPE1	RAMTYPE0	SCPW1	SCPW0	MODE3	MODE2	MODE1	MODE0			
Read/Write		_		R/V	V						
Reset State	0	0	1	1	0	0	0	0			
Function	Display RAM	1	LD bus trans	fer speed	Mode select	tion	7				
	00: Internal F	RAM	SCPW2= 0		0000: Reserved 1000: STN (64K-co						
	01: External	SRAM	C	00: 2-clk	0001: SR (m	ono) (10	001: Reserved	I			
	10: SDRAM		C)1: 4-clk	0010: SR (4-	gray) 10)10: TFT (256	-color)			
	11: Reserved	d	1	10: 8-clk		ed 10	1011: TFT (4096-color)				
			1	1: 16-clk	0100: SR (16-gray)		1100: TFT (64K-color)				
			SCPW2= 1		0101: SR (64-gray)		1101:TFT(256K-,16M-color)				
			C	00: 6-clk	0110: STN (256-color)		1110 : Reserved				
			C)1: 12-clk	0111:STN (4	096-color) 1	111: Reserve	b			
			1	0: 24-clk		/2					
			1	1: 48-clk	()	\sim (C					

Note: When SDRAM is used as the LCDC's display RAM, it can only be accessed by "burst 1-clock access".

LCDMODE1 (0281H)

LCDMODE1 Register													
	7	6	5	4	3	2	1	0					
bit Symbol	LDC2	LDC1	LDC0	LDINV	AUTOINV	INTMODE	FREDGE	SCPW2					
Read/Write				R/W			V	V					
Reset State	0	0	9	0 /	0	0	0	0					
Function	Data rotation (Supported for 000: Normal 001: Horizon 010: Vertica 011: Horizon 111: Reserv	r 64K-color: 1 100: ntal flip 101: I flip 110: ntal & vertica	90-degree Reserved Reserved	LD bus inversion 0: Normal 1: Invert	Auto bus inversion 0: Disable 1: Enable (Valid only for TFT)	Interrupt selection 0:LLOAD 1:LVSYNC	LFR edge 0: LHSYNC Front Edge 1:LHSYNCR EAR Edge	LD bus Trance Speed 0: normal 1: 1/3					

Note: <LDINV>=1 inverts all output data on the LD bus. However, the LDIV signal that indicates the inversion of output data by auto bus inversion remains unchanged.

CD Size Setting Register

LCDSIZE (0284H)

LCD Size Setting Register												
TA.	7	6	5	4	3	2	1	0				
bit Symbol	СОМЗ	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0				
Read/Write		\mathcal{A}		F	R/W							
Reset State	0	0	0	0	0	0	0	0				
Function	Common se	tting	>		Segment setting							
	0000: Rese	rved 100	0: 320		0000: Reserved 1000: Reserved							
	0001: 64	100	1: 480		0001: 64 1001: Reserved							
	0010: 96	101	0: Reserved		0010: 128 1010: Reserved			d				
	0011: 120	101	1: Reserved		0011: 160 1011: Reserved			d				
	0100: 128	0100: 128 1100: Reserved				0100: 240 1100: Reserve						
	0101: 160 1101: Reserved				0101: 320 1101: Re			d				
	0110: 200	111	0: Reserved		0110: 480	11	110: Reserve	d				
-	0111: 240	111	1: Reserved		0111: 640	11	111: Reserve	d				

Note: Although the TMP92CF26A contains 144 Kbytes of RAM that can be used as display RAM, it may not be enough depending on display size and color mode.

LCD Control 0 Register

LCDCTL0 (0285H)

		LOI	Control	register			•	
	7	6	5	4	3	2	1	0
bit Symbol	PIPE	ALL0	FRMON	-		DLS	LCP0OC	START
Read/Write		R/W		R/W			R/W	
Reset State	0	0	0	0		0	0	0
Function	PIP	Segment	Frame	Always		FR signal	LCP0	LCDC
	function	data	divide	write "0"		LCP0/Line	(Note)	operation
	0:Disable	0: Normal	setting			selection	0: Always	0: Stop
	1:Enable	1: Always	0: Disable			0:Line	output	1: Start
		output "0"	1: Enable			1:LCP0	1: At valid	
					^	$(7/\wedge$	data only	
						(LLOAD	
							width	
						15	0: At setting	
							in register	
				,			1: At valid	
				<			data only	>

Note: When select STN mode, LCP0 is output at valid data only regardless of the setting of <LCP00C> bit.

LCD Control 1 Register

LCDCTL1 (0286H)

				regioter				
	7	6	5	4	3	2	59	0
bit Symbol	LCP0P	LHSP	LVSR	LLDP		\$	LVSW1	LVSW0
Read/Write		R/V	V		\nearrow		R/W	
Reset State	1	0	1	0	7	£	0	0
Function	LCP0	LHSYNC	LVSYNC	LLOAD			LVSYNC	
	phase	phase	phase	phase//			enable time of	control
	0: Rising	0: Rising	0: Rising	0: Rising			00: 1 clock of	f LHSYNC
	1: Falling	1: Falling	1: Falling	1: Falling			01: 2 clocks	of LHSYNC
							10: 3 clocks	of LHSYNC
		(11: Reserved	t

LCD Control 2 Register

LCDCTL2 (0287H)

	7 🗸	())6	5	4	3	2	1	0
bit Symbol /	LGOE2P	LGOE1P_	LGOE0P/	£				
Read/Write		7 R/W	1///	f				
Reset State	Q	0	0					
Function	LGOE2	LGOE1	LGOE0					
<\/	phase	phase	phase					
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0: Rising	0: Rising	0: Rising					
	1: Falling	1: Falling	1: Falling					

Divide FRM 0 Register

LCDDVM0 (0283H)

Z /	(7,	6)	5	4	3	2	1	0	
bit Symbol	FMP3	FMP2	FMP1	FMP0	FML3	FML2	FML1	FML0	
Read/Write				R/W					
Reset State	0	0	0	0	0	0	0	0	
Function		LCP0 DVN	1 (bits 3-0)			LHSYNC D\	/M (bits 3-0)		

Divide FRM 1 Register

LCDDVM1 (0288H)

	Bivide i rivi i regiotei								
	7	6	5	4	3	2	1	0	
bit Symbol	FMP7	FMP6	FMP5	FMP4	FML7	FML6	FML5	FML4	
Read/Write		R/W							
Reset State	0	0	0	0	0	0	0	0	
Function		LCP0 DVN	/I (bits 7-4)			LHSYNC D	VM (bit 7-4)		

			LCD	LHSYNC	Pulse Reg	ister				
		7	6	5	4	3	2	1	0	
LCDHSP	bit Symbol	LH7	LH6	LH5	LH4	LH3	LH2	LH1	LH0	
(028AH)	Read/Write				V	V				
	Reset State	0	0	0	0	0	0	0	0	
	Function				LHSYNC per	iod (bits 7–0		т.	ı	
		7	6	5	4	3	2	1	0	
(028BH)	bit Symbol	LH15	LH14	LH13	LH12	LH11	LH10	JH9	LH8	
	Read/Write				V	V			1	
	Reset State	0	0	0	0	0	(Vø))	0	0	
	Function				LHSYNC per	iod (bits 15-8				
			LCD	LVSYNC	Pulse Reg	ister				
		7	6	5	4	3	2	1	0	
LCDVSP	bit Symbol	LVP7	LVP6	LVP5	LVP4	LVP3	LVP2	LVP1	LVP0	
(028CH)	Read/Write				((y	N/N			7	
	Reset State	0	0	0	0		\(\frac{1}{0}\)		0	
	Function LVSYNC period (bits 7-0)									
		7	6	5	4	3	(2)	1	0	
(028DH)	bit Symbol						W)	LVP9	LVP8	
	Read/Write					\mathcal{A}		V	V	
	Reset State			74	7	\mathcal{A}		0	0	
	Function			4	> /				C period 9-8)	
			LCD	VSYNC Pr	e Pulse Re	egister)			
		7	6	5	4 🔨	3	2	1	0	
LCDPRVSP	bit Symbol		RLV6	PLV5	RLV4	PLV3	PLV2	PLV1	PLV0	
(028EH)	Read/Write	/	77	,		⇒ w				
	Reset State	7	(0)	0	0	0	0	0	0	
	Function /			((Front dum	my LVSYNC	(bits 6-0)			
			\supset							
					>					
	\wedge									
	7,	<i>></i>	^							
			\sim							
\wedge										
		\wedge		√						

LHSYNC Delay Register

LCDHSDLY (028FH)

	7	6	5	4	3	2	1	0
bit Symbol		HSD6	HSD5	HSD4	HSD3	HSD2	HSD1	HSD0
Read/Write			_	-	W	_	_	
Reset State		0	0	0	0	Q	0	0
Function				LHSY	NC delay (bi	ts 6-0)		

LLOAD Delay Register

LCDLDDLY (0290H)

	ELOAD Beldy Neglater										
	7	6	5	4	3	(2)	1	0			
bit Symbol	PDT	LDD6	LDD5	LDD4	LDD3	LDD2	LDD1	LDD0			
Read/Write	R/W		-		W			_			
Reset State	0	0	0	0	0 \) 0	0	0			
Function	Data output timing 0: Sync with LLOAD 1: 1 clock later than LLOAD			LLOA	AD delay (bits	\$ 6-0) >		<u>></u>			

LGOE0 Delay Register

LCDO0DLY (0291H)

	7	6	5 4	3	2/	/ 1	0
bit Symbol		OE0D6	OE0D5 OE0D4	OE0D3	ØE0D2	OE0D1	OE0D0
Read/Write				W /			
Reset State		0	0 0	0	0	0	0
Function			OE(delay (bits	6-0)		

LGOE1 Delay Register

LCDO1DLY (0292H)

	7	(6	5	4	3	2	1	0
bit Symbol		OE1D6	OE1D5	OE1D4	OE1D3	OE1D2	OE1D1	OE1D0
Read/Write	7	7/\		77/	W	_	_	
Reset State			0	Q	0	0	0	0
Function) /	1	//)) OE	1 delay (bits	6-0)		
		_ /						

LGOE2 Delay Register

LCDO2DLY (0293H)

1	7	6	5	4	3	2	1	0
bit Symbol	/	OE2D6	OE2D5	OE2D4	OE2D3	OE2D2	OE2D1	OE2D0
Read/Write	/ }}			-	W	-		
Reset State		0	0	0	0	0	0	0
Function	\Diamond		>	OE	2 delay (bits	6-0)		

LHSYNC width Register

LCDHSW (0294H)

	7	6	5	4	3	2	1	0	
bit Symbol	HSW7	HSW6	HSW5	HSW4	HSW3	HSW2	HSW1	HSW0	
Read/Write		W							
Reset State	0	0	0	0	0	Q	0	0	
Function		LHSYNC width (bits 7-0)							

LLOAD width Register

LCDLDW (0295H)

	7	6	5	4	3	(2)	1	0
bit Symbol	LDW7	LDW6	LDW5	LDW4	LDW3	LDW2)	LDW1	LDW0
Read/Write		_		V	v >		_	
Reset State	0	0	0	0	0 ((10	0	0
Function		LLOAD width (bits 7-0)						

LGOE0 width Register

LCDHO0W (0296H)

	7	6	5	4 3	2	0
bit Symbol	O0W7	O0W6	O0W5	O0W4 O0W3	00W2 00W	00W0
Read/Write				W	1190	//
Reset State	0	0	0	0	0 0	0
Function			<	LGOE0 width (bits 7-0)		

LGOE1 width Register

LCDHO1W (0297H)

	7	6	(5)	> 4	3	2	1	0
bit Symbol	O1W7	O1W6	Q1W5	O1W4	O1W3	O1W2	O1W1	O1W0
Read/Write					W	/		
Reset State	0	o	Ø	0	0	0	0	0
Function		$(C \setminus C)$		LGOE1 wi	dth (bits 7-0)			

LGOE2 width Register

LCDHO2W (0298H)

		7	(6)	5	4	3	2	1	0			
/	bit Symbol /	O2W7	O2W6	_Q2W5	O2W4	O2W3	O2W2	O2W1	O2W0			
	Read/Write		7) v	٧						
	Reset State	6	0 (0	0	0	0	0			
	Function		LGOE2 width (bits 7-0)									

signal width Bit8,9 Register

LCDHWB8 (0299H)

	7	6	5	4	3	2	1	0
bit Symbol	O2W9	O2W8) O1W9	O1W8	O0W8	LDW9	LDW8	HSW8
Read/Write			-	V	٧		-	
Reset State	0	9	0	0	0	0	0	0
Function	LGOE2 wid	th (bits 9-8)	LGOE1 wid	th (bits 9-8)	LGOE0	LLOAD wid	th (bits 9-8)	LHSYNC
\rightarrow		$\overline{}$			width (bit 8)			width (bit 8)

LCD Main Area Start Address Register 7 5 2 1 0 **LSAML** bit Symbol LMSA7 LMSA6 LMSA5 LMSA4 LMSA3 LMSA2 LMSA1 (02A0H) Read/Write R/W Reset State 0 0 0 LCD main area start address (A7-A1) Function 7 2 6 5 4 3 1 0 LMSA12 LSAMM LMSA15 LMSA14 LMSA13 LMSA11 LMSA10 LMSA9 LMSA8 bit Symbol (02A1H) Read/Write R/W 0 0 0 Reset State 0 0 0 0 0 LCD main area start address (A15-A8) **Function** 7 6 2 1 0 5 4 3 LSAMH bit Symbol LMSA23 LMSA22 LMSA21 LMSA20 LMSA19 LMSA18 LMSA17 LMSA16 (02A2H) Read/Write R/W Reset State O 1 0 O (0 0 ď 0 **Function** LCD main area start address (A23-A16)

Note: When assigned internal RAM as VRAM, A1 signal cannot be used. Every 4bytes setting is needed.

LCD Sub Area Start Address Register 7 1 6 5 4 3 2 0 LSASL bit Symbol LSSA7 LSSA6 LSSA5 LSSA4 LSSA3 LSSA2 LSSA1 (02A4H) Read/Write R/W 0) Reset State 0 0 0 o 0 0 **Function** LCD sub area start address (A7-A1) 7 6 5 4 3 2 1 0 **LSASM** bit Symbol LSSA15 LSSA14 LSSA13 LSSA12 LSSA11 LSSA10 LSSA9 LSSA8 (02A5H) Read/Write R/W 0 0 0 0 Reset State 0 **Function** LCD sub area start address (A15-A8) 7 6 5 3 2 1 0 4 LSSA20 LSASH bit Symbol LSSA23 LSSA22 LSSA21 LSSA19 LSSA18 LSSA17 LSSA16 (02A6H) Read/Write R/W Ó Reset State 0 0 0 **Function** LCD sub area start address (A23-A16)

Note: When assigned internal RAM as VRAM, A1 signal cannot be used. Every 4bytes setting is needed.

LCD Sub Area HOT Point Register (X-dir) 7 6 5 4 3 2 1 0 LSAHX bit Symbol SAHX7 SAHX6 SAHX5 SAHX4 SAHX3 SAHX2 SAHX1 SAHX0 (02A8H) Read/Write R/W Reset State 0 0 0 0 0 0 0 0 Function LCD sub area HOT point (7-0) 6 2 7 5 4 3 0 (02A9H) bit Symbol SAHX9 SAHX8 Read/Write R/W Reset State 0 Function LCD sub area HOT point (9-8)

TOSHIBA

			LCD Sub /	Area HOT	Point Reg	ister (Y-dii	r)		
		7	6	5	4	3	2	1	0
LSAHY	bit Symbol	SAHY7	SAHY6	SAHY5	SAHY4	SAHY3	SAHY2	SAHY1	SAHY0
(02AAH)	Read/Write				R/\	W			
	Reset State	0	0	0	0	0	0_	0	0
	Function			LC	D sub area H	OT point (7-	0)		
		7	6	5	4	3	2	1	0
(02ABH)	bit Symbol							XC	SAHY8
	Read/Write						J.		R/W
	Reset State					4	TAX		0
	Function								LCD sub
						((15		area HOT
									point (8)
					_				
			CD Sub Are		Segment	Size Regi	1	130	
		7	6	5	4	7)3	2		> 0
LSASS	bit Symbol	SAS7	SAS6	SAS5	SAS4	SAS3	SAS2	SAS1	SAS0
(02ACH)	Read/Write				R/\	N		740	/
	Reset State	0	0	0	0	0	0	0	0
	Function		1	LCD	sub area se	gment size (7	7-0)		_
		7	6	5	4	3	$\widetilde{2}$	/ 1	0
(02ADH)	bit Symbol			X				SAS9	SAS8
	Read/Write						\searrow	R	/W
	Reset State				1			0	0
	Function)	LCD sub ar	ea segment
							/	size	(9-8)
		1	CD Sub Are	a Display	Common	Size Regi	ster		
		7	6	5	4	3	2	1	0
LSACS	bit Symbol	SAC7	SAC6	SAC5	SAC4	SAC3	SAC2	SAC1	SAC0
(02AEH)	Read/Write		(0)	0.100	7/_ RA	/	07.02	07.0	0,100
,	Reset State	(0)-	0	Q (// 0)	0	0	0	0
	Function			1./-	sub area coi				
		7	6	5	<u> </u>	3	2	1	0
(02AFH)	bit Symbol />								SAC8
,	Read/Write								R/W
	Reset State		1						0
^	Function		(4)	LCI) sub area co	ommon size ((8)		
			$\sqrt{\bigcirc}$	\rightarrow					

3.19.3 Description of Operation

3.19.3.1 Outline

After the required settings such as the operation mode, display data memory address, color mode, and LCD size are specified, the start register is set to start the LCDC operation.

The LCDC issues a bus request to the CPU. When the bus is granted, the LCDC reads data of the display size from the display RAM, stores the data in the FIFO buffer in the LCDC, and then returns the bus to the CPU.

The display data in the FIFO buffer is transferred to the LCD driver via a dedicated bus (LD pin). At this time, control pins (such as LCPO) that are connected to the LCD driver also output specified waveforms in synchronization with the transfer of display data.

Note: While display RAM data is being read, the CPU operation is halted by the internal BUSREQ signal. Therefore, the CPU stop time must be taken into account in programming.

External SDRAM, SRAM, or internal RAM (144 Kbytes) can be used as the display RAM. Since the internal RAM allows very fast accesses (32-bit bus, 2-1-1-1 read/write), it enables data transfer to the LCD driver (DMA operation) with the minimum CPU stop time. Using the internal RAM also greatly reduces power consumption during LCD display.

3.19.3.2 Display Memory Mapping

Since the number of bits needed to display one pixel varies even for the same display size depending on the selected color mode, the required display RAM size also varies with each color mode. (The color mode can be selected from a range of monochrome to 16777216 colors.)

In monochrome mode, one pixel of display data corresponds to one bit of display RAM data. Likewise, the number of display RAM data used for displaying one pixel in each color mode is as follows:

4-grayscale 1 pixel = 2 bits 16-grayscale1 pixel = 4 bits

 $64\text{-grayscale} \qquad 1 \text{ pixel} = 6 \text{ bits}$ $STN \ 256\text{-color} \qquad 1 \text{ pixel} = 8 \text{ bits}$ $STN \ 4096\text{-color} \qquad 1 \text{ pixel} = 12 \text{ bits}$ $STN \ 65536\text{-color} \qquad 1 \text{ pixel} = 16 \text{ bits}$

TFT 256K-color 1 pixel = 16 bits (not 18 bits)

92CF26A-525

TFT 16M-color 1 pixel = 24 bits

For example, a 320-segment \times 240-common display in 4-grayscale mode requires 19200 bytes of display RAM space ($320 \times 240 \times 2 = 152600$ bits = 19200 bytes).

For details, refer to "Memory Map Image and Data Output in Each Display Mode" later in this chapter.

TOSHIBA

3.19.3.3 Restriction of Display Memory

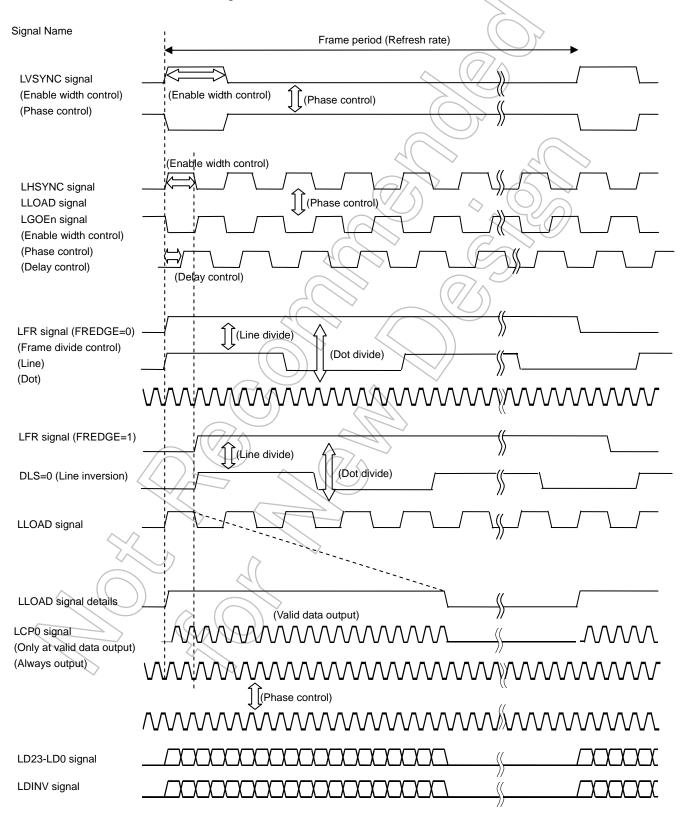
This LCD controller is supported for display RAM as internal RAM, external SRAM and external SDRAM. However in case of using SDRAM for display RAM, there is one restriction as follows.

Condition & Restrictions

a) Use for SDRAM as VRAM of LCD controller

and

b) Use DMAC operation


In case of above condition, Need to set SDACR<SPRE>= "1"

Please refer the chapter of SDRAM controller about SDRAM specification in detail.

3.19.3.4 Basic Operation

The following diagram shows the basic timings of the waveforms generated by the LCDC and adjustable elements. The adjustable elements for each signal include enable time, phase, and delay time.

The signals used and their connections and settings vary with the LCD driver type (STN/TFT) and specifications to be used.

3.19.3.5 Reference Clock LCP0

LCP0 is used as the reference clock for all the signals in the LCDC.

This section explains how to set the frequency (period) of the LCP0 signal.

The LCP0 clock speed (LD bus transfer speed) is determined by selecting TFT or STN and setting LCDMODE0<SCPW1:0> and LCDMODE1<SWPW2>. The clock speed should be selected to meet the characteristics of the LCD driver to be used.

The LCP0 period can be selected from four types: fsys/2, fsys/4, fsys/8, fsys/16, fsys/24 and fsys/48.

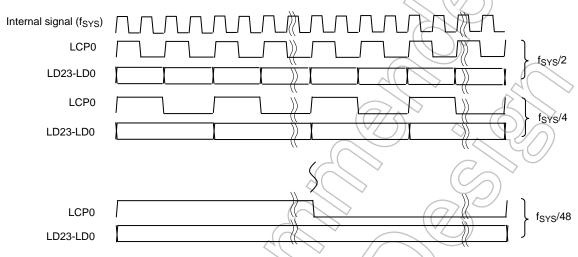


Figure 3.19.1 LCP Frequency Selection

Minimum speed

The LCPO period needs to be short enough to prevent the next line signal from overlapping the current line signal.

The transfer speed of display data must be set to suit the refresh rate; otherwise data cannot be transferred properly. Set the data transfer speed so that each transfer completes within the LHSYNC period.

STN monochrome/grayscale

Segment size / 8 x LCP0 [s: period] < LHSYNC [s: period] STN color

STN color

Segment size x 3 / 8 LCP0 [s: period] < LHSYNC [s: period]

YFT

: Segment size x LCP0 [s: period] < LHSYNC [s: period]

Maximum speed

If the LCPO period is too short, the data to be transferred to the LCD driver cannot be prepared in time, causing wrong data to be transferred. The maximum transfer speed is limited by the operation mode and display RAM type (bus width, wait condition, and so on). If the data rotation function is used, the transfer speed must be slower.

LCP0 Setting Range Table

 $Conditions \quad : \quad \quad f_{SYS} = 60 MHz$

Display size : (color) up to 320×320 Display size : (monochrome/grayscale) up to 640×480

Note: This table shows the range of LCP0 settings that can be made under the conditions shown above. If the CPU

clock speed, display size, or refresh rate is changed, the LCP0 range also changes.

Display RAM Display Mode	Internal RAM	SDRAM	External SRAM (0 waits)	External SRAM (N waits)
STN monochrome Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	fsys/4 tofsys/16 (up to 2 waits) fsys/8 to fsys/16 (up to 6 waits) fsys/16 (up to 14 waits)
STN 4-grayscale Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4 to f _{SYS} /8 (up to 2 waits) f _{SYS} /8 (up to 6 waits)
STN 16-grayscale Refresh cycle = 140 Hz	f _{SYS} /2 to f _{SYS} /8	f _{SYS} /2 to f _{SYS} /8	f _{SYS} /4 to f _{SYS} /8	f _{SYS} /8 to f _{SYS} /16 (up to 2 waits) f _{SYS} /16 (up to 6 waits)
STN 64-grayscale Refresh cycle = 200 Hz	f _{SYS} /4	f _{SYS} /4	fsys/4	f _{SYS} /4 (up to 1 wait)
STN 256-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4 to f _{SYS} /16	f _{SYS} /8 to f _{SYS} /16 (up to 2 waits) f _{SYS} /16 (up to 6 waits)
STN 4K-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4 to f _{SYS} /16	fsys/4 to fsys/16 (up to 2 waits) fsys/8 to fsys/16 (up to 6 waits) fsys/16 (up to 14 waits)
STN 64K-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4 to f _{SYS} /16	f _{SYS} /8 to f _{SYS} /16	f _{SYS} /16 (up to 3 waits)
STN 64K-color Refresh Cycle = 70 Hz + rotation operation	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4 to f _{SYS/} 16	f _{SYS} /8 to f _{SYS} /16	fsys/16 (up to 3 waits)
TFT 4K-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 To f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	$f_{SYS}/4$ to $f_{SYS}/16$ (up to 2 waits) $f_{SYS}/8$ to $f_{SYS}/16$ (up to 6 waits) $f_{SYS}/16$ (up to 14 waits)
TFT 64K-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	$f_{SYS}/4$ to $f_{SYS}/16$ (up to 2 waits) $f_{SYS}/8$ to $f_{SYS}/16$ (up to 6 waits) $f_{SYS}/16$ (up to 14 waits)
TFT 64K-color + rotation operation	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	$f_{SYS}/4$ to $f_{SYS}/16$ (up to 2 waits) $f_{SYS}/8$ to $f_{SYS}/16$ (up to 6 waits) $f_{SYS}/16$ (up to 14 waits)
TFT 256K-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /4	f _{SYS} /8 to f _{SYS} /16 (up to 2 waits)
TFT 16M-color Refresh cycle = 70 Hz	f _{SYS} /2 to f _{SYS} /16	f _{SYS} /2 to f _{SYS} /16	to f _{SYS} /16 f _{SYS} /2 to f _{SYS} /16	f _{SYS} /16 (up to 2 waits) f _{SYS} /4 to f _{SYS} /16 (up to 2 waits) f _{SYS} /8 to f _{SYS} /16 (up to 2 waits) f _{SYS} /16 (up to 2 waits)

Example 1: When fSYS = 10 MHz, STN mode, LCDMODE0<SCPW1:0> = 01 Internal reference clock LCP0 = fSYS / 8 = 10 MHz / 8 = 1.25 [MHz] LCP0 period = 1 / 1.25 [MHz] = 0.8 $[\mu S]$

Example 2: when fSYS = 60 MHz, TFT mode, LCDMODE0<SCPW1:0> = 11 Internal reference clock LCP0 = fSYS / 16 = 60 MHz / 16 = 3.75 [MHz] LCP0 period = 1 / 3.75 [MHz] = 266 [nS]

LCDMODE0 Register

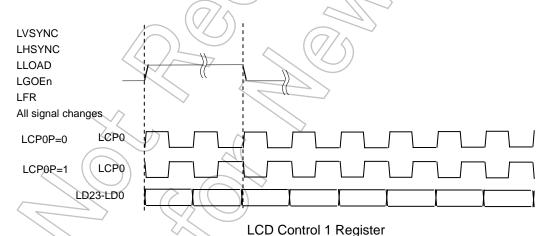
LCDMODE0 (0280H)

				rtogiotoi		//)]		
	7	6	5	4	3		1	0
bit Symbol	RAMTYPE1	RAMTYPE0	SCPW1	SCPW0	MODE3	MODE2	MODE1	MODE0
Read/Write				R/V	V)		
Reset State	0	0	1	1 .(0	0	0	0
Function	Display RAM 00: Internal F 01: External 10: SDRAM 11: Reserved	RAM(32-bit) SRAM	0 1 1 SCPW2=1	0: 2-clk 1: 4-clk 0: 8-clk 1: 16-clk 0: 6-clk	Mode select 0000: Reserv 0001: SR (m 0010: SR (4- 0011: Reserv 0100: SR (16- 0101: SR (64- 0110: STN (2- 0111: STN (4-	ved (1, ono) (1) gray) (1, oed (1, orgray)	000: STN (64 001: Reserve 010: TFT (256 011: TFT (409 100: TFT (64) 101: TFT (256) 110 : Reserve 111: Reserve	d 6-color) 96-color) K-color) K-,16M-color)

LCDCTL0 <LCP0OC> is used to control the output timing of the LCP0 signal. When <LCPOOC>=0, the LCP0 signal is always output. When <LCPOOC>=1, the LCP0 signal is output only when valid data is output.

LCP0 signal LCP0OC=1

LCP0 signal LCP0OC=0


LCD Control 0 Register

LCDCTL0 (0285H)

				D Control	o i togioto.				
		7	6	5	4	3) 2	1	0
bit Syr	nbol	PIPE	ALL0	FRMON	_		DLS	LCP0QC	START
Read/	Write		R/W		R/W (R/W	
Reset	State	0	0	0	0		0 /	0	0
Functi	on	PIP function	Segment	Frame	Always		FR signal	LCP0(Note	LCDC
		0:Disable	data	divide	write "0"))	LCP0/Line	0: Always	operation
		1:Enable	0: Normal	setting			selection	output	0: Stop
			1: Always	0: Disable	7(//		0:Line	1: At valid	1: Start
			output "0"	1: Enable			1:LCP0	data only	
								LLOAD	
							7/^	width	
					\rightarrow	\sim	())	0: At setting	
				4(//	> //			in register	
								1: At valid	
								data only	

Note: When select STN mode, LCP0 is output at valid data only regardless of the setting of <LCP0OC> bit.

The phase of the LCP0 signal can be inverted by the setting of LCDCTL1<LCP0P>.

LCDCTL1 (0286H)

				- 3				
	7	6	5	4	3	2	1	0
bit Symbol	LCP0P	LHSP	LVSP	LLDP			LVSW1	LVSW0
Read/Write		R/\	W				R/	W
Reset State	1	0	1	0			0	0
Function	LCP0	LHSYNC	LVSYNC	LLOAD			LVSYNC	
	phase	phase	phase	phase			enable time	control
	0: Rising	0: Rising	0: Rising	0: Rising			00: 1 clock o	f LHSYNC
	1: Falling	1: Falling	1: Falling	1: Falling			01: 2 clocks	of LHSYNC
							10: 3 clocks	of LHSYNC
							11: Reserved	d

3.19.3.6 Refresh Rate

The period of the horizontal synchronization signal LHSYNC is defined as the product of the value set in LCDHSP<LH15:0> and the LCP0 clock period.

The value to be set in LCDHSP<LH15:0> is obtained as follows:

TFT

Segment size + number of dummy clocks (*)

STN

Monochrome/grayscale : (Segment size / 8) + number of dummy clocks (*)

Color : (Segment size × 3 / 8) + number of dummy clocks (*)

LHSYNC [s: period] = LCP0 [s: period] \times (<LH15:0> +1)

LCD LHSYNC Pulse Register

LCDHSP (028AH)

			<u> </u>	i disc reg	ioto(v	< 11	
	7	6	5	4	3	2	<u> </u>	0
bit Symbol	LH7	LH6	LH5	LH4)_LH3	LH2	CLH1	LH0
Read/Write					<u>v</u>		70/11	
Reset State	0	0	0	J(0)	> 0	0		0
Function			_	LHSYNC per	iod (bits 7–0	(C_{δ})		
	7	6	5	4	3	2	1	0
bit Symbol	LH15	LH14	LH13	LH12	LH11 (/LH10	LH9	LH8
Read/Write				,	V			
Reset State	0	0	0	0 //	0	0	0	0
Function				LHSYNC per	iod (bits 15-8	3)		

(028BH)

The period of the vertical synchronization signal LVSYNC is defined as the product of the value set in LCDVSP<LV9:0> and the LHSYNC period.

The value to be set in LCDVSP<LV9:0> is obtained as follows:

TFT

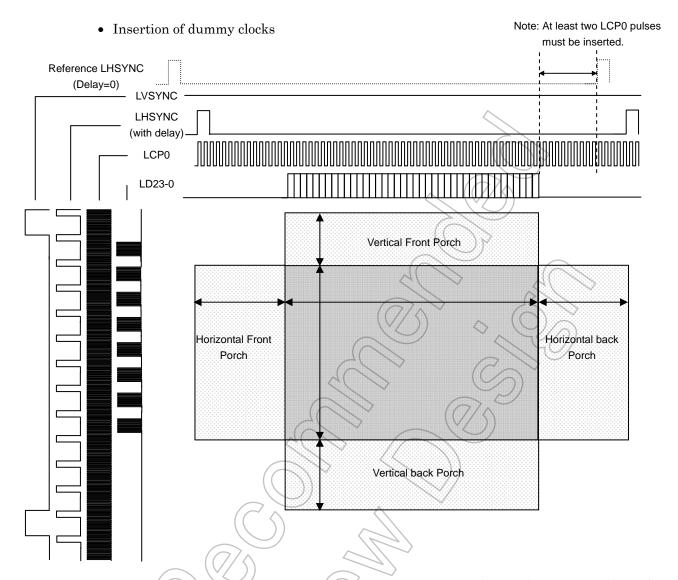
Common size + number of dummy clocks (*)

STN

Common size + number of dummy clocks (*)

(A minimum of one dummy clock must be inserted in the back porch.)

LVSYNC [s: period] = LHSYNC [s: period] \times (<LV9:0> + 1)


= LCP0 [s: period] \times (<LH15:0> + 1) \times (<LV9:0> + 1)

LCD LVSYNC Pulse Register

LCDVSP (028CH)

	7	6	5	4	3>	2	<u>/</u>	0
bit Symbol	LVP7	LVP6	LVP5	LVP4	LVP3	LVP2	LVP1	LVP0
Read/Write					N		79///	
Reset State	0	0	0	70	0	0		0
Function			_	LVSYNC pe	riod (bits 7-0))	
	7	6	5	4	3	2	1	0
bit Symbol			H	<i></i>	\mathcal{A}	7/A	LVP9	LVP8
Read/Write			H	/			V	٧
Reset State				4			0	0
Function							LVSYN(C period 9-8)

(028DH)

The above is a conceptual diagram showing the data (LD23-0), shift clock (LCP0), horizontal synchronization signal (LHSYNC), and vertical synchronization signal (LVSYNC) on the LCD panel.

The front porch and back porch as shown above should be taken into consideration in setting LCDHSP<LH15:0> and LCDVSP<LV9:0> explained earlier.

Note 1: The horizontal back porch must be set so that "data transfer" plus "LCP0 x 2 clocks" are completed within one period of the reference clock LHSYNC (with 0 delay), as defined by the following equation:

Delay time (LLOAD) + number of data transfer times + 2 < LHSYNC (LCP0 pulse count)

Note 2: The vertical back porch must have a minimum of one dummy clock.

(*) TFT driver

The recommended number of dummy clocks is specified by each TFT driver (or LCD module). Refer to the specifications of the TFT driver (LCD module) to be used.

(*) STN driver

For an STN driver, the refresh rate can be set accurately by adjusting the value of the horizontal back porch. If the desired refresh rate cannot be obtained by the horizontal back porch, it can be further adjusted by the vertical back porch. For details, refer to the setting example to be described later in this section.

· Setting method

The front dummy LHSYNC (vertical front porch) not accompanied by valid data in the total of LHSYNC period in the LVSYNC period is defined by the value set in LCDPRVSP<PLV6:0>.

Front dummy LHSYNC (vertical front porch) = <PLV6:0>

The back dummy LHSYNC (vertical back porch) is defined as follows:

(<LVP9:0>+1) - (valid LHSYNC: common size) - (front dummy LHSYNC: <PLV6:0>)

The vertical back porch must have a minimum of one dummy clock.

The front dummy LCP0 (horizontal front porch) not accompanied by valid data in the total number of LCP0 clocks in the LHSYNC period is defined by the value set in LCDLDDLY<LDD6:0>.

Front dummy LCP0 (horizontal front porch) = <LDD6:0>

The back dummy LCP0 (horizontal back porch) is defined as follows:

(<LH15:0> + 1) - (Valid LCP0: segment size) - (Front dummy LCP0: <LDD6:0>)

Note 1: The back dummy LCP0 (horizontal back porch) must have a minimum of two LCP0 clocks.

Note 2: The delay time that is set in LCDLDDLY<LDD6:0> is counted based on LHSYNC (with 0 delay).

LLOAD Delay Register

LCDLDDLY (0290H)

				<u></u>				
	7	6 ((5	4	3//	2	1	0
bit Symbol	PDT	LDD6	LDD5	LDD4	LDD3	LDD2	LDD1	LDD0
Read/Write	R/W	(()		_ //	W			
Reset State	0	0	0	0	0	0	0	0
Function	Data output	7/^		NO	AD delay (bits	s 6-0)		
	timing	(\bigcirc)						
	0: Sync with		((// {)				
	LLOAD	7						
	1: 1 clock							
	later than							
\wedge	LLOAD							

Example 1) Setting the refresh rate to 200 Hz under the following conditions:

f_{SYS} = 30 MHz, STN mode, 320-segment × 240-common, 4096-color display,

LCDMODE0<SCPW1:0> = 00

Internal reference clock LCP0 = f_{SYS} / 4 = 30 [MHz] / 4 = 7.5 [MHz]

Therefore, LCP0 period = 1/7.5 [MHz] = 0.133 [μ S]

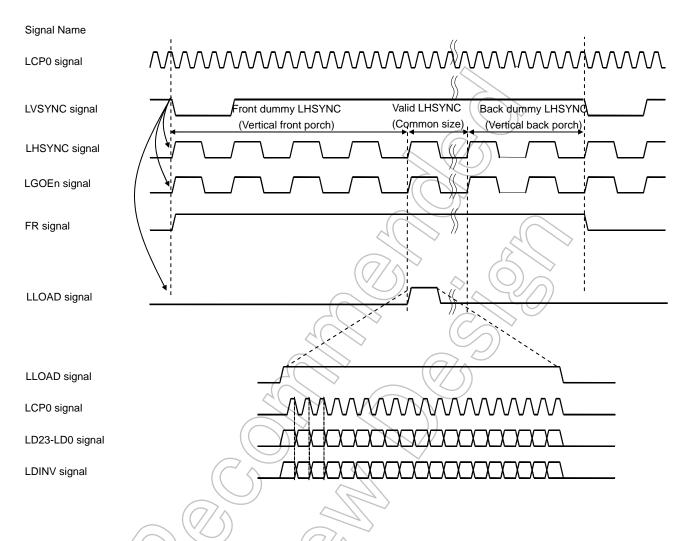
Condition 1: Refresh rate = 200 Hz, Refresh cycle = 5 [ms]

Condition 2: $LH = \langle LH15:0 \rangle \ge (320 \times 3/8) - 1 = 119$

Condition 3: $LV = \langle LVP9:0 \rangle \ge 240 - 1$

When <LVP9:0> = 239 (minimum value):

LVSYNC [S: period] = LHSYNC [S: period] \times ((LV9:0) + 1)


= LCP0 [S: period] x ((LH15:0) + 1) x ((LV9:0) + 1)

 $5 \text{ [mS]} = (1/7.5 \text{ [MHz]}) \times (LH + 1) \times 240$

LH + 1 = $(5 \times 10^{-3}) \times (7.5 \times 10^{6}) / 240$

156.25

3.19.3.7 Signal Settings

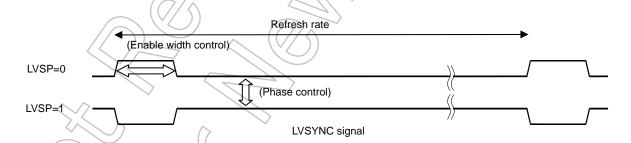
The above diagram shows the typical timings of the signals controlled by the LCDC. This section explains how to control each of these signals.

(1) LVSYNC Signal

The period of the vertical synchronization signal LVSYNC indicates the time for each screen update (refresh rate). The LVSYNC period is defined as an integral multiple of the period of the horizontal synchronization signal LHSYNC.

The LVSYNC period is calculated as the product of the value set in LCDVSP<LV 9:0> and the LHSYNC period. The value to be set in LCDVSP<LV9:0> should be "common size + number of dummy clocks" or larger for TFT and STN.

LVSYNC [s: period] = LHSYNC [s: period]
$$\times$$
 ($<$ LVP9:0 $>$ + 1) = LCP0 [s: period] \times ($<$ LH15:0 $>$ + 1) \times ($<$ LVP9:0 $>$ + 1)


LCD LVSYNC Pulse Register 7 6 2 0 5 4 1 LVP7 LVP6 LVP5 LVP4 LVP3 LVP2 LVP1 LVP0 bit Symbol Read/Write $\triangle 0$ 0 0 Reset State 0 0 0 0 **Function** LVSYNC period (bits 7-0) 7 6 5 2 0 bit Symbol LVP9 LVP8 Read/Write Reset State 0 LVSYNC period Function

LCDVSP (028CH)

(028DH)

The enable width of the LVSYNC signal can be specified as 1 clock, 2 clocks, or 3 clocks of LHSYNC in LCDCTL1<LVSW1:0>.

The phase of the LVSYNC signal can be inverted by the setting of LCDCTL1 <LVSP>.

LCD Control 1 Register

X 6. 5 3 2 1 4 0 LCDCTL1 bit Symbol LCP0P LHSP **LVSP** LLDP LVSW1 LVSW0 (0286H) Read/Write R/W R/W Reset State 0 0 0 0 **Function** LCP0 LHSYNC LVSYNC LLOAD LVSYNC phase phase phase phase enable time control 0: Rising 0: Rising 0: Rising 0: Rising 00: 1 clock of LHSYNC 1: Falling 1: Falling 1: Falling 1: Falling 01: 2 clocks of LHSYNC 10: 3 clocks of LHSYNC 11: Reserved

(bits 9-8)

(2) LHSYNC Signal

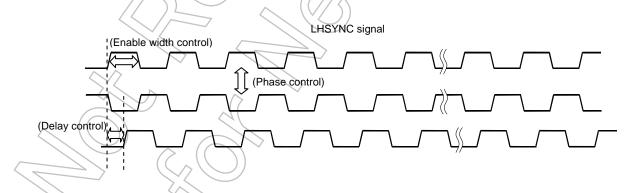
The period of the horizontal synchronization signal LHSYNC corresponds to one line of display. The LHSYNC period is defined as an integral multiple of the reference clock signal LCP0.

The LHSYNC period is defined as the product of the value set in LCDHSP<LH15:0> and the LCP0 clock period. The value to be set in LCDHSP<LH15:0> should be "segment size + number of dummy clocks" or larger for TFT. In the case of STN, the minimum value of LCDHSP<LH15:0> is:

Monochrome/grayscale : (Segment size / 8) + number of dummy clocks

Color : (Segment size $\times 3 / 8$) + number of dummy clocks

LHSYNC [s: period] = LCP0 [s: period] \times (<LH15:0> + 1)


LCD LHSYNC Pulse Register

LCDHSP (028AH)

	7	6	5	4	<u></u>	2	700	0
bit Symbol	LH7	LH6	LH5	LH4	LH3	LH2	LH1/	LH0
Read/Write				V	√ _	((
Reset State	0	0	0		0	0) 0	0
Function			6 5 4 3 2 1					
	7	6	5	\ 4	3	(2)	1	0
bit Symbol	LH15	LH14	LH13	LH12 /	LH14	LH10	LH9	LH8
Read/Write				\\W	<u>v</u>			
Reset State	0	0 ((0	0	Q	0	0	0
Function				LHSYNC peri	iod (bits 15-8	3)		

(028BH)

The enable width of the LHSYNC signal can be specified by LCDHSW<HSW9:0>. It is also possible to set the delay time for the LVSYNC signal in units of LCP0 pulses.

The enable width of the LHSYNC signal is set using LCDHSW<HSW8:0>. It can be specified in a range of 1 to 512 pulses of the LCP0 clock.

The enable width is represented by the following equation:

Enable width = $\langle HSW8:0 \rangle + 1$

Thus, when LCDHSW<HSW8:0> is set to "0", the enable width is set as one pulse of the LCP0 clock.

Signal Name

LCP0

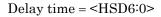
LHSYNC signal

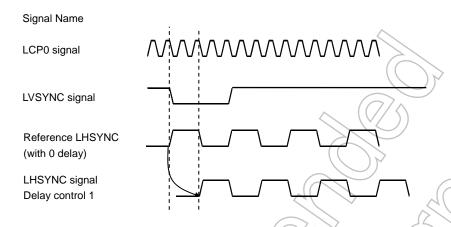
High width setting

LCP0 clock = 1, 2, 3 ... 512 pulses

LHSYNC width Register

LCDHSW (0294H)

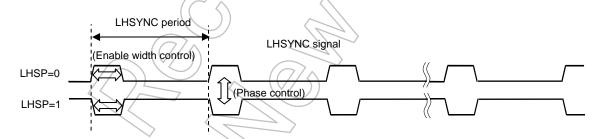

	7	6	5	4	3	<u></u>	1	0		
bit Symbol	HSW7	HSW6	HSW5	HSW4	HSW3	HSW2	HSW1	HSW0		
Read/Write		W								
Reset State	0	0	0)	0	0	0	0	0		
Function	LHSYNC width (bits 7-0)									


Signal width Bit8,9 Register

LCDHWB8 (0299H)

	7 ((6	5	4	3	2	1	0		
bit Symbol /	O2W9	O2W8	O1W9	7.01W8	O0W8	LDW9	LDW8	HSW8		
Read/Write	//	/ w								
Reset State	Q	0 ~	0)°	0	0	0	0		
Function	LGOE2 wid	lth (bits 9-8)	LGOE1 wid	th (bits 9-8)	LGOE0	LLOAD wid	th (bits 9-8)	LHSYNC		
^ ^	_				width (bit 8)			width (bit 8)		

As shown in the diagram below, delay time of 0 to 127 pulses of the LCP0 clock can be inserted in the LHSYNC signal.

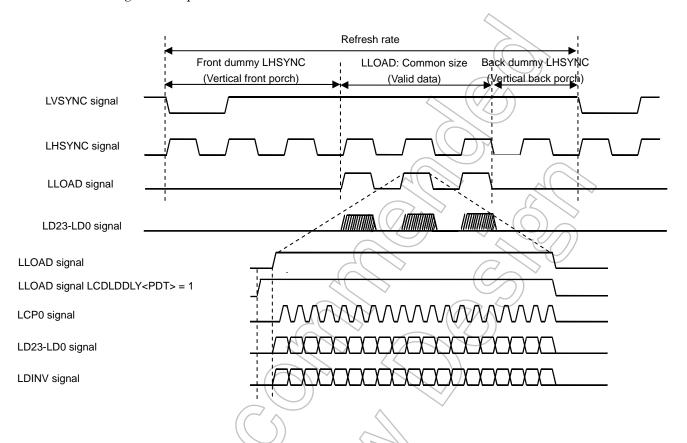


LHSYNC Delay Register

LCDHSDLY (028FH)

		7	6	5	4	3	(2)	1	0
Υ	bit Symbol		HSD6	HSD5	HSD4	HSD3	HSD2	/ HSD1	HSD0
	Read/Write					w (77/		
	Reset State		0	0	\searrow_0	0	(()	0	0
	Function			4(//	LHŞÝ	NC delay (bi	ts 6-0)		

The phase of the LHSYNC signal can be inverted by the setting of LCDCTL1 <LVSP>.


LCD Control 1 Register

LCDCTL1 (0286H)

H	7	6 (5	4	3	2	1	0
bit Symbol	LCP0P	LHSP	LVSP	LLDP			LVSW1	LVSW0
Read/Write	\wedge (RΛ	V				R/\	N
Reset State		0	1	0			0	0
Function	LCP0	LHSYNC	LVSYNC	LLOAD			LVSYNC	
\supset	phase	phase	phase	phase			enable time control	
	0: Rising	0: Rising	0: Rising	0: Rising			00: 1 clock of	LHSYNC
	1: Falling	1: Falling	1: Falling	1: Falling			01: 2 clocks	of LHSYNC
							10: 3 clocks	of LHSYNC
							11: Reserved	d

(3) LLOAD Signal

The LLOAD signal is used to control the timing for the LCD driver to receive display data. The period of the LLOAD signal synchronizes to one line of display. It is defined as an integral multiple of the reference clock LCP0.

The LHSYNC signal and LLOAD signal differs in that the LHSYNC signal is output all the time whereas the LLOAD signal is output only at valid data lines (commons).

Display data is output in synchronization with the LLOAD signal. Therefore, if a delay is inserted in the LLOAD signal through the LCDLDDLY register, data output is also delayed.

Also note that when LCDLDDLY<PDT>=1, data is output one LCP0 clock later than the LLOAD signal.

LCDLDDLY<PDT>=0: Data is output in synchronization with the LLOAD signal.

LCDLDDLY<PDT>=1: Data is output one LCP0 clock later than the LLOAD signal.

The delay time for the LLOAD signal is controlled based on LCDLDDLY<PDT>=1. Therefore, even if the delay time is set to "0" with LCDLDDLY<PDT>=0, the LLOAD signal is output with a delay of one LCP0 clock. Be careful about this point.

The number of pulses in the front dummy LHSYNC (vertical front porch) is specified by LCDPRVSP<PLV6:0>. This delay time can be set in a range of 0 to 127 pulses of the LCP0 clock.

Front dummy LHSYNC = <PLV6:0>

LCD LVSYNC Pre Pulse Register

LCDPRVSP (028EH)

		7	6	5	4	3	2	<i>_)</i> /1	0			
Р	bit Symbol		PLV6	PLV5	PLV4	PLV3	PLV2	PLV1	PLV0			
	Read/Write			w (V/								
	Reset State		0	0	0	0		0	0			
	Function			Front dummy LVSYNC (bits 6-0)								

The back dummy LHSYNC (vertical back porch) is defined as follows:

(<LVP9:0> + 1) - (valid LHSYNC: common size) - (front dummy LHSYNC: <PLV6:0>)

Signal Name

LCP0

LLOAD signal

High width setting

LCP0 clock = 1, 2, 3 ... 1023 pulses (<PDT>=0) / 1024 pulses (<PDT>=1)

Note: The vertical back porch must be set to "1" or longer in all the cases (STN/TFT).

The enable width of the LLOAD signal is determined depending on the LCDCTL0<LCP0OC> setting, as shown below.

LCDCTL0 < LCPOOC > = 0

: Output at setting value in (LCDDLW) <LDW9:0>

LCDCTL0 < LCPOOC > = 1

Output at valid data

LCDCTL0 (0285H)

			LC	Control	0 Register				
		7	6	5	4	3	2	1	0
	bit Symbol	PIPE	ALLO	FRMON	=		DLS	LCP0OC	START
	Read/Write		R/W		R/W			R/W	
	Reset State	0	0	0	0		0	0	0
	Function	PIP	Segment	Frame	Always		FR signal	LCP0(Note	LCDC
_		function	data	divide	write "0"		LCP0/Line	0: Always	operation
		0:Disable	0: Normal	setting			selection	output	0: Stop
	\supset	1:Enable	1: Always	0: Disable			0:Line	1: At valid	1: Start
			output "0"	1: Enable			1:LCP0	data only	
								LLOAD	
								width	
								0: At setting	
								in register	
								1: At valid	
								data only	

Note: When select STN mode, LCP0 is output at valid data only regardless of the setting of < LCP0OC > bit.

The enable width of the LLOAD signal is specified using LCDLDW<LDW9:0>. It can be set in a range of 0 to 1024 pulses of the LCP0 clock.

The actual enable width is determined depending on the LCDLDDLY<PDT> setting, as shown below.

Enable width = $\langle LDW9:0 \rangle + 1$

(when $\langle PDT \rangle = 1$, $\langle LDW9:0 \rangle = 0$ is prohibited)

Enable width = <LDW9:0>

(when < PDT > = 0)

LLOAD width Register

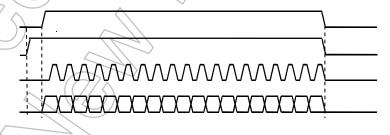
LCDLDW (0295H)

	7	6	5	4	3 ((/2/ \)	1	0				
bit Symbol	LDW7	LDW6	LDW5	LDW4	LDW3 LDW2	LDW1	LDW0				
Read/Write		W									
Reset State	0	0 0 0 0 0 0 0									
Function	LLOAD width (bits 7-0)										

Signal width Bit8,9 Register

LCDHWB8 (0299H)

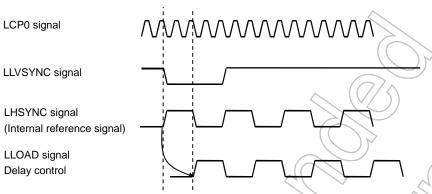
	7	6	5	4 🗸	()3	⟨2 (9	0			
bit Symbol	O2W9	O2W8	O1W9	O1W8	O0W8	LDW9	LDW8/	HSW8			
Read/Write		W C									
Reset State	0	0	0 <	6	0	(0)	0	0			
Function	LGOE2 wid	Ith (bits 9-8)	LGOE1 width (bits 9-8)		LGOE0	LGOE0 LLOAD width (bits 9-8)		LHSYNC			
					width (bit 8)	7/ \		width (bit 8)			


When LCDCTL0<LCP0OC>=1, the enable width of the LLOAD signal is shown below.

LLOAD LCDLDDLY<PDT> = 0

LLOAD LCDLDDLY<PDT> = 1

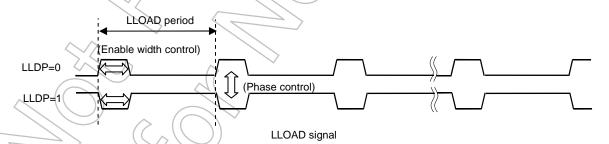
LCP0


LD23-LD0

As shown in the diagram below, delay time of 0 to 127 pulses of the LCP0 clock can be inserted in the LLOAD signal.

Delay time = <LDD6:0>

Signal Name

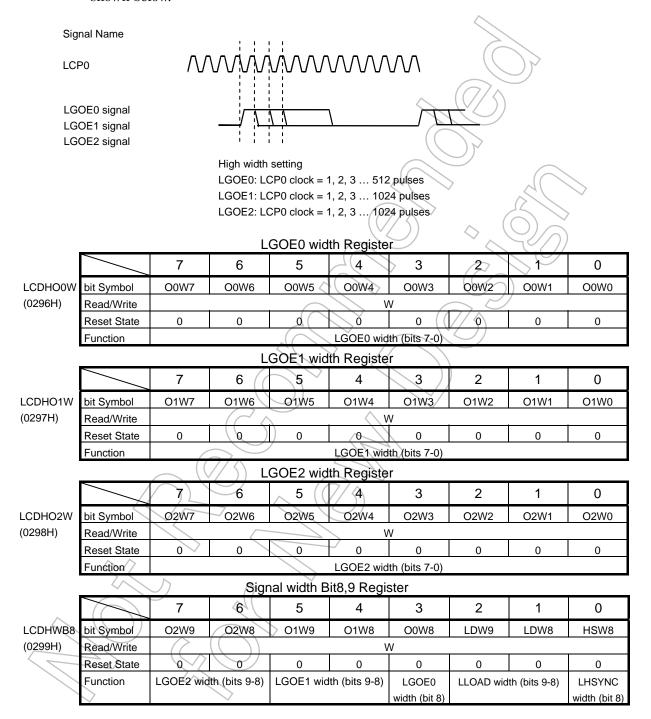

Note: The delay time for the LLOAD signal is controlled based on LCDLDDLY<PDT>=1. Therefore, even if the delay time is set to"0" with LCDLDDLY<PDT>=0, the LLOAD signal is output with a delay of one LCP0 clock. Be careful about this point.

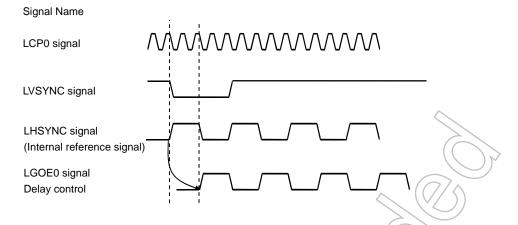
LLOAD Delay Register

LCDLDDLY (0290H)

ELECTE Belay Register										
	7	6	5	4,	3	\supset_{\wedge}^{2}	1	0		
bit Symbol	PDT	LDD6	LDD5	LDD4	LDD3	LDD2	LDD1	LDD0		
Read/Write	R/W		A W							
Reset State	0	0	0	` o <<	0	0	0	0		
Function	Data output timing 0: Sync with LLOAD 1: 1 clock later than LLOAD			LLOA	D delay (bit	s 6-0)				

The phase of the LLOAD signal can be inverted by the setting of LCDCTL1 <LLDP>.


LCD Control 1 Register


LCDCTL1 (0286H)

	7	6	5	4	3	2	1	0
bit Symbol	LCP0P	LHSP	LVSP	LLDP			LVSW1	LVSW0
Read/Write		R/\	N				R/	W
Reset State	1	0	1	0			0	0
Function	LCP0 phase 0: Rising 1: Falling	LHSYNC phase 0: Rising 1: Falling	LVSYNC phase 0: Rising 1: Falling	LLOAD phase 0: Rising 1: Falling			LVSYNC enable time of 00: 1 clock of 01: 2 clocks of 10: 3 clocks of 11: Reserved	f LHSYNC of LHSYNC of LHSYNC

(4) LGOE0 to LGOE2 Signals

The LCDC has three signals (LGOE0 to LGOE2) that can be controlled like the LHSYNC signal. For these signals, the enable width, delay time, and phase timing can be adjusted as shown below.

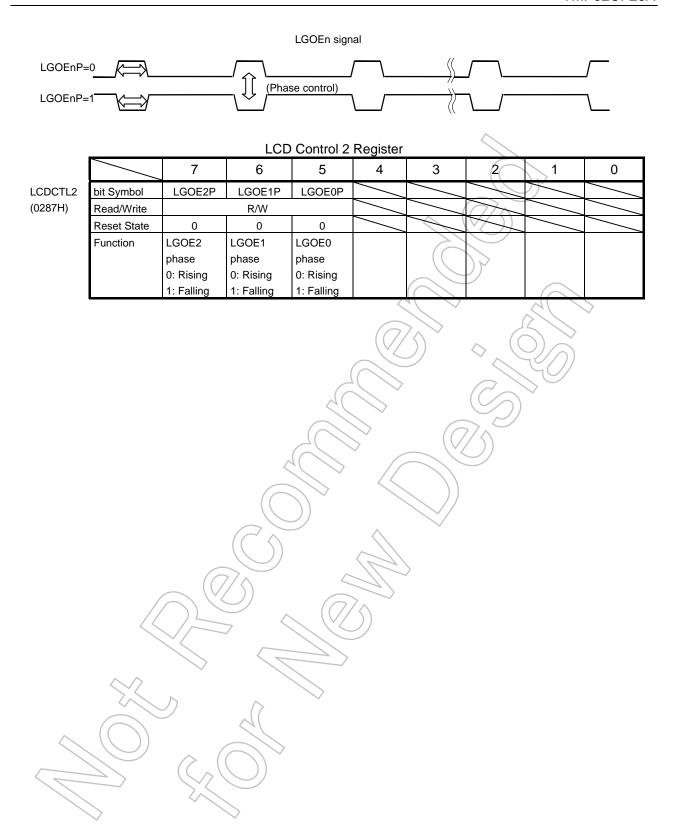
LGOE0 Delay Register

LCDO0DLY (0291H)

	7	6	5	4	3	\smile_2	1	0		
bit Symbol		OE0D6	OE0D5	OE0D4	OE0D3	OE0D2	QE0D1	OE0D0		
Read/Write					W			~		
Reset State		0	0	0 ((7/0	. 0 (0	0		
Function			QE0 delay (bits 6-0)							

LGOE1 Delay Register

LCDO1DLY (0292H)


	7	6	5 4	3	2/	<i>)</i> 1	0
bit Symbol		OE1D6	OE1D5 OE1D4	4 OE1D3	OE1D2	OE1D1	OE1D0
Read/Write				W	(())	_	
Reset State		0	d 0 > 0	0	0	0	0
Function				OE1 delay (bits	6-0)		

LGOE2 Delay Register

LCDO2DLY (0293H)

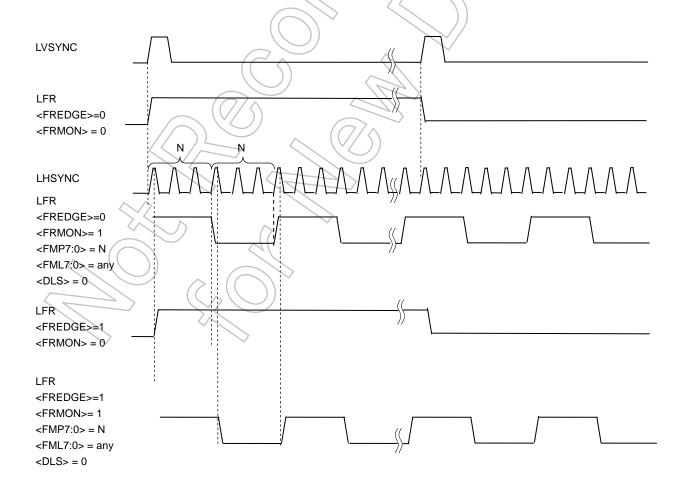
	7	(6 <	5	4	3	2	1	0
bit Symbol		OE2D6	OE2D5	OE2D4	OE2D3	OE2D2	OE2D1	OE2D0
Read/Write	7	7/^			W			
Reset State		()	0		0	0	0	0
Function) //		OE2	2 delay (bits	6-0)		

TOSHIBA

(5) LFR Signal

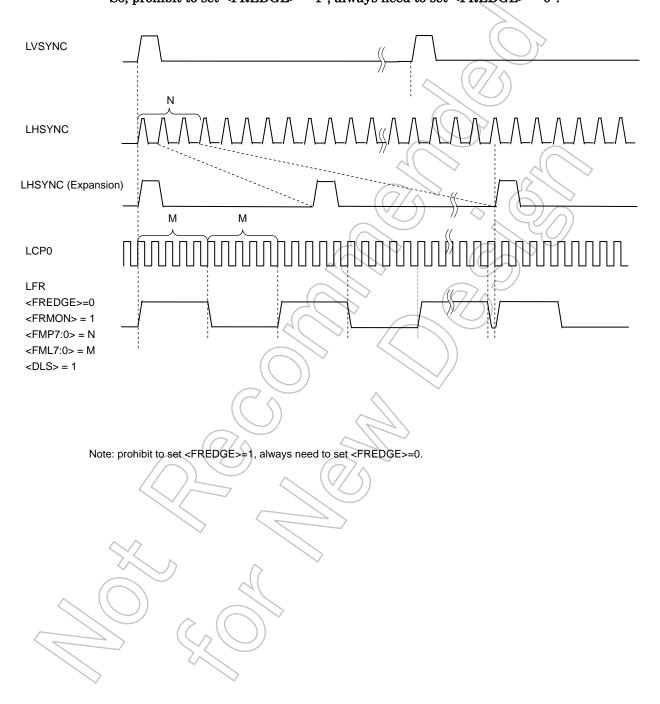
The LFR (frame) signal is used to control the direction of bias the LCD driver applies on liquid crystal cells. With small screens in monochrome mode, the polarity of the LFR signal is normally inverted in synchronization with each screen display. With large screens or when grayscale or color mode is used, the polarity is inverted at shorter intervals to adjust the display quality.

When LCDCTL0<FRMON>="1" and LCDCTL0<DLS> = "0", the LFR signal is inverted at intervals of "LHSYNC x N" (LHSYNC: internal reference signal with 0 delays). The "N" value is specified in LCDDVM0<FML3:0> and LCDDVM1<FML7:4>.


When <DLS>= "0" and <FREDGE>= "0", LFR signal synchronous with front edge of LHSYNC signal, and when <DLS>="0" and <FREDGE>=1, LFR signal synchronous with rear edge of LHSYNC signal.

When LCDCTL0<FRMON> is set to "0" to disable the frame divide function, the LFR signal is inverted in synchronization with the LVSYNC period.

Enabling this function does not affect the waveform and timing of the LVSYNC signal. (The refresh rate is not changed.)


Note1:The effect of this function varies with the characteristics of the LCD driver and LCD panel to be used. Note2:LFR signal delaies synchronous with LHSYNC signal.

Generally, setting a prime number (3, 5, 7, 11, 13 and so on) as the "N" value produces better results.

When LCDCTL0<FRMON>= "1" and LCDCTL0<DLS>= "1", frame output is inverted at intervals set in LCDDVM0<FML3:0> and the LFR signal is inverted at intervals of "LCP0 \times M". The "M" value is specified in LCDDVM0<FMP7:4>.

When <DLS>= "1" LFR signal synchronous with front edge of LHSYNC signal. So, prohibit to set <FREDGE>= "1", always need to set <FREDGE>= "0".

LCD Control 0 Register

LCDCTL0 (0285H)

	LOD Control of Register									
	7	6	5	4	3	2	1	0		
bit Symbol	PIPE	ALL0	FRMON	-		DLS	LCP0OC	START		
Read/Write		R/W	_	R/W			R/W			
Reset State	0	0	0	0		0	0	0		
Function	PIP	Segment	Frame	Always		FR signal	LCP0(Note	LCDC		
	function 0:Disable	data 0: Normal	divide setting	write "0"		LCP0/Line selection	0: Always	operation		
	1:Enable	1: Always	0: Disable			0:Line	output 1: At valid	0: Stop 1: Start		
		output "0"	1: Enable		_	1:LCP0	data only			
						()	LLOAD			
							width			
) >	0: At setting			
							in register			
				,			1: At valid			
				_			data only	>		

Note: When select STN mode, LCP0 is output at valid data only regardless of the setting of <LCP0OC> bit.

Divide FRM 0 Register

LCDDVM0 (0283H)

				/ _0							
	7	6	5	4	> 3	2		0			
bit Symbol	FMP3	FMP2	FMP1 <	FMP0	FML3	FML2	FML1	FML0			
Read/Write		R/W									
Reset State	0	0	0	0	0 ((// o	0	0			
Function		/M (bits 3-0)									

Divide FRM 1 Register

LCDDVM1 (0288H)

	7	6		4	3	2	1	0
bit Symbol	FMP7	FMP6	FMP5	FMP4	FML7	FML6	FML5	FML4
Read/Write				R	w			_
Reset State	0		0	0	0	0	0	0
Function	((LCP0 DVM	l (bits 7-4)	11/		LHSYNC D	VM (bit 7-4)	

(6) LD Bus

The data to be transferred to the LCD driver is output via a dedicated bus (LD23 to LD0). The output format can be selected according to the input method of the LCD driver to be used.

The LCDC reads data of the size corresponding to the specified LCD size from the display RAM and transfers it to the external LCD driver via the data bus pin dedicated to the LCD. Thus, the LCDC automatically issues a bus request to the CPU (to stop CPU operation) when it needs to read data from the display RAM. The bus occupancy rate of the LCDC varies depending on the display mode and the speed at which data is read from the display RAM.

Display RAM	Bus Width	Valid Data Read Time (f _{SYS} clocks/bytes)	Valid Data Read Time t _{LRD} (ns/bytes) at f _{SYS} = 60 MHz
External SRAM	16-bit	(2 + number of waits) / 2	16.6
Internal RAM	32-bit	**1/4	**4.16
External SDRAM	16-bit	*1/2	8.33

Note: When SDRAM is used, additional 9 clocks are needed as overhead time for reading each common (line) data. When internal RAM is used, additional 1 clock is needed as overhead time for reading each common (line) data. Additional 1 clock of overhead time is also needed when a change of blocks occur in the internal RAM even if the common (line) remains the same.

The time the CPU stops operating while data for one common (line) is being transferred is defined as t_{STOP} which is represented by the following equation:

$$t_{STOP} = (SegNum \times K / 8) \times t_{LRD}$$

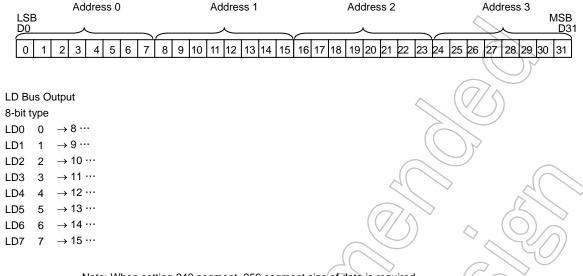
SegNum : Number of display segments

K Number of bits needed for displaying one pixel

Monochrome display	K=1
4-grayscale display	K=2
16-grayscale display	K=4
256-color display	K=8
4096-color display	K=12
65536-color display	K=16
262144-/16777216-color display	K=24

Note: When SDRAM is used, overhead time is added as follows:

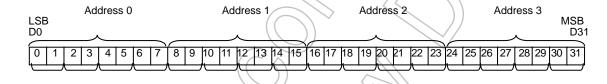
 $t_{STOP}[S] = (SegNum \times K / 8) \times t_{LRD} + ((1 / f_{SYS}) \times 8)$


The bus occupancy rate indicates the proportion of the one common (line) update time t_{LP} occupied by $t_{STO}P$ and is calculated by the following equation:

CPU bus occupancy rate = tSTOP [s] / LHSYNC [s: period]

• Memory Map Image and Data Output in Each Display Mode

STN monochrome (1-pixel display data = 1-bit memory data)


Display Memory

Note: When setting 240 segment, 256 segment size of data is required.

STN 4-grayscale (1-pixel display data = 2-bit memory data)

Display Memory


```
LD Bus Output
8-bit type
LD0 1-0
                → 17-16 <del>‹</del>‹
LD1
      3 - 2
               → 19-18 ···
               → 21-20 ···
LD2
      5 - 4
      7- 6
               → 23-22.···
LD3
LD4
      9-8
               → 25-24····
               → 27-26 ··
LD5
      11-10
               → 29-28 ···
LD6
      13-12
```

→ 31-30 ···

LD7

15-14

Figure 3.19.2 Memory Map Image and Data Output in STN Monochrome/4-Grayscale Mode

STN 16-grayscale (1-pixel display data = 4-bit memory data)

Display Memory

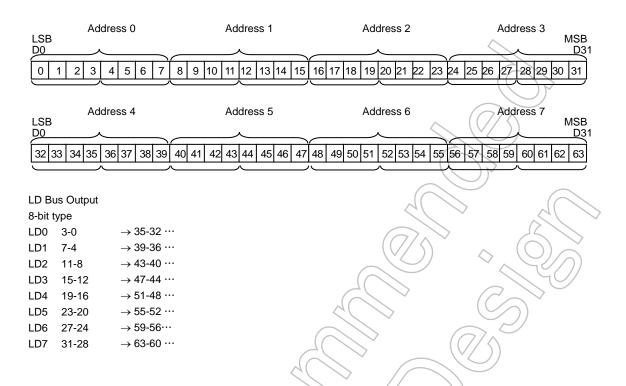


Figure 3.19.3 Memory Map Image and Data Output in STN 8-/16-Grayscale Mode

STN 64-grayscale (1-pixel display data = 6-bit memory data)

Display Memory

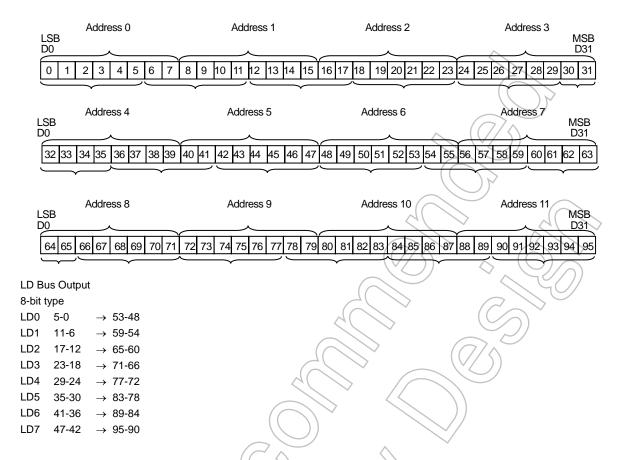


Figure 3.19.4 Memory Map Image and Data Output in STN 64-Grayscale Mode

STN 256-color (1-pixel display data = 8-bit memory data (R: 3 bits, G: 3 bits, B: 2 bits)) Display Memory

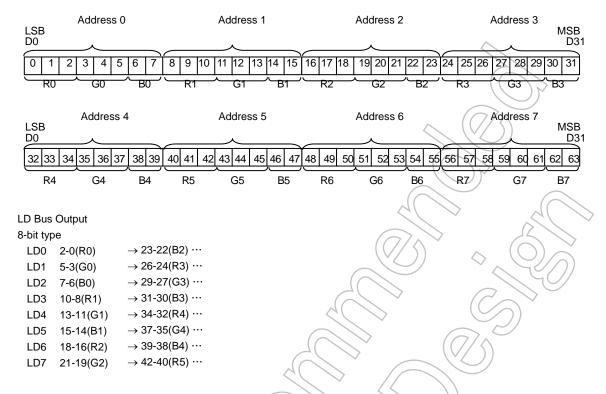


Figure 3.19.5 Memory Map Image and Data Output in STN 256-Color Mode

STN 4096-color (12 bpp: R: 4 bits, G: 4 bits, B: 4 bits)

Display Memory

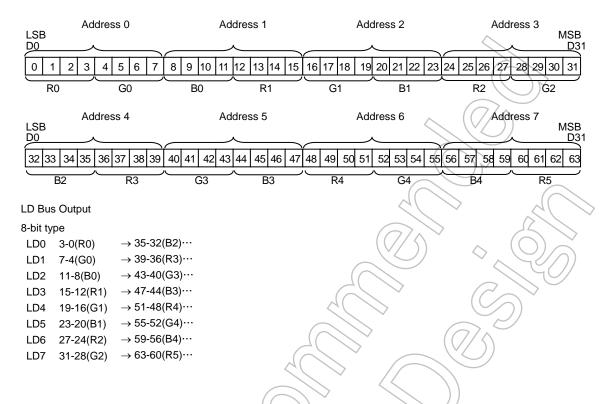


Figure 3.19.6 Memory Map Image and Data Output in STN 4096-Color Mode

STN 65536-color (16bpp: R: 5 bits, G: 6 bits, B: 5 bits)

Display Memory

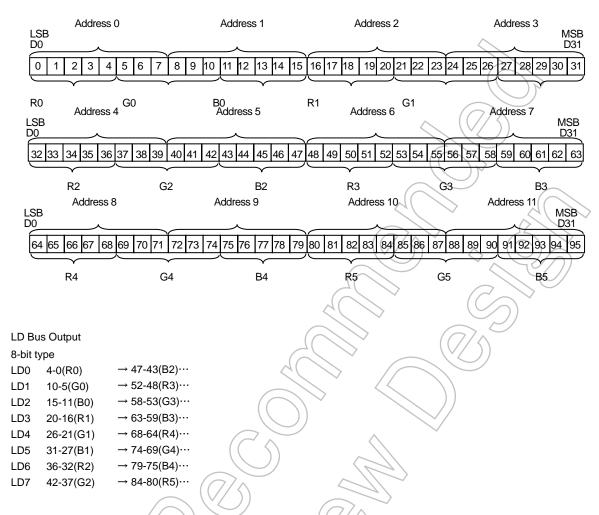


Figure 3.19.7 Memory Map Image and Data Output in STN 65536-Color Mode

TFT 256-color (1-pixel display data = 8-bit memory data (R: 3 bits, G: 3 bits, B: 2 bits) Display Memory

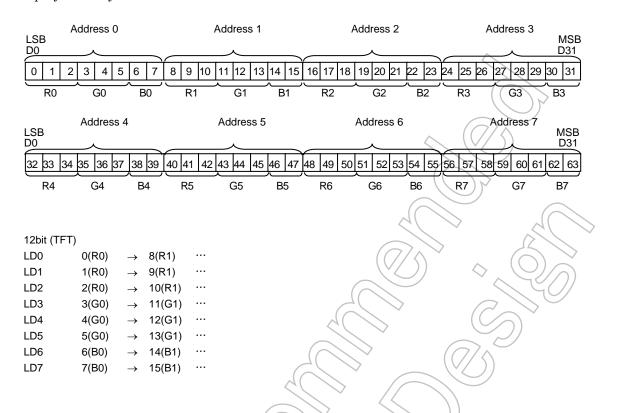


Figure 3.19.8 Memory Map Image and Data Output in TFT 256-Color Mode

TFT 4096-color (1-pixel display data = 12-bit memory data (R: 4 bits, G: 4 bits, B: 4 bits) Display Memory

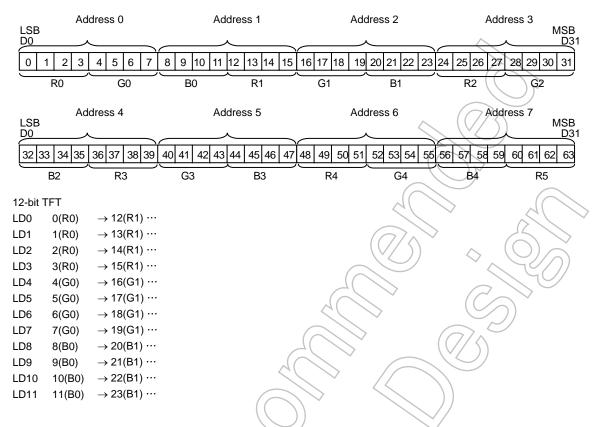
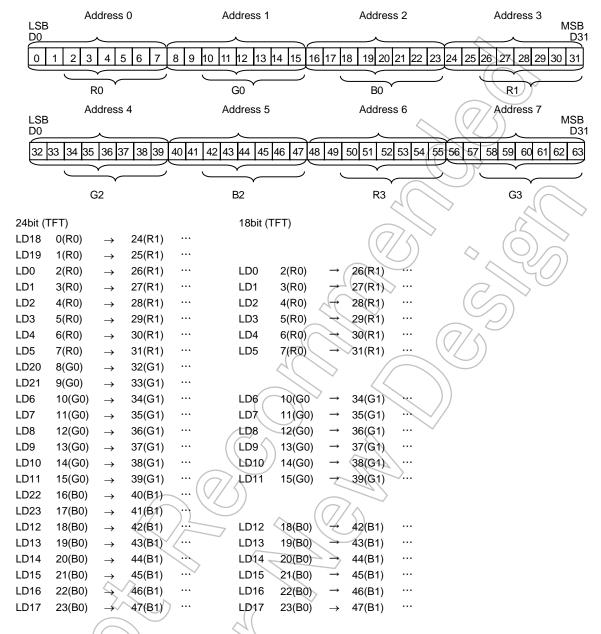


Figure 3.19.9 Memory Map Image and Data Output in TFT 4096-Color Mode


TFT 65536-color (16 bpp: R: 5 bits, G: 6 bits, B: 5 bits)

Display Memory

Figure 3.19.10 Memory Map Image and Data Output in TFT 65536-Color Mode

<u>TFT 262144-/16777216-color (24 bpp: R: 8 bits, G: 8 bits, B: 8 bits)</u> Display Memory

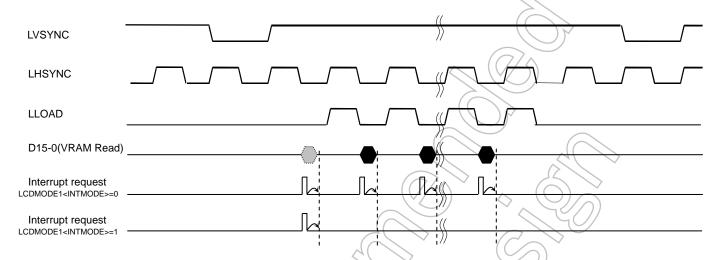
Note: The display RAM data format for 18 bpp is the same as that for 24 bpp. When 18 bpp is used, the least significant bit should be disabled by port setting.

Figure 3.19.11 Memory Map Image and Data Output in TFT 262144-/16777216-Color Mode

(7) LDIV Signal

The <LDINV> and <AUTOINV> bits of the LCDMODE1 register are used to control the LDIV signal as well as data output. The LDIV signal indicates the inversion of all the LD bus signals.

When LCDMODE1<LDINV>=1, all display data is forcefully inverted and the LDIV signal is also driven high. When LCDMODE1<AUTOINV>=1, the data that has just been transferred and the data to be transferred next are compared. If there are more changed bits than unchanged bits (for example, 7 or more bits are changed when using a 12-bit bus, and 5 or more bits are changed when using a 8-bit bus), the data is inverted and the LDIV signal is also driven high. This function can be used with TFT source drivers having the data inversion function to reduce radiated noise and power consumption due to high-speed data inversion.


If <LDINV> and <AUTOINV> are both set to "1" at the same time, <LDINV> is given priority and <AUTOINV> is disabled.

3.19.4 Interrupt Function

The LCDC has two types of interrupts.

One is generated synchronous with the LLOAD signal and the other is generated synchronous with the LLOAD signal that is output immediately after the LVSYNC signal.

LCDMODE1<INTMODE> is used to switch between these two types of interrupts.

When LCDMODE1<INTMODE>=0, an interrupt request is generated at the start of each VRAM read before the LLOAD generates (once in each LLOAD period).

When LCDMODE1<INTMODE>=1, an interrupt request is generated at the start of VRAM read before the first LLOAD generates (once in each LVSYNC period).

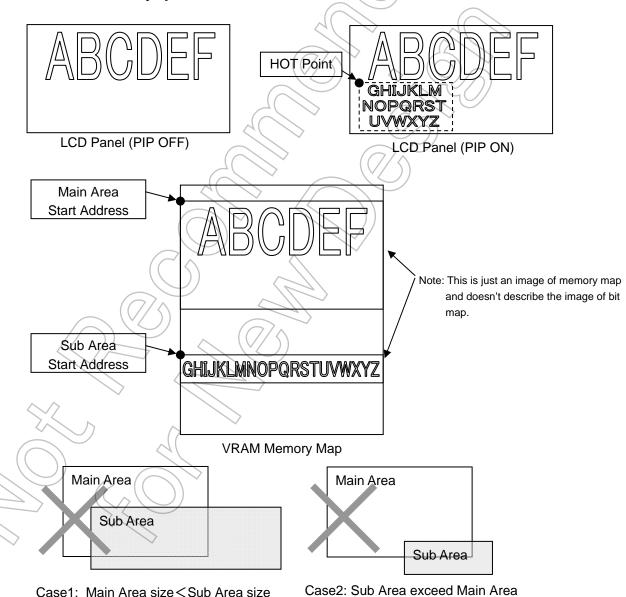
Note: The interrupt request generates when reading the data from VRAM at once. Since reading from VRAM is executed by DMA with bus request to the CPU, DMA operation is given priority. Thus CPU accepts interrupt immediately after reading the data from VRAM.

LCDMODE1 Register

LCDMODE1 (0281H)

			- 5 - (111 - 7 -	y i rtqgiote	·=·				
	1	6	5	4	3	2	1	0	
bit Symbol	LDC2	LDC1	LDC0	LDINV	AUTOINV	INTMODE	FREDGE	SCPW2	
Read/Write	<u> </u>		\\ F	R/W			W		
Reset State	0	0	0	0	0	0	0	0	
Function	Data rotation	n function		LD bus	Auto bus	Interrupt	LFR edge	LD bus	
	(Supported t	for 64K-cold	r: 16bps	inversion	inversion	selection		Trance	
	only)				0: Disable		0: LHSYNC	Speed	
	000: Normal	100:	90-degree	0: Normal	1: Enable	0:LLOAD	Front		
	001: Horizor	tal flip 101:	Reserved	1: Invert	(Valid only	1:LVSYNC	Edge	0: normal	
	010: Vertica	010: Vertical flip 110: Reserved			for TFT)		1:LHSYNCR	1: 1/3	
	011: Horizor	ntal & vertica	al flip				EAR Edge		
~	111: Reserv	ed							

Note: The LCDMODE1<INTMODE> setting must not be changed while the LCDC is operating. Be sure to set LCDCTL0<START> to "0" to stop the LCDC operation before changing the interrupt setting.


3.19.5 Special Functions

3.19.5.1 PIP (Picture in Picture) Function

The TMP92CF26A includes a PIP (Picture in Picture) function that allows a different screen to be displayed over the screen currently being displayed on the LCD.

The PIP function manages the address space of display memory by dividing it into "main screen" and "sub screen". For the main screen, the display size and start address are specified as in the case of the normal screen display. For the sub screen, the display size and start address are also specified for determining the position and size of the sub screen.

When the HOT point (upper-left corner) and segment/common size are set for the sub screen and the PIP function is enabled by setting LCDCTL0 <PIPE> to "1", the sub screen is displayed over the main screen.

Note: Always set Sub Area within Main Area. The size that is bigger than the Main Area can not be set to the Sub Area, and the Sub area setting that lap Main Area.

The table below shows the HOT point locations that can be specified.

	*VRAM Access	HOT_Point(X_dir)	HOT_Point(Y_dir)
Monochrome display	16bit	In units of 16 dots	
	32bit	In units of 32 dots	
4-grayscale display	16bit	In units of 8 dots	
	32bit	In units of 16 dots	
16-grayscale display	16bit	In units of 4 dots	
	32bit	In units of 8 dots	
64-grayscale display	16bit	In units of 8 dots	
	32bit	In units of 16 dots	In units of
256-color display	16bit	In units of 2 dots	1 line
	32bit	In units of 4 dots	
4K-color display	16bit	In units of 4 dots	
	32bit	In units of 8 dots	
64K-color display	16bit	In units of 1 dots	
	32bit	In units of 2 dots	
TFT	16bit	In units of 2 dots	\simeq
256k/16M-color display	32bit	In units of 4 dots	401

Note 1: The "VRAM Access" colomn shows the bus size for accessing the display RAM. When external RAM is used, the bus size depends on the bit width of the external RAM to be used. When the internal RAM is used VRAM is always accessed via a 32-bit bus.

Note 2: The same RAM must be used for both the main and sub areas.

The table below shows the HOT point segment and common sizes that can be specified.

	*VRAM Access	Segm	ent size	Common
	$(\bigcirc \bigcirc \bigcirc$	Minimum size	units	size
Monochrome display	16bit	32 dots	In units of 16 dots	
((7/ \(\) 32bit	64 dots	In units of 32 dots	
4-grayscale display	() 16bit	16 dots	In units of 8 dots	
//) _	32bit/	32 dots	In units of 16 dots	
16-grayscale display	16bit	8 dots	In units of 4 dots	
	32bit	16 dots	In units of 8 dots	
64-grayscale display	16bit	16 dots	In units of 8 dots	In units of
	32bit	32 dots	In units of 16 dots	
256-color display	/16bit	4 dots	In units of 2 dots	1 line
	32bit	8 dots	In units of 4 dots	
4K-color display	16bit	8 dots	In units of 4 dots	
	32bit	16 dots	In units of 8 dots	
64K-color display	16bit	2 dots	In units of 1 dots	
	32bit	4 dots	In units of 2 dots	
TET	16bit	4 dots	In units of 2 dots	
256k/16M-color display	32bit	8 dots	In units of 4 dots	

	LCD Main Area Start Address Register										
		7	6	5	4	3	2	1	0		
LSAML	bit Symbol	LMSA7	LMSA6	LMSA5	LMSA4	LMSA3	LMSA2	LMSA1			
(02A0H)	Read/Write				R/W		_				
	Reset State	0	0	0	0	0	0	0			
	Function			LCD m	nain area stai	rt address (A	7-A1)				
		7	6	5	4	3	2	1	0		
LSAMM	bit Symbol	LMSA15	LMSA14	LMSA13	LMSA12	LMSA11	LMSA10	LMSA9	LMSA8		
(02A1H)	Read/Write		R/W								
	Reset State	0	0	0	0	0	(0/)	0	0		
	Function			LCD m	ain area star	t address (A	15-A8)	/			
		7	6	5	4	3 ((2>	1	0		
LSAMH	bit Symbol	LMSA23	LMSA22	LMSA21	LMSA20	LMSA19	LMSA18	LMSA17	LMSA16		
(02A2H)	Read/Write				RΛ	w \ (\ \					
	Reset State	0	1	0	0	0	0	0	0		
	Function			LCD ma	in area start	address (A2	3-A16)	25	>		
	LCD Sub Area Start Address Register										

			LCD Su	b Area Sta	art Address	Register		40	/		
		7	6	5	4	⇒ 3	2	M	0		
LSASL	bit Symbol	LSSA7	LSSA6	LSSA5	LSSA4	LSSA3	LSSA2) LSSA1			
(02A4H)	Read/Write				R/W	/					
	Reset State	0	0	0_	0	0	(O)	0			
	Function		LCD sub area start address (A7-A1)								
		7	6	5	4 <	3	2	1	0		
LSASM	bit Symbol	LSSA15	LSSA14	LSSA13	LSSA12	LSSA11	LSSA10	LSSA9	LSSA8		
(02A5H)	Read/Write	RW									
	Reset State	0	0 /	0	0 🔨	0	0	0	0		
	Function	LCD sub area start address (A15-A8)									
		7	6	5	4	3	2	1	0		
LSASH	bit Symbol	LSSA23	LSSA22	LSSA21	LSSA20	LSSA19	LSSA18	LSSA17	LSSA16		
(02A6H)	Read/Write		(7/\lambda RW								
	Reset State	0/-	<u></u>	0		0	0	0	0		
	Function	/,/		LCD st	ub area start	address (A23	3-A16)				

			LCD Sub A	Area HOT	Point Reg	ister (X-dir)		
		7	6	5	4	3	2	1	0
LSAHX	bit Symbol	SAHX7	SAHX6	SAHX5	SAHX4	SAHX3	SAHX2	SAHX1	SAHX0
(02A8H)	Read/Write				RΛ	N			
	Reset State	0	0	0	0	0	0	0	0
	Function LCD sub area HOT point (7-0)								
		7	6	5	4	3	2	1	0
(02A9H)	bit Symbol						¥	SAHX9	SAHX8
	Read/Write						<i>[]</i>) R/	W
	Reset State						#	0	0
	Function						(\vee)	LCD sub	area HOT
								point	(9-8)

LCD Sub Area HOT Point Register (Y-dir)

			LCD Sub /	Alea HOT	Point Reg	lister (1-dir					
		7	6	5	4	3	2	1	0		
LSAHY	bit Symbol	SAHY7	SAHY6	SAHY5	SAHY4	SAHY3	SAHY2	SAHY1	SAHY0		
(02AAH)	Read/Write	(R/W)									
	Reset State	0	0	0	0	(<u>)</u> 0	0	0/0	0		
	Function		LCD sub area HOT point (7-0)								
		7	6	5	4	> 3	2		0		
(02ABH)	bit Symbol				Z		y		SAHY8		
	Read/Write		/	4	Þ				R/W		
	Reset State			X					0		
	Function			4					LCD sub		
					`				area HOT		
									point (8)		

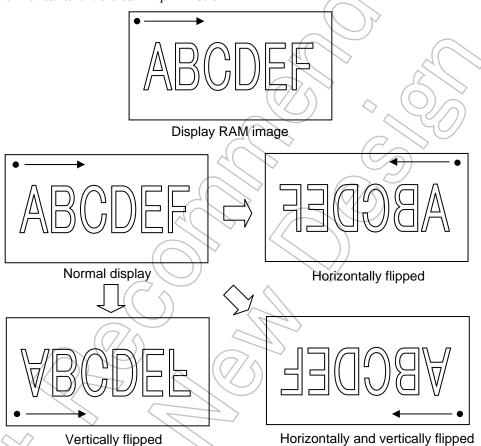
Note: The HOT point should be set in units of the specified number of dots, which is determined by the display color mode and display RAM access data bus width.

LCD Sub Area Display Segment Size Register

	7 3								
		7	(//6)	5	4	3	2	1	0
LSASS	bit Symbol	SAS7	SAS6	SAS5	SA\$4	SAS3	SAS2	SAS1	SAS0
(02ACH)	Read/Write <				() R/V	V			
	Reset State	0	0 ~	0	0	0	0	0	0
	Function		, \	LCD	sub area seg	gment size (7	'- 0)		
	#	7	6	5	4	3	2	1	0
(02ADH)	bit Symbol	£	1	}/ /		/		SAS9	SAS8
	Read/Write		7			/		R/	W
^	Reset State							0	0
	Function			\supset				LCD sub are	ea segment
								size	(9-8)

Note: The segment size should be set in units of the specified number of dots, which is determined by the display color mode and display RAM access data bus width.

	LCD Sub Area Display Common Size Register										
		7	6	5	4	3	2	1	0		
LSACS	bit Symbol	SAC7	SAC6	SAC5	SAC4	SAC3	SAC2	SAC1	SAC0		
(02AEH)	Read/Write	R/W									
	Reset State	0	0	0	0	0	0_	0	0		
	Function		LCD sub area common size (7-0)								
		7	6	5	4	3	2	1	0		
(02AFH)	bit Symbol							\mathcal{H}	SAC8		
	Read/Write						Æ		R/W		
	Reset State					4	¥		0		
	Function			LCD sub area common size (8)							


3.19.5.2 Display Data Rotation Function

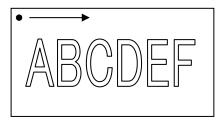
When display RAM data is output to the LCD driver (LCDD), the data output direction can be automatically rotated by hardware to meet the specifications of the LCDD (or LCD module) to be used.

Table 3.19.2 Operation Conditions

Item	Vertical/Horizontal Flip Function	90-Degree Rotation Function		
Display size	320 × 240	320×240 → 240 × 320		
Color mode	64K colors (16 bpp)	64K colors (16 bpp)		
Supported LCDD	TFT, STN	TFT, STN		
Display RAM	Internal RAM, external SRAM	Internal RAM, external SRAM		

1. Horizontal and Vertical Flip Function

The display RAM image shown above uses the data scan method for the normal display screen so that data is read from the display RAM and written to the LCDD from left to right and top to bottom.


The data on the LCD screen appears as "horizontally flipped" if data is read from the display RAM from left to right and top to bottom and written to the LCDD from right to left and top to bottom.

Likewise, the data on the LCD screen appears as "vertically flipped" if data is written to the LCDD from left to right and bottom to top, or as "horizontally and vertically flipped" if the data is written to the LCDD from right to left and bottom to top.

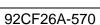
The horizontal and vertical flip function enables the output of display data to meet the specifications of each LCDD without the need to rearrange the display RAM data. In other words, the screen display can be flipped horizontally and vertically without the need to rewrite the display RAM data.

TOSHIBA

2. 90-Degree Rotation Function

Display RAM Image (QVGA 320×240)

QVGA (320×240)



Portrait-type QVGA (240×320) (when this function is used)

The display RAM image above shows typical data of QVGA size (320 segments \times 240 commons: landscape type). If the LCDD to be used is of landscape type, the data can be written to the LCDD without any problem.

If the LCDD to be used is of portrait type (240 segments × 320 commons), the data cannot be displayed properly.

This function enables the orientation of each display image to be rotated 90 degrees without the need to change the display RAM data.

3. Setting Method

The <LDC2:0> bits in the LCDMODE1 register are used to set the display data rotation function.

LCDMODE1 Register

LCDMODE1 (0281H)

	7	6	5	4	3	2	1	0
bit Symbol	LDC2	LDC1	LDC0	LDINV	AUTOINV	INTMODE	FREDGE	SCPW2
Read/Write			F	R/W) > v) > w	
Reset State	0	0	0	0	0	0	0	0
Function	Data rotation (Supported tonly) 000: Normal 001: Horizor 010: Vertica	for 64K-colo 1 100: ntal flip 101:	90-degree	LD bus inversion 0: Normal 1: Invert	Auto bus inversion 0: Disable 1: Enable (Valid only for TFT)	Interrupt selection 0:LLOAD 1:LVSYNC	LFR edge 0: LHSYNC Front Edge 1:LHSYNCR EAR Edge	LD bus Trance Speed 0: normal 1: 1/3
	011: Horizor 111: Reserv		al flip				2	

Note: The <LDC2:0> setting must not be changed while the LCDC is operating. Be sure to set LCDCTL0<START> to "0" to stop the LCDC operation before changing <LDC2:0>.

When the horizontal and vertical flip function or 90-degree rotation function is used, the display RAM start address of main/sub area should be set differently from when in normal mode, as shown in the table below.

	AI I	
Mode	Setting Point	Display RAM Start Address Setting Example
Normal	Point A	00000h
90-degree rotation	Point B	257FEh
Horizontal flip	Point A	00000h
Vertical flip	Point B	257FEh
Horizontal and vertical flip	Point B	257FEh

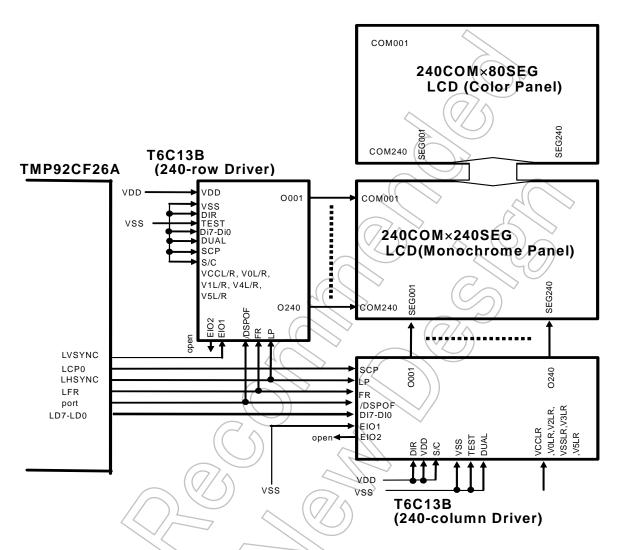
How to calculate the point B address:

 $(320 \times 240 \times 16/8) - 2$

= 153600-2

= 153598 [decimal]

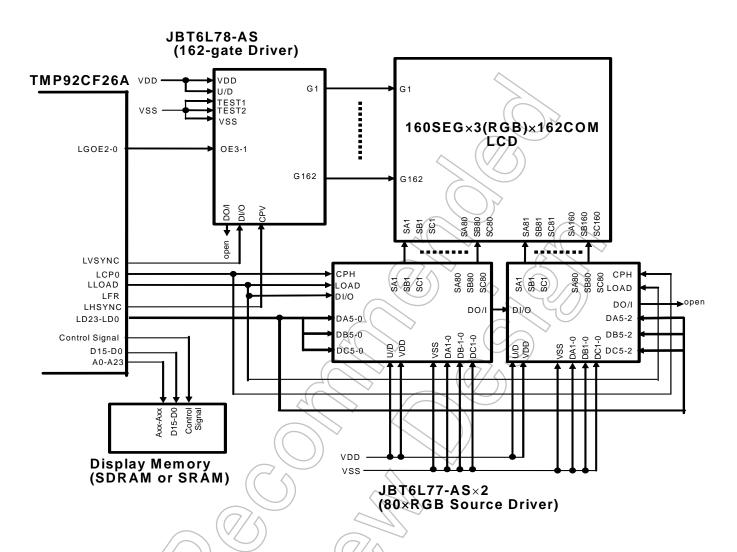
=257FE [hex]


Display RAM Image (QVGA 320 × 240)

3.19.5.3 Considerations for Using the LCDC

- 1. If the operation mode is changed while the LCDC is operating, a maximum of one frame may not be displayed properly. Although this degree of disturbance does not normally pose any problem (e.g. no response on LCD, display not visible to human eyes), the actual operation largely depends on the conditions such as the LCD driver, LCD panel, and frame frequency to be used. It is therefore recommended that operation checks be performed under the actual conditions.
- 2. The LCDMODE1<LDC2:0> setting must not be changed while the LCDC is operating. Be sure to set LCDCTL0<START> to "0" to stop the LCDC operation before changing <LDC2:0>.
- 3. The LCDC obtains the bus from the CPU when it has some operation to perform. Since the TMP92CF26A includes other units that act as bus masters such as HDMA and SDRAMC, it is necessary to estimate the bus occupancy rate of each bus master in advance. For details, see the chapter on HDMA.

3.19.6 Setting Example

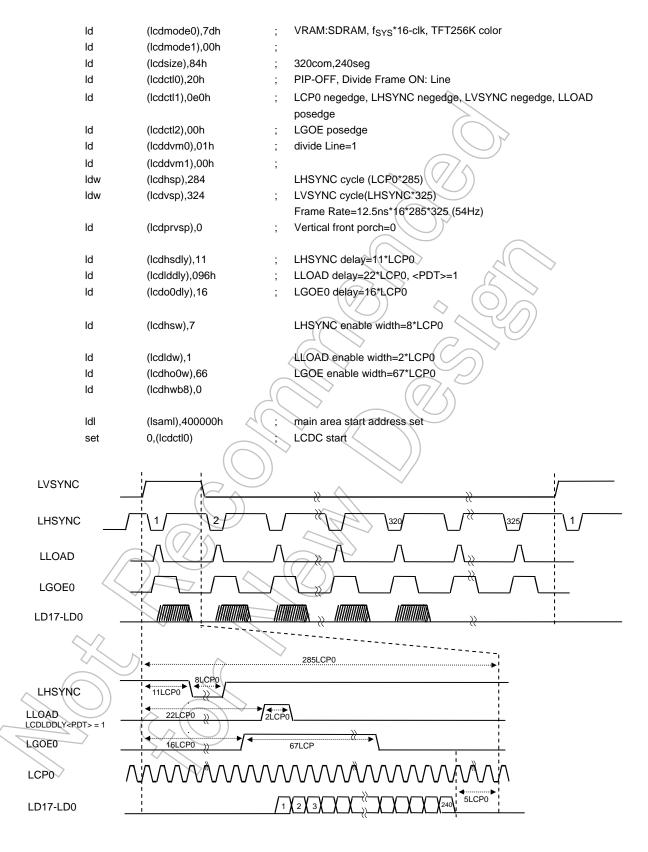

• STN

Note: The LCD drive power for LCD display mut be supplied from an external circuit.

• TFT

Note: The LCD drive power for LCD display mut be supplied from an external circuit.

Figure 3.19.13 TFT-Type LCD Driver Connection Example


LD17-LD0

3.19.6.1 Program example

TFT-1(TFT panel: 320com × 240seg by H company) (lcdmode0),0bdh VRAM:SDRAM, f_{SYS}*16-clk, TFT256K color ld (lcdmode1),00h ld (Icdsize),84h 320com,240seg (lcdctl0),020h PIP-OFF, Divide Frame ON: Line ld ld (lcdctl1),0c1h LCP0 negedge, LHSYNC negedge, LVSYNC posedge, LLOAD posedge ld (lcdctl2),00h (lcddvm0),01h ld Divide Frame: Line=1 LHSYNC cycle(LCP0*208), valid data=120 ld (lcddvm1),00h LHSYNC cycle(LCP0*279 ldw (Icdhsp),278 LVSYNC cycle(LHSYNC*327) ldw (Icdvsp),326 Frame Rate=12.5ns*16*279*327 (54Hz) (Icdhsdly),3 LHSYNC delay=3*LCP0 ld LLOAD delay=35*LCP0, <PDT>=1 (Icdlddly),0a3h ld LGOE0 delay=33*LCP0 ld (Icdo0dly),33 LHSYNC enable width=259*LCP0 ld (lcdhsw),2 LLOAD enable width=101*LCP0 ld (Icdldw),100 LGOE0 enable width=100*LCP0 ld (lcdho0w),99 ld (lcdhwb8),01h <HSW8>=1 ldl (Isaml),400000 main area start address set LCDC start set 0,(lcdctl0) LVSYNC LHSYNC LGOE0 LLOAD LD17-LD0 LFR, 279LCP0 3LCP0 LHSYNC 259LCP0 LGOE0 101LCP0 33LCP0 LLOAD LCDLDDLY<PDT> = 1 LCP0

TFT	-2(TFT pa	nel: 240com x 320s	seg by	SH company) (f _{SYS} =80MHz)
I	ld	(lcdmode0),3dh	;	VRAM: In-RAM, f _{SYS} *16-clk, TFT256K color
	ld	(lcdmode1),00h	;	
	ld	(Icdsize),75h	;	320seg,240com
	ld	(lcdctl0),00h	;	PIP-OFF, Divide Frame-OFF
	ld	(lcdctl1),061h	;	LCP0 posedge, LHSYNC negedge, LVSYNC negedge, LLOAD
				posedge
				LVSYNC enable width=LHSYNC*2
I	ldw	(lcdhsp),340	;	LHSYNC cycle(LCP0*341)
I	ldw	(lcdvsp),252		LVSYNC cycle(LHSYNC*253)
				Frame Rate=12.5ns*16*341*253 (58Hz)
	ld	(lcdprvsp),7	;	Vertical front porch 7
,	1.1	/I II II - \ 4.4		1110VA10 datas 4441 000
l	ld	(lcdhsdly),11	;	LHSYNC delay=11*LCP0
1	ld	(lcdlddly),16		LLOAD delay=16*LCP0 , <pdt>=0</pdt>
ļ	iu	(iculadiy), 10	,	LEOAD delay=10 ECPO, CPD1>=0
	ld	(lcdhsw),2	•	LHSYNC enable width=3*LCP0
	ld	(lcdldw),64		LLOAD enable width=320*LCP0
	ld	(lcdhwb8),02h		<ldw8>=1</ldw8>
1	ldl	(Isaml),400000h	; ,	main area start address set
:	set	0,(lcdctl0)	;)	LCDC start
		(
LVSYNC				% %
	i			
LHSYNC		1/1/2/	₹¶8 / ¯	253 1 1
	:			
LLOAD	į		<i></i> /	
LLOND	-		₩.	
LD17-LD0		$\langle \langle \langle \langle \rangle \rangle \rangle$	///////	
LD17-LD0)	·!	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	_ << /			v
	· · · · · · · · · · · · · · · · · · ·		341	LCPO
	- !	3LCP0		
LHSYNC	√> i	11LCP0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
LLOAD LCDLDDLY <pdt< td=""><td>F₂ = 0</td><td>16LCP0</td><td>1</td><td>320LCP0</td></pdt<>	F ₂ = 0	16LCP0	1	320LCP0
LGPO ()) \\	ΛΑΛΆΑΛΛ	$\Lambda \Lambda \Lambda$	
FOLO (0000000	, v v	
LD17-LD0	, ($\int 1 \sqrt{2}$	(3) X X X X X X X 320 5LCP0 5LCP0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		7/		
		* \		
~		▼		

TFT-3(TFT panel: 320com x 240seg by TM company) (fSYS=80MHz)

3.20 Touch Screen Interface (TSI)

An interface for 4-terminal resistor network touch-screen is built in.

The TSI easily supports two procedures: ouch detection and X/Y position measurement.

Each procedure is performed by setting the TSI control register (TSICR0 and TSICR1) and using an internal AD converter.

3.20.1 Touch-Screen Interface Module Internal/External Connection

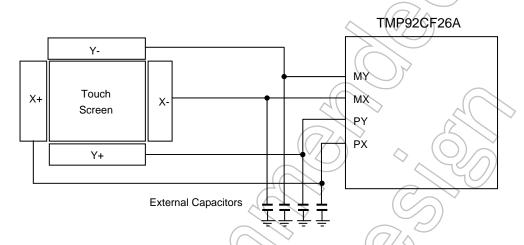


Figure 3.20.1 External connection of TSI

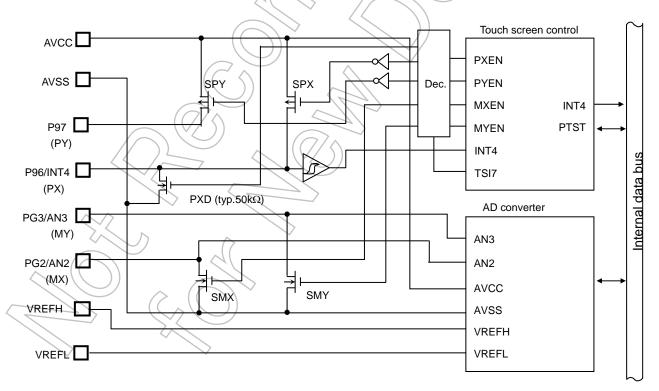


Figure 3.20.2 Internal block diagram of TSI

TOSHIBA

3.20.2 Touch Screen Interface (TSI) Control Register

TSI control register

TSICR0 (01F0H)

7	6	5	4	3	2	1	0
TSI7	INGE	PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
R	/W	R			R/W	-	-
0	0	0	0	0	0	0	0
0: Disable	Input gate	Detection	INT4	SPY	SPX	SMY	SMX
1: Enable	control of	condition	interrupt	0 : OFF	0 : OFF	0 : OFF	0 : OFF
	Port 96,97	0: no touch	control	1 : ON	1 : ON	1:0N	1 : ON
	0: Enable	1: touch	0: Disable		(7)		
	1: Disable		1: Enable	<))	
	R 0 0: Disable	TSI7 INGE R/W 0 0 0: Disable Input gate control of Port 96,97 0: Enable	7 6 5 TSI7 INGE PTST R/W R 0 0 0 0 0: Disable Input gate control of Port 96,97 Detection condition Condition Port 96,97 0: Enable 0: Enable 1: touch	7 6 5 4 TSI7 INGE PTST TWIEN R/W R 0 0 0 0: Disable Input gate Detection INT4 interrupt 1: Enable Control of Port 96,97 (0: no touch 0: Disable) 0: no touch 0: Disable O: Disable	7 6 5 4 3 TSI7 INGE PTST TWIEN PYEN R/W R 0 0 0 0 0: Disable Input gate control of Port 96,97 Detection condition condition or condition interrupt control 0: O: F 0: OFF 0: OFF 0: Enable 1: touch 0: Disable 1: ON	7 6 5 4 3 2 TSI7 INGE PTST TWIEN PYEN PXEN R/W R R/W R R/W 0 0 0 0 0 0: Disable Input gate control of condition Interrupt interrupt control of Port 96,97 0: no touch control of control of Port 96,97 0: no touch control of D: Disable 1: ON 1: ON	TSI7 INGE PTST TWIEN PYEN PXEN MYEN R/W R R/W R R/W 0 0 0 0 0 0 0: Disable 1: Enable 1: Enable 1: Enable 1: Enable 1: Enable 1: touch 1: to

PXD (internal pull-down resistor) ON/OFF setting

PXEN> <tsi7></tsi7>	0	1
0	OFF	OFF
1	ON	OFF

Debounce time setting register

TSICR1 (01F1H)

	7	6	5	4	3	2 ((0		
bit Symbol	DBC7	DB1024	DB256	DB64	DB8	DB4	_DB2	DB1		
Read/Write				R/V	V	$-(O/\langle$				
Reset State	0	0	0	0	0	\\o\	0	0		
Function	0: Disable	1024	256	64	8	4	2	1		
	1: Enable		Debounce time is set by the formula "(N*64-16) / fsys".							
		"N" is	the number o	f bits betwee	n bit6 and bit	t0 which are	set to "1". No	ote3:		

Note1: Since the CPU clock is used for the debounce circuit, the debounce circuit does not operate and also no interrupts that bypass the debounce circuit are generated during IDLE1and STOP mode, or the PCM state. During IDLE1 or STOP mode, set this circuit to disable (Write "0" in TSICR1<DBC7>) before entering the HALT statelf debounce time is set to "0", the signal is captured into the inside after a count of 6 system clocks (f_{SYS}) from the point when this circuit is set to disable.

Note2: To avoid a flow-through current to the normal C-MOS input gate when converting analog input data by using the AD converter, TSICR0<INGE> can be controlled. If the intermediate voltage is input, cut the input signal to the C-MOS logic (P96,P97) by setting this bit. TSICR0<PTST> is to confirm the initial pen-touch. Note that, when the input to the C-MOS logic is blocked by TSICR0<INGE>, this bit is always "1".

Note3: For example:

TSICR1=95H \rightarrow N = 64 + 4 + 1 = 69, if set to (TSICR1) = 95 h

3.20.3 Touch detection procedure

The touch detection procedure includes the procedure starting from when the pen is touched onto the touch screen and until the pen-touch is detected.

Touching the screen generates the interrupt (INT4) and terminates this procedure. After an X/Y position measuring procedure is terminated, return to this procedure to wait for the next touch.

When waiting for a touch with no contact, set only the SPY switch to ON and set all other three switches (SMY, SPX, SMX) to OFF. At this time, the pull-down resistor built in the P96/INT4/PX pin is set ON..

In this state, because the internal X- and Y-direction resistors in the touch screen are not connected, the P96/INT4/PX pin is set to Low by the internal pull-down resistor (PXD), generating no INT4 interrupt

When a next pen-touch is given, the X- and Y-direction internal resistors in the touch screen are connected, which sets the P96/INT4/PX pin to High and generates an INT4 interrupt

To avoid generating more than one INT4 interrupt by one pen-touch, the debounce circuit as shown below is provided. Setting debounce time in the TSICR1 register ignores pulses whose time equals to or is below the set time.

The debounce circuit detects a rising of signal to count up a set debounce counter time and then captures the signal into the inside after counting. When the signal turns to "L" during counting, the counter is cleared, starting to wait for a rising edge again.

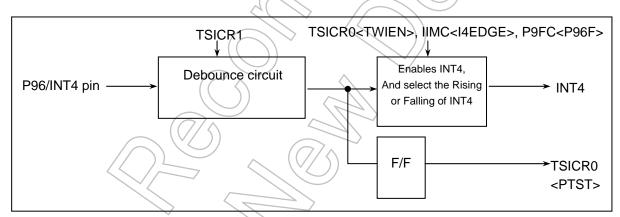
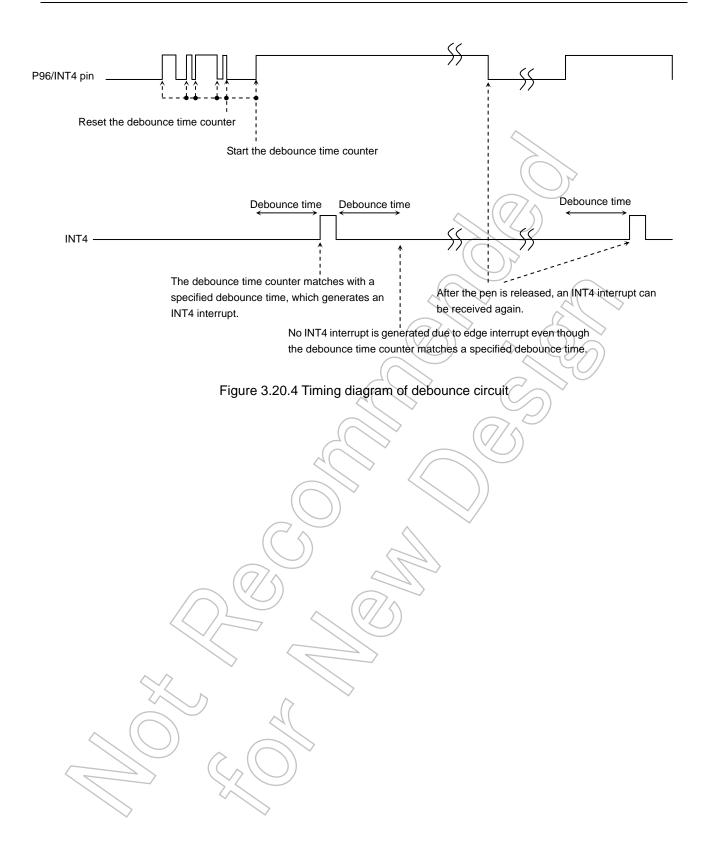



Figure 3.20.3 Block diagram of debounce circuit

TOSHIBA

3.20.4 X/Y position measuring procedure

During the routine of pen-touch and INT4 interrupt generation, execute a pen position measuring following the procedure below:

<X position coordinate measurement>

Make the SPX and SMX switches ON, and the SPY and SMY switches OFF.

With this setting, an analog-voltage that shows the X position will be input to the PG3/MY/AN3 pin.

The X-position coordinate can be measured by converting this voltage to digital code using the AD converter.

<Y position coordinate measurement>

Make the SPY and SMY-switches ON, and the SPX and SMX switches OFF.

With this setting, an analog voltage that shows the Y position will be input to the PG2/MX/AN2 pin.

The Y position can be measured by converting this voltage to digital code using the AD converter.

The above analog voltage which is input to AN3 and AN2 pins during the X and Y position measurement above can be determined with the ratio between the ON resistance value of the switch in the TMP92CF26A and the resistance value in the touch screen as shown in Figure 3.20.5.

Therefore, even when touching an end area on the touch screen, the analog input voltage will be neither 3.3V nor 0.0V.

Note that the rate of each resistance varies. Remember to take this into consideration during designing. It is also recommended that an average taken from several AD conversions performed if required be adopted as the final correct value.

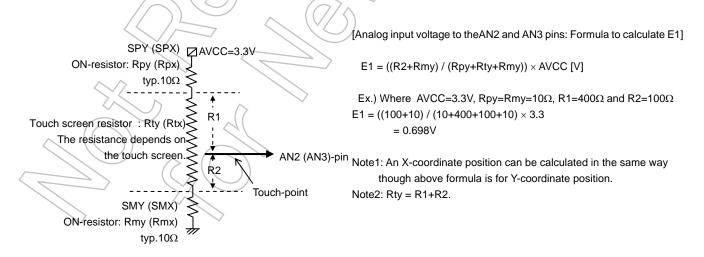
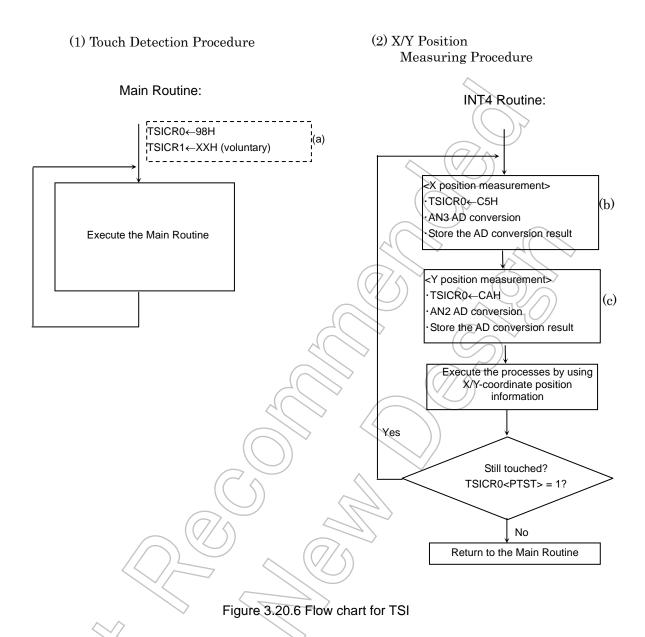
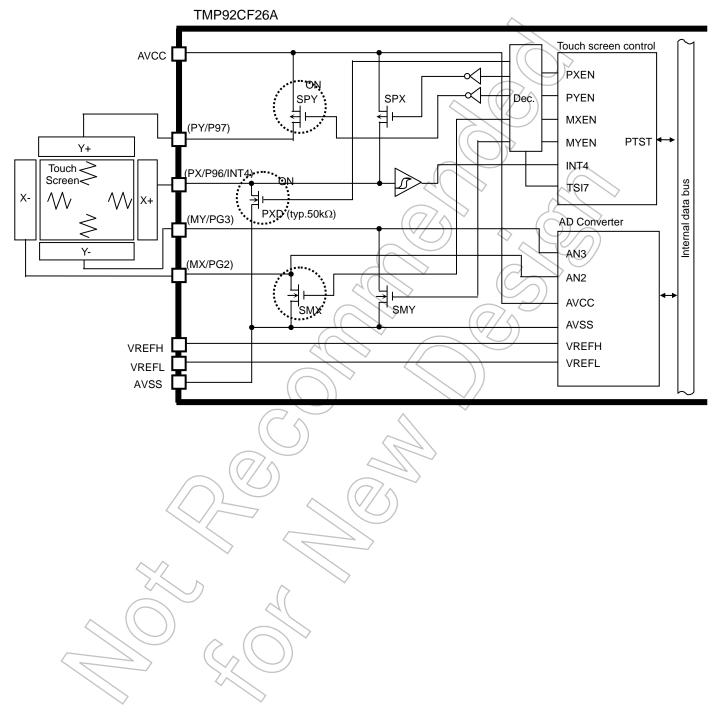



Figure 3.20.5 Calculation analog voltage

3.20.5 Flow chart for TSI

The following pages explain each circuit condition (a), (b) and (c) in the flow chart above:

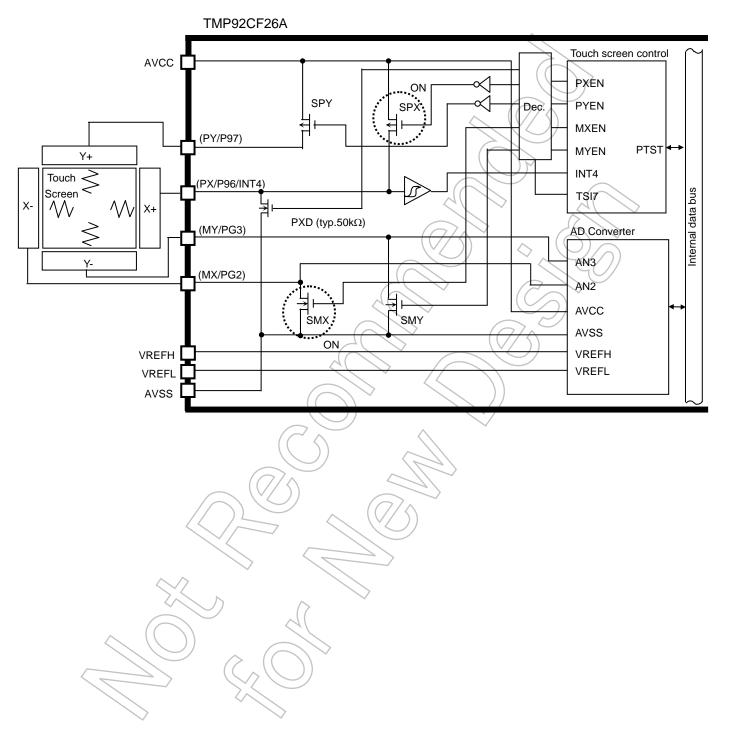

(a) Main routine (condition of waiting INT4 interrupt)

(p9fc)<P96F>, <P97F>= "1" : Set P96 to int4/PX, set P97 to PY

(inte34) : Set interrupt level of INT4

(tsicr0)=98h : Pull-down resistor on, SPY on, Interrupt-set<TWIEN>

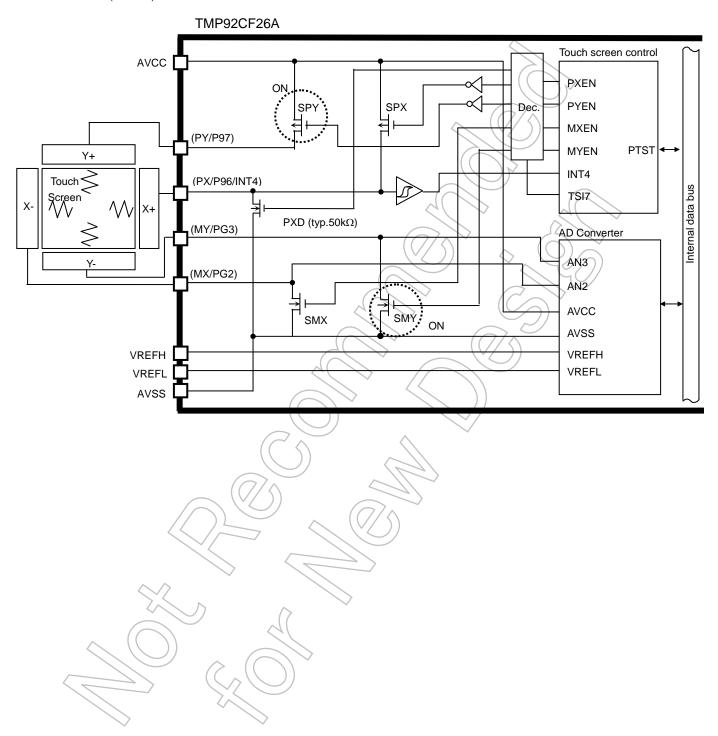
ei : Enable interrupt



(b) INT4 routine: X-position coordinate measurement (AD conversion start)

(tsicr0)=c5h : Set SMX, SPX to ON. Set the input gate of P97, P96 to OFF.

(admod1)=b0h : Set to AN3.


(admod0)=08h : Start AD conversion.

(c) INT4 routine: Y-position coordinate measurement (AD conversion start)

(tsicr0)=cah : Set SMY, SPX to ON. Set the input gate of P97, P96 to OFF.

(admod1)=a0h : Set to AN2. (admod0)=08h : Start AD conversion.

3.20.6 Use Cautions

1. Debounce circuit

The CPU system clock is used in debounce circuit. Therefore, when no clock is supplied to the CPU (during IDLE1 and STOP modes, or PCM state), the debounce circuit does not operate. Because of this, interrupts bypassing the debounce circuit are not generated either.

When using a startup that uses the TSI starting from the state during IDLE1 and STOP modes, or the PCM state, set the debounce circuit to disable before entering the HALT or PCM state. (TSICR1<DBC7>="0")

2. Port setting

When an intermediate voltage of 0 V to AVcc is converted using the AD converter, the intermediate voltage is also applied to the normal C-MOS input gates (P96 and P97) due to the circuit structure.

Take measures against the flow-through current to Port 96 and 97 by using TSICR0<INGE>. At this time (TSICR0<INGE>= "1"). Note that blocking the input to the C-MOS logics sets "1" at all times in TSICR0<PTST> that confirms a first pen-touch.

3.21 Real time clock (RTC)

3.21.1 Function description for RTC

- 1) Clock function (hour, minute, second)
- 2) Calendar function (month and day, day of the week, and leap year)
- 3) 24 or 12-hour (AM/PM) clock function
- 4) +/- 30 second adjustment function (by software)
- 5) Alarm function (Alarm output)
- 6) Alarm interrupt generate

3.21.2 Block diagram

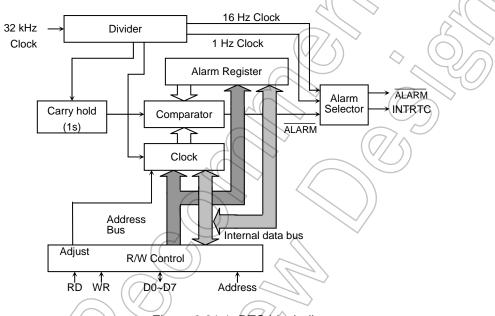


Figure 3.21.1 RTC block diagram

Note 1: Western calendar year column:

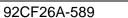
This product uses only the final two digits of the year. Therefore, the year following 99 is 00 years. In use, please take into account the first two digits when handling years in the western calendar.

Note 2: Leap year:

A leap year is divisible by 4, but the exception is any leap year which is divisible by 100; this is not considered a leap year. However, any year which is divisible by 400, is a leap year. This product does not take into account the above exceptions. Since this product accounts only for leap years divisible by 4, please adjust the system for any problems.

3.21.3 Control registers

Table 3.21.1 PAGE 0 (Clock function) registers


Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	1320H		40 sec	20 sec	10 sec	8 sec	4 sec	2 sec	1 sec	Second column	R/W
MINR	1321H		40 min	20 min	10 min	8 min	4 min	2 min	1 min	Minute column	R/W
HOURR	1322H			20 hours/ PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	1323H						W2	W1	WO	Day of the week column	R/W
DATER	1324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	1325H				Oct.	Aug.	Apr.	Feb.	Jan.	Month column	R/W
YEARR	1326H	Year 80	Year 40	Year 20	Year 10	Year 8	Year 4	Year 2	Year 1	Year column (Lower two columns)	R/W
PAGER	1327H	Interrupt			Adjustment	Clock	Alarm		PAGE	PAGE register	W, R/W
		enable			function	enable	enable		setting		
RESTR	1328H	1Hz enable	16Hz enable	Clock reset	Alarm reset	Always write "0"			Reset register	W only	

Note: When reading SECR, MINR, HOURR, DAYR, DATER, MONTHR, YEARR of PAGE0, the current state is read.

Table 3.21.2 PAGE1 (Alarm function) registers

Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	1320H						V			73)	R/W
MINR	1321H		40 min	20 min	10 min	8 min	4 min	2 min	1 min	Minute column	R/W
HOURR	1322H			20 hours/ PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	1323H						W2	W1	wo	Day of the week column	R/W
DATER	1324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	1325H				J	7			24/12	24-hour clock mode	R/W
YEARR	1326H			/		/	f	LEAP1	LEAP0	Leap-year mode	R/W
PAGER	1327H	Interrupt			Adjustment	Clock	Alarm		PAGE	PAGE register	W, R/W
		enable			function	enable	enable		setting		
RESTR	1328H	1Hz enable	16Hz enable	Clock reset	Alarm reset		Always	write "0"		Reset register	W only

Note: When reading SECR, MINR, HOURR, DAYR, DATER, MONTHR, YEARR of PAGE1, the current state is read.

3.21.4 Detailed explanation of control register

RTC is not initialized by system reset. Therefore, all registers must be initialized at the beginning of the program.

(1) Second column register (for PAGE0 only)

SEC (132

	7	6	5	4		3	2	1	0
Bit symbol		SE6	SE5	SE ₄	4 5	SE3	SE2	SE1	SE0
Read/Write			•	•	F	R/W))~	
Reset State					Und	lefined /			
Function	"0" is read.	40 sec.	20 sec.	10 se	ec. 8	sec.	4 sec.	2 sec.	1 sec
		column	column	colur	nn co	lumn	column	column	colum
)}		
		0	0	0	0 (0	0	0	0 sec
		0	0	0	0	0	0	d(1 \) 1 sec
		0	0	0	0	0	1	2 0	2 sec
		0	0	0	((,0/\^	0	1(()) 1	3 sec
		0	0	0	0	1	20	(0)	4 sec
		0	0	0((0	1	0	7(1)	5 sec
		0	0	6	O	1	((1)	· 0	6 sec
		0	0	0	> 0	1	(1)	1	7 sec
		0	0 (1	0	>, 0	0	8 sec
		0	0 (9	1	(0//	()) 0	1	9 sec
		0	Q	1	0	0	0	0	10 se
		0	0	→ 1	1	0)	0	1	19 se
		0	(1))	0	0	\\ø	0	0	20 se
					. :				
		(0(1	0	1	0	0	1	29 se
		0	// 1	1 <	0	0	0	0	30 se
	1	(O/A)			7/				
		(V(0))	1	<u> </u>	<u>1</u>	0	0	1	39 se
	//))	1	0	((0/\$	0	0	0	0	40 se
					:				
	/*(1 /	0	0	1	0	0	1	49 se
) 1	0		0	0	0	0	50 se
^/	>				:			•	
7,		1	0	7 1	1	0	0	1	59 se
~ `	\ \ / /		-					•	

Note: Do not set data other than as shown above.

TOSHIBA

(2) Minute column register (for PAGE0/1)

MIN (13

	7	6	5	4		3	2	1	0
Bit symbol		MI6	MI5	MI4		MI3	MI2	MI1	MIO
Read/Write			•	•	·	R/W	'		•
Reset State					Und	defined	^		
Function	"0" is read.	40 min,	20 min,	10 m	in, 8	min,	4 min,	2 min,	1 mir
		column	column	colun		lumn	column	column	colum
) >	
		0	0	0	0	<u> </u>	((// ô)	0	0 mir
		0	0	0	0	0	(0)	1	1 mir
		0	0	0	0	0	1	0	2 mir
		0	0	0	0	0) 7 1	1	3 mii
		0	0	0	0 (1	0	9	4 mii
		0	0	0	0/(1	0	1	5 mii
		0	0	0	0	1	1 /	0	6 mii
		0	0	0	(0)	1	1 (1	7 mii
		0	0	0		0	0	9	8 mii
		0	0	0	<u> </u>	0	0	1	9 mii
		0	0	1	0	0	0	0	10 m
				4) :				
		0	0	_\1\	1	0	(P)	1	19 m
		0	1 (0	0	(0)	7/ (\ o	0	20 mi
					<u></u>	\ \\\	$\bigcirc)$		
		0	4	0	1	Q	0	1	29 m
		0		> 1	0	0	0	0	30 m
					\:				
		0	1	1	1	0	0	1	39 mi
		(100	\bigcirc 0	0	0	0	0	0	40 mi
))						
			0	9		0	0	1	49 mi
		(//1))	0	1	7/0	0	0	0	50 mi
				(07)	:				
	11 1-	1	0	$(\sqrt{4})$	1	0	0	1	59 mi

TOSHIBA

(3) Hour column register (for PAGE0/1)

1. In case of 24-hour clock mode (MONTHR<MO0>= "1")

HOURR (1322H)

	7	6	5	4	3	2	1	0			
Bit symbol			HO5	HO4	HO3	HO2	HO1	HO0			
Read/Write				R/W							
Reset State					Unde	fined					
Function	"0" is	read.	20 hour column	10 hour column	8 hour column	4 hour column	2 hour column	1 hour column			

				//)]		
0	0	0	6))	0	0 o'clock
0	0	0	0	0	1	1 o'clock
0	0	0	9) 1	0	2 o'clock
		(-	\mathcal{I}	7		
0	0	121	0	0	\(\(\frac{0}{\}\)	8 o'clock
0	0	1	0	0 (<u> </u>	9 o'clock
0	1	(0/	0	0 (0	10 o'clock
		(/	2 6		
0	1 (1	0	0	70/	19 o'clock
1	0	0	0 /)°	20 o'clock
	4()			$\langle \rangle$		
1	0	0	0	,	1	23 o'clock

Note: Do not set data other than as shown above.

2. In case of 12-hour clock mode (MONTHR<MO0>= "0")

HOURR (1322H)

	7	6	5	4		3 /	2	1	0
Bit symbol		4	→ HO5	HO4	ŀ	1 O3	HO2	HO1	HO0
Read/Write		A))			R/۱	N		
Reset State					\rightarrow	Undef	ined		
Function	"0" is	read.	PM/AM	10 hour column	_/	hour lumn	4 hour column	2 hour column	1 hour column
		> <	0	0	0	0	0	0	0 o'clock (AM)
	>		0	0	0	0	0	1	1 o'clock
7/		\wedge	0	0	0	0	1	0	2 o'clock
		$\mathcal{A}($:		•	
		//	0	0	1	0	0	1	9 o'clock
			○ 0	1	0	0	0	0	10 o'clock
		(()	0	1	0	0	0	1	11 o'clock

0

0

Note: Do not set data other than as shown above.

0

0

0

0

0

0 o'clock (PM)

1 o'clock

0

(4) Day of the week column register (for PAGE0/1)

DAYR (1323H)

	7	6	5	4	3	2	1	0
Bit symbol						WE2	WE1	WE0
Read/Write						R/W		
Reset State						Undefined		
Function			"0" is read.	W2	W1	W0		

0	0) \ 0	Sunday
0		1	Monday
	// 1	0	Tuesday
0	\mathcal{I}	1	Wednesday
	0	0	Thursday
) 0	1	Friday
1	1	0	Saturday

Note: Do not set data other than as shown

0

above.

3

(5) Day column register (PAGE0/1)

6

5

DATER (1324H)

Bit symbol		DA5	DA4	D	A3 ((//	DA2	DA1	DA0
Read/Write					R/W	<i>)</i>)		
Reset State					Undefine	d		
Function	"0" is read.	Day 20	Day 10	Da	ay 8	Day 4	Day 2	Day 1
					\forall			
		\bigcirc 0	0	0	0	0	1	1st day
)) o	0	0	0	1	0	2nd day
		0	2	0	0	1	1	3rd day
		0	0	0	1	0	0	4th day
			(7/1	:			•	
		0	(\Q	1	0	0	1	9th day
		0	(0	0	0	0	10th day

0 0 0 11th day 19th day 0 0 0 0 0 0 0 0 20th day 0 1 0 0 1 29th day

 1
 0
 1
 29th day

 1
 1
 0
 0
 0
 30th day

 1
 1
 0
 0
 0
 1
 31st day

Note1: Do not set data other than as shown above.

Note2: Do not set for non-existent days (e.g.: 30th Feb)

(6) Month column register (for PAGE0 only)

MONTHR (1325H)

	7	6	5	4	3	2	1	0
Bit symbol				MO4	MO4	MO2	MO1	MO0
Read/Write						R/W		
Reset State						Undefined		
Function		"0" is read.		10 months	8 months	4 months	2 months	1 month

0	0	0	0) 🖓 1	January
0	0	0		0	February
0	0	0 ((// 1	1	March
0	0	7	9	0	April
0	0		0	1	May
0	0	(1)) 1	0	June
0	0	$\frac{1}{2}$	1	1	July
0	12/	0	0	\(\(\frac{0}{\}\)	August
0	1	0	0 (7	September
1	(0/	0	0	0	October
1	$\langle \rangle$	0	0	2/1	November
1 (0	4	9	December

Note: Do not set data other than as shown above.

(7) Select 24-hour clock or 12-hour clock (for PAGE1 only)

MONTHR (1325H)

	7	6	5	> 4 /	3	2	1	0
Bit symbol								MO0
Read/Write		\int	Ŧ.					R/W
Reset State			H					Undefined
Function			\wedge	"0" is read.				1: 24-hour
))	o is read.				0: 12-hour

TOSHIBA

(8) Year column register (for PAGE0 only)

YEARR (1326H)

	7	6	5	4	3	2	1	0	
Bit symbol	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	
Read/Write		R/W							
Reset State		Undefined							
Function	80 Years	40 Years	20 Years	10 Years	8 Years	4 Years	2 Years	1 Year	

						(())	>	
1	0	0	1	1	9)	1	99 years
0	0	0	0	0_	(0(//	0	0	00 years
0	0	0	0	0	0	0	1	01 years
0	0	0	0	0	0	1	0	02 years
0	0	0	0	0	(o) Y	1	1	03 years
0	0	0	0	0	1	0	0	04 years
0	0	0	0	40	\ 1	0 <	1	05 years
				_ //		0		
1	0	0	1//	7/1	0	0	1	99 years

Note: Do not set data other than as shown above.

(9) Leap-year register (for PAGE1 only)

YEARR (1326H)

	7	6	5(Δ	3	// \}	1	0
	1	U	0	V T		` (<i>) f</i>	1	U
Bit symbol			Toler !		$\sim \sim$		LEAP1	LEAP0
Read/Write					1			R/W
Reset State					1		Ur	ndefined
Function							00: leap-yea	r
				rood \	*		01: one year	after leap-year
	"0" is read. 10: two years after leap-ye							s after leap-year
				16			11: three yea	ars after leap-year

0	0	Current year is a leap-year
0	1	Current year is the year following a leap year
1	0	Current year is two years after a leap year
1	1	Current year is three years after a leap year

(10)PAGE register (for PAGE0/1)

PAGER (1327H)

A Readmodify- write operation cannot be performed

	7	6	5	4	3	2	1	0
Bit symbol	INTENA			ADJUST	ENATMR	ENAALM		PAGE
Read/Write	R/W			W	R	W		R/W
Reset State	0			Undefined	Unde	efined		Undefined
Function	Interrupt 0: Disable 1: Enable	"0" is	read.	0: Don't care 1: Adjust	Clock 0: Disable 1: Enable	ALARM 0: Disable 1: Enable	"0" is read.	PAGE selection

Note: Please keep the setting order below of <ENATMR>, <ENAAML> and <INTENA>. Set difference time for Clock/Alarm setting and interrupt setting.

Example: Clock setting/Alarm setting

ld (pager), 0ch : Clock, Alarm enable

ld (pager), 8ch : Interrupt enable

	<u> </u>
PAGE 1 Select Page1	

	Ø	Don't care
4()		Adjust sec. counter.
ADJUST		When this bit is set to "1" the sec. counter becomes to "0" when the value of the sec. counter is 0-29. When the value of the sec. counter is 30-59, the min. counter is carried and sec. counter becomes "0". Output Adjust signal during 1 cycle of f _{SYS} . After being adjusted once, Adjust is released automatically. (PAGE0 only)

(11) Reset register (for PAGE0/1)

RESTR (1328H) A Readmodifywrite operation cannot be performed

	7	(76 _{\(\)}	5	4	→ 3	2	1	0	
Bit symbol	DIS1HZ	DIS16HZ	RSTTMR	RSTALM	-	-	1	_	
Read/Write	//) [// () v	V				
Reset State		7		Unde	fined				
Function	1Hz	16Hz	1:Clock	1:Alarm					
	0: Enable	0: Enable	reset	reset	Always we'll "O"				
	1: Disable	1: Disable				Always write "0"			
\\\\	\ \	^							

١.	1	
	RSTAĽM (0 Unused
	KSTALIN	1 Reset alarm register

DOTTMD	0	Unused
RSTTMR	1	Reset Counter

<dis1hz></dis1hz>	<dis16hz></dis16hz>	PAGER <enaalm></enaalm>	Interrupt source signal				
1	1	1	Alarm				
0	1	0	1Hz				
1	0	0	16Hz				
	Others						

3.21.5 Operational description

(1) Reading clock data

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can read correctly if reading data after 1Hz interrupt occurred.

2. Using two times reading

There is a possibility of incorrect clock data reading when the internal counter carries over. To ensure correct data reading, please read twice, as follows:

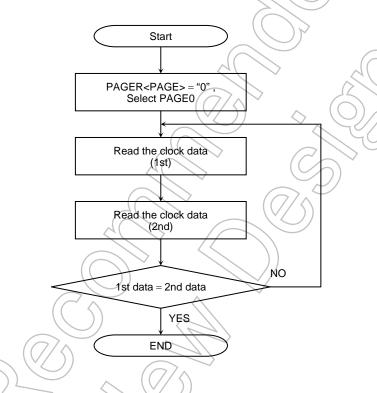
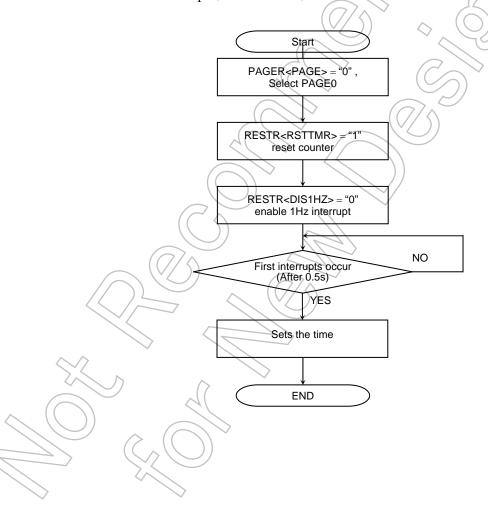


Figure 3.21.2 Flowchart of clock data read

(2) Writing clock data

When a carry over occurs during a write operation, the data cannot be written correctly. Please use the following method to ensure data is written correctly.


1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can write correctly if writing data after 1Hz interrupt occurred.

2. Resets counter

There are 15-stage counter inside the RTC, which generate a 1Hz clock from 32,768 kHz. The data is written after reset this counter.

However, if clearing the counter, it is counted up only first writing at half of the setting time, first writing only. Therefore, if setting the clock counter correctly, after clearing the counter, set the 1Hz-interrupt to enable. And set the time after the first interrupt (occurs at 0.5s) is occurred.

3. Disabling the clock

A clock carry over is prohibited when "0" is written to PAGER<ENATMR> in order to prevent malfunction caused by the Carry hold circuit. While the clock is prohibited, the Carry hold circuit holds a one sec. carry signal from a divider. When the clock becomes enabled, the carry signal is output to the clock, the time is revised and operation continues. However, the clock is delayed when clock-disabled state continues for one second or more. Note that at this time system power is down while the clock is disabled. In this case the clock is stopped and clock is delayed.

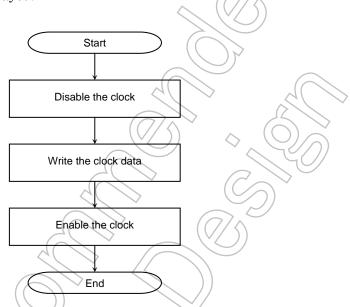


Figure 3.21.3 Flowchart of Clock disable

3.21.6 Explanation of the interrupt signal and alarm signal

The alarm function used by setting the PAGE1 register and outputting either of the following three signals from $\overline{\text{ALARM}}$ pin by writing "1" to PAGER<PAGE>. INTRTC outputs a 1-shot pulse when the falling edge is detected. RTC is not initialized by RESET. Therefore, when the clock or alarm function is used, clear interrupt request flag in INTC (interrupt controller).

- (1) When the alarm register and the clock correspond, output "0"
- (2) 1Hz Output clock.
- (3) 16Hz Output clock.
- (1) When the alarm register and the clock correspond, output "0"

When PAGER<ENAALM>= "1", and the value of PAGE0 clock corresponds with PAGE1 alarm register output "0" to ALARM pin and generate INTRTC.

The methods for using the alarm are as follows:

Initialization of alarm is done by writing in "1" to RESTR<RSTALM>. All alarm settings become Don't care. In this case, the alarm always corresponds with value of the clock, and if PAGER<ENAALM> is "1", INTRTC interrupt request is generated.

Setting alarm min., alarm hour, alarm date and alarm day is done by writing data to the relevant PAGE1 register.

When all setting contents correspond, RTC generates an INTRTC interrupt, if PAGER<INTENA><ENAALM> is "1". However, contents which have not been set up (don't care state) are always considered to correspond.

Contents which have already been set up, cannot be returned independently to the Don't care state. In this case, the alarm must be initialized and alarm register reset.

The following is an example program for outputting an alarm from ALARM pin at noon (PM12:00) every day.

```
(PAGER), 09H
  LD
                                         Alarm disable, setting PAGE1
  LD
           (RESTR), D0H
                                         Alarm initialize
            (DAYR), 01H
                                         W0
  LD
  /LD
           (DATER),01H
                                         1 day
  LD
            (HOURR), 12H
                                         Setting 12 o'clock
  D
            (MINR), 00H
                                         Setting 00 min
                                         Set up time 31 µs (Note)
  LD
           (PAGER), 0CH
                                         Alarm enable
( LD
           (PAGER), 8CH
                                         Interrupt enable)
```

When the CPU is operating at high frequency oscillation, it may take a maximum of one clock at 32 kHz (about 30µs) for the time register setting to become valid. In the above example, it is necessary to set 31us of set up time between setting the time register and enabling the alarm register.

Note: This set up time is unnecessary when you use only internal interruption.

(2) With 1Hz output clock

RTC outputs a clock of 1Hz to $\overline{\text{ALARM}}$ pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "0", <DIS16HZ>= "1". RTC also generates an INTRTC interrupt on the falling edge of the clock.

(3) With 16Hz output clock

RTC outputs a clock of 16Hz to ALARM pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "1", <DIS16HZ>= "0". RTC also generates INTRTC an interrupt on the falling edge of the clock.

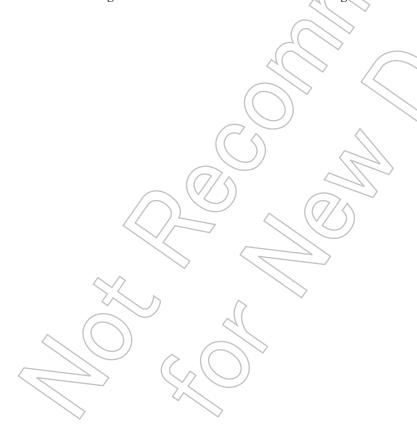
3.22 Melody / Alarm generator (MLD)

The TMP92CF26A contains a melody function and alarm function, both of which are output from the MLDALM pin. Five kind of fixed cycle interrupt are generated by using a 15bit counter for use as the alarm generator.

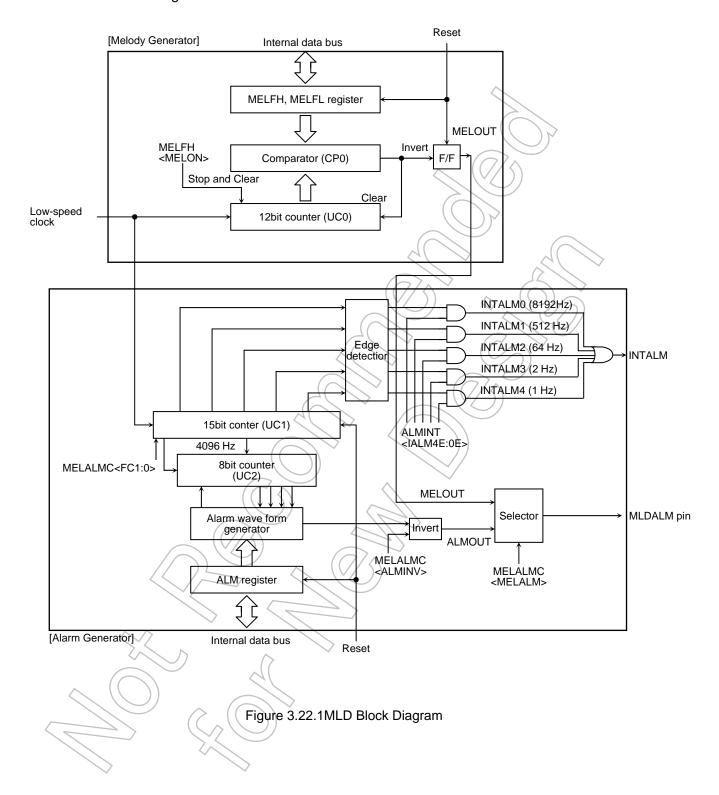
The features are as follows.

1) Melody generator

The Melody function generates signals of any frequency (4Hz-5461Hz) based on a low-speed clock (32.768 kHz) and outputs the signals from the MLDALM pin.


The melody tone can easily be heard by connecting an external loud speaker.

2) Alarm generator


The Alarm function generates eight kinds of alarm waveform having a modulation frequency (4096Hz) determined by the low-speed clock (32.768 kHz). This waveform can be inverted by setting a value to a register.

The alarm tone can easily be heard by connecting an external loud speaker.

Five kinds of fixed cycle interrupts are generated (1Hz, 2Hz, 64Hz, 512Hz, 8192Hz) by using a counter that is used for the alarm generator.

3.22.1 Block Diagram

3.22.2 Control registers

ALM register

ALM (1330H)

	7	6	5	4	3	2	1	0	
bit Symbol	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1	
Read/Write				R/V	V		_		
Reset State	0	0	0	0	0	0	0	0	
Function		Setting alarm pattern							

MELALMC register

MELALMC (1331H)

			1117 1-11				1.1	
	7	6	5	4	3	2	/ 1	0
bit Symbol	FC1	FC0	ALMINV	-	- ((})	-	MELALM
Read/Write				R/	w			
Reset State	0	0	0	0	0	0	0	0
Function	Free-run co	unter control	Alarm	Always write "0"				Select
	00: Hold		Waveform	/		>		Output
	01: Restart		invert	((// \(\)	_	(\bigcirc)	Waveform
	10: Clear &	Stop	1:Invert				7//	0: Alarm
	11: Clear &	Start					1/70	1: Melody

Note1: MELALMC<FC1> is always read "0".

Note2: When setting MELALMC register except <FC1:0> while the free-run counter is running, <FC1:0> is kept "01".

MELFL register

MELFL (1332H)

	7	6	5	4	/3	2	1	0	
bit Symbol	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0	
Read/Write			(())	R	W	\mathcal{J}/\mathcal{J}			
Reset State	0	0 0 0 0 0 0 0							
Function		Setting melody frequency (lower 8bit)							

MELFH register

MELFH (1333H)

	7	(6)	5	4	>> 3	2	1	0
bit Symbol	MELON		4	A	ML11	ML10	ML9	ML8
Read/Write	R/W					R/\	N	
Reset State	0				0	0	0	0
Function	Control melody counter 0: Stop & Clear 1: Start				Settinç	g melody freq	uency(upper	4bit)

ALMINT register

ALMINT (1334H)

			/\LIVI	iivi regist	CI			
	7	6	5	4	3	2	1	0
bit Symbol			-	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
Read/Write					R/	W	-	_
Reset State			0	0	0	0	0	0
Function			Always write "0"	1:INTALM4 (1Hz)	1:INTALM3 (2Hz)	1:INTALM2 (64Hz)	1:INTALM1 (512Hz)	1:INTALM0 (8192Hz)
			WIILE U	enable	enable	enable	enable	enable

Note: INTALM0 to INTALM4 prohibit that set to enable at same time. If setting to enable, set only 1.

TOSHIBA

3.22.3 **Operational Description**

3.22.3.1 Melody generator

The Melody function generates signals of any frequency (4Hz-5461Hz) based on a low-speed clock (32.768kHz) and outputs the signals from the MLDALM pin.

The melody tone can easily be heard by connecting an external loud speaker.

(Operation)

MELALMC<MELALM> must first be set as 1 in order to select the melody waveform to be output from MLDALM. The melody output frequency must then be set to 12-bit register MELFH, MELFL.

The following are examples of settings and calculations of melody output frequency.

(Formula for calculating melody waveform frequency)

@fs = 32.768 [kHz]

Melody output waveform

 $f_{MLD}[Hz] = 32768/(2 \times N + 4)$

Setting value for melody

 $N = (16384/f_{MLD}) - 2$

(Note: N = 1~4095 (001H~FFFH), 0 is not acceptable)

(Example program)

When outputting an "A" musical note (440Hz)

LD (MELALMC), --XXXXX1B

Select melody waveform

LD (MELFL), 23H N = 16384/440 - 2 = 35.2 = 023H

LD (MELFH), 80H Start to generate waveform

(Refer: Basic musical scale setting table)

Frequency	Register
[Hz]	Value: N
264	03CH
297	035H
330	030H
352	02DH
396	027H
440	023H
495	01FH
528	01DH
	[Hz] 264 297 330 352 396 440 495

3.22.3.2 Alarm generator

The Alarm function generates eight kinds of alarm waveform having a modulation frequency of 4096Hz determined by the low-speed clock (32.768 kHz). This waveform is reversible by setting a value to a register.

The alarm tone can easily be heard by connecting an external loud speaker.

Five kind of fixed cycle (interrupts can be generated 1Hz, 2Hz, 64Hz, 512Hz, 8192Hz) by using a counter which is used for the alarm generator.

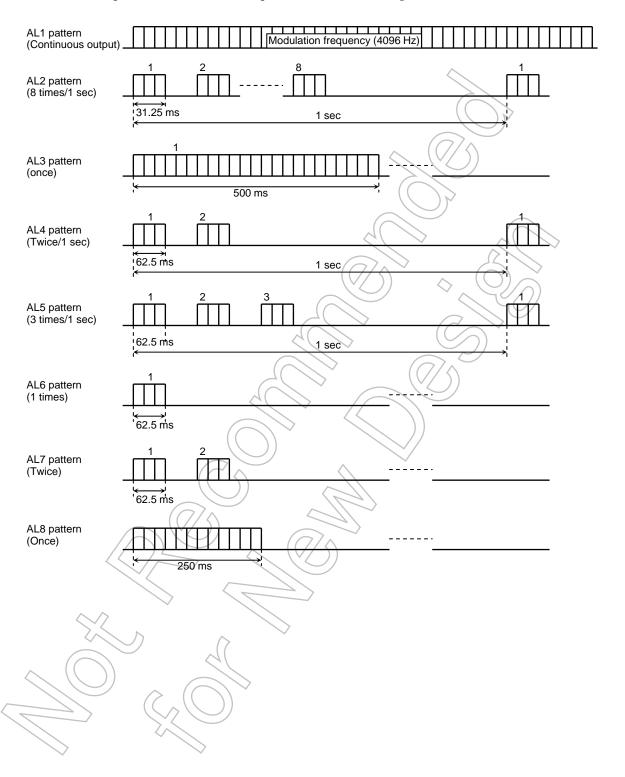
(Operation)

MELALMC<MELALM> must first be set as 0 in order to select the alarm waveform to be output from MLDALMC. The "10" must be set on the MELALMC <FC1:0> register, and clear internal counter. Alarm pattern must then be set on the 8-bit register of ALM. If it is inverted output-data, set <ALMINV> as invert.

Then set the MELAMC<FC1:0> to "11" to start the free-run counter.

To stop the alarm output, write "00H" to the ALM register.

(Setting value of alarm pattern)


Setting value for ALM	Alarm waveform
register	
00H	"0" fixed
01H	AL1 pattern
02H	AL2 pattern
04H	AL3 pattern
08H ((AL4 pattern
10H	AL5 pattern
20H	AL6pattern
40H//	AL7 pattern
80H	AL8 pattern
Other	Undefined
~~	(Do not set)

(Example program)

When outputting AL2 pattern (31.25ms/8 times/1sec)

LD (MELALMC), 80H ; Clear counter, set output alarm waveform

LD (ALM), 02H ; Set AL2 pattern LD (MELALMC), C0H ; Free-run counter start Example: Waveform of alarm pattern for each setting value: not inverted)

3.23 Analog-Digital Converter (ADC)

A 10-bit serial conversion analog/digital converter (AD converter) having six channels of analog input is built in.

Figure 3.23.1 shows the block diagram of the AD converter.

The 6-analog input channels (AN0-AN5) can be used as general-purpose inputs.

Note1: To reduce the power supply current by IDLE2, IDLE1, STOP or PCM mode, the standby state may be maintained with the internal comparator still being enabled, depending on the timing. Check that the AD converter operation is in a stop before executing HALT instruction. In IDLE2 mode it operates only the case of ADMOD0

Note2: Setting ADMOD1<DACON> = "0" while the AD converter is in a stop can reduce current consumption.

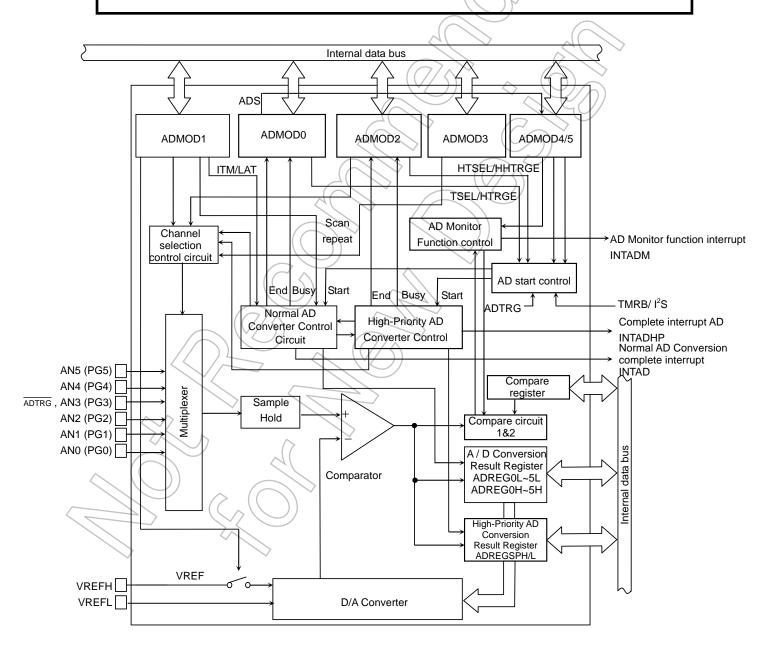
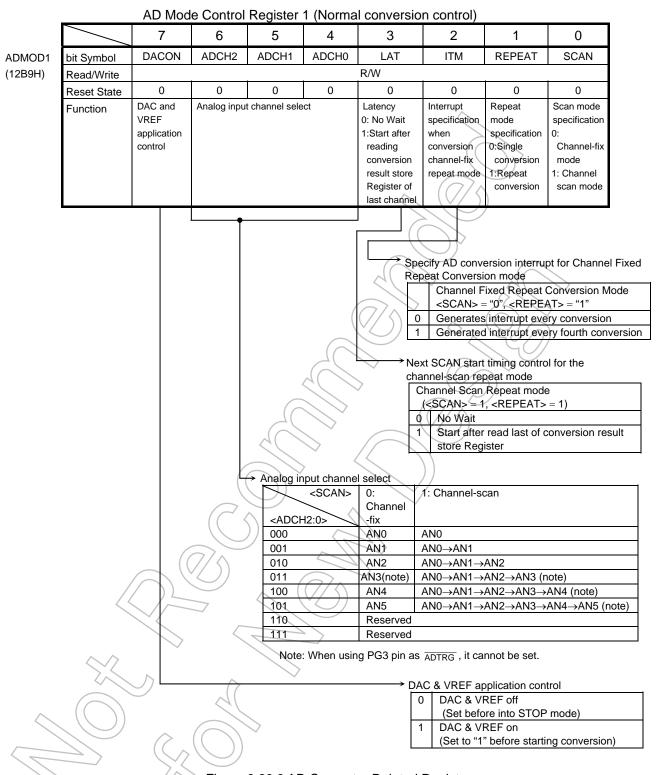


Figure 3.23.1 ADC Block Diagram


3.23.1 Control register

ADMOD0 (12B8H) The AD converter is controlled by the AD mode control registers (ADMOD0, ADMOD1, ADMOD2, ADMOD3, ADMOD4 and ADMOD5). AD conversion results are stored in the six registers of AD conversion result higher-order/lower-order registers ADREG0H/L to ADREG5H/L. Top-priority conversion results are stored in ADREGSPH/L.

Figure 3.23.2 to Figure 3.23.11 show the registers available in the AD converter.

		AD Mod	e Control I	Register 0	(Normal	conversion	control)	<i>J</i>)'	
		7	6	5	4	3	(2)	1	0
)	bit Symbol	EOS	BUSY		I2AD	ADS	HTRGE	TSEL1	TSEL0
	Read/Write	F	₹				R/W		
	Reset State	0	0		0	0 (9	0	0
	Function	Normal AD conversion end flag 0:During conversion sequence or before starting 1:Complete conversion	Normal AD conversion BUSY Flag 0:Stop conversion 1:During conversion		AD conversion when IDLE2 mode 0: Stop 1: Operate	Start Normal AD conversion 0: Don't Care 1:Start AD conversion Always read as"0".	Normal AD conversion at Hard ware trigger 0: Disable 1: Enable	Select Hard v 00: INTTB00 01: Reserved 10: ADTRG 11: Reserved	interrupt

Figure 3.23.2 AD Conversion Registers

		AD Mode	Control Re	egister 2 (Top-priorit	ty conversion	on control))	
		7	6	5	4	3	2	1	0
ADMOD2	bit Symbol	HEOS	HBUSY			HADS	HHTRGE	HTSEL1	HTSEL0
(12BAH)	Read/Write	F	₹				R۸	W	
	Reset State	0	0			0	0	0	0
	Function	Top-priority AD conversion sequence FLAG 0: During conversion sequence or before starting 1: Complete conversion sequence	Top-priority AD conversion BUSY Flag 0:Stop conversion 1:During conversion			Start Top-priority AD conversion 0: Don't Care 1: Start AD conversion Always read as"0".	Top-priority AD conversion at Hard ware trigger 0: Disable 1: Enable	Select Hard 00: INTTB10 01: Reserved 10: ADTRG 11: I ² S Samp Output	interrupt d
		AD Mode	Control Re	egister 3 (Top-prior(ty conversion	on control)		>
		7	6	5	4	3	2 <	74/) o
ADMOD3	bit Symbol	-	HADCH2	HADCH1	HADCH0			26	-
(12BBH)	Read/Write		R/	W			76		R/W
	Reset State	0	0	0	0				0
	Function	Always write "0".	select	analog input					Always write "0".
			Figure 3.2	0 0 0 0 1 1 1 1 1	HADCH2:0 00 01 11 00 01 10 11 Hote: When	Analog ichannel High-priconvers AN0 AN1 AN2 AN3(r AN4 AN5 Reser Reser using PG3 pir	when ority ion on the content of the	t cannot be s	et.

AD Mode Control Register 4 (AD Monitor function control)

ADMOD4 (12BCH)

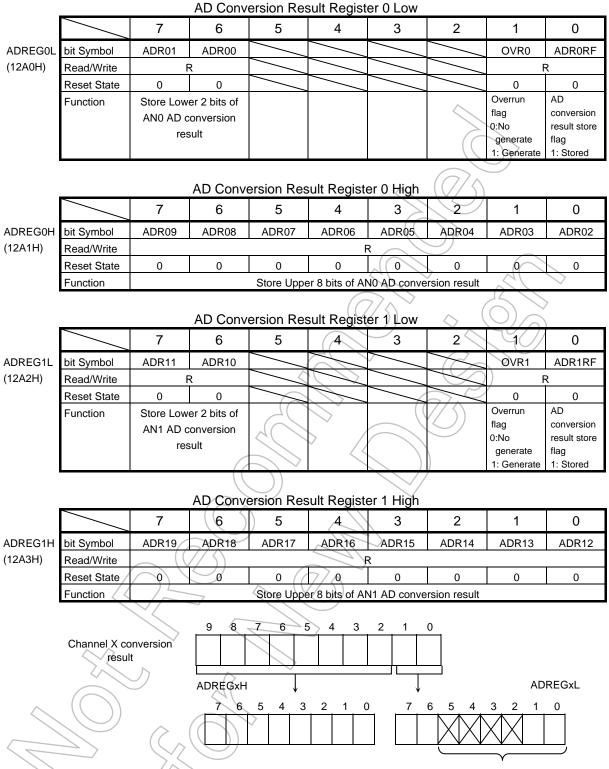
	,	Contion		(
	7	6	5	4	3	2	1	0
bit Symbol	CMEN1	CMEN0	CMP1C	CMP0C	IRQEN1	IRQEN0	CMPINT1	CMPINT0
Read/Write			R/	W	_	-	F	3
Reset State	0	0	0	0	0	0	0	0
Function	AD Monitor function1 0: Disable 1: Enable	AD Monitor function0 0: Disable 1: Enable	Generation condition of AD monitor function interrupt 1 0: less than 1: Greater than or Equal	Generation condition of AD monitor function interrupt 0 0: less than 1: Greater than or Equal	AD monitor function interrupt 1 0: Disable 1: Enable (Note)	AD monitor function interrupt 0 0: Disable 1: Enable (Note)	Status of AD monitor function interrupt 1 0: No generation 1: Generation	Status of AD monitor function interrupt 0 0: No generation 1: Generation

Note: When AD monitor function interrupts generate, it is cleared automatically and it is set to disable condition.

AD Mode Control Register 5 (AD Monitor function control)

ADMOD5 (12BDH)

	וווס וווס מו	Contion	tegister o	וווסוזיו טאן	or ranotion	rcontiol	< ' \	
	7	6	5	4	3	2	<u></u>	0
bit Symbol		C1MCH2	CM1CH1	CM1CH0	<i>}</i>	CM0CH2	CM0CH1	CM0CH0
Read/Write			R/W) })		R/W	/
Reset State		0	0	0		0		0
Function		Select analog function 1	channel for A	D monitor	,	Select analog function 0	g channel for A	D monitor
		000: AN0	100: AN4			000: AN0	100: AN4	
		001: AN1 010: AN2	101: AN5 110: Reserv	/ed		001: AN1 010: AN2	101: AN5 110: Reserv	ved .
		011: AN3	111: Reser	ved		011: AN3	111: Reser	ved


Note1: When converting AD in hard ware trigger by setting <HHTRGE> and <HTRGE>to "1", set PGFC<PG3F> to "1" (as ADTRG) in case of external TRG before enabling it. When using an INTTBx0 of 16-bit timer, first set the <TSEL1:0> or <HTSEL1:0> bit to "00" when the timer is not operating. Then, set the <HHTRGE> and <HTRGE> to "1" and enable trigger operation. Finally, operate the timer so that AD conversion will be initiated at constant intervals.

Note 2: When disabling an external trigger (ADTRG) for AD conversion, first clear the <HHTRGE> or <HTRGE> bit to "0", and clear the PGEC<PG3F> to "0", thus configuring port G as a general-purpose port.

Note 3: When starting AD by using external trigger (ADTRG), it can be started after enabling (<HHTRGE> = "1" or <HTRGE> = "1") and 3 clock at f_{SYS} was executed. AD is not started when before that time.

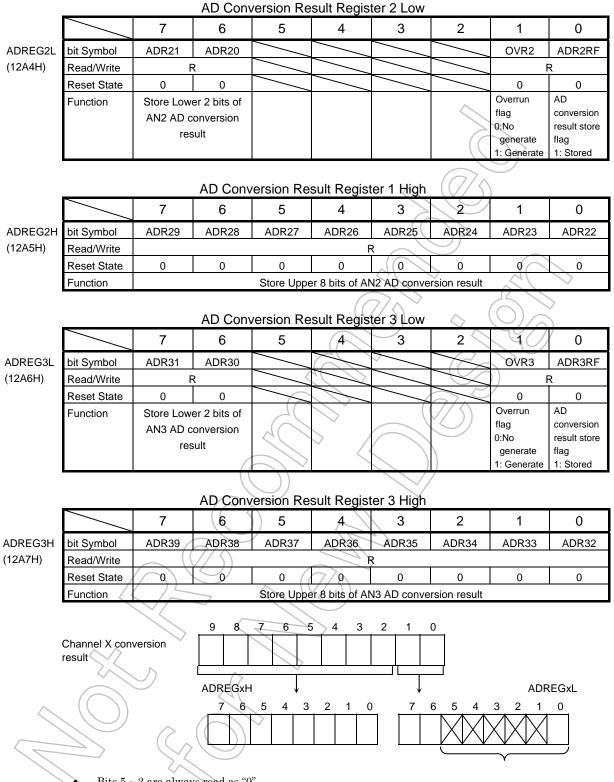

Note 4: When chaging compare register value of AD Monitor function, change it after setting AD Monitor function to disable(ADMOD4<CMEN1:0> = "0").

Figure 3.23.5 AD Conversion Registers

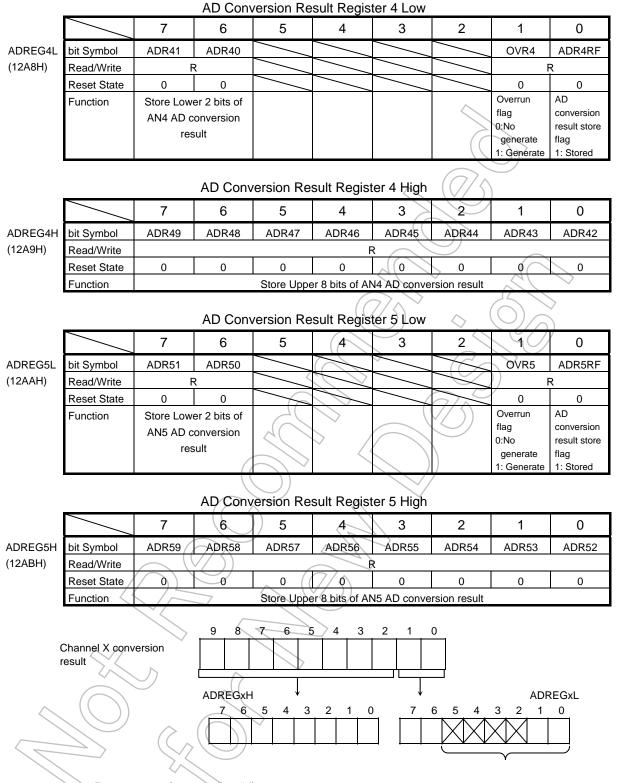

- Bits $5 \sim 2$ are always read as "0".
- Bit 0 is the AD conversion result store flag <ADRxRF>. When AD conversion result is stored, the flag is set to "1". When Lower register (ADRECxL) is read, this bit is cleared to "0".
- Bit 1 is the Overrun flag <OVRx>. This bit is set to "1" if a next conversion result is written to the ADREGxH/L before both the ADREGxH and ADREGxL are read. This bit is cleared to "0" by reading Flag.

Figure 3.23.6 AD Conversion Registers

- Bits $5 \sim 2$ are always read as "0".
- Bit 0 is the AD conversion result store flag <ADRxRF>. When AD conversion result is stored, the flag is set to "1". When Lower register (ADRECxL) is read, this bit is cleared to "0".
- Bit 1 is the Overrun flag <OVRx>. This bit is set to "1" if a next conversion result is written to the ADREGxH/L before both the ADREGxH and ADREGxL are read. This bit is cleared to "0" by reading Flag.

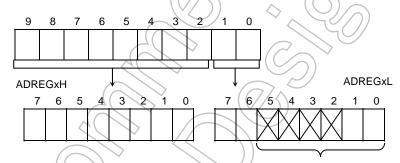
Figure 3.23.7 AD Conversion Registers

- Bits $5 \sim 2$ are always read as "0".
- Bit 0 is the AD conversion result store flag <ADRxRF>. When AD conversion result is stored, the flag is set to "1". When Lower register (ADRECxL) is read, this bit is cleared to "0".
- Bit 1 is the Overrun flag <OVRx>. This bit is set to "1" if a next conversion result is written to the ADREGxH/L before both the ADREGxH and ADREGxL are read. This bit is cleared to "0" by reading Flag.

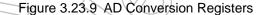
Figure 3.23.8 AD Conversion Registers

Top-priority AD Conversion Result Register SP Low

ADREGSPL (12B0H)


		monty 7 tb			- 9	-		
	7	6	5	4	3	2	1	0
bit Symbol	ADRSP1	ADRSP0					OVSRP	ADRSPRF
Read/Write	F	₹					F	?
Reset State	0	0					0	0
Function		2 bits of an sion result					Overrun flag 0:No generate 1: Generate	AD conversion result store flag 1: Stored

Top-priority AD Conversion Result Register SP High


ADREGSPH (12B1H)

	10p p	monty / LD	0011101010	TI I Count I	togiotor G	7 11911		
	7	6	5	4	3 ((2	1	0
bit Symbol	ADRSP9	ADRSP8	ADRSP7	ADRSP6	ADRSP5	ADRSP4	ADRSP3	ADRSP2
Read/Write				F	۲ ()			
Reset State	0	0	0	0	0	0	0	0
Function			Store Upp	er 8 bits of a	n AD conver	sion result	/ //	>

Channel X conversion result

- Bits 5 ~ 2 are always read as "0".
- Bit 0 is the AD conversion result store flag <ADRxRF>. When AD conversion result is stored, the flag is set to "1". When Lower register (ADRECxL) is read, this bit is cleared to "0".
- Bit 1 is the Overrun flag <OVRx>. This bit is set to "1" if a next conversion result is written to the ADREGxH/L before both the ADREGxH and ADREGxL are read. This bit is cleared to "0" by reading Flag.

AD Conversion Result Compare Criterion Register 0 Low

ADCM0REGL (12B4H)

		7	6	5	4	3	2	1	0
L	bit Symbol	ADR21	ADR20						
	Read/Write	R/	W						
	Reset State	0	0						
	Function		sion result					/	
		compare	criterion						

AD Conversion Result Compare Criterion Register 0 High

ADCM0REGH (12B5H)

	7	6	5	4	3	(2/)	1	0	
bit Symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22	
Read/Write				R/	w ((
Reset State	0	0	0	0	0	9))	0	0	
Function		Store Upper 8 bits of an AD conversion result compare criterion							

AD Conversion Result Compare Criterion Register 1 Low

ADCM1REGL (12B6H)

	אם כטוו	AG121011 176	Soult Comp	Dale Cilie	ivii ixegisi	CI I LOW	$\langle a \rangle$	/
	7	6	5	4	()3	2	21/5) 0
bit Symbol	ADR21	ADR20		4			£	
Read/Write	R/	W						
Reset State	0	0		7		Y		
Function	Store Lower	r 2 bits of an			/			
	AD conver	rsion result	7()		((// 5)		
	compare	criterion		,				

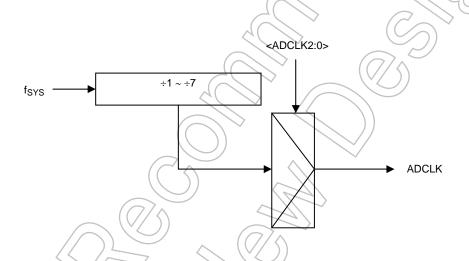
AD Conversion Result Compare Criterion Register 1 High

ADCM1REGH (12B7H)

			/ -/ -			-/ 3		
	7	6	5	4	3	2	1	0
bit Symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
Read/Write)	R/	W			
Reset State	0		0	0	0	0	0	0
Function		Store U	Jpper 8 bits	of an AD con	version resul	t compare c	riterion	

Note: Disable the AD monitor function (ADMOD4<CMEN1:0> = "0") before attempting to set or modify the value of these registers.

AD Conversion Clock Setting Register


ADCCLK (12BFH)

					,			
	7	6	5	4	3	2	1	0
bit Symbol						ADCLK2	ADCLK1	ADCLK0
Read/Write						R/	W	
Reset State					0	0_	0	0
Function					Always write "0"	Select cloc 000 : Rese 001 : f _{IO} /1 010 : f _{IO} /2 011 : f _{IO} /3	101 110	version f _{IO} /4 : f _{IO} /5 : f _{IO} /6 : f _{IO} /7

Note1: AD conversion is executed at the clock frequency selected in the above register. To assure conversion accuracy, however, the conversion clock frequency must not exceed 12MHz.

Note2: Don 't change the clock frequency while AD conversion is in progress.

Figure 3.23.11 AD Conversion Registers

f _{IO} (f _{SYS} /2)	<adclk2:0></adclk2:0>	ADCLK	AD conversion speed
40MHz	100(f _{IO} /4)	10.0MHZ	12 μsec
4010112	101(f _{IO} /5)	8MHZ	15 μsec
30MHz	011(f _{IO} /3)	10.0MHZ	12 μsec
SUIVITZ	100(f _{IO} /4)	7.5MHZ	16 μsec

AD conversion speed can be calculated by following.

Conversion speed = $120 \times (1/ADCLK)$

3.23.2 Operation

3.23.2.1 Analog Reference Voltages

Apply the analog reference voltage's "H" level side to the VREFH pin and the "L" level side to the VREFL pin.

3.23.2.2 Selecting Analog Input Channels

Selecting an analog input channel depends on the operation mode of the AC converter.

(1) For normal AD conversion

When using an analog input channel in fix mode, select one channel from the AN0 to AN5 pins by setting (ADMOD1<SCAN> = "0") ADMOD1<ADCH2:0>.

When using an analog input channel in scan mode, select one scan mode from the six scan modes by setting (ADMOD1<SCAN> = "1") ADMOD1 <ADCH2:0>.

(2) For top-priority AD conversion

Select one channel from the analog input pins ANO to AN5 by setting ADMOD3<HADCH2:0>.

After reset, ADMOD1<SCAN> is initialized to "0" and ADMOD1<ADCH2:0> to "000". Since these settings are used for channel selection, the channel fixed input with the AN0 pin will be selected. Pins not used as analog input channels can be used as normal ports.

3.23.2.3 Starting an AD Conversion

The AD conversion has the two types of normal AD conversion and top-priority AD conversion.

Normal AD conversion can be started up by setting ADMOD0<ADS> to "1." Top-priority AD conversion can be started up by software by setting ADMOD2<HADS> to "1."

For normal AD conversion, one operation mode is selected from the four types of operation modes specified by ADMOD1<REPEAT, SCAN>. The operation mode for top-priority AD conversion is only single conversion by channel-fix mode.

The ADC supports two types of AD conversion normal AD conversion and Top-priority AD conversion. The ADC initiates a normal AD conversion by software when the ADMODO<ADS> is set to "1". It initiates a Top-priority AD conversion by software when the ADMOD2<HADS> is set to "1". For a normal AD conversion, ADMOD1<REPEAT, SCAN> select one of four conversion modes. For a Top-priority AD conversion, the ADC only supports Fixed-Channel Single Conversion mode.

The ADMOD0<TSEL1:0> and ADMOD2<HTSEL1:0> enable a hardware trigger for a normal and Top-priority AD conversion, respectively. When these bits are set to "10", a normal or Top-priority AD conversion is triggered by a falling edge applied to \$\overline{ADTRG}\$ pin. When ADMOD0<TSEL1:0> is set to "00", a normal AD conversion is triggered by INTTB00 of 16-Bit Timer interrupt. When ADMOD2<HTSEL1:0> is set to "00", a Top-priority AD conversion is triggered by INTTB10 of 16-Bit Timer interrupt. If this bit is "11", it is triggered by I2S sampling block. Even when a hardware trigger is enabled, software starting can be used.

Note: If changing HTSEL at HHTRGE is "ON", maybe unexpected interrupts occurs. If changing HTSEL, once set HHTRGE to "OFF".

When normal AD conversion is started, the AD conversion BUSY flag (ADMOD0<BUSY>) that shows the state for AD being converted is set to "1."

When top-priority AD conversion is started, the AD conversion BUSY flag (ADMOD2<HBUSY>) that shows the state for AD being converted is set to "1."

In addition, when top-priority conversion is started during normal AD conversion, ADMOD0<BUSY> is kept to "1."

<HEOS> and <EOS> are set to "1" after conversion is completed. This flag is cleared to "0" only when read.

During a normal AD conversion, writing a "1" to ADMOD0<ADS> causes the ADC to abort any ongoing conversion immediately, and restart.

During a normal AD conversion, if normal AD conversion starting is enabled by hard ware trigger, normal AD conversion is restarted when start condition from hard ware trigger is satisfied. When restart is set, normal AD conversion is aborted immediately.

During a normal AD conversion, if a Top-priority AD conversion starts (writing a "1" to ADMOD2<HADS> or a hard ware trigger occurs), the ADC aborts any ongoing conversion immediately, and then start a Top-priority AD conversion for the channel specified by ADMOD3<HADCH2:0>. Upon the completion of the Top-priority conversion, the ADC stores the conversion result to ADREGSPH/L, and then resumes the suspended normal conversion with that channel.

Note: It cannot overlap with three or more AD conversions.

Prohibition example 1: In FIRST normal AD conversion

- → (Before finished FIRST normal AD conversion) Started SECOND normal AD conversion
- → (Before finished SECOND normal AD conversion) Started THIRD normal AD conversion

Prohibition example 2: In FIRST normal AD conversion

- → (Before finished FIRST normal AD conversion) Started SECOND normal AD conversion
- → (Before finished SECOND normal AD conversion) Started THIRD high-priority AD conversion

3.23.2.4 AD Conversion Modes and AD Conversion-End Interrupts

For AD conversion, the following four operation modes are provided: For normal AD conversion, selection is available by setting ADMOD1<REPEAT and SCAN>. As for top-priority AD conversion, only single conversion mode by channel-fix mode is available.

- a. Channel-fix single conversion mode
- b. Channel-scan single conversion mode
- c. Channel-fix repeat conversion mode
- d. Channel-scan repeat conversion mode

(1) Normal AD conversion

To select operation modes, use ADMOD1<REPEAT, SCAN>. After AD conversion is started, ADMOD0<BUSY> is set to "1." When a specified AD conversion ends, the Normal AD conversion end interrupt (INTAD) is generated, which sets "1" in ADMOD0<EOS> is set "1", that shows the end of the AD conversion sequence.

a. Channel-fix single conversion mode

Setting ADMOD1<REPEAT, SCAN> to "00" selects the channel-fix single conversion mode.

This mode performs a conversion only one time at one channel selected. After conversion ends, ADMOD0<EOS> is set to "1," generating Normal AD conversion End an INTAD interrupt request. <EOS> is cleared to "0" only by being read.

b. Channel-scan single conversion mode

Setting ADMOD1<REPEAT, SCAN> to "01" selects the channel-scan single conversion mode.

This mode performs a conversion only one time at each scan channel selected. After scan conversion ends, ADMOD0<EOS> is set to "1," generating Normal AD conversion End interrupt request, <EOS> is cleared to "0" only by being read.

c. Channel-fix repeat conversion mode

Setting ADMOD1<REPEAT, SCAN> to "10" selects the channel-fix repeat conversion mode.

This mode performs a conversion at one channel selected repeatedly. After conversion ends, ADMOD0<EOS> is set to "1." The timing of Normal AD conversion End INTAD interrupt request generation can be selected by setting ADMOD1 <ITM>. The timing of <EOS> being set is also liked to the interrupt timing.

ADMOD0<EOS> is cleared to "0" only by being read.

Setting <ITM> to "0" generates an interrupt request each time an AD conversion ends. In this case, conversion results are always stored into the storage register of ADREGxH/L. At the point of storage, <EOS> is set to 1.

Setting <ITM> to "1" generates an interrupt request each time four AD conversions end. In this case, conversion results are stored into the storage registers of ADREG0H/L to ADREG3H/L one after another. After stored into ADREG3, <EOS> is set to "1," restarting storage from ADREG0. ADMOD0<EOS> is set to "1" after a forth conversion result is stored. <EOS> is cleared to "0" only by being read.

d. Channel-scan repeat conversion mode

Setting ADMOD1<REPEAT, SCAN> to "11" selects the channel-scan repeat conversion mode.

This mode performs a conversion at selected scan channels repeatedly. Each time after the conversion at a final channel ends, ADMODO<EOS> is set to "1," generating Normal AD conversion End interrupt request. <EOS> is cleared to "0" only by being read.

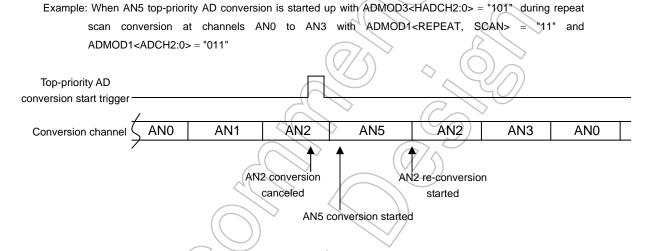
To stop the repeat conversion mode (mode of c and d) operation, write "0" in ADMOD1<REPEAT>. At the point when a scan conversion being executed ends, the repeat conversion mode ends.

Shift to a standby mode (IDLE2 Mode with ADMODO<I2AD> = "0", IDLE1 Mode or STOP Mode) immediately stops operation of the AD converter even if AD conversion is still in progress. Therefore, ADC may consume current even if operation is stopped, depending on stop condition of ADC that switches to standby mode. For avoiding this problem, Stop ADC before switching to standby mode.

(2) Top-priority AD conversion

The operation mode is only single conversion by channel-fix mode. The settings in ADMOD1<REPEAT, SCAN> are not involved.

When startup conditions are established, a conversion at a channel specified by ADMOD3<HADCH2:0> is performed only one time. When conversion ends, the top-priority AD conversion end interrupt (INTADHP) is generated, which sets "1" in ADMOD2<HEOS>. The HEOS flag is cleared to "0" only by being read.


Table 3.23.1 Interrupt Generation Timing and Flag Setting in Each AD Conversion Mode

	Interrupt	EOS set timing	,	ADMOD1	
Conversion mode	Generation Timing	(Note)	ITM	REPEAT	SCAN
Channel-fix Single conversion	After conversion end	After conversion end	-	0	0
Channel-fix Repeat conversion	Per one conversion	Each time after one conversion ends	0	1	0
	Per four conversions	Each time after four conversions end	1	-	0
Channel-scan Single conversion	After scan conversion end	After scan conversion end	-	0	1
Channel-scan Repeat conversion	Each time after one scan conversion ends	Each time after one scan conversion ends	-	1	1

Note: EOS is cleared to "0" by only reading this bit.

3.23.2.5 Top-Priority Conversion Mode

The ADC can perform a Top-priority AD conversion while it is performing a normal AD conversion sequence. A Top-priority AD conversion can be started at software by setting the ADMOD2<HADS> to "1". It is also triggered by a hardware trigger if so enabled using ADMOD2<HTSEL1:0>. If a Top-priority AD conversion is triggered during a normal AD conversion, the ADC aborts any ongoing conversion immediately, and then begins a single Top-priority AD conversion for the channel specified with the ADMOD3<HADC2:0>. Upon the completion of the Top-priority AD conversion, the ADC stores the results of the conversion in the ADREGSPH/L, generates the Top-priority AD conversion interrupt (INTADHP), and then resumes the suspended normal conversion with that channel. While a Top-priority conversion is being performed, a trigger for another Top-priority conversion is ignored.

3.23.2.6 AD Monitor Function

Setting ADMOD4<CMEN1:0> to 1 enables the AD monitoring function.

The value of Result storage register that is appointed by ADMOD5 is compared with the value of AD conversion result register (H/L), ADMOD4<CMP1C:0C> can select greater or smaller of comparison format. As register ADMOD4<IRQEN1:0> is Enable,

This comparison operation is performed each time when a result is stored in the corresponding conversion result storage register. When conditions are met, the interrupt is generated. Be careful that the storage registers assigned for the AD monitoring function are usually not ready by software, which means that the overrun flag <OVRx> is always set and the conversion result storage flag <ADRxRF> is also set.

If each of them is assigned to separate channels, the monitoring of greater or smaller is possible in the two analog channels. In addition, if assigned to the same channels, the monitoring with the voltage range set is possible.

3.23.2.7 AD Conversion Time

One AD conversion takes 120 clocks including sampling clocks. The AD conversion clock is selected from 1/1 to 1/7 $f_{\rm IO}$ by ADCLK <ADCLK2:0>. To meet the guaranteed accuracy, the AD conversion clock needs to be set to 12 MHz or less; or equivalently 10 μ s or more of AD conversion time.

3.23.2.8 Storing and Read of AD Conversion Results

AD conversion results are stored in the AD conversion result higher-order/lower-order registers (ADREG0H/L~ ADRG5H/L) for the normal AD conversion (ADREG0H/L to ADREG5H/L are read-only registers)

In the channel-fix repeat conversion mode, AD conversion results are stored into ADREG0H/L to ADREG3H/L one after another. In other modes, the conversion results of channels AN0, AN1, AN2, AN3, AN4, and AN5 are each stored into ADREG0H/L, ADREG1H/L, ADREG2H/L, ADREG3H/L, ADREG4H/L, and ADREG5H/L.

Table 3.23.2 shows the correspondence between analog input channels and AD conversion result registers.

Table 3.23.2 Correspondence between analog input channels and AD conversion result registers

· · · · · · · · · · · · · · · · · · ·					
	AD Conversion result registers				
Analog input channel (Port G)	Other conversion modes than shown in the right	Channel-fix repeat conversion mode (per 4 times)			
AN0	ADREG0H/L	ADREĢ0H/L ←			
AN1	ADREG1H/L	100			
AN2	ADREG2H/L	ADREG1H/L			
AN3	ADREG3H/L	ADREG2H/L			
AN4	ADREG4H/L	ADREG3H/L			
AN5	ADREG5H/L	ADREGIOL			

Note: In order to detect overruns without omission, read the conversion result storage register's higher-order bits first, and than read the lower-order bits next. As this result, receiving the result of OVRn = "0" and ADRnRF = "1" for overruns existing in the lower-order bits means that a correct conversion result has been obtained.

3.23.2.9 Data Polling

To process AD conversion results by using data polling without using interrupts, perform a polling on ADMODO<EOS>. After confirming that ADMODO<EOS> is set to "1," read the AD conversion storage register.

Setting example:

 Convert the analog input voltage on the AN3 pin and write the result to memory address 2800H using the AD interrupt(INTAD) processing routine.

Main routine

(2800H)

5 4 INTEAD Enable INTAD and set it to interrupt level 4. ADMOD1 0 Set pin AN3 to be the analog input channel. 0 0 0 1 ADMOD0 Χ Х 0 0 0 Start conversion in channel-fix single conversion mode. Interrupt routine processing example WA ← ADREG3 Read value of ADREG3L and ADREG3H into 16-bits general-purpose register WA. WA > > 6 Shift contents read into WA six times to right and zero fill upper bits.

This example repeatedly converts the analog input voltages on the three pins ANO, AN1 and AN2, using channel-scan repeat conversion mode.

Convert the analog input voltage on the AN2 pin as a Top-priority AD conversion, and write the result to memory address 2A00H using the Top-priority AD interrupt (INTADHP) processing routine.

Main routine

INTFAD Enable INTADHP and set it to interrupt level 6. ADMOD1 0 0 0 0) [0, DAC On. ADMOD3 0 0 0. 0 0 Set pin AN2 to be the analog input channel. ADMOD2 0 0 Start a Top-priority AD conversion by software. 0 0 0 0 1

Interrupt routine processing example

WA ← ADREGSP

WA ← >> 6

WA

Read value of ADREGSPL and ADREGSPH into 16-bits general-purpose register WA.

Shift contents read into WA six times to right and zero fill

Shift contents read into WA six times to right and zero fill upper bits.

Write contents of WA to memory address 2A00H.

Write contents of WA to memory address 2800H.

4. Convert the analog input voltage on the AN4 pin as a normal AD conversion of a channel-fix single conversion mode. And then if its conversion result is greater or equal than the value of (ADCM0REGL/H), write the result to memory address 2C00H using the AD monitor function interrupt (INTADM) processing routine.

Main routine

WA

(2A00H)

ADMOD1 ← 1 0 1 0 0 0 0 0 ADMOD0 ← 0 0 0 0 1 0 0 0

ADREG4

Interrupt routine processing example

WA ← >>6

(2C00H) \leftarrow WA X : Don't care, - : No change

Enable INTAD and set it to interrupt level 3.

Set the analog input channel AN4 for AD monitor function 0. Enable the AD monitor function0 and AD monitor function interrupt 0. Set "a conversion result \geq AD conversion result compare criterion register" for generation condition of monitor function interrupt 0.

Set pin AN4 to be the analog input channel. Start a normal AD conversion by software.

Read value of ADREG4L and ADREG4H into 16-bits general-purpose register WA.

Shift contents read into WA six times to right and zero fill upper bits.

Write contents of WA to memory address 2C00H.

3.24 Watchdog Timer (Runaway detection timer)

The TMP92CF26A contains a watchdog timer of runaway detecting.

The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

Connecting the watchdog timer output to the reset pin internally forces a reset.

(The level of external RESET pin is not changed.)

3.24.1 Configuration

Figure 3.24.1 is a block diagram of the watchdog timer (WDT).

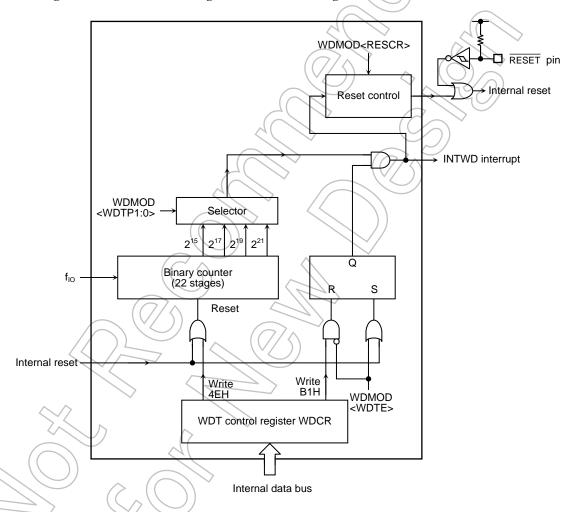


Figure 3.24.1 Block Diagram of Watchdog Timer

Note: Care must be exercised in the overall design of the apparatus since the watchdog timer may fail to function correctly due to external noise, etc.

3.24.2 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<BC with the WDMOD word interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is halted in IDLE1 or STOP mode. The watchdog timer counter continues counting during bus release (when BUSAK goes low).

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the clock ($f_{\rm IO}$) as the input clock. The binary counter can output $2^{15}/f_{\rm IO}$, $2^{17}/f_{\rm IO}$, $2^{19}/f_{\rm IO}$ and $2^{21}/f_{\rm IO}$.

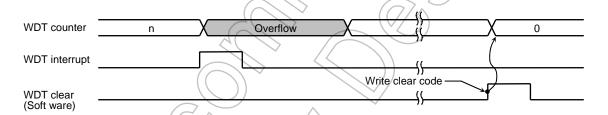


Figure 3.24.2 Normal Mode

The runaway detection result can also be connected to the reset pin internally.

In this case, the reset time will be 32 clocks (102.4 μ s at fosch = 10 MHz) as shown in Figure 3.24.3. After a reset, the clock fig is divided fsys by two, where fsys is generated by dividing the high-speed oscillator clock (fosch) by sixteen through the clock gear function.

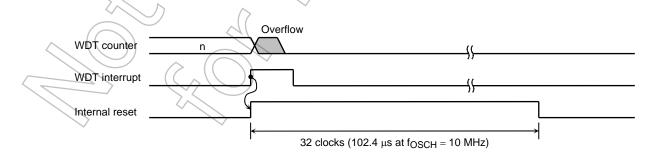


Figure 3.24.3 Reset Mode

3.24.3 Control Registers

The watchdog timer (WDT) is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode registers (WDMOD)
 - 1. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD<WDTP1:0> = 00.

The detection time for WDT is 2¹⁵/f_{IO} [s]. (The number of system clocks is approximately 65,536.)

2. Watchdog timer enable/disable control register < WDTE>

At reset, the WDMOD<WDTE> is initialized to "1", enabling the watchdog timer.

To disable the watchdog timer, it is necessary to clear this bit to "0" and to write the disable code (B1H) to the watchdog timer control register (WDCR). This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to "1".

3. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

• Disable control

The watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

```
        WDCR
        ← 0
        1
        0
        0
        1
        1
        0
        Write the clear code (4EH).

        WDMOD
        ← 0
        -
        X
        X
        -
        0
        Clear WDMOD <WDTE> to "0".

        WDCR
        ← 1
        0
        1
        0
        0
        1
        Write the disable code (B1H).
```

• Enable control

Set WDMOD<WDTE> to "1"

• Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

WDCR \leftarrow 0 1 0 0 1 1 1 0 Write the clear code (4EH).

Note1: If the disable control is used, set the disable code (B1H) to WDCR after write the clear code (4EH) once.

(Please refer to setting example.)

Note2: If the watchdog timer setting is changed, change setting after setting to disable condition once.

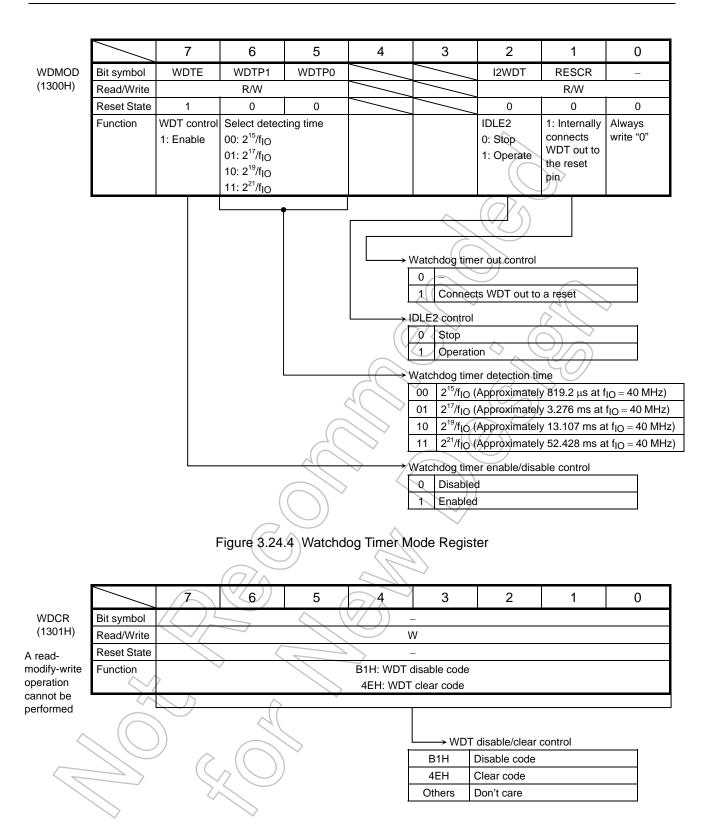


Figure 3.24.5 Watchdog Timer Control Register

3.25 Power Management Circuitry (PMC)

The TMP92CF26A incorporates the power management circuitry (PMC) for managing standby current to minimize the leakage current in deep to sub-quarter-micron technology. The TMP92CF26A is provided with the following six power supply rails.

·Analog power supply : AVCC & AVSS (for AD converter)

· 3-V-A, 3-V-B power supply for digital I/Os : DVCC3A, 3B & DVSSCOM

(for general pins)

·1.5-V-A internal power supply for the digital logic : DVCC1A & DVSSCOM

(for general circuits)

·1.5-V-B internal power supply for the digital logic : DVCC1B & DVSSCOM

(for RTC and PMC)

·1.5-V-C power supply for oscillator : DVCC1C & DVSS1C

(for high-frequency oscillator and PLL)

Each power supply rail is independent of one another (VSS is partially shared).

Among the six power supply rails, those that are supplied in Power Cut mode are the ones for external pins (DVCC-3A, DVCC-3B), AD converter (AVCC) and RTC and backup RAM (DVCC-1B). After entering this mode, internal signals that communicate with the circuit blocks powered by DVCC1A and DVCC1C are cut off so that no shoot-through current is generated in the circuitry when the power is removed from those blocks.

• DVCC-3A, DVCC-3B

This 3-V power supply rail provides power for external pins preventing them from entering a floating state, for turning on/off the external power supplies, and for signaling the wake-up interrupt for exiting the standby state.

• AVCC

This 3-V power supply rail provides power for the touch panel interface, and for signaling the Wake-up interrupt for exiting the standby state.

• DVCC-1B

This 1.5-V power supply rail provides power to the RTC, 16 Kbytes of RAM and the PMC.

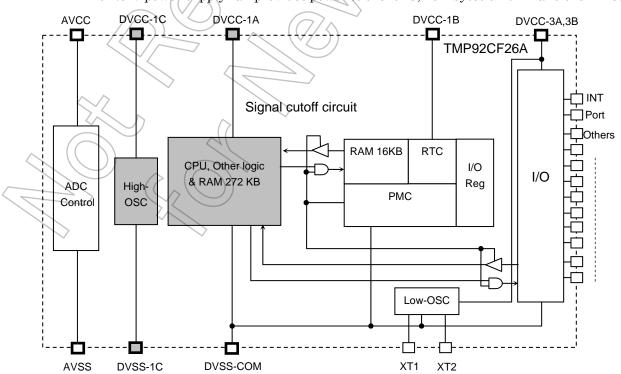


Figure 3.25.1 Power Supply System

3.25.1 Special Function Register (SFR)

PMCCTL (02F0H)

	7	6	5	4	3	2	1	0
Bit Symbol	PCM_ON					=	WUTM1	WUTM0
Read/Write	R/W					W	R/	W
System Reset State	0					0	0	0
Hot Reset State	Data retained					- (Data retained	Data retained
Function	Power Cut Mode 0: Disable 1: Enable				<i>\\</i>	Must be written as 0 Always read as 0	Warm-up Ti 00: 2 ⁹ (15.6 01: 2 ¹⁰ (31. 10: 2 ¹¹ (62. 11: 2 ¹² (125	25 ms) 25 ms) 5 ms)

Note1: About 77 µs after a wake-up interrupt has been requested, the external PWE terminal changes from low to high. At this point, the warm-up counter starts counting up the time period specified by the WUTM1 and WUTM0 bits. Then, about 92 µs later, the internal reset signal is negated. The time required for the power supply voltage to stabilize varies depending on the power supply response and the board conditions. This characteristic should be considered in specifying the warm-up time.

Note 2: This register should usually be set in the initial status (all bits are "0"). Writing should be made immediately before the power-cut mode is assumed. Reset the values of all registers to the initial status (all bits are "0") immediately after the power-cut mode. For details, refer to the flow of transition to the power cut status described later.

The operations depending on the setting of the PCM ON bit are shown below.

	PCM_ON = 1	PCM_ON = 0
External interrupt input	No interrupt HOT_RESET signal asserted	Interrupt
Operation after reset	- J	Startup depending on the settings of the AM1 and AM0 pins
Operation after hot reset	Startup from the boot-ROM regardless of the settings of the AM1 and AM0 pins and a program flow jumps to the specified address in the on-chip RAM area.	-
Warm-up counter	A change in the PWE pin level is used as a trigger to start counting the low-frequency clock. Then HOT_RESET signal negated.	-

3.25.2 Detailed Description of Mode Transitions

This section explains the procedures for entering and exiting the Power Cut mode.

• Entering the Power Cut Mode

When entering the Power Cut mode, the CPU needs to be executing in the on-chip RAM. The low-frequency clock (XT) must be enabled.

It is also necessary to disable interrupts, and to stop DMA operations, WDT and AD converter. Then, configure the output pins to function as ports through the Pn, PnCR and PnDR registers. At this time, the PM7 pin should be configured as the PWE input pin. Also, the internal RTC pin and the external interrupt pins that are used for waking up from the Power Cut mode should be configured as interrupt inputs and enabled.

The interrupt inputs should be configured as rising-edge triggered, if configurable. When the INT4 pin is used as the TSI input, the debounce circuit should be disabled.

The wake-up program must be prewritten to the on-chip RAM area at addresses from 46000H to 49FFFH.

(Including the initial setting of the WDT and other registers, all the required settings for waking up should be predefined in this wake up program.)

Finally, stop the PLL if it is operated, and specify the warm up time for waking up from the Power Cut mode (the time period required for the power supply voltage and the high-frequency clock to stabilize) by the PMCCTL<WUTM1:0> bits. Power Cut mode is then entered by writing a 1 to the PMCCTL<PCM_ON> bit.

At this time, the RESET (HOT_RESET) signal is asserted to all the circuits excluding the external I/O and PMC.

Note: As soon as the PMCCTL<PCM_ON> bit is set to 1, the power management signal (PWE) changes from 1 to 0 and external power supplies are turned off.

- 1. Configurations Required for Entering the Power Cut Mode
 - (1) Writing the boot program that is executed after the warm-up time has elapsed (46000Hto 49FFFH)

Only bit 7 of the PMCCTL register is checked whether it is 1 or 0 in the boot-ROM program. All codes required for initializing registers including WDT must be written in the fixed RAM area (46000Hto 49FFFH).

(2) Controlling the low-frequency clock (XT)

Entering or exiting the Power Cut mode is performed using the low-frequency clock. Thus, the low-frequency clock (XT) must always be enabled.

- 2. Mode Transition Sequence
 - (1) Program execution jumps to the on-chip RAM area.

Before entering the Power Cut mode, all the sources that might disturb the mode transition must be disabled.

- a. Disable the Watch Dog Timer
- b. Disable the A/D converter
- c. Disable all the DMA functions of the system
 - Disable the LCDC
 - Disable the auto-refresh function of SDRAM (switching to the self refresh mode)
 - Disable the HDMA function
- (2) Configure the required port settings (through the Pn, PnCR, PnFC and PnDR registers)

All the external interrupt inputs usable for wake-up signaling must be configured as rising-edge triggered.

When the INT4 pin is used as the TSI input, the debounce circuit should be disabled.

- (3) Disable interrupts (DI)
- (4) Stop the PLL operation

Program the high-frequency clock frequency fsys to be fosch and stop the PLL operation.

(5) Setup the warm up time: PMCCTL<WUTM1:0>

About 77 µs after a wake-up interrupt has been requested, the external PWE terminal changes from low to high. At this point, the warm-up counter starts counting up the time period specified by the WUTM1 and WUTM0 bits. Then, about 92 µs later, the internal reset signal is negated. The time required for the power supply voltage to stabilize varies depending on the power supply response and the board conditions. This characteristic should be considered in specifying the warm-up time.

(Warm-up time can be selected from 15.625 ms, 31.25 ms, 62.5 ms and 125 ms.)

- (6) Transition to the Power Cut mode (PMCCTL<PCM_ON> = 1)
 - * You can set both the warm-up time specificatotion bits, PMCCTL<WUTM1:WUTM0>, and the Power Cut mode enable bit, PMCCTL<PCM_ON>, simultaneously.
- (7) Insert a dummy instruction for waiting for the mode transition time to PCM (recommended to use 20 NOP instructions)
 - * Any writing access to the PMCCTL register, including the warm-up time configuration, is only allowed upon entering the PCM and immediately after exiting the PCM. The warm-up time must not be preprogrammed. (The PMCCTL register must be written as 00h at timings other than the above.)

• Exiting the Power Cut Mode

The Power Cut mode can be exited by the assertion of external interrupt or the internal reset. (It is prohibited to exit the reset state when DVCC1A is off. A reset signal must be asserted after supplying power to DVCC1A and waiting for its voltage to fully stabilize.) The interrupts that can be used to exit the Power Cut mode are the RTC interrupt, INT0 to INT7 (TSI interrupts) and INTKEY interrupts.

Interrupt Source	Symbol	Remarks
RTC	INTRTC	
	INT0	Only configurable as rising-edge triggered
	INT1	Only configurable as rising-edge triggered
	INT2	Only configurable as rising-edge triggered
External	INT3	Only configurable as rising-edge triggered
	INT4	When used as TSI, the debounce circuit should be disabled. Only configurable as rising-edge triggered
	INT5	Only configurable as rising-edge triggered
	INT6	Only configurable as rising-edge triggered
	INT7	Only configurable as rising-edge triggered
Key	INTKEY	KI0 to KI8 Only configurable as falling-edge triggered

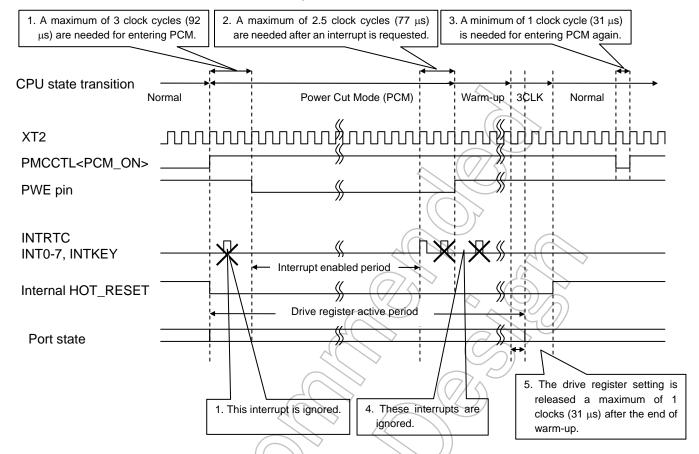
Table 3.25.1 Interrupts Used for Waking Up from the PCM

When an interrupt request is accepted, the power management signal (PWE) changes from 0 to 1 allowing for the power to be supplied to each block, from which power has been removed. After the warm-up time specified by the PMCCTL<WUTM1:WUTM0> bits has elapsed, HOT_RESET is automatically negated and the CPU boots from the on-chip boot ROM regardless of the external AM pin state. All external ports retain the state of before entering the Power Cut mode except for the PnDR pin, which is also negated upon negation of HOT_RESET.

- * Output pin: Hi-Z state \rightarrow Set to 1
- * Input gates of input pins: OFF → ON

The PMCCTL <PCM_ON> bit in the PMC is first checked in the on-chip boot-ROM program. If this bit is set to 1, a program execution jumps to address 46000H in the on-chip RAM before initializing any registers. The <PCM_ON> bit in the PMC is cleared to "0" by software. At the same time, ensure that the warm-up time is reset to the initial value. (The PMCCTL<WUTM1:0> bits must be written as 00h.)

Note 1: The signals that are serviced as interrupt signals in normal mode can be used as Wake-up signals to exit the Power Cut Mode.


Note 2: Once the PMCCTL<PCM_ON> bit is set to 1, it remains in this state. To re-enter the Power Cut mode, it is necessary to clear this bit to 0 once and then set it to 1 again. At this time, it is required to wait for at least 31 µs after clearing the PCM_ON bit to 0.

Note 3: Please not that some settings must be configured by software, for the Power Cut mode is exited using the boot ROM.

BROMCR (016CH)

	7	6	5	4	3	2	1	0
Bit Symbol						CSDIS	ROMLESS	VACE
Read/Write							R/W	_
Reset State						1	0	1
Function						NAND Flash	Boot-ROM	Vector
						Area CS	0: Use	Address
						Output	1: Bypass	Translation
						0: Enable		0: Disable
						1: Disable		1: Enable

3.25.3 Detailed Descriptions and Timing Considerations

Internal HOT_RESET assert to dead circuit only. (DVCC1A &DVCC1C circuit)

- 1. When PMCCTL<PCM_ON> = 1, mode transition from normal mode to the Power Cut mode takes a maximum of three low-frequency clock cycles (about 92 μ s). During this period, the external wake-up requests are ignored.
- 2. A maximum of 2.5low-frequency clock cycles (about 77 μs) is required for the PWE pin to change from 0 to 1 after the wake-up interrupt is received.
- 3. After exiting the Power Cut mode, the PMCCTL<PCM_ON> bit is cleared to 0 by soft ware to return to normal mode. To enter the Power Cut mode again, the PMCCTL<PCM_ON> bit should be once cleared to 0 and set to 1 again. In this case, the PMCCTL<PCM_ON> bit should be fixed at 0 for a minimum of one low-frequency clock cycle (about 31 µs). Otherwise, the PCM may not be entered by changing its state from 1 to 0 and to 1 again.
- 4. The wake-up triggers asserted during the wake-up operation from the PCM are ignored.
- 5. When a maximum of one low-frequency clock cycle (about 31 μs) has elapsed after the warm-up counter is expired, the DRV setting of every port is switched to the normal setting. Then, two low-frequency clock cycles (about 62 μs) later, the internal reset signal (Hot_Reset) is negated.

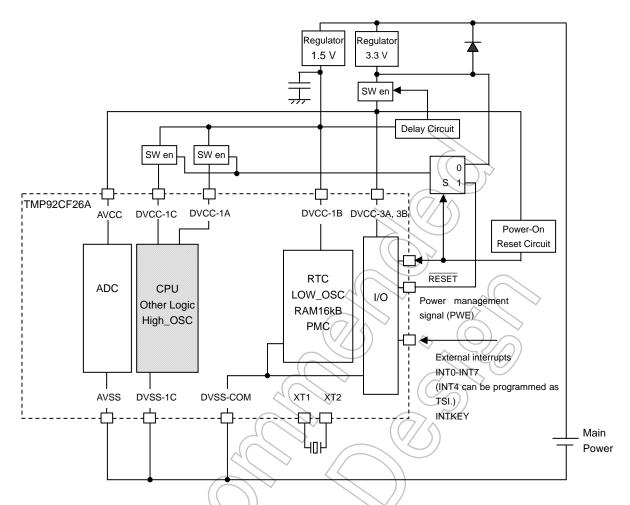


Figure 3.25.2 Application Circuit Examples of the PMC

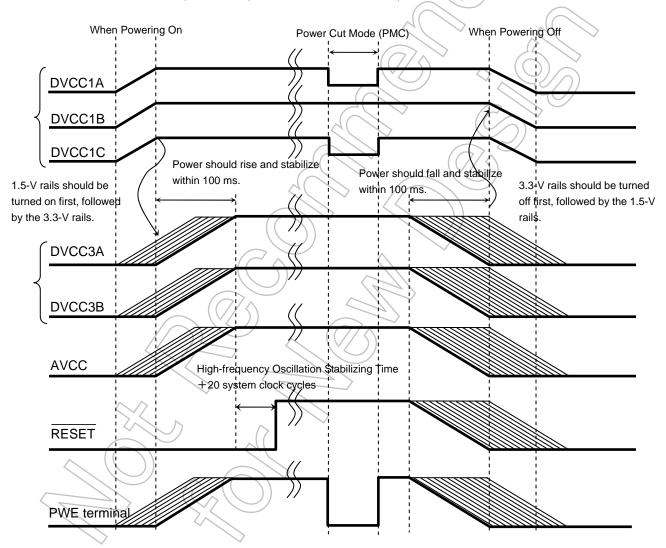
Figure 3.25.2 shows the examples of the PMC application circuit.

In normal mode, the power management pin (PWE) goes high, which allows the power to be supplied to all the blocks in the TMP92CF26A.

In the Power Cut mode, the PWE pin goes low, which allows the power to be removed from the on-chip circuit blocks excluding the CPU, part of on-chip RAM, AD converter and RTC. This leads to a reduction of the leakage current. In the Power Cut mode, power is supplied only to the followings: I/O (including the AD pins), TSI circuit, 16 Kbytes of on-chip RAM, low-frequency oscillation circuit, RTC and PMC.

3.25.4 Notes on Power-On/Off Sequences

• Power On/Off Sequences (Initial Power ON/Complete Power OFF)


As shown below, in the initial power-on sequence, power must be supplied to the on-chip circuit blocks first and then to the external circuit blocks. Also, in the complete power-off sequence, power must be removed from the external circuit blocks and then from the on-chip circuit blocks.

Power-on

 $(DVCC1A, DVCC1B, DVCC1C) \rightarrow (DVCC3A, DVCC3B, AVCC)$

Power-off

 $(AVCC, DVCC3A, DVCC3B) \rightarrow (DVCC1C, DVCC1B, DVCC1A)$

Note1:Although it is possible to turn on or off the 1.5-V and 3.3-V power supply rails simultaneously, it may cause external pins to temporarily become unstable. Therefore, if there is any possibility that this would affect peripheral devices connected with the TMP92CF26A, external power supplies should be turned on or off while the internal power supplies are stable, as indicated by the heavy lines in the diagram above.

Note2: In the power-on sequence, the 3.3-V power supply rails must not be turned on before the ones of 1.5-V. In the power-off sequence, the 3.3-V power supply rails must not be turned off after the ones of 1.5-V.

3.25.5 Programming Example

Example 1: Mode transition to the PCM
Condition: Wake-up trigger = INT4 (TSI)

org	002000h		
ld ldw ldw	(syscr0),40h (wdmod),0b100h (admod0),0000h	; ; ;	Enable the low-frequency clock Disable the WDT Disable the AD converter
ldw	(admod2),0000h	;	
ldw	(admod4),0000h	ر ;	(0/\
ld	(lcdctl0),00h	;	Disable DMA operation
ld	(pmfc),80h	;	Program the PM7 port as PWE
ld ld	(p9fc),40h (inte34),50h	;]	Enable INT4 and program the interrupt level
ld	(tsicr1),00h	;	Disable the debounce circuit
ld ld ld di ld	(pllcr0), 00h (pllcr1), 00h (pmcctl),00h (pmcctl),80h	;	Change the CPU clock from PLL to fosch Stop the PLL circuit Program the warm-up time Enable the PCM_ON bit
			(Entors the Bower Cut mode)

(Enters the Power Cut mode)

Wait until PCM is entered

* Before you program the PMCCTL register at this point, the PMCCTL register must remain in the reset state: 00h.

nop × 20

; After Wake-up

org 046000h

ld (pmcctl),00h

Disable the PCM_ON bit

* At the same time, the warm-up time must be set to default. (The PMCCTL register must be written as 00h.)

Example 2: Mode transition to the PCM Condition: SDRAM= Self-refresh mode

Į.	d	(syscr0),40h ;	Enable the low-frequency clock
Į.	dw	(wdmod),0b100h ;	Disable the WDT
ļ	dw	(admod0),0000h ;	Disable the AD converter
ļ	dw	(admod2),0000h ;	
Į.	dw	(admod4),0000h ;	
Į.	d	(lcdctl0),00h ;	Disable the LCDC
J.	d	(pmcctl),00h ;	Program the warm-up time
Į.	d	(inte0),55h ;	Enable INT0 and program the interrupt level to 5
ϵ	ei	5 ;	$\langle \langle \langle \langle \rangle \rangle \rangle$
C	lk	0,0 ;	
Į.	d	(pccr),00h ;	Program PC0-PC3 as INT0-INT3
J.	d	(pcfc),01h ;	
		;	
;(((Entry Self R	efresh mode))) ;	$\langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \langle \rangle \rangle \langle \rangle \langle \rangle $
	res	ld ;	Disable the Self Refresh auto exit function
	ld	(sdcmm),02h ;	Select the All Bank Precharge command
ABP:		;	
	ld	a,(sdcmm) ;	
	ср	a,00h ;	
	jr	nz,ABP ;	Perform polling until the All Bank Precharge command is finished
			command is limished
	ld	(sdcmm),05h	Select the Self Refresh Entry command
	nop×10	(Suciliii),OSII	Note: Execute at least 10 bytes of NOP or other
	Hopx To	((,	instructions.
	ld	(pj),7fh ;	Clear the PJ7 bit
	ld	(pjfc),1fh ;	Configure <pj7> as Port function</pj7>
	ld	(pjdr),80h ;	Configure the PJDR register
;(((Entry PMC r	mode)))	77/	
	di	//))	
; PLL off setti	ng		O/Δ
	(d	(pllcr0),00h	Program the clock signal as: f _{SYS} =f _{OSCH}
	/q/	(pllcr1),00h ;	Stop the PLL circuit
	1.1	(2000 2011) 201	Fuchla DOM condition
^ ^	ld	(pmcctl),80h ;	Enable PCM condition (Start PCM mode)
>.<	K	nony20	Wait until PCM is entered
	$\bigcirc)$	nop×20 ;	Walt uttill FOW is efficied
; After Wake-up		d	
, Aitel Wake-up		046000h ;	
	org	,	
	ld ((pmcctl),00h ;	Disable the PCM_ON bit
		W	Note: At the same time, the warm-up time must
	~ \		be set to default as well. (The PMCCTL register
~		4	must be written as 00H)

Note: SDRAMC is initialized by hot reset upon a wake-up.

The SDCKE pin output is initialized to 1 by initializing the SDRAMC. Therefore, SDRAM exits from self-refresh mode. Auto-refresh function of the SDRAMC register is disabled at same time. Therefore, SDRAM data might be lost.

However, though the SDRAMC is initialized by hot reset, port configurations are not initialized by Hot reset. Thus, SDRAM can retain its contents.

To keep SDRAM data, program the PJ7 pin as the SDCKE pin and drive it low before entering the PMC mode. The output level of the PJ7 pin while in PMC mode is determined by the PJ and PJDR register settings. Please program the PJ7 pinto be driven low while in PMC mode in the same manner as shown above.

TOSHIBA

3.26 Multiply and Accumulate Calculation Unit (MAC)

The TMP92CF26A includes a multiply-accumulate unit (MAC) capable of 32-bit × 32-bit + 64-bit arithmetic operations at high speed. The MAC has the following features:

- One-cycle execution for all MAC operations (excluding register access time)
- Three operation modes:
- 1) 64-bit + 32-bit × 32-bit
 - 2) 64-bit -32-bit $\times 32$ -bit
 - 3) $32\text{-bit} \times 32\text{-bit} 64\text{-bit}$
- Support for signed/unsigned operations
- Support for integer operations only

3.26.1 Registers

The MAC in the TMP92CF26A has one control register and three data registers. These registers are connected to the CPU via a 32-bit bus and can be accessed in one system clock $(f_{SYS}).$

3.26.1.1 Control Register

The control register is used to control the operation of the MAC.

(1BFCH)
A read-
modify-
write
operation
cannot be
performed

MACCR

	MAC Control Register								
	7	6	55	4	3	2	1	0	
bit Symbol	MOVF	MOPST	MSTTG2	MSTTG1	MSTTG0	MSGMD	MOPMD1	MOPMD0	
Read/Write	R/W	W		^	R/	W		_	
Reset State	0	(0(0	0	0	0	0	0	
Function	Overflow	Calculation	Calculation	start trigger	4/	Sign mode	Calculation	mode	
	flag /	soft start	000: Write to	MACMA<7	:0>	0: Unsigned	00: 64 + 32:	×32	
	0: No	0:Don't care	001: Write to	001: Write to MACMB<7:0>			01: 64 – 32:	×32	
/	overflow	1:Start	010: Write to	MACMOR<	<7:0>		10: 32×32 –	64	
	1: Overflow	calculation	011: Write to	MACMOR<	<39:32>		11: Reserve	ed	
	occurred		1xx: Write o	f "1" to <mo< td=""><td>PST></td><td></td><td></td><td></td></mo<>	PST>				

Note 1: <MOPST> is write-only and it is read as "0".

Note 2: Writing "1xx" to <MSTTG2:0> and writing "1" to <MOPST> can be executed in the same write cycle.

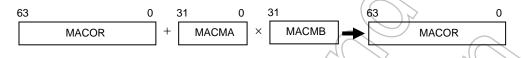
Note 3: <MOVF> is fixed two system clocks (f_{SYS}) after calculation is started.

3.26.1.2 Data Registers

The data registers are arranged as shown below.

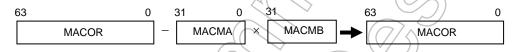
		Data Registers								
	Bits<63:56>	s<63:56> Bits<55:48> Bits<47:40> Bits<39:32> Bits<31:24> Bits<23:16> Bits<15:8> Bits<7:0>								
Multiplier A Register					(1BE3H)	(1BE2H)	(1BE1H)	MACMA (1BE0H)		
Multiplier B Register					(1BE7H)	(1BE6H)	(1BE5H)	MACMB (1BE4H)		
MAC Register	(1BEFH)	(1BEEH)	(1BEDH)	MACORH (1BECH)	(1BEBH)	(1BEAH)	(1BE9H)	MACORL (1BE8H)		

- Note 1: After reset, all the registers are cleared to "0".
- Note 2: Read-modify-write instructions can be used on all the registers.
- Note 3: All the registers can be accessed in long word, word, or byte units. (In case of using "sign mode", it can be accessed in long word only)
- Note 4: When MACCR<MSTTG2:0> is set to "0", "001", "010" or "011" and the registers are written in word or byte units, the <7:0> bits of each register must be written last.
- Note 5: The MACORL register is fixed one system clock (f_{SYS}) after calculation is started, and the MACORH register is fixed two system clocks (f_{SYS}) after calculation is started. Therefore, to read the MACOR register immediately after calculation, be sure to read the MACORL register first.
- Note 6: In case of using "sign mode", MACCR<MSGMD> = 1, it must need to write to MACMA and MACMB register with longword (32bit).

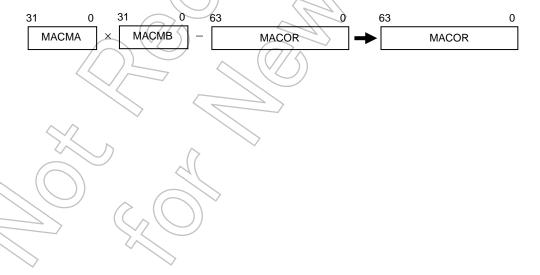

3.26.2 Description of Operation

(1) Calculation mode

The MAC has the following three types of calculation mode. The calculation mode to be used is specified in MACCR<MOPMD1:0>. MACCR<MSGMD> is used to select unsigned or signed mode. The operation of each calculation mode is explained below.


(a)
$$64 + 32 \times 32 \text{ mode}$$

In this mode, the contents of the MACMA register and the MACMB register are multiplied and the result is added to the contents of the MACOR register. Then, the result is stored back in the MACOR register.


(b)
$$64 - 32 \times 32 \text{ mode}$$

In this mode, the contents of the MACMA register and the MACMB register are multiplied and the result is subtracted from the contents of the MACOR register. Then, the result is stored back in the MACOR register.

(c) $32 \times 32 - 64$ mode

In this mode, the contents of the MACMA register and the MACMB register are multiplied and the contents of the MACOR register are subtracted from the result. Then, the result is stored back in the MACOR register.

(d) Sign mode

Both multiply-accumulate and multiply-subtract operations can be executed in unsigned or signed mode.

In signed mode, the MACMA, MACMB, and MACOR registers become signed registers, and the most significant bit is treated as the sign bit and the data set in each register is treated as a two's complement value. Table 3.26.1 shows the range of values that can be represented in each sign mode.

Table 3.26.1 Data Range in Unsigned/Signed Mode

	MACMA, MACMB Registers	MACOR Register
Unsigned	0 ~ 2 ³² –1	$0 \sim 2^{64} - 1$
Signed	$-2^{31} \sim +2^{31}$ -1	$-2^{63} \sim +2^{63}-1$

Use signed mode when the values to be set in the MACMA and MACMB registers are signed (two's complement) data. Even in unsigned mode it is possible to set signed (two's complement) data in the MACOR register to perform additions and subtractions in signed mode.

In case of using "sign mode", MACCR<MSGMD> = 1, it must need to write to MACMA and MACMB register with longword (32bit).

(2) Calculation start trigger

As a trigger to start calculation, writing to the MACMA, MACMB or MACOR register or soft start (MACCR<MOPST>=1) can be selected in MACCR<MSTTG2:0>.

(3) Overflow flag

When an overflow occurs in the calculation result (see Table 3.26.2), MACCR<MOVF> is set to "1". Once an overflow occurs, MACCR<MOVF> is held at "1" regardless of subsequent calculation results. Since the overflow flag is not automatically cleared by a read operation, it is necessary to write "0" to clear this flag.

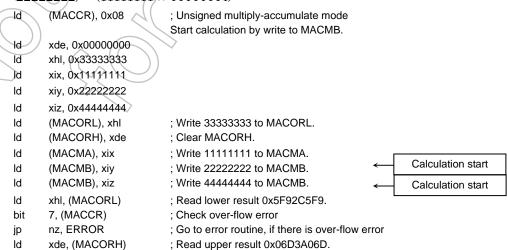
Table 3.26.2 Overflow Definitions

Sign Mode	Calculation Result (MACOR register value)	MACCR <movf></movf>
	MACOR > 2 ⁶⁴ -1	1
Signed	$0 \le MACOR \le 2^{64}-1$	0
	MACOR < 0	1
	MACOR > 2 ⁶³ -1	1
Unsigned	$-2^{63} \le MACOR \le 2^{63}-1$	0
	$MACOR < -2^{63}$	1

3.26.3 Operation Examples

(1) Unsigned multiply-accumulate operation

The following shows a setting example for calculating "33333333 + 111111111 \times 222222222":

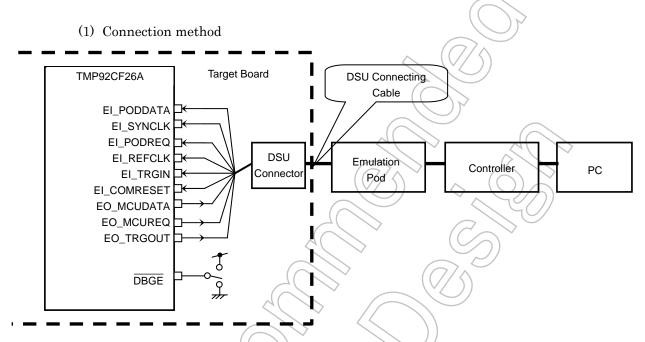

```
ld
      (MACCR), 0x08
                               ; Unsigned multiply-accumulate mode
                               Start calculation by write to MACMB.
ld
      xde, 0x00000000
ld
      xhl, 0x33333333
М
      xix, 0x11111111
ld
      xiy, 0x2222222
ld
      (MACORL), xhl
                               ; Write 33333333 to MACORL.
ld
      (MACORH), xde
                               ; Clear MACORH.
ld
      (MACMA), xix
                               ; Write 11111111 to MACMA.
ld
      (MACMB), xiy
                               ; Write 22222222 to MACMB.
                                                                              Calculation start
      xhl, (MACORL)
                               ; Read lower result 0x41FDB975.
ld
      7, (MACCR)
bit
                               : Check over-flow error
      nz, ERROR
                               ; Go to error routine, if there is over-flow error
jp
      xde, (MACORH)
                               ; Read upper result 0x02468ACF.
```

(2) Signed multiply-subtract operation

The following shows a setting example for calculating "33333333 - 111111111 \times -22222222":

```
; Signed multiply-subtract mode
       (MACCR), 0x25
М
                               Start calculation by write of "1" to <MOPST:
ld
       xde, 0x00000000
ld
       xhl, 0x33333333
       xix, 0x11111111
М
       xiy, 0xDDDDDDDE
                                 2222222
ld
                               ; Write 33333333 to MACORL
       (MACORL), xhl
ld
       (MACORH), xde
                                Clear MACORH.
ld
                                Write 11111111 to MACMA.
ld
       (MACMA), xix
       (MACMB), xiy
                                Write -22222222 to MACMB.
       5, (MACCR)
                                                                               Calculation start
set
       xhl, (MACORL)
                               ; Read lower result 0x41FDB975.
ld
bit
       7, (MACCR)
                               ; Check over-flow error
       nz, ERROR
                               ; Go to error routine, if there is over-flow error
įр
                               ; Read upper result 0x02468ACF.
       xde, (MACORH)
```

(3) Unsigned multiply-accumulate operation (two multiply-accumulate operations)


TOSHIBA TMP92CF26A

3.27 Debug Mode

The TMP92CF26A includes a debug support unit (DSU) for enabling on-board debugging.

The DSU has 9 debug pins for interfacing with an external emulator via a DSU connector to be mounted on the target board and a DSU connecting cable. For details about debugging, please refer to the instruction manual of the emulation pod to be used.

This section provides product-specific explanations related to debug mode.

Note: When connecting the TMP92CF26A and an emulator in debug mode, place the DSU connector on the target board as near (less than 5cm) to the TMP92CF26A as possible. It is desirable that all the signals are same length.

Recommend connector: SAMTEC FTSH-110-01-DV-EJ

(2) How to enter debug mode

Debug mode can be entered by setting the $\overline{\text{DBGE}}$ pin to Low. To return to normal mode from debug mode, be sure to set the $\overline{\text{DBGE}}$ pin to High and then reset the system using the $\overline{\text{RESET}}$ pin. In details of debus mode, refer the manual of emulation POD.

(3) Limitations in debug mode

Debug mode has the following limitations:

1) Target reset

While debugging is being performed, the system reset (RESET pin) of the target (microcontroller) must not be used to reset the controller and microcontroller. Instead, reset should be performed from the controller. (For details, please refer to the instruction manual of the emulation pod to be used.)

*If reset from the microcontroller by the RESET pin may clash the register information and internal RAM data in the CPU, including not only programs but also breakpoint and trace information.

TOSHIBA

2) Pins

In debug mode, a total of 9 pins (PZ0 to PZ7 in Port Z and PU7 in Port U) are used to connect the TMP92CF26A with an emulator via a DSU probe for communicating with the controller. For this reason, these 9 pins cannot be debugged. Therefore, if the port control register of each pin is changed in debug mode, the register contents are changed but the function of each pin remains the same.

Port Z Register

PZ (0068H)

				_ : : : : : : : : : : : : : : : : : : :					
	7	6	5	4	3 _	2 / 1	0		
bit Symbol	PZ7	PZ6	PZ5	PZ4	PZ3	PZ2 PZ1	PZ0		
Read/Write		RW							
Reset State		External pin data (Output latch is reset to "0".)							

Port Z Control Register

PZCR (006AH)

					9.0.0.		()
	7	6	5	4	(3)	> 2	1 0
bit Symbol	PZ7C	PZ6C	PZ5C	PZ4C	PZ3C	PZ2C	PZ1C PZ0C
Read/Write				V	V		~~~
Reset State	0	0	0	01(0	0	0
Function				0: Input	1: Output	(()	

Port Z Function Register

PZFC (006BH)

					9			
	7	6	5	4	3	2	1	0
bit Symbol	PZ7F	PZ6F	PZ5F	PZ4F	PZ3F	PZ2F	PZ1F	PZ0F
Read/Write				\rightarrow 1	N /)))		
Reset State	0	0	(0)	0	0	// 0	0	0
Function			7	0: 1	Port			

Port Z Drive Register

PZDR (009AH)

	7	(6/5)	5	4	3	2	1	0
bit Symbol	PZ7D	PZ6D	PZ5D	PZ4D \	PZ3D	PZ2D	PZ1D	PZ0D
Read/Write	(/,			R/	W			
Reset State	1	1	_ 1	1	1	1	1	1
Function		Input/output buffer drive register for standby mode						

Note: Although it is possible to write to shaded bits, writing to these bits has no effect (the DSU communication function is given a higher priority).

Port U Register

PU (00A4H)

	7	6	5	4	3	2	1	0		
Bit Symbol	PU7	PU6	PU5	PU4	PU3	PU2	PU1	PU0		
Read/Write			R/W							
Reset State			External pin data (Output latch is reset to "0".)							

Port U Control Register

PUCR (00A6H)

	7	6	5	4	3	2	1)/	0
Bit Symbol	PU7C	PU6C	PU5C	PU4C	PU3C	PU2C	PU1C	PU0C
Read/Write				_	w			
Reset State	0	0	0	0	0	6	0	0
Function				0: Input	1: Output	$\langle \langle () \rangle \rangle$		

Port U Function Register

PUFC (00A7H)

	Total another regional							
	7	6	5	4	3	2	1 0	
Bit Symbol	PU7F	PU6F	PU5F	PU4F	PU3F	PU2F	PU1F PU0F	
Read/Write					(W)	\Diamond		
Reset State	0	0	0	0()0	0	0	
Function			0: Port 1: Data bus for LCDC (LD23 to LD16)					
			Note: Wh	nen LD23 to I	D16 are use	ed, set <pun< td=""><td>C> to "1".</td></pun<>	C> to "1".	

Port U Drive Register

PUDR (009CH)

			. 0.1/0	2		_ \	1	
	7	6	5	4	3	2	1	0
Bit Symbol	PU7D	PU6D	PU5D	PU4D	PU3D	PU2D	PU1D	PU0D
Read/Write				~	R/W			
Reset State	1	1 _		1	1) 1	1	1
Function			/ Input/o	output buffer	drive registe	r for standby	mode	

Note: Although it is possible to write to shaded bits, writing to these bits has no effect (the DSU communication function is given a higher priority).

3) Boot function

In this LSI, we support boot function, however, this boot function is not available in debug mode. (It is inhibit to set $\overline{\text{DBGE}}$ = "0", AM0 = "1" and AM1 = "1" at the same time.)

4) PMC function

In debug mode, the PMC function for cutting off the power supply to internal circuitry and reducing standby current is not also available.

BROMCR (016CH)

	7	6	5	4	3	2	1	0
Bit symbol						CSDIS	ROMLESS	VACE
Read/Write					1)	R/W	
Reset State						1	\d\(1*\)	1/0
Function						NAND Flash area CS output 0: Enable 1: Disable	Boot ROM 0: Use 1: Bypass	Vector address conversion 0: Disable 1: Enable

PMCCTL (02F0H)

	7	6	5	4	3 ((7/<2	1	0
bit symbol	PCM_ON		A)				WUTM1	WUTM0
Read/Write	R/W			7		W	R/	W
System Reset State	0					0	0	0
Hot Reset State	Data retained	R		A		-	-	_
Function	Power Cut Mode)) ,			Always write "0".	Warm-up time 00: 2 ⁹ (15.629 01: 2 ¹⁰ (31.29 10: 2 ¹¹ (62.5	5 ms) 5 ms)
	0: Disable 1: Enable			(//)		Always read as "0".	10: 2 (62.5 11: 2 ¹² (125 r	

Note: Even if the <PCM_ON> bit is set to "1", the Power Cut Mode cannot be entered (the external PWE pin is not set to "0").

5) Data bus occupancy

The TMP92CF26A includes three controllers (LCD controller, SDRAM controller and DMAC) that function as bus masters apart from the CPU. Therefore, it is necessary to estimate the bus occupancy time of each bus master and control each function accordingly to ensure proper operation of each function. (For details, please refer to the chapter on the DMA controller.)

In debug mode, in addition to the operations of these bus masters, a steal program that runs in the background must also be taken into account in programming. When the program stops at a breakpoint (including step execution), the CPU operation is halted but the LCD controller, SDRAM controller and DMA controller remain active. At this time, the steal program also runs in the background. Once the steal program obtains the bus, it occupies the bus for 80 times of debug transmission clock (LH_SYNCLK) maximum. Therefore, in some cases, other DMA operations (LCD display, DMAC data transfer, SDRAM refresh) may not be performed at desired timing.

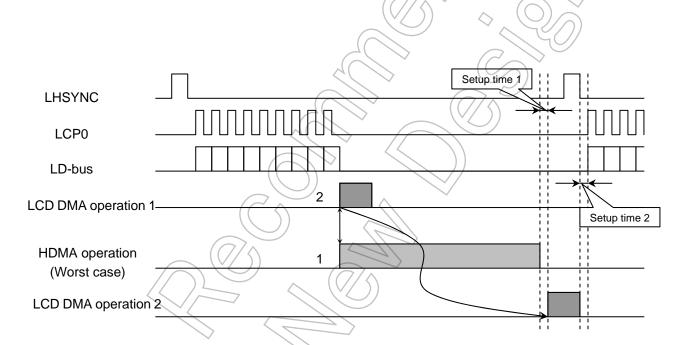


Figure 3.27.1 Example of Data Bus Occupancy Timing in Non-Debug Mode

Figure 3.27.1 shows an example of data bus occupancy timing in non-debug mode, depicting the LHSYNC signal, LCP0 signal, and LD-bus signal for transferring data from the LCD controller to the LCD driver, and the LCD DMA operation timing for reading data from the display RAM.

If HDMA is asserted immediately before the DMA operation for the LCD (LCD DMA operation 1) is started, this operation must wait until HDMA is finished before it can be performed (LCD DMA operation 2).

Taking the above into account, it is necessary to ensure that each LCD DMA operation is finished before the next LCD driver output is started.

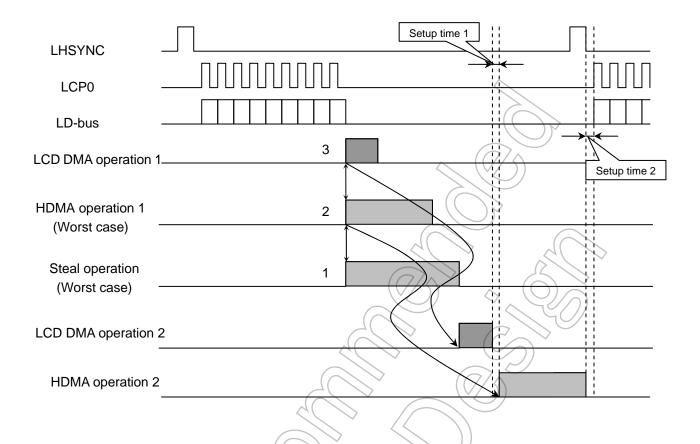


Figure 3.27.2 Example of Data Bus Occupancy Timing in Debug Mode

Figure 3.27.2 shows an example of data bus occupancy timing in debug mode. If the steal program issues a wait request immediately before the DMA operation for the LCD (LCD DMA operation 1) and HDMA (HDMA operation 1) are asserted, these operations must wait until the steal program is finished before they can be performed. (LCD DMA is given a higher priority than HDMA in bus arbitration. This means that bus requests is

sued for LCD DMA and HDMA while the steal program is running are processed in the order of LCD and HDMA (LCD DMA operation $2 \rightarrow$ HDMA operation 2) regardless of the order in which they are issued.)

Taking the above into account, it is necessary to ensure that each LCD DMA or HDMA operation is finished before the next LCD driver output is started.

In other words, to avoid abnormal operation in debug mode, the maximum duration of HDMA operation time must be set so that it does not interfere with LCD DMA operation. Alternatively, the LHSYNC period should be adjusted to accommodate a wait request by the steal program (80 times of transmission for debug clock: LH_SYNCLK), although this slightly reduces the LCD display quality.

TOSHIBA TMP92CF26A

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Symbol	Contents	Rating	Unit
DVCC3A		-0.3 to 3.9	
DVCC3B		0.0 to 0.0	
DVCC1A	Power Supply Voltage		> v
DVCC1B	Tower Supply Vollage	-0.3 to 3.0	Y
DVCC1C			
AVCC		-0.3 to 3.9	
V	Innut Valtage	-0.3 to DVCC3A/3B+0.3 (Note1)	V
V_{IN}	Input Voltage	-0.3 to AVCC + 0.3 (Note2)	V
I _{OL}	Output Current (1pin)	15	mA
I _{OH}	Output Current (1pin)	-15	mA
Σ_{IOL}	Output Current (total)	(80)	mA
Σ_{IOH}	Output Current (total)	-50	mA
P_{D}	Power Dissipation (Ta = 85°C)	600	mW
T _{SOLDER}	Soldering Temperature (10s)	260	(/\c)
T _{STG}	Storage Temperature	-65 to 150	70°C
T _{OPR}	Operation Temperature	-0 to 70	> °C
T _{OPR}	Operation Temperature (80MHz)	-0 to 50	°C

Note1: If setting it, don't exceed the Maximum Ratings of DVCC3A (PV port and PW port are DVCC3B).

Note2: In PG0 to PG5, P96,P97,VREFH,VREFL maximum ratings for AVCC is applied.

Note3: The absolute maximum ratings are rated values that must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products that include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability

Test parameter	Test-condition	Note
Solderability	Use of Sn-37Pb solder Bath	Pass:
4	Solder bath temperature = 230°C, Dipping time = 5 seconds	solderability rate until forming ≥ 95%
	The number of times = one, Use of R-type flux	
	Use of Sn-3.0Ag-0.5Cu solder bath	
	Solder bath temperature = 245°C, Dipping time = 5 seconds	
	The number of times = one, Use of R-type flux	

4.2 DC Electrical Characteristics

Symbol	Parameter	Min	Тур.	Max	Unit	Condition
DVCC3A	General I/O Power Supply Voltage (DVCC = AVCC) (DVSSCOM = AVSS = 0V)	3.0	3.3	3.6	V	X1=6 to 10MHz CPU CLK XT1=30 to 34kHz
DVCC1A	Internal Power A					(60MHz at -0 to 70°C)
DVCC1B	Internal Power B	1.4	1.5	1.6	V	(80MHz at -0 to 50°C)
DVCC1C	High CLK oscillator and PLL Power					
V _{ILO}	Input Low Voltage for D0 to D7 P10 to P17 (D8 to 15), P60 to P67 P71 to P76, P90 PC4 to PC7, PF0 to PF5 PG0 to PG5, PJ5 to PJ6 PN0 to PN7, PP1 to PP2 PR0 to PR3, PT0 to PT7 PU0 to PU7, PX5, PX7		-	0.3×DVCC3A		3.0 ≤ DVCC3A ≤ 3.6
V _{IL1}	Input Low Voltage for PV0 to PV2, PV6 to PV7 PW0 to PW7	-0.3	-<	0.3×DVCC3B	V	3.0 ≤ DVCC3B ≤ 3.6
V _{IL2}	Input Low Voltage for P91 to P92, P96 to P97, PA0 to PA7 PC0 to PC3, PP3 to PP5, PZ0 to PZ7, RESET			0.25×DVCC3A		3.0 ≤ DVCC3A ≤ 3.6
V _{IL3}	Input Low Voltage for AM0 to AM1, DBGE	7) _	0.1×DVCC3A	\\/	3.0 ≤ DVCC3A ≤ 3.6
V _{IL4}	Input Low Voltage for X1))	_	0.1×DVCC1C		1.4 ≤ DVCC1C ≤ 1.6
V _{IL5}	Input Low Voltage for XT1		- 4	0.15 ×DVCC3A		3.0 ≤ DVCC3A ≤ 3.6

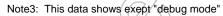
Note: Above power supply range is premised that all power supply of same system is equal. (DVCC1A = DVCC1B = DVCC1C or DVCC3A = DVCC3B=AVCC)

Symbol	Parameter	Min	Тур.	Max	Unit	Condition
V _{IH0}	Input High Voltage for D0 to D7 P10 to P17 (D8 to 15), P60 to P67 P71 to P76, P90 PC4 to PC7, PF0 to PF5 PG0 to PG5, PJ5 to PJ6 PN0 to PN7, PP1 to PP2 PR0 to PR3, PT0 to PT7 PU0 to PU7, PX5, PX7	0.7 × DVCC3A	-	DVCC3A + 0.3		3.0 ≤ DVCC3A ≤ 3.6
V _{IH1}	Input High Voltage for PV0 to PV2, PV6 to PV7, PW0 to PW7	0.7 × DVCC3B	-	DVCC3B + 0.3) v	3.0 ≤ DVCC3B ≤ 3.6
V _{IH2}	Input High Voltage for P91 to P92, P96 to P97, PA0 to PA7 PC0 to PC3, PP3 to PP5, PZ0 to PZ7, RESET	0.75 × DVCC3A	- (DVCC3A+ 0.3		3.0 ≤ DVCC3A ≤ 3.6
V _{IH3}	Input High Voltage for AM0 to AM1 , DBGE	0.9 ×DVCC3A		DVCC3A + 0.3		3.0 ≤ DVCC3A ≤ 3.6
V _{IH4}	Input High Voltage for X1	0.9 ×DVCC1C	7(-)	DVCC1C + 0.3		1.4 ≤ DVCC1C ≤ 1.6
V _{IH5}	Input High Voltage for XT1	0.85 × DVCC3A		DVCC3A + 0.3	$\bigcirc)$	$3.0 \leq \text{DVCC3A} \leq 3.6$

Symbol	Parameter	Min	Тур.	Max	Unit	Cond	lition
V _{OL1}	Output Low Voltage1 P90 to P92, PC0 to PC3, PC7 PF0 to PF5, PK1 to PK7 PM1 to PM2, PM7 PN0 to PN7, PP1 to PP7 PV0 to PV7, PW0 to PW7, PX5, PX7	-	-	0.4		$I_{OL} = 0.5 \text{mA}, 3.0 \le DV$	ССЗА
V _{OL2}	Output Low Voltage2 Except VOL1 output pin				\w\	$I_{OL} = 2mA$, $3.0 \le DVCC$	C3A
V _{ОН1}	Output High Voltage1 P90 to P92, PC0 to PC3, PC7 PF0 to PF7, PK1 to PK7 PM1 to PM2, PM7 PN0 to PN7, PP1 to PP7 PV0 to PV7, PW0 to PW7 PX5, PX7	2.4	-	_ <		I _{OH} = -0.5mA, 3.0 ≤ D\	/CC3A
V _{OH2}	Output High Voltage2 Except VOL1 output pin					$I_{OH} = -2mA, 3.0 \le DVC$	C3A
I _{Mon}	Internal resistor (ON) MX, MY pins	-	_ <	30	0	V _{OL} = 0.2V	V _{CC} = 3.0 to 3.6 V
I _{Mon}	Internal resistor (ON) PX, PY pins	-		30	Ω	V _{OH} = VCC -0.2V	VCC = 3.0 to 3.0 V
ILI	Input Leakage Current	- 4	0.02	±5 //	μΑ	0.0 ≤ Vin ≤ DVCC3A	
I _{LO}	Output Leakage Current	- (0.05	±10	μА	0.2 ≤ Vin ≤ DVCC3A-0).2V
R _{RST}	Pull Up/Down Resistor for RESET , PA0 to PA7, P96	30	50	70	kΩ	/	
C _{IO}	Pin Capacitance			10\	pF	fc = 1MHz	
V _{TH}	Schmitt Width for P91 to P92, P96 to P97, PA0 to PA7, PC0 to PC3, PP3 to PP5, PZ0 to PZ7, RESET	0,6	0.8	1.0	> v	$3.0 \leq \text{DVCC3A} \leq 3.6$	

Note1 : Typical values are value that when $Ta = 25^{\circ}C$ and Vcc = 3.3 V unless otherwise noted.

Note2 : This data shows exept "debug mode"


Symbol	Parameter	Min	Тур.	Max	Unit		Condition
	NODMAL (Note 2)	=	15	30			DVCC3A,3B = 3.6V
	NORMAL (Note2)		45	60		PLL_ON	DVCC1A,1B,1C = 1.6V
	IDLE2	-	0.5	1		f _{SYS} =80MHz	DVCC3A,3B = 3.6V
	IDLEZ		28	45	mA		DVCC1A,1B,1C = 1.6V
	NORMAL (Note2)	=	12	23	IIIA		DVCC3A,3B = 3.6V
	NORWAL (Note2)		34	45		PLL_ON	DVCC1A,1B,1C = 1.6V
	IDLE2	-	0.4	0.8		f _{SYS} =60MHz	DVCC3A,3B = 3.6V
	IDLEZ		21	34			DVCC1A,1B,1C = 1.6V
	IDLE1	-	12	45		PLL_OFF \	DVCC3A,3B = 3.6V
	IDLET		200	3200	μΑ <	f _{SYS} =10MHz	DVCC1A,1B,1C = 1.6V
			6	35	/	Ta ≤ 70°C	DVCC3A = 3.6V
				30	(Ta ≤ 50°C	DVCC3B = 3.6V
Icc				30		18 3 30 0	AVCC = 3.6V
	Power Cut Mode	_		50		Ta ≤ 70°C	DVCC1A = 0V
	(With PMC function)					~	DVCC1B = 1.6V
			2	35	77/	Ta ≤ 50°C	DVCC1C =0V
				()	(/))	\Diamond	XT = 32kHz
					μΑ		X=OFF)
				(35		Ta ≤ 70°C	DVCC3A = 3.6V
			6	30	~	Ta ⊴ 50°C	DVCC3B = 3.6V
				7000		7000	AVCC = 3.6V
	STOP	_		800		Ta≤70°C	DVCC1A = 1.6V
			200			$(\vee \angle)$	DVCC1B = 1.6V
			400	600		Ta ≤ 50°C	DVCC1C = 1.6V XT = OFF
				(XI = OFF X = OFF

Note1 : Typical values are value that when $Ta = 25^{\circ}C$ and Vcc = 3.3 V unless otherwise noted.

Note2: I_{CC} measurement conditions (NORMAL, SLOW):

All functions are operational; output pins except bus pin are open, and input pins are fixed. Bus pin C_L =50pF

(Access toexternal memory at 8-waitsetting)

4.3 AC Characteristics

The Following all AC regulation is the measurement result in following condition, if unless otherwise noted.

AC measuring condition

- Clock of top column in above table shows system clock frequency, and "T" shows system clock period [ns].
- Output level: High = $0.7 \times DVCC3A$, Low = $0.3 \times DVCC3A$
- Input level: High = $0.9 \times DVCC3A$, Low = $0.1 \times DVCC3A$

Note: In table, "Variable" shows the regulation at DVCC3A=3.0V~3.6V, DVCC1A=DVCC1B=DVCC1C=1.4~1.6V.

4.3.1 Basic Bus Cycle

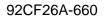
Read cycle

No.	Parameter	Symbol	Vari	able 🔷	00 MH-	60 MHz	Thoit
NO.	Parameter	Symbol	Min	Max	OU IVITIZ	60 WITZ	
1	OSC period (X1/X2)	tosc	100	166.6	-	1=10	
2	System clock period (= T)	t _{CYC}	12.5	2666	12.5	16.6	
3	SDCLK low width	t _{CL}	0.5T – 3	>	3.25	5.3	
4	SDCLK high width	t _{CH}	0.5T - 3		3.25	5.3	
5-1	A0 ~ A23 valid $\rightarrow D0 ~ D15 \ input \ at \ 0 \ waits$	tAD	7//	2.0T - 18.0	7	15.3	
5-2	A0 ~ A23 valid	t _{AD4}	/	6.0T – 18.0	57	82	
5-2	\rightarrow D0 ~ D15 input at 4 waits/6 waits	t _{AD6}	\	8.0T - 18.0	// 82	115	
6-1	RD falling → D0 ~ D15 input at 0 waits	t _{RD}		1.5T – 18.0	0.75	7	
6-2	RD falling	t _{RD4}	<	5.5T – 18.0	50.75	73.6	
0-2	\rightarrow D0 ~ D15 input at 4 waits/6waits) t _{RD6}	_	7.5T – 18.0	75.75	106.5	
7-1	RD low width at 0 waits	t _{RR}	1.5T – 10	1)	8.75	14.9	
7-2	RD low width at 4 waits/6waits	t _{RR4}	5.5T – 10	4	58.75	81.3	ns
1-2	ND 10w width at 4 waits/owaits	t _{RR6}	7.57 - 10	7	83.75	114.5	
8	A0 ~ A23 valid → RD falling	t _{AR}	0.5T - 5		1.25	3.3	
9	\overline{RD} falling $\to SDCLK$ fising	t _{RK}	0.5T - 5		1.25	3.3	
10	A0 ~ A23 valid → D0 ~ D15 hold	t _{HA}	9		0	0	
11	RD rising → D0 ~ D15 hold	tHR	0		0	0	
12	WAIT setup time	t _{TK}	> 20		20	20	
13	WAIT hold time	t _{KT}	2		2	2	
14-1	Data byte control access time for SRAM at 0wait	t _{SBA}		1.5T – 18.0	0.75	7	
14-2	Data byte control access time for SRAM	t _{SBA4}		5.5T – 18.0	50.75	73.6	
1 4- Z	at 4waits/6waits	t _{SBA6}		7.5T – 18.0	75.75	107.0	
15	RD high width	t _{RRH}	0.5T – 5		1.25	3.3	

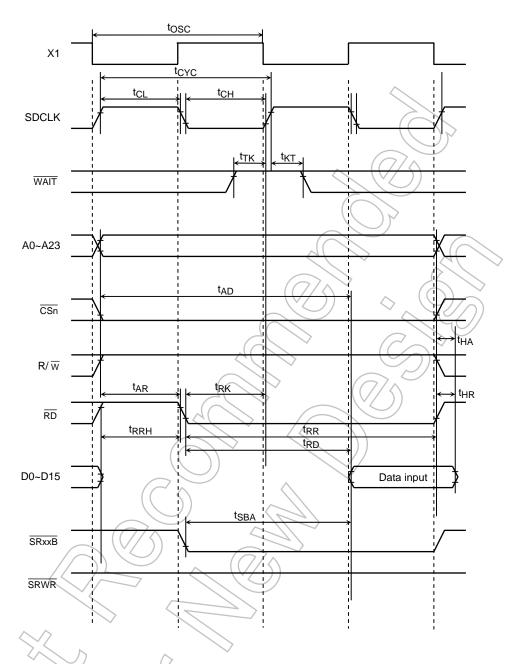
AC measuring condition

• Data_bus, Address_bus, various function control signal capacitance C_L = 50 pF

Note: The operation guarantee temperature: 80MHz: Ta = 0 to 50°C, less than 60MHz: Ta = 0 to 70°C

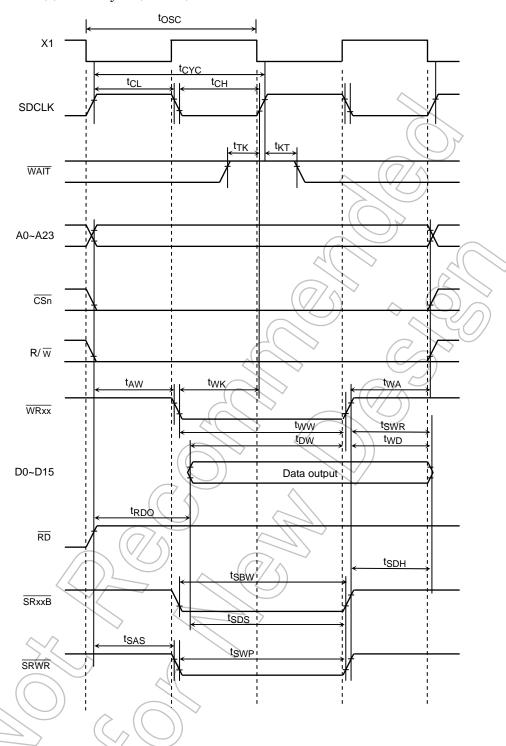

Write cycle

Na	Write cycle	Cumahal	Vari	able	001411-	COMILE	l lmit
No.	Parameter	Symbol	Min	Max	80MHz	60MHz	Unit
16-1	D0 ~ D15 valid $\rightarrow \overline{WR} xx rising at 0 waits$	t _{DW}	1.0T - 6.0		6.5	10.6	
16-2	D0 ~ D15 valid	t _{DW2}	3.0T - 6.0		31.5	43.8	
10-2	$ ightarrow$ $\overline{ m WR}$ xx rising at 2 waits/4 waits	t _{DW4}	5.0T - 6.0		56.5	77.0	
17-1	WR xx low width at 0 waits	t _{WW}	1.0T – 4.0		8.5	12.6	
17-2	WR xx low width at 2 waits/4 waits	t _{WW2}	3.0T – 4.0		33.5	45.8	
17-2	WK XX IOW WIGHT at 2 Waits/4 Waits	t _{WW4}	5.0T – 4.0		58.5	79.0	
18	A0 ~ A23 valid $\rightarrow \overline{WR}$ falling	t _{AW}	0.5T - 5.0		1.25	3.3	
19	$\overline{\text{WR}}$ xx falling \rightarrow SDCLK rising	t _{WK}	0.5T - 5.0		1.25	3.3	
20	$\overline{\text{WR}}$ xx rising \rightarrow A0 ~ A23 hold	t_{WA}	0.5T - 5.0		1.25	3.3	
21	$\overline{\text{WR}}$ xx rising \rightarrow D0 ~ D15 hold	t_{WD}	0.5T - 5.0		1.25	3.3	
22	\overline{RD} rising \rightarrow D0 ~ D15 output	t _{RDO}	0.5T – 1.0		5.25	7.3	
23-1	Write width for SRAM at 0 waits	t _{SWP}	1.0T – 4.0		8.5	12.6	ns
23-2	Write width for SRAM at 2waits/4waits	t _{SWP2}	3.0T – 4.0	(//))	33.5	(45.8)	
20 2	Write width for Ortalia at 2 waits/4 waits	t _{SWP4}	5.0T - 4.0		58.5	79.0	())
24-1	Data byte control ~ end of write for SRAM at 0 waits	t _{SBW}	1.0T - 4.0		8.5	12.6	
24-2	Data byte control ~ end of write	t _{SBW2}	3.0T – 4.0		33.5	45.8	
24-2	for SRAM at 2waits/4waits	t _{SBW4}	5.0T - 4.0		58.5	79.0	
25	Address setup time for SRAM	t _{SAS}	0.5T - 5.0		(1.25)	3.3	
26	Write recovery time for SRAM	t _{SWR}	0.5T - 5.0		1.25	3.3	
27-1	Data setup time for SRAM at 0 waits	t _{SDS}	1.0T – 6.0		6.5	10.1	
27-2	Data setup time for SRAM	t _{SDS2}	3.0T – 6.0) 31.5	43.8	
Z1-Z	at 2waits/4waits	\\t _{SDS4}	5.0T – 6.0		56.5	77.0	
28	Data hold time for SRAM	tsdh	0.5T - 5.0		1.25	3.3	


AC measuring condition

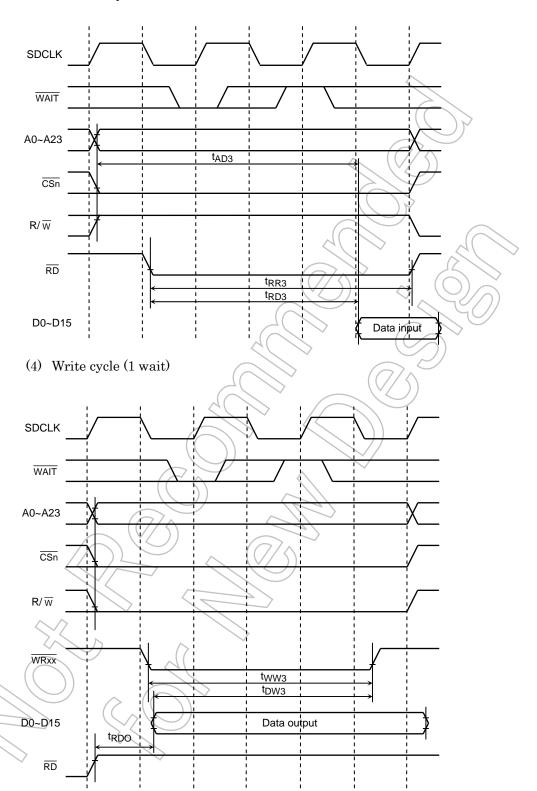
• Data_bus, Address_bus, various function control signal capacitance CL = 50 pF

Note: The operation guarantee Temperature: 80MHz: Ta = 0 to 50°C, less than 60MHz: Ta = 0 to 70°C


(1) Read cycle (0 waits)

Note1: The phase relation between X1 input signal and the other signals is undefined.

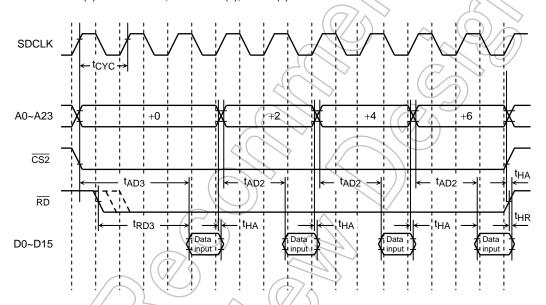
Note2: The above timing chart show an example of basic bus timing. The \overline{CSn} , R/\overline{W} , \overline{RD} , \overline{WRxx} , \overline{SRxxB} , \overline{SRWR} pins timing can be adjusted by memory controller timing adjust function.


(2) Write cycle (0 waits)

Note1: The phase relation between X1 input signal and the other signals is undefined.

Note2: The above timing chart show an example of basic bus timing. The $\overline{\text{CSn}}$, $\overline{\text{R}/\overline{\text{W}}}$, $\overline{\text{RD}}$, $\overline{\text{WRxx}}$, $\overline{\text{SRxxB}}$, $\overline{\text{SRWR}}$ pins timing can be adjusted by memory controller timing adjust function.

(3) Read cycle (1 wait)


4.3.2 Page ROM Read Cycle

(1) 3-2-2-2 mode

No.	Parameter		Symbol	Varia	able	90 MH-	60 MHz	Unit
INO.	o. Farameter	ametei	Symbol	Min	Max	OU IVII IZ	OU IVII IZ	Offic
1	System clock per	iod (= T)	t _{CYC}	12.5	2666	12.5	16.6	
2	A0, A1	\rightarrow D0 ~ D15 input	t _{AD2}		2.0T – 18	7	15.2	
3	A2 ~ A23	\rightarrow D0 ~ D15 input	t _{AD3}		3.0T – 18	19.5	31.8	ns
4	RD falling	→ D0 ~ D15 input	t _{RD3}		2.5T – 18	13	24	110
5	A0 ~ A23 Invalid	\rightarrow D0 ~ D15 hold	t _{HA}	0		(97)	0	
6	RD rising	\rightarrow D0 ~ D15 hold	t _{HR}	0		0//)) o	

AC measuring condition

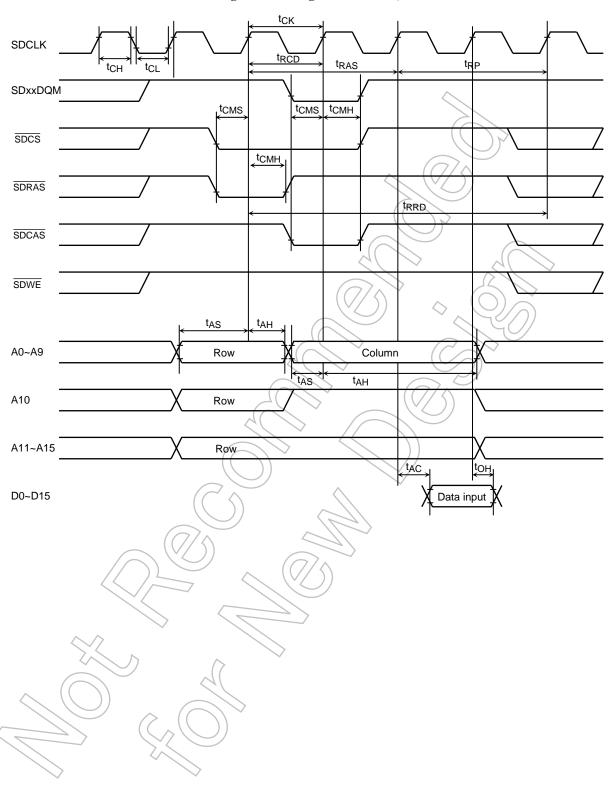
Note: The (a), (b) and (c) of "Symbol" in above table depend on the falling timing of \overline{RD} pin. The falling timing of \overline{RD} pin is set by MEMCR0<RDTMG1:0> in memory controller. If MEMCR0<RDTMG1:0> is set to "00", it correspond with (a) in above table, and "01" is (b), "10" is (c).

Page Mode Access Timing (when using a 8-byte page size example)

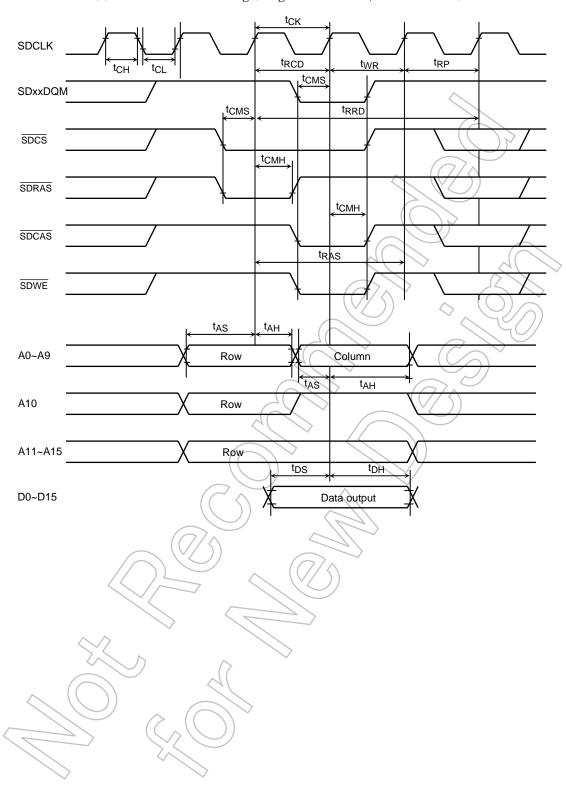
4.3.3 SDRAM controller AC Characteristics

No.	Paramet	or	Symbol	Vari	able	80 MHz	60 MHz	Unit
INO.	Faramen	CI	Symbol	Min	Max	OU IVII IZ	OO IVII IZ	Offic
1	Ref/Active to ref/active	<strc[2:0]>= "000"</strc[2:0]>	t _{RC}	Т		12.5	16.6	
	command period	<strc[2:0]>= "110"</strc[2:0]>	'RC	7T		87.5	116.2	
2	Active to precharge	<strc[2:0]>= "000"</strc[2:0]>	t	2T(Note1)		25.0	33.2	
	command period	<strc[2:0]>= "110"</strc[2:0]>	t _{RAS}	7T		87.5	116.2	
3	Active to read/write	<strcd>= "0"</strcd>	tnon	Т		12.5	16.6	
3	command delay time	<strcd>= "1"</strcd>	t _{RCD}	2T		25.0	33.2	
4	Precharge to active	<strp>= "0"</strp>	+	Т	\wedge	125//	16.6	
4	command period	<strp>= "1"</strp>	t _{RP}	2T		25.0	//33.2	
5	Active to active	<strc[2:0]>= "000"</strc[2:0]>	+	3T(Note2)		37.5	49.8	
3	command period	<strc[2:0]>= "110"</strc[2:0]>	t _{RRD}	7T		87.5	116.2	
6	Write recovery time	<stwr>= "0"</stwr>	two	Т		12.5	16.6	
0	write recovery time	<stwr>= "1"</stwr>	t _{WR}	2T	41)	25.0	33.2	
7	CLK cycle time		t _{CK}	Т		12.5	16.6	,
8	CLK high level width		t _{CH}	0.5T – 3	0/0	3.25	5.3	
9	CLK low level width		t _{CL}	0.5T – 3	(U)	3.25	5.3	ns
10-1	Access time from CLK(CL* =2) <srds>=0(Read data shift OFF)</srds>		t _{AC}		T – 16	- 3.5	0.6	
10-2	Access time from CLK(C <srds>=1(Read data s</srds>	,	t _{AC}	4	T – 6.5	6	10.1	
11	Data hold time from inter	rnal read	t _{HR}	0		(0/	0	
12	Data in act up time	1Word/Single	t _D \$	0.5T – 4		2.25	4.3	
12	Data-in set-up time	Burst	t _{DS}	0.5T – 4		2.25	4.3	
13	Data-in hold time	1Word/Single	t _{DH}	T – 10		2.50	6.6	
13	Data-in noid time	Burst	(t _{DH})	0.5T – 4		2.25	4.3	
14	Address set-up time		tas	0.5T – 4		2.25	4.3	
15	Address hold time			0.5T – 4 <		2.25	4.3	
16	CKE set-up time		tcks	0.5T –3		3.25	5.3	
17	Command set-up time		t _{CMS}	0.5T – 3		3.25	5.3	
18	Command hold time		t _{CMH}	0.5T – 4		2.25	4.3	
19	Mode register set cycle t	ime	t _{RSC}			12.5	16.6	

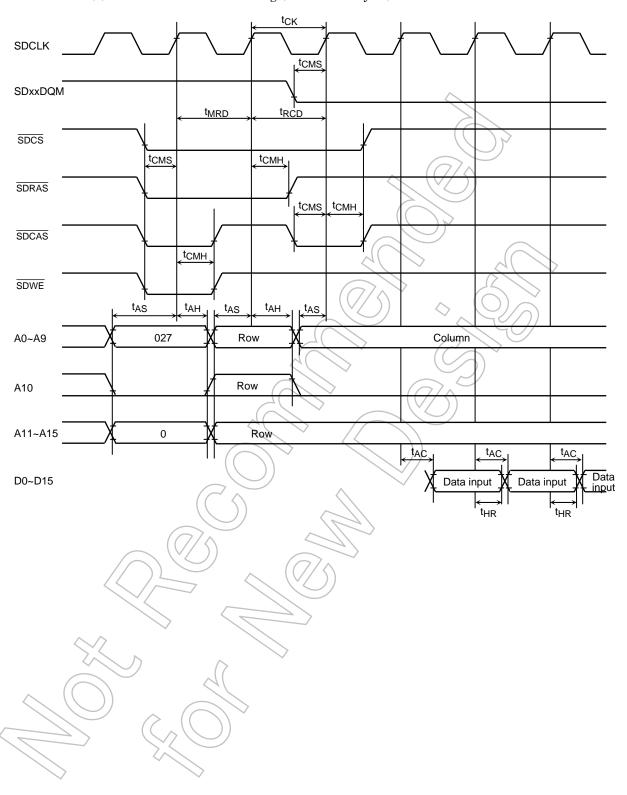
*CL: CAS latency

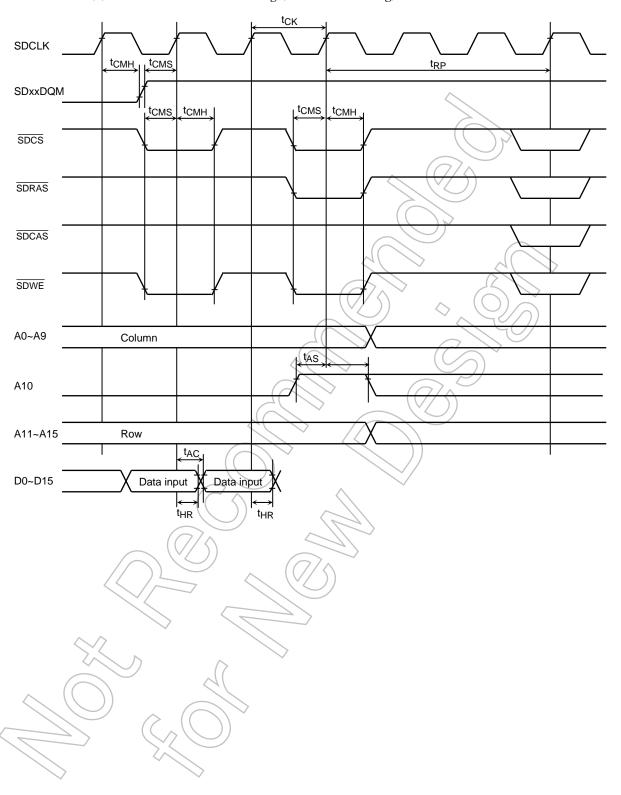

AC measuring condition

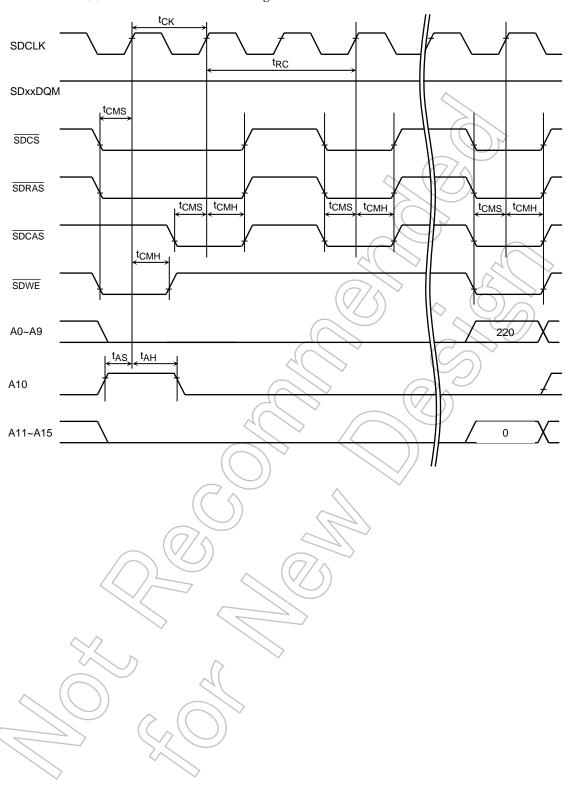
SDCLK pin $C_L = 30$ pF, Other pins $C_L = 50$ pF

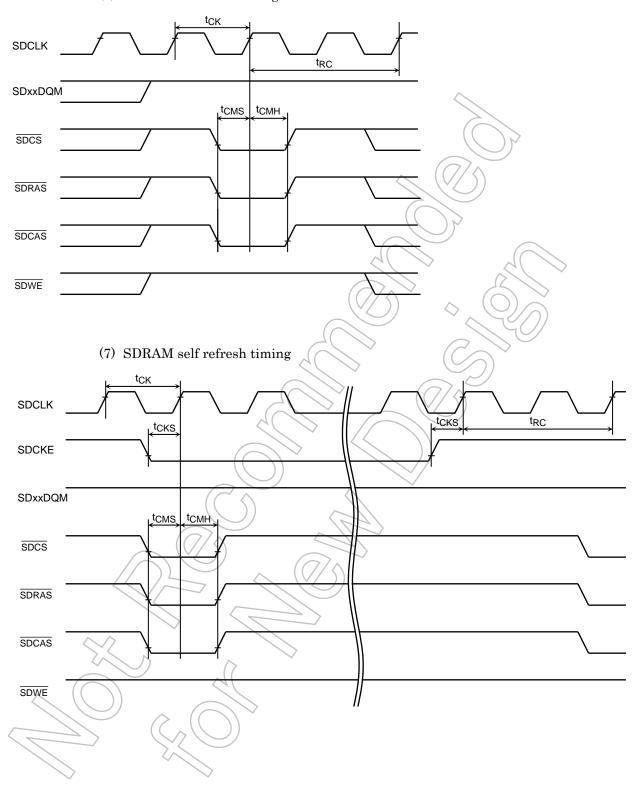

Note1: The Minimum cyclye of "Active to pre-charge command period" is 2T (2 clocks) because the cycle of "READ/WRITE + PRECHARGE" occur by SDCISR<STRC2:0>="000", "001" and "010". If other settigs the above setting, the clock is value of "Register setting velue +1". (ex. if "010" setting, the clock is 3clocks.)

Note 2: The Minimum cyclye of "Active to active command period" is 3T (3 clocks) because the clycle of "READ/WRITE + PRECHARGE + ACTIVE" occur by SDCISR<STRC2:0>="000", "001" and "010". If other settigs the above setting, the clock is value of "Register setting value +1". (ex. if "011" setting, the clock is 4 clocks.)


(1) SDRAM read timing (1Word length read mode, <SPRE>= "1")


(2) SDRAM write timing (Single write mode, <SPRE>= "1")

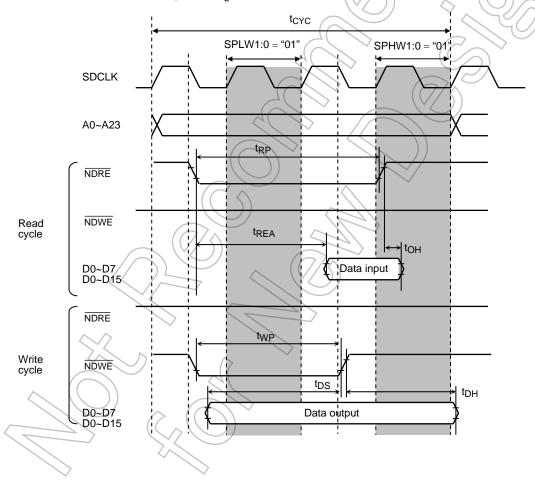

(3) SDRAM burst read timing (Start burst cycle)


(4) SDRAM burst read timing (End burst timing)

(5) SDRAM initializes timing

(6) SDRAM refreshes timing

4.3.4 NAND Flash Controller AC Characteristics

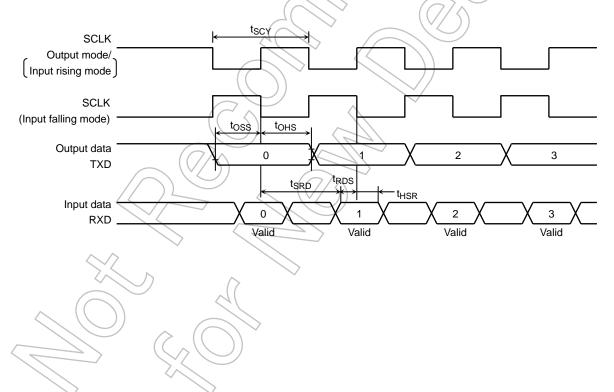

			Varia	able	80	60	
No.	Symbol	Parameter	Min	Max	MHz (n=3) (m=3)	MHz (n=3) (m=3)	Unit
1	t _{NC}	Access cycle	(2 + n + m) T	^	100	132	
2	t _{RP}	NDRE low level width	(1.5 + n) T – 12		45	63	
3	t _{REA}	NDRE data access time		(1.5 + n) T – 15	41	60	
4	t _{OH}	Read data hold time	0			0	ns
5	t _{WP}	NDWE low level width	(1.0 + n) T – 20		30	47	
6	t _{DS}	Write data setup time	(1.0 + n) T – 20		30	47	
7	t _{DH}	Write data hold time	(0.5 + m) T – 2	7/10	42	56	

AC measuring condition

Note1: The "n" in "Variable" means wait-number which is set to NDFMCR0<SPLW1:0>, and "m" means number which is set to NDFMCR0<SPHW1:0>.

Example: If NDFMCR0<SPLW1:0> is set to "01", n = "1", $t_{RP} = (1.5 + n) T - 12 = 2.5T - 12$

Note2: In above variable, the setting that result is minus can not use.


4.3.5 Serial channel timing

(1) SCLK input mode (I/O interface mode)

Parameter	Symbol	Varia	able	80 MHz	60 MHz	Unit
r arameter	Syllibol	Min	Max	OU WII IZ	00 WI 12	Offic
SCLK cycle	t _{SCY}	16T		200	266	
Output data \rightarrow SCLK rising/ falling	toss	$t_{SCY}/2-4T-30$		20	36.4	
SCLK rising/ falling \rightarrow Output data hold	tohs	t _{SCY} /2 + 2T -20		105	146	ns
SCLK rising/ falling → Input data hold	t _{HSR}	2T + 10		35	43	113
SCLK rising/ falling \rightarrow Input data valid	t _{SRD}		t _{SCY} - 20	180	246	
Input data valid \rightarrow SCLK rising/ falling	t _{RDS}	20		20	20	

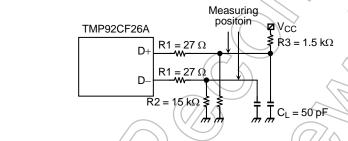
(2) SCLK output mode (I/O interface mode)

Parameter	Symbol	Vari	able	80 MHz	60 MU	Nnit
raianielei	Symbol	Min	Max	OU IVII IZ	OU MILE	
SCLK cycle (Programmable)	t _{SCY}	16T	8192T	200	266	
Output data → SCLK rising/ falling	toss	t _{SCY} /2 - 40	$(\vee /) $	60	(93)	
SCLK rising/ falling \rightarrow Output data hold	tohs	t _{SCY} /2 - 40		60 <	93//	ns
SCLK rising/ falling \rightarrow Input data hold	t _{HSR}	0		0	0	/ 115
SCLK rising/ falling \rightarrow Input data valid	t _{SRD}		t _{SCY} - 1T - 50	137.5	199	
Input data valid \rightarrow SCLK rising/ falling	t _{RDS}	1T + 50		62.5	// 66	

4.3.6 Timer input pulse (TA0IN, TA2IN, TB0IN0, TB1IN0)

Parameter	Symbol	Vari	able	80 MH-	60 MH-	Unit
Farameter	Symbol	Min	Max	OU IVII IZ	OU IVII IZ	
Clock cycle	t _{VCK}	8T+100		200	234	
Low level pulse width	t _{VCKL}	4T + 40		90	107	ns
High level pulse width	t _{VCKH}	4T + 40		90	107	

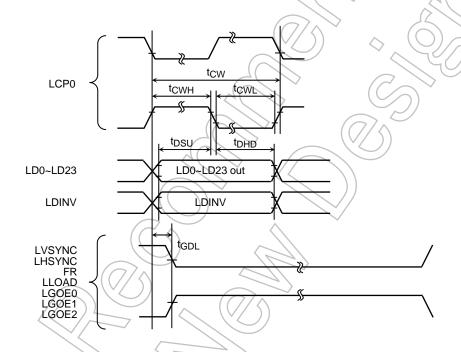
4.3.7 Interrupt Operation


Parameter	Symbol	Vari	able	80 MHz	60 MHz	Linit
Farameter	Symbol	Min	Max	OO WILIZ	OO WII IZ	Offic
INT0~INT7 low width	t _{INTAL}	2T + 40		65	74	no
INT0~INT7 high width	t _{INTAH}	2T + 40		65	74	ns

4.3.8 USB Timing (Full-speed)

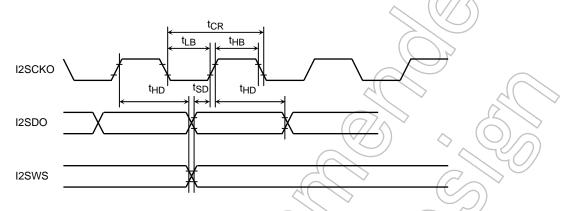
DVCCA = $3.3 \pm 0.3 \text{ V/f}_{USB} = 48 \text{ MHz/Ta} = 0 \text{ to } 70^{\circ}\text{C}$

Parameter	Symbol	Min	Max	Unit
D+, D- rising time	t _R	4	20	ns
D+, D- falling time	t _F	4	20	115
Output signal crossover voltage	V _{CRS}	1.3	2.0	V /


AC measuring condition

4.3.9 LCD Controller

Parameter	Symbol	Varia	able	80 MHz	60 MHz	Unit
Farameter	Symbol	Min	Max	(n=0)	(n=0)	Offic
LCP0 clock period	t _{CW}	2T(n+1)		25	33.3	
LCP0 high width (Include phase inversion)	tcwн	T(n+1) – 5		7.5	11.6	
LCP0 low width (Include phase inversion)	t _{CWL}	T(n+1) – 5		7.5	11.6	
Data valid →LCP0 falling (Include phase inversion)	t _{DSU}	T(n+1) – 7.5	^ ((5	9.1	ns
LCP0 falling →Data hold (Include phase inversion)	t _{DHD}	T(n+1) – 7.5		5	9.1	
Signal delay from LCP0 basic changing point (Include phase inversion)	t _{GDL}	-15	15	±15	±15	


AC measuring condition

• C_L = 50 pF (LCP0 only C_L = 30 pF)

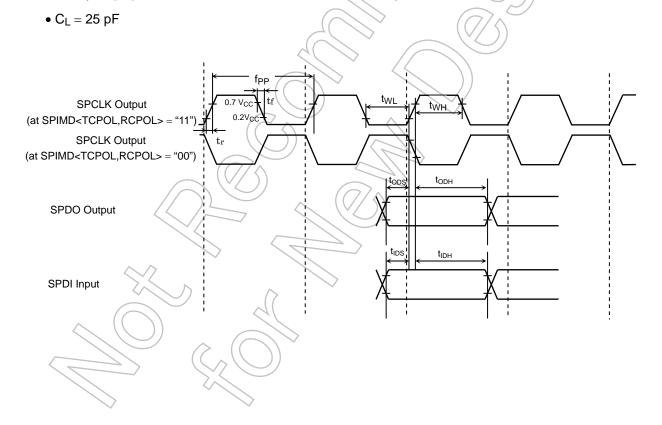
Note: The "n" in "Variable" show value that is set to LCDMODE0<SCPW1:0>. Example: If LCDMODE0<SCPW1:0> = "01", n=1, $t_{RWP} = 2T(n+1) = 2T$

4.3.10 I²S Timing

Parameter	Symbol	Vari	able	80 MHz	60 MHz	Linit
raiametei	Symbol	Min	Max	OO IVII IZ	OU IVII IZ	Offic
I2SCKO clock period	t _{CR}	t _{IC}		100	100	
I2SCKO high width	t _{HB}	0.5 t _{CR} - 15		35	√35	
I2SCKO low width	t_{LB}	0.5 t _{CR} – 15		35	35	ns
I2SDO, I2SWS setup time	t _{SD}	0.5 t _{CR} - 15		35	35	
I2SDO, I2SWS hold time	t _{HD}	0.5 t _{CR} - 8		42	42) >

Note: The Maximum operation frequency of I2SCKO in I²S circuit is 10MHz. Don't set I2SCKO to value more than 10MHz.

AC measuring condition


• I2SCKO, I2SDO and I2SWS pins CL= 30 pF

4.3.11 SPI Controller

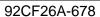
Parameter	Symbol	Vari	able	80 MHz	60 MHz	Unit	
raiametei	Symbol	Min	Max	OU IVII 12	OU IVII IZ	Offic	
SPCLK frequency (= 1/S)	f _{PP}		20	20	_15	MHz	
SPCLK rising time	t _r		6	6	6		
SPCLK falling time	t _f		6	6	6		
SPCLK low width	t _{WL}	0.5S - 6		19	28) >	
SPCLK high width	t _{WH}	0.5S - 6		19	28		
Output data valid → SPCLK rising/falling	t _{ODS}	0.5S – 18		< (15	ns	
SPCLK rising/ falling → Output data hold	t _{ODH}	0.5S – 10		15	23.4	115	
Input data valid → SPCLK rising/ falling	t _{IDS}	5	A(5	5		
SPCLK rising/ falling → Input data valid	t _{IDH}	5		5	5	3	

AC measuring condition

•Clock of top column in above table shows system clock frequency, and "S" in "Variable" show SPCLK clock cycle [ns].

TOSHIBA TMP92CF26A

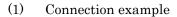
4.4 AD Conversion Characteristics

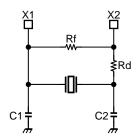

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Analog reference voltage (+)	VREFH		AVCC - 0.2	AVCC	AVCC	
Analog reference voltage (-)	VREFL		DVSS	DVSS	DVSS + 0.2	
AD converter power supply voltage	AVCC		DVCC3A/3B DVCC3A/3B		DVCC3A/3B	V
AD converter ground	AVSS		DVSS DVSS		DVSS	
Analog input voltage	AVIN		VREFL		VREFH	
Analog current for analog	IREFON	<vrefon> = "1"</vrefon>		0.38	0.45	mA
reference voltage	IREFOFF	<vrefon> = "0"</vrefon>	(\bigcirc	5	μΑ
Total error (Quantize error of ± 0.5 LSB is included)	E _T	Conversion speed at 12μs	±2.0		±4.0	LSB

Note1: 1 LSB = (VREFH–VREFL)/1024[V] Note2: Minimum frequency for operation

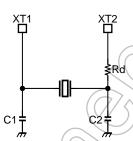
 $\label{eq:minimum clock} \mbox{Minimum clock for AD converter operate is 3MHz. (Clock frequency that is seleted by Clock gear \geq f_{SYS} = 10^{-5} \mbox{Minimum clock for AD converter operate is 3MHz.}$

3MHz)

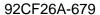

Note3: The power supply current from AVCC pin is included in the power supply current of V_{CC} pin (I_{CC}).



4.5 Recommended Oscillation Circuit


The TMP92CF26A has been evaluated by the oscillator vender below. Use this information when selecting external parts.

Note: The total load value of the oscillator is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.



Low-frequency oscillator

(2) Recommended ceramic oscillator

TMP92CF26A recommends the high-frequency oscillator by Murata Manufacturing Co., Ltd.

Please refer to the following URL; http://www.murata.com/

TOSHIBA TMP92CF26A

5. Table of Special function registers (SFRs)

The SFRs include the I/O ports and peripheral control registers allocated to the 8-Kbyte address space from 000000H to 001FF0H.

(1) I/O Port (13) Clock gear, PLI

(2) Interrupt control (14) 8-bit timer

(3) Memory controller (15) 16-bit timer

(4) TSI(Touch screen I/F) (16) SIO

(5) SDRAM controller
 (17) SBI
 (6) LCD controller
 (18) AD convertible

(6) LCD controller
 (18) AD converter
 (7) PMC
 (19) Watchdog timer

(8) USB controller (20)RTC(Real time clock)

(9) SPI controller (21)MLD(Melody/alarm generator)

 $(10) \,\mathrm{MMU}$ $(22) \,\mathrm{I}^2 \mathrm{S}$

(11) NAND-Flash controller (23) MAC

(12) DMA controller

Table layout

Symbol	Name	Address	7	6	^ <i>[</i>	/ 1	0	
		(()						Bit Symbol
				(71/			Read/Write
		7			1/2			Initial value System Reset State
					\rightarrow			Initial value HOT Reset State
/			(()	// {\				Remarks
		7						

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these register.

Example: When setting bit0 only of the register PxCR, the instruction "SET 0, (PxCR)" cannot be used. The LD (transfer) instruction must be used to write all eight bits.

Read/Write

R/W: Both read and write are possible.

R: Only read is possible.
W: Only write is possible.

W*: Both read and write are possible (when this bit is read as1)

Prohibit RMW: Read modify write instructions are prohibited. (The EX, ADD, ADC, BUS,

SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read

modify write instructions.)

R/W*: Read modify write is prohibited when controlling the pull-up resistor.

TOSHIBA TMP92CF26A

Table 5.1 I/O Register Address Map

[1] Port (1/2)

Address	Name	Address	Name	Address	Name		Address	Name
0000H		0010H	P4	0020H	P8 <		0030H	PC
1H		1H		1H	P8FC2	\geq	1H	
2H		2H		2H		(2H	PCCR
3H		3H	P4FC	3H	P8FC		3H	PCFC
4H	P1	4H	P5	4H	P9 (//	/ <	\ 4H	
5H		5H		5H	P9FC2		/ 5H	
6H	P1CR	6H		6H	P9CR		6H	
7H	P1FC	7H	P5FC	7H	P9FC		7H	
8H		8H	P6	8H	PA		8H	
9H		9H		9Ĥ			√9H	
AH		AH	P6CR	AH			AH	
ВН		ВН	P6FC	((вн	PAFC		ВН	~
CH		CH	P7	CH		^	CH	PF
DH		DH		ДH			DH	/
EH		EH	P7CR	EH			EH	PFCR
FH		FH	P7FC	FH	C	/~	<i>))</i> FH	PFFC

				Y			_
Address	Name	Address	Name	Address	Name	Address	Name
0040H	PG	0050H	PK	0060H	PP	0070H	Reserved
1H		1H		1H		1H	Reserved
2H		2H		2H	PPCR	2H	Reserved
3H	PGFC	3H	PKFC	3H	PPFC	3H	Reserved
4H		\4 H	PL)	4H	PR	4H	Reserved
5H		5H		5H		5H	Reserved
6H		(// 6H		6H	PRCR	6H	Reserved
7H		7H	PLFC	7H	PRFC	7H	Reserved
8H		8H	PM (V	/)) 8H	PZ	8H	Reserved
9H		9H		9H		9H	Reserved
AH		AH		AH	PZCR	AH	Reserved
BH		ВН	PMFC	ВН		ВН	Reserved
CH	PJ	CH	PN	CH		CH	Reserved
DH	7/	DH		DH		DH	Reserved
EH	PJCR	EH	PNCR	EH		EH	Reserved
FH	PJFC	FH	PNFC	FH		FH	Reserved

Note: Do not access no allocated name address.

[1] Port (2/2)

Address	Name	Address	Name	Address	Name		Address	Name
H0800		0090H	PGDR	00A0H	PT		00B0H	PX
1H	P1DR	1H		1H			1H	
2H		2H		2H	PTCR		2H	PXCR
3H		3H	PJDR	3H	PTFC		3H	PXFC
4H	P4DR	4H	PKDR	4H	PU		4H	
5H	P5DR	5H	PLDR	5H		6	5H	
6H	P6DR	6H	PMDR	6H	PUCR) \ 6H	
7H	P7DR	7H	PNDR	7H	PUFC		7H	
8H	P8DR	8H	PPDR	8H	PV ((/)	/ <	\ 8H	
9H	P9DR	9H	PRDR	9H	PVFC2	\cup	/ 9H	
AH	PADR	AH	PZDR	AH	PVCR		AH	
BH		ВН	PTDR	BH	PVFC		BH	
CH	PCDR	CH	PUDR	CH	PW		CH	
DH		DH	PVDR	DH			ρĦ	
EH		EH	PWDR	ΕΉ	PWCR		_\EH	\rightarrow
FH	PFDR	FH	PXDR	EH	PWFC		J (FH)	

[2] INTC

Address	Name	Addre	ess	Name		Address	Name		Address	Name
00D0H	INTE12	00E	:0H	INTESBIADM		00F0H	INTE0		0100H	DMA0V
1H	INTE34		1H	INTESPI		1H	INTETC01		1H	DMA1V
							/INTEDMA01			
2H	INTE56		2H	Reserved		2H	INTETC23		2H	DMA2V
							/INTEDMA23			
3H	INTE7		ЗН	INTEUSB		3H	INTETC45	(3H	DMA3V
							/INTEDMA45			
4H	INTETA01		4H	Reserved		4H	INTETC67	\mathbb{Z}	√ 4H	DMA4V
5H	INTETA23		5H	INTEALM		5H	SIMC) 5H	DMA5V
6H	INTETA45		6H	Reserved		6H	IIMC0		6H	DMA6V
7H	INTETA67		7H			7H	INTWDT		7H	DMA7V
8H	INTETB0		8H	INTERTC		8H	INTCLR		8H	DMAB
9H	INTETB1		9H	INTEKEY		9H			9H	DMAR
AH			АН	INTELCD		AH	NMC1		AH	DMASEL
ВН	INTES0		ВН	INTEI2S01		BH			BH	
CH			СН	INTENDFC		((ch			CH	<u> </u>
DH			DH	Reserved		DH		^	DH))
EH			EΗ	INTEP0	(EH	_		EH	
FH			FΗ	INTEAD		FH	Reserved	7	FH	

[3] MEMC

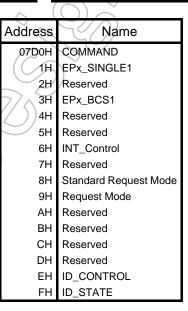
[0] M12.						· _	_ ('\	1	[4] [101	
Address	Name		Address	Name	>	Address	Name		Address	Name
0140H	B0CSL		0150H			0160H			01F0H	TSICR0
1H	B0CSH		1H			1H			1H	TSICR1
2H	MAMR0		2H			2H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2H	Reserved
3H	MSAR0		3H	\wedge		< \ 3H			3H	
4H	B1CSL		\ 4 H))		4H			4H	
5H	B1CSH		5H		/	5H)			5H	
6H	MAMR1		(// 6H		/	6H	PMEMCR		6H	
7H	MSAR1		(JH		7	7H			7H	
8H	B2CSL//	1	8H	BEXCSL	//)) 8H	CSTMGCR		8H	
9H	B2CSH	/	9H	BEXCSH	//	9H	WRTMGCR		9H	
AH	MAMR2		AH			AH	RDTMGCR0		AH	
ВН	MSAR2		> BH		/	BH	RDTMGCR1		BH	
CH	B3CSL		CH			CH	BROMCR		CH	
DH	B3CSH		DH			DH	RAMCR		DH	
EH	MAMR3		EH	7		EH			EH	
FH	MSAR3		FH			FH			FH	

[5] SDRAMC

Address	Name
0250H	SDACR
1H	SDCISR
2H	SDRCR
3H	SDCMM
4H	SDBLS
5H	
6H	
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	
FH	

[6] LCDC

		7			>	171 PMC
ress	Name <		Address	Name		Address
290H	LCDHSDLY		02A0H	LSAML	\vee	/ 02F0⊦


Address	Name		Address	Name 👌		Address	Name		Address	Name
0280H	LCDMODE0		0290H	LCDHSDLY		02A0H	LSAML	U	02F0H	PMCCTL
1H	LCDMODE1		1H	LCDO0DLY) 1H	LSAMM //)	1H	
2H			2H	LCDO1DLY		2H	LSAMH	/	2H	
3H	LCDDVM0		3H	LCDO2DLY	7	/3H			3H	
4H	LCDSIZE		4H	LCDHSW		4H.	LSASL		4H	
5H	LCDCTL0		5H	LCDLDW		5H	LSASM		5H	
6H	LCDCTL1		6H	LCDHO0W		6H	LSASH		6H	
7H	LCDCTL2		7H1	LCDHO1W		<			7H	
8H	LCDDVM1		\ 8H	LCDHO2SW		8H	LSAHX		8H	
9H			9H	LCDHWB8	_	9H	LSAHX		9H	
AH	LCDHSP		(//AĤ		_	HA//AH	LSAHY		AH	
BH	LCDHSP		\		7	ВН	LSAHY		BH	
CH	LCDV\$P/)]	CH	\sim ((//)) CH	LSASS		CH	
DH	LCDVSP	/	→ DH			DH	LSASS		DH	
EH	LCDPRVSP		EH			EH	LSACS		EH	
FH	LCDHSDLY		FH		/	FH	LSACS		FH	

[8] USBC (1/2)

Address	Name	Address	Name	Address	Name		Address	Name
0500H	Descriptor	0780H	ENDPOINT0	0790H	EP0_STATUS		07A0H	
to	RAM	1H	ENDPOINT1	1H	EP1_STATUS		1H	EP1_SIZE_L_B
067FH	(384 byte)	2H	ENDPOINT2	2H	EP2_STATUS		2H	EP2_SIZE_L_B
		3H	ENDPOINT3	3H	EP3_STATUS		3H	EP3_SIZE_L_B
		4H		4H			4H	
		5H		5H		$\overline{}$	5H	
		6H		6H) \ 6H	
		7H		7H			7H	
		8H		8H	EP0_SIZE_L_A	$\langle \rangle$	8H	Reserved
		9H	EP1_MODE	9H	EP1_SIZE_L_A),	9H	EP1_SIZE_H_A
		AH	EP2_MODE	AH	EP2_SIZE_L_A		AH	EP2_SIZE_H_A
		BH	EP3_MODE	ВН	EP3_SIZE_L_A		BH	EP3_SIZE_H_A
		CH		CH			CH	
		DH		DH			ØН	
		EH		EH			_ <_EH	\rightarrow
		FH		FH	, \		FH	

Address	Name
07B0H	
1H	EP1_SIZE_H_B
2H	EP2_SIZE_H_B
3H	EP3_SIZE_H_B
4H	
5H	
6H	
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	
FH	

Address	Name
07C0H	bmRequestType
1H	bRequest
2H	wValue_L
3H	wValue_H
4H	wIndex_L
∠ 5H	wIndex_H
6H	wLength_L
ZH	wLength_H
(\ 8H	SetupReceived
9H	Current_Config
AH	Standard Request
<i></i>	Request
CH	DATASET1
DH	DATASET2
EH	USB STATE
FH	EQP ()

[8] US	BC (2/2)				
Address	Name		Address	Name]
07E0H	Port Status		07F0H	USBINTFR1	
1H	FRAME_L			USBINTFR2	
2H	FRAME_H		2H	USBINTFR3	
3H	ADDRESS			USBINTFR4	\wedge
4H	Reserved			USBINTMR1	
5H	Reserved			USBINTMR2	
6H	USBREADY			USBINTMR3	(())
7H	Reserved			USBINTMR4	
8H	Set Descriptor STALL		8H	USBCR1	
9H AH			9H AH		
BH			BH		
CH			CH		
DH			DH		
EH			EH	4/	\rightarrow $($
FH			FH		
		7			

[9] SPIC

Address	Name	Address	Name
0820H	SPIMD	0830H	SPITD0
1H	SPIMD	1H	SPITD0
2H	SPICT	2H	SPITD1
3H	SPICT	3H	SPITD1
4H	SPIST	4H	SPIRD0
5H	SPIST	5H	SPIRD0
6H	SPICR	6H	SPIRD1
7H	SPICR	7H	SPIRD1
8H		8H	
9H		9H	
AH		AH	
BH		ВН	
CH	SPIIE	CH	
DH	SPIIE	DH	
EH		EH	
FH		FH	

[10] MMU

[10] MM	lU					50	
Address	Name	Address	Name	Address	Name	Address	Name
0880H	LOCALPX	0890H	LOCALRX	08A0H	LOCALESX	08B0H	LOCALOSX
1H	LOCALPX	1H	LOCALRX	1H	LOCALESX	1H	LOCALOSX
2H	LOCALPY	2H	LOCALRY	2H	LOCALESY	2H	LOCALOSY
3H	LOCALPY	3H	LOCALRY	3H	LOCALESY	3H	LOCALOSY
4H	LOCALPZ	4H	LOCALRZ	/4H	LOCALESZ	4H	LOCALOSZ
5H	LOCALPZ	5H	LOCALRZ	5H	LOCALESZ	5H	LOCALOSZ
6H		6H		6H		6H	
7H		7H		7H	~	7H	
8H	LOCALLX	8H	LOCALWX		LOCALEDX	8H	LOCALODX
9H	LOCALLX	9H	LOCALWX	9H	LOCALEDX	9H	LOCALODX
AH	LOCALLY	AH	LOCALWY	AH	LOCALEDY	AH	LOCALODY
BH	LOCALLY	(//BĤ	LOCALWY	BH	LOCALEDY	ВН	LOCALODY
CH	LOCALLZ	(CH	LOCALWZ	CH	LOCALEDZ	CH	LOCALODZ
DH	LOCALLZ	DH	LOCALWZ (DH	LOCALEDZ	DH	LOCALODZ
EH		EH		EH		EH	
FH		FH		FH		FH	

Address		roller		_		
	Name	Address	Name	1 [Address	Name
08C0H	NDFMCR0	08D0H	NDRSCA0	1 [1FF0H	NDFDTR0
1H	NDFMCR0	1H	NDRSCA0		1H	NDFDTR0
2H	NDFMCR1	2H	NDRSCD0		2H	NDFDTR1
3H		3H			3H	NDFDTR1
4H	NDECCRD0	4H	NDRSCA1		4H	(
5H 6H	NDECCRD0 NDECCRD1	5H 6H	NDRSCA1 NDRSCD1		5H 6H	\
7H	NDECCRD1	7H	NDRSCDT		7H	
8H	NDECCRD2	8H	NDRSCA2		8H	
9H	NDECCRD2	9H	NDRSCA2		9H	
AH		AH	NDRSCD2		АН	
ВН	NDECCRD3	ВН			ВН	
CH	NDECCRD4	CH	NDRSCA3		CH	
DH	NDECCRD4	DH	NDRSCA3		DH	
EH FH		EH FH	NDRSCD3		EH PH	
					^	
		(7/5)	<i>))</i>			

[12] DMAC

Address	Name	Address	Name	Address	Name		Address	Name
0900H	HDMAS0	0910H	HDMAS1	0920H	HDMAS2		0930H	HDMAS3
1H	HDMAS0	1H	HDMAS1	1H	HDMAS2		1H	HDMAS3
2H	HDMAS0	2H	HDMAS1	2H	HDMAS2		2H	HDMAS3
3H		3H		3H			3H	
4H	HDMAD0	4H	HDMAD1	4H	HDMAD2		4H	HDMAD3
5H	HDMAD0	5H	HDMAD1	5H	HDMAD2		5H	HDMAD3
6H	HDMAD0	6H	HDMAD1	6H	HDMAD2		6H	HDMAD3
7H		7H		7H	~ (7)	//	√ 7H	
8H	HDMACA0	8H	HDMACA1	8H	HDMACA2) 8H	HDMACA3
9H	HDMACA0	9H	HDMACA1	9H	HDMACA2		9H	HDMACA3
AH	HDMACB0	AH	HDMACB1	AH	HDMACB2		AH	HDMACB3
ВН	HDMACB0	ВН	HDMACB1	ВН	HDMACB2		ВН	HDMACB3
CH	HDMAM0	CH	HDMAM1	CH	HDMAM2		CH	HDMAM3
DH		DH		DH			DH	
EH		EH		EH			EH	
FH		FH		((FH	\wedge		FH	>

					. \.		
Address	Name		Address	Name		Address	Name (
0940H	HDMAS4		0950H	HDMAS5	//	0970H	
1H	HDMAS4		1H	HDMAS5		→ 1H	(O)
2H	HDMAS4		2H	HDMAS5		2H	
3H			3H	4()		3H	
4H	HDMAD4		4H	HDMAD5		∠ 4 H	
5H	HDMAD4		5H	HDMAD5		5H	
6H	HDMAD4		6H	HDMAD5		6H	
7H			7H	,		7H	
8H	HDMACA4		(&H	HDMACA5		/\\8H	
9H	HDMACA4		9H	HDMACA5		9H	
AH	HDMACB4		AH	HDMACB5	4	AH/	
BH	HDMACB4		(√/ BH)	HDMACB5		ВН	
CH	HDMAM4		CH	HDMAM5	7/		Reserved
DH		/	DH			<i>))</i> DH	Reserved
EH	\\\		EH			EH	HDMAE
FH			FH:			FH	HDMATR

[13] CGEAR, PLL

[14] 8-bit timer

Address	Name	Address	Name	Address	Name
10E0H	SYSCR0	1100H	TA01RUN	1110H	TA45RUN
1H	SYSCR1	1H		1H	
2H	SYSCR2	2H	TA0REG	2H	TA4REG
3H	EMCCR0	3H	TA1REG	3H	TA5REG
4H	EMCCR1	4H	TA01MOD	4H	TA45MOD
5H	EMCCR2	5H	TA1FFCR	5H	TA5FFCR
6H	Reserved	6H		6H	
7H		7H		7H	~ (7/
8H	PLLCR0	8H	TA23RUN	8H	TA67RUN
9H	PLLCR1	9H		9H	
AH		AH	TA2REG	AH	TA6REG
BH		BH	TA3REG	ВН	TA7REG
CH		CH	TA23MOD	CH(TA67MOD
DH		DH	TA3FFCR	DH	TA7FFCR
EH		EH		EH	
FH		FH		((FH	

[15] 16-bit timer

[(1	ઠો	S	O^{\dagger}

[17] SBI

Address	Name	Address	Name <		Address	Name	Address	Name
1180H	TB0RUN	1190H	TB1RUN		1200H	SC0BUF	1240H	SBICR1
1H		1H			1H	SC0CR	1H	SBIDBR
2H	TB0MOD	2H	TB1MOD		2H	SC0MOD0	2H	I2CAR
3H	TB0FFCR	3H	TB1FFCR	7	/3H	BR0CR	3H	SBICR2/SBISR
4H		4H			4H.	BR0ADD	4H	SBIBR0
5H		5H	$((\))$		5H	SC0MOD1	5H	
6H		6H			6H	<u>'</u>	6H	
7H		7H			<	SIRCR	7H	SBICR0
8H	TB0RG0L	\ 8H	TB1RG0L		/8H		8H	
9H	TB0RG0H	9H	TB1RG0H	/	9H)		9H	
AH	TB0RG1L	(//AĤ	TB1RG1L	_	AH/AH		AH	
BH	TB0RG1H	BH	TB1RG1H		BH		BH	
CH	TB0CP0L	CH	TB1CP0L)) CH		CH	
DH	TB0CP0H	DH	TB1CP0H	//	DH		DH	
EH	TB0CP1L	EH	TB1CP1L		EH		EH	
FH	TB0CP1H	FH	TB1CP1H	/	FH		FH	

[18] 10-bit ADC

[18] 10-0	oit ADC		
Address	Name	Address	Name
12A0H	ADREG0L	12B0H	ADREGSPL
1H	ADREG0H	1H	ADREGSPH
2H	ADREG1L	2H	Reserved
3H	ADREG1H	3H	Reserved
4H	ADREG2L	4H	ADCM0REGL
5H	ADREG2H	5H	ADCM0REGH
6H	ADREG3L	6H	ADCM1REGL
7H	ADREG3H	7H	ADCM1REGH
8H	ADREG4L	8H	ADMOD0
9H	ADREG4H	9H	ADMOD1
AH	ADREG5L	AH	ADMOD2
ВН	ADREG5H	ВН	ADMOD3
CH	Reserved	CH	ADMOD4
DH	Reserved	DH	ADMOD5
EH	Reserved	EH	
FH	Reserved	FH	ADCCLK

[19] WDT

Address	Name
1300H	WDMOD
1H	WDCR
2H	^
3H	
4H	
5H	
6H	
7H	\sim (7)
8H	
9H	
AH	$\langle \langle () \rangle \rangle$
BH	
CH	
DH	
EH	
((FH	$\langle \rangle$

[20] RTC

[21] MLD

[20] 101 (
Address	Name		Address	Name					
1320H	SECR		1330H	ALM(
1H	MINR		1H	MELALMC					
2H	HOURR		2H	MELFL					
3H	DAYR		3H	MELFH					
4H	DATER		4H	ALMINT					
5H	MONTHR		5H						
6H	YEARR		6H	\wedge					
7H	PAGER		/ / /))					
8H	RESTR		8H						
9H			Hœ //	4					
AH			(AH						
BH)]	ВН	\sim (\vee					
CH		/	CH						
DH			DH						
EH			> EH						
FH	$\wedge \wedge$		FH						

TOSHIBA

[22] I^2S

[==] = ~			
Address	Name	Address	Name
1800H	I2S0BUF	1810H	I2S1BUF
1H		1H	
2H		2H	
3H		3H	
4H		4H	
5H		5H	
6H		6H	
7H		7H	
8H	I2S0CTL	8H	I2S1CTL
9H	I2S0CTL	9H	I2S1CTL
AH	I2S0C	AH	I2S1C
ВН	12S0C	ВН	I2S1C
СН		CH	
DH		DH	
EH		EH	
FH		FH	

[23] MAC

Address	Name		Address	Name
1BE0H	MACMA		1BF0H	
1H	MACMA		1H	
2H	MACMA		2H	
3H	MACMA		3H	
4H	MACMB		4H	
5H	MACMB		5H	
6H	MACMB) → 6H	
7H	MACMB		7H	
8H	MACORL //	\land	8H	
9H	MACORL	2)	9H	
AH	MACORL		AH	
ВН	MACORL		BH	
CH	MACORH		CH	MACCR
DH(MACORH		DH	
EH	MACORH		√/EH	
FH	MACORH		/F/H	

(1) I/O ports (1/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cyllibol	INGILIC	Audicas	P17	P16	P15	P14	P13	P12	-	P10
			PII	P 10	P15	P 14		PIZ	PII	PIU
P1	PORT1	0004H		Data fr	om external			er is cleared	I to "0")	
						. (P41 0 P51 0 P61 to "0") P71 external port h register is o "1") 7 P81 1	
			P47	P46	P45	P44	P43	P42	P41	P40
P4	PORT4	0010H				R/		77/	-	
		00.0	0	0	0	0	0	0	0	0
			-	-	-	-	-	750) - DE4	-
			P57	P56	P55	P54 R/	P53	P52	P51	P50
P5	PORT5	0014H	0	0	0	0	0	()0	0	0
			_	_	_	_	7	<u></u>	_	_
			P67	P66	P65	P64	P63	P62	P61	P60
P6	PORT6	0018H				R/	w)	•	
1.0	1 OKTO	001011		Data fr	om external	port (Output	t latch regist	er is cleared	l to "0")	
				<u>, </u>		W.			1)/	
			$\overline{}$	P76	P75	P74	P73	P72	P71	P70
			$\overline{}$	Data from -	vtornol no-t	Doto from	R/W	Data fram	wtornel next	
P7	PORT7	001CH								1
				set to		cleared				•
				_	- '-	-	- '		,	-
	P8 PORT8		P87	P86	P85	P84	P83	P82	P81	P80
P8		0020H				R/	W		-	
			11	1	1	<u>)</u> 1	(10)	0 (Note)		11
			_ D07	- Doc ((- /)		\\\\\)		_ D00
			P97	P96 R		\nearrow	4	/ P92		P90
P9	PORT9	0024H						Data		l port
			Data from	external port						
				- (\forall		_	,
			PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PA	PORTA	0028H	((F				
						Data from e	xternal port			
			PC7	PC6	PC5	PC4	PC3	PC2	DC1	PC0
_			(501)	FU0	FU0	PC4 R/		FU2	FUI	FUU
PC	PORTC	0030H		/Data	from extern			ister is set to	o "1")	
	4									
			PF7		PF5	PF4	PF3	PF2	PF1	PF0
PF	PORTF	003CH	R/W	1				W		
	\\\\		1		Data	from extern	al port (Out	out latch reg	ister is set to	"1")
					DC=	DC :	DC:	- DC:	DC /	BC:
			_		PG5	PG4	PG3	PG2	PG1	PG0
PG	PORTG	0040H	$\overline{}$					external port		
)	$\overline{}$				- Jaia Holli 6	-		
	1/1	()	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
			110	<i>기</i>	, -	R/				
PJ	PORTJ	004CH		Data from e						
		00 7011	1	(Output latc		1	1	1	1	1
	~			set to						
			_	_	-	_	-	_	_	_

Note: If it is started at boot mode (AM [1:0] = "11"), output latch of P82 is set to "1".

(1) I/O ports (2/11)

	170 ports									1		
Symbol	Name	Address	7	6	5	4	3	2	1	0		
			PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0		
PK	PORTK	0050H				R/	W					
110	TOKIK	003011	0	0	0	0	0	0	0	0		
			-	_	-	_	-	-	-	_		
			PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0		
PL	PORTL	0054H				R/	W	7/				
ΓL	FORTE	003411	0	0	0	0	0	0	0	0		
			_	_	_	_	_	(/-)	Y -	_		
			PM7				\vee	PM2	PM1			
PM	PORTM	0058H	R/W				~ 	// \\ R/	W			
I IVI	I OKTW	003011	1				1	()1)	1			
			_						-			
			PN7	PN6	PN5	PN4	PN3	N2	PN1	PN0		
PN	PORTN	005CH				R/	W)*				
FIN	FORTN	003011	Data from external port (Output latch register is cleared to "1")									
						41-	- \					
			PP7	PP6	PP5	PP4	PP3	PP2	RP1			
						/R/W						
PP	PORTP	0060H	0	0		Data	from externa	al port				
			U	U	4	Output latch			(()			
			_	-	((1/	_		70/			
					Y	7	PR3 /	PR2	PR1	PR0		
					#			C/ R				
PR	PR PORTR PT PORTT	0064H				~			external port			
				(Output latch register is cleared to "0")								
				\sim)) -	_			
			PT7	PT6	PT5	PT4	PT3	PT2	PT1	PT0		
PT	PORTT	00A0H				// R/	W\\					
	I OKT	00/1011		Data fi	rom external	port (Outpu	t latch regist	er is cleared	l to "0")			
						/ /	<u> </u>					
		J 00A4H	PU7	PU6	PU5	PU4	PU3	PU2	PU1	PU0		
PU	PORTU			R/W Data from external port (Output latch register is cleared to "0")								
. 0	. 611.6	00/1111		Data fi	rom external	port (Outpu	t latch regist	er is cleared	to "0")			
						- 11	_					
			PV7	PV6	\sim	PV4	PV3	PV2	PV1	PV0		
			\\/\ R/			1)		R/W				
PV	PORTV	00A8H	Data from e				Data	from externa	al port			
	4	/ /	(Output latc		(%)) (leared to "0"	')		
			cleared	1 to "0")		`	•					
			D)4/=	Disto	Divis	DV444	DIAGO	- D\4(0	DV444	Divio		
			>PW7	PW6	PW5	PW4	PW3	PW2	PW1	PW0		
PW	PORTW />	00ACH		Datak	rom external		W	:	1.1- "0")			
	7,	\ N		Data n	iom external	port (Outpu	i laten regist	er is cleared	100)			
			DVZ	4	DVE	DV4						
		\	PX7	4	PX5	PX4 W						
	(()))	R/W			external port						
		/ /	Data from external port	$//\sim$		external port th register is						
PX	PORTX	00B0H	(Output latch) \		to "0")						
1/			register is		Sicuro	,						
		4	cleared to							\		
			"0")	\	J		\	\	\	\		
	<u> </u>											
			PZ7	PZ6	PZ5	PZ4	PZ3	PZ2	PZ1	PZ0		
PZ	DODTZ	000011		•	•		W	•	•	•		
۲۷	PORTZ	0068H		Data fi	rom external	port (Output	t latch regist	er is cleared	to "0")			
						-	_					
	•		•									

(1) I/O ports (3/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
	PORT1	0006H			•	١	W	•	•	•
P1CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	1	_	_	_	_		_	_
						0: Input	1:Output			
										P1F
								\mathcal{A}	2	W
D450	PORT1	0007H								0/1
P1FC	function register	(Prohibit RMW)						77		
	register	TXIVIVV)						()		0: Port
										1:Data bus
			P47F	P46F	P45F	P44F	R43F	P42F	P41F	(D8~D15) P40F
	PORT4	0013H	F4/F	F 40F	F43F		W	7 7421	F411	F 40F
P4FC	function	(Prohibit	0/1	0/1	0/1	0/1_	0/1	0/1	0/1	0/1
	register	RMW)	-	-	-	-	-		4(-	> -
					0: Por	1: Ad	dress bus (A0~A7)		
			P57F	P56F	P55F	P54F	P53F	_ P52F() P51F	P50F
	PORT5	0017H		•			W		(1/1)	•
P5FC	function	(Prohibit	0/1	0/1	0/1 (0/1	0/1	0/1	0/1	0/1
	register	RMW)	_	_			_	(2-)	>	_
					0: Port		dress bus (A	\8~A15)		
			P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
	PORT6	001AH				1	w (7		1	1
P6CR	control	(Prohibit	0	0	0	0	0,	<i>))</i> 0	0	0
	register	RMW)	_	-(1)	<u> </u>		17		_	_
			50	(F00)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0:Input	1: Output		D0.15	5005
	DODTO	004511	P67F	P66F	P65F	P64F	P63F W	P62F	P61F	P60F
P6FC	PORT6 function	001BH (Prohibit	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
1 01 0	register	RMW)	- (V 0/1	- 0/1	0/1	- 0/1	- 0/1	-	-
		,			0: Port	hhA ·f	ress bus (A	16~A23)		
			\	P76C	P75C	P74C	P73C	P72C	P71C	
			444				W			
				0	(0)//	0	0	0	0	
		((),		$\overline{}$	(\vee)) –	-	_	_	
	PORT7	001EH		0: Input port,	0: Input port,	0: Input por	t 0: Input port	0: Input port	0: Input port	
P7CR	control	(Prohibit		WAIT	NDR/B	1: Output	1: Output	1: Output	1: Output	
	register	RMW)	>	1:Output port		port,	port,	port,	port,	
		}			port, R/W	EA25	EA24	NDWE @	NDRE @	
	7/			\wedge	~			<p72> = 0,</p72>	<p71> = 0,</p71>	
			^	(WRLU @	WRLL @	
^							<u> </u>	<p72> = 1</p72>	<p71> = 1</p71>	
		/ ^	A	P76F	P75F	P74F	P73F	P72F	P71F	P70F
			#))	1	1	W	1	1	
1				0	0	0	0	0	0	0
	PORT7	001FH <	A	-	_	_	_	_	_	_
P7FC	function	(Prohibit		0: Port	0: Port _	0:Port	0:Port	0: Port	0: Port	0: Port
	register	RMW)		1: WAIT	1:NDR/B ,	1: EA25	1: EA24	1: NDWE @	1: NDRE @	1: RD
					R/W			<p72> = 0,</p72>	<p71> = 0,</p71>	
								WRLU @	WRLL @	
								<p72> = 1</p72>	<p71> = 1</p71>	

(1) I/O ports (4/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			P87F	P86F	P85F	P84F	P83F	P82F	P81F	P80F
						1	N			
			0	0	0	0	0	0	0	0
	PORT8	0023H	_	-	-	-	-	_	_	-
P8FC	function	(Prohibit	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port,	0: Port	0: Port
	register	RMW)	1: <p87f2></p87f2>	1: <p86f2></p86f2>	1: CSZC	1: CSZB	1: CS3,	CSZA	1: CS1	1: CS0
							CSXA	1: C\$2,		
								SDCS	Y	
							. ((7/^		
			P87F2	P86F2			P83F2	P82F2	P81F2	
			V	V			7//	W	·	
			0	0			(0)	0	0	
	PORT8	0021H	_	_		\rightarrow) -	_	
P8FC2	function	(Prohibit	0: CSXB	0: CSZD		.((0: Output	0: Output	0: <p81f></p81f>	
	fegister2	RMW)	1: ND1CE	1: ND0CE		(1)	Port, CS3	port, CS2	1: SDCS	}
							1: CSXA	1: CSZA ,		
						((///	\ `	SDCS		
						(/	7	$2/\Omega$	
					+			P92C	P91C	P90C
						7	\rightarrow	7	W	1 -
					4			(0)	0 –	0
	PORT9	0026H								_
P9CR	control	(Prohibit			1	~	((//	0 Input	0: Input	0: Input
	register	RMW)		A ((port,	port,	port,
				(1)				CTS0	RXD0	1: Output
))	1: Output	1: Output	port,
					\			port,	port,	TXD0
				P96F			V	SCLK0		P90F
			\rightarrow	W P96F		4		P92F W		W P90F
	DODTO	000711	\mathcal{T}	0	\sim			0		0
P9FC	PORT9 function	0027H (Prohibit						_		_
1 31 0	register	RMW)	((//3	0: Input		4/		0:Port,		0:Port
	J			/				CTS0		1:TXD0
		//)		port, 1: INT4)		1:SCLK0		1.1700
				1. 11114						P90FC2
			W					W		W
	PORT9	0025H	0	1				0		0
P9FC2	function	(Prohibit	-					-		-
	register2	RMW)	Always	\wedge				Always		0:CMOS
			write "0"					write "0"		1:Open
^										-Drain
	11) 			<u>I</u>		<u>I</u>	<u>I</u>	l .	

(1) I/O ports (5/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PA7F	PA6F	PA5F	PA4F	PA3F	PA2F	PA1F	PA0F
	PORTA	002BH					W			
PAFC	function	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	_	_	_	-	_	_	_	_
						-in disable		in enable		
			PC7C	PC6C	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
				ı	1	ı	W			ı
			0	0	0	0	0	/0) 0	0
			_	-	-	-	- /	\rightarrow	_	_
	PORTC		0: Input	0: Input	0: Input	0: Input	0: Input	0: Input port,	0: Input	0: Input
PCCR	control	0032H (Prohibit	port,	port,	port,	port,	port, INT3	ANT2	port, INT1	port, INT0
PCCR	register	RMW)	1: Output	EA28	EA27	EA26	1: Output	1: Output	1: Output	1: Output
		TXIVIVV)	port,	1: Output	1: Output	1: Output	port,	port,	port,	port
			ко	port	port	port	TA2IN		TA0IN	
			output			_(
			(Open						α	•
			-drain)					\$2		
			PC7F	PC6F	PC5F	PC4F	PC3F	PC2F	PC1F	PC0F
				I.			W	0,6	(//)	
			0	0	0 (0	0	0	900/	0
	PORTC	0033H	_	_			-	Q-\\	\ <u>-</u>	-
PCFC	function	(Prohibit	0: Port	0: Port	0:Port	0:Port	0:Port	0: Port	0: Port	0: Port
	register	RMW)	1:KO	1:EA28	1:EA27	1:EA26	1:INT3	1: INT2	1: INT1,	1:INT0
			output			\searrow	,TA2IN	7_	TAOIN	
			(Open		7 /	> _))		
			-Drain)	Y						
			Diamy		PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
	PORTF	003EH		4				W		
PFCR	control	(Prohibit		#)) 0	0	0/	0	0	0
	register	RMW)			/ -		7	_	_	_
		,	7				0: Input.	1: Output	<u>I</u>	
			PF7F	\rightarrow	PF5F	PF4F	PF3F	PF2F	PF1F	PF0F
			NV		~	163		W	1	1
	PORTF	003FH	(1//	A	0	0	0	0	0	0
PFFC	function	(Prohibit	740	/	60		_	_	_	_
	register	RMW)	0:Output		0:Port	0:Port	0:Port	0:Port	0:Port	0:Port
						/ /				
		1,1	port		1:I2S1WS	1:l2S1DO	1:I2S1CKO	1:I2S0WS	1:I2S0DO	1:I2S0CKO
			1: SDCLK	1	1					

(1) I/O ports (6/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
							PG3F			
							W			
	PORTG	0043H					0			
PGFC	function	(Prohibit					-			
	register	RMW)					0:Input			
							port,AN3 1: ADTRG			
				PJ6C	PJ5C			1	<i>></i>	
	PORTJ	004EH		V	V					
PJCR	control	(Prohibit		0	0		7	//		
	register	`RMW)		_	_		177	$\overline{\mathcal{A}}$		
				0:Input	1: Output	_				
			PJ7F	PJ6F	PJ5F	PJ4F	PJ3F) PJ2F	PJ1F	PJ0F
						V)		
	PORTJ	004FH	0	0	0	0 🗸	0	0	0	0
PJFC	function	(Prohibit	_	_	-	- <		- ,	4/-	> −
	register	RMW)	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: SDCKE	1:NDCLE	1: NDALE	1:SDLUDQM	1:SDLLDQM	1: SDWE	1: SDCAS,	1: SDRAS,
								SRWR	SRLUB	SRLLB
			PK7F	PK6F	PK5F	PK4F	PK3F	PK2F	PK1F	PK0F
				•		/ V	V	((•
	PORTK	0053H	0	0	0	0	0		0	0
PKFC	function	(Prohibit	_	_	(-)	\ -	-(\ ()	_	_
	register	RMW)	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: LGOE2	1: LGOE1	1: LGOE0	1: LHSYNC	1: LVSYNC	1: LFR	1: LLOAD	1: LCP0
			PL7F	PL6F	PL5F	PĻ4F	PL3F	PL2F	PL1F	PL0F
	PORTL	0057H				\\v	v \			
PLFC	function	(Prohibit	0	(6	0	0	0//	0	0	0
	register	RMW)	_	F	/) -	_	\ <u>`</u>	_	_	_
				\nearrow	0: Port	1: Data bu	s for LCDC	(LD7~LD0)	•	•
			PM7F			1		PM2F	PM1F	
			W			169			٧	
			(07)		7	4		0	0	
	PORTM	005BH						_	_	
PMFC	function	(Prohíbit	n. Port	/ ·	((7)	\wedge	_	0: Port	0: Port	
	register	RMW)))		1: ALARM at	1:MLDALM	
			I. PWE.					<pm2>=1,</pm2>	at <pm1>=1</pm1>	
					_//			MLDALM at	TA1OUT	
								<pm2>=1</pm2>	at <pm1>=0</pm1>	
PMFC	PORTM function	005BH (Prohibit	PM7F		0: Port	1: Data bu	s for LCDC	PM2F 0 - 0: Port 1: ALARM at < PM2>=1, MLDALM at	0 - 0: Port 1:MLDALM at <pm1>=1 TA1OUT</pm1>	

(1) I/O ports (7/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PN7C	PN6C	PN5C	PN4C	PN3C	PN2C	PN1C	PN0C
	PORTN	005EH			1		N	1	1	
PNCR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	-	_	_	-	_	_	_	_
					1		1: Output			T
			PN7F	PN6F	PN5F	PN4F	PN3F	PN2F	PN1F	PN0F
	PORTN	005FH				i	N I a) > -	1 -
PNFC	function	(Prohibit RMW)	0 –	0	0	0	0	0) 0	0
	register	KIVIVV)	_	_	_	l		$\Omega = \Omega$	_	_
							:Open-Drain			
					PP5C	PP4C	PP3C	PP2C	PP1C	
	PORTP	0062H	/				W			
PPCR	control	(Prohibit	/	/	0	0	0)	0	
	register	RMW)			_	- (_		
							Input 1: Out		4	
			PP7F	PP6F	PP5F	PP4F	PP3F	PP2F	PP1F	
						(W)/	^	(
	PORTP	0063H	0	0	0	\0/_)) 0	00		
PPFC	function	(Drobibit	-	-	- (/ -		9-//	
	register	DIMIM	0: Port 1: TB1OUT0	0: Port	0: Port	0: Port 1:TB0IN0@	0: Port 1:TA7OUT@	0: Port	0: Port 1: TA3OUT	
			1. 1610010	1. 1500010	<pp5c>=1</pp5c>	<pp4c>=1I</pp4c>		1.173001	1. TA3001	
					INTZ@	NT6@	INT5@			
					<pp5c>=0</pp5c>	<pp4c>=0</pp4c>	<pp3c>=0</pp3c>	\nearrow		
				/			PR3C//	PR2C	PR1C	PR0C
	PORTR	0066H		7		\rightarrow			W	•
PRCR	control	(Prohibit				$\nearrow \leftarrow$	0	0	0	0
	register	RMW)			14		-))	_	_	_
									1: Output	,
						_	PR3F	PR2F	PR1F	PR0F
	PORTR	0067H	$\frac{1}{\sqrt{2}}$	A					W	<u> </u>
PRFC	function	(Prohibit	\int_{1}			At 52	0	0	0	0
	register	RMW)	$\overline{}$		7		-	_	_	_
	· ·))		3)		0: Port	0: Port	0: Port
					(α)		1: SPCLK	1: SPCS	1: SPDO	1: SPDI
		/	PT7C	PT6C	PT5C/) PT4C	PT3C	PT2C	PT1C	PT0C
	PORTT	00A2H					N -	T		1
PTCR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	<u> </u>			_	_	_	_	_
	<u> </u>	7		D===	\ 	0: Input	1: Output	DT:-		DT:-
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		PT7F	PT6F	PT5F	PT4F	PT3F	PT2F	PT1F	PT0F
DTEC	PORTT	00A3H	0	110	0		N I o	0		0
PTFC	function register	(Prohibit RMW)	0 4	0	0	0	0	0	0 –	0 –
	15 giotei	JIXIVIVV)	-			l				
		/ /	> ((11	u: Port 1	. Data bus t	or LCDC (LE	J IO~LU8)		

(1) I/O ports (8/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cymbol	Hamo	71001000	PU7C	PU6C	PU5C	PU4C	PU3C	PU2C	PU1C	PU0C
	PORTU	00A6H	FUIC	FUUC	F03C		N F03C	FUZC	FUIC	FUUC
PUCR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	`RMW)	_	_	_	_	_	_	_	_
					I	0: Input	1: Output		I.	
			PU7F	PU6F	PU5F	PU4F	PU3F	PU2F	PU1F	PU0F
						V	V			
	PORTU	00A7H	0	0	0	0	0	0) 0	0
PUFC	function	(Prohibit	_	-	_	-	- /			-
	register	RMW)	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: LD23	1: LD22	1: LD21@	1: LD20	1: LD19	1: LD18	1: LD17	1: LD16
					<pu5c>=1</pu5c>					
			PV7C	PV6C			T	PV2C	PV1C	PV0C
	PORTV	00AAH	V	V		/			W	
PVCR	control	(Prohibit	0	0		4		0	10	> 0
	register	RMW)	_	-				- (_
			0: Input	1: Output		(0/4		0:	Input 1: Out	put
			PV7F	PV6F		W		PV2F	PV1F)	PV0F
			V		4				\(\w\/\)	•
	PORTV	00ABH	0	0	X			0	0	0
PVFC	function	(Prohibit	_	_					_	_
	register	RMW)	0: Port	0: Port				0: Port	0: Port	0: Port
			1: SCL	1: SDA		>	(0	1:Reserved	1: Reserved	1: SCLK0@ <pv0c>=1</pv0c>
			PW7C	PW6C	PW5C	PW4C	PW3C	PW2C	PW1C	PW0C
	PORTW	00AEH		4(N			
PWCR	control	(Prohibit	0	0	0	(0,	0	0	0	0
	register	RMW)	_		V -	-//	J //	_	_	-
						0: Input	1: Outpu		1	•
			PW7F	PW6F	PW5F	PW4F	PW3F	PW2F	PW1F	PW0F
D)4/50	PORTW	00AFH	_ ((N	1 -		
PWFC	function register	(Prohibit RMW)	0	<u></u>	0	0	0	0 –	0 –	0
	register	ixivivv)	$(\overline{\Omega})$	_		7 - 1 A		_	_	_
			PX7C		PX5C	U: POR 1:	Reserved			
	PORTX	00B2H	W	\overline{A}	W					
PXCR	control	(Prohibit	0	1	0					
	register	RMW)	_		\ <u>-</u>					
			0: In	put 1: O	utput					
	^ ^	·	PX7F		PX5F	PX4F				
	>,<		W		⇒ w	W				
	PORTX	00B3H	0	~	0	0				
PXFC	function	(Prohibit	0:Port	\leftarrow	0.Do#	O: Do#				
1,110	register	RMW)	0:Port 1: Reserved		0:Port 1: X1USB	0: Port 1:CLKOUT	[
					input	at <px4>=0</px4>				
	7/	((\mathcal{A}	"		LDIV at				
						<px4>=1</px4>				
	202==		PZ7C	PZ6C	PZ5C	PZ4C	PZ3C	PZ2C	PZ1C	PZ0C
DZCD	PORTZ	006AH					N			
PZCR	control register	(Prohibit RMW)	0 –	0	0	0	0	0 –	0	0
	register	INIVIVV)	_	_	_	0: Input	1: Outpu		_	_
			l			o. mput	ւ. Ծաւքա	ı		

(1) I/O ports (9/11)

	I/O ports (9	/			ı			İ		
Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17D	P16D	P15D	P14D	P13D	P12D	P11D	P10D
P1DR	PORT1 drive	0081H	4	4	4	R/\		4	1	4
I IDIX	register	000111	1 –	<u>1</u>	1 –	1 –	1 –	1 –	1 –	1 –
			=	Inp	ut/Output bu	uffer drive r	egister for s	tandby mo	ide	
			P27D	P26D	P25D	P24D	P23D	P22D	P21D	P20D
	PORT2				Т	R/\				ı
P2DR	drive register	0082H	1	1	1	1	1	1) 1	1
	rogiotoi			Inn	ut/Output bu	ıffer drive r	egister for s	tandby mo	rde	_
			P37D	P36D	P35D	P34D	P33D	P32D	P31D	P30D
	PORT3				•	R/\	N		•	
P3DR	drive	0083H	1	1	1	1	((1)	1	1	1
	register		_			effor drive r	a mintay for a	/ – tondby/ma		_
			P47D	P46D	out/Output but P45D	P44D	P43D	P42D	P41D	P40D
	PORT4		1 47 5	1 400	1 400	R/I		1 725	1111111	1 400
P4DR	drive	0084H	1	1	1	$\langle \gamma \rangle_{\wedge}$	√ 1	1	1	1
	register		_		_	$(\bigvee \neq)$	- <) -((_
			DEZD	•	out/Output bu					DEOD
	PORT5		P57D	P56D	P55D	P54D R∧	P53D W	P52D	P51D	P50D
P5DR	drive	0085H	1	1	4) 1	1 (1	1
	register		_		1/	_		~//	_	_
					ut/Output bu					T
	DODTO		P67D	P66D	P65D	P64D RA	P63D) P62D	P61D	P60D
P6DR	PORT6 drive	0086H	1	1	1	1/1	1	1	1	1
. 02.1	register	0000	_		<u> </u>	(=)-)	_	-	-
				Inp	out/Output bu	uffer drive r	egister for s	tandby mo	de	•
			//	P76D	P75D	P74D	P73D	P72D	P71D	P70D
P7DR	PORT7	0087H	\mathcal{A}	<u> </u>			R/W			
P/DR	drive register	0087H	\mathcal{A}	<u>))1</u>	1 ~	1	1	1 –	1 _	1 –
	. og.oto.		\bigcap		Input/Ou	tout buffer o	ı drive registe	r for stand	bv mode	
			(P87D)	P86D	P85D	P84D	P83D	P82D	P81D	P80D
	PORT8				(0/0)	R/\	N			
P8DR	drive	0088H	\rightarrow	1	(1)	1	1	1	1	1
	register	~~<		- Inn	out/Output bu	effor drive r	- paietor for e	tandhy ma		_
			P97D	P96D	au Output bi	aner drive i	Jylatel IUI S	P92D	P91D	P90D
	$\wedge \wedge$		R/\						R/W	
	PORT9		1	1	<i>></i>			1	1	1
P9DR	drive register	0089H	- (<u> </u>				_	_	_
_	register		Input/Out drive rec							rive register
			standby	mode				foi	r standby m	ode
_			PA7D	PA6D	PA5D	PA4D	PA3D	PA2D	PA1D	PA0D
DADO	PORTA	000411		/		R/\	ı			
PADR	drive register	008AH	1	1	1	1 _	1	1 _	1 _	1 –
	3.3.3.		$\overline{}$		ut/Output bu		egister for s	tandbv m∩	i	
			PC7D	PC6D	PC5D	PC4D	PC3D	PC2D	PC1D	PC0D
	PORTC				i	R/\	V	i	1	1
PCDR	drive	008CH	1	11	1	1	1	1	1	1
	register		_	- Inn	ut/Output bu	uffer drive =	- paietor for a	tandhy ma		_
			PF7D	inp	PF5D	PF4D	PF3D	PF2D	PF1D	PF0D
	PORTF		R/W	$\overline{}$. 1 00	1 . 1 70	R/\		,	
PFDR	drive	008FH	1		1	1	1	1	1	1
	register		-		_			_	_	_
				1	+/O+n+ h.	iffor drive r	egister for s	tandby ma	do	

(1) I/O ports (10/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
-,							PG3D	PG2D		
				$\overline{}$		//	1 03D			
	PORTG						1	1		
PGDR	drive	0090H		$\overline{}$		//	_	_		
	register							put buffer gister for y mode		
	PORTJ		PJ7D	PJ6D	PJ5D	PJ4D R/V	PJ3D	PJ2D	PJ1D	PJ0D
PJDR	drive	0093H	1	1	1	1	1(()	//\\\	1	1
	register		_		_		/- V	()]	<u> </u>	_
			'	In	put/Output b	uffer drive re	egister for sta	andby mod	е	
			PK7D	PK6D	PK5D	PK4D	PK3D	> PK2D	PK1D	PK0D
	PORTK				I	R/V	v ()			
PKDR	drive	0094H	1	1	1	1 (1	1		1
	register		_		_	M		- /	1(-//	-
	_		I	In	put/Output b	uffer drive re	egister for st	andby mod	e	
			PL7D	PL6D	PL5D	PL4D	PL3D	PL2D	PL1D	PL0D
	PORTL				,	R/V	_	, TC		,
PLDR	drive	0095H	1	1	1 (1	(4)	(1)	1
	register		-			//	- /	-//	<u> </u>	<u> </u>
			I	In	put/Output b	uffer drive re	egister for st	andby mod	e	1
			PM7D		Par Sarbar S	William I	ygiotor ron ot	PM2D	PM1D	
	PORTM		R/W					/ /	W	
PMDR	drive	0096H	1				427	1	1	
TWIDIC	register	000011		$\overline{}$		$\left(\right)$) <u> </u>	<u> </u>	
				7	put/Output b	uffor drive re	aiotor for ot			
			PN7D	PN6D	PN5D	PN4D	PN3D	PN2D	PN1D	PN0D
	PORTN		TINTO	THOD	INSD	R/V		TINZD	TINID	TINOD
PNDR	drive	0097H	1		1	1	/1	1	1	1
	register		- (7 -	_	^ -	_	_	<u> </u>	_
			((\\ In	put/Output b	uffer drive re	egister for sta	andby mode	e	
			PP7D	PP6D	PP5D	PP4D	PP3D	PP2D	PP1D	
	PORTP		(0)			R/W		<u> </u>		
PPDR	drive	0098H	((/1))	1	1	<u></u>	1	1	1	
	register		(-)		(97)				-	
	/	(()_1		Input/O	utput buffer	drive registe	r for standby	/ mode		
							PR3D	PR2D	PR1D	PR0D
	PORTR							R/	W	
PRDR	drive	0099H		1			1	1	1	1
	register			1			-	_	_	_
		\ \n	,		\supset		Input/O	utput buffe standby	r drive regis	ter for
		\sim	PT7D	PT6D	PT5D	PT4D	PT3D	PT2D	PT1D	PT0D
	PORTT	 	1110	1100	עטו ו	R/V		1 120	טווו	1 100
PTDR	drive	009BH	1_		1	1	1	1	1	1
. =	register	\wedge	(// -	_	_	_	_		_
	7/		7/) In	put/Output b	uffer drive re	egister for sta	andby mode	e	
			PU7D	PU6D	PU5D	PU4D	PU3D	PU2D	PU1D	PU0D
	PORTU					R/V				
PUDR	drive	009CH	1	1	1	1	1	1	1	1
	register		_	_	_	_	-	_	_	_
				In	put/Output b	uffer drive re	egister for sta	andby mode	е	•
			PV7D	PV6D		PV4D	PV3D	PV2D	PV1D	PV0D
	PORTV		R/					R/W		•
	1	0000011			$\overline{}$	4	4			1
PVDR	drive	009DH	1	1		1	1	1	1	
PVDR	drive register	009DH	1 -	1 -		1 -	1 -	- I	<u> </u>	_

(1) I/O ports (11/11)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PW7D	PW6D	PW5D	PW4D	PW3D	PW2D	PW1D	PW0D
	PORTW					R/V	V			
PWDR	drive	009EH	1	1	1	1	1	1	1	1
	register		-	ı	ı	_	- (_	_	1
				In	out/Output b	uffer drive re	egister for sta	andby mode)	
			PX7D		PX5D	PX4D		Z		
	DODTY		R/W							
PXDR	PORTX drive	009FH	1		1	1	4			
1 ADIX	register	000111	_		ı	- <		<i>}</i>		
			Inpu	ut/Output but for stand	fer drive reg lby mode	jister		>		
			PZ7D	PZ6D	PZ5D	PZ4D	PZ3D	PZ2D	PZ1D	PZ0D
	PORTZ					R/V	V			
PZDR	drive	009AH	1	1	1	1	ľ	1	1	1
	register		_	=		(7/0	→ -	76		=
				Inj	out/Output b	uffer drive re	egister for st	andby mode		

(2) Interrupt control (1/4)

ν=/	merrupt		(<i>,</i>		1	1	ı	ı	ı	1
Symbol	Name	Address	7	6	5	4	3	2	1	0
								IN	T0	
INTE0	INT0 enable	00F0H	-	-	_	-	I0C	I0M2	IOM1	I0M0
HAILU	HALO EHADIE	UUFUH					R	\wedge	R/W	
				Always	write "0"		0	0	0	0
				IN	IT2			(N)	T(
INTE12	INT1 & INT2	00D0H	I2C	I2M2	I2M1	I2M0	I1C	(1M2	I1M1	I1M0
INTEIZ	enable	UUDUH	R		R/W		R		R/W	
			0	0	0	0	√ 0 ((// 🔕	0	0
				IN	IT4				T3	
INTE34	INT3 & INT4	00D1H	I4C	I4M2	I4M1	I4M0	J3C	I3M2	I3M1	I3M0
	enable	002111	R		R/W		(R)	7	R/W	
			0	0	0	0	0	0	0	0
					IT6	1			T5	
INTE56	INT5 & INT6 enable	00D2H	I6C	I6M2	I6M1	16M0	I5C	I5M2	15M1	15M0
	enable		R 0	0	R/W 0		R 0	0	R/W 0	0
			U	U		(0//) <) IN		U
	INT7		_		(.		I7C	17M2	17M1	I7M0
INTE7	enable	00D3H	-		(R		R/W	
				Always	write "0"		0 (0	0	0
	INITTAGO			INTTA1	(TMRA1)	V		INTTA0	(TMRA0)	
INTETA01	INTTA0 & INTTA1	00D4H	ITA1C	ITA1M2	ITA1M1	∫ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0
IIIII III	enable	000411	R		1 (R/W)	1	R//	()	R/W	1
			0	0 (0	0	0	0	0	0
	INTTA2 &				(TMRA3)			INTTA2	i '	
INTETA23	INTTA3	00D5H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0
	enable		R	(R/W		/R/		R/W	
			0	O INITTAE	0 (TMRA5)	0	0	0	(TMD (4)	0
	INTTA4 &		ITA5C	ITA5M2	ITA5M1	ITA5M0	ITA4C	INTTA4 ITA4M2	ITA4M1	ITA4M0
INTETA45	INTTA5	00D6H	R	TIAGNIZ	R/W	TIASIVIO	R	TTAHIVIZ	R/W	1174IVIO
	enable		(0)	0	0 <	0	0	0	0	0
	INITTACO		$(\vee/)$	INTTA7	(TMRA7)			INTTA6	(TMRA6)	
INTETA67	INTTA6 & INTTA7	00D7H	ITA7C	ITA7M2	ITA7M1	ITA7M0	ITA6C	ITA6M2	ITA6M1	ITA6M0
	enable	(337)	R		R/W)	R		R/W	
		///	0	0	0	0	0	0	0	0
	INTTB00 &		ITD010	INTTB01		ITDOM	ITDOGG	i	(TMRB0)	ITDOO
INTETB0	INTTB01	00D8H	MTB01C	ITB01M2	ITB01M1	ITB01M0	ITB00C	ITB00M2	ITB00M1	ITB00M0
	enable		R	. 0	R/W 0		R	0	R/W	0
	(A)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	<u> </u>		0	0	0 INITTR10	0 (TMRB1)	0
	INTTB10 &		ITB11C	ITB11M2	(TMRB1) ITB11M1	ITB11M0	ITB10C	ITB10M2	ITB10M1	ITB10M0
INTETB1	INTTB11	00D9H	R	TI DI TIVIZ	R/W	TIBITIVIO	R	TIDIUWZ	R/W	TIBIUNU
	enable	/	> 0	0	0	0	0	0	0	0
<		((7		TX0	U	U	-	RX0	U
1	INTRX0 &		ITYOC		1	ITYOMO	IDVOC			IDVAMA
INTES0	INTTX0	00DBH	ITX0C R	ITX0M2	ITX0M1 R/W	ITX0M0	IRX0C R	IRX0M2	IRX0M1 R/W	IRX0M0
	enable		0	0	0	0	0	0	0	0
		-	U	-		U	U		ļ.	U
INITEORY	INTSBI &	1	IADMAGG		ADM	IA DAARAO	ICDICO		SBI	ICDIN40
INTESBI ADM	INTADM	00E0H	IADM0C	IADMM2	IADMM1	IADMM0	ISBI0C	ISBIM2	ISBIM1	ISBIM0
ADIVI	enable		R		R/W	_	R	_	R/W	-
			0	0	0	0	0	0	0	0
	INITODI				SPITX	1		1	PIRX	1
INTESPI	INTSPI	00E1H	ISPITC	ISPITM2	ISPITM1	ISPITM0	ISPIRC	ISPIRM2	ISPIRM1	ISPIRM0
	enable		R	_	R/W	I -	R	_	R/W	_
			0	0	0	0	0	0	0	0

(2) Interrupt control (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					_			INTU	JSB	
INTEUSB	INTUSB	00E3H	-	-	_	ı	IUSBC	IUSBM2	IUSBM1	IUSBM0
IIII	enable	002011	-		-		R		R/W	
				Always	write "0"		0	0	0	0
					=			NT.	ALM	_
INTEALM	INTALM	00E5H	-	-	-	-	IALMC	IALMM2	VALMM1	IALMM0
	enable	002011	_		_		R) PR/W	
				Always	write "0"		0	9	0	0
					-		_ (RTC	
INTERTC	INTRTC	00E8H	-	-	-	-	VRC \	V (IRM2)	IRM1	IRM0
	enable	0020	=		=		R		R/W	
				Always	write "0"		(0	0	0	0
	INITIOE)			·	<u> </u>		710	_	KEY	11/11/0
INTEKEY	INTKEY enable	00E9H	_	-	_	- (IKC	IKM2	JKM1	IKM0
	enable			Λίνκονο	write "0"	_ <	R 0	0	R/W 0	0
				Always	write 0			-	LCD	U
	INTLCD				_ _	$-\left(\frac{\zeta}{2}\right)$	ILCD1C	ALCDM2	ILCDM1	ILCDM0
INTELCD	enable	00EAH	_		_	-/~	R	TEODIVIE	R/W)	ILODIVIO
				Always	write "0"		0	0	90/	0
	INTI2S0 &				I2S1			(~ INT	1280	ı
INTEI2S01	INTI2SO &	00EBH	II2S1C	II2S1M2	II2S1M1	H2S1M0	II2S0C	II2S0M2	II2S0M1	II2S0M0
INTEIZOT	enable	UULBII	R		R/W		R		R/W	
	enable		0	0	0	> 0	0/	/\0	0	0
	INTRSC &				RSC	>			RDY	
INTENDFC		00ECH	IRSCC	IRSCM2	IRSCM1	IRSCM0	IRDYC	IRDYM2	IRDYM1	IRDYM0
	enable		R		R/W	-	R		R/W	1 -
			0	0	0	0	0))	0	0	0
	INTP0))		IDOC		ГРО	IDOMO
INTEP0	enable	00EEH			<u> </u>	_	IP0C R	IP0M2	IP0M1 R/W	IP0M0
	CHADIC		- (Δlwave	write "0"		0	0	0	0
					ADHP	165	0	_	TAD	U
===	INTAD &		IADHPC		IADHPM1	IADHPM0	IADC	IADM2	IADM1	IADM0
INTEAD	INTADHP	00EFH	R//))	R/W	13	R		R/W	
	enable		0	0	(07)	\wedge 0	0	0	0	0

(2) Interrupt control (3/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
,				_	INTDMA1	l	-		INTDMA0	_
INTETCOA	INTTC0/INTDMA0 &		ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTETC01 /INTEDMA01	INTTC1/INTDMA1	00F1H	/IDMA1C	/IDMA1M2	/IDMA1M1	/IDMA1M0	_	/IDMA0M2	I .	/IDMA0M0
,	enable		R		R/W	1	R <		R/W	
			0	0	0	0	0	0	0	0
	INTTC2/INTDMA2				INTDMA3		. 		INTDMA2	LITO 01.40
INTETC23	&	005011	ITC3C /IDMA3C	ITC3M2	ITC3M1 /IDMA3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0 /IDMA2M0
/INTEDMA23	INTTC3/INTDMA3	00F2H	R	/IDIVIASIVIZ	R/W	//IDIVIASIVIO	R	/IDIVIAZIVIZ	R/W	TIDIVIAZIVIO
	enable		0	0	0	0	0	1/0	0	0
				-	INTDMA5	/			INTDMA4	
	INTTC4/INTDMA4		ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	&	00F3H	/IDMA5C		/IDMA5M1			-	_	/IDMA4M0
/INTEDMA45	INTTC5/INTDMA5		R		R/W	- M	R	(R/W	_
	enable		0	0	0	0/	0	0	0	0
				INTTC7	(DMA7) /	$\bigcap \bigwedge$	7	INTTE	(DMA6)	
INTETC67	INTTC6 & INTTC7	00F4H	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	/ITC6M1	ITC6M0
INTETCO7	enable	00F4F1	R		R/W		R	170	R/W	
			0	0	0(0	0	0	0	0
			_	-			4			IR0LE
			W	W						W
	SIO	00F5H	0	0						1
SIMC	interrupt mode	(Prohibit	Always write "0"	Always write "0"			$(\vee/)$)		0: INTRX0 edge
	control	RMW)	Wille 0	Wille 0						mode
										1: INTRX0
					Ì))			level
			IEEDOE)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	INFRAF	105005	//	INFRAF	101.5	mode
			I5EDGE W	14EDGE W	I3EDGE W	I2EDGE W	/I1EDGE W	I0EDGE W	IOLE R/W	R/W
	Interrupt	00F6H	0	0	0	0	0	0	0	0
IIMC0	input mode	(Prohibit	INT5	INT4	INT3	INT2	INT1	INT0	0: INT0	Always
	control 0	RMW)	edge	edge	edge	edge	edge	edge	edge mode	write "0"
		/ (/	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	0: Rising	1:INT0	WIIIC O
	//))	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	1: Falling	level mode	
	INITIAID	//-	\supset		~~//	1	ITOMB		WD	
INTWDT	INTWD	00F7H		-		_	ITCWD	_	_	-
	enable		- \		<u> </u>		R	-	_	-
	2./				write "0"		0	=	=	-
		00F8H	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	Interrupt	(Prohibit	- (7		ı	V		1		
_	clear control	RMW)	0//	0	0	0	0	0	0	0
						Interrup	t vector		1	
			4						17EDGE	I6EDGE
(Interrupt	00FAH	\searrow						W	W
IIMC1	input mode								0	0
IIIVICI	control 1	(Prohibit RMW)	\rightarrow				1		INT7	INT6
	COMMON						1		edge 0: Rising	edge 0: Rising
		i .	I	1	ı	1	1	1	u. Kising	u. Kisirig

(2) Interrupt control (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	DMAG				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0 start	0100H					R	W		
DIVIAUV	vector	010011			0	0	0	0	0	0
	10010.						DMA0 st	art vector		
	DMA1				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	start	0101H					R	W (
2	vector	0.0			0	0	0	(0)	0	0
							DMA1 st	art vector		
	DMAG				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2 start	0102H					R/	W		
DIVIAZV	vector	010211			0	0	0	0	0	0
	100.0.						DMA2 sta	art vector		
					DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA OV	DMA3	040011				7(W		ı
DMA3V	start	0103H			0	0	0	0 <	0	0
	vector						DMA3 st	art vector <		,
	5				DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DMA 4)/	DMA4	04.041.1					R	W \	U(1)	
DMA4V	start vector	0104H	$\overline{}$		0 (0	0	0	700	0
	Vector						DMA4 st	art vector	>	L
					DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DMAA C\/	DMA5	040511					R	w//		,
DMA5V	start vector	0105H			0	0	(07)	∧ 0	0	0
	Vector						DMA5 st	art vector	•	,
	DMAG			A	DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DMA6V	DMA6 start	0106H					\\ R	W		
DIVIAGV	vector	010011		1	\searrow 0	0	0	0	0	0
	rooto.						DMA6 st	art vector		
	DMA7		\searrow	\mathcal{Y}	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V	start	0107H	\rightarrow 4				. R	W		
2	vector	0.0	77		0 _	/0	0	0	0	0
						(53)		art vector		
			DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
DMAB	DMA burst	0108H	(/	(6/)		/W		1 2	
		//)]	0	0	((0// <	0	0	0	0	0
	<					DMA reques	t on burst m	ode		
		040011	DREQ7	DREQ6	DREQ5	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1
DMAD	DMA	0109H (Prohibit	>	1		R	/W			
DMAR	request	RMW)	0	0	0	0	0	0	0	0
		IXIVIVV)					est in softwa			<u> </u>
	√ ^\	\bigcirc		~	DMASEL5	DMASEL4	DMASEL3	DMASEL2	DMASEL1	DMASEL0
			$\overline{}$		DIVII (OLLO	Division La	R/		Ditti (OLLI	Divil COLLO
^	Micro)		1	0	0	0	0	0	0
DMASEL	DMA/HDMA	010AH			0:Micro	0: Micro	0: Micro	0: Micro	0: Micro	0: Micro
	Select))						
1			7		DMA5	DMA4	DMA3	DMA2	DMA1	DMA0
	L	\sim			1:HDMA5	1:HDMA4	1:HDMA3	1:HDMA2	1:HDMA1	1:HDMA0

TOSHIBA

(3) Memory controller (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cynnoc.	Hamo	71441000	B0WW3	B0WW2	B0WW1	B0WW0	B0WR3	B0WR2	B0WR1	B0WR0
			2011110	2011112		R/			2011111	2011110
			0	0	1	0	0	0	1	0
			Write waits	-			Read waits			
	BLOCK0		0001: 0 waits	0010:	1 wait		0001: 0 waits	0010: 1	wait	
	CS/WAIT		0101: 2 waits		3 waits		0101: 2 waits			
B0CSL	control	0140H	0111: 4 waits	1000:	5 waits		0111: 4 waits	1000: 5	waits	
	register low		1001: 6 waits	1010:	7 waits		1001: 6 waits	1010: 7	waits	
	IOW		1011: 8 waits		9 waits		1011: 8 waits	_ /		
			1101: 10 wait		12 waits		1101: 10 wai 1111: 16 wai	/ / ^	2 waits	
			1111: 16 wait 0011: 6 state		20 waits	<		ts 0100: 2 s + WAIT pin		
			Others: Rese		input mode		Others: Rese		input mouc	
			B0E			B0REC	B0OM1	B0OM0	B0BUS1	B0BUS0
	D. 001/0		R/W					R/W	I	I
	BLOCK0		0	$\left \cdot \right $		0 (0	0	0	0
B0CSH	CS/WAIT control	0141H	CS select	_		Dummy	00: ROM/S		Data bus w	
BUCSII	register	014111	0: Disable			cycle	01: Reserv		00: 8 bits	
	high		1: Enable			0:No insert	10: Reserv	ed 💍	01: 16 bits	
	3					1: Insert	11: Reserv	ed (10: Reserv	
							~	1	11: Don't s	
			B1WW3	B1WW2	B1WW1	B1WW0	B1WR3	B1WR2	B1WR1	B1WR0
						\ R/		~ \	1	
			0	0	(1)	0	0	9)	1	0
	BLOCK1		Write waits	/		>	Read waits			
	CS/WAIT		0001: 0 waits			/	0001: 0 waits	. \		
B1CSL	control	0144H	0101: 2 waits 0111: 4 waits	/ _	3 waits 5 waits		0101: 2 waits 0111: 4 waits	/		
	register		1001: 6 waits		waits waits		1001: 6 waits			
	low		1011: 8 waits				1011: 8 waits			
			1101: 10 wait	ts 1110:\1	12 waits		1101: 10 wai	ts 1110: 1	2 waits	
			1111: 16 wait		20 waits		1111: 16 wait			
			0011: 6 state		input mode	\wedge		s + WAIT pin	input mode	
			Others: Rese	rved		B1REC	Others: Rese	B1OM0	B1BUS1	B1BUS0
			R/W	\mathcal{L}		BIREC	BIOWII	R/W	БІВОЗІ	БІВОЗО
	BLOCK1		(0)			10	0	0	0	0
DACCLI	CS/WAIT	04.451	CS select			Dummy	00: ROM/S		Data bus w	
B1CSH	control register	0145H	0: Disable	^	$(7/\langle$	cycle	01: Reserv		00: 8 bits	ndin
	high	< / /r	1: Enable			0:No	10: Reserv		01: 16 bits	
	9					insert	11: SDRAN	Л	10: Reserv	
					\	1: Insert			11: Don't s	
		^	B2WW3	B2WW2	B2WW1	B2WW0	B2WR3	B2WR2	B2WR1	B2WR0
		Z				R/	W		.	
	4		0 /	0	1	0	0	0	1	0
	BLOCK2		Write waits				Read waits			
^	CS/WAIT		0001: 0 waits		1 wait		0001: 0 waits			
B2CSL	control	0148H	0101: 2 waits		3 waits 5 waits		0101: 2 waits 0111: 4 waits		3 waits	
	register		0111: 4 waits 1001: 6 waits	\ \	7 waits		1001: 4 waits		5 waits 7 waits	
1	low		1001: 8 waits	' /	9 waits		1011: 8 waits		9 waits	
		Z	1101: 10 wait		12 waits		1101: 10 wait		12 waits	
			1111: 16 wait		20 waits		1111: 16 wait		20 waits	
	*		0011: 6 state	$s + \overline{WAIT}$ pin	input mode		0011: 6 state	$s + \overline{WAIT}$ pin	input mode	
			Others: Rese			1	Others: Rese		1	
			B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
	BLOCK2		R/	W				R/W		
	CS/WAIT		1	0		0	0	0	0	1
B2CSH	control	0149H	CS select	0:16 MB		Dummy	00: ROM/S	RAM	Data bus w	<i>i</i> idth
	register		0: Disable	1: Sets		cycle	01: Reserv		00: 8 bits	
	high		1: Enable	area		0:No	10: Reserv		01: 16 bits	ادما
						insert	11: SDRAN	/I	10: Reserv	
			<u> </u>			1: Insert	l .		11: Don't s	Сί

(3) Memory controller (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
,	-		B3WW3	B3WW2	B3WW1	B3WW0	B3WR3	B3WR2	B3WR1	B3WR0
						R/	W	I		
			0	0	1	0	0	0	1	0
			Write waits	-		_	Read waits	_		
	BLOCK3		0001: 0 waits	0010:	l wait		0001: 0 waits	20010: 1	wait	
	CS/WAIT		0101: 2 waits	0110: 3	3 waits		0101: 2 waits	0110:3	waits	
B3CSL	control	014CH	0111: 4 waits	1000: 5	waits		0111: 4 waits	1000: 5	waits	
	register		1001: 6 waits	1010: 7	waits		1001: 6 waits	1010: 7	waits	
	low		1011: 8 waits				1011: 8 waits	-		
			1101: 10 wait		12 waits		1101: 10 wai			
			1111: 16 wait		20 waits		1111: 16 wai	· V / _]]		
			0011: 6 states		input mode			s + WAIT pin	input mode	
			Others: Reser	rved		DODEO	Others: Rese		DODLIGA	DODI IOO
			B3E	$\overline{}$		B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
	BLOCK3		R/W					/R/W		
	CS/WAIT		0			0	0	0	0	0
B3CSH	control	014DH	CS select			Dummy <	00: ROM/S		Data bus w	ridth
	register		0: Disable 1: Enable			cycle	01: Reserv 10: Reserv		00: 8 bits 01: 16 bits	
	high		i. Enable			0:No insert	11: Reserv	1 /	10: Reserv	od
						1: Insert	i i. Keseiv	ea	11: Don't se	
			BEXWW3	BEXWW2	BEXWW1	BEXWW0	BEXWR3	BEXWR2	BEXWR1	BEXWR0
						R/	W	(7)		
			0	0	10	0	0	(0)	1	0
			Write waits	-			Read waits	~ ~ /		
	BLOCK EX		0001: 0 waits	0010: 1	wait		0001: 0 waits	0010: 1	wait	
	CS/WAIT		0101: 2 waits	0110: 3	waits	>	0101: 2 waits	0110: 3	waits	
BEXCSL	control	0158H	0111: 4 waits	1000: 5	waits		0111: 4 waits	1000: 5	waits	
	register		1001: 6 waits				1001: 6 waits			
	low		1011: 8 waits		waits		1011: 8 waits			
			1101: 10 wait	. ()	2 waits		1101: 10 wait			
			1111: 16 waits		20 waits		1111: 16 wait			
			0011: 6 states		Input mode			s + WAIT pin	i input mode	
			Others: Reser	rved		(5.50-5.2	Others: Rese		DEVE	D=\/5:::
						BEXREC	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
	BLOCK EX		791		4		·	R/W		
	CS/WAIT		144)}		0	0	0	0	0
BEXCSH	control	0159H		/ _	(7)	Dummy	00: ROM/S		Data bus w	ridth
	register				/ //<	cycle	01: Reserv		00: 8 bits	
	high					0:No	10: Reserv		01: 16 bits	a d
						insert 1: Insert	11: Reserv	eu	10: Reserve	

(3) Memory controller (3/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Memory		M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8
MAMR0	address	0142H				R/	W			
IVIAIVIITO	mask	014211	1	1	1	1	1	1	1	1
	register 0				0: Compa	re enable	1: Compa	re disable		
	Memory		M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
MSAR0	start	0143H				R/	W			
WOARO	address	014311	1	1	1	1	1	((1)	> 1	1
	register 0				Se	t start addre	ess A23 to A	16	/	
	Memory		M1V21	M1V20	M1V19	M1V18	M1V17	7M1V16	MV15-9	M1V8
MAMR1	address	0146H				R/	W\\	<u>/)) </u>		
IVII (IVII C I	mask	014011	1	1	1	1		\mathcal{L}	1	1
	register 1				0: Compa	re enable	1: Compa	re disable		
	Memory		M1S23	M1S22	M1S21	M1S20	M1S19	™M1S18	M1S17	M1S16
MSAR1	start	0147H				,R/	W			
10107 (1 1 1	address		1	1	1	1,/(1	1		1
	register 1					t start addre	ess A23 to A			7
	Memory		M2V22	M2V21	M2V20	M2V19	M2V18	M2V17 4	M2V16	M2V15
MAMR2	address	014AH		1	ı	((// Ř/	W			
	mask		1	1	1		/ 1	1	<u>///1)) </u>	1
	register 2					re enable	1: Compa		70/	•
	Memory		M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
MSAR2	start	014BH		i	4()		W (i	
	address		1	1	1	1	1	1/2	1	1
	register 2					<i>J</i>	ess A23 to A			
	Memory		M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
MAMR3	address	014EH		1	1	R/	W			
	mask register 3		1	1	<u> </u>	_/γ	1	1	1	1
	_		140000	1 (0000		re enable	1: Compa		140047	140040
	Memory	-	M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
MSAR3	start address	014FH			/		W /		1 4	4
	register 3	-	1	1	1	1	1 1	1	1	1
	register 3		[())	Se	et start addre	ess A23 to A	16		

(3) Memory controller (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
						OPGE	OPWR1	OPWR0	PR1	PR0
								R/W		
	Page					0	0	0	1	0
PMEMCR	ROM	0166H				ROM	Wait number	er on page	Byte numb	er in a page
PIVIEIVICK	control	0166H				page	00: 1 CLK (n		00: 64 byte	
	register					access	01: 2 CLK (n		01: 32 byte	es
						0: Disable	10: 3 CLK (n	-3-3-3 mode)	10: 16 byte	es
						1: Enable	11: Reserved	d ()	11: 8 bytes	;
					TACSEL1	TACSEL0		Ĺ	TAC1	TAC0
					R/	W	4	77/^	R	/W
	Adjust for				0	0		79	0	0
CSTMGCR	Timing of	0168H			Select area	to			Select delay	time(TAC)
oo moon	control	010011			change tim	ing			$00:0 \times f_{SYS}$	
	signal				00:CS0	01:CS1	(()	\triangleright	$01:1 \times f_{SYS}$	
					10:CS2	11:CS3			$10.2\times f_{\text{SYS}}$	
			_	_					11:Reserved	1
					TCWSEL1	TCWSEL0	TCWS1	TCWS0_	TCWH1	TCWH0
							R	/W (>)		-
	Adjust for				0	$(0/\wedge$	0	0	0	0
WRTMGCR	Timing of	0169H			Select area	to	Select delay	time(TCWS)		time(TCWH)
	control				change tim		00:0.5 × 1/1		00:0.5 × 1/	
	signal				00:CS0	01:CS1	01:1.5 × 1/1		01:1.5 × 1/	
					10:CS2	11:CS3	10:2.5 × 1/1	SYS	10:2.5 × 1/	
					AL.		11:3.5 × 1/1		11:3.5 × 1/	
			B1TCRS1	B1TCRS0	B1TCRH1	B1TCRH0	B0TCRS1	B0TCRS0	B0TCRH1	B0TCRH0
	A 11						R/W (/ / / .	\triangle	1	1
	Adjust for		0	0	0	0	/0/_	<i>)</i>) 0	0	0
RDTMGCR0	Timing of control	016AH	Select delay			time(TCRH)	Select delay			time(TCRH)
	signal		00:0.5 × 1/f	SYS	00:0 × 1/f _s		00:0.5 × 1/1		00:0 × 1/f _S	
	oigilai		01:1.5 × 1/f 10:2.5 × 1/f	SYS	01:1 × 1/f _S 10:2 × 1/f _S		01:1.5 × 1/1		01:1 × 1/f _S	
			$10.2.5 \times 1/1$ $11:3.5 \times 1/f$		$10.2 \times 1/l_{S}$ $11:3 \times 1/f_{S}$		10:2.5 × 1/1 11;3.5 × 1/1		10:2 × 1/f _S 11:3 × 1/f _S	
			B3TCRS1	B3TCRS0	B3TCRH1	B3TCRH0	B2TCRS1	B2TCRS0	B2TCRH1	B2TCRH0
	Adjust for			1 /0		0 K	R/W	1 0		
	Timing of		0		0		0	0	0	time(TCRH)
RDTMGCR1	control	016BH	Select delay 00:0.5 × 1/f		00:0 × 1/f _S	time(TCRH)	Select delay 00:0.5 × 1/1		00:0 × 1/f _{SN}	
	signal		00:0.5 × 1/f		$01:1 \times 1/f_{S}$		00:0.5 × 1/1 01:1.5 × 1/1		01:1 × 1/f _S	
	,	//)	10:2.5 × 1/f		10:2 × 1/f _S		10:2.5 × 1/1		10:2 × 1/f _{SN}	
	<	\//	11:3.5 × 1/f		11:3 × 1/f _S	rs	11:3.5 × 1/1		11:3 × 1/f _{SN}	
								CSDIS	ROMLESS	
				1					R/W	
	Boot Rom			1				1	0/1	1/0
BROMCR	control	016CH			\supset	1		Nand-Flash	Boot	Vector
DICOMOR	register	(()	/		~			Area CS	ROM	address
				(Output	0: Use	0: Disable
^	(())	1						0:enable	1: Bypass	1: Enable
								1:disable		
		\wedge	+							_
	RAM		J. V.C.	<i>></i>						R/W
RAMCR	control	016DH								1
	register				\vdash					
	\-\frac{1}{2}									Always
						<u>l</u>		<u> </u>		write "1"

(4) TSI

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TSI7	INGE	PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
			R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
			0	0	0	0	0	0	0	0
TSICR0	TSI control register0	01F0H	0: Disable 1: Enable	Input gate control of Port 96,97 0: Enable 1: Disable	Detection condition 0: no touch 1: touch	INT4 interrupt control 0: Disable 1: Enable	SPY 0:OFF 1:ON	SPX 0:OEF 1:ON	SMY 0:OFF 1:ON	SMX 0:OFF 1:ON
			DBC7	DB1024	DB256	DB64	DB8	DB4	DB2	DB1
	TO.					R	W			
TSICR1	TSI	01F1H	0	0	0	0	(0)) 0	0	0
TOICKT	control register1	011-111	0: Disable	1024	256	64	8	4	2	1
	register1	teri	1: Enable	"N"				ula "(N*64-1 and bit0 whic	/. /) "1".

(5) SDRAM controller

SDRAM SDRA	SMAC R/W 0 SDRAM controller 0: Disable 1: Enable
SDRAM access control register 1 0 0 0 0 0 Read/Write data shift function 0: Disable 1: Enable 1 D0 D0 D0 Read/Write commands 00: Type A (A9-) 01: Type B (A10-) 10: Type C (A11-) 11: Reserved 1: With auto pre-charge 1: Wi	0 SDRAM controller 0: Disable
SDACR SDRAM access control register O250H Read data shift function O: Disable 1: Enable Read data shift function O: Disable 1: Enable STMRD STWR STRP STRCD STRC2 STRC1	SDRAM controller 0: Disable
SDACR SDACR SDACR SDACR O250H data shift function 0: Disable 1: Enable O250H O250H STMRD STMRD STWR STRP STRCD STRC2 STRC1	controller 0: Disable
SDACR access control register 0250H data shift function 0: Disable 1: Enable 1: Enable 00: Type A (A9-) 01: Type B (A10-) 0: Without auto precharge 1: With auto precharge 0: STMRD STWR STRP STRCD STRC2 STRC1	0: Disable
control register 0: Disable 1: Enable 0: Type B (A10-) 0: Without auto pre-charge 11: Reserved 11: Reserved STMRD STWR STRP STRCD STRC2 STRC1	
1: Enable 10: Type C (A11-) auto pre-charge 1: With auto pre-charge 1: With auto pre-charge 1: With auto precharge	
11: Reserved charge 1: With auto precharge STMRD STWR STRP STRCD STRC2 STRC1	1: Enable
1: With auto precharge STMRD STWR STRP STRCD STRC2 STRC1	
STMRD STWR STRP STRCD STRC2 STRC1	
STMRD STWR STRP STRCD STRC2 STRC1	
DM	STRC0
SDRAM Command 1 1 1 1 0	0
Interval)
Setting 0.1 Cl K 0.1 Cl K 0.1 Cl K 0.00.1 Cl K 100.5 C	l K
Register 1: 2 CLK 1: 2 CLK 1: 2 CLK 001: 2 CLK 101: 6 C	
010: 3 CLK 110: 7 C	
011: 4 CLK 111: 8 C	
- SSAE SRS2 SRS1 SRS0	SRC
R/W R/W	
0 1 0 0	0
SDRAM Always Self Refresh interval	Auto
SDRCR refresh 0252H write "0" Refresh 000: 47 states 100: 468 states	Refresh
control register auto 001; 78 states 101: 624 states exit 010: 156 states 110: 936 states	0 D: 11
function	0:Disable
0:Disable 011: 312 states 111: 1248 states	1:Enable
1;Enable	
SCMM2 SCMM1	SCMM0
R/W	
0 0	0
Command issue	
000: Don't care	
000: Don't care 001: Initialization sequ	
SDCMM SDRAM command 0253H 0253H 0253H 000: Don't care 001: Initialization sequence a. Precharge All col	nmand
SDCMM SDRAM command register SDRAM command register O00: Don't care O01: Initialization sequ a. Precharge All col b. Eight Auto Refree	nmand h commands
SDCMM SDRAM command register O00: Don't care O01: Initialization sequence as Precharge All combined by Eight Auto Refrese combined to the combined and the combined as Precharge All combined to the combined as Precharge All combined to the combined as Precharge All combined to the comb	nmand h commands et command
SDCMM SDRAM command register O00: Don't care O01: Initialization sequence as Precharge All combined by Eight Auto Refrese combined in the Command by Eight Auto Register Scott Combined in the Command command register in the Command command register in the Command command register in the Command command register in the Command command register in the Command command register in the Command command register in the Command command command register in the Command command register in the Command command register in the Command command command register in the Command command command command register in the Command comma	nmand h commands et command
SDCMM SDRAM command register O00: Don't care O01: Initialization sequence as Precharge All control by Eight Auto Refrese control of the Con	nmand th commands et command mmand
SDCMM SDRAM command register O00: Don't care 001: Initialization sequence a. Precharge All countries b. Eight Auto Refrese c. Mode Register S. 010: Precharge All countries 100: Reserved 101: Self Refresh Ent	nmand th commands of command mmand y command
SDCMM SDRAM command register O00: Don't care 001: Initialization sequence a. Precharge All conduction b. Eight Auto Refrese c. Mode Register SO10: Precharge All conduction on the conduction of the conduction	nmand th commands of command mmand y command
SDCMM SDRAM command register 000: Don't care 001: Initialization sequence a. Precharge All conduction b. Eight Auto Refrese c. Mode Register S. 010: Precharge All conduction 100: Reserved 101: Self Refresh Ent 110: Self Refresh Exit Others: Reserved	nmand th commands at command mmand y command command
SDCMM SDRAM command register O00: Don't care 001: Initialization sequence a. Precharge All conduction b. Eight Auto Refrese c. Mode Register SO10: Precharge All conduction on the conduction of the conduction	nmand th commands of command mmand y command
SDCMM SDRAM command register 000: Don't care 001: Initialization sequence a. Precharge All conduction b. Eight Auto Refrese c. Mode Register S 010: Precharge All conduction 100: Reserved 101: Self Refresh Ent 110: Self Refresh Exit Others: Reserved SDBL5 SDBL4 SDBL3 SDBL2 SDBL1	nmand th commands at command mmand y command command
SDCMM SDRAM command register 001: Initialization sequence as Precharge All conduction by Eight Auto Refrese conduction of the Conduction	nmand th commands at command mmand y command command SDBL0
SDCMM SDRAM command register 000: Don't care 001: Initialization sequence a. Precharge All conduction b. Eight Auto Refrese c. Mode Register S 010: Precharge All conduction 100: Reserved 101: Self Refresh Ent 110: Self Refresh Exit Others: Reserved SDBL5 SDBL4 SDBL3 SDBL2 SDBL1	nmand th commands at command mmand y command command
SDCMM SDRAM command register 001: Initialization sequence as Precharge All conduction by Eight Auto Refrese conduction of the Conduction	nmand th commands at command mmand y command command SDBL0 For
SDCMM SDRAM command register 000: Don't care 0001: Initialization sequence as Precharge All condition in the condition of t	nmand th commands at command mmand y command command SDBL0 For

(6) LCD controller (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			RAMTYPE1	RAMTYPE0	SCPW1	SCPW0	MODE3	MODE2	MODE1	MODE0		
						F	R/W					
			0	0	1	1	0	0	0	0		
			Display RA	M		nsfer speed	Mode settir	•				
			00: Interna	IRAM	SCPW2= 0		0000 : Rese	rved	1000 : STN (64k color)		
	LCD		01: Externa	al SRAM	00: 2-clock		0001 : SR (mono) 1001 : Reserved					
LCDMODE0	mode0	0280H	10: SDRAM	Л	01: 4-clock 10: 8-clock		0010 : SR (4	0010 : SR (4Gray) 1010 : TFT (256 color)				
	register		11: Reserv	ed	11: 16-cloc		0011 : Rese		1011 : TFT (4	4096 color)		
					SCPW2= 1		0100 : SR (16Gray)	1100 : TFT (64k color)		
					00: 6-clock		0101 : \$R (6	64Gray)	1101 : TFT2			
					01: 12-cloc		0110 : STN		4440 D	(color)		
					10: 24-cloc		0111 : STN		1110 : Reser			
			1.000	1.004		ı		30 00.0.7	1111 : Reser	1		
			LDC2	LDC1	LDC0 R/	LDINV	AUTOINV	INTMODE	FREDGE	SCPW2 W		
			0	0	0	0	0	0 /	0	0		
			Data rotation		<u> </u>	LD bus	Auto bus	Interrupt	FR edge	LD bus		
	LCD			or 64K-color:	16bps only)	Inversion	inversion	selection	0: LHSYNC	transfer		
LCDMODE1	mode1	0281H	000: Normal		-degree		0: Disable		front edge	speed		
	register			tal flip 101: Re		0: Normal	1: enable	0:LLOAD	1:LHSYNC			
			010: Vertical	•	eserved	1: Inversion	(Valid only	1:LVSYNC	back edge	0: normal		
				•	eserved		for TFT)	\bigcirc		1: 1/3		
			011: Horizor	ntal & vertical f	lip							
	LCD		FMP3	FMP2	FMP1	FMP0	FML3/	FML2	FML1	FML0		
	divide					R	w V))				
LCDDVM0	frame0	0283H	0	0	0	0	0	0	0	0		
	register			LCP0 DVI	(bits 3-0)			LHSYNC D	DVM (bits 3-0)		
	LCD		FMP7	FMP6	FMP5	FMP4	FML7	FML6	FML5	FML4		
	divide	000011			•	R	W/	•	•			
LCDDVM1	frame1	0288H	0 (7 0	0		0	0	0	0		
	register			LCP0 DVI	/ (bits 7-4)			LHSYNC	DVM (bit 7-4)			
			COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0		
			$((7/\langle \cdot \rangle$	R/	w <	7/		F	R/W			
			(0)	0	0	0	0	0	0	0		
		//)]	Common se	etting /	((//))	Segment s	etting	•	•		
		\//	0000 : rese		1000 : 320	/	0000 : Res		1000 : Res			
LCDSIZE	LCD size register	0284H	0001: 64	/	1001 : 480		0001: 64		1001 : Res			
	register		0010: 96		1010 : Rese		0010 : 128		1010 : Res			
			0011 : 120 0100 : 128		1011 : Rese		0011 : 160 0100 : 240		1011 : Res			
	7/	N	0100 : 120		1100 : Rese		0100 : 240		1100 : Res			
			0110 : 200	/	1110 : Rese		0110 : 480		1110 : Res			
\wedge			0111 : 240		1111 : Rese	erved	0111 : 640		1111 : Re	served		
		/ ^	PIPE	ALL0	FRMON	_		DLS	LCP00C	START		
					W				R/W			
			0	0	0	0		0	0	0		
		4	PIP function	Segment	FR divide	Always write "0"		FR signal	LCP0	LCDC		
	\searrow		0:Disable	Data	setting	WING U		LCP0/Line	0: Always output	operation		
	LCD		1:Enable	0:Normal	0. D:			selection	1: At valid	O: Stor		
LCDCTL0	control0	0285H	1.21000	1: Always output "0"	0: Disable			0:Line	data only	0: Stop		
	register			Jaipai 0	1: Enable			1:LCP0	LLOAD	1: Start		
									width			
									0: At setting			
									in register			
									1: At valid			
									data only			

(6) LCD controller (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			LCP0P	LHSP	LVSP	LLDP			LVSW1	LVSW0
			R/W	R/W	R/W	R/W			R/W	R/W
			1	0	1	0			0	0
	LCD		LCP0	LHSYNC	LVSYNC	LLOAD	4		LVSYNC	
LCDCTL1	control1	0286H	phase	phase	phase	phase		7	enable time	control
	register		0:Rising	0:Rising	0:Rising	0:Rising			00: 1 clock o	f LHSYNC
			1:Falling	1: Falling	1: Falling	1: Falling		(())	01: 2 clocks	of LHSYNC
									10: 3 clocks	of LHSYNC
						,	((/		11: Reserve	d
			LGOE2P	LGOE1P	LGOE0P		1	-		
				R/W	I					
	LCD		0	0	0		1			
LCDCTL2	control2	0287H	LGOE2	LGOE1	LGOE0					
	register		phase	phase	phase	$\mathcal{A}($				
			0: Rising	0: Rising	0: Rising	(,/		_<		
			1: Falling	1: Falling	1: Falling			12		
			LH7	LH6	LH5	(LH4))	LH3	LH2		LH0
	LHSYNC			2.10	2110	-	W	7		2.10
LCDHSP	Pulse	028AH	0	0	0_(0	0	0	0	0
	register		0	0		LHSYNC pe			0	U
			11145	11144					1110	1110
	LHSYNC		LH15	LH14	LH13	LH12	LH11	LH10	LH9	LH8
LCDHSP	Pulse	028BH					W (7/4	<u> </u>	I	ı
	register		0	0	0	0	(0)	0	0	0
	_			(1)		HSYNC per	riod (bits 15-	8)		
	LVSYNC		LVP7	LVP6	LVP5	LVP4	LVP3	LVP2	LVP1	LVP0
LCDVSP	Pulse	028CH		(())			<u>w // w</u>			
20210	register	020011	0	9	0	0	V 0	0	0	0
	rogiotoi			/ \		LVSYNC pe	riod (bits 7-0))		
			1	#	4	1			LVP9	LVP8
	LVSYNC								V	V
LCDVSP	Pulse	028DH	1445			7/			0	0
	register		$\langle \mathcal{O} \rangle$		\bigcap					C period
	ŭ	//)]			((/ /))				(bits	
	4		$\overline{}$	PLV6	PLV5	PLV4	PLV3	PLV2	PLV1	PLV0
	LVSYNC			TLVO	1 LV3	1 L V 4	W	ILVZ	ILVI	ILVO
LCDPRVSP	Pre Pulse	028EH								
	register			0	0	0	0	0	0	0
	>,<	\ h		\	>		my LVSYNC		l	
	LHSYNC		<i></i>	HSD6	HSD5	HSD4	HSD3	HSD2	HSD1	HSD0
LCDHSDLY	Delay	\ 028FH		\	1		W			
	register) ===:		0	0	0	0	0	0	0
	79.00	$\langle \ \ \ \ \ \rangle$		() ~		LHSY	NC delay (bi	ts 6-0)		
			/>PDT	LDD6	LDD5	LDD4	LDD3	LDD2	LDD1	LDD0
			R/W		1		W			ı
			0	0	0	0	0	0	0	0
	LLOAD		Data output		ı <u> </u>	ı	ı <u> </u>	ı <u> </u>	ı <u> </u>	<u> </u>
LCDLDDLY	Delay	0290H	timing							
	register		0: Sync with							
			LLOAD			LLOA	AD delay (bit	s 6-0)		
			1: 1 clock							
			later than							
			LLOAD							

(6) LCD controller (3/4)

LGOEO L	Symbol	Name	Address	7	6	5	4	3	2	1	0
LCDODLY register CODE CO		10050			OE0D6	OE0D5	OE0D4	OE0D3	OE0D2	OE0D1	OE0D0
CDD1DLY LGOE1 LGOE2 Delay register CDE1DG OE1DG	I CDOODI V		0201					W			
LCDO1DLY LGOE1 LGOE2 LCDO2DLY Pegister CDE1DR OE1DR OE2DR OE	LCDOODL1	,	029111		0	0	0	0	0	0	0
LCDO1DLY Delay register CO292H		. og.oto.					OE	delay (bits	6-0)		
LCDO1DLY Delay register CDE1 CDE2		LCOE1			OE1D6	OE1D5	OE1D4	OE1D3	OE1D2	OE1D1	OE1D0
Register	LCDO1DLY		0292H					W	(())	7	
LCDO2DLY Projecter LCDO2DLY Projecter LCDD4DW LCDD4DW Projecter LCDD4DW Projecter LCDD4DW LCDD4DW Projecter LODOIDLI	,	020211		0	0	_	• / /	> / .	0	0	
LCODEDLY Pegister CODE2 Delay register CODE2 Delay register CODE2 Delay register CODE2 Delay (bits 6-0) COD		3					OE?	I delay (bits	6-0)		
CLODOZDLY Pegister Color Period	LCOE2			OE2D6	OE2D5	OE2D4	OE2D3	OE2D2	OE2D1	OE2D0	
CDHSW Pegister Color Co	I CDO2DLY		0293H					W	>		
LISYNC Width register LODHOWW LODHOW LODHOW LODHOW LODHOW Register LODHOW Register LODHOWW Register RODHOW Register RODHOW 2020221	,	0200		0	0			_	0	0	
LCDHSW Vidth register		J					ÓE2	1 1	6-0)		
CDHSW Width register Width registe		LHSYNC		HSW7	HSW6	HSW5	HSW4	HSW3	HSW2	HSW1	HSW0
Tegister Color C	LCDHSW		0294H			.		V	12		
LLOAD width register LDW7 LDW6 LDW5 LDW4 LDW3 LDW2 LDW1 LDW0				0	0	-				Ò	0
LCDLDW width register CDLDW width register CDLDW width register CDLDW		, and the second			1	Sett		· LHSYNC V		//))	
LCDLDW register CDLDW register registe		LLOAD		LDW7	LDW6	LDW5	LDW4	LDW3	LDW2	LDW1	LDW0
LCDHOW LGOE0 width register 0 0 0 0 0 0 0 0 0	I CDI DW	_	0295H				V V	V ((
LCDHOW LGOE0 width register D0296H D0			0200	0	0	0	0	0	-0/	0	0
LCDHOOW Vidth register Vidth regis		Ŭ.			(LHSYNC wi	dth (bits 7-0	<u>\</u>		
LCDHOW width register		LGOEO		O0W7	O0W6	O0W5	O0W4	O0W3) 00W2	O0W1	O0W0
LCDHO1W LGOE1 Width register D297H D298H LCDHO2W LCD	I CDHO0W		0296H		4		V	W/			
LCDHO1W LGOE1 Vidth register D1W7 D1W6 D1W5 D1W4 D1W3 D1W2 D1W1 D1W0	LODITION		020011	0	0	0	0	0	0	0	0
LGOE1 width register		J					LLOAD wid	th (bits 7-0)			
LCDHO1W width register 0297H 0 0 0 0 0 0 0 0 0		LGOE1		O1W7	O1W6	O1W5	O1W4	Ø1W3	O1W2	O1W1	O1W0
LCDHVB8 Pregister Pregis	LCDHO1W		0297H		^ \	i -	- / /	V			
LCDHVB8 Bit8,9 for signal width register O299H O299				0 \	<u> </u>	0 (1.1	-	0	0	0
LCDHO2W width register 0298H 0 0 0 0 0 0 0 0 0		- C						<u> </u>	1		
LCDHO2W width register 0298H 0 0 0 0 0 0 0 0 0		LGOE2		Q2W7	O2W6	O2W5			O2W2	O2W1	O2W0
CDHWB8 Fegister CGOE2 width (bits 7-0) C2W9 C2W8 C1W9 C1W8 C0W8 C1W9 C1W8 C1W9 LCDHO2W		0298H		_	((7/1)	}		i .			
CDHWB8 Bit8,9 for signal width register 0299H		register	\/r	0	0	(VO)			0	0	0
Bit8,9 for signal width register 0299H 0299H 0 0 0 0 0 0 0 0 0			/'/						T		
CDHWB8 for signal width register 0299H 0 0 0 0 0 0 0 0 0		D:10 C		O2W9	O2W8	O1W9			LDW9	LDW8	HSW8
width register (bits 9-8) (bits 9-8) LHSYNC width LGOE0 width (bits 9-8) LHSYNC				•			1	1		•	•
register (bits 9-8) (bits 9-8) width EGOED width (bits 9-8) LASTING width	LCDHWB8		0299H	_		V -		-	_		
(bits 3-0) (bits 3-0)				. \	(LLOAD wid	tn (bits 9-8)	
	\wedge	()		(bits	2-0)	(DITS	9-0)	(bit 8)			(bit 8)

(6) LCD controller (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cynnoon	Start	7 1441 000	LMSA7	LMSA6	LMSA5	LMSA4	LMSA3	LMSA2	LMSA1	
1.0004	address	004011				R/W				
LSAML	register	02A0H	0	0	0	0	0	0	0	
	LCD main-L				LCD main a	ea start add	lress (A7-A1)	•	
	Start		LMSA15	LMSA14	LMSA13	LMSA12	LMSA11	∠LMSA10	LMA9	LMSA8
LSAMM	address	02A1H				R	/W			
LOAMIN	register	UZATIT	0	0	0	0	0	0	0	0
	LCD main-M				LCD m	ain area sta	rt address (A	A15-A8)		
	Start		LMSA23	LMSA22	LMSA21	LMSA20	LMSA19	LMSA18	LMSA17	LMSA16
LSAMH	address	02A2H		.	.	t	W	7/^	.	
	register		0	1	0	0	0 \	/) 0	0	0
	LCD main-H			1	1		t address (A		1	
	Start		LSSA7	LSSA6	LSSA5	LSSA4	LSSA3	LSSA2	LSSA1	
LSASL	address	02A4H				R/W		_		
	register LCD sub-L		0	0	0	0	0	0	0	
			1.00445	100444			ress (A7-A1)		1,0040	1.0040
	Start		LSSA15	LSSA14	LSSA13	LSSA12	LSSA11 W	LSSA10	LSSA9	LSSA8
LSASM	address register	02A5H	0	0	0	(Ø/\$\)	0	0	10	0
	LCD sub -M		U	l 0			t address (A			U
			LSSA23	LSSA22	LSSA21	LSSA20	LSSA19	LSSA18	LSSA17	LSSA16
	Start address		LOOAZO	LSSAZZ	LSSAZI		W /	LOSATO	LOOATI	LOOATO
LSASH	register	02A6H	0	1	0	0	0 (0	0	0
	LCD sub -H		0	'			address (A2	\sim	0	U
			SAHX7	SAHX6	SAHX5	SAHX4	SAHX3	SAHX2	SAHX1	SAHX0
	Hot point		0/11/7/	O/ 11 1/10	0/11/10	, -	w (//	Ortifice	0/11/11	0/11/1/10
LSAHX	register	02A8H	0	0 (0	0	0	0	0	0
	LCD sub -X			74			HOT point (7	/	ı	
						D Gas area	7	3)	SAHX9	SAHX8
	Hot point		$\bigg $	1		11	1			W
LSAHX	register	02A9H	//	#			A/		0	0
	LCD sub -X			7		^				area HOT
				2)		<u> </u>			point	
	Hot point		SAHY7	SAHY6	SAHY5	SAHY4	SAHY3	SAHY2	SAHY1	SAHY0
LSAHY	register	02AAH	(0/^	0	0	0 8	/W 0	0	_	0
	LCD sub -Y			U	-	7//-			0	0
			7.7		10	D sub area	HOT point (7	(-U)		0.4111/0
	/	(/) '	/		100					SAHY8
1.04111/	Hot point	00 (D/	$A = \frac{1}{2}$							R/W 0
LSAHY	register	02ABH								LCD sub
	LCD sub -Y			//						area HOT
	1		0			0:-		0.5	0:-	point (8)
	Segment		SAS7	SAS6	SAS5	SAS4	SAS3	SAS2	SAS1	SAS0
LSASS	size	02ACH		2	_		/W			_
	register LCD sub		0	0	0	0	0	(7.0)	0	0
^	()					sup area se	egment size	(7-0)	0400	CA CC
	Segment								SAS9	SAS8
LSASS	size	02ADH	A.	#					0 R/	W 0
	register		\leftarrow							ub area
	LCD sub									size (9-8)
	Common		SAC7	SAC6	SAC5	SAC4	SAC3	SAC2	SAC1	SAC0
LSACS	size	02AEH					/W			
LOMOG	register	VERLII	0	0	0	0	0	0	0	0
	LCD sub			-	LCD	sub area co	ommon size	(7-0)		
										SAC8
	Common									R/W
LSACS	size	02AFH								0
	register	=====================================								LCD sub area
	LCD sub									common
									l	size (8)

(7) PMC

Symbol	Name	Address	7	6	5	4	3	2	1	0
		02A0H	PCM_ON					-	WUTM1	WUTM0
		02/1011	R/W					W	R/W	R/W
		System Reset State	0					0	0	0
PMCCTL	PMC Control	Hot Reset State	Data retained					_	Data retained	Data retained
	Register		Power Cut Mode					Must be written as 0	Warm-up ti 00: 2 ⁹ (15.6	625 ms)
			0: Disable 1: Enable			4	. \ \ \	Always	01: 2 ¹⁰ (31 10: 2 ¹¹ (62	.5 ms)
								read as "0	11: 2 ¹² (12	5 ms)

(8) USB controller (1/6)

Descriptor RAM0 Page Pag	Symbol	Name	Address	7	6	5	4	3	2	1	0
Pescriptor RAMS Pescriptor		Descriptor		D7	D6	D5	D4	D3	D2	D1	D0
Descriptor RAM3 Pescriptor	Descriptor RAM0		0500H		•		R/	W		•	
Descriptor RAM2 Page Pag		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Pescriptor RAM32 Descriptor RAM32 Pescriptor RAM32 Pescriptor RAM32 Pescriptor RAM32 Pescriptor RAM32 Pescriptor RAM33 Pescriptor RAM34 Pescriptor RAM34 Pescriptor RAM34 Pescriptor RAM35 Pescriptor RAM35 Pescriptor RAM36 Pescriptor RAM36 Pescriptor RAM36 Pescriptor RAM37 Pescriptor RAM37 Pescriptor RAM381 Pescriptor RAM381 Pescriptor RAM381 Pescriptor RAM381 Pescriptor RAM382 Pescriptor RAM383 Pescriptor RAM382 Pescriptor RAM383 P		Descriptor		D7	D6	D5	D4	D3	D2	D1	D0
Descriptor RAM2 Part Descriptor RAM3 P	Descriptor RAM1		0501H				R/	W			
Descriptor RAM2 register Descriptor RAM31 RAM 381 register Descriptor RAM32 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM381 RAM 381 register Descriptor RAM382 RAM 382 register Descriptor RAM382 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Descriptor RAM383 RAM 382 register Dry D6 D5 D4 D3 D2 D1 D0 Descriptor RAM384 RAM 382 register D7 D6 D5 D4 D3 D2 D1 D0 Descriptor RAM385 RAM 382 register D7 D6 D5 D4 D3 D2 D1 D0 Descriptor RAM385 RAM 382 register D7 D6 D5 D4 D3 D2 D1 D0 RAW Undefined		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
register		Descriptor		D7	D6	D5	D4	D3	(D2)	D1	D0
Descriptor RAM3 Pagister Descriptor RAM3 Pagister Descriptor RAM3 Descriptor RAM3 Pagister Descriptor RAM3 Pagister Descriptor RAM3 Descriptor RAM3 Pagister Descriptor RAM3 Descriptor RAM3 Descriptor RAM3 Pagister Descriptor RAM3 Descriptor RAM3 Pagister Descriptor	Descriptor RAM2		0502H		1		R/	W		1	1
Descriptor RAM38		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
register Undefined Undefi				D7	D6	D5	D4	D3	D2	D1	D0
Descriptor RAM381 RAM 381 register Descriptor RAM382 register Descriptor RAM383 RAM 383 register Endpoint0 Endpoint1 Endpoint1 Endpoint2 Endpoint2 Endpoint2 Endpoint3 Endpoint3 Endpoint3 Endpoint3 Endpoint4 Endpoint4 Endpoint5 Endpoint5 Endpoint6 Endpoint6 Endpoint7 Endpoint7 Endpoint7 Endpoint7 Endpoint8	Descriptor RAM3		0503H		Т	1	R/	W	-	Γ	
Descriptor RAM381 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM382 register Dr D6 D5 D4 D3 D2 D1 D0 R/W Undefined Undefi		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Descriptor RAM381 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM382 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM382 register Dr D6 D5 D4 D3 D2 D1 D0 R/W Undefined Undefi	:	:	: :								
register Descriptor RAM382 Descriptor RAM382 RAM 382 register		Descriptor		D7	D6	D5	D4 /	→ D3	D2	D1	D0
Descriptor RAM382 RAM 382 register Endpoint0 Radjoint 1 register Endpoint1 Radjoint 2 register Endpoint2 Radjoint 2 register Endpoint3 Radjoint 3 register Endpoint3 Radjoint 4 register Endpoint 4 Radjoint 3 register Endpoint 5 Radjoint 4 register Endpoint 6 Radjoint 1 register Endpoint 6 Radjoint 1 register Endpoint 6 Radjoint 1 register Endpoint 6 Radjoint 1 register Endpoint 7 Radjoint 1 register Endpoint 6 Radjoint 1 register Endpoint 7 Radjoint 1 register Endpoint 8 Radjoint 1 register Endpoint 9 Radjoint 1 register Endpoint 1 Radjoint 1 register Endpoint 1 Radjoint 1 register Endpoint 1 Radjoint 2 register Endpoint 1 Radjoint 2 register Endpoint 2 Radjoint 3 register Endpoint 3 Radjoint 3 register Endpoint 3 Radjoint 4 Radjoint 4 Radjoint 4 Radjoint 5 Radjoint 5 Radjoint 6 Radjoint 6 Radjoint 7 Ra	Descriptor RAM381		067DH		1		V// R	w 🔷			
Descriptor RAM382 register Descriptor RAM383 register Descriptor RAM383 Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 Descriptor RAM383 register Descriptor RAM383 Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 register Descriptor RAM383 Descriptor RAM383 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 register Descriptor RAM384 reg		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
register Descriptor RAM383				D7	D6	D5	D4	D3 /	D2	D1	D0
Descriptor RAM383 register	Descriptor RAM382		067EH		Т	4()	R/	w (C		Т	Г
Bendpoint Pendpoint Pend		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
register Indefined Undefined Undefi				D7	D6	D5		-	D2	D1	D0
Endpoint 0 register 0780H Endpoint 1 register 0781H Endpoint 2 register 0782H Endpoint 2 register 0782H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 1 register 0783H Endpoint 1 register 0780H Endpoint 1 register 0780H Endpoint 1 register 0780H Endpoint 1 register 0780H Endpoint 2 register 0782H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 1 register 0783H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 3 register 0783H Endpoint 4 Payload[2] Payload[1] Payload[0] Mode[1] Mode[0] Direction	Descriptor RAM383		067FH		-		R/	W	/	T	
Endpoint 0 register 0780H		register		Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
Endpoint 1 register Undefined Undef	F11-10	Endpoint 0	070011	EP0_DATA7	EP0_DATA6	EP0_DATA5			EP0_DATA2	EP0_DATA1	EP0_DATA0
Endpoint1 register 0781H Endpoint2 register 0782H Endpoint3 register 0783H Endpoint1 register 0783H Endpoint3 register 0783H Endpoint1 register 0781H Endpoint2 register 0782H Endpoint3 register 0783H Endpoint1 register 0782H Endpoint2 register 0782H Endpoint3 register 0783H Endpoint3 register 0783H Endpoint3 register 0783H Endpoint1 register 0781H EP1_DATA6 EP1_DATA6 EP1_DATA4 EP1_DATA3 EP1_DATA2 EP1_DATA1 EP1_DATA0 Undefined Un	Enapointu	register	0780H		(())	I		7/			
Endpoint1 register 0781H R/W Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined EP2_DATA3 EP2_DATA4 EP2_DATA3 EP2_DATA4 EP2_DATA4 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP2_DATA6 EP3_DATA6 EP3_DA				/			/\				
Endpoint 2 register Undefined Undefin	Endnoint1	Endpoint 1	07011	EP1_DATA7	EP1_DATA6	EP1_DATA5	11		EP1_DATA2	EP1_DATA1	EP1_DATA0
Endpoint2 register 0782H Endpoint3 register 0783H Endpoint3 register 0783H Endpoint 1 Payload[2] Payload[1] Payload[0] Mode[1] Mode[0] Direction	Litapolitti	register	0/8111				/ /				
Endpoint2 register 0782H R/W Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined Undefined EP3_DATA3 EP3_DATA3 EP3_DATA4 EP3_DATA4 EP3_DATA4 EP3_DATA4 EP3_DATA5 EP3_DATA4 EP3_DATA6 EP3_DA				1773			7 /				
Endpoint 3 register Undefined Undef	Endpoint2		0782H	EP2_DATA/	EP2_DATA6	EP2_DATA5			EP2_DATA2	EP2_DATA1	EP2_DATA0
Endpoint3 register 0783H	Lilapolita	register	(0.02)	Undofined	Undefined	Undofined			Undofinad	Undofinad	Undofined
Endpoint3 register 0783H			7//								
Endpoint 1	Endpoint3		0783H	EP3_DATAI	EF3_DATA0	ELS_DATAS			EF3_DATAZ	EF3_DATAT	EP3_DATAU
Endpoint 1 Payload[2] Payload[1] Payload[0] Mode[1] Mode[0] Direction		register		Undefined	Undefined	Undefined			Undefined	Undefined	Undefined
		Endpoint 1		Ondenned	Oridentied						
EP1_MODE mode 0789H	EP1_MODE	mode	0789H			ayloau[2]	i ayloau[i]			Modelol	Direction
register 0 0 0 0 0 0	_			7		0	0			0	0
Endpoint 2 Payload[2] Payload[1] Payload[0] Mode[1] Mode[0] Direction		Endnoint 2			Mr.						
EP2_MODE mode 078AH R/W	EP2_MODE		078AH	4		. 4,1044[2]	, aylouu[1]			i incacioj	2110001011
register 0 0 0 0 0 0		register			/	0	0			0	0
Endpoint 3 Payload[2] Payload[1] Payload[0] Mode[1] Mode[0] Direction		Endpoint 3	7								
EP3_MODE mode 078BH R/W	EP3_MODE		078BH			,[-]	,,[.]				
register 0 0 0 0 0 0		register				0	0			0	0

(8) USB controller (2/6)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Endpoint 0			TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
EP0_STATUS	status	0790H			1		R		·	
	register			0	0	1	1	1	0	0
	Endpoint 1			TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
EP1_STATUS	status register	0791H			1	1	R		1	1
	register			0	0	1	1		0	0
	Endpoint 2	070011		TOGGLE	SUSPEND	STATUS[2]	STATUS[1]	STATUS[0]	FIFO_DISABLE	STAGE_ERR
EP2_STATUS	status register	0792H			1	1	R		1	1
	-			0	0	1	1(//	() 1	0	0
ED2 CTATUC	Endpoint 3	0793H		TOGGLE	SUSPEND	STATUS[2]		STATUS[0]	FIFO_DISABLE	STAGE_ERR
EP3_STATUS	status register	079311					R			
				0	0	1	(1))	1	0	0
	Endpoint 0 size		PKT_ACTIVE	DATASIZE6	DATASIZE5		DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP0_SIZE_L_A	register	0798H	1	0	0	_0 R	1	200	0	0
	Low A		I	U	U			0		U
	Endpoint 0		PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP1_SIZE_L_A	size register	0799H				R	2		/))	ı
	Low A		1	0	0	9	1	0	0	0
	Endpoint 2		PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP2_SIZE_L_A	size register	079AH				R				
	Low A		1	0	0	0	((1/5)	0	0	0
	Endpoint 3		PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP3_SIZE_L_A	size	079BH			7711,01220	R	1 1	D7111101222	D7117101221	127117101220
	register Low A	0.02	1	(0)	0	0	//1	0	0	0
	Endpoint 1		PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP1_SIZE_L_B	size	07A1H	- ((•	R		•	•	
	register Low B		0	<u></u> 0	0	0	1	0	0	0
	Endpoint 2		PKT_ACTIVE	DATASIZE6	DATASIZE5	DATASIZE4	DATASIZE3	DATASIZE2	DATASIZE1	DATASIZE0
EP2_SIZE_L_B	size	07A2H			(0)	R			•	
	register Low B	(()	0	0	(0)	0	1	0	0	0
	Endpoint 3		DKT ACTIVE	DATASIZES	DATACIZES	DATAGIZEA	DATAGIZES	DATASIZES	DATASIZE1	DATASIZEO
EP3_SIZE_L_B	size	07A3H	EKI_ACTIVE	DATASIZEO	DATASIZES	R		DATASIZEZ	DATASIZET	DATASIZEU
EF3_SIZE_L_B	register	> OTASIT	0	0	0	0	1	0	0	0
	Low B	h			<u> </u>					
	Endpoint 1 size							DATASIZE9	•	DATASIZE7
EP1_SIZE_H_A	register	07A9H							R	
	High A) ,						0	0	0
	Endpoint 2	((The					DATASIZE9	DATASIZE8	DATASIZE7
EP2_SIZE_H_A	size register	07AAH							R	
	register High A							0	0	0
	Endpoint 3							DATASIZE9	DATASIZE8	DATASIZE7
EP3_SIZE_H_A	size	07ABH							R	
	register							0	0	0
	HighA									

(8) USB controller (3/6)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Endpoint 1							DATASIZE9	DATASIZE8	DATASIZE7
EP1_SIZE_H_B	size	07B1H							R	
	register High B							0	0	0
	Endpoint 2							DATASIZE9	DATASIZE8	DATASIZE7
EP2_SIZE_H_B	size register	07B2H						//	R	1
	High B							(0)	0	0
	Endpoint 0							DATASIZE9	DATASIZE8	DATASIZE7
EP3_SIZE_H_B	size register	07B3H					\mathcal{H}	$\langle \rangle$	R	
	High B							0	0	0
	bmRequest-		DIRECTION	REQ_TYPE1	REQ_TYPE0	RECIPIENT4	RECIPIENT3	RECIPIENT2	RECIPIENT1	RECIPIENT0
bmRequestType	Туре	07C0H					3			
	register		0	0	0	0	0	0 ((Q	0
	bRequest		REQUEST7	REQUEST6	REQUEST5	REQUEST4	REQUEST3	REQUEST2	REQUEST1	REQUEST0
bRequest	register	07C1H				(7/1)	₹			,
	ŭ		0	0	0	(V ₀)	0 🔷	(0)/	0	0
	wValue		VALUE_L7	VALUE_L6	VALUE_L5	VALUE_L4	VALUE_L3	VALUE_L2	VALUE_L1	VALUE_L0
wValue_L	register	07C2H			_	<u> </u>	?			
	Low		0	0	40) 0	0	0 0	0	0
	wValue		VALUE_H7	VALUE_H6	VALUE_H5	VALUE_H4	VALUE_H3	VALUE_H2	VALUE_H1	VALUE_H0
wValue_H	register	07C3H				F	₹((// ∫)	1	1	1
	High		0	0	0	0	0	0	0	0
	wIndex		INDEX_L7	INDEX_L6	INDEX_L5	INDEX_L4	INDEX_L3	INDEX_L2	INDEX_L1	INDEX_L0
wIndex_L	register	07C4H			<u> </u>	1	۲))	1	1	1
	Low		0	(0)	0	0	// 0	0	0	0
	wIndex		INDEX_H7	INDEX_H6	INDEX_H5	INDEX_H4	INDEX_H3	INDEX_H2	INDEX_H1	INDEX_H0
wIndex_H	register	07C5H			_	F	₹	1	1	1
	High		0	<u>)</u> 0	0 /	0	0	0	0	0
	wLength		LENGTH_L7	LENGTH_L6	LENGTH_L5	LENGTH_L4	LENGTH_L3	LENGTH_L2	LENGTH_L1	LENGTH_L0
wLength_L	register	07C6H			(0)	F	₹	1	1	1
	Low	((),	0,	Ó\	(V ₀))	0	0	0	0	0
	wLength		LENGTH_H7	LENGTH_H6	LENGTH_H5	LENGTH_H4	LENGTH_H3	LENGTH_H2	LENGTH_H1	LENGTH_H0
wLength_H	register High	07C7H				F		ı	ı	ı
	i ligit		0	0	0	0	0	0	0	0

TOSHIBA TMP92CF26A

(8) USB controller (4/6)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	SetupRec-		D7	D6	D5	D4	D3	D2	D1	D0
SetupReceived	eived	07C8H				W				
	register		0	0	0	0	0 ^	0	0	0
	Current_		REMOTEWAKEUP		ALTERNATE[1]	ALTERNATE[0]	INTERFACE[1]	INTERFACE[0]	CONFIG[1]	CONFIG[0]
Current_Config	Config	07C9H	R				(F	?		
	register		0		0	0	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	0
	Standard-		S_INTERFACE	G_INTERFACE	S_CONFIG	G_CONFIG	G_DESCRIPT	S_FEATURE	C_FEATURE	G_STATUS
Standard Request	•	07CAH				⟨R				
	register		0	0	0	0		0	0	0
	Danuart			SOFT_RESET	G_PORT_STS	G_DEVICE_ID	VENDOR	CLASS	ExSTANDARD	STANDARD
Request	Request register	07CBH					B			
				0	0	0	0	0	0	0
	DATACET		EP3_DSET_B	EP3_DSET_A	EP2_DSET_B	EP2_DSET_A	EP1_DSET_B	EP1_DSET_A	A.	EP0_DSET_A
DATASET1	DATASET 1 register	07CCH			R		,	25		R
	ŭ		0	0	0	<pre>// 0))</pre>	0>	(\bigcirc)		0
	DATASET		EP7_DSET_B	EP7_DSET_A	EP6_DSET_B	EP6_DSET_A	EP5_DSET_B	EP5_DSET_A	EP4_DSET_B	EP4_DSET_A
DATASET2	2 register	07CDH			20	R	a	110	/	
	ŭ		0	0	0	0	0	0	0	0
	USB state)/	Configured	Addressed	Default
USB_STATE	register	07CEH		\mathcal{A}			744	R/W	F	2
				4			LAT	0	0	1
	EOP		EP7_EOPB	EP6_EOPB	EP5_EOPB	EP4_EOPB	EP3_EOPB	EP2_EOPB	EP1_EOPB	EP0_EOPB
EOP	register	07CFH			> `	w))		1	1
	-		1	(1))	1	1	/ 1	1	1	1
	Command		9	EP[2]	EP[1]	EP[0]	Command[3]	Command[2]	Command[1]	Command[0]
COMMAND	register	07D0H	+	5)			W	1	T	Т
				// 0	0	1/0	0	0	0	0
	Endpoint 1		EP3_SELECT	EP2_SELECT	EP1_SELECT		EP3_SINGLE	EP2_SINGLE	EP1_SINGLE	
EPx_SINGLE1	single	07D1H		R/W		5		R/W	1	
	register	(/)	0		(//0))		0	0	0	
	Endpoint 1	\//	EP3_SELECT	EP2_SELECT	EP1_SELECT		EP3_BCS	EP2_BCS	EP1_BCS	
EPx_BCS1	BCS register	07D3H	> <	R/W				R/W	1	
	register		0	0	0		0	0	0	
	Interrupt									Status_nak
INT_Control	control	07D6H	7							R/W
	register	\								0
Standard Paguast	Standard)	S_Interface	G_Interface	S_Config	G_Config	G_Descript	S_Feature	C_Feature	G_Status
Standard Request Mode	Request mode	07D8H	> (())	I	R/V	V	I	1	Π
	register		\bigcirc	0	0	0	0	0	0	0
	Request	4	7///	Soft_Reset	G_Port_Sts	G_DeviceId				
Request Mode	mode	07D9H			R/W					
	register			0	0	0				

(8) USB controller (5/6)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port		Reserved7	Reserved6	PaperError	Select	NotError	Reserved2	Reserved1	Reserved0
Port Status	status	07E0H				V	/		•	
	register		0	0	0	1	1 ^	0	0	0
	Frame		=	T[6]	T[5]	T[4]	T[3]	T[2]	T[1]	T[0]
FRAME_L	register	07E1H				F	}			
	Low		0	0	0	0	0	((0))	0	0
			T[10]	T[9]	T[8]	T[7]	4	CREATE	FRAME_STS1	FRAME_STS0
FRAME_H	Frame register H	07E2H		R		<	7		R	
	- Guillian		0	0	0	0		0	1	0
	A .l.l			A6	A5	A4	(A3)	A2	A1	A0
ADDRESS	Address register	07E3H					R			
	3			0	0	0,((0	0 (Q	0
	USB							741		USBREADY
USBREADY	ready	07E6H								R/W
	register					447	4	TQ.		0
	Set-				4				\nearrow	S_D_STALL
Set Descriptor STALL	Descriptor stall	07E8H					\searrow		/	W
OTALL	register				\mathcal{H}	2	7			0
			INT_URST_STR	INT_URST_END	INT_SUS	,INT_RESUME	INT_CLKSTOP	INT_CLKON		
	USB	07F0H			R/	*	((// \			
USBINTFR1	interrupt flag	(Prohibit	0	0 (Q	0		0		
	register 1	RMW)	When read	0: Not gener	ate interrupt	When write	0: Clear fla	g		
				1: Genera	ate interrupt		1:)-)			
	100		EP1_FULL_A	EP1_Empty_A	EP1_FULL_B	EP1_Empty_B	EP2_FULL_A	EP2_Empty_A	EP2_FULL_B	EP2_Empty_B
	USB interrupt	07F1H				R/	w	Γ	1	Γ
USBINTFR2	flag	(Prohibit	0 ((0	0	0	0	0	0	0
	register 2	RMW)			-	/ -) :	When write	_	l	
			-(O/4)	1	1: Generate			1: -		
			EP3_FULL_A	EP3_Empty_A	EP3_FULL_B	EP3_Empty_B	//			
	USB	075011		R/\	(7 /					
USBINTFR3	interrupt	07F2H (Prohibit	0 /	0 d 0:Nat	0 generate interro	0				
OSBINTI KS	flag	RMW)	When rea		generate interrupt	ирі				
	register 3		When wri		-					
		<u> </u>		1: -						
			INT_SETUP	(INT_EP0	INT_STAS	INT_STASN	INT_EP1N	INT_EP2N	INT_EP3N	
	USB	07F3H	INI_SETUP	INI_EPU	IIVI_STAS	R/W	INI_CPIN	IINI_EPZIN	INI_EPSIN	
USBINTFR4	interrupt flag	(Prohibit	0	0	0	0	0	0	0	
	register 4	RMW)	> ((1	0: Not gener					
1			100		1: Generate	interrupt		1: –		

(8) USB controller (6/6)

Symbol	Name	Address	7	6	5	4	3	2	1	0
	USB		MSK_URST_STR	MSK_URST_END	MSK_SUS	MSK_RESUME	MSK_CLKSTOP	MSK_CLKON		
USBINTMR1	interrupt	07F4H			R/\	N				
OODIIVIIVIICI	mask	071 411	1	1	1	1	1	1		
	register 1			0:	Be not maske	d 1: Be maske	ed			
	USB		EP1_MSK_FA	EP1_MSK_EA	EP1_MSK_FB	EP1_MSK_EB	EP2_MSK_FA	EP2_MSK_EA	EP2_MSK_FB	EP2_MSK_EB
USBINTMR2	interrupt	07F5H				R/\	v (() }		
CODITYTUINE	mask register 2	071 011	1	1	1	1	1	1	1	1
	register z				0: E	Be not masked	d 1: Be maske	d)		_
	1100		EP3_MSK_FA	EP3_MSK_EA				7		
	USB interrupt		R/	W						
USBINTMR3	mask	07F6H	1	1			(D)K			
	register 3		0: Be not mas							
			1: Be masked	1		M		4		
	USB		MSK_SETUP	MSK_EP0	MSK_STAS	MSK_STASN	MSK_EP1N	MSK_EP2N	MSK_EP3N	
USBINTMR4	interrupt	07F7H				(R/W 🔨	×		<u> </u>	
	mask register 4		1	1	1		1 ,)) 1	
	rogiotor i				0: Be nøt	masked 1: Be	masked	1190	//	
			TRNS_USE	WAKEUP		7			SPEED	USBCLKE
	USB		R/	W		<i></i>	V		R/	W
USBCR1	control	07F8H	0	0				<i>></i>	1	0
	register 1		Transceiver	Wake up	7()		$((// \leq))$			
			0:disable	0:-						
			1:enble	1:Start		//				

(9) SPIC (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			SWRST	XEN				CLKSEL2	CLKSEL1	CLKSEL0
			W	R/W				OLINOLLE	R/W	OLITOLLO
		0820H	0	0				1	0	0
		(Prohibit	Software	SYSCK				Select Baud		U
		RMW)	reset	0: disable			4	000:Reserve		3
		,	0: don't care	1: enable				001: f _{SYS} /2	101: f _{SYS} /1	
			1: Reset					010: f _{SYS} /3	110: f _{SYS} /6	
	SPI Mode							011: f _{SYS} /4	111: f _{SYS} /2	256
SPIMD	Setting		LOOPBACK	MSB1ST	DOSTAT		TCPOL	RCPOL	TDINV	RDINV
	register			R/W	•		~ (()	// R/	W	
			0	1	1		(a)	0	0	0
		0821H	LOOPBACK	-	SPDO pin		Synchronous		Invert data	Invert data
		(Prohibit	Test mode	Transmit /	state		clock edge	N.	During	During
		RMW)	0:disbale	Receive	(no transmit)		during	during	transmitting	receiving
			1:enable	0:LSB	0:fixed to "0"		transmitting	receiving	0: disable	0: disable
				1:MSB	1:fixed to "1"	M	0: fall	0: fall	1: enable	1: enable
							1: rise	1: rise		
			CEN	SPCS_B	UNIT16	TXMOD	TXE	FDPXE	RXMOD	RXE
				T	T	\\/_\R	<u>/w <</u>	\rightarrow (\bigcirc		
		000011	0	1	0	0	0	(Q T	(/ Ø	0
		0822H	Communicat	SPCS pin	Data length	Transmit	Transmit	Alignment in	Receive	Receive
			-ion control	0: output "0"	0: 8bit	mode	control (Full duplex	Mode	control
			0: disable	1: output "1"	1: 16bit	0: UNIT	0: disable	0: disable	0: UNIT	0: disable
	SPI		1: enable			1:Sequential	1: enable	1: enable	1:Sequential	1: enable
SPICT	Control		CRC16_7_B	CRCRX_TX_B	CRCRESET_B					
	register			R/W	<u> </u>					
			0	0	Ø	7/				
		0823H	CRC select	CRC data	CRC					
		0623FI	0: CRC7	0: Transmit	calculate					
			1: CRC16	1: receive	register		\//			
				7 ~	0:Reset	\wedge	~			
			((1:Release Reset					
				\leq	IVESE!		TEMP		TEND	DEND
			12/1			7/				REND
						\rightarrow	R			₹ .
					(7/4		1		1	0
	4	1			(Transmit FIFO		Transmit Status	Receive Status
		/~/					Status			0: during
		0824H					0: no space		transmissio	receiving or
	SPI		Y				1: having		-n or having	not having
SPIST	Status						space		transmissio	receiving
	register		/		~				-n data	data
			\sim	(1: finish	1: finish or
^										not having
		/	4	N.						space
			\forall							
		((_	_		$\overline{}$
		0825H		/						
		0825H								
		0825H					TEMPIE	RFULIE	TENDIE	RENDIF
		0825H					TEMPIE	RFULIE R/	TENDIE W	RENDIE
	<u></u>							R/	W	
	SPI	0825H 082CH					0	0 R/	W 0	0
	SPI Interrupt						0 TEMP	0 RFUL	W 0 TEND	0 REND
SPIIE	Interrupt						0	0 R/	W 0	0
SPIIE	Interrupt enable						0 TEMP interrupt	0 RFUL interrupt	W 0 TEND interrupt	0 REND interrupt
SPIIE	Interrupt						0 TEMP interrupt 0:enable	0 RFUL interrupt 0:enable	0 TEND interrupt 0:enable	0 REND interrupt 0:enable
SPIIE	Interrupt enable	082CH					0 TEMP interrupt 0:enable	0 RFUL interrupt 0:enable	0 TEND interrupt 0:enable	0 REND interrupt 0:enable
SPIIE	Interrupt enable						0 TEMP interrupt 0:enable	0 RFUL interrupt 0:enable	0 TEND interrupt 0:enable	0 REND interrupt 0:enable

(9) SPIC (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0
		0826H		.		F	3		.	
	SPI	002011	0	0	0	0	0	0	0	0
SPICR	CRC			ī		CRC result	register [7:0]	^	ī	
0. 10.1	register		CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8
		0827H		T	T	F	?			1
			0	0	0	0	0	(0)	7 0	0
				T	(CRC result r	egister [15:8	7 / 6	ſ	ı
			TXD7	TXD6	TXD5	TXD4	TXD3	TXD2	TXD1	TXD0
		0830H			1		W			I
	SPI		0	0	0	0	0	0	0	0
SPITD0	transmissio n data0			ı			a register [7:		ı	
	register		TXD15	TXD14	TXD13	TXD12	TXD11	TXD10	TXD9	TXD8
	rogiotor	0831H			1	(1/R)			1 >>	
			0	0	0 _	0	0	0	0	0
						TV/	register [15:		/	
			TXD7	TXD6	TXD5	TXD4	TXD3	TXD2	TXD1	TXD0
		0832H				0 8/	/W			
	SPI		0	0	0 7		0	0	0	0
SPITD1	transmissio n data1		TVD45	TVD14	TXD13	TXD12	register [7:	TXD10	TVD0	TVD0
	register		TXD15	TXD14	IXDIS	/	TXD11 W	I TADIO	TXD9	TXD8
		0833H	0	0.(0	0	0	0	0	0
			0	04		-//	register [15:		0	0
			RXD7	RXD6	RXD5	RXD4	RXD3	RXD2	RXD1	RXD0
		200411		(())	10.20		₹√/			
	SPI	0834H	0	0	0	0	0	0	0	0
ODIDDO	receive		((Receive data	register [7:0		l .	"
SPIRD0	data0		RXD15	RXD14	RXD13	RXD12	RXD11	RXD10	RXD9	RXD8
	register	0835H	(77)				₹			•
		00000	(V ₀))	0	0	\searrow_0	0	0	0	0
				^	((// R	eceive data	register [15:	8]		
	<		RXD7	RXD6	RXD5	RXD4	RXD3	RXD2	RXD1	RXD0
		0836H				F	₹			
	SPI	003011	O	0	0	0	0	0	0	0
SPIRD1	receive				F	Receive data	register [7:0	0]		
0	data1	7	RXD15	RXD14	RXD13	RXD12	RXD11	RXD10	RXD9	RXD8
	register	0837H		(1	F	?	T	T	,
\wedge) 333	0	0	0	0	0	0	0	0
		/			R	eceive data	register [15:	8]		

(10) MMU (1/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
				_		R/	W			
		0880H	0	0	0	0	0	0	0	0
					Specify the	bank numbe	er for the LO	CAL-X area		
	LOCALX		(Since ba	ank 0 is over	lapping with	the COMMO	ON area, this	filed must i	not be specif	ied as 0.)
LOCALPX	register		LXE							X8
	for program		R/W					\mathcal{T}	7	R/W
	program		0							0
		0881H	Bank for			fy the bank				
			LOCAL-X	Settings	of the X8 th	-			ng chip selec	t signals
			0: Disable				0 to 011111			
-			1: Enable		ı		0 to 111111	D .	ı	
					Y5	Y4	Y3	Y2	Y1	Y0
						41		/W	1	·
		0882H			0	0	0	0	0	0
						11 / / \	\	1 /	CAL-Y area	
	LOCALY				(Since bank	3 is overlap	, -	V .	area, this fil	ed must not
LOCALPY	register		1.7/5		\		be specif	led as 3.)		
LOCALIT	for		LYE					2		
	program		R/W					$\leq \uparrow \uparrow$		
		0883H	0							
		000011	Bank for LOCAL-Y		1(//	~		$\langle \rangle$		
			0: Disable	(
			1: Enable							
			Z7	Z 6	Z5	Z4	Z3	7 2	Z1	Z0
) 20		w			20
		0884H	0 (70	0	<u> </u>	0	0	0	0
			((bank numbe	er for the LO	CAL-Z area		
	LOCALZ		(Since ba	ank 3 is over		- / /			not be specif	ied as 3.)
LOCALPZ	register		(Lze/\			2/				Z8
LOCALFZ	for		R/W							R/W
	program	//	0	1	444					0
	4	0885H	Bank for		Speci	fy the bank	number for	the LOCAL-2	Z area	
			LOCAL-Z	Settings	of the Z8 th	rough Z0 bit	s and their o	orrespondin	g chip selec	t signals
			0: Disable	000	000000 to 0	01111111 C	SZA 1000	000000 to 10)1111111 CS	SZC
			1: Enable	010	000000 to 0	11111111 C	SZB 1100	000000 to 11	11111111 CS	SZD

(10) MMU (2/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
					•	R	/W	_		-
		0888H	0	0	0	0	0	_ 0	0	0
					Specify the	bank numb	er for the LO	CAL-X area		
	LOCALX		(Since ba	ınk 0 is over	lapping with	the COMMO	ON area, this	filed must r	ot be specif	ied as 0.)
LOCALLX	register		LXE						7	X8
	for LCD		R/W							R/W
	LOD		0				7	779		0
		0889H	Bank for			-	number for t			
			LOCAL-X	Settings	of the X8 th				ng chip selec	t signals
			0: Disable				0 to 011111	/		
			1: Enable		1	10000000	0 to 111111			
					Y5	Y4	Y3	Y2	Y1	Y0
								W		
		088AH			0	(0)/	0	0	0>	0
						. \ < /	/	~ \	CAL-Y area	
	LOCALY				(Since bank	3 is overlar			l area, this fil	ed must not
LOCALLY	register				4		be specif	ied as 3.)		
LOCALLT	for		LYE		4		$\overline{}$	$\langle \hat{A} \rangle$		
	LCD		R/W							
		088BH	0			V				
		OOODII	Bank for	50						
			LOCAL-Y	(1)						
			0: Disable 1: Enable))			
			Z7	Z6) Z5	Z4	Z3	Z2	Z1	Z0
			21	720	/ 23		/W	22	21	20
		088CH	0 ((0	0	<u> </u>	0	0	0	0
					- (101	er for the LO			
	LOCALZ		(Since ba	ank 3 is over					not be specif	ied as 3.)
	register		LZE							Z8
LOCALLZ	for		R/W	1	4427					R/W
	LCD		0		4					0
		088DH	Bank for		Spec	ifv the bank	number for t	he LOCAL-2	Z area	
			LOCAL-Z	Settinas		•			ng chip selec	t signals
		>	0: Disable		0000000 to 0	•		•	01111111 CS	•
		\ \	1: Enable	010	0000000 to 0	1111111 <u>1</u> C	SZB 1100	000000 to 1	11111111 CS	SZD

(10) MMU (3/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
						R	R/W			
		0890H	0	0	0	0	0	0	0	0
					Specify the	bank numb	er for the LO	CAL-X area	1	
	LOCALX		(Since ba	ank 0 is over	lapping with	the COMM	ON area, this	s filed must	not be specif	ied as 0.)
LOCALRX	register		LXE					\mathcal{H}	7	X8
	for read		R/W							R/W
	Teau		0				1	774		0
		0891H	Bank for		Spec	ify the bank	number for t	he LOCAL-:	X area	
			LOCAL-X	Settings	of the X8 th	rough X0 b	its and their	correspondir	ng chip selec	t signals
			0: Disable				00 to 011111	/		
			1: Enable		ı	10000000	00 to 111111	111 CSXB		
					Y5	Y4	Y3	Y2	Y1	Y0
								W	(,// ^	′
		0892H			0	(0)	0	0	0	0
							bank numb	V	/////	
	LOCALY				(Since bank	3 is overla	pping with th		l area, this fil	ed must not
	register						be specif	ied as 3.)		
LOCALRY	for		LYE		- M					
	read		R/W							
		000011	0			\vee	194			
		0893H	Bank for	.(///	//		
			LOCAL-Y	41						
			0: Disable							
			1: Enable							
			Z7	<u>Z6</u>	/ Z5	Z4	Z 3	Z2	Z1	Z0
		0894H	. ((R/W			0
		003411	0	0)	0 0	0	0	0	0	0
			(Cinas H	onk 2 in avor			er for the LC			ind on 2)
	LOCALZ register		LZE	arik 3 is over	lapping with	the COMM	ON area, this	s lilea must	not be specif	
LOCALRZ	for				40					Z8
	read		R/W 0		A D					R/W
		0895H			Cnaa	ify the bent	number for t	ho I OCAL :	7 2702	0
			Bank for LOCAL-Z	Settings	,	•	number for t its and their o			t sianals
	^^		0: Disable		0000000 to 0				19 Chip select 01111111 CS	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1: Enable	· ·	000000 to 0				11111111 CS	-
			i. Lilabic	17	230000 10 0		JULE 1100	200000 10 1		J_U

(10) MMU (4/8)

LOCALX LOCAX LO				` '-							
LOCALWX register for write LOCALWY register for write LO				X7	X6	X5	X4	Х3	X2	X1	X0
LOCALW register for write LOCALY register for LOCAL-Y register for write LOCALY register for LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register for local provided in the LOCAL-Y register local provided in the LOCAL register local provided in the LOCAL register local provided in the LOCAL register local provided in the LOCAL register local provided in the LOCAL register local provided in the LOC							R	/W	_		
LOCALWX register for write LOCALWX R/W			0898H	0	0	0	0	0	0	0	0
LOCALWX Tegister for write LOCAL-X O899H Bank for LOCAL-X O. Disable 1. Enable LOCAL-W Tegister for write LOCAL-X O. Disable D. Disable						Specify the	bank numb	er for the LO	CAL-X area	1	
LOCALW For write 0		LOCALX		(Since ba	nk 0 is over	lapping with	the COMM	ON area, this	s filed must	not be specifi	ed as 0.)
Write Write 0899H Bank for Specify the bank number for the LOCAL-X area COCAL-X CO	II ()(.AI V/ X I	-		LXE						7	X8
Deank for LOCAL-WY Fegister for write Deank for LOCAL-Y to Disable Deank for LOCAL-Y to				R/W				\searrow			R/W
LOCALY OBJAH OBJAH LOCALY O: Disable 1: Enable O00000000 to 0111111111 CSXA 100000000 to 0111111111 CSXB V5		WITE		0				\	77A_		0
COCALWY COCA			0899H	Bank for			-				
1: Enable				LOCAL-X	Settings	of the X8 th				ng chip select	t signals
LOCALWY LOCALY register for write LOCALZ register fo									/		
LOCALWY register for write LOCALY register for write LOCALZ register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write LOCALZ Register for write Specify the bank number for the LOCAL-Z area (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.) RW RW RW RW RW RW Specify the bank number for the LOCAL-Z area				1: Enable			10000000				
LOCALWY register for write LOCALY register for write LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALWZ PART PART PART PART PART PART PART PART						Y5	Y4		L	Y1	Y0
LOCALW LOCALY register for write LOCALY area (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.)					$\overline{}$				- //		
LOCALWY register for write LOCALY register for write LOCALY 0: Disable 1: Enable LOCALZ register for write LOCALZ register for write LOCALZ register for write LOCALWZ RAW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			089AH			0	11//	\ -	-70	\	0
LOCALWY register for write 089BH								/	V	/////	
LOCALWZ register for write A		LOCALY				(Since bank	3 is overla	-		l area, this fil	ed must not
100				–		7		be specif	ied as 3.)		
0 089BH 0 0 0 0 0 0 0 0 0					$\overline{}$	## H			$\langle \hat{\lambda} \rangle$		
D89BH Bank for LOCAL-Y 0: Disable 1: Enable Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 Z5 Z4 Z5 Z5 Z4 Z5 Z5		write			$\overline{}$						
LOCALZ R/W			OOODL		_			-			
0: Disable 1: Enable 27 26 25 24 23 22 21 20			009011		50	\\ \					
1: Enable											
LOCALZ LOCALZ LOCALZ Torm LOCALZ Torm Local Lo))			
LOCALWZ LOCALWZ LOCALWZ LOCALWZ register for write R/W R/W R/W R/W R/W R/W R/W R/					76	75	74	72	70	71	70
LOCALZ register for write COCALZ register for write 089DH 0				ZI	720	/ 25			22	<u> </u>	20
LOCALZ register for write Specify the bank number for the LOCAL-Z area (Since bank 3 is overlapping with the COMMON area, this filed must not be specified as 3.) R/W R/W 0 089DH Bank for Specify the bank number for the LOCAL-Z area			089CH	0 ((0			0	0	0
LOCALZ register for write Comparison Co				0	\bigcirc	- (- 10				U
LOCALWZ register for write R/W 0 089DH Bank for Specify the bank number for the LOCAL-Z area		100417		(Since ha	ank 3 is over						ad as 3)
for write Specify the bank number for the LOCAL-Z area Specify the					11K 3 13 0VC1	lapping with	uic ooiviivi	Sivarca, tric	S IIICa IIIast	Tiot be specifi	
0 089DH Bank for Specify the bank number for the LOCAL-Z area	II ()CAI VVZ	•				4					
089DH Bank for Specify the bank number for the LOCAL-Z area		write		_ 7			\neq				
			089DH			Speci	ify the bank	number for t	he I OCAL -:	7 area	•
EUCALIZ I SEUNUS OFUE ZO UTOUUTI ZO DIS ATU UTET COTTESDOTONO CHID SEJECT SIONAIS				LOCAL-Z	Settings		•				signals
0: Disable 000000000 to 001111111 CSZA 100000000 to 101111111 CSZC					\ \		-			•	-
			\ \	1: Enable		\					-

(10) MMU (5/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
					•	R	/W			_
		08A0H	0	0	0	0	0	0	0	0
					Specify the	bank numbe	er for the LO	CAL-X area	ı	
	LOCALX		(Since ba	nk 0 is over	lapping with	the COMM	ON area, this	s filed must	not be specif	ied as 0.)
LOCALESX	register		LXE					\mathcal{H}	7	X8
	for DMA		R/W							R/W
	source		0				74	778		0
		08A1H	Bank for			-	number for t			
			LOCAL-X	Settings	of the X8 th				ng chip selec	t signals
			0: Disable				0 to 011111	/		
			1: Enable		1	10000000	0 to 111111			1
				$\overline{}$	Y5	Y4	Y3	Y2	Y1	Y0
				_				W	, ,	<u> </u>
		08A2H			0	(0)/	0	0	0>	0
						. \ •	/	V .	CAL-Y area	
	LOCALY				(Since bank	3 is overlar	-		l area, this fil	led must not
LOCALESY	register						be specif	ied as 3.)		
LOCALEST	for DMA		LYE	$\overline{}$	-AC			$\langle \rangle$		
	source		R/W	$\overline{}$						
		08A3H	0	$\overline{}$		V				
		00/311	Bank for	50						
			LOCAL-Y	(1)						
			0: Disable 1: Enable))			
			Z7	Z ₆) Z5	Z4	Z3	Z2	Z1	Z0
			21	720	/ 23	l	/W		21	20
		08A4H	0 ((0	0	<u> </u>	0	0	0	0
					- (10	er for the LO			U U
	LOCALZ		(Since ba	ank 3 is ove					not be speci	fied as 3)
10041507	register		LZE.			1				Z8
LOCALESZ	for DMA	//	R/W	A	4427					R/W
	source		0		4					0
		08A5H	Bank for		Spec	ify the bank	number for t	he LOCAL-2	Z area	
			LOCAL-Z	Settings		•			ng chip selec	t signals
		,	0: Disable	\ \	0000000 to 0	•			01111111 CS	•
	7/	1	1: Enable	010	0000000 to 0	11111111 C	SZB 1100	000000 to 1	11111111 CS	SZD

(10) MMU (6/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
						F	R/W			
		08A8H	0	0	0	0	0	0	0	0
					Specify the	bank numb	er for the LO	CAL-X area	ı	
	LOCALX		(Since ba	ank 0 is ove	rlapping with	the COMM	ON area, this	s filed must	not be specif	ied as 0.)
LOCALEDX	register		LXE					\mathcal{H}	7	X8
	for DMA		R/W							R/W
	destination		0							0
		08A9H	Bank for		•	•	number for t			
			LOCAL-X	Settings	s of the X8 th	-	its and their o		ng chip selec	t signals
			0: Disable				00 to 011111	/		
			1: Enable		T	1000000	00 to 111111	111 CSXB		
					Y5	Y4	Y3	Y2	Y1	Y0
								W		<u> </u>
		HAA80			0	(0)/	0	0	0>	0
							bank numbe	V .	/////	
	LOCALY				(Since bank	3 is overla	pping with th		l area, this fi	led must not
LOCALEDY	register				2		be specif	ied as 3.)		
LOCALEDY	for DMA		LYE		4			$\langle \hat{A} \rangle$		
	destination		R/W							
		08ABH	0			V	- (///			
		OOADIT	Bank for	50						
			LOCAL-Y	(1)						
			0: Disable 1: Enable))			
			Z7	Z6	Z5	Z4	Z 3	Z2	Z1	Z0
			21	7 20	/ 25	1	1 <u>23</u> R/W		<u> </u>	20
		08ACH	0 ((0	0		0	0	0	0
			0		· · · · · · · · · · · · · · · · · · ·	11/	er for the LO			U
	LOCALZ		(Since ha	ank 3 is ove			ON area, this			ied as 3)
	register		LZE	7.1.0 13 000	apping with	o GOIVIIVI	Citarca, and	, ilica mast	Do specii	Z8
LOCALEDZ	for DMA		R/W	1	400					R/W
	destination		0		T,	/				0
		08ADH	Bank for		Snec	ify the hank	number for t	he LOCAL-	7 area	
			LOCAL-Z	Setting	/	-	its and their o			t signals
	\\\\\	>	0: Disable		0000000 to 0	•		•	01111111 CS	•
	>,<	\ h	1: Enable		0000000 to 0				11111111 CS	
		$\overline{}$		17				,		-

(10) MMU (7/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
						F	R/W			
		08B0H	0	0	0	0	0	0	0	0
					Specify the	bank numb	er for the LO	CAL-X area	l	
	LOCALX		(Since ba	ank 0 is ove	rlapping with	the COMM	ON area, this	s filed must	not be specif	fied as 0.)
LOCALOSX	register		LXE					\mathcal{H}	7	X8
	for DMA		R/W							R/W
	source		0					78		0
		08B1H	Bank for		•	•	number for t			
			LOCAL-X	Settings	s of the X8 th	-	its and their o		ng chip selec	t signals
			0: Disable				00 to 011111	/		
			1: Enable			T (1	00 to 111111			
					Y5	Y4	Y3	Y2	Y1	Y0
					_			W		_
		08B2H			0	(0)/	0	0	0>	0
					(O' h . A		bank numbe	V	/////	
	LOCALY				(Since bank	C3 is overla	pping with th		area, this fi	led must not
LOCALOSY	register		LVE				be specif	ied as 3.)		
LOOMLOOT	for DMA		LYE	//	4			≤ 0		
	source		R/W	//						
		08B3H	0 Bank for		1()	× \	$+$ $(\bigcirc \!\!\! /)$			
			LOCAL-Y	λ (
			0: Disable							
			1: Enable))			
			Z 7	Z ₆) Z5	Z4	Z3	Z2	Z1	Z0
				7	,	1	R/W			
		08B4H	0 ((0	0	0	0	0	0	0
					Specify the	bank numb	er for the LO	CAL-Z area		
	LOCALZ		(Since ba	ank 3 is ove			ON area, this			fied as 3.)
LOCALOSZ	register		LZE.							Z8
LOCALOSZ	for DMA	//	R/W	1	444					R/W
	source		0/							0
		08B5H	Bank for		Spec	ify the bank	number for t	he LOCAL-2	Z area	
			LOCAL-Z	Settings	/	-	its and their o			t signals
		>	0: Disable	000	0000000 to 0	01111111	CSZA 1000	000000 to 10	01111111 CS	SZC
	7	1	1: Enable	010	0000000 to 0	11111111 (CSZB 1100	000000 to 1	11111111 CS	SZD

(10) MMU (8/8)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			X7	X6	X5	X4	Х3	X2	X1	X0
						R	/W			
		08B8H	0	0	0	0	0	(0	0	0
							er for the LO	/ _ \		
	LOCALX		(Since ba	ank 0 is over	lapping with	the COMM	ON area, this	s filed must i	not be specif	ied as 0.)
LOCALODX	register		LXE							X8
	for DMA		R/W				4	2/4		R/W
	destination		0				1			0
		08B9H	Bank for			-	number for t			
			LOCAL-X	Settings	of the X8 th	-	1 1	N .	ng chip selec	t signals
			0: Disable				0 to 011111			
			1: Enable			NI	0 to 111111			
					Y5	Y4	Y3	Y2	(Y1 \)	Y0
								W 34		
		08BAH			0	(0//	0	0(0	0
								() (CAL-Y area	
	LOCALY				(Since bank	3 is overlar			l area, this fil	ed must not
LOCALODY	register						be specif	ied as 3.)		
LOCALODT	for DMA		LYE		\mathcal{A}			$\stackrel{\checkmark}{\swarrow} \rangle$		
	destination		R/W					<i>X</i>		
		08BBH	0	\sim	1 3	$\overline{}$	/ AX	$)) \rightarrow$		
		OODDII	Bank for LOCAL-Y	4(1
			0: Disable							1
			1: Enable		\ \		< //			1
			Z7	Z6	Z5	Z4	Z 3	Z2	Z1	Z0
			21	7 20	25	\wedge	/W		<u> </u>	
		08BCH	0	0	0 <	0	0	0	0	0
						bank numb	er for the LO		L	
	LOCALZ		(Since ba	ank 3 is over					not be specifi	ied as 3.)
10041007	register		LZE		494					Z8
LOCALODZ	for DMA	$(\langle \ \ / \ \)$	R/W		W	\				R/W
	destination	///	0		\mathcal{H}					0
		08BDH	Bank for		Spec	ify the bank	number for t	he LOCAL-2	Z area	
	^ ^		LOCAL-Z	Settings	of the Z8 th	rough Z0 bit	ts and their o	orrespondir	ng chip select	t signals
	>,<		0: Disable	000	000000 to 0	01111111 C	SZA 1000	000000 to 10	01111111 CS	SZC
	<u> </u>	\sim	1: Enable	010	000000 to 0	11111111 C	SZB 1100	000000 to 11	11111111 CS	SZD

(11) NAND-Flash controller (1/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WE	ALE	CLE	CE0	CE1	ECCE	BUSY	ECCRST
						R	/W			
			0	0	0	0	0	. 0	0	0
			WE	ALE	CLE	CE0	CE1	ECC	NAND	ECC
		08C0H	enable	control	control	control	control	circuit	Flash	reset
		(Prohibit	0: Disable	0: "L" out	0: "L" out	0: "H" out	0: "H" out	control	state	control
		RMW)	1: Enable	1: "H" out	1: "H" out	1: "L" out	1: "L" out	0: Disable	1: Busy	0: -
								1: Enable	0: Ready	1: Reset
								(/))		*Always
	NANDF						7//			read as
NDFMCR0	Control0									"0".
	Register		SPLW1	SPLW0	SPHW1	SPHW0	RSECCL	RSEDN	RSESTA	RSECGW
						W			W	R/W
			0	0	0	0 0	0>	0	1 0	0
		08C1H	Strobe pulse (Low width of		Strobe pulse (High width o		Reed- Solomon	Reed- Solomon	Reed- Solomon	Reed- Solomon
		(Prohibit	NDWE)	NDRE,	NDWE)	T NOKE;	ECC	operation	error	ECC
		RMW)	,		,		latch	0: Encode	calculation	generator
			Inserted width		Inserted widt		0: Disable	(Write)	start	write control
			$= (fSYS) \times (St)$	et value)	$= (fsys) \times (s$	et value)	1: Enable	1: Decode	0: - 1: Start	0: Disable
					4()			(Read)	*Always read	1: Enable
									as "0".	
			INTERDY	INTRSC			44/	BUSW	ECCS	SYSCKE
			R/W	R/W			1	R/W	R/W	R/W
			0	0		4	1	0	0	0
		000011	Ready	Reed-				Data bus	ECC	Clock
		08C2H	interrupt	Solomon				width	calculation	control
	NANDF		0: Disable	calculation	/		\ <u>'</u>	0: 8-bit	0:Hamming	0: Disable
NDFMCR1	Control1		1: Enable	end interrupt 0: Disable				1: 16-bit	1: Reed- Solomon	1: Enable
	Register			1: Enable					3010111011	
			STATE3	STATE2	STATE1	STATE0	SEER1	SEER0		
		0000	((//3)		2				
		08C3H	0	0	(07/2	0	Undefined	Undefined		
		((),			is read (See			Ondomiod		
		74/	ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0
					23000		R 20003			
		08C4H	0	0	0	0	0	0	0	0
	NANDF	b.					C Register			,
NDECCRD0	Code ECC		ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8
	Register0		200013	1 - 200 14	1 500010		R	LOODIO		
	(())	08C5H	0	0	0	0	0	0	0	0
			· (1			C Register (. U
	1	((ECCD3	FCCDC		ı	1		ECCD4	ECCD0
			ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCDO
		08C6H					R			
	NANDF		0	0	0	0	0	0 (7.0)	0	0
NDECCRD1	Code ECC					ı	C Register			
	Register1		ECCD15	ECCD14	ECCD13	ECCD12	•	ECCD10	ECCD9	ECCD8
		08C7H			I		R	1	1	
			0	0	0	0	0	0	0	0
					NAN	D Flash EC	C Register (15-8)		

(11) NAND-Flash controller (2/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0
		08C8H				F	7			
	NANDF	000011	0	0	0	0	0	0	0	0
NDECCRD2	Code ECC				NAN	ND Flash EC	C Register	(7-0)		
NDLOONDZ	Register2		ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8
		08C9H				F	₹		>	
		000011	0	0	0	0	0		0	0
					NAN	D Flash EC	C Register (15-8)		
			ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ECCD1	ECCD0
		08CAH				F	3			
	NANDF		0	0	0	0	(0)) 0	0	0
NDECCRD3	Code ECC				NAN	ND Flash EC	C Register	(7-0)		1
	Register3		ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8
		08CBH					?	Ω		Т
			0	0	0	(0//	0	0	0	0
					NAN	D Flash EC	C Register (15-8)	$2/\Omega$	1
			ECCD7	ECCD6	ECCD5	ECCD4	ECCD3	ECCD2	ÉCCD1	ECCD0
		08CCH				✓ F	? /		>	Γ
	NANDF		0	0	(0)	>0	0	(0)	0	0
NDECCRD4	Code ECC					7	C Register	(7-0)	1	1
	Register4		ECCD15	ECCD14	ECCD13	ECCD12	ECCD11	ECCD10	ECCD9	ECCD8
		08CDH		40			3//			
			0	0	0′	0	0	0	0	0
					NAN	D Flash EC	C Register (15-8)		

(11) NAND-Flash controller (3/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			RS0A7	RS0A6	RS0A5	RS0A4	RS0A3	RS0A2	RS0A1	RS0A0
		00000					R	•		•
		08D0H	0	0	0	0	0	0	0	0
	NANDF			NAND Flas	h Reed-Sol	omon Calcu	lation Result	Address Re	egister (7-0)	
	read solomon								RS0A9	RS0A8
NDRSCA0	Result								ı	₹
	address							Ŧ	P 0	0
	Register0	08D1H							NAND	Flash
							< ((// \	Reed-S	Solomon
							7//			on Result
									Address Re	egister (9-8)
	NANDF		RS0D7	RS0D6	RS0D5	RS0D4	RS0D3	RS0D2	RS0D1	RS0D0
NDRSCD0	read solomon	08D2H		<u> </u>			R	<u></u>		
HEROES	Result data	000211	0	0	0	041	0	0	(0)	0
	Register0			NAND FI	ash Reed-So	olomon Calc	culation Resu	ult Data Reg	ister (7-0)	
			RS1A7	RS1A6	RS1A5	RS1A4	RS1A3	RS1A2	RS1A1	RS1A0
		08D4H					Ŕ	7	0/))	
		000411	0	0	0_(0	0	0		0
	NANDF			NAND Flas	h Reed-Sol	omon Calcu	lation Result	Address Re	egister (7-0)	
	read solomon				J	/		\sim	RS1A9	RS1A8
NDRSCA1	Result						7		F	3
	address			7			W	}	0	0
	Register1	08D5H		4(NAND FI	ash Reed-
									Solomon (Calculation
					\		< <i>//</i>		Result /	Address
)		\\/		Regist	er (9-8)
	NANDF		RS1D7	RS1D6	RS1D5	RS1D4	RS1D3	RS1D2	RS1D1	RS1D0
NDRSCD1	read solomon	08D6H				- 11	R	i .	i	1
NDRSCDT	Result data	OODOIT	0	0	0	(0)	0	0	0	0
	Register1		(/ /)	NAND FI	ash Reed-S	olomon Cald	culation Resu	ult Data Reg	ister (7-0)	
	J		RS2A7	RS2A6	R\$2A5	RS2A4	RS2A3	RS2A2	RS2A1	RS2A0
	<						R			
		08D8H	0	0	0	0	0	0	0	0
	NANDF		\supset		7		lation Result			
	read			10110	Treed ook	Silion Galoa	Tation result		RS2A9	RS2A8
NDRSCA2	solomon Result		$\overline{}$							₹
	address								0	0
^	Register2	08D9H	7							ash Reed-
		/								Calculation
			, ((Result /	Address
									Regist	er (9-8)
	NANDF		RS2D7	RS2D6	RS2D5	RS2D4	RS2D3	RS2D2	RS2D1	RS2D0
NDDCCDC	read	005 417	\vee				R		•	
NDRSCD2	solomon	08DAH	0	0	0	0	0	0	0	0
	Result data Register2			NAND FI	ash Reed-So	olomon Cald	culation Resu	ult Data Reg	ister (7-0)	
	negisielz									

(11) NAND-Flash controller (4/4)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			RS3A7	RS3A6	RS3A5	RS3A4	RS3A3	RS3A2	RS3A1	RS3A0
		08DCH				F	٦			
		OODCIT	0	0	0	0	0	0	0	0
	NANDF			NAND Flas	h Reed-Sol	omon Calcul	ation Result	Address Re	egister (7-0)	
	read solomon								RS3A9	RS3A8
NDRSCA3	Result							\mathcal{H}	Y F	₹
	address						\sim		0	0
	Register3	08DDH					< (((/ 5)	NAND Fla	ash Reed-
							7//			Calculation
										Address
	NANDF		D00D7	D00D0	D00D5	D00D4	Poopo	D00D0		er (9-8)
	read		RS2D7	RS2D6	RS2D5	RS2D4	RS2D3	RS2D2	RS2D1	RS2D0
NDRSCD3	solomon	08DEH	0	0	0	0	0	0 0	0	0
	Result data		0		_	olomon Calc			10	
	Register3			NANDII	asii Neeu-o	Jointon Calc	diation Nest	ili Data iteg	ister (7-0)	
			D7	D6	D5 (D4	D3	D2	L(D1/	D0
		1FF0H			4	V	W	7		
	NANDF		Undefined	Undefined		Undefined			Undefined	Undefined
NDFDTR0	Data					D-Flash Da		7-0)		
	Register0		D15	D14	D13	D12	D11//	D10	D9	D8
		1FF1H			<u> </u>		W			
			Undefined	Undefined		—/-{			Undefined	Undefined
			57	(20)		D-Flash Dat	77	·	5.4	D.o.
			D7	(D6	D5	D4	W D3	D2	D1	D0
		1FF2H	Undefined	Undefined	Undefined	- A		Undofined	Undefined	Undefined
	NANDF		Oridelined	Oridelined		D-Flash Da			Oridelined	Ondenned
NDFDTR1	Data		D15	D14	D13	D12	D11	D10	D9	D8
	Register1		(5/5)	D 19	7//	W	D10	- 50	
		1FE3H	Undefined	Undefined	Undefined)	1	Undefined	Undefined	Undefined
	<	$\langle \langle \ \rangle \rangle$				D-Flash Dat				
		- V/				,		•		

(12) DMAC (1/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			D0SA7	D0SA6	D0SA5	D0SA4	D0SA3	D0SA2	D0SA1	D0SA0
			200111	200,10	2007.0		/W	200/12	200/11	200.10
		0900H	0	0	0	0	0	0	0	0
			-		Soi	urce address		7:0)		
	DMA		D0SA15	D0SA14	D0SA13	D0SA12	D0SA11	D0SA10	D0SA9	D0SA8
LIDMAAGG	source	000411				•	W			
HDMAS0	address	0901H	0	0	0	0	0		P 0	0
	Register0				Sou	rce address	for DMA0	15:8))	l .
			D0SA23	D0SA22	D0SA21	D0SA20	D0SA19	D0SA18	D0SA17	D0SA16
		000011		u .	Į.		W		u .	l.
		0902H	0	0	0	0	0	0	0	0
				•	Soul	ce address t	\rightarrow	3:16)	•	
			D0DA7	D0DA6	D0DA5	D0DA4	D0DA3	D0DA2	D0DA1	D0DA0
		0904H			•	⟨ R/	w		1	·
		U9U4H	0	0	0	0	0	0 (>	Q	0
					Desti	nation addre	ss for DMA	0 (7:0)		
	DMA		D0DA15	D0DA14	D0DA13	D0DA12	D0DA11	D0DA10	D0DA9	D0DA8
HDMAD0	destination	0905H			((R/	W		70/	
TIDIVIADO	address	090311	0	0	0	0	0 /	0	0	0
	Register0				Destir	nation addres	ss for DMA0	(15:8)		
			D0DA23	D0DA22	D0DA21	D0DA20	D0DA19	D0DA18	D0DA17	D0DA16
		0906H			1(//	R/	w ((//	Ω		
		000011	0	0 (0	0	0	0	0	0
					Destin	ation addres	s for DMA0	(23:16)		
			D0CA7	D0CA6	D0CA5	D0CA4	D0CA3	D0CA2	D0CA1	D0CA0
	DMA	0908H)	R/	W//	T	T	Г
	Transfer		0	7 0	0	0	0	0	0	0
HDMACA0	count		((nsfer count A	A for DMA0	(7:0)	1	T
	number A		D0CA15	D0CA14	D0CA13	D0CA12	D0CA11	D0CA10	D0CA9	D0CA8
	Register0	0909H	(7/4)	1		R/	W	1	1	ı
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) 0	0	0	0	0	0	0
	/					sfer count A			I	
		\//	D0CB7	D0CB6	D0CB5	D0CB4	D0CB3	D0CB2	D0CB1	D0CB0
	DMA	090AH					/W I			
	Transfer		√ 0	0	0	0	0	0	0	0
HDMACB0	count		2021-	20211		nsfer count E		`	20000	20020
	number B	()	D0CB15	D0CB14	D0CB13	D0CB12	D0CB11	D0CB10	D0CB9	D0CB8
	Register0	090BH	•	1	0		W I o			0
)	0	0		0	for DMAO (15:0)	0	0
_		17	\mathcal{A}	M.	Trar	sfer count B D0M4	D0M3	D0M2	D0M1	D0M0
<		(*	//		DOIVI4	פואוטם	R/W	ו ואוטם	טואוטם
		~ ~				0	0	0	0	0
	\Diamond					DMA transfe			Transfer data	
	DMA						tion INC (I/O	,	00: 1 byte	
	transfer						tion DEC (I/O INC (MEM \rightarrow	•	01: 2 bytes 10: 4 bytes	
HDMAM0	Mode	090CH					DEC (MEM →	,	11: Reserve	b
	Register0					100: Source/o	destination IN	,		
						(MEM –	,	EC.		
							destination Di → MEM)	EU		
						,	destination fix	red		
						(I/O→ I	,			
						111: Reserve	ed			

(12) DMAC (2/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			D1SA7	D1SA6	D1SA5	D1SA4	D1SA3	D1SA2	D1SA1	D1SA0
			2.07.	2.0.10	2.07.0		W	2.07.2	2.0/	2.07.0
		0910H	0	0	0	0	0	0	0	0
			-		Set s	ource addre	ss for DMA1	(7:0)		
	DMA		D1SA15	D1SA14	D1SA13	D1SA12	D1SA11	D1SA10	D1SA9	D1SA8
LIDMAAGA	source	004411					W			
HDMAS1	address	0911H	0	0	0	0	0		P 0	0
	Register1			l.	Set so	ource addres	s for DMA1	(15:8))	l.
			D1SA23	D1SA22	D1SA21	D1SA20	D1SA19	D1\$A18	D1SA17	D1SA16
		004011		l.	l.		w			l .
		0912H	0	0	0	0	0	0	0	0
				•	Set so	urce address		(23:16)	•	
			D1DA7	D1DA6	D1DA5	D1DA4	D1DA3	D1DA2	D1DA1	D1DA0
		004411		•	•	⟨ R/	w		1	>
		0914H	0	0	0	0	0	0 (>	0	0
					Set des	stination add	ress for DM	A1 (7:0)		
	DMA		D1DA15	D1DA14	D1DA13	D1DA12	D1DA11		D1DA9	D1DA8
HDMAD1	destination	0915H			((R/	W		70/	
TIDIVIADI	address	091311	0	0	0	0	0 /	0	0	0
	Register1				Set des	tination addr	ess for DMA	1 (15:8)		
			D1DA23	D1DA22	D1DA21	D1DA20	D1DA19	D1DA18	D1DA17	D1DA16
		0916H			1(//	R/	w ((//	$\langle \rangle$		
		031011	0	0 (Q	0	0	0	0	0
					Set dest	ination addre	ess for DMA	1 (23:16)		
			D1CA7	D1CA6	D1CA5	D1CA4	D1CA3	D1CA2	D1CA1	D1CA0
	DMA	0918H				R/	w-//			
	Transfer	001011	0	70	0	_ 0	0	0	0	0
HDMACA1	count		((Set transf	er-count-nur	mber A for D	MA1 (7:0)		
115101710711	number A		D1CA15	D1CA14	D1CA13	D1CA12	D1CA11	D1CA10	D1CA9	D1CA8
	Register1	0919H	(070	\		R/	W			
			\\\(\doldow{0}\)) о	0	ò	0	0	0	0
		//			Set transfe	er-count-num	ber A for D	MA1 (15:8)		
	<		D1CB7	D1CB6	D1CB5	D1CB4	D1CB3	D1CB2	D1CB1	D1CB0
	DMA	091AH				R/	W	1	1	,
	Transfer			0	0/	0	0	0	0	0
HDMACB1	count				Set transf	er-count-nur	nber B for D	MA1 (7:0)	1	
	number B		D1CB15	D1CB14	D1CB13	D1CB12	D1CB11	D1CB10	D1CB9	D1CB8
	Register1	091BH		1	I		W	1	1	I
			0	0	0	0	0	0	0	0
		/			Set transfe	er-count-num	ber B for D	MA1 (15:8)	1	T
	//	(($\mathcal{A}{\mathcal{A}}$	\mathcal{A}		D1M4	D1M3	D1M2	D1M1	D1M0
								R/W	1	1
						O DMA transfe	0	0	0 Transfer det	0
	~		*			DMA transfe 000: Destina	r mode tion INC (I/O	→ MEM)	Transfer data 00: 1 byte	a SIZE
	DMA						tion DEC (I/O	,	01: 2 bytes	
HDMAM1	transfer	091CH					INC (MEM →	,	10: 4 bytes	
	Mode Bogistor1					011: Source 100: Source/o	DEC (MEM – lestination IN	,	11: Reserve	a
	Register1					(MEM –		_		
						101: Source/	destination D	EC		
1						,	→ MEM)	. a d		
						110: Source/ (I/O→ I	destination fix /O)	tea		
						111: Reserve	•			

(12) DMAC (3/7)

DMA	Symbol	Name	Address	7	6	5	4	3	2	1	0
HDMAC 2 DMA Transfer Count Count Count Count DMA Count Data Dat	,			D2SA7			D2SA4		D2SA2	D2SA1	
HDMAS2			000011								
DMA			0920H	0	0	0			0	0	0
DMA					l.	Sou	urce address	for DMA2 (7:0)		
## HDMACS2 address register Part		DMA		D2SA15	D2SA14					D2SA9	D2SA8
## HDMAC42 ## DMA Transfer count mumber A Register2 ## DMA Transfer count mumber A Register2 ## DMA Transfer count mumber A Register2 ## DMA Transfer count mumber A Register2 ## DMA Transfer count mumber A Register2 ## DMA Transfer count Mac DMA Transfer count Mac DMA Transfer count for DMAC (15:8) ## DMA Transfer count fo	11014400		000411				•	•			
Register2 Source address for DMA2 (15:8) D2SA17 D2SA16 D2SA17 D2DA1	HDMAS2	address	0921H	0	0	0				P 0	0
D2SA23 D2SA22 D2SA20 D2SA20 D2SA18 D2SA17 D2SA16 R/W O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Register2				Sou	rce address	for DMA2	15:8))	
DMA				D2SA23	D2SA22			- 77	7 / ^	D2SA17	D2SA16
DMA Transfer Count Number A Register2			000011			I.	•	77			
DDMA destination address for DMA2 (7:0)			0922H	0	0	0	0	0	0	0	0
DMA destination address for DMA2 (15-8) D2DA15 D2DA14 D2DA13 D2DA12 D2DA11 D2DA10 D2DA16 D2DA16 D2DA16 D2DA16 D2DA16 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA18 D2DA18 D2DA18 D2DA18 D2DA17 D2DA16 D2DA18 D2DA					•	Sour	ce address	for DMA2 (2	3:16)	•	•
DMA destination address for DMA2 (15-8) D2DA15 D2DA14 D2DA13 D2DA12 D2DA11 D2DA10 D2DA16 D2DA16 D2DA16 D2DA16 D2DA16 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA17 D2DA16 D2DA18 D2DA18 D2DA18 D2DA18 D2DA18 D2DA17 D2DA16 D2DA18 D2DA				D2DA7	D2DA6	D2DA5	D2DA4	D2DA3	D2DA2	D2DA1	D2DA0
DMA destination address DZDA14 DZDA13 DZDA11 DZDA11 DZDA10 DZDA10 DZDA10 DZDA10 DZDA11 DZDA11 DZDA11 DZDA11 DZDA11 DZDA10 DZDA10 DZDA12 DZDA11 DZDA11 DZDA10 DZDA11 DZDA10 DZDA10 DZDA11 DZDA10 DZDA10 DZDA10 DZDA10 DZDA10 DZDA10 DZDA11 DZDA10 DZDA11 DZDA10 DZDA11 D			000411		l.	l.	- 11			1	>
DMA destination address Part			0924H	0	0	0	0	0	0 0	0	0
HDMAD2 destination address Register2					•	Desti	nation addre	ss for DMA	2 (7:0)		•
HDMAD2 destination address Register2 Register2 D2DA23 D2DA22 D2DA21 D2DA20 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA20 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA20 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA20 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA19 D2DA18 D2DA17 D2DA16 R/W D2DA23 D2DA22 D2DA21 D2DA19 D2DA18 D2DA19 D2DA16 R/W D2CA7 D2CA6 D2CA4 D2CA3 D2CA2 D2CA1 D2CA0 R/W D2CA1 D2CA1 D2CA0 R/W D2CA1 D2CA1 D2CA0 D2CA9 D2CA8 R/W D2CA1 D2CA1 D2CA1 D2CA1 D2CA9 D2CA8 R/W D2CA1 D2CA1 D2CA1 D2CA9 D2CA8 R/W D2CA1 D2CA1 D2CA9 D2CA8 R/W D2CB1 D2CB1 D2CB1 D2CB0 D2CB2 D2CB1 D2CB0 Transfer count A for DMA2 (7:0) D2CB15 D2CB1 D2CB1 D2CB1 D2CB1 D2CB0 Transfer count B for DMA2 (7:0) D2CB15 D2CB14 D2CB13 D2CB1 D2CB10 D2CB9 D2CB8 R/W D2CB15 D2CB14 D2CB13 D2CB1 D2CB10 D2CB9 D2CB8 R/W D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 R/W D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 R/W D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 D2CB15 D2CB14 D2CB13 D2CB12 D2CB10 D2CB0 D2CB9 D2CB8 R/W D2CB15 D2CB14 D2CB13 D2CB12 D2CB10 D2CB10 D2CB9 D2CB8 D2CB15 D2CB14 D2CB13 D2CB12 D2CB10 D2CB10 D2CB9 D2CB8 D2CB15 D2CB14 D2CB10 D2CB10 D2CB10 D2CB9 D2CB8 D2CB15 D2CB16 D2CB16 D2CB1 D2CB10 D2CB		DMA		D2DA15	D2DA14	D2DA13	D2DA12	D2DA11	D2DA10	D2DA9	D2DA8
Register2 D2DA23 D2DA22 D2DA21 D2DA20 D2DA18 D2DA17 D2DA16	LIDMADO		000511			(W		70/	•
D2DA23 D2DA22 D2DA21 D2DA20 D2DA18 D2DA17 D2DA16	HDIVIAD2		0925FI	0	0	0	0	0 /	70	0	0
DMA DMA Transfer Count number A Register 2 Page Register 2 Page P		Register2				Destir	ation addres	ss for DMA2	(15:8)		
DMA DMA Transfer Count No Destination A Destinati				D2DA23	D2DA22	D2DA21	D2DA20	D2DA19	D2DA18	D2DA17	D2DA16
DMA DMA D2CA7 D2CA6 D2CA5 D2CA4 D2CA2 D2CA1 D2CA0 D2CA2 D2CA1 D2CA0 D2CA2 D2CA1 D2CA0 D2CA2 D2CA3 D2CA2 D2CA2 D2CA3 D2CA2 D2CA3 D2CA2 D2CA2 D2CA3 D2CA2			0026			1(//	R/	w ((//	$\langle \rangle$		
DMA Transfer Count DDCA1 D2CA2 D2CA1 D2CA2 D2CA1 D2CA2 D2CA1 D2CA2 D2CA2 D2CA1 D2CA2 D2CA3 D2CA2 D2CA2 D2CA2 D2CA3 D2CA2 D2CA2 D2CA3 D2CA2 D2			092011	0	0 0	Q	0	0	0	0	0
DMA Transfer Count number A Register2						Destin	ation addres	s for DMA2	(23:16)		
HDMACA2 HDMACACA2 HDMACACA2 HDMACACAC HDMACACAC HDMACACAC HDMACACACACACACACACACACACACACACACACACACAC				D2CA7	D2CA6	D2CA5	D2CA4	D2CA3	D2CA2	D2CA1	D2CA0
HDMACA2 HDMACA2 HDMACA2 HDMACB2 HD		DMA	0028H				R	w//			
HDMACA2 count number A Register2 0929H			092011	0		0	_ 0	0	0	0	0
Number A Register2 O929H O	ΗΠΜΔCΔ2					Tra	nsfer count A	A for DMA2	(7:0)		
Register2	TIDIVIAGAZ			D2CA15	D2CA14	D2CA13	D2CA12	D2CA11	D2CA10	D2CA9	D2CA8
DMA Transfer Count D2CB1 D2CB6 D2CB5 D2CB4 D2CB3 D2CB2 D2CB1 D2CB0			0929H	(0)			R	W			
DMA D2GB7 D2CB6 D2CB5 D2CB4 D2CB3 D2CB2 D2CB1 D2CB0		J	002511	\\o(\)) o	0	0	0	0	0	0
DMA Transfer Count Number B Register2 D2BH D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 D2CB8 D2CB8 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 D2CB8 D2CB8 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8 D2CB12 D2CB10 D2CB9 D2CB8 D2CB8 D2CB8 D2CB12 D2CB10 D2CB10 D2CB9 D2CB8 D2CB8 D2CB12 D2CB10 D2CB10 D2CB9 D2CB8 D2CB8 D2CB12 D2CB10 D					\wedge	(/Tran	sfer count A	for DMA2 (15:8)		
HDMACB2 HDMA Transfer count number B Register2 DMA DDCB15 DDCB14 DDCB13 DDCB13 DDCB12 DDCB11 DDCB10 DDCB1 DDCB11 DDCB11 DDCB11 DDCB11 DDCB11 DDCB10 DDCB1 DDCB11 DDCB11 DDCB11 DDCB10 DDCB1 DDCB11 DDCB11 DDCB10 DDMA Transfer data size O00: Destination INC (I/O → MEM) O01: Destination DEC (I/O → MEM) O11: Source INC (MEM → I/O) O11: Source INC (MEM → I/O) O11: Source DEC (MEM → I/O) O10: Source/destination INC (MEM → MEM)		<		D2CB7	D2CB6	D2CB5	D2CB4	D2CB3	D2CB2	D2CB1	D2CB0
HDMACB2 HD		DMA	092AH				R/	W			
HDMACB2 Count Number B Register 2 O92BH D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8			0027111		0	0	0	0	0	0	0
Number B Register2 092BH D2CB15 D2CB14 D2CB13 D2CB12 D2CB11 D2CB10 D2CB9 D2CB8	HDMACB2	\wedge				Trai	nsfer count E	3 for DMA2	(7:0)		
Register2		7.	\searrow	D2CB15	D2CB14	D2CB13	D2CB12	D2CB11	D2CB10	D2CB9	D2CB8
DMA transfer Mode Register2 O92CH Row Company		Register2	092BH	^	(1	R/	W	1	1	1
D2M4 D2M3 D2M2 D2M1 D2M0 R/W 0 0 0 0 0 0 DMA transfer mode 000: Destination INC (I/O → MEM) 001: Destination DEC (I/O → MEM) 001: Source INC (MEM → I/O) 001: Source DEC (MEM → I/O) 100: Source/destination INC (MEM → MEM)				0	0	0	0	0	0	0	0
DMA transfer mode 00: Destination INC (I/O → MEM) 01: 2 bytes 001: Source INC (MEM → I/O) 10: 4 bytes 011: Source DEC (MEM → I/O) 11: Reserved 000: Source/destination INC (MEM → MEM) 01: 2 bytes 010: Source/destination INC (MEM → MEM) 01: Reserved 000: Source/destination INC (MEM → MEM) 01: Reserved 000: Source/destination INC (MEM → MEM)			^			Tran	sfer count B	for DMA2 (15:8)	T	1
DMA transfer mode 000: Destination INC (I/O → MEM) 001: Destination DEC (I/O → MEM) 001: Source INC (MEM → I/O) 011: Source DEC (MEM → I/O) 100: Source/destination INC (MEM → MEM) 000: 1 byte 010: 2 bytes 11: Reserved 11: Reserved		7/	((The state of the s	\mathcal{I}		D2M4	D2M3	D2M2	D2M1	D2M0
DMA transfer mode O00: Destination INC (I/O → MEM) O01: Destination DEC (I/O → MEM) O1: 2 bytes					$\overline{}$			I		1	1
HDMAM2 DMA transfer Mode Register2 DMA transfer DMA DMEM DM									0		
DMA transfer Mode Register2 DMA transfer Mode Register2 DMA Transfer Mode Register2 DMA Transfer DMA				~					→ MEM)		a size
HDMAM2 Mode Mode Register2 Mode Register2 Mode Register2 Mode								•	,		
Mode Register2 011: Source DEC (MEM → I/O) 11: Reserved 100: Source/destination INC (MEM → MEM)	HDMAM2		092CH					•	,	10: 4 bytes	
$(MEM \to MEM)$								•	•	11: Reserve	d
		Register2							J		
101: Source/destination DEC							,	•	EC		
$(MEM \to MEM)$							•	,			
110: Source/destination fixed (I/O→ I/O)									red		
(I/O→ I/O) 111: Reserved							•	,			

(12) DMAC (4/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			D3SA7	D3SA6	D3SA5	D3SA4	D3SA3	D3SA2	D3SA1	D3SA0
			200/11	2007.0	2007.0		/W	200.12	200/11	200.10
		0930H	0	0	0	0	0	0	0	0
						ource addre				
	DMA		D3SA15	D3SA14	D3SA13	D3SA12	D3SA11	D3SA10	D3SA9	D3SA8
11014400	source	000411				•	W			
HDMAS3	address	0931H	0	0	0	0	0		P 0	0
	Register3			I.	Set so	ource addres	s for DMA3	(15:8))	I.
			D3SA23	D3SA22	D3SA21	D3SA20	D3SA19	D3SA18	D3SA17	D3SA16
		000011		Į.	Į.	•	W		u .	l.
		0932H	0	0	0	0	0	0	0	0
				•	Set so	urce address		(23:16)	•	
			D3DA7	D3DA6	D3DA5	D3DA4	D3DA3	D3DA2	D3DA1	D3DA0
		0934H		•	•	- 11	w		1	
		093411	0	0	0	0	0	0 (>	Q	0
					Set des	stination add	ress for DM	A3 (7:0)		
	DMA		D3DA15	D3DA14	D3DA13	D3DA12	D3DA11	D3DA10	D3DA9	D3DA8
HDMAD3	destination	0935H			((R/	W		70/	
TIDIVIADS	address	093311	0	0	0	0	0 /	0	0	0
	Register3				Set des	tination addr	ess for DM	A3 (15:8)		
			D3DA23	D3DA22	D3DA21	D3DA20	D3DA19	D3DA18	D3DA17	D3DA16
		0936H			1(//	R/	w ((//	Ω		
		000011	0	0 (0	0	0	0	0	0
					Set dest	ination addre	ess for DMA	3 (23:16)		
			D3CA7	D3CA6	D3CA5	D3CA4	D3CA3	D3CA2	D3CA1	D3CA0
	DMA	0938H)	R/	W//	T	T	Г
	Transfer		0	7 0	0	0	0	0	0	0
HDMACA3	count		((nsfer count A	A for DMA3	(7:0)	1	
	number A		D3CA15	D3CA14	D3CA13	D3CA12	D3CA11	D3CA10	D3CA9	D3CA8
	Register3	0939H	(7/4)	\		R/	W	1	1	ı
) 0	0	0	0	0	0	0
	/					sfer count A			I	
			D3CB7	D3CB6	D3CB5	D3CB4	D3CB3	D3CB2	D3CB1	D3CB0
	DMA	093AH					/W I			
	Transfer		√ 0	0	0	0	0	0	0	0
HDMACB3	count		202212	20211		nsfer count E		`	20020	20020
	number B		D3CB15	D3CB14	D3CB13	D3CB12	D3CB11	D3CB10	D3CB9	D3CB8
	Register3	093BH	•	1	0		W I o			0
)	0	0		0	for DMA2 (15:0)	0	0
		1	\mathcal{A}	Ť	Trar	sfer count B D3M4	D3M3	D3M2	D3M1	D3M0
<		(*	// 		D3IVI4	פואופת	R/W	ו ואוכע	DOIVIU
		3				0	0	0	0	0
	\Diamond					DMA transfe			Transfer data	
	DMA						tion INC (I/O	,	00: 1 byte	
	transfer						tion DEC (I/O INC (MEM \rightarrow	•	01: 2 bytes 10: 4 bytes	
HDMAM3	Mode	093CH					DEC (MEM →	,	11: Reserve	b
	Register3					100: Source/o	destination IN	,		
						(MEM –	,	EC.		
							destination Di → MEM)	EU		
						,	destination fix	red		
						(I/O→ I	,			
						111: Reserve	ed			

(12) DMAC (5/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			D4SA7	D4SA6	D4SA5	D4SA4	D4SA3	D4SA2	D4SA1	D4SA0
			2 .0	2 .0	2 .07.0		/W	2.07.2	2 .0	2 .07.10
		0940H	0	0	0	0	0	0	0	0
						urce address				
	DMA		D4SA15	D4SA14	D4SA13	D4SA12	D4SA11	D4SA10	D4SA9	D4SA8
11014404	source	004411				•	W			
HDMAS4	address	0941H	0	0	0	0	0		P 0	0
	Register4			Į.	Sou	rce address	for DMA4	15:8))	I.
			D4SA23	D4SA22	D4SA21	D4SA20	D4SA19	D4SA18	D4SA17	D4SA16
		004011		Į.	u .	•	W		u .	l.
		0942H	0	0	0	0	0	0	0	0
				•	Soul	ce address t	\neg	3:16)	•	
			D4DA7	D4DA6	D4DA5	D4DA4	D4DA3	D4DA2	D4DA1	D4DA0
		0944H		•		⟨ R/	w		1	·
		U944FI	0	0	0	0	0	0 (>	Q	0
					Desti	nation addre	ss for DMA	1 (7:0)		
	DMA		D4DA15	D4DA14	D4DA13	D4DA12	D4DA11	D4DA10	D4DA9	D4DA8
HDMAD4	destination	0945H			((R/	W		70/	
I IDIVIAD4	address	094511	0	0	0	0	0 /	0	0	0
	Register4				Destir	nation addres	ss for DMA4	(15:8)		
			D4DA23	D4DA22	D4DA21	D4DA20	D4DA19	D4DA18	D4DA17	D4DA16
		0946H			7(//	R/	w ((//	Ω		
		00 1011	0	0 (0	0	0	0	0	0
					Destin	ation addres	s for DMA4	(23:16)		
			D4CA7	D4CA6	D4CA5	D4CA4	D4CA3	D4CA2	D4CA1	D4CA0
	DMA	0948H)	R/	W//	T	T	Г
	Transfer		0	7 0	0	0	0	0	0	0
HDMACA4	count		((nsfer count A	A for DMA4	(7:0)	1	
	number A		D4CA15	D4CA14	D4CA13	D4CA12	D4CA11	D4CA10	D4CA9	D4CA8
	Register4	0949H	(7/4)	\		R/	W	1	1	ı
) 0	0	0	0	0	0	0
	/					sfer count A			I	
		\//	D4CB7	D4CB6	D4CB5	D4CB4	D4CB3	D4CB2	D4CB1	D4CB0
	DMA	094AH					/W I			
	Transfer		√ 0	0	0	0	0	0	0	0
HDMACB4	count		5.05.15	D. (0.D.)	. 7	nsfer count E		`	5.050	2.020
	number B		D4CB15	D4CB14	D4CB13	D4CB12	D4CB11	D4CB10	D4CB9	D4CB8
	Register4	094BH	0	1	0		W L			0
)	0	0		0	for DMA4 (15:0)	0	0
_		17	\mathcal{A}	Ť	Trar	sfer count B D4M4	D4M3	D4M2	D4M1	D4M0
<		(*	// 		D4IVI4	D4IVI3	R/W	U4IVI I	D4IVIU
		~ ~				0	0	0	0	0
	\Diamond					DMA transfe			Transfer data	
	DMA						tion INC (I/O	,	00: 1 byte	
	transfer						tion DEC (I/O INC (MEM \rightarrow	•	01: 2 bytes 10: 4 bytes	
HDMAM4	Mode	094CH					DEC (MEM →	,	11: Reserve	b
	Register4					100: Source/o	destination IN	,		
						(MEM –	,	EC.		
							destination Di → MEM)	EU		
						,	destination fix	red		
						(I/O→ I	,			
						111: Reserve	ed			

(12) DMAC (6/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
		12.2.300	D5SA7	D5SA6	D5SA5	D5SA4	D5SA3	D5SA2	D5SA1	D5SA0
			Doorti	D00/10	D00/10	•	/W	DOONE	Doorti	Doorto
		0950H	0	0	0	0	0	0	0	0
			~	· · · · · · · · · · · · · · · · · · ·		urce address			<u> </u>	· · · ·
	DMA		D5SA15	D5SA14	D5SA13	D5SA12	D5SA11	D5SA10	D5SA9	D5SA8
	source		200/110	200,111	200,110		/W	200,110	200710	200/10
HDMAS5	address	0951H	0	0	0	0	0		0	0
	Register5					rce address				•
			D5SA23	D5SA22	D5SA21	D5SA20	D5SA19	D5SA18	D5SA17	D5SA16
		005011					W			
		0952H	0	0	0	0	0	0	0	0
					Sour	ce address	for DMA5 (2	3:16)		
			D5DA7	D5DA6	D5DA5	D5DA4	D5DA3	D5DA2	D5DA1	D5DA0
		005411					w			,
		0954H	0	0	0	0	0	0 0	0	0
						nation addre	\			
	DMA		D5DA15	D5DA14	D5DA13	D5DA12	D5DA11	D5DA10	D5DA9	D5DA8
LIDMADE	destination	005511			(W		70/	l .
HDMAD5	address	0955H	0	0	0	0	0 /	70	0	0
	Register5				Destin	nation addres	ss for DMA5	(15:8)	•	
			D5DA23	D5DA22	D5DA21	D5DA20	D5DA19	D5DA18	D5DA17	D5DA16
		0956H			1(//	R/	w (//	$\langle \rangle$		
		093011	0	0 . (l Q	0	0	0	0	0
					Destin	ation addres	s for DMA5	(23:16)		
			D5CA7	D5CA6	D5CA5	D5CA4	D5CA3	D5CA2	D54CA1	D5CA0
	DMA	0958H				R	w//			
	Transfer	000011	0	70	0	_ 0	0	0	0	0
HDMACA5	count		((Trai	nsfer count A	A for DMA5	(7:0)		
	number A		D5CA15	D5CA14	D5CA13	D5CA12	D5CA11	D5CA10	D5CA9	D5CA8
	Register5	0959H	(070	\		R	W			
			(0)	0	0	ò	0	0	0	0
	,	(//)			((/フraŋ	sfer count A	for DMA5 (15:8)	ı	r
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		D5CB7	D5CB6	D5CB5	D5CB4	D5CB3	D5CB2	D5CB1	D5CB0
	DMA	095AH				R/	/W	I	T	
	Transfer		> 0	0	0	0	0	0	0	0
HDMACB5	count		-		\ /	nsfer count E			Г	
	number B	\searrow	D5CB15	D5CB14	D5CB13	D5CB12	D5CB11	D5CB10	D5CB9	D5CB8
	Register5	095BH		1	I		/W	T		
)	0	0	0	0	0	0	0	0
		^>		7	Tran	sfer count B				
				//		D5M4	D5M3	D5M2	D5M1	D5M0
		2					I	R/W		
						0 DMA transfe	0 r modo	0	0 Transfer data	0
			*				r mode ition INC (I/O	→ MEM)	00: 1 byte	a 312t
	DMA					001: Destina	tion DEC (I/O	\rightarrow MEM)	01: 2 bytes	
HDMAM5	transfer	095CH					INC (MEM →		10: 4 bytes	
	Mode						DEC (MEM – destination IN		11: Reserve	a
	Register5					(MEM –		-		
						101: Source/	destination D	EC		
						,	→ MEM)	rod.		
						110: Source/ (I/O→ I	destination fix	.ea		
						111: Reserve	-			

(12) DMAC (7/7)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					DMAE5	DMAE4	DMAE3	DMAE2	DMAE1	DMAE0
	DMA						R/	W		_
HDMAE	enable	097EH			0	0	0	0	0	0
	Register						DMA chann 0: Disable	el operation 1: Enable		
-							ĺ	7/		
			DMATE	DMATR6	DMATR5	DMATR4	DMATR3	DMATR2	DMATR1	DMATR0
						R/	W		N	
	DMA		0	0	0	0	0	$\bigg) \bigg)$	0	0
HDMATR	timer	097FH	Timer		1	Maximum bu	s occupanc	y time setting	9	
	Register		operation		The value t	o be set in <	:DMATR6:0	should be	obtained by	
			0: Disable		"Ma	ximum bus o	occupancy ti	me / (256/f _S	YS)".	
			1: Enable			"00H	d" cannot be	set.		

TOSHIBA

(1<u>3</u>) Clock gear, PLL

Symbol	Name	Address	7	6	5	4	3	2	1	0
				XTEN	USBCLK1	USBCLK0		WUEF		PRCK
					R/W			R/W		R/W
	System			1	0	0		0		0
SYSCR0	clock control register0	10E0H		Low -frequency oscillator circuit (fs)	Select the clo USB(f _{USB}) 00: Disable 01: Reserved	ock of		Warm-up timer		Select Prescaler clock 0: f _{SYS} /2
				0: Stop 1: Oscillation	10: X1USB				>	1: f _{SYS} /8
							7	GEAR2	GEAR1	GEAR0
							1/1		R/W	
	System							1	0	0
SYSCR1	clock control register1	10E1H						000: fc	ralue of high fr 101: (Reserve 110: (Reserve 111: (Reserve 100: fc/16	ed) ed)
			_	CKOSEL	WUPTM1	WUPTM0	HALTM1	HALTM0	1	
				•		w(//)) (> (0	72	
	System		0	0	1 (-		1	7	2/1/	
SYSCR2	clock control register2	10E2H	Always write "0".		Warm-Up Tin 00: Reserved 01: 2 ⁸ /inputte 10:2 ¹⁴ /inputte 11:2 ¹⁶ /inputte	d frequency	HALT mode 00: Reserved 01: STOP mo 10: IDLE1 mo 11: IDLE2 mo	ode		
			PROTECT		\bigvee		_\/	EXTIN	DRVOSCH	DRVOSCL
			R	To the second		<i>\\</i>	R/W	R/W	R/W	R/W
	EMC		0			\neq	\0	0	1	1
EMCCR0	control register0	10E3H	Protect flag 0: OFF 1: ON		\nearrow	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Always write "0".	1: External clock	fc oscillator drive ability 1: NORMAL 0: WEAK	fs oscillator drive ability 1: NORMAL 0: WEAK
EMCCR1	EMC control register1	10E4H			the protect					
EMCCR2	EMC control	10E5H			EY: EMCCR					
	register2	</td <td></td> <td></td> <td>(\</td> <td></td> <td></td> <td></td> <td></td> <td></td>			(\					
		///		FCSEL	LUPFG					
				R/W 0	R					
DITODO	PLL control	105011	~	Select fc	Lock-up					
PLLCR0	control register0	10E8H		clock	timer Status					
	registero	\bigcirc	/	0: fosch	flag					
			\sim	1 : fpll	0 : not end					
					1 : end					
		\wedge	PLL0	PL/L1	LUPSEL					PLLTIMES
<u></u>	7/	(()) R/W						R/W
	/		0	0	0					0
DI LODA	PLL	405011	PLL0 for	PLL1 for	Select stage					Select the
PLLCR1	control	10E9H	CPU 0: Off	USB 0: Off	of Lock up counter					number of PLL
	register1		0: Off 1: On	0: Off 1: On	counter 0: 12 stage					0: ×12
			1 0	1. 011	(for PLL0)					1: ×16
					1:13 stage]			

(14) 8-bit timer (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TA0RDE				I2TA01	TA01PRUN	TA1RUN	TA0RUN
			R/W					R	W	
	TMRA01		0				0	0	0	0
TA01RUN	RUN	1100H	Double				IDLE2	TMRA01	Up counter	Up counter
	register		buffer				0: Stop	prescaler	(UC1)	(UC0)
			0: Disable					0: Stop and		/
			1: Enable				operate	1: Run (Cou		
		1102H	T. Eliabio			<u> </u>	_	Ti. Kun (oo	v (ap)	
TA0REG	8-bit timer	(Prohibit					N			
	register 0	`RMW)					0. (7	70		
		1103H						$\bigcirc)$		
TA1REG	8-bit timer register 1	(Prohibit				١	N			
	register i	RMW)					0 ()	>		
			TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0
							W	1		
	TMDAGA		0	0	0	0//	0	0 ^	(0)	0
TA01MOD	TMRA01 MODE	1104H	Operation m	node	PWM cycle		Source clock	for TMRA1	Source clock	for TMRA0
TAUTIVIOD	register	110411	00: 8-bit time	er mode	00: Reserve	ed (/ / \	00: TA0TR	G (00: TA0IN p	oin
	register		01: 16-bit tin	ner mode	01: 2 ⁶	(\vee)	01: øT1	\rightarrow	01; φT1	
			10: 8-bit PP	G mode	10: 2 ⁷		10: φT16	7	10: 6T4	
			11: 8-bit PW	/M mode	11: 28		11: _φ T256	3 ///	11: φT16	
					H			TA1FFC0	TA1FFIE	TA1FFIS
						4		$N \supset I$		W
	TMRA1						$\langle 1 \rangle$	1	0	0
	Flip-Flop	1105H					00: Invert T	A1FF	TA1FF	TA1FF
TA1FFCR	control	(Prohibit		\mathcal{A}			01; Set TA	· /	control for	inversion
	register	RMW)					10: Clear T		inversion	select
							11: Don't ca		0: Disable	0: TMRA0
					~		TT. DOITE	al C	1: Enable	
			TA2RDE				12TA23	TA23PRUN		1: TMRA1
			R/W			<u></u>	421A23		W	TA2RUN
			0	#		#	0	0	0	0
TA23RUN	TMRA23 RUN	1108H	Double	\rightarrow	7		IDLE2	TMRA23		Up counter
TAZSKUN	register	11000	buffer						-	-
	regioter		0: Disable			\rightarrow	0: Stop	prescaler 0: Stop and	(UC3)	(UC2)
				^	$(7/\wedge$		1: Operate			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1: Enable		(1: Run (Co	uni up)	
TA2REG	8-bit timer	110AH (Prohibit			$\overline{}$	1	 W			
TAZINEO	register 2	RMW)	> '				0			
		110BH	V				_			
TA3REG	8-bit timer register 3	(Prohibit			\supset	1	N			
	register 5	RMW)		>			0			
		\	TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0
)			1		/W	i .	1	1
	TAIDAGG	/ ^	0	0	0	0	0	0	0	0
TA23MOD	TMRA23 MODE	110CH	Operation n	/	PWM cycle			c for TMRA3	Source clock	
TAZSINOD	register	110011	00: 8-bit tim	er mode	00: Reserv	ed	00: TA2TR	G	00: Reserv	ed
	rogiotor	4	01: 16-bit tii	mer mode	01: 2 ⁶		01: φT1		01: φT1	
			10: 8-bit PP	G mode	10: 2 ⁷		10: φT16 11: φT256		10: φT4 11: φT16	
			11: 8-bit PV	VM mode	11: 2 ⁸		11. ψ1236		11. ψ1 10	
							TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS
							١	V	R	W
	TMRA3						1	1	0	0
TA05505	Flip-Flop	110DH					00: Invert T	A3FF	TA3FF	TA3FF
TA3FFCR	control	(Prohibit					01: Set TA3	3FF	control for	inversion
	register	RMW)					10: Clear T		inversion	select
							11: Don't ca		0: Disable	0: TMRA2
									1: Enable	1: TMRA3
		l			1	l .	1		i. ∟⊓abie	LI LINIKAS

(14) 8-bit timer (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TA4RDE				I2TA45	TA45PRUN	TA5RUN	TA4RUN
			R/W					R	/W	
	TMRA45		0				0	0	0	0
TA45RUN	RUN	1110H	Double				IDLE2	TMRA45	Up counter	Up counter
	register		buffer				0: Stop	prescaler	(UC5)	(UC4)
			0: Disable					0: Stop and		(/
			1: Enable				i. Oporato	1: Run (Co		
		1112H	1. Lilabic				<u> </u> -	II. Kuii (Co	unt up)	
TA4REG	8-bit timer	(Prohibit					<u></u>		1	
.,	register 4	RMW)					0	77/^		
		1113H				<		$\langle \cdot \rangle \rangle$		
TA5REG	8-bit timer	(Prohibit				\	N >			
	register 5	RMW)				(0()	\		
			TA45M1	TA45M0	PWM41	PWM40	TA5CLK1	TA5CLK0	TA4CLK1	TA4CLK0
					•	R	W	•		•
			0	0	0	0/	0	0 ^	0	0
	TMRA45		Operation m	node	PWM cycle		Source clock	for TMRA5	Source clock	for TMRA4
TA45MOD	MODE	1114H	00: 8-bit time		00: Reserve		00: TA4TR	(/	00: 32kHz	
	register		01: 16-bit tin		01: 2 ⁶	((/ /))	01: φT1 <	()	01: ∳T1	
			10: 8-bit PP		10: 2 ⁷		10: φT16	1	10: \$74	
					11: 28		11: φT256	_/// c	11: ¢T16	
			11: 8-bit PW	/W mode	11.2			TA5FFC0	TA5FFIE	TA5FFIS
				//	4			N)		W
					The		1		0	0
	TMRA5	1115H		\rightarrow			-100	ACEE		TA5FF
TA5FFCR	Flip-Flop	(Prohibit					00: Invert T	/ /	TA5FF	-
	control register	RMW)		4(01: Set TA5		control for	inversion
	register				, ,		10: Clear T		inversion	select
							11: Don't ca	are	0: Disable	0: TMRA4
									1: Enable	1: TMRA5
			TA6RDE				JŹTA67	TA67PRUN		TA6RUN
			R/W						/W	1 -
	TMRA67		0/	\mathcal{F}			0	0	0	0
TA67RUN	RUN	1118H	Double		~ /		IDLE2	TMRA67	Up counter	Up counter
	register		buffer (1/	0: Stop	prescaler	(UC7)	(UC6)
			0: Disable			\sim	1: Operate	0: Stop and	d clear	
		//)]	1: Enable					1: Run (Co	unt up)	
	8-bit timer	111AH/					=			
TA6REG	register 2	(Prohibit				V	V			
	rogistor Z	RMW)	> -			(0		-	
	8-bit timer /	111BH	v -				=			
TA7REG	register 3	(Prohibit			>		V			
	3 V	RMW)		>	•		0	ı	1	ı
			TA67M1	TA67M0	PWM61	PWM60	TA7CLK1	TA7CLK0	TA6CLK1	TA6CLK0
\wedge)			-	1	W	1	1	1
	TMDACZ	/ _	0	0	0	0	0	0	0	0
TA67MOD	TMRA67 MODE	111CH	Operation m	node	PWM cycle		Source clock	for TMRA7	Source clock	for TMRA6
TAUTINOD	register	111001	00: 8-bit tim	er mode	00: Reserve	ed	00: TA6TR	3	00: 32kHz	clock
	. og.o.o.	4	01: 16-bit tin	ner mode	01: 2 ⁶		01: φT1		01: φT1	
			10: 8-bit PP	G mode	10: 2 ⁷		10: φT16		10: φT4	
	*		11: 8-bit PW	/M mode	11: 2 ⁸		11: φT256		11: φT16	
							TA7FFC1	TA7FFC0	TA7FFIE	TA7FFIS
								٧		W
	TMRA7						1	1	0	0
	Flip-Flop	111DH					00: Invert T	A7FF	TA7FF	TA7FF
TA7FFCR	control	(Prohibit					01: Set TA7		control for	inversion
	register	RMW)					10: Clear T		inversion	select
	Ü									
							11: Don't ca	ai e	0: Disable	0: TMRA6
			1	I	1	1	1		1: Enable	1: TMRA7

(15) 16-bit timer (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	ivallie	Address	TB0RDE	O		4	I2TB0	TB0PRUN	_	TB0RUN
			R/W	R/W			R/W	R/W		R/W
			0	0			0	0		0
	TMRB0									
TB0RUN	RUN	1180H	Double	Always			IDLE2	TMRB0		Up counter
	register		buffer	write "0".			0: Stop	prescaler		(UC10)
			0: disable				1: Operate	0: Stop and	. /	
			1: enable					1: Run (Coi	unt up)	
			-	-	TB0CP0I	TB0CPM1	TB0CPM0	TB0CLE	TB0CLK1	TB0CLK0
			R/	W	W*	4		R/W		_
İ			0	0	1	0	10,		0	0
			Always writ	e "00".	Software	Capture timin	g	Control Up	TMRB1 so	urce clock
					capture	00: Disable	(())	counter	00: TB0IN) input
					control	INT6 occ	curs at rising	0:Clear	01: φT1	
	TMDDO	440011			0: Execute	edge		Disable	10: _{\$\phi T4\$}	
TB0MOD	TMRB0 MODE	1182H (Prohibit			1:Undefined	01: TB0IN0 (1:Clear	11: φT16	
IDOMOD	register	RMW)					curs at rising	Enable		
	rogiotoi	1 (11111)				edge	^			
						10: TBOINO		7	$(/ \cap)$	
						edge	curs at falling	11/		
						11:TA1OUT	^			
					4(/	TA10UT				
						~	curs at rising			
						edge	$-(\Omega)$	\wedge		
			-	- (TB0CT1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
			V	/* \d		R/			\	N*
			1	1	Ŏ	/ (0	0	0	1	1
	TMRB0	1183H	Always writ	e/11".	TB1FF0 inv	ersion trigge	r))		Control TB	1FF0
TB0FFCR	Flip-Flop	(Prohibit			0: Disable tr	rigger	\ //		00: Invert	
15011 011	control	RMW)	*Always rea	ad as "11".	1: Enable tri	igger	\		01: Set	
	register	,		\wedge		When	When UC10	When UC10	10: Clear	
					capture	capture	matches with	matches with	11: Don't c	are
						UC10 to	TB0RG1H/L	TB0RG0H/L		ead as "11".
			$((// \land)$		TB0CP1H/L	TB0CP0H/L				
TDODOOL	16 bit timer	1188H	(\bigcirc		<u> </u>			
TB0RG0L	register 0	(Prohibit			$-(\sqrt{\sqrt{5}})$		<u>N</u>			
	low <	(RMW)				/	0			
TDODCOLL	16 bit timer	1189H					•			
TB0RG0H		(Prohibit RMW)		1			<u>N</u>			
	high	118AH					0			
TB0RG1L	16 bit timer	118AH (Prohibit			\rightarrow	•				
DOINGIL	register low	RMW)	/	>	•		0			
	16 bit timer	118BH	< 1			'	<u> </u>			
TB0RG1H	register 1	(Prohibit				1				
I DOLLO HI	high	RMW)		///			0			
		(())						
TB0CP0L	Capture register 0	118CH	7	/ 			 २			
1200101	low	110011					efined			
	Capture					Onde				
ТВ0СР0Н	register 0	118DH					_ २			
. 2001 011	high	110011					efined			
	-					Onde	Jiii lou			
TB0CP1L	Capture register 1	118EH				-	 २			
I DOOL IL	low	IIOLII					efined			
						Unde	ziii l e u			
	Capture					-	=			
TR0CD1L	rogiotor 1	11966					_			
TB0CP1H	register 1 high	118FH					R efined			

(15) 16-bit timer (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Address		O O		4				
			TB1RDE	-			I2TB1	TB1PRUN	$\overline{}$	TB1RUN
			R/W	R/W			R/W	R/W		R/W
TB1RUN	TMRB1 RUN	1190H	0	0		$\overline{}$	0	0	\vdash	0
IBIKUN	register	1190⊓	Double	Always			IDLE2	TMRB1		Up counter
	register		buffer	write "0".			0: Stop	prescaler		(UC12)
			0: disable				1: Operate	0: Stop and	1	
			1: enable					1: Run (Co	unt up)	
			=	_	TB1CP0I	TB1CPM1	TB1CPM0	TB1CLE	TB1CLK1	TB1CLK0
			R	/W	W*			R/W		
			0	0	1	0	0	0	0	0
			Always writ	e "00".	Software	Capture timin	g(\))	Control Up	TMRB1 sou	rce clock
					capture	00: Disable		counter	00: TB1IN0	input
					control	edge	curs at rising	0:Clear	01: φT1	
	TMRB1	1192H			0: Execute	edge IO1: TB1IN0	,	1/	1	
TB1MOD	MODE	(Prohibit			1: Undefined		curs at rising	1:Clear	11: φT16	
	register	RMW)				edge	<u> </u>	Enable		
						10: TB1IN0 '	↑TB1IN0↓	7	(())	
					7		urs at falling			
						edge	, ((
						11:TA3OUT TA3OUT				
				(curs at rising	\wedge		
						edge))		
			_	₹(TB1CT1	TB1C0T1	TB1E1T1	TB1E0T1	TB1FF0C1	TB1FF0C0
			V	V*	,	R/	w	_	W	/ *
			1		0	0) 0	0	1	1
	TMRB1	1193H	Always writ	e "11".	TB1FF0 inv	version trigge	er		Control TB1	FF0
TB1FFCR	Flip-Flop control	(Prohibit		7	0: Disable t				00: Invert	
	register	RMW)	*Always rea	ad as "11".	1: Enable ti	1- 1			01: Set	
	rogiotor						When UC12	When UC12	10: Clear	
			(7)			. / /	matches	matches	11: Don't ca	re
			$(\vee/)$		UC12 to TB1CP1H/L		with TB1RG1H/L	with	* Always rea	ad as "11".
	16 bit timor	/1198H		^	TIBICPID/L	TBUCPUR/L	IBIRGIH/L	IBIRGUH/L		
TB1RG0L	16 bit timer register 0	(Prohibit			(\vee)	/ 	N			
	low	RMW)					0			
	16 bit timer	1199H	>				_			
TB1RG0H	register 0	(Prohibit				\	N			
	high	RMW)			>		0			
TD4DC41	16 bit timer	119AH	(7						
TB1RG1L	register low	(Prohibit RMW)	A				<u>N</u>			
\sim	de hiki	119BH					0			
TB1RG1H	16 bit timer register 1	(Prohibit		/ 						
	high	RMW)		// 			0			
	Capture	7					_			
TB1CP0L	register 0	119CH					R			
	low						efined			
	Capture						=			
TB1CP0H	register 0	119DH					R			
	high					Unde	efined			
TD4CD41	Capture	140511				-	<u> </u>			
TB1CP1L	register 1 low	119EH					R efined			
			<u> </u>			Unde	eiiiieu			
TB1CP1H	Capture register 1	119FH					 R			
	high	. 10111					efined			
	3		l			0.100				

(16) UART/Serial channels

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC0BUF	channel 0	1200H (Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
SCUBUF	buffer	RMW)			R	(Receive) /V	V (Transmiss	sion)		
	register	,				Und	efined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	0		R	R	/W	R (Clea	ared to 0 whe	en read)	R	/W
	Serial channel 0	1201H	Undefined	0	0	0	0	0	0	0
SC0CR	control	(Prohibit	Received	Parity	Parity		1: Error	<u> </u>	0: SCLK0↑	0:baud rate
	register	RMW)	data bit8	0: Odd	addition	Overrun	Parity	Framing	1: SCLK0↓	generator
				1: Even	0: Disable					1: SCLK0
					1: Enable			7		pin input
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
					ı		R/W	_		ı
	Serial		0	0	0	0	0	0	0	0
SC0MOD0	channel 0	1202H		0: CTS	Receive	Wake up	00: I/O inter	1 ()	00: TA0TR	
SCONIODO	mode 0	120211	data bit 8	disable	function	0: Disable	01: 7-bit UA		1/////	te generator
	register			1: CTS	0:Receive	1: Enable	10: 8-bit UA 11: 9-bit UA		10: Internal 11: Externa	_
				enable	disable 1:Receive		11. 9-bit 0	IKI WOODE	(SCLK0 in	
					enable			$\langle \rangle$	(SCLRO	iput)
			_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
	Carrial			BITOTOBE	BROOKIN		R/W	BROOZ	BIXOUT	BITOGO
	Serial channel 0		0	0	0	0		0	0	0
BR0CR	baud rate	1203H	Always	(16-K)/16			11		ency "N" sett	
	control		-	division	01: φT2))		~F	9
	register			0: Disable	10: φT8		\//			
				1: Enable	11: φT32	\wedge				
	Serial		Ŧ	<u> </u>			BR0K3	BR0K2	BR0K1	BR0K0
BR0ADD	channel 0	1204H		<i>//</i>		4		R	/W	
BROADD	K setting	120411	77/4				0	0	0	0
	register		()			\rightarrow	Set	s frequency	divisor "K" (1~F)
	/	(/) [I2S0	FDPX0	TAA					
	Serial		R/W	R/W						
SC0MOD1	channel 0	1205H	0	0	1					
	mode 1 register			Duplex						
	rogioto			0: Half						
			1: Run	1: Full	~					
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
	$((\))$				T		R/W		T	
		\wedge	0	0	0	0	0	0	0	0
SIRCR	IrDA control	1207H	$\cap \setminus \setminus \setminus$	Receive	Transmit	Receive		ive pulse wi		
Silvon	register	120/11	transmit	data	0: Disable	0: Disable		d SIRR×D p	ulse width fo	or equal or
				0:"H" pulse		1: Enable	more than	a volue : 4\	. 100	
	~		width 0: 3/16	1: "L" pulse			2x × (setting Can be set:	-	+ TUUNS	
			0: 3/16 1: 1/16				Can be set:			
	l	l	1. 1/10				Can not be	o c ι. ∪, 10		

(17) SBI

Symbol	Name	Address	7	6	5	4	3	2	1	0
			BC2	BC1	BC0	ACK	-	SCK2	SCK1	SCK0 /SWRMON
				R/W		R/W	R	R/	W	R/W
	Serial bus	1240H	0	0	0	0	1	0	0	0/1
SBICR1	interface control	(Prohibit	Number of t	ransfer bits		Acknowledge	Always	Setting for th	e divisor valu	ie "n"
	register 1	RMW)	000: 8	001: 1	010: 2	mode specification	read as "1".	(When writin	g)	
			011: 3	100: 4	101: 5	0: Disable		000: 4	01:5 01	0: 6
			110: 6	111: 7		1: Enable)1: 9
				ı	ı			773	11: (Reserve	1
ODIDDD	SBI	1241H	DB7	DB6	DB5	DB4	DB3	V/DB2	DB1	DB0
SBIDBR	buffer	(Prohibit RMW)					/W (Transmi	t)		
	register	TXIVIVV)					defined			
			SA6	SA5	SA4	SA3	SA2	SA1	SA0	ALS
	I ² C BUS	404011	_	_	l <u>.</u>	N	R/W	_ [_
I2CAR	Address	1242H (Prohibit	0	0	0	0	0	0	0 >	0
1207111	register	RMW)				(0)				Address
	· ·	,			Sla	ave Address s	setting	0.6		recognition 0: Enable
									70/	1: Disable
			MST	TRX	BB	RIN	AL/SBIM1	AAS/SBIM0	AD0/	LRB/
			R/W	R/W	R/W	R/W	R/W	R/W	SWRST1 R/W	SWRST0 R/W
			0	0	0	1	0	0	0	0
	Carial bus		Master/	Transmitter/	l ² C bus	INTSBI	Arbitration	Slave	General	Last
SBISR	Serial bus interface		Slave	Receiver <	status	request	lost	Address	call	receive bit
When	status		status	status	monitor	monitor	detection	match	detection	monitor
read	register		monitor	monitor 0:Receiver	0: Free	0: Request	monitor	detection	monitor	0: "0"
			0:Slave	1:Transmit-	1: Busy	1: Cancel	0: -	monitor	0:	1: "1"
		1243H	1:Master	ter			1: Detected	0:	Undetected	
		(Prohibit RMW)						Undetected 1: Detected	1: Detected	
			(0)	\wedge	Start/Stop	Cancel	Serial bus in		Software res	set generate
))	condition	INTSBI	operation m		write "10" ar	
	Serial bus			_	0: Stop	interrupt	selection		an internal r	eset signal is
SBICR2	interface				condition 1: Busy	request	00: Port mo	de	generated.	
When	control register 2				condition	0:Don't	01: (Reserv			
write	register 2					care	10: I ² C bus			
		/ /				1:Cancel	11: (Reserv	ed)		
				\wedge		interrupt				
				12SBI		request			_	
4	Corial hua))		R/W	_	_ =	<u> </u>		_ =	R/W
05:5=	Serial bus interface	1244H	> 0 (0	1	1	1	1	1	0
SBIBR0	baud rate	(Prohibit RMW)	Always	IDLE2	<u>'</u>		ways read as	1	<u> </u>	Always
	register 0	IZIVIVV)	read "0"	0: Stop		731	, 5 1000 00			write "0".
				1: Operate						
	7		SBIEN	-	-	_	-	-	_	-
			R/W				R			
	Serial bus interface	1247H	0	0	0	0	0	0	0	0
SBICR0	control	(Prohibit	SBI			A	lways read a	s "0".		
	register 0	RMW)	operation							
			0:disable							
			1:enable							

TOSHIBA TMP92CF26A

(18) AD converter (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ADR01	ADR00					OVR0	ADR0RF
	AD		F	₹					R	R
ADREG0L	Conversion Result	12A0H	0	0					0	0
	register 0 low		Store Lower	2 bits of AN0					Overrun flag	AD conversion
	register o low		AD convei	rsion result					0:No generate 1: Generate	result store flag 1:Stored
	AD		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
ADREG0H	conversion	12A1H				F	₹			
ADINEGUII	result	IZAIII	0	0	0	0	0	0) 0	0
	register 0 high)			Store Uppe	er 8 bits of ar	AN0 conve	ersion result		
	AD		ADR11	ADR10				ZZS}_	OVR1	ADR1RF
	conversion		F	ı					R	R
ADREG1L	result	12A2H	0	0					0	0
	register 1 low			2 bits of AN1)~	Overrun flag 0:No generate	AD conversion result store flag
	-9		AD convei	rsion result					1: Generate	1:Stored
	AD		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG1H	conversion	12A3H		T	T		3	(~
	result		0	0	0	(0)	0	0	0	0
	register 1 high				Store Uppe	er 8 bits of ar	AN1 conve	rsion result))	
	AD		ADR21	ADR20	7				OVR2	ADR2RF
4 DDE 001	conversion	404411		₹				\sim	R/ 0	R 0
ADREG2L	result	12A4H	O Store Lewer	0 2 bits of AN2	7				Overrun flag	AD conversion
	register 2 low			rsion result					0:No generate	result store flag
					(ADDOZ)	ADDOO	ADDOC	Appea	1: Generate	1:Stored
	AD		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG2H	conversion result	12A5H	0	0 <	0	0	0	0	0	0
	register 2 high		0			r 8 bits of an	1-1		0	0
	rogioto: _ mg.		ADR31	ADR30	Cibiç Oppo	TO BILD OF ALL	7112 001110	Tolon result	OVR3	ADR3RF
	AD		F				$\overline{\mathcal{A}}$		R	R
ADREG3L	conversion	12A6H	0 /	> 0		$\overline{}$			0	0
	result		Store Lower	2 bits of AN3					Overrun flag	AD conversion
	register 3 low		AD convei	rsion result	<	16			0:No generate 1: Generate	result store flag 1:Stored
	AD		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADDECOL	conversion	404711)		→ R	2		1	
ADREG3H	result	12A7H) 0	0 _	(6//-	0	0	0	0	0
	register 3 high				Store Uppe	r 8 bits of an	AN3 conve	rsion result		
	AD	/,<	ADR4	ADR4					OVR4	ADR4F
	conversion			? < _	<i>>></i>				R	R
ADREG4L	result	12A8H	0	0					0	0
	register 4			2 bits of AN4					Overrun flag 0:No generate	AD conversion result store flag
	low	$\langle \vee \rangle$	AD convei	rsion result					1: Generate	1:Stored
	AD	\	ADR49 〈	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42
ADREG4H	conversion	12A9H			T	F			T	
	result	/	0	0	0	0	0	0	0	0
	register 4high				Store Uppe	er 8 bits of ar	n AN4 conve	ersion result		
	AD		ADR5	ADR5					OVR5	ADR5F
ADDES=:	conversion	4644		٦					R	R
ADREG5L	result	12AAH	0 Store Lower	0 2 hito of ANE					0 Overrun flag	0 AD conversion
	register 5 low			2 bits of AN5 rsion result					0:No generate	result store flag
	4.0				ADD57	ADDEO	ADDEC	ADD54	1: Generate	1: Stored
	AD		ADR59	ADR58	ADR57	ADR56	ADR55	ADR54	ADR53	ADR52
ADREG5H	conversion result	12ABH	0	0	0	0	0	0	0	0
	register 5 high		U	U		er 8 bits of ar			l 0	1 0
	Pagiotor o riigi	1	l		orone obbe	יי ס אונס טו מו	I AINO COIIVE	noion result		

TOSHIBA TMP92CF26A

(18) AD converter (2/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ADRSP1	ADRSP0					OVSRP	ADRSPRF
	High priority		R						R	R
ADREGSPL	Conversion Register SP	12B0H	0	0					0	0
	low		Store Lower	r 2 bits of an sion result					Overrun 1: Generate	AD conversion result store flag 1:Stored
	High priority		ADRSP9	ADRSP8	ADRSP7	ADRSP6	ADRSP5	ADRSP4	ADRSP3	ADRSP2
ADREGSPH	Conversion	12B1H				F	?) [
ADREGOFFI	Register SP	120111	0	0	0	0	0 /	0	0	0
	high				Store Upp	er 8 bits of a	n AD conve	rsion result		
	AD		ADR21	ADR20				$\cancel{3}$		
	Conversion		R/	W			7			
	Result		0	0			M	7		
ADCM0REGL	Compare Criterion Register 0	12B4H	Store Lower AD conver compare	sion result						>
	Low		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
	AD Conversion		ADRZ9	ADRZO	ADR21		W	ADR24	ADRZS	ADRZZ
	Result		0	0	0	0	0	0		0
ADCM0REGH		12B5H		Ü					V .	
	Criterion Register 0 High			Store U	pper 8 bits o	of an AD cor	nversion resi	ult compare	criterion	
	AD		ADR21	ADR20		\rightarrow		/		
	Conversion		R/	W		74	$\rightarrow \downarrow \downarrow$			
	Result		0	0			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
ADCM1REGL	Compare	12B6H	Store Lower	r 2 bits of an)	Ì	\\/			
	Criterion		AD conver	sion result			•			
	Register 1		compare	criterion	(
	Low		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
	AD		ADR29	ADRZO	ADR21		W	ADR24	ADRZS	ADRZZ
	Conversion			0.	(0//	0	0	0	0	0
ADCMARECH	Result	12B7H))	0	0	0	
ADCM1REGH	-	120/11								
	Criterion Register 1			Store U	pper 8 bits o	of an AD cor	nversion resu	ult compare	criterion	
	High /									
	Tingi.		F00	DUCY		IOAD	ADC	LITDOE	TOFI 4	TOFLO
			EOS	BUSY	//	I2AD	ADS	HTRGE R/W	TSEL1	TSEL0
			0	0	//	0	0	0	0	0
)		Normal AD		AD	Start Normal		Select Hard	
	AD mode		conversion end flag	conversion		conversion	AD conversion	conversion at Hard ware	00: INTTB00	
ADMOD0	control	12B8H	0:During	BUSY Flag 0:Stop		when IDLE2 mode	0: Don't Care		10: Reserved	1
	register 0		conversion	conversion		0: Stop	1:Start AD	0: Disable	11: Reserved	i
			sequence or before	1:During conversion		1: Operate	conversion	1: Enable		
			starting				Always read			
			1:Complete conversion				as"0".			
			sequence							

(18) AD converter (3/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			DACON	ADCH2	ADCH1	ADCH0	LAT	ITM	REPEAT	SCAN
						R	R/W			
			0	0	0	0	0	0	0	0
	A.D		DAC and	Analog	g input channe	el select	Latency	Interrupt	Repeat	Scan mode
ADMOD1	AD mode	12B9H	VREF				0: No Wait	specification	mode specification	specification
ADMODI	control register 1	120911	application control				1:Start after reading	when conversion	0:Single	fixed mode
	register						conversion	channel fixed	conversion	
								repeat mode		scan mode
							Register of last		conversion	
							channel			
			HEOS	HBUSY			HADS	HHTRGE	HTSEL1	HTSEL0
			F	?				R	<u>/W</u>	
			0	0			(0	V 0	0	0
			High-priority	High-priority			Start	High-priority	Select Hard	
			AD conversion	AD conversion		1	High-priority AD	AD	00: INTTB10 01: Reserved	
	AD mode		sequence	BUSY Flag			conversion	Hard ware	10: ADTRG	>
ADMOD2	control	12BAH	FLAG	0:Stop			0: Don't Care		11: I ² S Samp	ling Counter
	register 2		0: During conversion	conversion			1: Start AD conversion	0: Disable	Output	
			sequence	1:During conversion	,		Conversion	1. Ellable	(//)	
			or before		(Always read		70/	
			starting 1: Complete				as"0".		>	
			conversion		4		\	$\langle \rangle$		
			sequence							
			-	HADCH2	HADCH1	HADCH0	14			-
ADMOD3	AD mode control	12BBH	_	A (W		7/1	\mathcal{J}		R/W
ADMOD3	register 3	IZDDH	0	0	0>	0				0
	rogiotor o		"0".	High-priority	analog input o	hannel select))			Always write "0".
			CMEN1	CMEN0	CMP1C	CMP0C	IRQEN1	IRQEN0	CMPINT1	CMPINT0
					/ R	W .				
			0 ((Ø\	0	0	0	0	0	0
			AD Monitor	AD Monitor	Generation	Generation	AD monitor	AD monitor	Status of	Status of AD
	AD mode		function1	function0	condition of	condition of	function	function	AD monitor	monitor
ADMOD4	control	12BCH	0: Disable	0: Disable	AD monitor	AD monitor	interrupt 1	interrupt 0	function	function
	register 4		1: Enable	1: Enable	function	function	0: Disable	0: Disable	interrupt 1	interrupt 0
		//)			interrupt 1 0: less than	interrupt 0 0: less than	1: Enable	1: Enable	0: No generation	0: No generation
					1: Greater	1: Greater			1:	1: Generation
					than or	than or			Generation	
			$\langle \rangle$	//	Equal	Equal				
				CM1CH2	CM1CH1	CM1CH0		CM0CH2	CM0CH1	CM0CH0
	27	\ h		A 6	R/W				R/W	
	AD mode			0	0	0		0	0	0
ADMOD5	control	12BDH	<	Select analog	g channel for A	AD monitor		Select analog function 0	channel for A	nonitor
	register 5)		000: AN0	100: AN4			000: AN0	100: AN4	
			> ((001: AN1	101: AN5			001: AN1	101: AN5	
			1	010: AN2 011: AN3	110: Reser 111: Rese			010: AN2 011: AN3	110: Reser 111: Rese	
				WFT. AINS	111. Kese	veu	_	ADCLK2	ADCLK1	ADCLK0
	AD						R/W	R/W	R/W	R/W
	Conversion						0	0	0	0
ADCCLK	Clock	12BFH					Always	Select clock	for AD con	
	Setting						write "0"	000 : Reser		_
	Register							001 : f _{IO} /1		f _{IO} /5
								010 : f _{IO} /2		f _{IO} /6
								011 : f _{IO} /3	111	f _{IO} /7

(19) Watchdog timer

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			WDTE	WDTP1	WDTP0			I2WDT	RESCR	_	
				R/W					R/W		
	WDT		1	0	0			_ 0	0	0	
WDMOD	mode register	1300H	1: Enable	Select deter 00: 2 ¹⁵ /f _{IO} 01: 2 ¹⁷ /f _{IO} 10: 2 ¹⁹ /f _{IO} 11: 2 ²¹ /f _{IO}	cting time			IDLE2 0: Stop 1: Operate	1:Internally connects WDT out to the reset pin	Always write "0".	
WDCR	WDT control register	1301H (Prohibit RMW)		B1H	l: WDT disal	V 	- (WDT clear of	code		

(20) RTC (Real-Time Clock)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
Symbol	Ivallie	Address		SE6	SE5	SE4	SE3	SE2	SE1	SE0	
	Second			SLO	SLS	JL4	R/W	SLZ	JL I	SLU	
SECR	register	1320H					Undefined				
			"0" is read	40 sec.	20 sec.	10 sec.	8 sec.	4 sec.	2 sec.	1 sec.	
				MI6	MI5	MI4	MI3	MI2	MI1	MIO	
MINR	Minute	422411			1		R/W			I.	
IVIIINK	register	1321H			Undefined						
			"0" is read	40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.	
					HO5	HO4	HO3	HQ2	HO1	HO0	
	Hour							/W/))			
HOURR	register	1322H					Unde	efined	T	Π	
			"0" is	read	20 hours (PM/AM)	10 hours	8 hours	4 hours	2 hours	1 hour	
								WE2	WE1	WE0	
DAYR	Day	1323H					- M		R/W		
	register				//all :		\		Undefined	<u> </u>	
					"0" is read		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	W2	W1	W0	
	Data				DA5	DA4	DA3	DA2	DA1	DA0	
DATER	Date register	1324H	$\overline{}$		/	\sim		/W efined	(//)		
	register		"0" is	read	20 days	10 days	8 days	4 days	2 days	1 day	
				- TCau	20 days	MO4	MO3	MO2	MO1	MO0	
		1325H	$\overline{}$		72	NOT	IVIOO	R/W	IVIOT	IVIOO	
								Undefined			
		PAGE0 PAGE1		"0" is read	7///	10 month	8month	4 month	2 month	1 month	
MONTHR	Month			^("0" is read			•	0:Indicator	
	register										
))			hours	
					\ \ `					1: Indicator for 24	
					"		\'\			hours	
			YE7	YE6	YE5	ŶĘ4	YE3	YE2	YE1	YE0	
		1326H					W	l.	I	I	
						Unde	efined				
		PAGE0	80 years	40 years	20 years	10 years	8 years	4 years	2 years	1 year	
YEARR	Year	PAGE1		<i>')</i>	"0" is	read			Leap year s	etting	
	register			^	((///	()			00: Leap ye	ar	
				/					01: One year		
		1							10: Two yea		
				1					11: Three y	ears after	
	^	\wedge	INTENA			ADJUST	ENATMR	ENAALM		PAGE	
į l								^^/		R/W	
l l	>,	4007ID	R/W			W	R				
DAGED	Page	1327H)	R/W 0			W Undefined		efined		Undefined	
PAGER	Page register	(Prohibit							"0" is read.	Undefined PAGE	
PAGER			0	"0" is read		Undefined	Unde	efined	"0" is read.		
PAGER		(Prohibit	0 Interrupt <	"0" is read		Undefined 0: Don't	Unde Clock	efined ALARM	"0" is read.	PAGE	
PAGER		(Prohibit	0 Interrupt 1: Enable	"0" is read	RSTTMR	Undefined 0: Don't care	Unde Clock 1: Enable	ALARM 1: Enable	"0" is read.	PAGE	
PAGER		(Prohibit RMW)	0 Interrupt 1: Enable 0: Disable		RSTTMR	Undefined 0: Don't care 1: Adjust RSTALM	Unde Clock 1: Enable 0: Disable -	ALARM 1: Enable 0: Disable		PAGE selection	
<	register	(Prohibit RMW)	0 Interrupt 1: Enable 0: Disable		RSTTMR	Undefined 0: Don't care 1: Adjust RSTALM	Unde Clock 1: Enable 0: Disable	ALARM 1: Enable 0: Disable	_	PAGE selection	
PAGER	register	(Prohibit RMW) 1328H (Prohibit	0 Interrupt 1: Enable 0: Disable		RSTTMR 1:Clock	Undefined 0: Don't care 1: Adjust RSTALM	Unde Clock 1: Enable 0: Disable -	ALARM 1: Enable 0: Disable		PAGE selection	
<	register	(Prohibit RMW)	0 Interrupt 1: Enable 0: Disable DIS1HZ	DI\$16HZ	i	Undefined 0: Don't care 1: Adjust RSTALM Unde	Unde Clock 1: Enable 0: Disable -	ALARM 1: Enable 0: Disable	_	PAGE selection	

(21) Melody/alarm generator

Symbol	Name	Address	7	6	5	4	3	2	1	0		
	A1		AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1		
ALM	Alarm- pattern	1330H		R/W								
/ (LIVI	register	100011	0	0	0	0	0	0	0	0		
						Alarm patt	tern setting					
			FC1	FC0	ALMINV	=	=	-	-	MELALM		
			,		1	R.	/W) \>			
	Melody/		0	0	0	0	0	0	0	0		
MELALMC	alarm control register	1331H	Free run concontrol 00: Hold 01: Restart 10: Clear ar 11: Clear ar	nd stop	Alarm frequency invert 1: Invert	(Always	write "0".		Output frequency 0: Alarm 1: Melody		
			ML7	ML6	ML5	ML4	ML3	ML2	ML1	MLO		
	Melody		IVIL /	IVILO	IVILO		/W	IVILZ	INE	IVILU		
MELFL	frequency L-register	1332H	0	0	0	(0/)	0	00	0	0		
	L-register		Ü			\sim	cy set (Low	7 .	(())			
			MELON				ML11	ML10	ML9	ML8		
			R/W		40			R	W			
			0				0	0)	0	0		
MELFH Melody frequency H-register	1333H	Melody counter control 0: Stop and clear 1: Start					dy frequency					
			\mathcal{I}		/ -	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E		
	Alarm		\mathcal{A}	$\mathcal{A}_{\mathcal{A}}$			R/		ı	1		
ALMINT	interrupt enable	1334H	\rightarrow		0	0	0	0	0	0		
	register					1:INTALM4 (1Hz) enable	1:INTALM3 (2Hz) enable	1:INTALM2 (64Hz) enable	1:INTALM1 (512Hz) enable	1:INTALM0 (8192Hz) enable		

TOSHIBA

(22) I²S (1/2)

Symbol	Name	Address	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			B015	B014	B013	B012	B011	B010	B009	B008	B007	B006	B005	B004	B003	B002	B001	B000
		1800H		W														
	I ² S			Undefined														
	Transmi-			Transmission buffer register (FIFO)														
I2S0BUF ssion	(Prohibit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Buffer Register0	RMW)	B031	B030	B09	B028	B027	B026	B025	B024	B023	B022	B021	B020	B019	B018	B017	B016
Register0			W															
				Undefined														
				Transmission buffer register (FIFO)														
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			B115	B114	B113	B112	B111	B110	B109	B108	B107	B106	B105	B104	B103	B102	B101	B100
	I ² S		W															
	Transmi-	1810H								Unde	efined		,		((
I2S1BUF	ssion							Tran	smissi	on buf	fer reg	ister (l	FIFO)		~~		\vee	
1231001	Buffer	(Prohibit RMW)	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Register1	,	B131	B130	B129	B128	B127	B126	B125	B124	B123	B122	B121	B120	B119	B118	B117	B116
	3									1	N		~		70	/)]		
									7(Unde	fined			7				
								Tran	smissi	on buf	fer reg	jister (l	FIFO)		_			

(22) I²S (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Cymbol	Hamo	71001000	TXE0	*CNTE0	$\overline{}$	DIR0	BIT0	DTFMT01	DTFMT00	SYSCKE0
			R/W	R/W		R/W	R/W	R/W	R/W	R/W
				1				0		
			0 Transmit	0 Counter		0 Transmissi	0 Dit langth		0	0 Custom
		1808H	Transmit	Counter		Transmissi	Bit length	Output form 00: I ² S	nat	System
			0: Stop	control		on start	0. 0 6:45			clock
			1: Start	0: Clear		BIT 0:MSB	0: 8 bits	10: Right		0:Disable
	I ² S			1: Start		1:LSB	1:16 bits	01: Left 11:Reserve	, d	1:Enable
I2S0CTL	Control		CLIVCO				TEMP0	WLVL0	EDGE0	CLIVEO
	Register0		CLKS0			FSEL0				CLKE0
			R/W			R/W	R	R/W	R/W	R/W
			0			0	Condition of	0	0	0 Clock enable
		1809H	Source			Stereo	transmission	WS level	Clock edge	(After trans-
			clock			/monaural	FIFO	_	for data	mission)
			0: f _{SYS}			0: Stereo	0: data	1:high left	output	0:Operate
			1: f _{PLL}			1:Monaural	1: None		0:Falling	1:Stop
						$(\vee ())$	data 🔷		1:Rising	
			CK07	CK06	CK05	CK04	CK03	CK02	CK01	CK00
		180AH			2	R	w /	2 /		
	I ² S0	TOUATT	0	0	46	0	0 (0	0	0
I2S0C	Divider Value				Divider v	alue for CK	signal (8-bit	counter)		
12500	Setting				WS05	WS04	WS03	WS02	WS01	WS00
	Register						-	w		
	· ·	180BH		3	0	//0	0	0	0	0
					5	7	- 1 /	signal (6-bit		
			TXE1	*CNTE1		DIR1	BIT1	DTFMT11	DTFMT10	SYSCKE1
			R/W	R/W		R/W	R/W	R/W	R/W	R/W
			0/	\bigcirc 0	$\left \cdot \right $	(0	0	0	0	0
		404011	Transmit	Counter	/	Transmission	Bit length	Output form	nat	System
		1818H	0: Stop	control	~ /	start BIT	0: 8 bits	00: I ² S	iat	clock
			1: Start	0: Clear		0:MSB	1:16 bits	10: Right		0:Disable
				1: Start	\bigcap	1:LSB		01: Left		1:Enable
	I ² S	(()]			$(\vee /))$			11:Reserve	ed.	
I2S1CTL	Control		CLKS1			FSEL1	TEMP1	WLVL1	EDGE1	CLKE1
	Register1		R/W			R/W	R	R/W	R/W	R/W
			0	1		0	1	0	0	0
	7</td <td></td> <td>Source</td> <td></td> <td></td> <td>Stereo</td> <td>Condition of</td> <td>WS level</td> <td>Clock edge</td> <td>Clock enable</td>		Source			Stereo	Condition of	WS level	Clock edge	Clock enable
		1819H	clock		~	/monaural	transmission		for data	(After trans-
			0: f _{SYS}	(0: Stereo	FIFO		outout	mission)
^	(())	1	1: f _{PLL}			1:Monaural	0: data	_	0:Falling	0:Operate
		/				······	1: None		1:Rising	1:Stop
			X ()				data			
1			CK17	CK16	CK15	CK14	CK13	CK12	CK11	CK10
	120	181AH					/W	Τ	 	T
	l ² S1 Dividor		0>	0	0	0	0	0	0	0
I2S1C	Divider Value				Set divide fr	equency for	CK signal (8	3-bit counter)	
0.0	Setting				WS15	WS14	WS13	WS12	WS11	WS10
	Register	181BH					R	/W		
		LOIDE		$\overline{}$						
		101511			0	0	0	0	0	0
		101511							0 (6-bit counte	

(23) MAC (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	Data		MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0			
MACMA_LL	register	1BE0H				R/	W						
	Multiplier		Undefined										
	A-LL					ultiplier A dat	ta register [7		1	I			
	Data		MA15	MA14	MA13	MA12	MA11	MA10	MA9	MA8			
MACMA_LH	register	1BE1H					W						
	Multiplier A-LH		Undefined Multiplier A data register [15:8]										
			14400	14400			- //	77.		14440			
	Data		MA23	MA22	MA21	MA20	MA19 (W	MA18	MA17	MA16			
MACMA_HL	register Multiplier	1BE2H					(-)						
	A-HL		Undefined Multiplier A data register [23,16]										
	Data		MA31	MA30	MA29	MA28	MA27	MA26	MA25	MA24			
	rogietor		1417 (0 1	1717 100	IVII (ZO		W	IVII (ZO	NO LEG	IVII (Z-T			
MACMA_HH	Multiplier	1BE3H					efined	\Diamond		/			
	A-HH				Mul	tiplier A data	register [31	:24]					
	Data		MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0			
MACMB_LL	register	1BE4H			((R/	W		70/				
W/ (OWID_LL	Multiplier	IBL-III				Unde	efined /	2~\	>				
	B-LL				C Mi	ultiplier B dat	ta register [7	:0]					
	Data		MB15	MB14	MB13	MB12	MB11	MB10	MB9	MB8			
MACMB_LH	register	1BE5H		R/W Indefined									
	Multiplier	1	Undefined Multiplier B data register [15:8]										
	B-LH								1	I			
	Data		MB23	MB22	MB21	MB20	MB19	MB18	MB17	MB16			
MACMB_HL	register Multiplier	1BE6H	R/W Undefined										
	B-HL		Multiplier B data register [23:16]										
	Data		MB31	MB30	MB29	MB28	MB27	MB26	MB25	MB24			
	register		IVIDST	IVIESU	IVID29	\forall	/W	IVIDZO	IVID23	IVID24			
MACMB_HH	Multiplier	1BE7H	(\vee))			efined						
	B-HH			^	Mul	tiplier B data		:24]					
	Data		OR7	OR6	OR5	OR4	OR3	OR2	OR1	OR0			
	register						W						
MACOR_LLL	Multiply and	1BE8H	>			Unde	efined						
	Accumulate				Multiply a	nd Accumul	ate data reç	gister [7:0]					
	-LLL			<u> </u>									
	Data		OR15	OR14	OR13	OR12	OR11	OR10	OR9	OR8			
MACOR_LLH	register Multiply and	1BE9H					/W efined						
	Accumulate		· ((1) ~	Multiply a	nd Accumula		ictor [15:8]					
	-LLH		$\sqrt{\ \ }$	<i>))</i>	widitiply a	ia Accumula	de data leg	13.61 [13.0]					
	Data		OR23	OR22	OR21	OR20	OR19	OR18	OR17	OR16			
	register					R/	/W						
MACOR_LHL	Multiply and	1BEAH				Unde	efined						
	Accumulate				Multiply an	d Accumula	te data regi	ster [23:16]					
	-LGL		0001	0000	ODCC	0000	0007	ODGG	0005	0001			
	Data register		OR31	OR30	OR29	OR28	OR27	OR26	OR25	OR24			
MACOR_LHH		1BEBH					/W efined						
-	Accumulate				Multiply an	d Accumula		ster [31·2/1					
	-LHH				ividitiply al	a Accumula	.c data regi	J. J. J. J. J. J. J. J. J. J. J. J. J. J					

(23) MAC (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	Data		OR39	OR38	OR37	OR36	OR35	OR34	OR33	OR32			
	register	1BECH		R/W									
MACOR_HLL	Multiply and			Undefined									
	Accumulate -HLL				Multiply an	d Accumula	te data regi	ister [39:32]					
	Data		OR47	OR46	OR45	OR44	OR43	OR42	OR41	OR40			
	register					R	/W						
MACOR_HLH		1BEDH				Unde	efined		/				
	Accumulate -HLH				Multiply an	d Accumula	te data regi	ister [47:40]					
	Data		OR55	OR54	OR53	OR52	OR51	OR50	OR49	OR48			
	register	455511	R/W (
MACOR_HHL	Multiply and						efined	/					
	Accumulate -HHL				Multiply an	d Accumula	te data regi	ister [55:48]		,			
	Data		OR63	OR62	OR61	OR60	OR59	OR58	OR57	OR56			
	register		(// R/W										
MACOR_HHH			Undefined										
	Accumulate -HHH		Multiply and Accumulate data register [63:56]										
			MOVF	MOPST	MSTTG2	MSTTG1	MSTTG0	MSGMD	MOPMD1	MOPMD0			
			R/W	W		> R/W		RW	R	W			
			0	0	4(0)	0	(0//	0	0	0			
	MAC	405011	Over flow	Start (Select the tr	//		Sign	Calculation				
MACCR	Control	1BFCH	flag calculation 000: Write to MACMA[7:0] mode Mo										
	Register		0:no over control 001: Write to MACMB[7:0] 0:Unsigned 00: 64										
			flow 0:don't care 010: Write to MACMOR[7:0] 1:Signed 01: 64 – 32							-			
			1:generate	calculation	011: Write to	^			10: 32 × 32				
			over flow		1xx: Write "1	TO KNOPS) >		11: Reserve	ea			

TOSHIBA TMP92CF26A

6. Points of Note and Restrictions

6.1 Notation

(1) The notation for built-in I/O registers is as follows: Register symbol <Bit symbol > Example: TA01RUN<TA0RUN > denotes bit TA0RUN of register TA01RUN.

(2) Read-modify-write instructions (RMW)

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

Example 1: SET 3, (TA01RUN); Set bit3 of TA01RUN.

Example 2: INC 1, (100H); Increment the data at 100H.

• Examples of read-modify-write instructions on the TLCS-900:

Exchange instruction

EX (mem), R

Arithmetic operations

ADD (mem), R/# ADC (mem), R/#

SUB (mem), R/# SBC (mem), R/#

INC #3, (mem) DEC #3, (mem)

Logic operations

AND (mem), R/# OR (mem), R/#

XOR (mem), R/#

Bit manipulation operations

STCF#3/A, (mem) RES #3, (mem)

SET #3, (mem) CHG #3, (mem)

TSET#3, (mem)

Rotate and shift operations

RLC (mem) RRC (mem)

RL (mem) RR (mem)

SLA (mem) SRA (mem)

SLL (mem) SRL (mem)

RLD (mem) RRD (mem)

(3) fosch, fc, fsys, fio and one state

The clock frequency input on pins X1 and 2 is referred to as fosch. The clock selected by PLLCR0<FCSEL> is referred to as fc.

The clock selected by SYSCR1<GEAR2:0> is referred to as system clock fsys. The clock frequency given by fsys divided by 2 is referred to as fig.

One cycle of fsys is referred to as one state.

6.2 Notes

a. AM0 and AM1 pins

These pins are connected to the V_{CC} (Power supply level) or the V_{SS} (Grand level) pin. Do not alter the level when the pin is active.

b. Reserved address areas

The 16 bytes area (FFFFF0H ~ FFFFFFH) cannot be used since it is reserved for use as internal area. If using an emulator, an optional 64 Kbytes of the 16M bytes area is used for emulator control. Therefore, if using an emulator, this area cannot be used.

c. Standby mode (IDLE1)

When the HALT instruction is executed in IDLE1 mode (in which only the oscillator operates), RTC (Real-time-clock) and MLD (Melody-alarm-generator) operate. When necessary, stop the circuit before the HALT instruction is executed.

d. Warm-up timer

The warm-up timer operates when STOP mode is released, even if the system is using an external oscillator. As a result, a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

e. Watchdog timer

The watchdog timer starts operation immediately after a reset is released. Disable the watchdog timer when it is not to be used.

f. AD converter

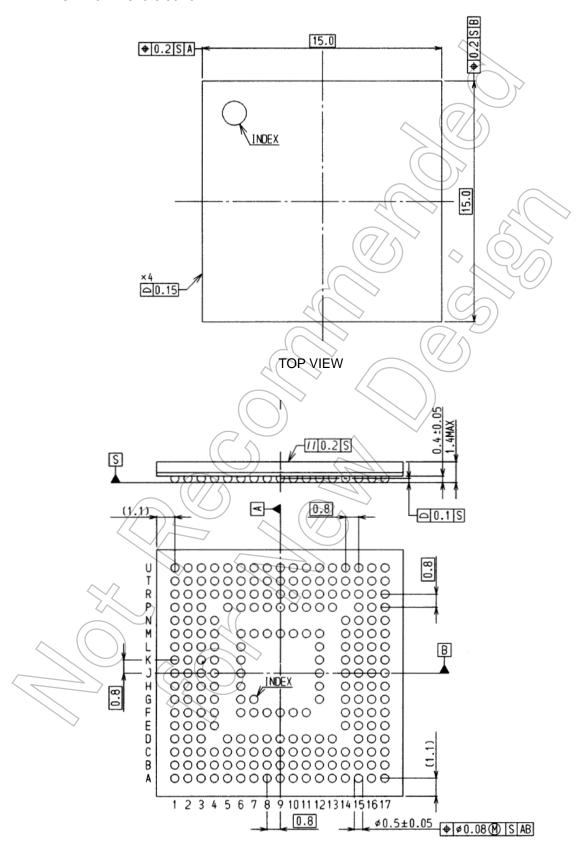
The string resistor between the VREFH and VREFL pins can be cut by program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

g. CPU (Micro DMA)

Only the "LDC cr, r" and "LDC r, cr" instructions can be used to access the control registers in the CPU (e.g., the transfer) source address register (DMASn).).

h. Undefined SFR

The value of an undefined bit in an SFR is undefined when read.


i. POP SR instruction

Please execute the POP SR instruction during DI condition.

TOSHIBA TMP92CF26A

7. Package Dimensions

FBGA228-P-1515-0.80A5

BOTTOM VIEW

RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before creating and producing designs and using, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application that Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- . Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
 applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
 FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY
 WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR
 LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND
 LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR MPLIED WARRANTIES AND CONDITIONS RELATED TO
 SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS
 FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
 Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.

