
TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 32-bit Microcontrollers TMP92C820FG/JTMP92C820

1. Outline and Device Characteristics

TMP92C820 is high-speed advanced 32-bit microcontroller developed for controlling equipment which processes mass data.

TMP92C820 is a microcontroller which has a high-performance CPU (900/H1 CPU) and various built-in I/Os. TMP92C820FG is housed in a 144-pin flat package. JTMP92C820 is a 144-pad chip product.

Device characteristics are as follows:

- (1) CPU: 32-bit CPU (900/H1 CPU)
 - Compatible with TLCS-900, 900/L, 900/L1, 900/H's instruction code
 - 16 Mbytes of linear address space
 - General-purpose register and register banks
 - Micro DMA: 8 channels (250 ns/4 bytes at fsys = 20 MHz, best case)
- (2) Minimum instruction execution time: 50 ns (at sys = 20 MHz)

RESTRICTIONS ON PRODUCT USE

• The information contained herein is subject to change without notice. 021023_D

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A

• The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B

- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 021023_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

2007-02-16

070208EBP

- (3) Internal memory
 - Internal RAM: 8 Kbytes (can use for code section)
 - Internal ROM: None
- (4) External memory expansion
 - Expandable up to 136 Mbytes (Shared with program/data area)
 - Can simultaneously support 8-/16-/32-bit width external data bus Dynamic data bus sizing
 - Separate bus system
- (5) Memory controller
 - Chip select outputs: 4 channels
- (6) 8-bit timers: 4 channels
- (7) 16-bit timer/event counter: 1 channel
- (8) General-purpose serial interface: 3 channels
 - UART/synchronous mode
 - IrDA
- (9) Serial bus interface: 1 channel
 - I²C bus mode
 - Clock synchronous select mode
- (10) LCD controller
 - Shift register/built-in RAM LCD driver
 - Supported 16, 8 and 4 gray-levels and black and white
 - Hardware blinking cursor
- (11) SDRAM controller
 - Supported 16-M, 64-M and 128-Mbit SDRAM with 16-/32-bit data bus
- (12) Timer for real-time clock (RTC)
 - Based on TC8521A
 - Separate the power supply
- (13) Key-on wakeup (Interrupt key input)
- (14) 10-bit AD converter: 5 channels
- (15) Watchdog timer
- (16) Melody/alarm generator
 - Melody: Output of clock 4 to 5461 Hz
 - Alarm: Output of the 8 kinds of alarm pattern
 - Output of the 5 kinds of interval interrupt
- (17) MMU
 - Expandable up to 136 Mbytes (4 local areas/8 bank methods)
- (18) Interrupts: 45 interrupts
 - 9 CPU interrupts: Software interrupt instruction and illegal instruction
 - 31 internal interrupts: Seven selectable priority levels
 - 5 external interrupts: Seven selectable priority levels (4-edge selectable)

(19) Input/output ports: 83 pins (Except Data bus (16bit), Address bus (24bit) and RD pin)(20) Standby function

• Three HALT modes: IDLE2 (Programmable), IDLE1, STOP

(21) Triple-clock controller

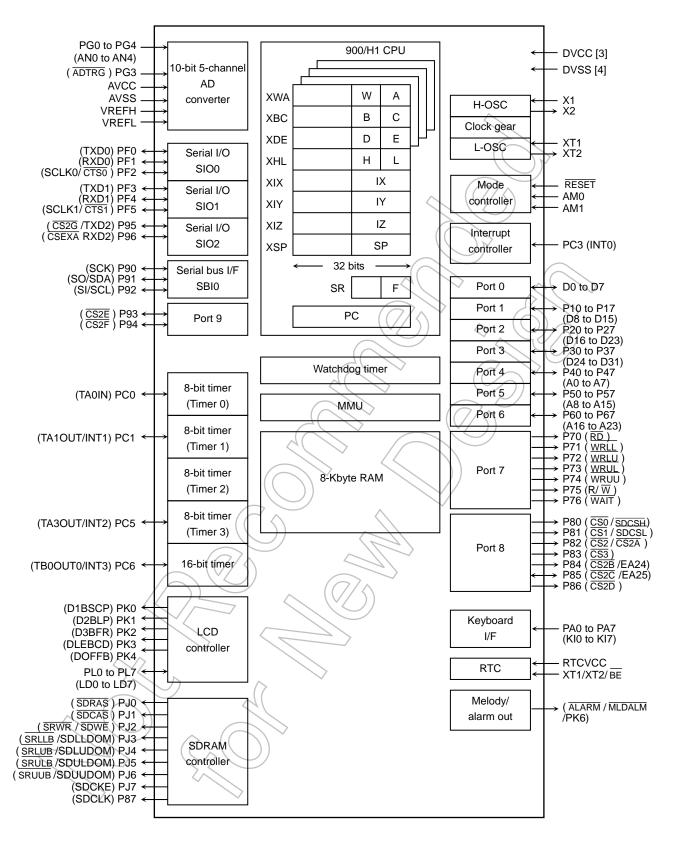
- Clock gear function: Select a high-frequency clock fc to fc/16
- RTC (fs = 32.768 kHz)

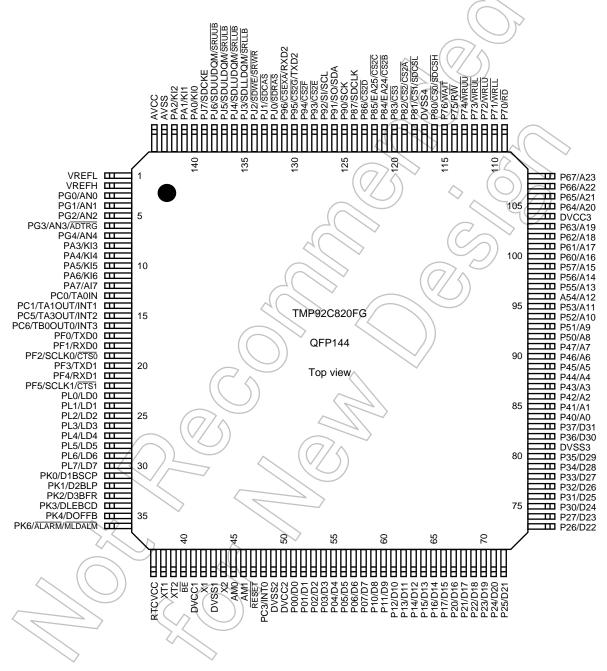
(22) Operating voltage

- DVCC = 3.0 to 3.6 V
- $\operatorname{RTCVCC} = 2.0 \text{ to } 3.6 \text{ V}$

(23) Package

- 144-pin QFP (P-LQFP144-1616-0.40C)
- Chip form supply also available. For details, contact your local Toshiba sales representative




Figure 1.1 TMP92C820 Block Diagram

2. Pin Assignment and Functions

The assignment of input/output pins for the TMP92C820, their names and functions are as follows:

2.1 Pin Assignment

Figure 2.1.1 shows the pin assignment of the TMP92C820FG.

2.2 PAD Layout

Table 2.2.1 PAD Layout (144-pin chip)	Table 2.2.1	PAD La	yout (1	44-pin	chip)
---------------------------------------	-------------	--------	---------	--------	-------

(Chip s	size 4.68 mn	n × 4.68			2.1 PAD La	J C C C C C C C C C C		-)			Unit: µm
Pin No.	Name	X Point	Y Point	Pin No.	Name	X Point	Y Point	Pin No.	Name	X Point	Y Point
1	VREFL	-2213	1945	49	DVSS2	-440	-2213	97 <	P55	2211	685
2	VREFH	-2213	1820	50	DVCC2	-340	-2213	98	P56	2211	789
3	PG0	-2213	1694	51	P00	-240	-2213	99	P57	2211	894
4	PG1	-2213	1568	52	P01	-140	-2213	100	P60	2211	1000
5	PG2	-2213	1460	53	P02	-40	-2213	101	P61	2211	1107
6	PG3	-2213	1353	54	P03	59	-2213	102	P62	2211	1213
7	PG4	-2213	1249	55	P04	160	-2213	103	P63	2211	1321
8	PA3	-2213	1050	56	P05	260	-2213	104	DVCC3	2211	1430
9	PA4	-2213	946	57	P06	360	-2213	105)	P64	2211	1546
10	PA5	-2213	842	58	P07	460	-2213	106	P65	2211	1672
11	PA6	-2213	739	59	P10	561	-2213	107	P66	2211	1798
12	PA7	-2213	635	60	P11	661	-2213	108	P67	2211	1924
13	PC0	-2213	531	61	P12	761	-2213	109	P70	1925	2211
14	PC1	-2213	427	62	P13	861	-2213	110	P71	1800	2211
15	PC5	-2213	326	63	P14	961	-2213	111	P72	1675	2211
16	PC6	-2213	224	64	P15	1062	-2213	112	_P73	1558	2211
17	PF0	-2213	123	65	P16	1162	-2213	113	P74	1448	2211
18	PF1	-2213	23	66	P17 🔇	1263	-2213	114	P75	1346	2211
19	PF2	-2213	-77	67	P20	1363	-2213	115	P76	1243	2211
20	PF3	-2213	-179	68	P21	1474	-2213	((116 <	P80	1141	2211
21	PF4	-2213	-284	69	P22	1589	-2213	117	DVSS4	1038	2211
22	PF5	-2213	-388	70	P23	1702	-2213	118	P81	937	2211
23	PL0	-2213	-493	71	P24	1814	-2213	119	P82	835	2211
24	PL1	-2213	-598	72 (P25	1926	-2213	/ 120	P83	734	2211
25	PL2	-2213	-704	73	P26	2211	-1924	121	P84	633	2211
26	PL3	-2213	-809	74	P27	2211	–1799	122	P85	532	2211
27	PL4	-2213	-914	75	P30	2211	-1674	123	P86	431	2211
28	PL5	-2213	-1024	76	P31	2211	-1548	124	P87	330	2211
29	PL6	-2213	-1132	7/77	P32	2211	-1426	125	P90	229	2211
30	PL7	-2213	-1243	78	P33	2211	-1311	126	P91	128	2211
31	PK0	-2213	-1354	79	P34	2211	-1199	127	P92	28	2211
32	PK1	-2213	-1464	7 80	P35	2211	-1087	128	P93	-72	2211
33	PK2	-2213	-1576	81	DVSS3	2211	-975	129	P94	-173	2211
34	PK3	-2213	-1701	82 🗸	P36	2211	-864	130	P95	-274	2211
35	PK4	-2213	-1826	83	P37	2211	-757	131	P96	-375	2211
36	PK6	-2213	-1953	84	P40	2211	-648	132	PJ0	-477	2211
37	RTCVCC	-1962		85	P41	2211	-541	133	PJ1	-580	2211
38	XT1	-1851	-2213	86	P42	2211	-435	134	PJ2	-684	2211
39	XT2 ((-1574	-2213	87	P43	2211	-332	135	PJ3	-788	2211
40	BE	-1466	-2213	88	P44	2211	-228	136	PJ4	-892	2211
41	DVCC1	-1360	-2213	89)	P45	2211	-128	137	PJ5	-996	2211
42	X1	-1257	-2213	90	P46	2211	-28	138	PJ6	-1101	2211
43	DVSS1	-1057	-2213	91	P47	2211	71	139	PJ7	-1208	2211
44	X2 🔪	-957	-2213	92	P50	2211	171	140	PA0	-1319	2211
45	AM0	-840	-2213	93	P51	2211	272	141	PA1	-1430	2211
46	AM1	-740	-2213	94	P52	2211	374	142	PA2	-1555	2211
47	RESET	-640	-2213	95	P53	2211	477	143	AVSS	-1828	2211
48	PC3	-540	-2213	96	P54	2211	581	144	AVCC	-1955	2211

2.3 Pin Names and Functions

The following table shows the names and functions of the input/output pins.

Table 2.3.1 Pin Names and Functions (1/3)

Pin Names	Number of Pins	I/O	Functions
D0 to D7	8	I/O	Data: Data bus 0 to 7.
P10 to P17	8	I/O	Port 1: I/O port. Input or output specifiable in units of bits.
D8 to D15		I/O	Data: Data bus 8 to 15.
P20 to P27	8	I/O	Port 2: I/O port. Input or output specifiable in units of bits.
D16 to D23		I/O	Data: Data bus 16 to 23.
P30 to P37	8	I/O	Port 3: I/O port. Input or output specifiable in units of bits.
D24 to D31		I/O	Data: Data bus 24 to 31.
P40 to P47	8	I/O	Port 4: I/O port. Input or output specifiable in units of bits.
A0 to A7		Output	Address: Address bus 0 to 7.
P50 to P57	8	I/O	Port 5: I/O port. Input or output specifiable in units of bits.
A8 to A15		Output	Address: Address bus 8 to 15.
P60 to P67	8	I/O	Port 6: I/O port. Input or output specifiable in units of bits.
A16 to A23		Output	Address: Address bus 16 to 23.
P70 RD	1	Output	Port 70: Output port
		Output	Read: Outputs strobe signal to read external memory.
P71 WRLL	1	Output	Port 71: Output port
		Output	Write: Output strobe signal for writing data on pins D0 to D7.
P72	1	Output	Port 72: Output port
WRLU		Output	Write: Output strobe signal for writing data on pins D8 to D15.
P73	1	Output	Port 73: Output port
WRUL		Output	Write: Output strobe signal for writing data on pins D16 to D23.
P74	1	Output	Port 74: Output port
WRUU		Output	Write: Output strobe signal for writing data on pins D24 to D31.
P75	1	Output	Port 75: Output port
R/W		Output	Read/Write: 1 represents read or dummy cycle; 0 represents write cycle.
P76	1	I/O	Port 76: VO port
WAIT		Input	Wait: Signal used to request CPU bus wait.
P80 <u> CS0</u>		Output	Port 80: Output port
SDCSH	1	Output	Chip select 0: Outputs "low" when address is within specified address area.
		Output	Chip select for SDRAM: Outputs "0" when address is within SDRAM upper-address area.
P81 <u> CS1</u>		Output	Port 81: Output port
	1	Output	Chip select 1: Outputs "low" when address is within specified address area.
	\sim	Output	Chip select for SDRAM: Outputs "0" when address is within SDRAM lower-address area.
P82 <u>CS2</u>		Output	Port 82: Output port
CS2 CS2A		Output	Chip select 2: Outputs "low" when address is within specified address area.
	(())	Output	Expand chip select 2A: Outputs "0" when address is within specified address area.
P83 <u>C</u>S3 		Output Output	Port 83: Output port Chip select 3: Outputs "low" when address is within specified address area.
P84			
EA24		Output Output	Port 84: Output port Chip select 24: Outputs "0" when address is within specified address area.
CS2B		Output	Expand chip select 2B: Outputs "0" when address is within specified address area.
P85	\searrow	Output	Port 85: Output port
EA25	1	Output	Chip select 25: Outputs "0" when address is within specified address area.
CS2C	1	Output	Expand chip select 2C: Outputs "0" when address is within specified address area.
P86		Output	Port 86: Output port
CS2D	1	Output	Expand chip select 2D: Outputs "0" when address is within specified address area.
P87		Output	Port 87: Output port
SDCLK	1	Output	Clock for SDRAM
		Jaipui	

ADTRG

Input

Pin Names	Number of Pins	I/O	Functions
P90		I/O	Port 90: I/O port
SCK	1	I/O	Serial bus interface clock I/O data at SIO mode.
P91		I/O	Port 91: I/O port
SO		Output	Serial bus interface send data at SIO mode.
SDA	1	I/O	Serial bus interface send/receive data at I ² C mode.
		1 1	(Open drain/output mode by programmable.)
P92		I/O	Port 92: I/O port
SI	_	Input	Serial bus interface receive data at SIO mode.
SCL	1	Ι/Ο	Serial bus interface clock I/O data at I ² C mode.
		1 1	(Open drain/output mode by programmable.)
P93		I/O	Port 93: I/O port
CS2E	1	Output	Expand chip select 2E: Outputs "0" when address is within specified address area.
P94		I/O	Port 94: I/O port
CS2F	1	Output	Expand chip select 2F: Outputs "0" when address is within specified address area.
P95	ł – – ł	I/O	Port 95: Output port
CS2G	1	Output	Expand chip select 2G: Outputs "0" when address is within specified address area.
TXD2	'	Output	Serial transmission data 2. Open drain/output pin by programmable.
P96	├ ────┦	I/O	Port 96: Output port
RXD2	1	Input	Serial receive data 2.
CSEXA	'	Output	Expand chip select EXA: Outputs "0" when address is within specified address area.
PA0 to PA7	łł	· ·	
KI0 to KI7		Input	A0 to A7 port: Pin used to input ports.
	8	Input	Key input 0 to 7: Pin used of key-on wakeup 0 to 7.
200	łł		(Schmitt input, with pull-up resistor.)
PC0 TA0IN	1	I/O	Port C0: I/O port
	∤ ∤	Input	8-bit timer 0 input: Timer 0 input.
PC1		I/O	Port C1: I/O port
INT1 TA1OUT	1	Input	Interrupt request pin1 : Interrupt request pin with programmable rising /falling edge.
	 	Output	8-bit timer 1 output: Timer 1 output.
PC3	1	I/O	Port C3: I/O port
INT0	ļļ	Input	Interrupt request pin 0: Interrupt request pin with programmable level/rising/falling edge.
PC5		1/0	Port C5: I/O port
INT2	1	Input	Interrupt request pin 2 : Interrupt request pin with programmable rising /falling edge.
TA3OUT		Output	8-bit timer 3 output: Timer 3 output.
PC6		WQ <	Port C6: I/O port
INT3	1	Input	Interrupt request pin 3: Interrupt request pin with programmable rising /falling edge.
TB0OUT0		Output	Timer B0 output.
PF0		I/O	Port F0: I/O port
TXD0		Output	Serial 0 send data: Open drain/output pin by programmable.
PF1		1/0	Port F1: 1/O port
RXD0	$\left \begin{array}{c} ((\)) \end{array} \right $	Input	Serial 0 receive data.
PF2		I/O 🔿	Port F2: I/Q port
SCLK0		I/O (🤇	Serial 0 clock I/O.
CTS0		Input	Serial 0 data send enable (Clear to send).
PF3		I/O	Port F3: I/O port
TXD1	1	Output	Serial 1 send data: Open drain/output pin by programmable.
PF4		I/O	Port F4: I/O port
RXD1	1	Input	Serial 1 receive data.
PF5		I/O	Port F5: I/O port
SCLK1	1	1/O	Serial 1 clock I/O.
CTS1	'	Input	Serial 1 data send enable (Clear to send).
PG0 to PG4		Input	Port G0 to G4 port: Pin used to input ports.
AN0 to AN4	5		Analog input 0 to 4: Pin used to Input to AD conveter.
ADTRG	5	Input	Analog input 0 to 4. Fin used to input to AD conveter.

Table 2.3.1 P	Pin Names and	Functions (2/3)
---------------	---------------	-------------	------

AD trigger: Signal used to request AD start (with used to PG3).

PJ0 Output Port J0: Output port SDRAS 1 Output Row address strobe for SDRAM: Outputs "0" when address is within PJ1 Output Port J1: Output port SDCAS 1 Output Port J1: Output port Output Output Column address strobe for SDRAM: Outputs "0" when address is with area.	
SDRAS Output Row address strobe for SDRAM: Outputs "0" when address is within PJ1 Output Port J1: Output port SDCAS 1 Output Column address strobe for SDRAM: Outputs "0" when address is with	
SDCAS 1 Output Column address strobe for SDRAM: Outputs "0" when address is with	SDRAM address area.
	hin SDRAM address
PJ2 Output Port J2: Output port	
SDWE 1 Output Write enable for SDRAM.)
SRWR Output Write for SRAM: Strobe signal for writing data .	
PJ3 Output Port J3: Output port	
SDLLDQM 1 Output Data enable for SDRAM on pins D0 to D7.	
SRLLB Output Data enable for SRAM on pins D0 to D7.	
PJ4 Output Port J4: Output port	\frown
SDLUDQM 1 Output Data enable for SDRAM on pins D8 to D15.	
SRLUB Output Data enable for SRAM on pins D8 to D15.	
PJ5 Output Port J5: Output port	\leq
SDULDQM 1 Output Data enable for SDRAM on pins D16 to D23.	$\sum ($
SRULB Output Data enable for SRAM on pins D16 to D23.	2/))
PJ6 Output Port J6: Output port	
SDUUDQM 1 Output Data enable for SDRAM on pins D24 to D32.	\checkmark
SRUUB Output Data enable for SRAM on pins D24 to D32.	
PJ7 Output Port J7: Output port	
SDCKE Output Clock enable for SDRAM.	
PK0 Output Port K0: Output port	
D1BSCP Output LCD driver output pin.	
PK1 Output Port K1: Output port	
D2BLP Output LCD driver output pin.	
PK2 Output Port K2: Output port	
D3BFR Output LCD driver output pin.	
PK3 Output Port K3: Output port	
DLEBCD Output LCD driver output pin.	
PK4 Output Port K4: Output port	
DOFFB Output LCD driver output pin.	
PK6 Output Port K6: Output port	
ALARM 1 Output RTC alarm output pin.	
MLDALM Output Melody/alarm output pin (Inverted).	
PL0 to PL7 I/O Port L0 to L7: I/O port	
Dutput Data bus for LCD driver.	
BE 1 Input Backup enable.	
Operation mode:	
AM0, AM1 (2) Input Fix to AM1 = "0", AM0 = "1": 16-bit external bus or 8-/16-/32-bit dynamic and the second	mic sizing.
Fix to AM1 = "1", AM0 = "0": 32-bit external bus or 8-/16-/32-bit dyna	mic sizing.
X1/X2 2 I/O High-frequency oscillator connection pins.	
XT1/XT2 2 I/O Low-frequency oscillator connection pins.	
RESET 1 Input Reset: Initializes TMP92C820 (with pull-up resistor).	
VREFH 1 Input Pin for reference voltage input to AD converter (H).	
VREFL 1 Input Pin for reference voltage input to AD converter (L).	
AVCC 1 – Power supply pin for AD converter.	
AVSS 1 – GND pin for AD converter (0 V).	
DVCC 3 – Power supply pins (All DVCC pins should be connected with the pow	ver supply pin).
DVSS 4 – GND pins (0 V) (All DVSS pins should be connected with GND (0V)).	
RTCVCC 1 – Power supply pin for RTC and low-frequency oscillator.	

Table 2.3.1	Pin Names and Functions	(3/3)
		(0,0)

3. Operation

This section describes the basic components, functions and operation of the TMP92C820.

3.1 CPU

The TMP92C820 contains an advanced high-speed 32-bit CPU (900/H1 CPU). For CPU operation, see the TLCS-900/H1 CPU.

The following describe the unique function of the CPU used in the TMP92C820; these functions are not covered in the TLCS-900/H1 CPU section.

3.1.1 CPU Outline

900/H1 CPU is high-speed and high-performance CPU based on 900/L1 CPU. 900/H1 CPU has expanded 32-bit internal data bus to process instructions more quickly. Outline of 900/H1 CPU are as follows:

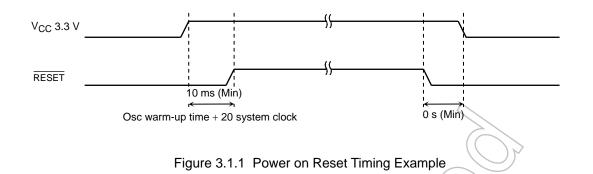
Table 3.1.1 CPU Outline							
	900/H1 CPU						
Width of CPU address bus	24 bits						
Width of CPU data bus	32 bits						
Internal operating frequency	20 MHz						
Minimum bus cycle	1-clock access (50 ns at 20 MHz)						
Data bus sizing	8/16/32 bits						
Internal RAM	32 bits						
	1-clock access						
Internal I/O	8-/16-bit 2-clock access 900/H1 I/O						
	8-/16-bit 5 to 6-clock access 900/L1 I/O						
External device	8 bits						
	2-clock access (can insert some waits.)						
Minimum instruction	1 clock (50 ns at 20 MHz)						
Execution cycle							
Conditional jump	2 clocks (100 ns at 20 MHz)						
Instruction queue buffer	12 bytes						
Instruction set	Compatible with TLCS-900, 900/L, 900/H, 900/L1 and 900/H2						
	(NORMAL, MAX, MIN and LDX instruction is deleted.)						
CPU mode	Only maximum mode						
Micro DMA	8 channels						

3.1.2 Reset Operation

When resetting the TMP92C820 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the RESET input low for at least 20 system clocks (16 µs at 40 MHz). When the reset has been accepted, the CPU performs the following:

- Sets the program counter (PC) as follows in accordance with the reset vector stored at address FFFF00H to FFFF02H:
 - PC<7:0> \leftarrow Data in location FFFF00H
 - PC<15:8> \leftarrow Data in location FFFF01H
 - $PC<23:16> \leftarrow Data in location FFFF02H$
- Sets the stack pointer (XSP) to 00000000H.
- Sets bits <IFF0:2> of the status register (SR) to 111 (Thereby setting the interrupt level mask register to level 7).
- Clears bits <RFP0:1> of the status register to 00 (Thereby selecting register bank0).

When the reset is released, the CPU starts executing instructions according to the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.


When the reset is accepted, the CPU sets internal I/O, ports and other pins as follows.

- Initializes the internal I/O registers as table of "Table of Special Function Registers (SFRs)" in section 5.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.

Internal RESET is released as soon as external reset is released.

The operation of memory controller cannot be insured until power supply becomes stable after power-on reset. The external RAM data provided before turning on the TMP92C820 may be spoiled because the control signals are unstable until power supply becomes stable after power on reset.

3.1.3 Setting of AM0 and AM1

Set AM1 and AM0 pins to "10" to use 32-bit external bus, or set it to "01" to use 16-bit external bus.

Table 3.1.2 Operatio	n Mode Setup	Table	\bigcirc		
Operation Mode	Moc	le Setup Inpu	ut Pin		
Operation Mode	RESET	AM1	AMO		
16-bit external bus			\mathcal{D}		
or 8-/16-/32-bit dynamic bus sizing			1		
32-bit external bus					
or	~	1	0		
8-/16-/32-bit dynamic bus sizing					
		\sim			
$(\bigcirc \land)$	$\langle \rangle$				
-(7/5)					
	77~				
	\bigcirc				
\rightarrow					

3.2 Memory Map

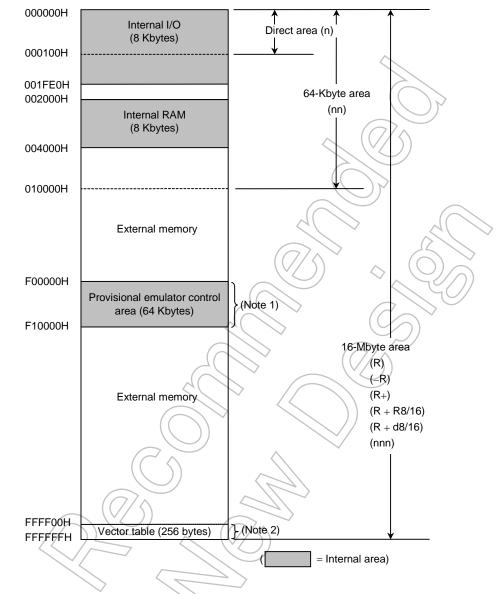


Figure 3.2.1 is a memory map of the TMP92C820.

Note 1: Provisional emulator control area is for emulator, it is mapped F00000H to F10000H address after reset.

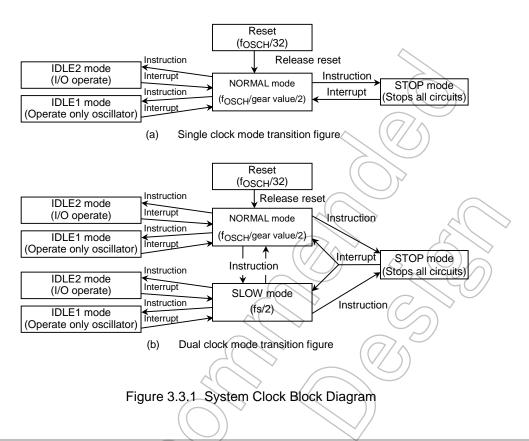
Note 2: Don't use the last 16-byte area (FFFFF0H to FFFFFH). This area is reserved.

Note 3: On emulator WR signal and RD signal are asserted, when provisional emulator control area is accessed. Be careful to use external memory.

Figure 3.2.1 Memory Map

3.3 Clock Function and Standby Function

TMP92C820 contains (1) Clock gear, (2) Standby controller, and (3) Noise reduction circuit. It is used for low-power, low-noise systems.


This chapter is organized as follows:

- 3.3.1 Block Diagram of System Clock
- 3.3.2 SFR
- 3.3.3 System Clock Controller
- 3.3.4 Noise Reduction Circuits
- 3.3.5 Standby Controller

92C820-14

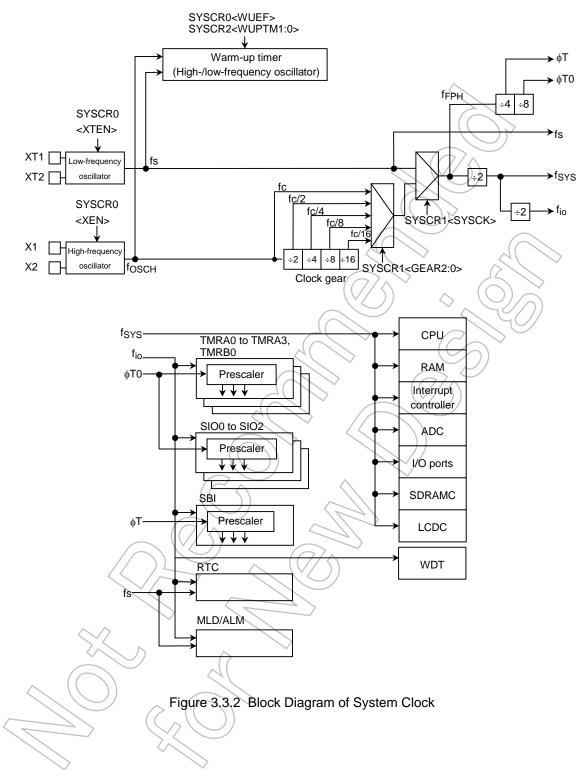

The clock operating modes are as follows: (a) Single clock mode (X1, X2 pins only) and (b) Dual clock mode (X1, X2, XT1, and XT2 pins).

Figure 3.3.1 shows a transition figure.

The clock frequency input from the X1 and X2 pins is called fc and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<SYSCK> is called the system clock f_{FPH} . The system clock f_{SYS} is defined as the divided clock of f_{FPH} , and one cycle of f_{SYS} is defined to as one state.

3.3.2 SFR

		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	XEN	XTEN			/	WUEF	/	
(10E0H)	Read/Write	R/	W	/		/	R/W		
	After reset	1	1			/	0	/	
	Function	High-frequency oscillator (fc) 0: Stop 1: Oscillation	Low-frequency oscillator (fs) 0: Stop 1: Oscillation				Warm-up timer 0: Write Don't care 1: Write start timer 0: Read end warm)r	
0/0054	Bit symbol					SYSCK	up 1: Read do not end warm up	GEAR1	GEAR0
(10E1H)	Read/Write					Stock	GEAR2	W	GEARU
· · · ·	After reset				$ \rightarrow $	0		\bigcirc	0
	Function					Select system clock. 0: fc 1: fs	000: fc 001: fc/2 010: fc/4 011: fc/8 100: fc/16 101: 110: 111: Res	value of high f	requency (fc)
	Bit symbol	-		WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE
(10E2H)	Read/Write	R/W 0				R/			
	After reset Function	Always write "0".		1 Warm-up tim 00: Reserved 01: 2 ⁸ /inputte 10: 2 ¹⁴ /inputte 11: 2 ¹⁶ /inputte	d frequency ed frequency	1 HALT mode 00: Reserve 01: STOP m 10: IDLE1 m 11: IDLE2 m	ed node node	0 <drve> mode select 0: STOP 1: IDLE1</drve>	0 Pin state control in STOP/ IDLE1 mode 0: I/O off 1: Remains the state before halt.

Note 1: The unassigned register, SYSCR0<Bit5:3>, SYSCR0<Bit1:0>, SYSCR1<Bit7:4>, and SYSCR2<Bit7:6> are read as undefined value.

Note 2: By reset, low-frequency oscillator is enabled.

Figure 3.3.3 SFR for System Clock

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT		/	/	/	EXTIN	DRVOSCH	DRVOSCL
(10E3H)	Read/Write	R		/	/	/		R/W	
	After reset	0		/	/	/	0	1	1
	Function	Protect flag					1: fc external	fc oscillator	fs oscillator
		0: OFF					clock	drive ability	drive ability
		1: ON						1: Normal	1: Normal
							(C	0: Weak	0: Weak
EMCCR1 Bit symbol Switching the protect ON/OFF by write to following 1st-key, 2nd-key							. ((JY	
(10E4H)	Read/Write	-		-	5H in success				
EMCCR2 (10E5H)	After reset	-			5AH in success	<u> </u>	(// 5)		
(102011)	Function	Zha Roy. EM			, an an 300003				

Figure 3.3.4 SFR for Noise-reduction

Note: In caseWhen restarting the oscillator in from the stop oscillation state (e.g. Restart restarting the oscillator in

STOP mode), set EMCCR0<DRVOSCH>, <DRVOSCL>="1

3.3.3 System Clock Controller

The system clock controller generates the system clock signal (f_{SYS}) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR2:0> sets the high-frequency clock gear to either 1, 2, 4, 8, or 16 (fc, fc/2, fc/4, fc/8, or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = 1$, $\langle XTEN \rangle = 1$, $\langle SYSCK \rangle = 0$ and $\langle GEAR2:0 \rangle = 100$ will cause the system clock (f_{SYS}) to be set to fc/32 (fc/16 × 1/2) after reset.

For example, f_{SYS} is set to 1.25 MHz when the 40 MHz oscillator is connected to the X1 and X2 pins.

(1) Switching from NORMAL mode to SLOW mode

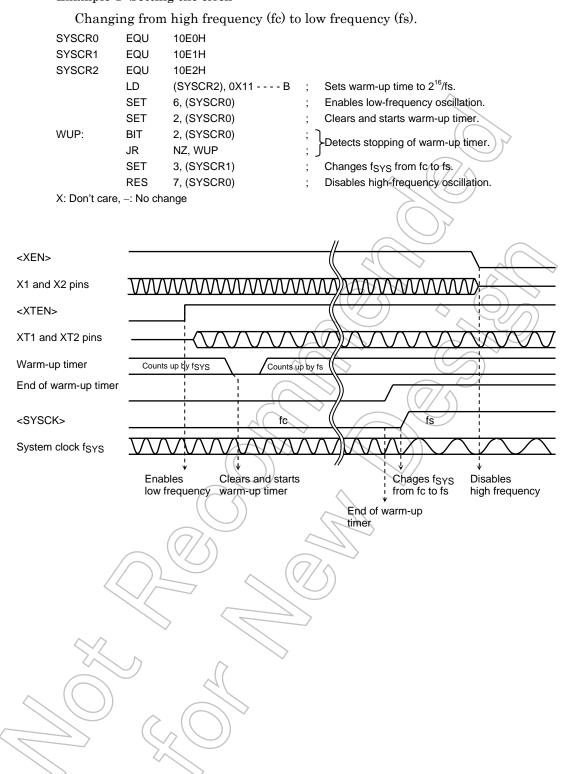
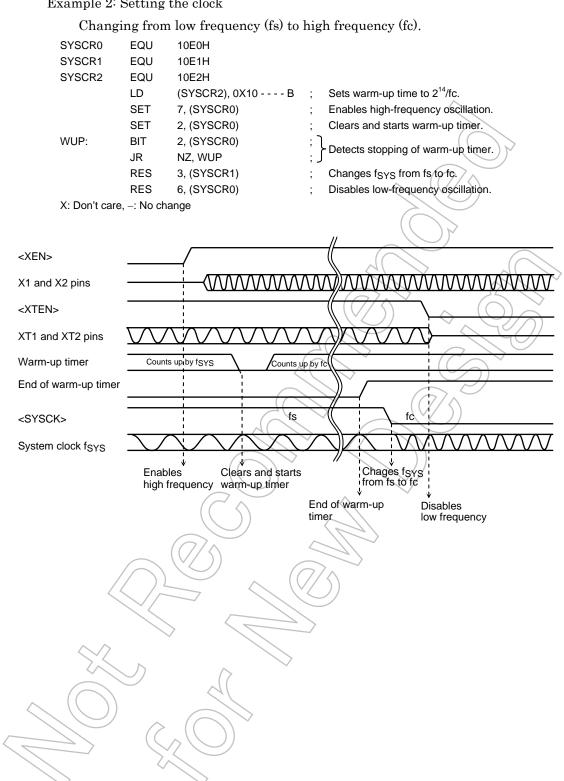

When the resonator is connected to the X1 and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained. The warm-up time can be selected using SYSCR2<WUPTM1:0>. This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

Table 3.3.1 shows the warm-up time.


- Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.
- Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

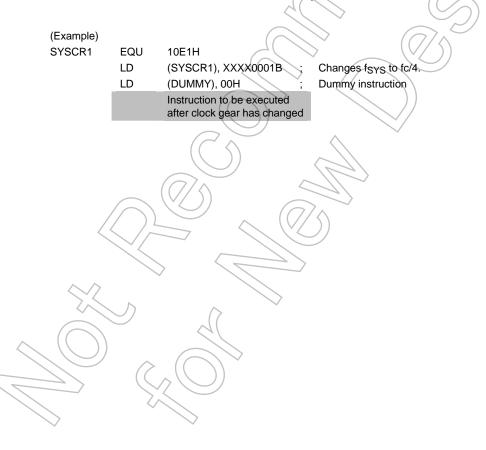
		~	_
Warm-up Time SYSCR2 <wuptm1:0></wuptm1:0>	Change to NORMAL Mode (fc)	Change to SLOW Mode (fs)	at f _{OSCH} = 40 MHz,
01 (2 ⁸ /frequency)	6.4 [μs]	7.8 [ms]	fs =
10 (2 ¹⁴ /frequency)	409.6 [μs]	500 [ms]	32.768 kHz
11 (2 ¹⁶ /frequency)	1.638 [ms]	2000 [ms]	

Table 3.3.1 Warm-up Times

Example 1: Setting the clock

Example 2: Setting the clock

(2) Clock gear controller

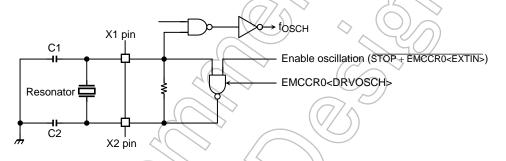

fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

Example 3	3:			
Changi	ing to a	high-frequency gear		
SYSCR1	EQU	10E1H		
	LD	(SYSCR1), XXXX0000B	;	Changes f _{SYS} to fc/2.
X: Don't care	•			
/		1 · ·)		

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary the warm-up time until changing after writing the register value.

There is the possibility that the instruction next to the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction next to the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (Instruction to execute the write cycle).


3.3.4 Noise Reduction Circuits

Noise reduction circuits are built in, allowing implementation of the following features.

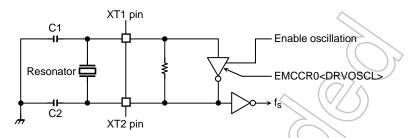
- (1) Reduced drivability for high-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator
- (3) Single drive for high-frequency oscillator
- (4) Runaway provision with SFR protection register
- (1) Reduced drivability for high-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used. (Block diagram)

(Setting method)

The drivability of the oscillator is reduced by writing "0" to EMCCR0<DRVOSCH> register. By reset, <DRVOSCH> is initialized to "1" and the oscillator starts oscillation by normal drive ability when the power supply is on.

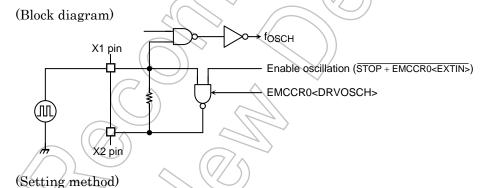

Note: This function (EMCCR0<DRVOSCH> = "0") is available to use in case of when $f_{OSCH} = 6$ to 10 MHz condition.

(2) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)


(Setting method)

The drivability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. By reset, <DRVOSCL> is initialized to "1".

(3) Single drive for high-frequency oscillator

(Purpose)

Not need twin-drive and protect mistake operation by inputted noise to X2 pin when the external oscillator is used.

The oscillator is disabled and starts operation as buffer by writing "1" to EMCCR0<EXTIN> register. X2 pin is always outputted "1".

By reset, <EXTIN> is initialized to "0".

(4) Runaway provision with SFR protection register

(Purpose)

Provision in runaway of program by noise mixing.

Write operation to specified SFR is prohibited so that provision program in runaway prevents that it is it in the state which is fetch impossibility by stopping of clock, memory control register (Memory controller, MMU) is changed.

And error handling in runaway becomes easy by INTPO interruption.

Specified SFR list

- 1. Memory controller BOCSL/H, B1CSL/H, B2CSL/H, B3CSL/H, BECSL/H MSAR0, MSAR1, MSAR2, MSAR3, MAMR0, MAMR1, MAMR2, MAMR3, PMEMCR
- 2. MMU LOCAL 0/1/2/3
- 3. Clock gear SYSCR0, SYSCR1, SYSCR2, EMCCR0

(Operation explanation)

Execute and release of protection (Write operation to specified SFR) become possible by setting up a double key to EMCCR1 and EMCCR2 register.

(Double key)

1st-key: Succession writes in 5AH at EMCCR1 and A5H at EMCCR2

2nd key: Succession writes in A5H at EMCCR1 and 5AH at EMCCR2 A state of protection can be confirmed by reading EMCCR0<PROTECT>.

By reset, protection becomes OFF.

And INTPO interruption occurs when write operation to specified SFR was executed with protection on state.

3.3.5 Standby Controller

(1) HALT modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

1. IDLE2: Only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode by setting the following register.

Table 3.3.2 shows the registers of setting operation during IDLE2 mode.

Internal I/O	SFR SFR	
TMRA01	TA01RUN <i2ta01></i2ta01>	\mathcal{A}
TMRA23	TA23RUN <i2ta23></i2ta23>	(\bigcirc)
TMRB0	TB0RUN <i2tb0></i2tb0>	
SIO0	SC0MQD1 <i2s0></i2s0>	
SIO1	SC1MOD1 <i2s1></i2s1>	
AD converter	ADMOD1 <i2ad></i2ad>	
WDT	WDMOD <i2wdt></i2wdt>	\square
SBI	SBI0BR0 <i2sbi0></i2sbi0>	
		-

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

- 2. IDLE1: Only the oscillator, the RTC (Real time clock) and MLD (Melody-alarm generator) continue to operate.
- 3. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.3.3.

	HALT Modes		IDLE2	IDLE1	STOP	
		SYSCR2 <haltm1:0></haltm1:0>	11	10 01		
		CPU		Stop		
		I/O ports	Keep the state when the HALT instruction was executed.	See Table 3.3.6, Ta Table 3.3.8	able 3.3.7 and	
	~	TMRA, TMRB	Available to select			
	Block	SIQ, SBI (Note)	operation block (Note)			
	JOCK	AD converter		St	nn	
1	WDI				6 P	
	$\langle \rangle$	LCDC, SDRAMC				
		interrupt controller	Operate			
		RTC, MLD		Operate		

Table 3.3.3 I/O Operation during HALT Modes

Note: Prohibited in the synchronous mode of SBI circuit.

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination between the states of interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.4.

1. Released by requesting an interrupt

The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of interrupt mask register, the interrupt due to the source is processed after releasing the HALT mode, and CPU status executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is not executed. (In non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.)

However only for INT0 to INT3, INTKEY, INTRTC, and INTALM0 to INTALM4 interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is executed. In this case, interrupt processing, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at "1".

- Note: Usually, interrupts can release all halts status. However, the interrupts (INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.) If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.
- 2. Releasing by resetting

Releasing all halt status is executed by resetting.

When the STOP mode is released by RESET, it is necessary enough resetting time (See Table 3.3.5) to set the operation of the oscillator to be stable.

When releasing the HALT mode by resetting, the internal RAM data keeps the state before the "HALT" instruction is executed. However the other settings contents are initialized. (Releasing due to interrupts keeps the state before the "HALT" instruction is executed,)

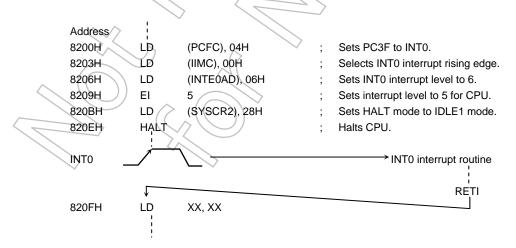

	Sta	atus of Received Interrupt	Interrupt Enabled (Interrupt level) ≥ (Interrupt mask)			Interrupt Disabled (Interrupt level) < (Interrupt mask)		
		HALT Mode	IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
		INTWDT	•	×	×	-	-	-
ω		INT0 to 3 (Note1)	•	•	♦*1	$\langle \mathbf{Q} \rangle$	0	o* 1
Clearance		INTALM0 to 4	•	•	×	0	0	×
ear		INTTA0 to 3, INTTB00 to 01	•	×	×	(\times)	×	×
G	ıpt	INTRX0 to 2, TX0 to 2	•	×	×	×	×	×
State	Interrupt	INTSS0 to 2	•	×	×	(7)	×	×
Halt 9	Int	INTAD	•	×	×	$(\vee \times)$	×	×
of H		INTKEY	•	•	♦*1		0	°*1
		INTRTC	•	•	× ($\langle \rangle \rangle \circ$	0	×
Source		INTSBE0	•	×	×	×	×	×
S		INTLCD	•	×	*	×	×	×
		RESET	Initialize LSI			~ <u>~</u>	\sim	

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- •: After clearing the HALT mode, CPU starts interrupt processing.
- •: After clearing the HALT mode, CPU resumes executing starting from instruction following the HALT instruction.
- $\times:$ It can not be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- *1: Releasing the HALT mode is executed after passing the warm-up time.
- Note 1: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

(Example releasing IDLE1 mode)

An INT0 interrupt clears the halt state when the device is in IDLE1 mode.

(3) Operation

1. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.5 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

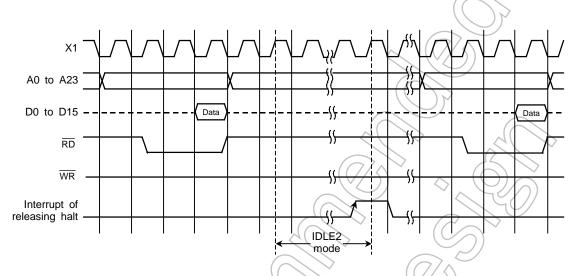


Figure 3.3.5 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

2. IDLE1 mode

In IDLE1 mode, only the internal oscillator and the RTC and MLD continue to operate. The system clock in the MCU stops. The pin status in the IDLE1 mode is depended on setting the register SYSCR2<SELDRV, DRVE>. Table 3.3.6, Table 3.3.7 and Table 3.3.8 summarizes the state of these pins in the IDLE1 mode.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3.3.6 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

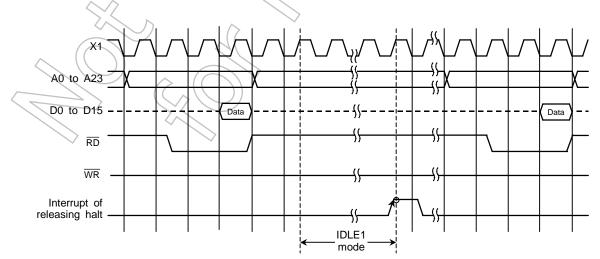


Figure 3.3.6 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

3. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator pin status in STOP mode depends on the settings in the SYSCR2<SELDRV, DRVE> register. Table 3.3.6, Table 3.3.7 and Table 3.3.8 summarizes the state of these pins in STOP mode.

After STOP mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize.

Figure 3.3.7 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

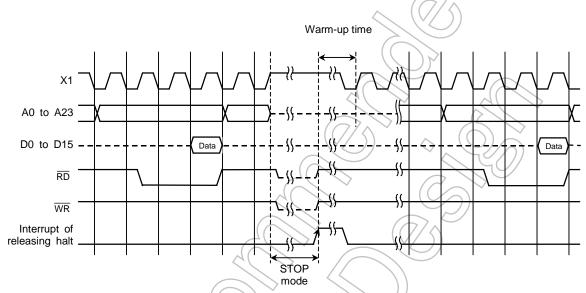


Figure 3.3.7 Timing Chart for STOP Mode Halt State Cleared by Interrupt

Table 3.3.5 Sample Warm-up Times after Clearance of STOP Mode at foscu = 40 MHz /s = 32 768 kHz

SYSCR0	SYSCR2	2 <wuptm1:0></wuptm1:0>	
<rsysck> (</rsysck>	01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)
(fc)	6.4 μs	409.6 μs	1.638 ms

					I	Input Buffer				
						•	In HALT mode (IDLE1/STOP)			
5.4	Input		When the CPI	J is operating	In HALT m	ode (IDLE2)	Condition		Condition	R (Noto)
Port Name	Function Name	During Reset	When used as function pin	When used as Input pin	When used as Function pin	When used as Input pin	When used as Function pin	When used as Input pin	When used as Function pin	When used as Input pin
D0-D7	D0-D7			_	pin	_				_
P10-P17	D8-D15	OFF						-(\geq	
P20-P27	D16-D23	16-bit start :ON 32-bit start	ON upon external read		ON upon external read of LCDC		OFF	725)	OFF	
P30-P37	D24-D31	:OFF								
P40-P47	_)*		
P50-P57	-	OFF	-		-	OFF	\sim		<u> </u>	
P60-P67	-					4	$\langle \rangle$	OFF		OFF
P76	WAIT				OFF			$\langle \rangle$		
P90	SCK		ON			$(\mathcal{O}/$	OFF	6	OFF	
P91	SDA		-		ON)) <	$>$ \bigcirc		
P92	SI, SCL						/	\sim \sim		
P93	_								\bigcirc	
P94	-		-	ON	((- (\bigcirc	-	
P95	-				$\zeta \zeta$			\sum		
P96	RXD2					ON	OFF		OFF	
PA0-PA7 (*1)	KI0-7				$\square(\ \ \)$		ON	ON	ON	ON
PC0	TA0IN	ON		~	\bigcirc	OFF	OFF	OFF	OFF	OFF
PC1	INT1		ON		ON					
PC3	INT0					ON	ON	ON	ON	ON
PC5	INT2									
PC6	INT3)	OFF	\sim			
PF0	-		- (7		\frown	<u> </u>		-	
PF1	RXD0		ON	())	ON	ON	OFF		OFF	
PF2	SCLK0, CTS0									
PF3			-10/	$\langle \wedge \rangle$		OFF	-	OFF	-	OFF
PF4 PF5	RXD1		ON	\mathcal{D}	ON	ON	OFF		OFF	
	SCLK1, CTS1		$) \geq \langle \cdot \rangle$		$-(\langle / \rangle$	(
PG0-PG2, PG4 (*2)	-	OEF	/	ON upon		フノ	-		-	
PG4 (2) PG3 (*2)	ADTRG		ON	port read	ON	OFF	ON		ON	
PL0-PL7	-			ON			-		-	
BE	- ^	~								
RESET (*1)	- \	Zon	_		\searrow		ON	_	ON	_
AM0, AM1	_ <	\searrow	ON	$\overline{\mathbf{a}}$	ÓN	-				
X1, XT1		\sim		21				IDLE1 : ON ,	STOP : OFF	•

Table 3.3.6 Input Buffer State Table

ON: The buffer is always turned on. A current flows the *1: Port having a pull-up/pull-down resistor.

input buffer if the input pin is not driven.

OFF: The buffer is always turned off. -: No applicable $^{\ast}2$: AIN input does not cause a current to flow through the buffer.

Note: Condition A/B are as follows.

	I ALD are as IUIIUW	3.	
SYSCR2 regi	SYSCR2 register setting		
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP
0	0	Condition B	Condition A
0	1	Condition A	Condition A
1	0	Condition B	Condition B
1	1	Condition B	Condition B

						Output Buffer	State			
	Output			e CPU is	In HAI T m	ode (IDLE2)			(IDLE1/STOP)	
Port	Function	During	Oper When used	ating	When Used		Conditio When Used	n A (Note)	Condition	
Name	Name	Reset	as	When Used as	as	When Used as	as	When Used as	When Used as	When Used as
			Function Pin	Output Port	Function Pin	Output Port	Function Pin	Output Port	Function Pin	Output Port
D0-D7	D0-D7			_		-		- >		_
P10-P17	D8-D15	055	ON upon		0.55					
P20-P27	D16-D23	OFF	external write		OFF			ON	OFF	
P30-P37	D24-D31		white					$(\overline{\Omega})$		
P40-P47	A0-A7)	
P50-P57	A8-A15									
P60-P67	A16-A23						OFF (
P70	RD							\bigcirc		
P71	WRLL	ON	ON		ON				ON	
P72	WRLU							\sim		\searrow
P73	WRUL					($\overline{\gamma}$		Δ	>
P74	WRUU					((// 5)	\diamond	(\bigcirc)	
P75	R/W						\subseteq	\sim)
P76	_	OFF	-		-		> -			
Deo	CS0,					$\langle \land \land \rangle$	*		0	
P80	SDCSH					\sim			\mathcal{O}	
P81	CS1,				(($\langle \rangle$		(7)		
FOI	SDCSL							$\langle \rangle \rangle$		
P82	CS2,				$\langle \langle \rangle$	\supset ,	$\langle \ \rangle$			
1.02	CS2A					, <	$\langle \rangle$			
P83	CS3	ON		ON	\bigcirc	ON				ON
P84	EA24,				\sum			OFF		
	CS2B			P	\sim	\land		-		
P85	EA25,))					
	CS2C		ON		ON	7/~	OFF		ON	
P86	CS2D			(//			S			
P87	SDCLK		$\langle \rangle$		((7)	~			
P90	SCK		$\langle \rangle $		$\langle \rangle$	$\vee ()$				
P91 P92	SO SCL		\sim							
P92 P93	CS2E									
P94	CS2E CS2F	$ \land \land$	\sim							
1 34	CS2F CS2G	\sum			\rightarrow					
P95	TXD2	OFF	\mathcal{D}	()						
P96	CSEXA			41						
PC0))	_		-	1	_	-		
PC1	TA10UT		ON	(())	ON	1	OFF	-	ON	
PC3		\geq		$\langle \bigcirc \rangle$	-	1	_	-	-	
PC5	TA3OUT					1		1		
PC6	TBOOUT		ON	\searrow	ON		OFF		ON	

Table 3.3.7 Output Buffer State Table (1/2)

						Output Buffer	State			
			When th	e CPU is				In HALT mode	e (IDLE1/STOP)	
Port	Output		Ope	rating	IN HALT M	ode (IDLE2)	Condition	n A (Note)	Condition	n B (Note)
Name	Function Name	During Reset	When used as Function Pin	When Used as Output Port	When Used as Function Pin	When Used as Output Port	When Used as Function Pin	When Used as Output Port	When Used as Function Pin	When Used as Output Port
PF0	TXD0		ON		ON		OFF		\supset	
PF1	-		_		-		-~	$(// \uparrow)$	-	
PF2	SCLK0		ON		ON		OFF		ON	
PF3	TXD1		ON		ON		OFF		ON	
PF4	_		I		-		- ()	\mathcal{Y}	_	
PF5	SCLK1									
PJ0	SDRAS						41	\geq	$\lambda($	
PJ1	SDCAS								$\langle \rangle$	~
PJ2	SDWE SRWR					(7/5)~	\diamond	\bigcirc	
PJ3	SDLLDQM SRLLB						OFF			
PJ4	SDLUDQM SRLUB					$\langle \bigcirc$		\bigcirc		
PJ5	SDULDQM SRULB	OFF		ON		ON		OFF	r	ON
PJ6	SDUUDQM SRUUB				20				ON	
PJ7	SDCKE		ON			~	ON in self refresh cycle)		
PK0	D1BSCP				$\left(\right)$					
PK1	D2BLP			\sim	<i>J</i>	$\langle \langle \langle \rangle \rangle$				
PK2	D3BFR		($(7/\land$		$\langle \rangle$	~			
PK3	DLEBCD			$\langle \mathcal{O} \rangle$	/	$\overline{\partial}$	OFF			
PK4	DOFFB	/	()		((//5)				
PK6	ALARM		\bigtriangledown			\bigcirc				
	MLDALM			5						
PL0-PL7	LD0-LD7		\sim							
X2	-	ON		_		_	ID	LE1: ON, STO	P: output "H" le	evel
XT2	-			\wedge	\sim			IDLE1: ON,	STOP: High-Z	

Table	338	Outou	t Buffer	State	Table	(2/2)
Table	0.0.0	Outpu	Dunei	Juaie	Table	(2/2)

ON: The buffer is always turned on. When the *1: Port having a pull-up/pull-down resistor. bus is released, however, output buffers for some

pins are turned off,

OFF: The buffer is always turned off.

-: No applicable

Note: Condition A/B are as follos.

SYSCR2 r	egister setting	HALT	mode
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP
0	0	Condition B	Condition A
0	1	Condition A	Condition A
1	0	Condition B	Condition B
1	1	Condition B	Condition B

3.4 Interrupts

Interrupts are controlled by the CPU interrupt mask register <IFF2:0> (Bits 12 to 14 of the status register) and by the built-in interrupt controller.

The TMP92C820 has a total of 45 interrupts divided into the following five types:

Interrupts generated by CPU: 9 sources

- Software interrupts: 8 sources
- Illegal Instruction interrupt: 1 source

Internal interrupts: 31 sources

- Internal I/O interrupts: 23 sources
- Micro DMA transfer end interrupts: 8 sources

External interrupts: 5 sources

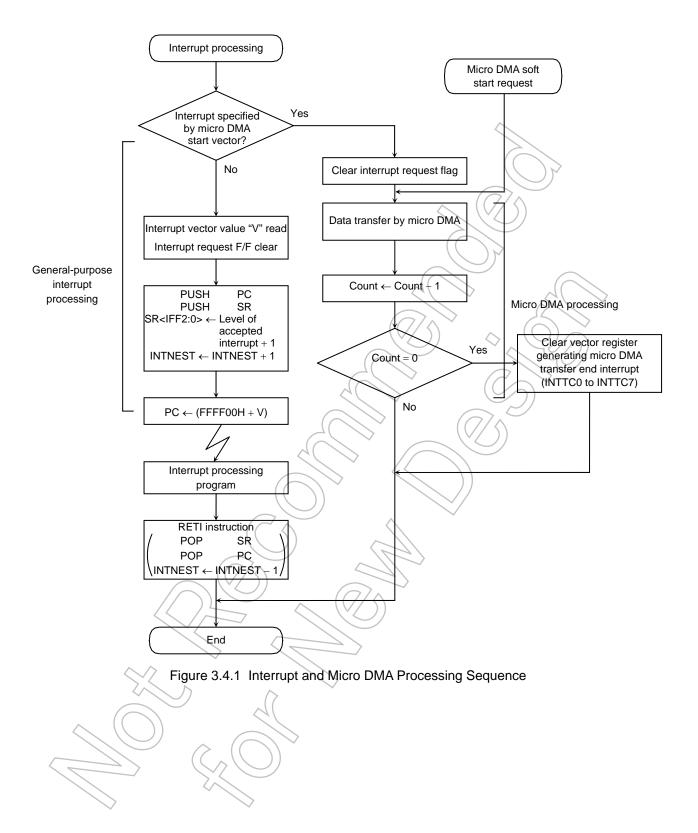
• Interrupts on external pins (INT0 to INT3, INTKEY)

A fixed individual interrupt vector number is assigned to each interrupt source. Any one of six levels of priority can also be assigned to each maskable interrupt. Non-maskable interrupts have a fixed priority level of 7, the highest level.

When an interrupt is generated, the interrupt controller sends the priority of that interrupt to the CPU. When more than one interrupt are generated simultaneously, the interrupt controller sends the priority value of the interrupt is with the highest priority to the CPU. (The highest priority level is 7, the level used for non-maskable interrupts.)

The CPU compares the interrupt priority level which it receives with the value held in the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is greater than or equal to the value in the interrupt mask register, the CPU accepts the interrupt.

However, software interrupts and illegal instruction interrupts generated by the CPU are processed irrespective of the value in <IFF2:0>.


The value in the interrupt mask register <IFF2:0> can be changed using the EI instruction (EI num sets <IFF2:0> to num). For example, the command EI3 enables the acceptance of all non-maskable interrupts and of maskable interrupts whose priority level, as set in the interrupt controller, is 3 or higher. The commands EI and EI0 enable the acceptance of all non-maskable interrupts and of maskable interrupts with a priority level of 1 or above (hence both are equivalent to the command EI1).

The DI instruction (Sets <IFF2:0> to 7) is exactly equivalent to the EI7 instruction. The DI instruction is used to disable all maskable interrupts (since the priority level for maskable interrupts ranges from 1 to 6). The EI instruction takes effect as soon as it is executed.

In addition to the general-purpose interrupt processing mode described above, there is also a micro DMA processing mode. In micro DMA mode the CPU automatically transfers data in one-byte, two-byte or four-byte blocks; this mode allows high-speed data transfer to and from internal and external memory and internal I/O ports.

In addition, the TMP92C820 also has a software start function in which micro DMA processing is requested in software rather than by an interrupt.

Figure 3.4.1 is a flowchart showing overall interrupts processing.

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. However, in the case of software interrupts and illegal instruction interrupts generated by the CPU, the CPU skips steps (1) and (3), and executes only steps (2), (4), and (5).

- The CPU reads the interrupt vector from the interrupt controller. When more than one interrupt with the same priority level has been generated simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt requests. (The default priority is determined as follows: The smaller the vector value, the higher the priority.)
- (2) The CPU pushes the program counter (PC) and status register (SR) onto the top of the stack (Pointed to by XSP).
- (3) The CPU sets the value of the CPU's interrupt mask register <IFF2:0> to the priority level for the accepted interrupt plus 1. However, if the priority level for the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increments the interrupt nesting counter INTNEST by 1.
- (5) The CPU jumps to the address given by adding the contents of address FFFF00H + the interrupt vector, then starts the interrupt processing routine.

On completion of interrupt processing, the RETI instruction is used to return control to the main routine. RETI restores the contents of the program counter and the status register from the stack and decrements the interrupt nesting counter INTNEST by 1.

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.) If an interrupt request is received for an interrupt with a priority level equal to or greater than the value set in the CPU interrupt mask register <IFF2:0>, the CPU will accept the interrupt. The CPU interrupt mask register <IFF2:0> is then set to the value of the priority level for the accepted interrupt plus 1.

If during interrupt processing, an interrupt is generated with a higher priority than the interrupt currently being processed, or if, during the processing of a non-maskable interrupt processing, a non-maskable interrupt request is generated from another source, the CPU will suspend the routine which it is currently executing and accept the new interrupt. When processing of the new interrupt has been completed, the CPU will resume processing of the suspended interrupt.

If the CPU receives another interrupt request while performing processing steps (1) to (5), the new interrupt will be sampled immediately after execution of the first instruction of its interrupt processing routine. Specifying DI as the start instruction disables nesting of maskable interrupts.

A reset, initializes the interrupt mask register <IFF2:0> to 111, disabling all maskable interrupts.

Table 3.4.1 shows the TMP92C820 interrupt vectors and micro DMA start vectors. FFFF00H to FFFFFFH (256 bytes) is designated as the interrupt vector area.

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA Start Vector
1		Reset or [SWI0] instruction	0000H	FFFF00H	
2		[SWI1] instruction	0004H	FFFF04H	
3		Illegal instruction or [SWI2] instruction	0008H 🔨	FFFF08H	
4		[SWI3] instruction	000CH	FEFF0CH	
5	Non	[SWI4] instruction	0010H	FFFF10H	
6	maskable	[SWI5] instruction	0014H	EFFF14H	
7		[SWI6] instruction	0018H	FFFF18H	
8		[SWI7] instruction	001CH	FFF1CH	
9		(Reserved)	0020H	FFFF20H	
10		INTWD: Watchdog timer	0024H	FFFF24H	
-		Micro DMA		_	- (Note 1
11		INTO: INTO pin input	0028H	FFFF28H	0AH (Note 2
12		INT1: INT1 pin input	002011 002CH	FFFF2CH	0AIT (NOLE 2
13		INT2: INT2 pin input	0030H	FFFF30H	0CH
14		INT3: INT3 pin input	0034H	FFFF34H	
15		(Reserved)	0038H	FFEF38H	0EH
16		INTALM0: ALM0 (8 kHz)	003CH	FFFF3CH	0FH
17		INTALM1: ALM1 (512 Hz)	0040H	EFFE40H	10H
18		INTALM2: ALM2 (64 Hz)	0044H	FFFF44H	11H
19		INTALM3: ALM3 (2 Hz)	0048H	FFFF48H	12H
20		INTALM4: ALM4 (1 Hz)	004CH	FFFF4CH	13H
21		INTP0: Protect 0 (WR to SFR)	0050H	FFFF50H	14H
22		(Reserved)	0054H	FFFF54H	15H
23		INTTA0: 8-bit timer 0	0058H	FFFF58H	16H
24		INTTA1: 8-bit timer 1	005CH	FFFF5CH	17H
25		INTTA2: 8-bit timer 2	0060H	FFFF60H	18H
26		INTTA3: 8-bit timer 3	0064H	FFFF64H	19H
27		INTTB0: 16-bit timer 0	0068H	FFFF68H	1AH
28		INTTB1: 16-bit timer 0	006CH	FFFF6CH	1BH
29		INTKEY: Key wakeup	0070H	FFFF70H	1CH
30	Maskable	INTRTC: RTC (Alarm interrupt)	0074H	FFFF74H	1DH
31		INTTBO0: 16-bit timer 0 (Overflow)	0078H	FFFF78H	1EH
32		INTLCD: LCDC/LP pin	007CH	FFFF7CH	1FH
33		INTRX0: Serial receive (Channel 0)	0080H	FFFF80H	20H (Note 2
34	~ ~	INTTX0: Serial transmission (Channel 0)	0084H	FFFF84H	2011 (11010 2 21H
35	\sim	INTRX1: Serial receive (Channel 1)	0088H	FFFF88H	22H (Note 2
		INTEXT: Serial transmission (Channel 1)	-		``
36	\bigcirc		008CH	FFFF8CH	23H
37	()	INTRX2: Serial receive (Channel 2)	0090H	FFFF90H	24H (Note 2
38		INTTX2: Serial transmission (Channel 2)	0094H	FFFF94H	25H
39		(Reserved)	0098H	FFFF98H	26H
40		(Reserved)	009CH	FFFF9CH	27H
41		(Reserved)	00A0H	FFFFA0H	28H
42		(Reserved)	00A4H	FFFFA4H	29H
43		(Reserved)	00A8H	FFFFA8H	2AH
44		(Reserved)	00ACH	FFFFACH	2BH
45		(Reserved)	00B0H	FFFFB0H	2CH
46		(Reserved)	00B4H	FFFFB4H	2DH
47		(Reserved)	00B8H	FFFFB8H	2EH
48		INTSBE0: SBI I ² C bus transfer end (Channel 0)	00BCH	FFFBCH	2FH
49		(Reserved)	00C0H	FFFFC0H	30H
50		(Reserved)	00C4H	FFFFC4H	31H

Table 3.4.1 TMP92C820 Interrupt Vectors and Micro DMA Start Vectors (1/2)	
---	--

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value	Address Refer to Vector	Micro DMA Start Vector
51		(Reserved)	00C8H	FFFFC8H	32H
52		INTAD: AD conversion end	00CCH	FFFFCCH	33H
53		INTTC0: Micro DMA end (Channel 0)	00D0H 🔿	FFFFD0H	34H
54		INTTC1: Micro DMA end (Channel 1)	00D4H	FEFFD4H	35H
55		INTTC2: Micro DMA end (Channel 2)	00D8H	FFFFD8H	36H
56		INTTC3: Micro DMA end (Channel 3)	00DCH	FFFFDCH	37H
57	Maskable	INTTC4: Micro DMA end (Channel 4)	00E0H	FFFFE0H	38H
58		INTTC5: Micro DMA end (Channel 5)	00E4H	FFFFE4H	39H
59		INTTC6: Micro DMA end (Channel 6)	00E8H	FFFFE8H	3AH
60		INTTC7: Micro DMA end (Channel 7)	00ECH	FFFFECH	3BH
-			00F0H	FFFFF0H	-
to _		(Reserved)	: OOECH	FFFFFCH	-

Table 3.4.1	TMP92C820 Ir	nterrupt Vectors	and Micro DMA	A Start Vectors (2/2)

Note 1: Micro DMA default priority.

Micro DMA initiation takes priority over other maskable interrupt.

Note 2: When initiating micro DMA, set at edge detect mode.

3.4.2 Micro DMA processing

In addition to general-purpose interrupt processing, the TMP92C820 also includes a micro DMA function. Micro DMA processing for interrupt requests set by micro DMA is performed at the highest priority level for maskable interrupts (Level 6), regardless of the priority level of the interrupt source.

Because the micro DMA function is implemented though the CPU, when the CPU is placed in a state of standby by HALT instruction, the requirements of the micro DMA will be ignored (Pending).

Micro DMA supports 8 channels and can be transferred continuously by specifying the micro DMA burst function as below.

(1) Micro DMA operation

When an interrupt request is generated by an interrupt source specified by the micro DMA start vector register, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request. The eight micro DMA channels allow micro DMA processing to be set for up to 8 types of interrupt at once.

When micro DMA is accepted, the interrupt request flip flop assigned to that channel is cleared. Data in one-byte, two-byte or four-byte blocks, is automatically transferred at once from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decremented by 1. If the value of the counter after it has been decremented is not 0, DMA processing ends with no change in the value of the micro DMA start vector register. If the value of the decremented counter is 0, a micro DMA transfer end interrupt (INTTC0 to INTTC7) is sent from the CPU to the interrupt controller. In addition, the micro DMA start vector register is cleared to 0, the next micro DMA operation is disabled and micro DMA processing terminates,

If micro DMA requests are set simultaneously for more than one channel, priority is not based on the interrupt priority level but on the channel number: The lower the channel number, the higher the priority (Channel 0 thus has the highest priority and channel 7 the lowest).

If an interrupt request is triggered for the interrupt source in use during the interval between the time at which the micro DMA start vector is cleared and the next setting, general-purpose interrupt processing is performed at the interrupt level set. Therefore, if the interrupt is only being used to initiate micro DMA (and not as a general-purpose interrupt), the interrupt level should first be set to 0 (j.e, interrupt requests should be disabled).

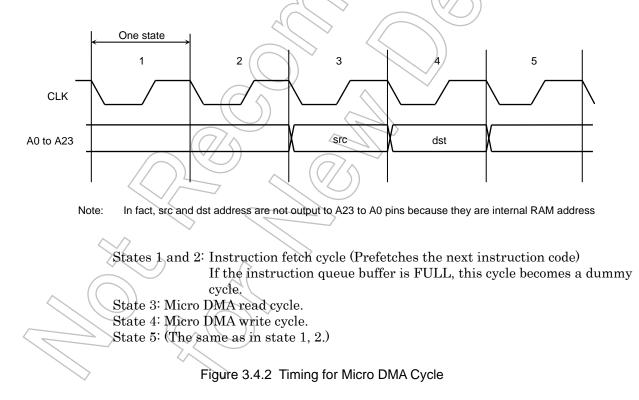
If micro DMA and general-purpose interrupts are being used together as described above, the level of the interrupt which is being used to initiate micro DMA processing should first be set to a lower value than all the other interrupt levels. (Note) In this case, edge-triggered interrupts are the only kinds of general interrupts which can be accepted.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

- INTxxx: level 1 without micro DMA
- INTyyy: level 6 with micro DMA

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.


Although the control registers used for setting the transfer source and transfer destination addresses are 32 bits wide, this type of register can only output 24-bit addresses. Accordingly, micro DMA can only access 16 Mbytes (The upper 8 bits of a 32-bit address are not valid).

Three micro DMA transfer modes are supported: One-byte transfer, two-byte (One word) transfers and four-byte transfers. After a transfer in any mode, the transfer source and transfer destination addresses will either be incremented or decremented, or will remain unchanged. This simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the various transfer modes, see section 3.4.2 (4) "Detailed description of the transfer mode register".

Since a transfer counter is a 16-bit counter, up to 65536 micro DMA processing operations can be performed per interrupt source (Provided that the transfer counter for the source is initially set to 0000H).

Micro DMA processing can be initiated by any one of 34 different interrupts – the 33 interrupts shown in the micro DMA start vectors in Table 3.4.1 and a micro DMA soft start.

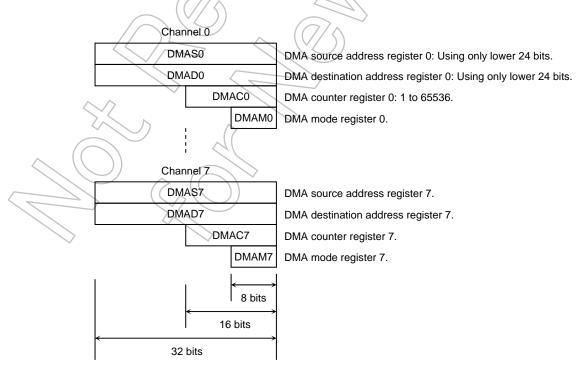
Figure 3.4.2 shows a 2-byte transfer carried out using a micro DMA cycle in transfer destination address INC mode (Micro DMA transfers are the same in every mode except counter mode). (The conditions for this cycle are as follows: external 8-bit bus, 0 waits, and even-numbered transfer source and transfer destination addresses).

(2) Soft start function

The TMP92C820 can initiate micro DMA either with an interrupt or by using the micro DMA soft start function, in which micro DMA is initiated by a Write cycle which writes to the register DMAR.

Writing 1 to any bit of the register DMAR causes micro DMA to be performed once. (If write "0" to each bit, micro DMA doesn't operate). On completion of the transfer, the bits of DMAR which support the end channel are automatically cleared to 0.

Only one channel can be set for DMA request at once. (Do not write "1" to plural bits.)


When writing again 1 to the DMAR register, check whether the bit is "0" before writing "1". If read "1", micro DMA transfer isn't started yet.

When a burst is specified by the DMAB register, data is transferred continuously from the initiation of micro DMA until the value in the micro DMA transfer counter is 0. If execatee soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read modify-write instruction to avoid writign to other bits by mistake.

									<u> </u>	
Symbol	Name	Address	7	6	5	4	3 ((2)	1	0
	DMAR DMA 109ł request RMV	40011	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAR			R/W (7/A							
DIVIAR		(Prohibit RMW)	0	0		0	0)) o	0	0
				$\langle \zeta \rangle$	1:	DMA reque	est in softwa	re		

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. An instruction of the form LDC cr,r can be used to set these registers.

0 0 0	0 0 0 Mode DMAM0 to DMAM7										
DMAM [4:0]	Mode Description	Execution Time									
000ZZ	Destination INC mode (DMADn+) ← (DMASn) DMACn ← DMACn - 1 if DMACn = 0 then INTTCn	5 states									
001ZZ	Destination DEC mode $(DMADn-) \leftarrow (DMASn)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states									
010ZZ	Source INC mode $(DMADn) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states									
011ZZ	Source DEC mode $(DMADn) \leftarrow (DMASn-)$ $DMACn \leftarrow DMACn - 1$ if $DMACn = 0$ then INTTCn	5 states									
100ZZ	Source and destination INC mode $(DMADn+) \leftarrow (DMASn+)$ $DMACn \leftarrow DMACn - 1$ If $DMACn = 0$ then INTTCn	6 states									
101ZZ	Source and destination DEC mode $(DMADn-) \leftarrow (DMASn-)$ $DMACn \leftarrow DMACn - 1$ If DMACn = 0 then INTTCn	6 states									
110ZZ	Destination and fixed mode (DMADn) ← (DMASn) DMACn ← DMACn - 1 If DMACn = 0 then INTTCn	5 states									
11100	Counter mode DMASn ← DMASn + 1 DMACn ← DMACn - 1 if DMACn = 0 then INTTCn	5 states									

(4) Detailed description of the transfer mode register

ZZ: 00 = 1-byte transfer

01 = 2-byte transfer

- 10 = 4-byte transfer
- 11 = Reserved

Note 1: The execution time is measured at 1 states = 50 ns (Operation at internal 20 MHz).

Note 2:n stands for the micro DMA channel number (0 to 7).

DMADn+/DMASn+: Post increment (Register value is incremented after transfer).

DMADn-/DMASn-: Post decrement (Register value is decremented after transfer).

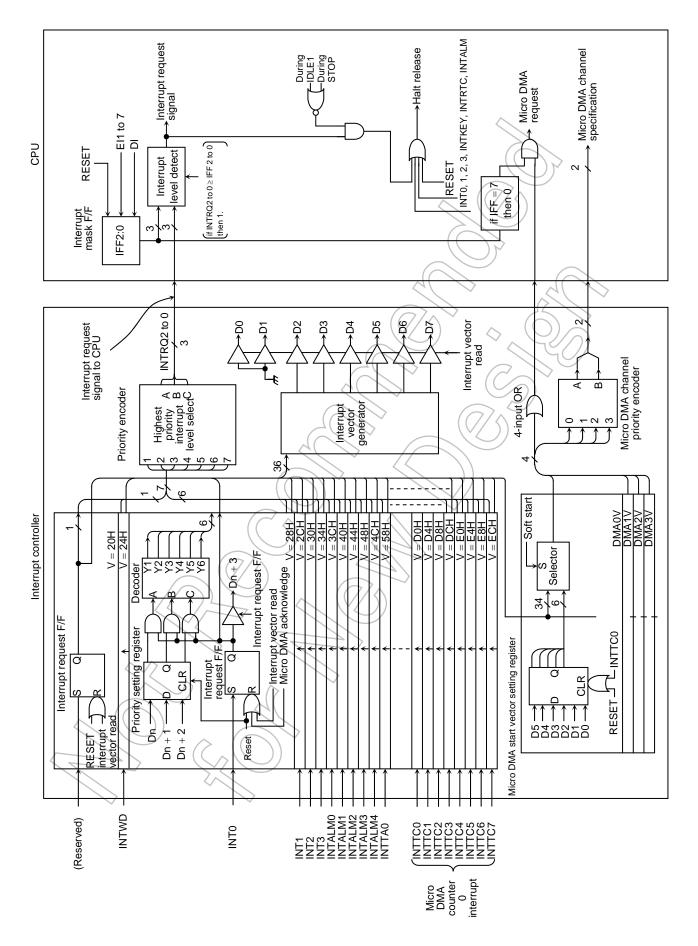
"I/O" signifies fixed memory addresses; "memory" signifies incremented or decremented memory addresses.

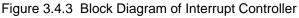
Note2: The transfer mode register should not be set to any value other than those listed above.

3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 52 interrupt channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to zero in the following cases: when a reset occurs, when the CPU reads the channel vector of an interrupt it has received, when the CPU receives a micro DMA request (when micro DMA is set), when a micro DMA burst transfer is terminated, and when an instruction that clears the interrupt for that channel is executed (by writing a micro DMA start vector to the INTCLR register).


An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEOAD or INTE12). Six interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source.


The priority of non-maskable interrupt (Watchdog timer interrupts) is fixed at 7. If more than one interrupt request with a given priority level are generated simultaneously, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

If several interrupts are generated simultaneously, the interrupt controller sends the interrupt request for the interrupt with the highest priority and the interrupt's vector address to the CPU. The CPU compares the mask value set in $\langle IFF2:0 \rangle$ of the status register (SR) with the priority level of the requested interrupt; if the latter is higher, the interrupt is accepted. Then the CPU sets SR $\langle IFF2:0 \rangle$ to the priority level of the accepted interrupt + 1. Hence, during processing of the accepted interrupt, new interrupt requests with a priority value equal to or higher than the value set in SR $\langle IFF2:0 \rangle$ (e.g., interrupts with a priority higher than the interrupt being processed) will be accepted. When interrupt processing has been completed (e.g., after execution of a RETI instruction), the CPU restores to SR $\langle IFF2:0 \rangle$ the priority value which was saved on the stack before the interrupt was generated.

The interrupt controller also includes eight registers which are used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (See Table 3.4.1 and Table 3.4.), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter registers (e.g., DMAS and DMAD) prior to micro DMA processing.

	(1) In	terrupt pi	riority set	tting regi	sters				1		
Symbol	Name	Address	7	6	5	4	3	2	1	0	
				INT	AD			IN	Т0		
INTE0AD	INT0& INTAD	F0H	IADC	IADM2	IADM1	IADM0	I0C	10M2	I0M1	I0M0	
INTEUAD	enable	FUH	R		R/W		R		R/W	•	
	0110010		0	0	0	0	0	<u> </u>	0	0	
				IN	T2			INT1			
INTE12	INT1&INT2	INT1&INT2	D0H	I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
	enable	DOIT	R		R/W		R	\sum) R/W		
			0	0	0	0	0		0	0	
				-	_		$\langle \rangle$	/)) IN	Т3		
INTE3	INT3	D1H	-	-	-	-	13C	J3M2	I3M1	I3M0	
INTES	enable		-		-				R/W		
				Always	write "0".			0	0	0	
				INTTA1	(TMRA1)			INTTA0	(TMRA0)		
INTETA01	INTTA0& INTTA1	D4H	ITA1C	ITA1M2	ITA1M1	ITA1M0	ITAOC	ITA0M2	TAOM1	ITA0M0	
	enable	DHII	R		R/W		R	X	R/W		
			0	0	0		0	0) _0	0	
				INTAT3	(TMRA3)			INTAT2	(TMRA2)		
INTETA23	INTTA2& INTTA3	D5H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0	
INTETA25	enable	DOIT	R		R/W	$\sum_{i=1}^{n}$	R		R/W		
			0	0	0	∕ ₀	0		0	0	
				INTTB1	(TMRB1)	\geq	$\left(\right)$		(TMRB0)		
INTETB01	INTTB0& INTTB1	D8H	ITB1C	ITB1M2	TB1M1	ITB1M0	ITB0C) ITB0M2	ITB0M1	ITB0M0	
	enable	D8H	R	$\mathcal{A}($	R/W		R	_	R/W		
			0	0	0	< 0	0	0	0	0	
							$\sum_{i=1}^{n}$	INTT	BO0	-	
INTETBO0	INTTBO0 (Overflow)	DAH	-		-	-	ITBO0C	ITBO0M2	ITBO0M1	ITBO0M0	
INTERDO	enable	BAT	R		R/W	\wedge	R		R/W	-	
			0) 0	0	0	0	0	0	0	
					ТХО	$\langle \mathcal{C} \rangle$		INT	RX0		
INTES0	INTRX0& INTTX0	DBH		ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0	
INTEGO	enable		R		R/W		R		R/W		
			0	0) 0	0	0	0	0	
				TMI	TX1	/		INT	RX1	-	
INTES1	INTRX1& INTTX1	DCH	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0	
	enable	Don	R		R/W		R		R/W		
		/	0	0	0	0	0	0	0	0	
	$\langle \rangle$	>		\wedge	-			INTS	BE0		
INTESB0	INTSBE0	E3H	- <	(–	_	-	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0	
	enable)) =0			-		R		R/W		
				Always	write "0".		0	0	0	0	
$\langle -$			\mathcal{A})) inta	LM1			INTA	LM0		
INTEALM 01	INTALM0& INTALM1	E5H	IA1C	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0	
	enable	_0.1	R		R/W	i	R		R/W	i	
	*		0	0	0	0	0	0	0	0	
				INTA	LM3			INTA	LM2		
INTEALM 23	INTALM2& INTALM3			IA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0	
	enable	2011	R		R/W	i	R		R/W	i	
		1	0	0	0	0	0	0	0	0	

(1) Interrupt priority setting registers

Symbol	Name	Address	7	6	5	4	3	2	1	0
				-	-			INTA	LM4	
INTEALM4	INTALM4	E7H	-	-	-	-	IA4C	IA4M2	IA4M1	IA4M0
	enable	E/H	-		-		R		R/W	
				Always	write "0".		0	0	0	0
				-	-					
INTERTC	INTRTC	E8H	-	-	-	-	IRC	IRM2	IRM1	IRM0
INTERIC	enable	ЕОП	-		-		R	()	R/W	
				Always	write "0".		0		0	0
				-	-		~ ((7/ (NTI	KEY	
INTECKEY	INTKEY	E9H	-	-	-	-	ТКС	IKM2	IKM1	IKM0
INTECKET	enable	ЕЭН	-		-		R		R/W	
				Always	write "0".		(0)	0	0	0
				-	-	G		INT	LCD	
INTLCD	INTLCD		-	-	-	-7(ILCD1C	ILCDM2	ILCDM1	ILCDM0
INTLOD	enable		-		-		R	\sim	R/W	
				Always	write "0".	$(\overline{\Omega})$	> 0	0	0	0
			INTTX2			$) \langle \langle \rangle$) (NT	RX2		
INTES2	INTRX2& INTTX2	EDH	ITX2C	ITX2M2	ITX2M1	ITX2M0	IRX2C	IRX2M2	IRX2M1	IRX2M0
INTEGE	enable	LDIT	R		R/W		R	\sim	R/W	
			0	0	_0(0	0	0	0	0
				-					FP0	
INTEP0	INTP0	EEH	-	-	$\langle \rangle$	_	IPOC	IP0M2	IP0M1	IP0M0
	enable		-	.((R	7	R/W	
				Always	write "0".		0	0	0	0
Interrup	ot request flag) ←							·	
					IxxM		xM0	F una 4	tion (Writ	

\overline{a}	lxxM2	lxxM1	⊃lxxM0	Function (Write)
)) 0	0	0	Disables interrupt requests
	0	$(\bigcirc 0 \land)$	1	Sets interrupt priority level to 1
	0		0	Sets interrupt priority level to 2
	0	T	1	Sets interrupt priority level to 3
	1	0	0	Sets interrupt priority level to 4
~ ~	1	0	1	Sets interrupt priority level to 5
	1	> 1	0	Sets interrupt priority level to 6
	<> 1	1	1	Disables interrupt requests

Symbol	Name	Address	7	6	5	4	3	2	1	0
				INTTC1	(DMA1)			INTTC0	(DMA0)	
INTETC01	INTTC0& INTTC1	F1H	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
INTEICOT	enable	ГIП	R		R/W		R		R/W	
	Chable		0	0	0	0	0	0	0	0
				INTTC3	(DMA3)			NNTTC2	(DMA2)	
INTETC23	INTTC2& INTTC3	F2H	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
INTET 623	enable	ΓZΠ	R		R/W		R	(())	R/W	
	Chable		0	0	0	0	0	0	0	0
				INTTC5	(DMA5)		~ ((7/INTTC4	(DMA4)	
	INTTC4&	5011	ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	INTTC5 enable	F3H	R		R/W		R		R/W	
	onabio		0	0	0	0	(0)	0	0	0
				INTTC7	(DMA7)	6		INTTC6	(DMA6)	
	INTTC6& INTTC7	= 411	ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETC67	enable	F4H	R		R/W		R		R/W	
	onabio		0	0	0	07	<u>о</u>	0	0	0
				=		(∇)			WD	
	INTWD	WD F7H		-	- 6		ITCWD	$\nabla \mathcal{I}$		-
INTWDT		F/H	-		-20	\sim	R	\sim	$\overline{\bigcirc}$	
				Always w	vrite "0".	\geq	0 (-	-
						-				
Interru	pt request flag	g 🔶	↓			>	-0/		,	
)	,	
			Г	lxxM2	IxxM1) A	хM0	Fun	ction (Wri	te)
				\sim	0		0	Disables int	errupt reque	sts
			(0	0	$\langle \rangle$	1	Sets interru	pt priority lev	vel to 1
							0	Sets interrupt priority level to 2		
				0	4	\square	1	Sets interru	pt priority lev	vel to 3
		\frown	(V/f)) 1	0		0	Sets interru	pt priority lev	vel to 4
				1	$(\bigcirc \land \land$		1	Sets interru	pt priority lev	vel to 5
		// /'					_			

 $\langle 1 \rangle$

1

1

1

0

1

Sets interrupt priority level to 6

Disables interrupt requests

Symbol	Name	Address	7	6	5	4	3	2	1	0
					I3EDGE	I2EDGE	I1EDGE	I0EDGE	IOLE	-
					W	W	W	W	R/W	R/W
	Interrupt	F6H	/	/	0	0	0	0	0	0
IIMC	input mode				INT3EDGE	INT2EDGE	INT1EDGE	INT0EDGE	INT0	Always
	control	(Prohibit			0: Rising	0: Rising	0: Rising	0: Rising	0: Edge	write "0".
		RMW)			1: Falling	1: Falling	1: Falling	1: Falling	mode	
									1: Level	
									mode	

(2) External interrupt control

*INT0 level enable

*INTO IE	verenable	
0	Edge detect INT	
1	"H" level INT	

Note 1: Disable INT0 request before changing INT0 pin mode from level sense to edge sense.

Setting example:

- DI
 - LD (IIMC), XXXXXX0 B LD (INTCLR), 0AH
 - LD EI

Switches from level to edge. Clears interrupt request flag.

Note 2: X: Don't care, -: No change

Note 3: See electrical characteristics in section 4 for external interrupt input pulse width.

			~
Sotting	of Extornal	Interrupt Pin	Function
Setunga	o un Exiciliai	IIII CII UPI FIII	I UNCLION
0	$\langle \rangle$		

Interrupt	Pin Name		Mode	Setting Method
	$(\mathcal{O}$		Rising edge	IIMC < IOLE > = 0, $INTOEDGE = 0$
INT0	PC3		Falling edge	IIMC <i0le> = 0, INT0EDGE = 1</i0le>
	$\langle \rangle \rangle \rangle \sim$		High level	IIMC <i0le> = 1</i0le>
INT1	PC1		Rising edge	INT1EDGE = 0
	PCI		Falling edge	INT1EDGE = 1
INT2	PC5		Rising edge	INT2EDGE = 0
	F03		Falling edge	INT2EDGE = 1
INT3	DPC6		Rising edge	INT3EDGE = 0
1113			Falling edge	INT3EDGE = 1

Symbol	Name	Address	7	6	5	4	3	2	1	0
2,11001				,	,		,	IR2LE	IR1LE	IROLE
						\sim		W	W	W
	SIO		\frown	\sim	\sim	\sim	\sim	1	1	1
a	interrupt	F5H						0: INTRX2	0: INTRX1	0: INTRX0
SIMC	mode	(Prohibit RMW)						edge	edge	edge
	control							mode	mode	mode
									1: INTRX1	1: INTRX0 level
							\sim ((level mode	level mode	mode
<u>.</u>		11						9		
					Г		(\cap)	<u> </u>		
)		
								edge enable		(0
							*	ising edge d I" level INTF		10
						67				
					L		RX1 level e	nable	20	
					G	\sim		ising edge d		(1
							1 "	f" level INTF	RX1	
							RX2 level e			
					\bigcirc			ising edge d	etect INTR	(2
				G	$\sqrt{2}$			H" level INTF		
				4(
					\geq	$\langle \langle \rangle$				
				(())			\searrow			
				\sim	/	~				
			((\sim						
				\bigcirc	\langle					
			(7)		\sim	γ/\sim				
			$\langle O \rangle$)	$\overline{\Omega}$	\sim				
				\sim)				
			>	$\langle \subset$						
	\sim	>	*							
		< \ \		~	\searrow					
			~	1(
\sim	(()									
	$\langle \langle C \rangle$		$(\bigcirc$	$\mathcal{I}_{\mathcal{A}}$						
$\langle -$			\mathcal{A}))						
		2	\sim							
	\searrow		\rightarrow							

(3) SIO receive interrupt control

(4) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1 to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR ← 0AH

; Clears interrupt request flag INT0.

								Y	
Symbol	Name	Address	7	6	5	4	3 2	1	0
Interrupt INTCLR clear	FOLL	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3 CLRV2	CLRV1	CLRV0	
	F8H (Prohibit				V	V			
INTOLIX	((0	0	0	0	((0)) 0	0	0
						Interrup	ot vector		

(5) Micro DMA start vector registers

These registers assign micro DMA processing to an sets which source corresponds to DMA. The interrupt source whose micro DMA start vector value matches the vector set in one of these registers is designated as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, in order for micro DMA processing to continue, the micro DMA start vector register must be set again during processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the lowest numbered channel takes priority.

Accordingly, if the same vector is set in the micro DMA start vector registers for two different channels, the interrupt generated on the lower-numbered channel is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel has not been set in the channel's micro DMA start vector register again, micro DMA transfer for the higher-numbered channel will be commenced. (This process is known as micro DMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0
				/	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0	100H				÷	. R/	/W	÷	÷
DIVIAUV	start vector	10011			0	0	0	0	0	0
							DMA0 st	art vector		
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1	101H					R/	w <u> </u>		
Dimiti	start vector			/	0	0	0	((0))	0	0
		\geq				DMA1 st	art vector	/		
					DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2	2 102H		/			R/	w)		
01111/121	start vector	10211			0	0	0	0	0	0
							DMA2 st	art vector		
					DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
	DMA3V DMA3 start vector	103H								
DIVIAG		10011			0	0	0	0	0	0
						(Ω)	DMA3 st	art vector	\sum	
					DMA4V5	DMA4V4	DMA4V3	DMA4V2	DMA4V1	DMA4V0
DMA4V	DMA4	104H				\sim	R/	w 🖉 🗸	<u> -</u> 0/	
2	start vector					0	0		0	0
					$\mathcal{A}(\mathbf{r})$	\searrow	DMA4 st	art vector		
				/	DMA5V5	DMA5V4	DMA5V3	DMA5V2	DMA5V1	DMA5V0
DMA5V	DMA5	105H				~	((/ R/	Ŵ	r	r
2	start vector				0	9	Q	0	0	0
				1			DMA5 st	art vector		
					DMA6V5	DMA6V4	DMA6V3	DMA6V2	DMA6V1	DMA6V0
DMA6V	DMA6	106H	\geq	\square				/W		
	start vector	10011	\searrow	\sim	0	0	∨ 0	0	0	0
			\rightarrow				DMA6 st	art vector	1	1
			\rightarrow	\rightarrow	DMA7V5	DMA7V4	DMA7V3	DMA7V2	DMA7V1	DMA7V0
DMA7V	DMA7	107H	$1 \rightarrow 1$			$\overline{// }$	1	/W		
	start vector		(\forall)		0	0	0	0	0	0
		/	\sim				DMA7 st	art vector		

(6) Specification of a micro DMA burst

Specifying the micro DMA burst function causes micro DMA transfer, once started, to continue until the value in the transfer counter register reaches zero. Setting any of the bits in the register DMAB which correspond to a micro DMA channel (as shown below) to 1 specifies that any micro DMA transfer on that channel will be a burst transfer.

Name	Address	7	6	5	4	3	(2)	2 1	0
DMAB DMA burst		DBST7	DBST6	DBST5	DBST4	DBST3	DBST2	DBST1	DBST0
	108H				R/	W, ((// {\		
		0	0	0	0	0		0	0
			1: DMA request on Burst mode						
	DMA	DMA 108H	DMA 108H	DMA 108H	DMA 108H 0 0 0	DMA burst DBST7 DBST6 DBST5 DBST4	DMA burst DBST7 DBST6 DBST5 DBST4 DBST3	DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 0 0 0 0 0 0 0 0	DMA burst DBST7 DBST6 DBST5 DBST4 DBST3 DBST2 DBST1 0 0 0 0 0 0 0 0

(7) Notes

The instruction execution unit and the bus interface unit in this CPU operate independently. Therefore, if immediately before an interrupt is generated, the CPU fetches an instruction which clears the corresponding interrupt request flag, the CPU may execute this instruction in between accepting the interrupt and reading the interrupt vector. In this case, the CPU will read the default vector 0004H and jump to interrupt vector address FFFF04H.

To avoid this, an instruction which clears an interrupt request flag should always be preceded by a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 3-instructions (e.g., "NOP" × 3 times). If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, please note that the following two circuits are exceptional and demand special attention.

INT0 level mode	In level mode INTO is not an edge-triggered interrupt. Hence, in level mode the interrupt request flip-flop for INTO does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically.
	If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to level mode so as to release a halt state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the halt state has been released.) When the mode changes from level mode to edge mode, interrupt request flags which were set in level mode will not be cleared. Interrupt request flags must be cleared using the following sequence DI LD (IIMC), 00H ; Switches from level to edge. LD (INTCLR), 0AH ; Clears interrupt request flag. NOP ; Wait EI execution NOP
	NOP
INTRX	In edge mode (The register SIMC <irxle> set to "0"), the interrupt request flip-flop can only be cleared by a reset or by reading the seria channel receive buffer. It cannot be cleared by writing INTCLR register.</irxle>

Note: The following instructions or pin input state changes are equivalent to instructions which clear the interrupt request flag.

INT0: Instructions which switch to level mode after an interrupt request has been generated in edge mode.

The pin input changes from high to low after an interrupt request has been generated in level mode. ("H" \rightarrow "L")

INTRX: Instructions which read the receive buffer.

3.5 Function of Ports

TMP92C820 has I/O port pins that are shown in Table 3.5.1. In addition to functioning as general-purpose I/O ports, these pins are also used by internal CPU and I/O functions. Table 3.5.2 lists I/O registers and their specifications.

Port Name	Pin Name	Number of	I/O	R	I/O Setting	Pin Name for Built-in
		Pins	., C		" C Colling	Function
Port 1	P10 to P17	8	I/O	-	Bit	D8 to D15
Port 2	P20 to P27	8	I/O	-	Bit	D16 to D23
Port 3	P30 to P37	8	I/O	-	Bit	D24 to D31
Port 4	P40 to P47	8	I/O*	-	Bit* (A0 to A7
Port 5	P50 to P57	8	I/O*	-	Bit*	A8 to A15
Port 6	P60 to P67	8	I/O*	-	Bit*	A16 to A23
Port 7	P70	1	Output	-	(Fixed)	RD CON
	P71	1	Output	-	(Fixed)	WRLL
	P72	1	Output	-	(Fixed)	
	P73	1	Output		(Fixed)	WRUE
	P74	1	Output	4	(Fixed)	WRUU
	P75	1	Output	$\langle - \rangle$	(Fixed)	R/W
	P76	1	I/O <		Bit	WAIT
Port 8	P80	1	Output		(Fixed)	CSO, SDCSH
	P81	1	Output	$\langle \rangle$	(Fixed)	CS1, SDCSL
	P82	1	Qutput	>-	(Fixed)	CS2, CS2A
	P83	1	Output	-	(Fixed)	CS3
	P84	1	Output	-	(Fixed)	EA24, CS2B
	P85	1	Output	-	(Fixed)	EA25, CS2C
	P86	1	Output	-	(Fixed)	CS2D
	P87	1 ((Output	-~	(Fixed)	SDCLK
Port 9	P90	1	//0	- {	Bit	SCK
	P91	$(\gamma \land$	I/O	1	Bit	SO, SDA
	P92	$\langle \langle \rangle \rangle$	I/O		Bit	SI, SCL
	P93		<u> </u>	//-5	Bit	CS2E
	P94		1/0		Bit	CS2F
	P95	1	-1/0	-	Bit	CS2G , TXD2
	P96	✓ 1	١٧Q		Bit	CSEXA , RXD2
Port A	PA0 to PA7	8	Input	U	(Fixed)	KI0 to KI7
Port C	PC0	1 /	1/0	-	Bit	TAOIN
	PC1	1	I/O	-	Bit	INT1, TA1OUT
\sim (PC3	1	1/0	-	Bit	INT0
	PC5		V/O	-	Bit	INT2, TA3OUT
	PC6	1	I/O	-	Bit	INT3, TB0OUT0
Port F	PF0	\sum_{1}	I/O	-	Bit	TXD0
	PF1		I/O	-	Bit	RXD0
\sim	PF2	1	I/O	-	Bit	SCLK0, CTS0
	PF3	1	I/O	-	Bit	TXD1
	PF4	1	I/O	-	Bit	RXD1
	PF5	1	I/O	_	Bit	SCLK1, CTS1

Table 3.5.1 Port Functions (1/2)

*: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Port Name	Pin Name	Number of Pins	I/O	R	I/O Setting	Pin Name for Built-in Function
Port G	PG0 to PG4	5	Input	-	(Fixed)	AN0 to AN4, ADTRG (PG3)
Port J	PJ0	1	Output	-	(Fixed)	SDRAS
	PJ1	1	Output	-	(Fixed)	SDCAS
	PJ2	1	Output	-	(Fixed)	SDWE, SRWR
	PJ3	1	Output	-	(Fixed)	SDLLDOM , SRLLB
	PJ4	1	Output	-	(Fixed)	SDLUDQM, SRLUB
	PJ5	1	Output	-	(Fixed)	SDULDOM, SRULB
	PJ6	1	Output	-	(Fixed)	SDUUDQM, SRUUB
	PJ7	1	Output	-	(Fixed)	SDCKE
Port K	PK0	1	Output	-	(Fixed)	D1BSCP
	PK1	1	Output	-	(Fixed)	D2BLP
	PK2	1	Output	-	(Fixed)	D3BFR
	PK3	1	Output	-	(Fixed)	DLEBCD
	PK4	1	Output	-	(Fixed)	DOFFB
	PK6	1	Output	-	(Eixed)	ALARM, MEDALM
Port L	PL0 to PL7	8	I/O	-((Bit	LD0 to LD7

Table 3.5.1 Port Functions (2/2)

(R: PU = with programmable pull-up resistor, U = with pull-up resistor)

Port	Pin Name	Specification			I/O Regi	ister	
Poll	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2	PnODE
Port 1	P10 to P17	Input port	Х	0	0		
		Output port	Х	1	0	None	None
		D8 to D15 bus	Х	Х	$\overline{1}$		
Port 2	P20 to P27	Input port	Х	0	\geq		
		Output port	Х	1	0	None	None
		D16 to D23 bus	Х	X	4	\mathcal{D}	
Port 3	P30 to P37	Input port	Х	0	77~		
		Output port	x <		(9)	None	None
		D24 to D31 bus	X	X		None	None
Port 4	P40 to P47		X	0*			
	1 40 10 1 47	Input port*	X		0	None	None
		Output port*	X	0	1	None	None
Davit C		A0 to A7 output	X	0*	1	$\langle \langle \rangle$	
Port 5	P50 to P57	Input port*			0 (~
		Output port*	7	1*	G	None	None
		A8 to A15 output	(/ X))	0 <	1((
Port 6	P60 to P67	Input port*	X	0*	0	C///	
		Output port*	X	1*		None	None
		A16 to A23 output	X	0	(1)	\sim	
Port 7	P70 to P75	Output port	Х	None	_0)		
	P70	RD output		$\left(\Omega \right)$	<		
	P71	WRLL output))		
	P72	WRLU output			Σ.		
	P73	WRUL output	X	None	1		
	P74	WRUU output				None	None
	P75	R/W output		\checkmark			
	P76	Input port	Х	0	0		
		Output port	X	1	0		
		WAIT input	X	0	1		
Port 8	P80 to P87	Output port	X	Ű	0	0	
	P80	CS0 output	X		1	0	
	P81	CS1 output	X		1	0	
		SDCS output	Х		Х	1	
	P82	CS2 output	Х		1	0	
		CS2A output	Х		Х	1	
	P83	CS3 output	Х	None	1	0	None
	P84	EA24 output	X		1	0	
		CS2B output	X	4	X	1	
	P85	EA25 output	X	-	1	0	
\sim	(R86)	CS2C output	X X	4	X X	1	
	P86 CS2D output P87 SDCLK output					I I	1

Table 3.5.2	I/O Registers and	d Specifications (1/3)

X: Don't care

*: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

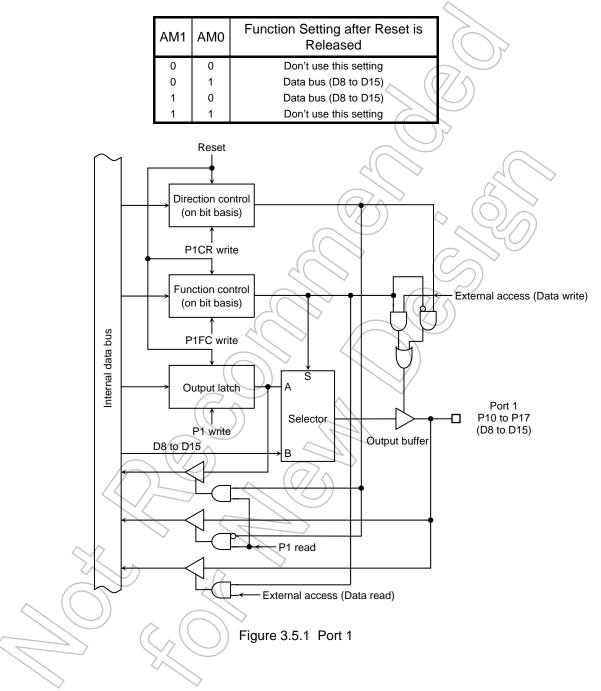
Dort	Din Nome	Chapification		I/(O Regist	er	
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2	PnODE
Port 9	P90 to P96	Input port	Х	0	0		0
		Output port	Х	1	0		0
	P90	SCK input	Х	0 <	0		0
		SCK output	Х	Х	≥ 1		0/1
	P91	SO output	Х	1	$\left(\begin{array}{c}1\end{array}\right)$	S	0/1
		SDA	X	X	$\langle \cdot \rangle$	~	1
	P92	SI input	X	0			0
	1 52	SCL	x	X) j	-	1
	P93	CS2E output	X	111	1		-
	P93		(-	X
		SSCMD input	X		1	None	X
		SSCMD output	X	0	1		0
		SSCMD (Open drain)	X	0	1	()	1
	P94	CS2F output	X	<u>1</u>			X
		SSDAT input	X	0	114		X
		SSDAT output	/ ×	0	(1)		0
	_	SSDAT (Open drain)	×	0 ~	\sim	//))	1
	P95	CS2G output	X	1			X
		TXD2 output	⇒ x	0			0
		TXD2 (Open drain)	X	00	(\mathcal{A})	-	1
	P96	CSEXA output	X	1	\sim		X
		RXD2 input	X	$(9/\varsigma$	1		Х
Port A	PA0 to PA7	Input port	X	None	0	None	None
		KI0 to KI7 input	X	\sum	1		
Port C	PC0, PC1, PC3	Input port	X	0	0		
	PC5, PC6	Output port	X	//1	0		
	PC0	TA0IN input	X	X	1		
	PC1	TA1OUT output	Х	1	1		
		INT1 input	0	0	1		
	PC3	INT0 input	X	0	1	None	None
	PC5	INT2 input	0	0	1		
		ТАЗОНТ	1	1	1		
	PC6	INT3 input	0	0	1		
		ТВООИТО	1	1	1		
Port F	PF0 to PF5		X				
i on i		Input port	X	0	0		
	(DEO)	Output port		1	0		
	PF0	TXD0	1	0	1		
		TXD0 (Open drain)	1	1	1	-	
(PF1	RXD0 input	Х	0	None		
$\langle \rangle$	PF2	SCLK0 input/output	1	0/1	1	None	None
		CTS0 input	1	0	1		
$\langle - \rangle$	PF3	TXD1	1	0	1		
	DEA	TXD1 (Open drain)	1 ×	1	1 Nono		
	PF4 <	RXD1 input SCLK1 input/output	X 1	0 0/1	None 1		
				0/1]	1
\sim	FFD		1	0	1		
Port G		CTS1 input	1 X	0	1		
Port G	PG0 to PG4		1 X X	0 None	1 None	None	None

Т	able 3.5.2	I/O Registers	and Spe	cifications (2/3	5)
_					

X: Don't care

Port	Pin Name	Specification			I/O Regi	ister	
Port	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2	PnODE
Port J	PJ0 to PJ7	Output port	Х		0	0	
	PJ0	SDRAS output	Х		1	0	
	PJ1	SDCAS output	Х		$\langle 1$	0	
	PJ2	SDWE output	Х		X	0	
		SRWR output	Х		(×	1	
	PJ3	SDLLDQM output	Х			<i>J</i> 0	
		SRLLB output	X	. ((77 X	1	
	PJ4	SDLUDQM output	x <	None	(\mathbf{J})	0	None
		SRLUB output	Х		X	1	
	PJ5	SDULDQM output	Х	$\left(\right)$	2 1	0	
		SRULB output	X		Х	1	
	PJ6	SDUUDQM output	$\langle X$	\searrow	1	0	
		SRUUB output	X		X		\sim
	PJ7	SDCKE output	7/x\	~	1 ((0	
Port K	PK0 to PK6	Output port	$\langle x \rangle$	<) o		
	PK0	D1BSCP output	X		A	901	
	PK1	D2BLP output	> x		$\overline{21}$		
	PK2	D3BFR output	Х	None	(h)	None	None
	PK3	DLEBCD output	Х			None	None
	PK4	DOFFB output	Х	(7/			
	PK6	ALARM output			// 1		
		MLDALM output	0	\backslash	1		
Port L	PL0 to PL7	Input port	X	Ò	0		
		Output port	X	/1	0	None	None
		LD0 to LD7 output	x	X	1		

Table 3.5.2	I/O Registers	and Spec	ifications (3/3)	
10010 0.0.2		una opeo		0,0,	

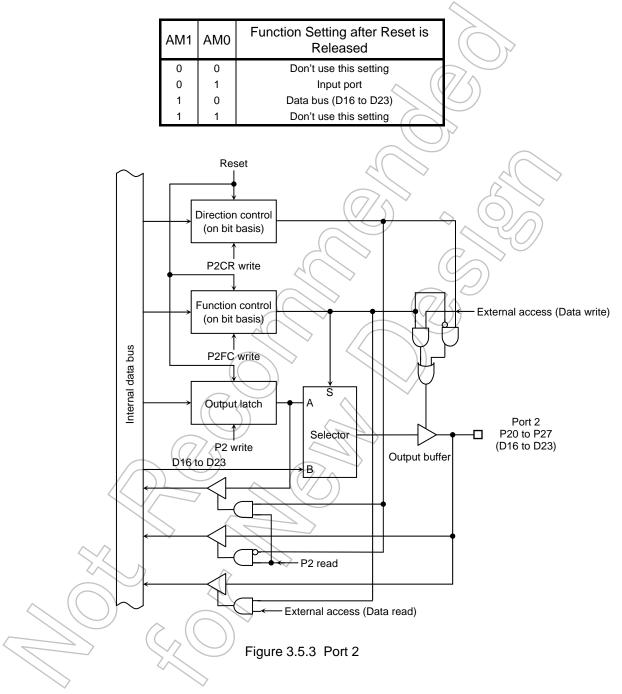

X: Don't care

After a reset the port pins listed below function as general-purpose I/O port pins. A reset sets I/O pins, which can be programmed for either input, or output to be input ports pins. Setting the port pins for internal function use must be done in software.

3.5.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port.

Bits can be individually set as either inputs or outputs by control register P1CR and function register P1FC. In addition to functioning as a general-purpose I/O port, port 1 can also function as a data bus (D8 to D15).

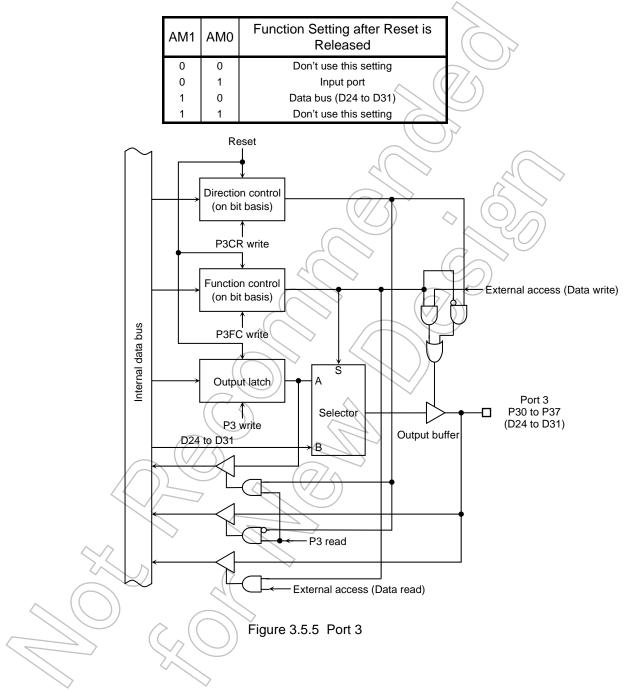


				Port 1	Register				
		7	6	5	4	3	2	1	0
P1 (0004H)	Bit symbol	P17	P16	P15	P14	P13	P12	P11	P10
(0004H)	Read/Write				R	/W			
	After reset		Da	ata from extern	al port (Outp	ut latch registe	er is cleared t	o 0)	
				Port 1 Cor	ntrol Regist	ter			
		7	6	5	4	3	2	1	0
P1CR	Bit symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
(0006H)	Read/Write				١	N	(7/5)		
	After reset	0	0	0	0	0		0	0
	Function			R	efer to port 1	function settin	g		
				Port 1 Fund	ction Regis	ster	\mathcal{Y}	\frown	
		7	6	5	4	23	2	1	0
P1FC	Bit symbol				/	\sum	/		P1F
(0007H)	Read/Write				\square	7		\bigcirc	W
	After reset					\rightarrow		749)	1
	Function						C		Refer to port 1 function setting
				40		Port 1 fun	ction register		
	Note 1	:Read-modify	/-write is prohi	ibited for the re	egisters		<p1xf></p1xf>		
		P1CR and P			, <	P1CR <p1xc< td=""><td></td><td>0</td><td>1</td></p1xc<>		0	1
	Note 2	<p1xc> sho</p1xc>	ow X bit of P10	CR register.	,		/	Input port	
								Input port	Data bus
			((()	\wedge	$\langle \rangle$	1		Output port	(D15 to D8)
				\mathcal{I}	$\langle c \rangle$				
			$\overline{\Omega}$			\rightarrow			
			Fig	ure 3.5.2 R	egister for	Port 1			
					\langle / \rangle				
		~	\checkmark						
		ζ.							
	\sim	\bigtriangledown	()	>					
			41						
4	$\bigcirc (\bigcirc$))		\searrow					
		<pre>/ (?)</pre>	· ` (())					
\sim		$\langle \rangle$	XS						
		<	\sim						
	\checkmark		\sim						

3.5.2 Port 2 (P20 to P27)

Port 2 is an 8-bit general-purpose I/O port.

Bits can be individually set as either inputs or outputs by control register P2CR and function register P2FC. In addition to functioning as a general-purpose I/O port, port 2 can also function as a data bus (D16 to D23).

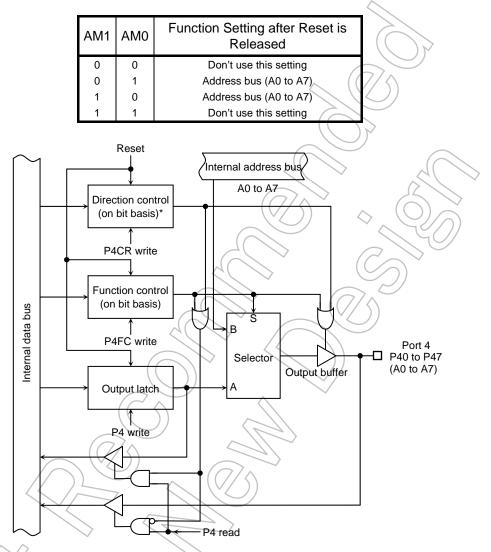


				Port 2	Register				
		7	6	5	4	3	2	1	0
P2	Bit symbol	P27	P26	P25	P24	P23	P22	P21	P20
(0008H)	Read/Write				R	/W			
	After reset		Da	ita from extern	al port (Outpu	ut latch registe	er is cleared t	o 0)	
				Port 2 Cor	ntrol Regist	er			
		7	6	5	4	3	2	1	0
P2CR	Bit symbol	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
(000AH)	Read/Write	-				N	$\left(\overline{\Omega} \right) $		
	After reset	0	0	0	0	0	$(\sqrt{6})$	0	0
	Function				0: Input	1: Output			-
				Port 2 Fund	ction Regis	iter	\mathcal{A}		
		7	6	5	4	3	2	1	0
P2FC	Bit symbol	/	/	/	/	\sim	/		P2F
(000BH)	Read/Write	\sim		\sim	\square	7/4		AZ	W
	After reset	\square	/	\sim		\rightarrow		L'HA	0/1 Note2
	Function							190	0: Port
						\sim	\mathcal{C}	\searrow	1: Data bus
				-			\square	/	(D16 to D23)
	Nata 4					Port 2 fun	ction register		
		P2CR and P2	2FC.	bited for the rebus" by AM pi	~ <	P2FC P2CR <p2xc< td=""><td><p2xf></p2xf></td><td>0</td><td>1</td></p2xc<>	<p2xf></p2xf>	0	1
	Note 2	P2CR and P2 : It is set to "F	2FC.	bus" by AM pi	~ <			0 Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data	bus" by AM pi	~ <	P2CR <p2xc< td=""><td></td><td></td><td></td></p2xc<>			
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
<	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus
	Note 2	P2CR and P2 : It is set to "F	2FC. Port" or "Data w X bit of P20	bus" by AM pi CR register.	n setting.	P2CR <p2xc 0 1</p2xc 		Input port	Data bus

3.5.3 Port 3 (P30 to P37)

Port 3 is an 8-bit general-purpose I/O port.

Bits can be individually set as either inputs or outputs by control register P3CR and function register P3FC. In addition to functioning as a general-purpose I/O port, port 3 can also function as a data bus (D24 to D31).



				Port 3	Register				
		7	6	5	4	3	2	1	0
P3 (000CH)	Bit symbol	P37	P36	P35	P34	P33	P32	P31	P30
(000CH)	Read/Write				R	/W			
	After reset		Da	ta from extern	al port (Outp	ut latch registe	r is cleared	to 0)	
				Port 3 Cor	ntrol Regist	ter			
		7	6	5	4	3	2	1	0
P3CR	Bit symbol	P37C	P36C	P35C	P34C	P33C	P32C	P31C	P30C
(000EH)	Read/Write		1		١	N	$\left(\frac{1}{2} \right)$		
	After reset	0	0	0	0	0		0	0
	Function				0: Input	1: Output	$\overline{)}$		
				Port 3 Fund	ction Regis	ster	\mathcal{Y}		1
		7	6	5	4	$\langle 3 \rangle$	2	<u>(1</u>	0
P3FC	Bit symbol				\backslash			\mathcal{N}	P3F
(000FH)	Read/Write							(D)	W
	After reset					\mathcal{S}		124	0/1 Note2
	Function					\triangleright	\overline{C}		0: Port 1: Data bus
					$\langle \rangle \rangle$				(D24 to D31)
	Noto 1	·Pood modify	urito io probi	bited for the re		Port 3 fund		Pr	
		P3CR and P3	3FC.	bus" by AM pi	\rightarrow /	P3FC P3CR <p3xc< td=""><td><p3xf></p3xf></td><td>0</td><td>1</td></p3xc<>	<p3xf></p3xf>	0	1
			w X bit of P30	$\langle \frown \rangle$	in setting.	0		Input port	Data bus
			C		\langle	1		Output port	(D24 to D31)
4			Fig	ure 3.5.6 R	egister for	Port 3			

3.5.4 Port 4 (P40 to P47)

Port 4 is an 8-bit general-purpose I/O ports*.

Bits can be individually set as either inputs or outputs by control register P4CR and function register P4FC*. In addition to functioning as a general-purpose I/O port, port 4 can also function as an address bus (A0 to A7).

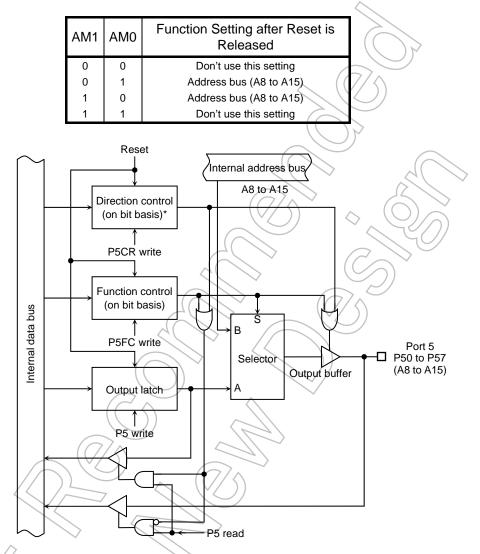
*: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Figure 3.5.7 Port 4

		7	6	5	4	3	2	1	0
P4	Bit symbol	P47	P46	P45	P44	P43	P42	P41	P40
(0010H)	Read/Write				R/	W			
	After reset		Da	ta from exterr	al port (Outpu	ut latch registe	er is cleared to	0)	
				Port 4 Cor	ntrol Regist	er			
		7	6	5	4	3	2	1	0
P4CR	Bit symbol	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
(0012H)	Read/Write				V	V	$(7/\delta)$		
	After reset	0	0	0	0	0	$\langle 0 \rangle$	0	0
	Function				0: Input 1: O	utput (Note2)			
				Port 4 Fun	ction Regis	ter)r	\bigcirc	
		7	6	5	4	3	2	1	> 0
P4FC	Bit symbol	P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F
(0013H)	Read/Write				((v	$\sqrt{\langle \cdot \rangle}$	\wedge (()	
	After reset	1	1	1	1	\sum		$ \langle \gamma \rangle $	1
	Function			0: Port	1: Address bu	us (A0 to A7)	(Note2)		
		-		-	sters P4CR ar		be set individ	lually for input	or output.

e2: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port. All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.


Figure 3.5.8 Port 4 Registers

Port 4 Register

3.5.5 Port 5 (P50 to P57)

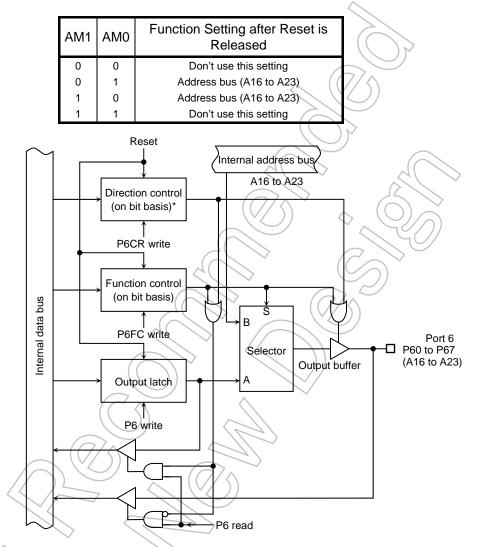
Port 5 is an 8-bit general-purpose I/O ports*.

Bits can be individually set as either inputs or outputs by control register P5CR and function register P5FC*. In addition to functioning as a general-purpose I/O port, port 5 can also function as an address bus (A8 to A15).

*: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

Figure 3.5.9 Port 5


				Port 5	Register				
		7	6	5	4	3	2	1	0
	Bit symbol	P57	P56	P55	P54	P53	P52	P51	P50
14H)	Read/Write				R	W			
	After reset		Da	ita from extern	al port (Outpu	ut latch registe	er is cleared t	o 0)	
				Port 5 Cor	ntrol Regist	er			
		7	6	5	4	3	2	1	0
R	Bit symbol	P57C	P56C	P55C	P54C	P53C	P52C	P51C	P50C
16H)	Read/Write				٧	V	$(\Omega \wedge$		
	After reset	0	0	0	0	0	$(\sqrt{0})$	0	0
	Function				0: Input 1: O	utput (Note2)	$\langle \bigcirc$		
				Port 5 Fund	ction Regis	ter	$\sum_{i=1}^{n}$		
		7	6	5	4	(3	2	1	0
С	Bit symbol	P57F	P56F	P55F	P54F	P53F	P52F	P51F	P50F
7H)	Read/Write				(()	y/\`	~ (\bigcirc	
	After reset	1	1	1	1	\bigcirc	~ 1	(1)	1
	Function			0: Port 1	1: Address bu	s (A8 to A15)	(Note2)		
	Ho bus	wever, each s in same po	bit cannot be rt. All of gene ase be careful	set individually ral-purpose I/C when using th	y for input or O ports excep his setting.	output even if t for port that	1bit or more	dually for input bits are used a ress bus are o	as addres
			Figu	ire 3.5.10 F	Register for	Port 5)		
	\sim	2	>						

)

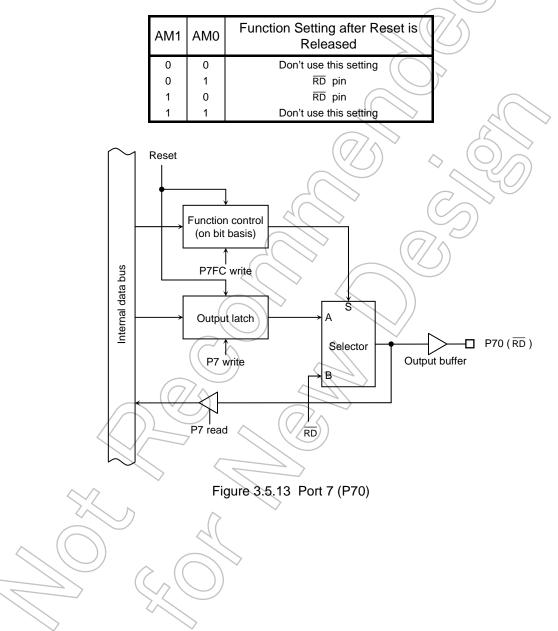
3.5.6 Port 6 (P60 to P67)

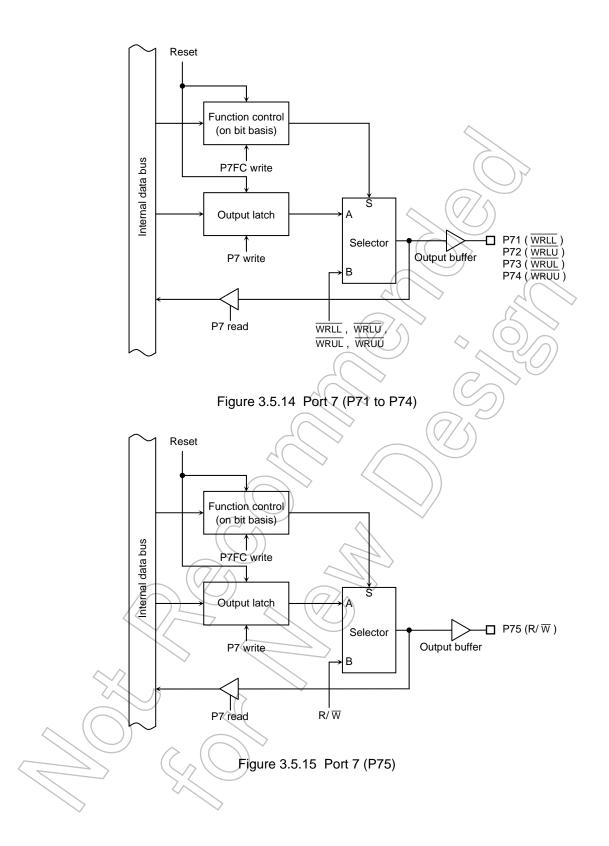
Port 6 is an 8-bit general-purpose I/O ports*.

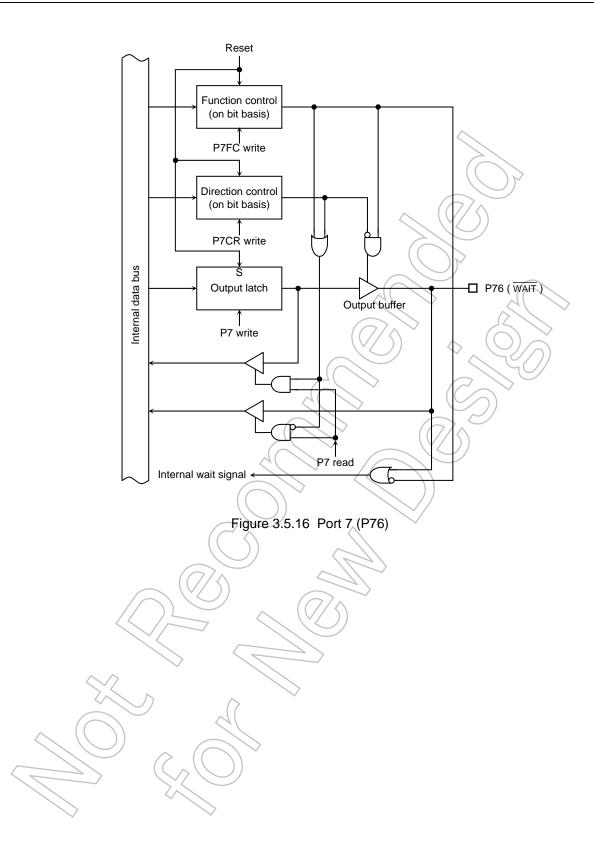
Bits can be individually set as either inputs or outputs by control register P6CR and function register P6FC*. In addition to functioning as a general-purpose I/O port, port 6 can also function as an address bus (A16 to A23).

*: When these ports are used as general-purpose I/O port, each bit can be set individually for input or output. However, each bit cannot be set individually for input or output even if 1bit or more bits are used as address bus in same port.

All of general-purpose I/O ports except for port that used as address bus are operated as output port. Please be careful when using this setting.

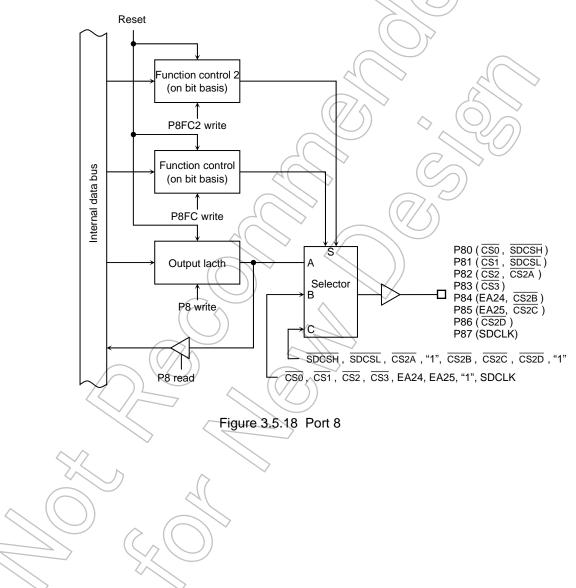

Figure 3.5.11 Port 6


_									
		7	6	5	4	3	2	1	0
6	Bit symbol	P67	P66	P65	P64	P63	P62	P61	P60
018H)	Read/Write			1	R	/W			
	After reset		Da	ita from exterr	al port (Outp	ut latch registe	er is cleared t	o 0)	
				Port 6 Cor	ntrol Regist	er			
		7	6	5	4	3	2	1	0
CR	Bit symbol	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
01AH)	Read/Write		1	i		N	(7/4)	+ +	
	After reset	0	0	0	0	0	$(\sqrt{0})$	0	0
	Function				0: Input 1: 0	utput (Note2)			
				Port 6 Fun	ction Regis	ster	\mathcal{Y}	\bigcirc	
		7	6	5	4	2(3)	2	1	0
FC	Bit symbol	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
)1BH)	Read/Write		i	i	((N/S~		\bigcirc	
	After reset	1	1	1	1			$\leq 1 $	1
	Function			ed for the regis		s (A16 to A23)	(
	bus		rt. All of gener ase be careful		D ports excep nis setting.		used as add	ress bus are op	
	bus	in same po	rt. All of gener ase be careful	ral-purpose I/0 when using t	D ports excep nis setting.		used as add		
	bus	in same po	rt. All of gener ase be careful	ral-purpose I/0 when using t	D ports excep nis setting.		used as add		
	bus	in same po	rt. All of gener ase be careful	ral-purpose I/0 when using t	D ports excep nis setting.		used as add		
	bus	in same po	rt. All of gener ase be careful	ral-purpose I/0 when using t	D ports excep nis setting.		used as add		
	bus	in same po	rt. All of gener ase be careful	ral-purpose I/0 when using t	D ports excep nis setting.		used as add		


3.5.7 Port 7 (P70 to P76)

Port 7 is a 7-bit general-purpose I/O port (P70 to P75 are used for output only). Bits can be individually set as either inputs or outputs by control register P7CR and function register P7FC.

In addition to functioning as a general-purpose I/O port, P70 to P75 pins can also function as read/write strobe signals to connect with an external memory. P76 pin can also function as wait input. A reset initializes P70 to P75 pins to output port mode, and P76 pin to input port mode.


				Port 7					
17		7	6	5	4	3	2	1	0
P7 Bi	it symbol		P76	P75	P74	P73	P72	P71	P70
	lead/Write	\sim				R/W			
	fter reset	$\overline{}$	Data from	1	1	1	1	1	1
			external				\sim		
			port (Note)						
	Note: Out	put latch reg	ister is cleared					57	
				Port 7 Cor	ntrol Regist	er	$(\overline{\alpha})$		
		7	6	5	4	3	(2)	1	0
7CR Bi	it symbol		P76C			\sim	\sim		
	lead/Write		W	\sim	\sim	\square	\rightarrow	\sim	
	fter reset	\sim	0	\sim	\sim	\searrow			
	unction		0: Input			7)]	>		
			1: Output						\sim
					((7/5		27	
				Port 7 Fun	ction Regis	ter)	\Diamond	YA.	
P7FC		7	6	5	4	3	2		0
	it symbol		P76F	P75F	P74F	P73F	P72F	P71F	P70F
R	lead/Write	\sim			$\langle \langle \rangle \rangle$	W	$- \bigcirc $)	
	fter reset	\sim	0	0 (0	0	770	0	1
F	unction		0: Port	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
			1: WAIT	1: R/W		1: WRUL	1: WRLU	1: WRLL	1: RD
	Note: Kea	ia-moairy-wr	Figu	rre 3.5.17)		

3.5.8 Port 8 (P80 to P87)

Ports 80 to 87 are 8-bit output ports. Resetting sets output latch of P82 to "0" and output latches of P80 to P81, P83 to P87 to "1".

Port 8 also function as chip-select output ($\overline{\text{CS0}}$ to $\overline{\text{CS3}}$), extend address output (EA24, EA25), extend chip-select output ($\overline{\text{CS2A}}$, $\overline{\text{CS2B}}$, $\overline{\text{CS2C}}$, $\overline{\text{CS2D}}$), port 8 also function as output pin for SDRAM controller ($\overline{\text{SDCSL}}$, $\overline{\text{SDCSH}}$, SDCLK), Above setting is used the function register P8FC. Writing "1" in the corresponding bit of P8FC, P8FC2 enables the respective functions.

Resetting resets P87F of P8FC to "1", P80F to P86F of P8FC to "0", and P8FC2 to "0", sets all bits to output ports.

		7	6	5	4	3	2	1	0				
P8	Bit symbol	P87	P86	P85	P84	P83	P82	P81	P80				
(0020H)	Read/Write			T	I	W							
	After reset	1	1	1	1	1	0	1	1				
				Port 8 Fun	ction Regis	ter							
		7	6	5	4	3	2)21	0				
P8FC	Bit symbol	P87F	_	P85F	P84F	P83F	P82F	P81F	P80F				
(0023H)	Read/Write				V	V 🔨	$(//\hat{S})$						
	After reset	1	0	0	0	0	0	0	0				
	Function	0: Port	Always	0: Port	0: Port	0: Port	0: Port	0: Port	0: Port				
		1: SDCLK	write "0".	1: EA25	1: EA24	1: CS3	1: C\$2	1: CS1	1: CS0				
			F	Port 8 Func	tion Registe	er 2	>		>				
		7	6	5	4 ((7/3	2	1	0				
P8FC2	Bit symbol	-	P86F2	P85F2	P84F2	$\bigcirc \mathcal{F}$	P82F2	P81F2	P80F2				
(0021H)	Read/Write			1		V		70					
	After reset	0	0	0		0	0	<u>∨</u> 0	0				
	Function	Always write "0".	0: <p86f> 1:</p86f>	0: <p85f> 1: CS2C</p85f>	0: <p84f> 1: CS2B</p84f>	Always write "0".	0: <p82f> 1: CS2A</p82f>	0: <p81f> 1: SDCSL</p81f>	0: <p80f> 1: SDCSH</p80f>				
	Note	Read-modify		16			7/\$	T. SDCSL	1. 300311				
	1010						\bigcirc						
	Figure 3.5.19 Registers for Port 8												
	Figure 3.5. 19 Registers for Port 8												
))									
			\square			\rightarrow							
			$(\vee ())$			\rangle							
				\sim (\langle / \rangle								
	~	~	\checkmark										
	\sim	2											
		\searrow	.()	>									
/		\mathcal{A}	61										
<	$\bigcirc \bigcirc$	ノ 、		\searrow									
	$ \longrightarrow $	- ((())									
		\sim		/									
	\searrow	~											
	*												

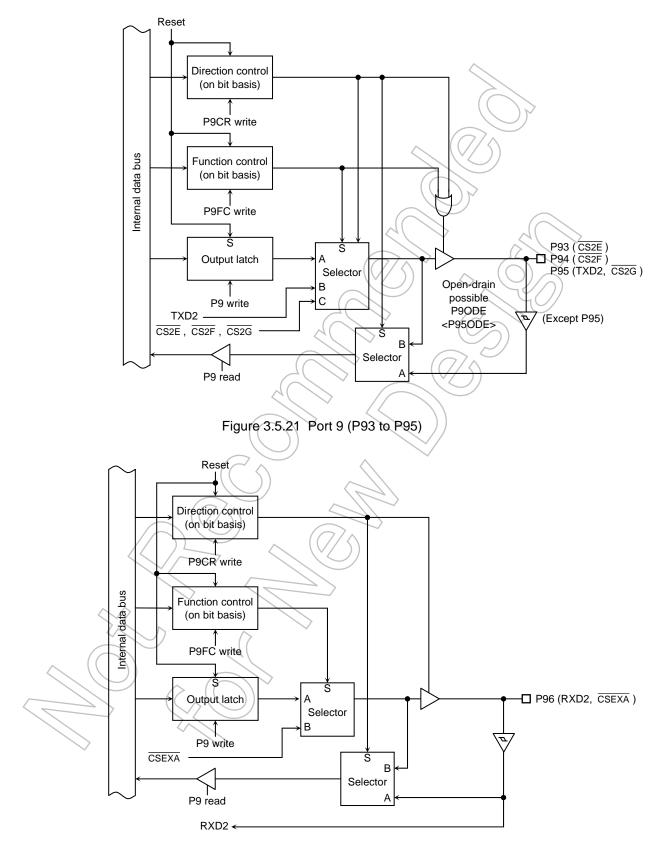
Port 8 Register

3.5.9 Port 9 (P90 to P96)

P90 to P96 are 7-bit general-purpose I/O port. I/O can be set on bit basis using the control register.

Resetting sets port 9 to input port and all bits of output latch to "1". Writing in the corresponding bit of P9FC enables the respective functions.

Resetting resets the P9FC to "0", and sets all bits to input ports.


(1) Port 90 (SCK), port 91 (SO/SDA), and port 92 (SI/SCL)

Ports 90 to 92 are general-purpose I/O port. It is also used as SCK (Clock signal for SIO mode), SO (Data output for SIO mode), SDA (Data input for I²C mode), SI (Data input for SIO mode), and SCL (Clock input/output for I²C mode) for serial bus interface.

(2) Ports 93 ($\overline{CS2E}$), 94 ($\overline{CS2F}$), 95 (TXD2, $\overline{CS2G}$), and 96 (RXD2, \overline{CSEXA})

Ports 93 to 96 are general-purpose I/O ports.

					-				
		7	6	5	4	3	2	1	0
P9	Bit symbol		P96	P95	P94	P93	P92	P91	P90
(0024H)	Read/Write					R/W			•
	After reset			Data fr	om external p	ort (Output la	tch register is	set to 1)	
				Port 9 Co	ntrol Regis	ter			
		7	6	5	4	3	2)21	0
P9CR	Bit symbol		P96C	P95C	P94C	P93C	P92C	P91C	P90C
(0026H)	Read/Write	/		1	1	W	(// 5)	T	
	After reset		0	0	0	0	0	0	0
	Function				0:	: Input 1: Out	put		
				Port 9 Fun	ction Regis	ster			
		7	6	5	4	3	2		0
P9FC	Bit symbol	/	P96F	P95F	P94F ((P93F	P92F	P91E	P90F
(0027H)	Read/Write	\sim				W		YUN	
	After reset		0	0	(0	0	0	Ø	0
	Function		0: Port 1: RXD2, CSEXA	0: Port 1: TXD2, CS2G	0: Port 1: CS2F	0: Port 1: CS2E	0: Port, SI, 1: SCL Note 2	0: Port 1: SO, SDA	0: Port, SCK input 1: SCK Output Note 2
				\bigcirc		< <u></u>	93C> Inpu (Res	0 ut port served)	1 Output port CS2E
		\square		~	$\overline{0}$	<p94f></p94f>	94C>	0	1
					$\langle O \rangle$	0	Inpu	ut port	Output port
						1	(Res	erved)	CS2F
			\geq			→ TXD2, Ē	S2G setting		
	\sim	2			>	<p95f></p95f>	^{95C>} 0		1
	\sim	\searrow	. (>		0	Input	port C	Output port
		\mathcal{A}	4			1	TXI		CS2G
<	$\bigcirc \bigcirc$	リ 、		\searrow			•		
	$ \longrightarrow $	- (($\int \left(\right) $	Port 9 O	DE Registe	er			
\[\] \[\[\] \[\] \[\] \[\[\] \[\] \[\] \[\] \[\] \[\[\] \[\] \[\] \[\]	\sim	7	6	5	4	3	2	1	0
P9ODE	Bit symbol	\sim	\sim	P95ODE	-	-	P92ODE	P91ODE	
(0025H)	Read/Write	\sim		W	W	W	W	W	\sim
	After reset			0	0	0	0	0	
	Function			0: 3 states 1: Open drain	Always write "0".	Always write "0".	0: 3 states 1: Open drain	0: 3 states 1: Open drain	
					9CR, P9FC, a on. set P9FC<		to "0" (Functio	n settina)	
	1010		.9 01 010 001	par ranouc	,				

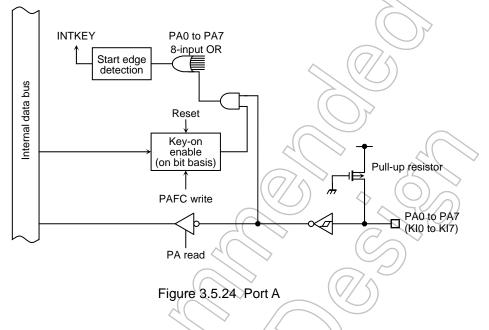

Port 9 Register

Figure 3.5.23 Register for Port 9

3.5.10 Port A (PA0 to PA7)

Ports A0 to A7 are 8-bit input ports with pull-up resistor. In addition to functioning as general-purpose I/O ports, ports A0 to A7 can also key-on wakeup function as keyboard interface. The various functions can each be enabled by writing a "1" to the corresponding bit of the port A function register (PAFC).

Resetting resets all bits of the register PAFC to "0" and sets all pins to be input port.

When PAFC = "1", if either of input of KI0 to KI7 pins falls down, INTKEY interrupt is generated. INTKEY interrupt can be used release all HALT mode.

PA (0028H) PAFC (002BH)		registers P	3 PA3F W 0 Dile 1: KEY-IN	2 PA2F	e	0 PA0 0 PA0F
PAFC (002BH) Tead/Write After reset 0 0 Function Note: Read-modify-write is pr	Port A Fur 5 PA5F 0 0: k	Data from nction Reg 4 PA4F 0 KEY-IN disat	R n external port gister 3 PA3F W 0 Dle 1: KEY-IN	2 PA2F 0 enable Key-IN of Port 0 Disabl	1 PA1F 0	0 PAOF
PAFC (002BH) Tead/Write After reset 0 0 Function Note: Read-modify-write is pr	5 PA5F 0 0: k	registers P	n external port gister AFC.	2 PA2F 0 enable Key-IN of Port 0 Disabl	PA1F 0 A	PA0F
PAFC (002BH) Read/Write After reset 0 0 Function Note: Read-modify-write is pr	5 PA5F 0 0: k	registers P	gister 3 PA3F W 0 0 0 0 0 0 0 0 0 0 0 0 0	2 PA2F 0 enable Key-IN of Port 0 Disabl	PA1F 0 A	PA0F
PAFC (002BH) Bit symbol PA7F PA6F Read/Write After reset 0 0 Function Note: Read-modify-write is pr	5 PA5F 0 0: k	4 PA4F 0 (EY-IN disat	3 PA3F W 0 Dile 1: KEY-IN	PA2F 0 enable Key-IN of Port 0 Disabl	PA1F 0 A	PA0F
PAFC (002BH) Bit symbol PA7F PA6F Read/Write After reset 0 0 Function Note: Read-modify-write is pr	PA5F 0 0: k	PA4F 0 (EY-IN disat	PA3F W Ole 1: KEY-IN	PA2F 0 enable Key-IN of Port 0 Disabl	PA1F 0 A	PA0F
(002BH) Read/Write After reset 0 0 Function Note: Read-modify-write is pr	0 0: k	0 (EY-IN disat	W 0 DIE 1: KEY-IN	Key-IN of Port 0 Disabl	0 A e	
After reset 0 0 Function	0: k	(EY-IN disal	O Die 1: KEY-IN	Key-IN of Port	A	0
Function	0: k	(EY-IN disal	ole 1: KEY-IN	Key-IN of Port	A	0
Note: Read-modify-write is pr	rohibited for the	registers P	AFC.	Key-IN of Port 0 Disabl	e	>
		$\int C$		0 Disabl	e	\geq

3.5.11 Port C (PC0, PC1, PC3, PC5 and PC6)

Port C is 5-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets port C to be an input port.

In addition to functioning as a general-purpose I/O port, port C can also functions as I/O pin for timers (TA0IN, TA1OUT, TA3OUT, TB0OUT0), input pin for external interruption (INT0 to INT3). Above setting is used the function register PCFC and PCCR register. Edge select of external interruption establishes it with IIMC register, which there is in interruption controller. Resetting resets bits of the register PCCR and PCFC to "0" and sets all pins to be input port.

(1) PC0 (TA0IN)

In addition to function as I/O port, port 0 can also function as input pin TA0IN of timer channel 0.

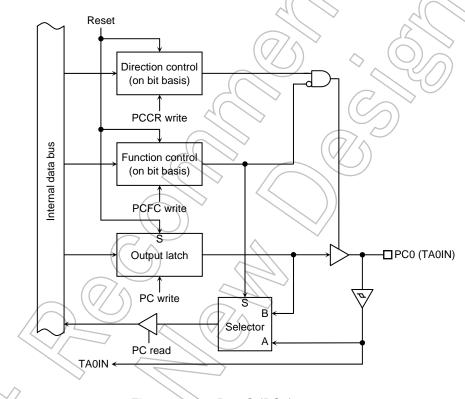
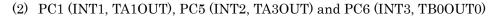
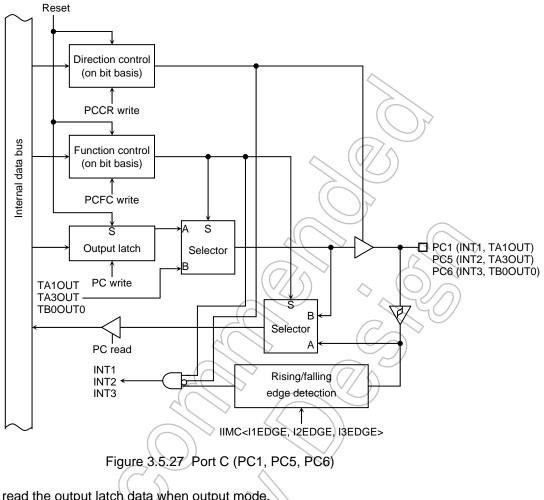
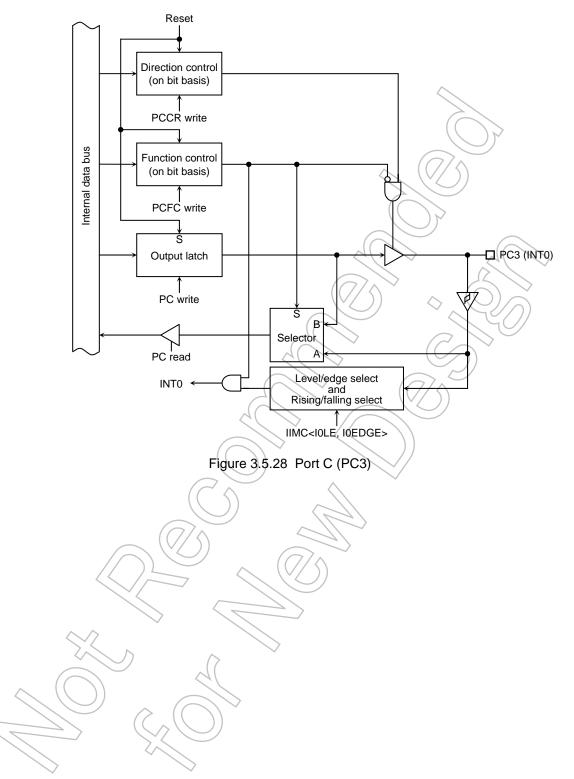




Figure 3.5.26 Port C (PC0)


Note: Cannot read the output latch data when output mode.

Note: Cannot read the output latch data when output mode.

(3) PC3 (INT0)

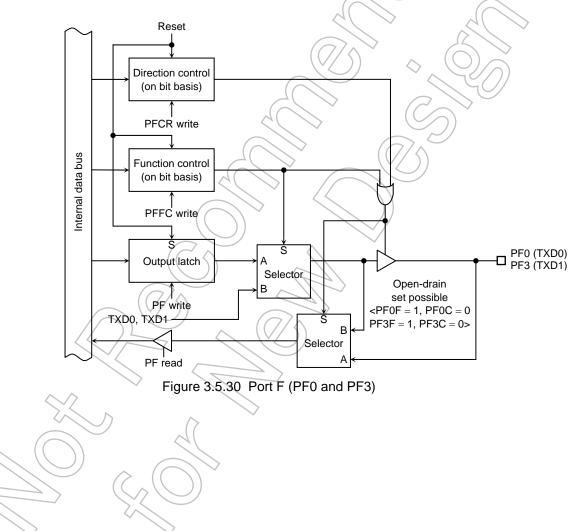
				PontC	Register				
		7	6	5	4	3	2	1	0
PC (0030H)	Bit symbol		PC6	PC5		PC3		PC1	PC0
(00300)	Read/Write		R	2/W		R/W			R/W
	After reset		Data from ex (Output latch set to 1)			Data from external port (Output latch register is set to 1)			external port ch register is set
				Port C Co	ntrol Regis	ter	$(\square \land$	\mathcal{O}^{\sim}	
		7	6	5	4	3	$\langle 2 \rangle$	1	0
PCCR	Bit symbol		PC6C	PC5C		PC3¢	\sim	PC1C	PC0C
0032H)	Read/Write			W		W		1010	W
	After reset		0	0			\sim	0	0
	Function			1: Output		0: Input 1: Output			it 1:Output
				Port C Fun	ction Regis	ster	\Diamond	26)
		7	6	5	4	3	2	VY.	0
PCFC	Bit symbol		PC6F	PC5F	20th	PC3F	440	PC1F	PC0F
0033H)	Read/Write	\sim	,	W _	\sim	W	\sim	7	W
	After reset		0	0 (\sim	1 ((7/4	0	0
	Function		0: Port 1: INT3 TB0OUT0	0: Port 1: INT2 TA3OUT		0: Port 1: INT0		0: Port 1: INT1 TA1OUT	0: Port 1: TA0IN
			(C				1OUT setting		·
				\mathcal{D}	7	<pc1f></pc1f>		0	1
		\frown	(//		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	Inp	ut port	Output port
				((7)	1		NT1	TA1OUT
		$\langle \langle \rangle$	<u></u>		$\langle \cup \rangle$	\rightarrow INT2, TA	3OUT setting		
						<pc5f></pc5f>	C5C>	0	1
	~	\sim	\sim			0		ut port	Output port
	\sim	$\langle \rangle$		\sim		1		NT2	TA3OUT
	\sim	\searrow		7		N	OOUT0 settin	g	
4			Å			<pc6f></pc6f>	C6C>	0	1
				\backslash		0		ut port	Output port
$\langle \langle \rangle$			\mathcal{N}	7		1		NT3	TB0OUT0
		2: PC0/TA0I	N pin does no	ohibited for the t have a regist oputted to 8-bit	er changing p			vhen it is use	ed as an input
	Mate	0. 0		lotob doto wh			C	mada	

Port C Register

Note 3: Cannot read the output latch data when PC0, PC1, PC5, and PC6 are output mode.

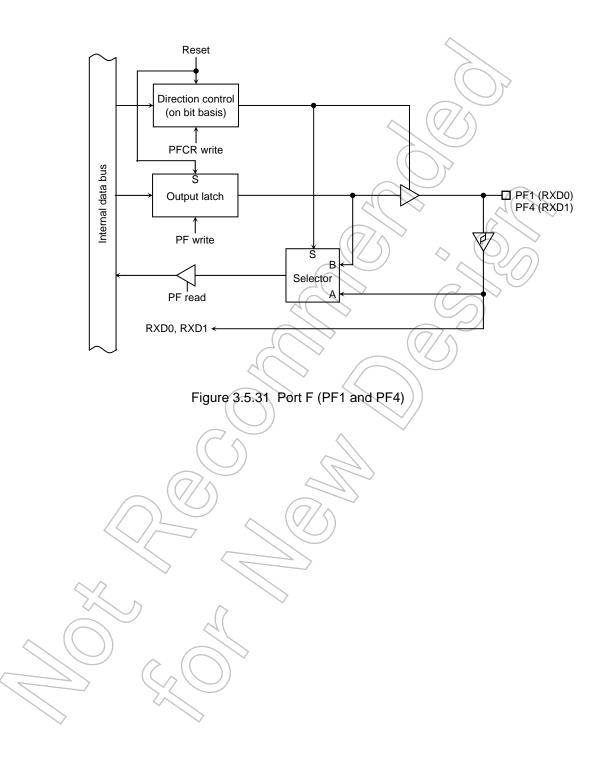
Figure 3.5.29 Register for Port C

3.5.12 Port F (PF0 to PF5)

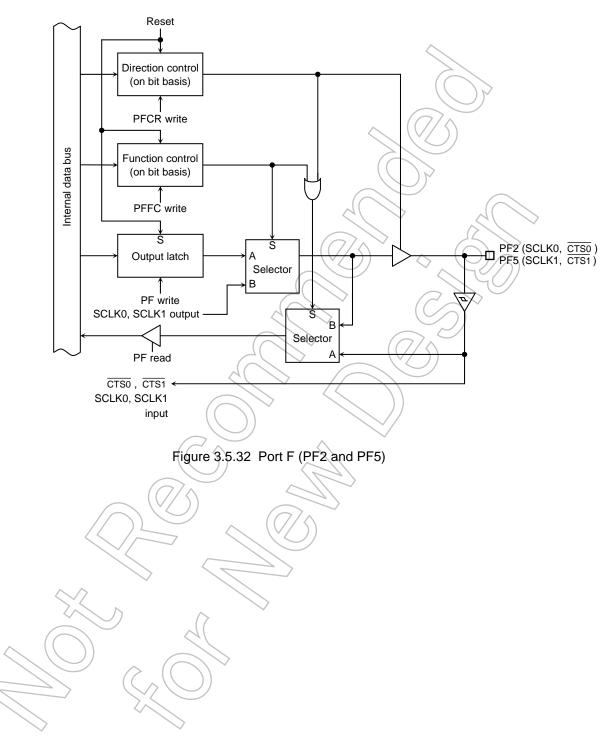

Ports F0 to F5 are 6-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets PF0 to PF5 to be an input ports. It also sets all bits of the output latch register to "1".

In addition to functioning as general-purpose I/O port pins, PF0 to PF5 can also function as the I/O for serial channels 0 and 1. A pin can be enabled for I/O by writing a "1" to the corresponding bit of the port F function register (PFFC).

By resetting, clears all bits of the registers PFCR and PFFC to 0 and sets all pins to be input ports.

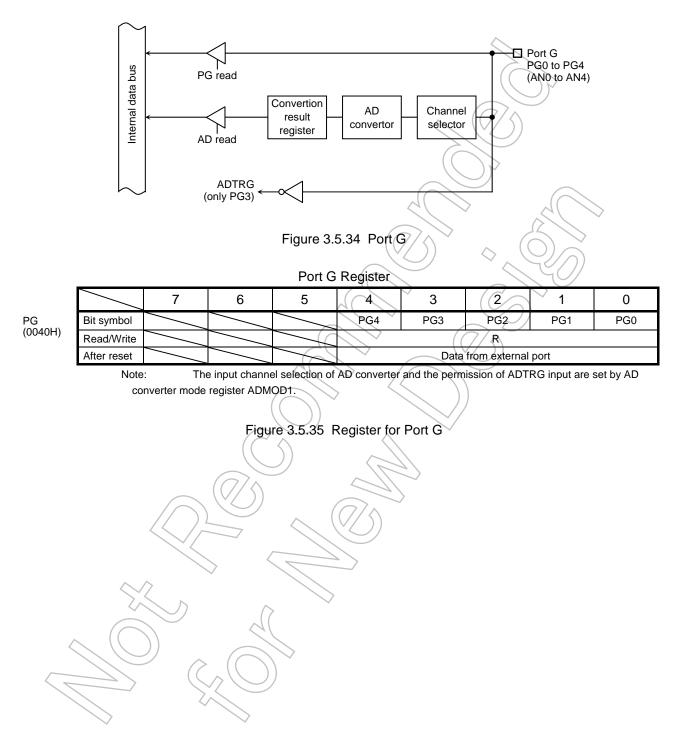

(1) Ports PF0 (TXD0) and PF3 (TXD1)

As well as functioning as I/O port pins, port PF0 and PF3 can also function as serial channel TXD output pins.


(2) Ports PF1 and PF4 (RXD0, RXD1)

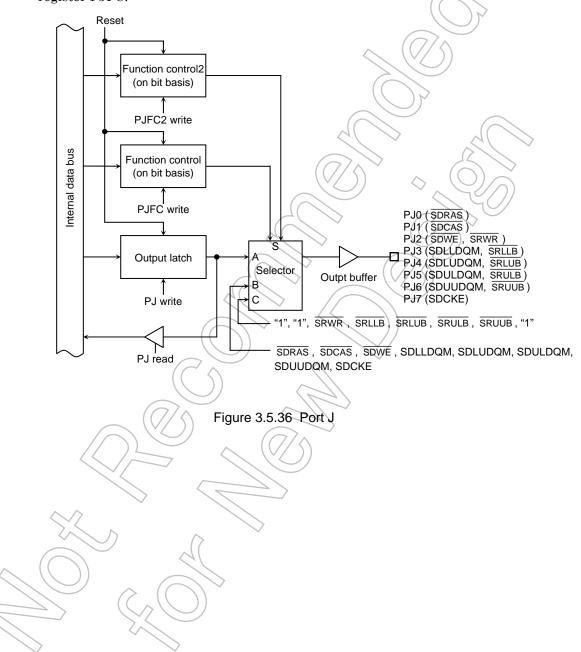
Ports PF1 and PF4 are I/O port pins and can also is used as RXD input for the serial channels.

(3) Ports PF2 ($\overline{\text{CTS0}}$, SCLK0) and PF5 ($\overline{\text{CTS1}}$, SCLK1)


Ports PF2 and PF5 are I/O port pins and can also be used as $\overline{\text{CTS}}$ input or SCLK input/output for the serial channels.

				Port F	Register				
		7	6	5	4	3	2	1	0
PF	Bit symbol		/	PF5	PF4	PF3	PF2	PF1	PF0
(003CH)	Read/Write	\frown	\sim			F	R/W	1	
	After reset	\sim]	Data from exte	ernal port (Ou	utput latch regi	ster is set	to 1)
				Port F Cor	ntrol Regist	er			
		7	6	5	4	3	2)21	0
PFCR	Bit symbol		/	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
(003EH)	Read/Write	\sim	\sim			\sim	w((// \$)		
	After reset			0	0	0	0	0	0
	Function					0: Input	1: Output		
				Port F Fund	ction Regis	ter			
		7	6	5	4	3	2		0
PFFC	Bit symbol			PF5F	$ \rightarrow $	PF3F	PF2F	\bigcirc	PF0F
(003FH)	Read/Write			W		\sum	w V	747) w
	After reset			0	$ \rightarrow $	0	0		0
	Function			0: Port		0: Port	0: Port	\sim	0: Port
				1: SCLK1		1: TXD1	1: SCLK0)	1: TXD0
				output		(output		
						→ 3 states,	Open-drain se	etting	
				\bigcirc			PESC>	0	1
				$, \bigcirc$	~	0	Inpu	ut port	Output port
				$\langle \hat{\gamma} \rangle$		1	TXD1 (C	Open drain)	TXD1 (3 states)
		\frown	$\overline{0}$			<pf1f></pf1f>	PF1C>	0	1
				~ ($\overline{0}$	0	Inpu	ut port	Output port
					\mathcal{V}	1	TXD0 (C	Open drain)	TXD0 (3 states)
	Note Note Note	2: PF en it is used a	1/RXD0 and as an input p 1 and PF3 pi	ite is prohibited PF4/RXD1 pin ort, the input si ns dose not ha ure 3.5.33	s do not have gnal is inputte ve a register o	a register ch ed to SIO as changing 3 s	anging Port/Fithe serial recei	ve data.	r example,

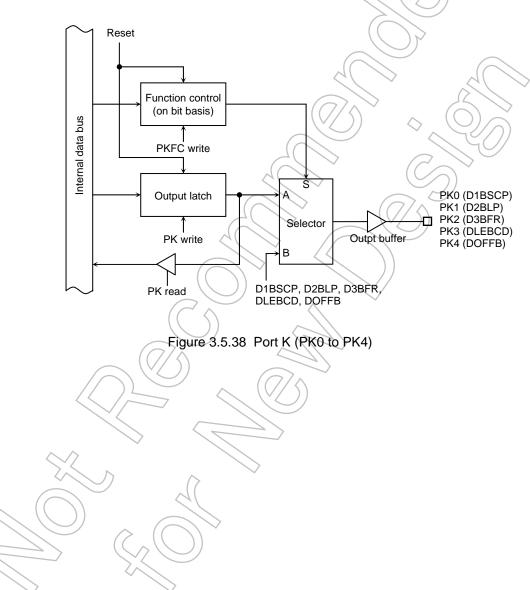
3.5.13 Port G (PG0 to PG4)

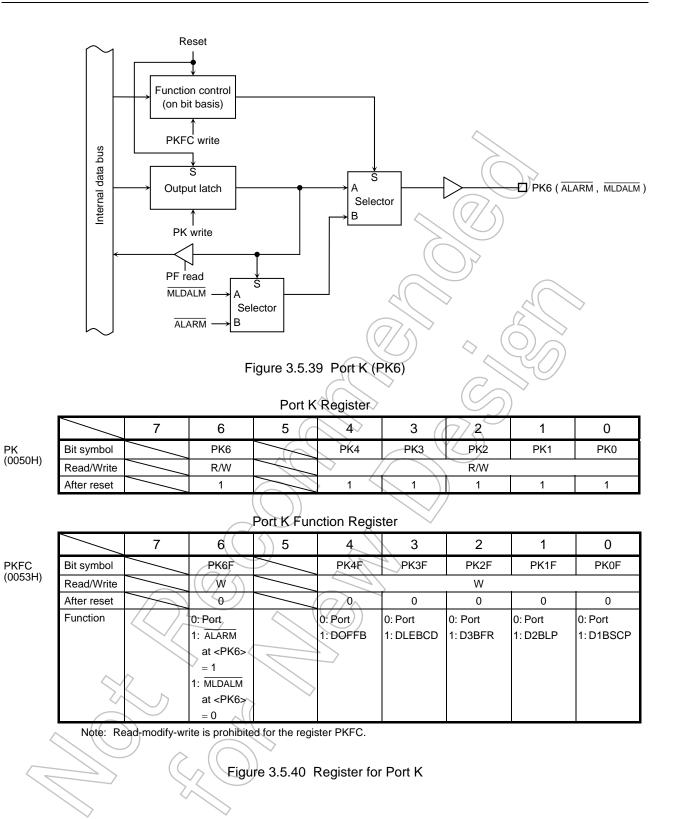

PG0 to PG4 are 5-bit input port and can also be used as the analog input pins for the internal AD converter. PG3 can also be used as ADTRG pin for the AD converter.

3.5.14 Port J (PJ0 to PJ7)

PJ0 to PJ7 are 8-bit output port. Resetting sets the output latch PJ to "1" and PJ0 to PJ7 pins output "1".

In addition to functioning as output port, port J also functions as output pins for SDRAM (SDRAS, SDCAS, SDWE, SDLLDQM, SDLUDQM, SDULDQM, SDUUDQM, SDCKE) and SRAM (SRWR, SRLLB, SRLUB, SRULB, SRULB). Above setting is used the function register PJFC.

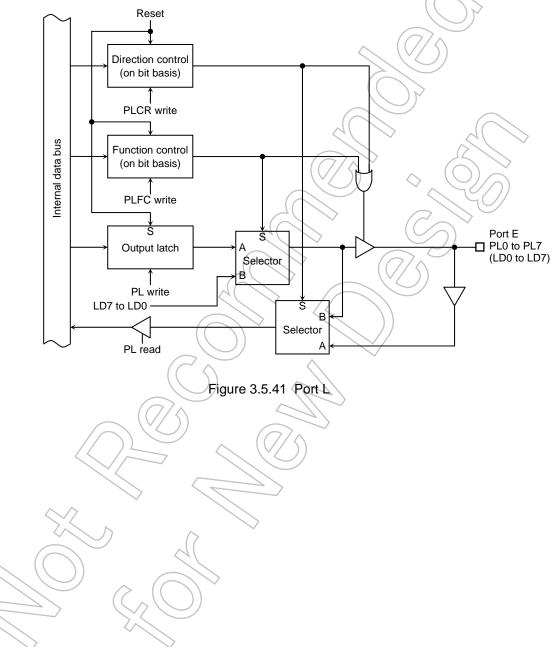

T 6 5 4 3 2 1 0 Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 Read/Write R/W R/W R R/W R	Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 Read/Write R/W After reset 1	Bit symbol PJ7 PJ6 PJ5 PJ4 PJ3 PJ2 PJ1 PJ0 Read/Write R/W After reset 1						Register				
Read/Write R/W After reset 1	Read/Write R/W After reset 1	Read/Write R/W After reset 1			7	6	5	4	3	2	1	0
Read/Write RW After reset 1	Read/Write RW After reset 1	Read/Write RW After reset 1		Bit symbol	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
Port J Function Register Image: symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write w w w w w w w After reset 0	Port J Function Register Image: symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W W W W W W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 PJ3F2 PJ3F2 PJ3F2 PJ2F2 - - Read/Write W </td <td>Port J Function Register Image: symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W W W W W W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 PJ3F2 PJ3F2 PJ3F2 PJ2F2 - - Read/Write W<!--</td--><td>:H)</td><td>Read/Write</td><td></td><td>1</td><td></td><td>R/</td><td>W</td><td></td><td></td><td>1</td></td>	Port J Function Register Image: symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W W W W W W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 PJ3F2 PJ3F2 PJ3F2 PJ2F2 - - Read/Write W </td <td>:H)</td> <td>Read/Write</td> <td></td> <td>1</td> <td></td> <td>R/</td> <td>W</td> <td></td> <td></td> <td>1</td>	:H)	Read/Write		1		R/	W			1
T 6 5 4 3 2 1 0 Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDCAS 1: SDRA Port J Function Register 2 Port J Function Register 2 Port J PJ6F2 PJ3F2 PJ2F2 - - Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PJ2F2 - - - </td <td>T 6 5 4 3 2 1 0 Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 Port J Function Register 2 PJ3F2 PJ3F2 PJ2F2 - Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W M M M M M M M M H) Strubble 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W</pj6f2<></td> <td>T 6 5 4 3 2 1 0 Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 Port J Function Register 2 PJ3F2 PJ3F2 PJ2F2 - Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W M M M M M M M M H) Strubble 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W</pj6f2<></td> <td></td> <td>After reset</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>	T 6 5 4 3 2 1 0 Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 Port J Function Register 2 PJ3F2 PJ3F2 PJ2F2 - Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W M M M M M M M M H) Strubble 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W</pj6f2<>	T 6 5 4 3 2 1 0 Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W W M M M M M After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDCAS 1: SDCAS 1: SDCAS Port J Function Register 2 Port J Function Register 2 PJ3F2 PJ3F2 PJ2F2 - Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W M M M M M M M M H) Strubble 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W</pj6f2<>		After reset	1	1	1	1	1	1	1	1
Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W After reset 0	Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W After reset 0	Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W After reset 0					Port J Fun	ction Regis	ter			
Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0 <td>Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0<td>Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0<td></td><td></td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td><td>) 21</td><td>0</td></td></td>	Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0 <td>Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0<td></td><td></td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td><td>) 21</td><td>0</td></td>	Bit symbol PJ7F PJ6F PJ5F PJ4F PJ3F PJ2F PJ1F PJ0F Read/Write W M W M M M M M After reset 0 <td></td> <td></td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> <td>) 21</td> <td>0</td>			7	6	5	4	3	2) 21	0
Read/Write W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDLAS 1: SDRA Port J Function Register 2 Port J Function Always 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W Haways 0: <pj6f> 0: <pj4f> 0: <pj3f> 0: <pj2f> Always Always Write "0". 1: SRUB</pj2f></pj3f></pj4f></pj6f></pj6f2<>	Read/Write W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDLAS 1: SDRA Port J Function Register 2 Port J Function Always 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W Haways 0: <pj6f> 0: <pj4f> 0: <pj3f> 0: <pj2f> Always Always Write "0". 1: SRUB</pj2f></pj3f></pj4f></pj6f></pj6f2<>	Read/Write W After reset 0 0 0 0 0 0 0 0 0 Function 0: Port 1: SDLDQM 1: SDLDQM 1: SDLAS 1: SDRA Port J Function Register 2 Port J Function Always 0: <pj6f2< td=""> PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W Haways 0: <pj6f> 0: <pj4f> 0: <pj3f> 0: <pj2f> Always Always Write "0". 1: SRUB</pj2f></pj3f></pj4f></pj6f></pj6f2<>		Bit symbol								
After reset 0 <th< td=""><td>After reset 0 <th< td=""><td>After reset 0 <th< td=""><td>- FH)</td><td></td><td></td><td>1 001</td><td>1001</td><td></td><td></td><td>$(\overline{\Omega})$</td><td></td><td>1 001</td></th<></td></th<></td></th<>	After reset 0 <th< td=""><td>After reset 0 <th< td=""><td>- FH)</td><td></td><td></td><td>1 001</td><td>1001</td><td></td><td></td><td>$(\overline{\Omega})$</td><td></td><td>1 001</td></th<></td></th<>	After reset 0 <th< td=""><td>- FH)</td><td></td><td></td><td>1 001</td><td>1001</td><td></td><td></td><td>$(\overline{\Omega})$</td><td></td><td>1 001</td></th<>	- FH)			1 001	1001			$(\overline{\Omega})$		1 001
Function 0: Port 1: SDULDQM 0: Port 1: SDULDQM 1: SD	Function 0: Port 1: SDULDQM 0: Port 1: SDULDQM 1: SD	Function 0: Port 1: SDULDQM 0: Port 1: SDULDQM 1: SD			0	0	0	1			0	0
I: SDCKE I: SDUUDQM I: SDULDQM I: SDLUDQM I: SDLUDQM I: SDULDQM I: SDCAS I: SDCAS I: SDCAS 2 7 6 5 4 3 2 1 0 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W W After reset 0 0 0 0 0 0 Function Always 0: <pj6f> 0: <pj5f> 0: <pj3f> 0: <pj3f> 0: <pj2f> Always Always write "0". 1: SRUUB 1: SRULB 1: SRLUB 1: SRUR write "0". write "0".</pj2f></pj3f></pj3f></pj5f></pj6f>	I: SDCKE I: SDUUDQM I: SDULDQM I: SDLUDQM I: SDLUDQM I: SDULDQM I: SDCAS I: SDCAS I: SDCAS 2 7 6 5 4 3 2 1 0 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W W After reset 0 0 0 0 0 0 Function Always 0: <pj6f> 0: <pj5f> 0: <pj3f> 0: <pj3f> 0: <pj2f> Always Always write "0". 1: SRUUB 1: SRULB 1: SRLUB 1: SRUR write "0". write "0".</pj2f></pj3f></pj3f></pj5f></pj6f>	I: SDCKE I: SDUUDQM I: SDULDQM I: SDLUDQM I: SDLUDQM I: SDULDQM I: SDCAS I: SDCAS I: SDCAS 2 7 6 5 4 3 2 1 0 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - Read/Write W W After reset 0 0 0 0 0 0 Function Always 0: <pj6f> 0: <pj5f> 0: <pj3f> 0: <pj3f> 0: <pj2f> Always Always write "0". 1: SRUUB 1: SRULB 1: SRLUB 1: SRUR write "0". write "0".</pj2f></pj3f></pj3f></pj5f></pj6f>				-			6			
Port J Function Register 2 Port J Function Register 2 Port J Function Register 2 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W M M M M M M House of the symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 -	Port J Function Register 2 Port J Function Register 2 Port J Function Register 2 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W M M M M M M House of the symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 -	Port J Function Register 2 Port J Function Register 2 Port J Function Register 2 Bit symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 - - Read/Write W W M M M M M M House of the symbol - PJ6F2 PJ5F2 PJ4F2 PJ3F2 PJ2F2 -		i dilotion								
Read/Write W After reset 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUB 0: <pj5f> 1: SRUB 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always 1: SRUB Always 1: SRUB Always 1: SRUB Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.</pj2f></pj3f></pj5f></pj6f>	Read/Write W After reset 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUB 0: <pj5f> 1: SRUB 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always 1: SRUB Always 1: SRUB Always 1: SRUB Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.</pj2f></pj3f></pj5f></pj6f>	Read/Write W After reset 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUB 0: <pj5f> 1: SRUB 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always 1: SRUB Always 1: SRUB Always 1: SRUB Nite "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. Always Always Always</pj2f></pj3f></pj5f></pj6f>			7	1	1			2	51	> 0
Read/Write W After reset 0 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 1: SRUB 0: <pj4f> 1: SRLB 0: <pj2f> 1: SRWR Always write "0". Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. I: SRWR I: SRWR I: SRWR I: SRWR</pj2f></pj4f></pj5f></pj6f>	Read/Write W After reset 0 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 1: SRUB 0: <pj4f> 1: SRLB 0: <pj2f> 1: SRWR Always write "0". Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. I: SRWR I: SRWR I: SRWR I: SRWR</pj2f></pj4f></pj5f></pj6f>	Read/Write W After reset 0 0 0 0 0 0 0 0 Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 1: SRUB 0: <pj4f> 1: SRLB 0: <pj2f> 1: SRWR Always write "0". Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. I: SRWR I: SRWR I: SRWR I: SRWR</pj2f></pj4f></pj5f></pj6f>		Bit symbol	-	PJ6F2	PJ5F2	PJ4F2	PJ3F2	PJ2F2	$\underline{\nabla }$	-
Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 0: <pj4f> 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. O: <pj2f> Always write "0". Always</pj2f></pj2f></pj3f></pj4f></pj5f></pj6f>	Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 0: <pj4f> 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. O: <pj2f> Always write "0". Always</pj2f></pj2f></pj3f></pj4f></pj5f></pj6f>	Function Always write "0". 0: <pj6f> 1: SRUUB 0: <pj5f> 0: <pj4f> 0: <pj3f> 1: SRUB 0: <pj2f> 1: SRUB Always write "0". Always write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. O: <pj2f> Always write "0". Always</pj2f></pj2f></pj3f></pj4f></pj5f></pj6f>)H)	Read/Write					N.		90	
write "0". 1: SRUUB 1: SRUB 1: SRUB 1: SRUB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. Vertice "0". write "0". write "0".	write "0". 1: SRUUB 1: SRUB 1: SRUB 1: SRUB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. Vertice "0". write "0". write "0".	write "0". 1: SRUUB 1: SRUB 1: SRUB 1: SRUB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2. Vertice "0". write "0". write "0".		After reset	0	0	0	0	V 0	0	0	0
write "0". 1: SRUUB 1: SRUB 1: SRLB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.	write "0". 1: SRUUB 1: SRUB 1: SRLB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.	write "0". 1: SRUUB 1: SRUB 1: SRLB 1: SRUB 1: SRWR write "0". write "0". Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.		Function		0: <pj6f></pj6f>	0: <pj5f></pj5f>	0: <pj4f></pj4f>	0: <pj3f></pj3f>	0: <pj2f></pj2f>		
Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.	Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.	Note: Read-modify-write is prohibited for the registers PJFC and PJFC2.			write "0".	1: SRUUB	1: SRULB		1: SRLLB	1: SRWR	write "0".	write "0
								\sim /				
						Figu	re 3.5.37	Register for	Port J)		
						Figu	re 3.5.37	Register for	Port J			
			<			Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			
						Figu	re 3.5.37	Register for	Port J			


3.5.15 Port K (PK0 to PK4, PK6)

Port K is 6-bit output port. Resetting sets the output latch PK to "1", and port K pins output to "1".

In addition to functioning as output ports, port K also functions as output pins for LCD controller (D1BSCP, D2BLP, D3BFR, DLEBCD and DOFFB), output pins for RTC alarm (ALARM) and output pin for melody/alarm generator (MLDALM, MLDALM). Above setting is used the function register PKFC.

Only PK6 has two output function which ALARM and MLDALM. This selection is used PK<PK6>. Resetting resets the function register PKFC to "0", and sets all ports to output ports.



3.5.16 Port L (PL0 to PL7)

PL0 to PL7 are 8-bit general-purpose I/O ports.

Each bit can be set individually for input or output using the control register PLCR. Resetting, the control register PLCR to "0" and sets port L to input ports.

It also sets all bits of the output latch register to "1". In addition to functioning as a general-purpose I/O port, port L can also function as a data bus for LCD controller (LD0 to LD7). Above setting is used the function register PLFC.

				Port L	Register				
		7	6	5	4	3	2	1	0
PL (0054H)	Bit symbol	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0
(0054H)	Read/Write				R	/W			
	After reset		I	Data from exte	ernal port (Ou	tput latch regis	ster is set to 1	l)	
				Port L Cor	ntrol Regist	er			
	/	7	6	5	4	3	2) 21	0
PLCR	Bit symbol	PL7C	PL6C	PL5C	PL4C	PL3C	PL2C	PL1C	PL0C
(0056H)	Read/Write				١	N <	$\left(\left/ \right/ \right)$	11	
	After reset	0	0	0	0	0	O	0	0
	Function				0: Input	1: Output			
				Port L Fund	ction Regis	ster	2		
		7	6	5	4	3	2		0
PLFC (0057H)	Bit symbol	PL7F	PL6F	PL5F	PL4F (PL3F	PL2F	PL1F	PL0F
(003711)	Read/Write		I			N		$ \langle \mathcal{I} \rangle $	
	After reset Function	0	0	0	0	0 or LCDC (LD7	0	0	0
			90		Register fo	r Port L			
						r Port L			

3.6 Memory Controller

3.6.1 Functions

 $\rm TMP92C820$ has a memory controller with a variable 4-block address area that controls as follows.

(1) 4-block address area support

Specifies a start address and a block size for 4-block address area (Block 0 to block 5).

(2) Connecting memory specifications

Specifies SRAM, ROM as memories to connect with the selected address areas.

(3) Data bus size selection

Whether 8 bits, 16 bits or 32 bits is selected as the data bus size of the respective block address areas.

(4) Wait control

Wait specification bit in the control register and \overline{WAIT} input pin control the number of waits in the external bus cycle. Read cycle and write cycle can specify the number of waits individually. The number of waits is controlled in five mode mentioned below.

0 waits, 1 wait,

2 waits, 3 waits

N waits (control with \overline{WAIT} pin)

3.6.2 Control Register and Operation after Reset Release

This section describes the registers to control the memory controller, the state after reset release and necessary settings.

(1) Control register

The control registers of the memory controller are as follows.

- Control register: BnCSH/BnCSL (n = 0 to 3, EX) Sets the basic functions of the memory controller, that is the connecting memory type, the number of waits to be read and written.
- Memory start address register: MSARn (n = 0 to 3) Sets a start address in the selected address areas.
- Memory address mask register: MAMR (n = 0 to 3)
 Sets a block size in the selected address areas.

In addition to setting of the above-mentioned registers, it is necessary to set the following registers to control ROM page mode access.

- Page ROM control register: PMEMCR
- Sets to executed ROM page mode accessing.

(2) Operation after reset release

The start data bus size is determined depending on the state of AM1/AM0 pins just after reset release. Then, the external memory is accessed as follows:

AM1	AM0	Start Mode
0	0	Don't use this setting
0	$(\bigcirc \land)$	Start with 16-bit data bus
1	0	Start with 32-bit data bus
1 (7)	1	Don't use this setting
))	

AM1/AM0 pins are valid only just after reset release. In the other cases, the data bus width is set to the value set to BnBUS bit of the control register.

After reset, only control register (B2CSH/B2CSL) of the block address area 2 is automatically valid. The data bus width which is specified by AM1/AM0 pin is loaded to the bit to specify the bus width of the control register in the block address area 2. The block address area 2 is set to address 000000H to FFFFFH after reset.

After reset release, the block address areas are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). Then the control register (BnCS) is set.

Set the enable bit (BnE) of the control register to "1" to enable the setting.

3.6.3 Basic Functions and Register Setting

In this section, setting of the block address area, the connecting memory, and the number of waits out of the memory controller's functions are described.

(1) Block address area specification

The block address area is specified by two registers.

The memory start address register (MSARn) sets the start address of the block address areas. The memory controller compares between the register value and the address every bus cycles. The address bit which is masked by the memory address mask register (MAMRn) is not compared by the memory controller. The block address area size is determined by setting the memory address mask register. The set value in the register is compared with the block address area on the bus. If the compared result is a match, the memory controller sets the chip select signal (\overline{CSn}) to "low".

(i) Setting memory start address register

The MS23 to MS16 bits of the memory start address register respectively correspond with addresses A23 to A16. The lower start address A15 to A0 are always set to address 0000H. Therefore the start address of the block address area are set to addresses 00000H to FF0000H every 64 Kbytes.

(ii) Setting memory address mask registers

The memory address mask register sets whether an address bit is compared or not. Set the register to "0" to compare, or to "1" not to compare.

The address bit to be set is depended on the block address area.

Block address area 0: A20 to A8

Block address area 1: A21 to A8

Block address area 2 to 3: A22 to A15

The above mentioned bits are always compared. The block address area size is determined by the compared result.

The size to be set depending on the block address area is as follows.

			< <		` >						
Size (bytes) CS Area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	<i>入</i> 。	0	\wedge	0	0	0	0	0	0		
CS1	0	0 (1	0	0	0	0	0	0	0	
CS2 to CS3		(6	0	0	0	0	0	0	0	0
	\sim	$(\cap$	$\backslash \backslash \land$								

Note: After reset release, only the control register of the block address area 2 is valid. The control register of the block address area 2 has <B2M> bit. Setting <B2M> bit to "0" sets the block address area 2 to addresses 000000H to FFFFFH. Setting <B2M> bit to "1" specifies the start address and the address area size as it is in the other block address area.

(iii) Example of register setting

To set the block address area 512 bytes from address 110000H, set the register as follows.

	7	6	5	4	3	2	1	0
Bit symbol	M1S23	M1S22	M1S21	M1S20	M1S19	M1S18	M1S17	M1S16
Specified value	0	0	0	1	0	0	0	1
						1		

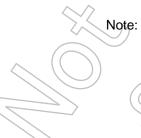
M1S23 to M1S16 bits of the memory start address register MSAR1 correspond with address A23 to A16. A15 to A0 are set to "0". Therefore setting MSAR1 to the above-mentioned value specifies the start address of the block address area to address 110000H.

The start address is set as it is in the other block address areas.

MAMR1 Register								
	7	6	5	4		2		O (
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to M1V9	M1V8
Specified value	0	0	0	0	0	0	0	1

M1V21 to M1V16 and M1V8 bits of the memory address mask register MAMR1 set whether address A21 to A16 and A8 are compared or not. Set the register to "0" to compare, or to "1" not to compare. M1V15 to M1V9 bits set whether address A15 to A9 are compared or not with 1 bit. A23 and A22 are always compared.

Setting the above-mentioned compares A23 to A9 with the values set as the start addresses. Therefore 512 bytes of addresses 110000H to 1101FFH are set as the block address area 1, and compared with the addresses on the bus. If the compared result is a match, the chip select signal $\overline{\text{CS1}}$ is set to "low".


The other block address area sizes are specified like this.

Similarly, A23 is always compared in block address areas 2 to 3. Whether A22 to A15 are compared or not is set to register.

ote: When the set block address area overlaps with the built-in memory area, or both two address areas overlap, the block address area is processed according to priority as follows.

Built-in I/O > Built-in memory > Block address area 0 > 1 > 2 > 3 > CSEX

also that any accessed areas outside the address spaces set by $\overline{CS0}$ to $\overline{CS3}$ are processed as the CSEX space. Therefore, settings of CSEX apply for the control of wait cycles, data bus width, etc,.

(2) Connection memory specification

Setting the BnOM1 to 0 bit of the control register (BnCSH) specifies the memory type to be connected with the block address areas. The interface signal is output according to the set memory as follows

,	
BnOM0	Function
0	SRAM/ROM (Default)
1	(Reserved)
0	(Reserved)
1	SDRAM
	BnOM0 0 1 0 1

SDRAM is set only in block address are 1.

(3) Data bus width specification

The data bus width is set for every block address area. The bus size is set by the BnBUS1 and BnBUS0 bits of the control register (BnCSH) as follows.

BIBOS BIT (BICOT Tegister)						
BnBUS1	BnBUS0	Function				
0	0	8-bit bus mode (Default)				
0	1	16-bit bus mode				
1	0	32-bit bus mode				
1	1	(Reserved)				

BnBUS Bit (BnCSH register)

This way of changing the data bus size depending on the address being accessed is called "dynamic bus sizing". The part where the data is output to is depended on the data size, the bus width and the start address.

Note: Since there is a possibility of abnormal writing/reading of the data if two memories with different bus width are put in consecutive address, do not execute a access to both memories with one command.

Operand Data	Operand Start	Memory Data Size	CPU		CPU	Data	
Size (Bit)	Address	(Bit)	Address	D32 to D24	D23 to D16	D15 to D8	D7 to D0
	4n + 0	8/16/32	4n + 0	xxxxx	xxxxx	XXXXX	b7 to b0
	4n + 1	8	4n + 1	XXXXX	XXXXX	XXXXX	b7 to b0
		16/32	4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
2	4n + 2	8/16	4n + 2	xxxxx	XXXXX	xxxxx	b7 to b0
8		32	4n + 2	xxxxx	b7 to b0	xxxxx	XXXXX
	4n + 3	8	4n + 3	XXXXX	XXXXX	xxxxx	b7 to b0
		16	4n + 3	XXXXX	xxxxx	b7 to b0	xxxxx
		32	4n + 3	b7 to b0	XXXXX	XXXXX	XXXXX
	4n + 0	8	(1) 4n + 0	XXXXX	xxxxx	XXXXX	b7 to b0
			(2) 4n + 1	xxxxx	xxxxx	xxxxx	b15 to b8
		16/32	4n + 0	xxxxx	XXXXX	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 1	XXXXX	XXXXX	XXXXX	b7 to b0
			(2) 4n + 2	xxxxx	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 1	XXXXX	xxxxx	b7 to b0	XXXXX
			(2) 4n + 2	ххххх	XXXXX	XXXXX	b15 to b8
		32	4n + 1	XXXXX	b15 to b8	b7 to b0	>xxxxx
16	4n + 2	8	(1) 4n + 2	XXXXX	XXXXX	XXXXX	b7 to b0
10			(2) 4n + 1	xxxxx	xxxxx	xxxxx	b15 to b8
		16	4n + 2	xxxxx	XXXXX	b15 to b8	b7 to b0
		32	4n + 2	b15 to b8	b7 to b0	XXXXX	XXXXX
	4n + 3	8	(1) 4n + 3	жхххх	XXXXX	xxxxx	b7 to b0
			(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		16	(1) 4n + 3	V XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
		32	(1) 4n + 3	b7 to b0	XXXXX	XXXXX	XXXXX
			(2) 4n + 4	xxxxx	xxxxx	XXXXX	b15 to b8
	4n + 0	8 <	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
			(2) 4n + 1	xxxxx	XXXXX	XXXXX	b15 to b8
			(3) 4n + 2	xxxxx	XXXXX	XXXXX	b23 to b16
) (4) 4n + 3	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 0	xxxxx	XXXXX	b15 to b8	b7 to b0
			(2) 4n + 2	XXXXX	XXXXX	b31 to b24	b23 to b16
		32	4n + 0	b31 to b24	b23 to b16	b15 to b8	b7 to b0
	4n + 1	8	(1) 4n + 0	XXXXX	XXXXX	XXXXX	b7 to b0
	\frown	$\left(\left(\right) \right)$	(2) 4n + 1	XXXXX	XXXXX	XXXXX	b15 to b8
			(3) 4n + 2		XXXXX	XXXXX	b23 to b16
		16	(4) 4n + 3	XXXXX	XXXXX	XXXXX hZ to h0	b31 to b24
		7 10	(1) 4n + 1	XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 2 (3) 4n + 4	XXXXX	XXXXX	b23 to b16	b15 to b8 b31 to b24
		32		XXXXX b22 to b16	XXXXX h15 to h9	XXXXX b7 to b0	
		32	(1) 4n + 1 (2) 4n + 4	b23 to b16	b15 to b8	b7 to b0	xxxxx b31 to b24
32	4n + 2	8	(2) 411 + 4 (1) 4n + 2	XXXXX XXXXX	XXXXX XXXXX	XXXXX XXXXX	b31 to b24 b7 to b0
02		\sim	(1) 4n + 2 (2) 4n + 3	XXXXX	XXXXX	XXXXX	b15 to b8
(A	(3) 4n + 4	XXXXX	XXXXX	XXXXX	b23 to b16
\sim (((4) 4n + 5	XXXXX	XXXXX	XXXXX	b31 to b24
	\square	16	(1) 4n + 2	XXXXX	XXXXX	b15 to b8	b7 to b0
		$\left(\left(\begin{array}{c} \end{array}\right) \right)$	(1) 4n + 2 (2) 4n + 4	XXXXX	XXXXX	b31 to b24	b23 to b16
		32	(1) 4n + 2	b15 to b8	b7 to b0		XXXXX
	2		(2) 4n + 4	XXXXX	XXXXX	b31 to b24	b23 to b16
	4n + 3	8	(1) 4n + 3	XXXXX	XXXXX	XXXXX	b7 to b0
\sim		~ -	(2) 4n + 4	XXXXX	XXXXX	XXXXX	b15 to b8
			(3) 4n + 5	XXXXX	XXXXX	XXXXX	b23 to b16
			(4) 4n + 6	XXXXX	XXXXX	XXXXX	b31 to b24
		16	(1) 4n + 3	XXXXX	XXXXX	b7 to b0	XXXXX
			(2) 4n + 4	XXXXX	XXXXX	b23 to b16	b15 to b8
			(=,				
			(3) 4n + 6	XXXXX	XXXXX	XXXXX	b31 to h24
		32	(3) 4n + 6 (1) 4n + 3	xxxxx b7 to b0	XXXXX XXXXX	XXXXX XXXXX	b31 to b24 xxxxx

xxxxx: During a read, data input to the bus is ignored. At write, the bus is at high impedance and the write strobe signal remains to non active.

(4) Wait control

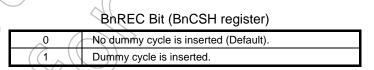
The external bus cycle completes a wait of two states at least (100 ns at 20 MHz). Setting the BnWW2 to BnWW0 and BnWR2 to BnWR0 of the control register (BnCSL) specifies the number of waits in the read cycle and the write cycle. BnWW is set with the same method as BnWR.

BRWW/BRWR BIL (BRCSL register)						
BnWW2	BnWW1	BnWW0	Function			
BnWR2	BnWR1	BnWR0	T difetion			
0	0	1	2states (0 waits) access fixed mode			
0	1	0	3states (1 wait) access fixed mode (Default)			
1	0	1	4states (2 waits) access fixed mode			
1	1	0	5states (3 waits) access fixed mode			
1	1	1	6states (4 waits) access fixed mode			
0	1	1	WAIT pin input mode			
Others			(Reserved)			

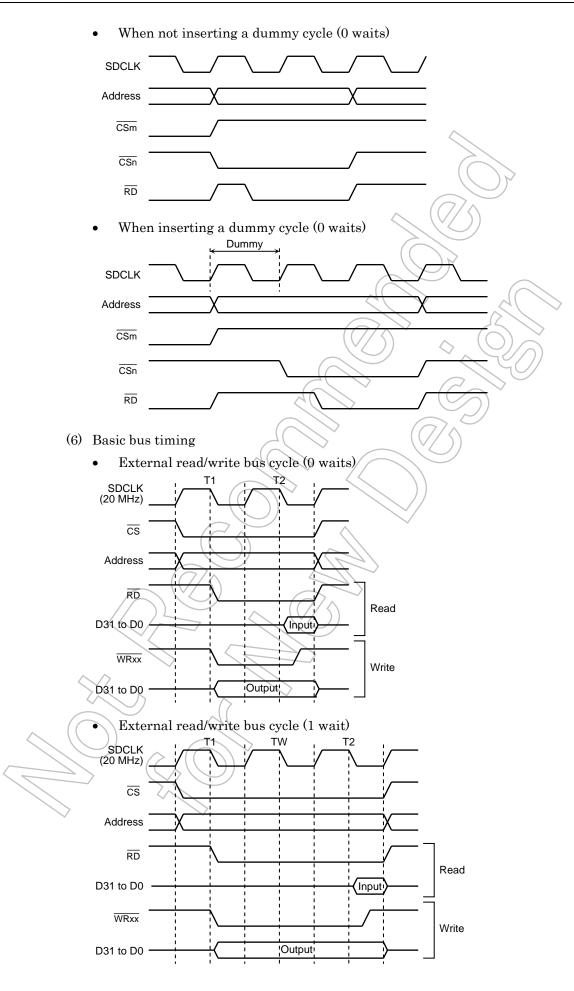
BnWW/BnWR Bit	(BnCSL	register)
---------------	--------	-----------

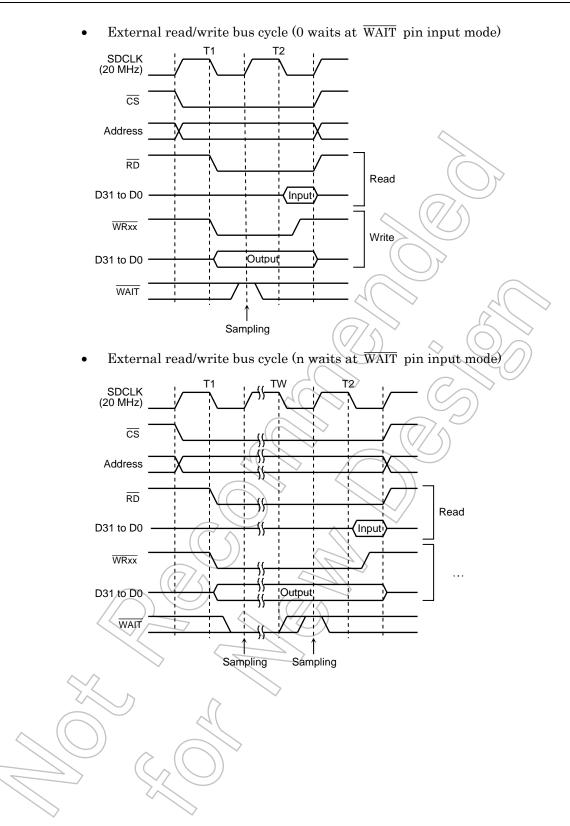
Note: When SDRAM is specified as a connecting memory, setting should be 4 states (2 waits) in RD cycle and 3 states (1 wait) in WR cycle.

(i) Waits number fixed mode


The bus cycle is completed with the set states. The number of states is selected from 2 states (0 waits) to 5 states (3 waits).

(ii) \overline{WAIT} pin input mode


This mode samples the $\overline{\text{WAIT}}$ input pins. It continuously samples the $\overline{\text{WAIT}}$ pin state and inserts a wait if the pin is active. The bus cycle is minimum 2 states. The bus cycle is completed when the wait signal is non active ("High" level) at 2 states. The bus cycle extends if the wait signal is active at 2 states and more.


(5) Insert recovery cycle

If a lot of connected pertain ROM and etc. (Much data output floating time (t_{DF})), each other's data-bus-output-recovery-time is trouble. However, by setting BnREC of control register (BnCSH), can insert dummy cycle of 1 state just before first bus cycle of starting access another block address.

Note: When use MMU, built-in RAM type LCDD, this function cannot use.

- É FF0 FF2 FF3 FF4 FF1 D Q D Q D Q D Q WAIT Q D >СК ⊳ск CK RES >CK ≻ск RES RES RES RES SDCLK -CSn $\frac{\overline{RD}}{WR}$ 6 SDCLK (20 MHz) 2 3 CSn $\overline{\mathsf{RD}}$ Ċ FF_RES FF0_D FF0_Q FF1_Q FF2_Q FF3_Q WAIT
- Example of \overline{WAIT} input cycle (5 waits)

3.6.4 ROM Control (Page mode)

This section describes ROM page mode accessing and how to set registers. ROM page mode is set by the page ROM control register.

(1) Operation and how to set the registers

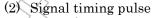
TMP92C820 supports ROM access of the page mode. The ROM access of the page mode is specified only in the block address area 2.

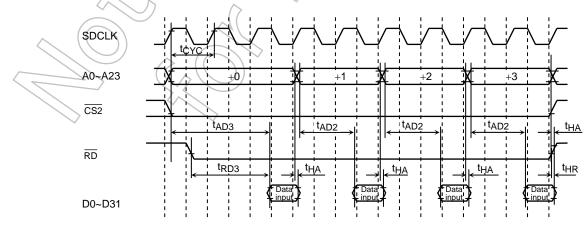
ROM page mode is set by the page ROM control register (PMEMCR).

Setting OPGE bit of the PMEMCR register to "1" sets the memory access of the block address area to ROM page mode access.

The number of read cycles is set by the OPWR1 and OPWR0 bits of the PMEMCR register.

OPWR1	OPWR0	Number of Cycle in a	Page
0	0	1 state (n-1-1-1 mode) (n \ge 2)	
0	1	2 state (n-2-2-2 mode) (n \ge 3)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1	0	3 state (n-3-3-3 mode) (n \ge 4)	\mathcal{C}
1	1	(Reserved)	


OPWR1/OPWR0 Bit (PMEMCR register)


Note: Set the number of waits "n" to the control register (BnCSL) in each block address area.

The page size (the number of bytes) of ROM in the CPU size is set to the PR1 and 0 bit of the PMCME register. When data is read out until a border of the set page, the controller completes the page reading operation. The start data of the next page is read in the normal cycle. The following data is set to page read again.

PR1	PR0	ROM Page Size
0	0)))	64 bytes
0		32 bytes
	0 /	16 bytes (Default)
1	1	8 bytes

PR1/PR0 Bit (PMEMCR register)

3.6.5 List of Registers

The memory control registers and the settings are described as follows. For the addresses of the registers, see Section 5 "Table of Special Function Registers (SFRs)".

(1) Control registers

The control register is a pair of BnCSL and BnCSH. (n is a number of the block address area.) BnCSL has the same configuration regardless of the block address areas. In BnCSH, only B2CSH which is corresponded to the block address area 2 has a different configuration from the others.

			DI	ICOL							
	7	6	5	4	3	2	1	0			
Bit symbol		BnWW2	BnWW1	BnWW0	\mathbb{Z}	BnWR2	BnWR1	BnWR0			
Read/Write			W		X		W				
After reset		0	1	0	Ť.	> 0	$\mathcal{A}(1)$	0			
BnWW<2:0> Specifies the number of write waits. 001 = 2 states (0 waits) access 101 = 4 states (2 waits) access 111 = 6 states (4 waits) access 010 = 3 states (1 wait) access 110 = 5 states (3 waits) access 011 = WAIT pin input mode Others = (Reserved) BnWR<2:0> Specifies the number of read waits. 001 = 2 states (0 waits) access 101 = 4 states (2 waits) access 101 = 4 states (2 waits) access 101 = 4 states (2 waits) access 101 = 5 states (1 wait) access 101 = 5 states (3 waits) access 101 = 5 states (3 waits) access 101 = WAIT pin input mode Others = (Reserved) B2CSH											
	7	6	5	4	3	2	1	0			
Bit symbol	B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0			
Read/Write	V	N	\mathcal{Y}	$\langle \rangle$		W					
After reset	1	$(\bigcirc \land$	/	0	~ o	0	0/1	0/1			
B2E: Enable	bit		\sim (775	>						

BnCSL

0 = No chip select signal output.

1 = Chip select signal output (Default).

Note: After reset release, only the enable bit B2E of B2CS register is valid ("1").

B2M: Block address area specification

0 = Sets the block address area of CS2 to addresses 000000H to FFFFFH (Default).

1 = Sets the block address area of CS2 to programmable.

Note: After reset release, the block address area 2 is set to addresses 000000H to FFFFFH.

B2REC: Sets the dummy cycle for data output recovery time.

0 = Not insert a dummy cycle (Default).

1 = Insert a dummy cycle.

Note: When using MMU, LCD of built-in RAM type, this function cannot use.

B2OM<1:0>

00 = SRAM or ROM (Default)

Others = (Reserved)

B2BUS<1:0> Sets the data bus width.

00 = 8 bits (Default)

- 01 = 16 bits
- 10 = 32 bits
- 11 = (Reserved)

Note: The value of B2BUS bit is set according to the state of AM<1:0> pin after reset release.

BnCSH (n = 0, 1, 3)

	7	6	5	4	3	2	1	0
Bit symbol	BnE		/	BnREC	BnOM1	BnOM0	BnBUS1	BnBUS0
Read/Write	W	/				W		\sim
After reset	0	/		0 ((7/0	0	0	0

BnE: Enable bit

0 = No chip select signal output (Default).

1 = Chip select signal output.

Note: After reset release, only the enable bit B2E of B2CS register is valid ("1"

BnREC: Sets the dummy cycle for data output.

0 = Not insert a dummy cycle (Default).

1 = Insert a dummy cycle.

Note: When using MMU, LCD of built-in RAM type, this function cannot use.

BnOM<1:0>

- 00 = SRAM or ROM (Default)
- 01 = (Reserved)
- 10 = (Reserved)
- 11 = SDRAM

Note: SDRAM is set only by B1CSH.

BnBUS<1:0> Sets the data bus width.

00 = 8 bits (Default)

- 01 = 16 bits
- 10 = 32 bits
- 11 = (Reserved)

Bit symbol Read/Write	7	<u>^</u>						
-		6	5	4	3	2	1	0
-		BEXWW2	BEXWW1	BEXWW0	/	BEXWR2	BEXWR1	BEXWR
1	/		W		/		W	
After reset		0	1	0		0	1	0
BEXWW<2:0:	> specifies the	e number of w	rite waits			\sim		
	states (0 wait			010 = 3 state	s (1 wait) acc	ess		
	states (2 wait				s (3 waits) ac			
	states (4 wait				pin input mod)7	
	= (Reserved)	,)	
BEXWR<2:0>		e number of re	ead waits.		\sim	$\left(\left(\right) \right) $		
	states (0 wait			010 = 3 state	s (1 wait) acc	ess		
	states (2 wait				s (3 waits) ac			
	states (4 wait				pin input mod	\. Z		
	= (Reserved)	,					\frown	
					$\mathcal{A}(\mathcal{N})$	>		
			BE	XCSH		<i>,</i>		\checkmark
	7	6	5	4 ((7/<3	2	1	0
Bit symbol					BEXOM1	BEXOM0	BEXBUS1	BEXBUS
Read/Write				\mathcal{A}		V	40/	
After reset					✓ 0	0	0	0
11 = (Re BEXBUS<1:0 00 = 8 b 01 = 16 10 = 32	its (Default) bits bits	ta bus width.)		
11 = (Ke	eserved)							

(2) Block address register

A start address and an address area of the block address are specified by the memory start address register (MSARn) and the memory address mask register (MAMRn). The memory start address register sets all start address similarly regardless of the block address areas.

The bit to be set by the memory address mask register is depended on the block address area.

			MSARn	(n = 0 to 3)			\mathcal{Y}			
	7	6	5	4	3	(2)	1	0		
Bit symbol	MnS23	MnS22	MnS21	MnS20	MnS19	MnS18	MnS17	MnS16		
Read/Write		R/W								
After reset	1	1	1	1	1 ((1	1		

MnS<23:16> Sets a start address.

Sets the start address of the block address areas. The bits are corresponding to the address A23 to A16.

			IVIA	AIVIRU	$7/\wedge$	(\sim	
	7	6	5	4	()3	<>2 \		0
Bit symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14 to M0V9	M0V8
Read/Write				R/	Ŵ	$(\bigcirc$	\sim	
After reset	1	1	1		1		1	1
				$\sim \sim$				

M0V<20:8>

Enables or masks comparison of the addresses. M0V20 to M0V8 are corresponding to addresses A20 to A8. The bits of M0V14 to M0V9 are corresponding to address A14 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

MAMR1											
	7	6 (5	4	3	2	1	0			
Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15 to M1V9	M1V8			
Read/Write	\bigcirc	$(\vee))$	_	R	W						
After reset	$\left(1 \right)$		_1 (1	1	1	1			
	14 /~										

M1V<21:8>

Enables or masks comparison of the addresses. M1V21 to M1V8 are corresponding to addresses A21 to A8. The bits of M1V15 to M1V9 are corresponding to address A15 to A9 by 1 bit. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

			20	MAMRn	(n = 2 to 3)				
<	Ł) 7	6	5	4	3	2	1	0
	Bit symbol	MnV22	MnV21	MnV20	MnV19	MnV18	MnV17	MnV16	MnV15
	Read/Write)	R/	W			
\sim	After reset	1	\sum_{1}	1	1	1	1	1	1
		· · · · · · · · · · · · · · · · · · ·							

MnV<22:15>

Enables or masks comparison of the addresses. MnV22 to MnV15 are corresponding to addresses A22 to A15. If "0" is set, the comparison between the value of the address bus and the start address is enabled. If "1" is set, the comparison is masked.

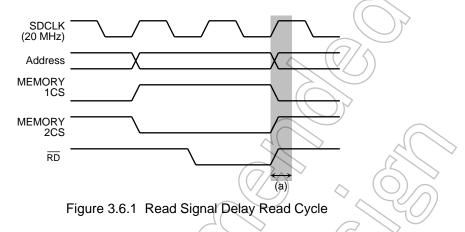
After a reset, MASR0 to MASR3 and MAMR0 to MAMR3 are set to "FFH". B0CSH<B0E>, B1CSH<B1E>, and B3CSH<B3E> are reset to "0". This disabling the CS0, CS1, and CS3 areas. However, B2CSH<B2M> is reset to "0" and B2CSH<B2E> to "1", and CS2 is enabled 000000H to FFFFFFH. Also the bus width and number of waits specified in BEXCSH/L are used for accessing address except the specified CS0 to CS3 area.

(3) Page ROM control register (PMEMCR)

The page ROM control register sets page ROM accessing. ROM page accessing is executed only in block address area 2.

			PM	EMCR				
	7	6	5	4	3	2	1	0
Bit symbol				OPGE	OPWR1	OPWR0	PR1	PR0
Read/Write						R/W	$\langle \rangle$	
After reset				0	0	0	ノ) 1	0
						(77)		
OPGE enable b						$(\vee \bigcirc)$		
		ode accessing	(Default)		\sim			
	bage mode		· • -			$\langle \rangle \rangle$		
OPWR<1:0> Sp 00 = 1 sta		mumber of wa mode) (n \ge 2)					\frown	
		$(n \ge 2)$ 2 mode) (n ≥ 3			λ	>		
		8 mode) (n ≥ 4				~ /	\sim	\checkmark
10 = 0 5ta 11 = (Res			/	6	77~		5	
		of waits "n" to	o the control r	egister (BnCS	L) in each blo	ock address are	a.)	
PR<1:0> ROM							401	
00 = 64 by	/tes			20	\supset	R	\mathbf{S}	
01 = 32 by				$\langle \rangle \rangle$		(\bigcirc)	-	
	tes (Defau	t)		\sim		$\sim \mathcal{D}$		
11 = 8 byt	es		((\swarrow	((7/		
						$\langle O \rangle$		
				\rightarrow /	$\langle \rangle$			
				$, \langle \langle \rangle$	≤ 1			
						/		
		\frown						
		(((\wedge	\wedge				
			\mathcal{I}					
		\square			\sim			
	\frown	$(\sqrt{5})$			\rangle			
	$/ \bigcirc$		~ ((7/s)				
<	\leq / r			$\langle \cup \rangle$				
	\sim			\sim				
		>	$\langle -$					
\sim / γ								
		~						
	\bigcirc	_((>					
		\leq						
$\langle \bigcup \rangle$			\searrow					
\square	5)	(()))					
	$\langle \rangle$	Z V	/					
\langle	4	\sim						
\sim		\sim						

			la	ble 3.6.1 (lister			
		7	6	5	4	3	2	1	0
B0CSL	Bit symbol		B0WW2	B0WW1	B0WW0		B0WR2	B0WR1	B0WR0
(0140H)	Read/Write		Bonne	W	Bonno		Bonne	W	Bonnio
(******)	After reset	/	0	1	0	\sim	0	1	0
B0CSH	Bit symbol	B0E	_	_	BOREC	B0OM1	B0OM0	B0BUS1	B0BUS0
(0141H)	Read/Write					N			
(-)	After reset	0	0 (Note)	0 (Note)	0	0	0	0/1	0/1
MAMR0	Bit symbol	M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-V9	M0V8
(0142H)	Read/Write		•		R	/W		7	
	After reset	1	1	1	1	1		1	1
MSAR0	Bit symbol	M0S23	M0S22	M0S21	M0S20	M0\$19	M0S18	M0S17	M0S16
(0143H)	Read/Write		•		R	/W			
	After reset	1	1	1	1	1	\mathbf{h}	1	1
B1CSL	Bit symbol		B1WW2	B1WW1	B1WW0	-	B1WR2	B1WR1	B1WR0
(0144H)	Read/Write			W	-			W	
	After reset		0	1	0		0	1	0
B1CSH	Bit symbol	B1E	-	-	B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
(0145H)	Read/Write		i			N			
	After reset	0	0 (Note)	0 (Note)	0	7/0	0	0/1	0/1
MAMR1	Bit symbol	M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	M1V15-V9	M1V8
(0146H)	Read/Write		i ,		R	M _		74(//-	
M04.D4	After reset	1	1	1		1	1		1
MSAR1	Bit symbol	M1S23	M1S22	M1S21	M1\$20	M1S19	M1S18	M1S17	M1S16
(0147H)	Read/Write After reset	1	1	1 _	R R	/W 1		1	1
B2CSL	Bit symbol		B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
(0148H)	Read/Write		DZVVVZ	W	DZVVVVU		DZVVRZ	W	DZWKU
(014011)	After reset		0	- A	0		\leq	1	0
B2CSH	Bit symbol	B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
(0149H)	Read/Write	DEL	BEIII			N	BLOING	DEDUUT	828000
(•••••)	After reset	1	0	0 (Note)	0	0	0	0/1	0/1
MAMR2	Bit symbol	M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
(014AH)	Read/Write			\land	R	/W			
. ,	After reset	1	1))1	\sum	1	1	1	1
MSAR2	Bit symbol	M2S23	M2S22	M2S21	M2S20	M2S19	M2S18	M2S17	M2S16
(014BH)	Read/Write		$(\overline{O}/\overline{\diamond})$		R	/W			
	After reset		(~(1))	1	()	1	1	1	1
B3CSL	Bit symbol	\rightarrow	B3WW2	B3WW1	B3WW0		B3WR2	B3WR1	B3WR0
(014CH)	Read/Write			Ŵ				W	
	After reset		0	1	0		0	1	0
B3CSH	Bit symbol	B3E	<u> </u>		B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
(014DH)	Read/Write	> 0	~ 0 (t) ()	0.00	0	N 0	0	0/1	0/1
MAMR3	After reset		0 (Note)	0 (Note) M3V20	0 M3V19	0 M3V18		0/1	M3V15
	Bit symbol Read/Write	M3V22	M3V21	1013720		/W	M3V17	M3V16	1013 0 15
(014EH)	After reset	1	1	1	1	1	1	1	1
MSAR3 $<$	Bit symbol	M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
(014FH)	Read/Write	1013323	1013022	1013021		/W	1015510	1013517	1013310
(01411)	After reset	1 (() 1	1	1	1	1	1
BEXCSH	Bit symbol	\sim	\sim	· · ·		BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
(0159H)	Read/Write			\sim	\sim			N	22.2000
(,	After reset	\sim		\sim	\sim	0	0	0	0
BEXCSL	Bit symbol		BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
(0158H)	Read/Write	\sim		W		//		W	
、 /	After reset	\sim	0	1	0	\sim	0	1	0
PMEMCR	Bit symbol	/		/	OPGE	OPWR1	OPWR0	PR1	PR0
(0166H)	Read/Write	/					R/W		
	After reset	/			0	0	0	1	0


Table 3.6.1 Control Register

Note: Always write "0".

3.6.6 Cautions

(1) Note on timing between \overline{CS} and \overline{RD}

If the parasitic capacitance of the read signal (Output enable signal) is greater than that of the chip select signal, it is possible that an unintended read cycle occurs due to a delay in the read signal. Such an unintended read cycle may cause a trouble as in the case of (a) in Figure 3.6.1

Example: When using an externally connected flash EEPROM which users JEDEC standard commands, note that the toggle bit may not be read out correctly. If the read signal in the cycle immediately preceding the access to the flash EEPROM does not go high in time, as shown in Figure 3.6.2 an unintended read cycle like the one shown in (b) may occur.

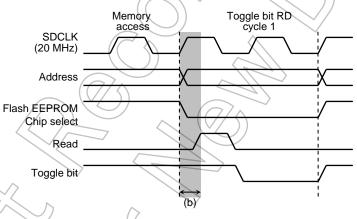
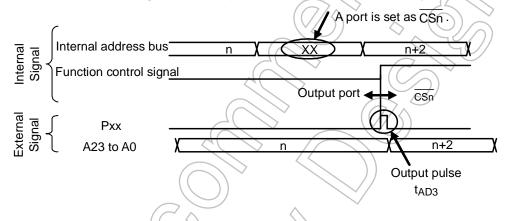


Figure 3.6.2 Flash EEPROM Toggle Bit Read Cycle

When the toggle bit reverse with this unexpected read cycle, TMP92C820 always reads same value of the toggle bit, and cannot read the toggle bit correctly.

To avoid this phenomena, the data polling control recommended.

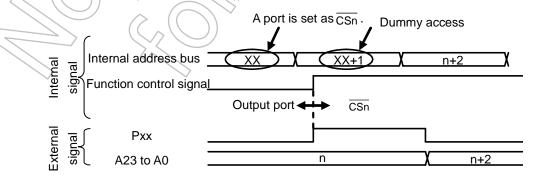

(2) The cautions at the time of the functional change of a \overline{CSn} .

A chip select signal output has the case of a combination terminal with a general-purpose port function. In this case, an output latch register and a function control register are initialized by the reset action, and an object terminal is initialized by the port output ("1" or "0") by it.

Functional change

Although an object terminal is changed from a port to a chip select signal output by setting up a function control register (PnFC register), the short pulse for several ns may be outputted to the changing timing. Although it does not become especially a problem when using the usual memory, it may become a problem when using a special memory.

* XX is a function register address.(When an output port is initialized by "0")


<u>The measure by software</u>

The countermeasures in S/W for avoiding this phenomenon are explained.

Since CS signal decodes the address of the access area and is generated, an unnecessary pulse is outputted by access to the object CS area immediately after setting it as a CSn function. Then, if internal area is accessed also immediately after setting a port as CS function, an unnecessary pulse will not output.

- 1. The ban on interruption under functional change (DI command)
- 2. A dummy command is added in order to carry out continuous internal access.

3. (Access to a functional change register is corresponded by 16-bit command. (LDW command))

3.7 8-Bit Timers (TMRA)

The TMP92C820 features 4 built-in 8-bit timers.

These timers are paired into four modules: TMRA01 and TMRA23. Each module consists of two channels and can operate in any of the following four operating modes.

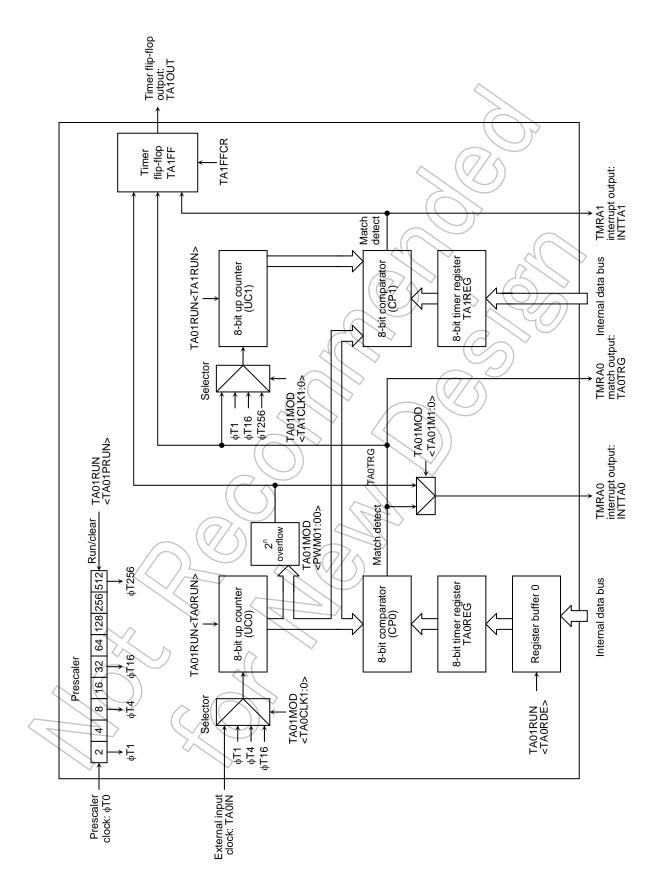
- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 to Figure 3.7.2 Show block diagrams for TMRA01 and TMRA23.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by five controls SFR (Special function register).

Each of the two modules (TMRA01 and TMRA23) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.


The contents of this chapter are as follows.

- 3.7.1 Block Diagrams
- 3.7.2 Operation of Each Circuit
- 3.7.3 SFRs
- 3.7.4 Operation in Each Mode
 - (1) 8-bit timer mode
 - (2) 16-bit timer mode
 - (3) 8-bit PPG (Programmable pulse generation) output mode
 - (4) 8-bit PWM output mode
 - (5) Mode setting

Table 3.7.1 Registers and Pins for Each Module

~ ((R	Module	TMRA01	TMRA23
	External pin	Input pin for external clock	TA0IN (shared with PC0)	No
		Output pin for timer flip-flop	TA1OUT (shared with PC1)	TA3OUT (Shared with PC5)
\sim		Timer run register	TA01RUN (1100H)	TA23RUN (1108H)
	SFR	Timer register	TA0REG (1102H) TA1REG (1103H)	TA2REG (110AH) TA3REG (110BH)
	(Address)	Timer mode register	TA01MOD (1104H)	TA23MOD (110CH)
		Timer flip-flop control register	TA1FFCR (1105H)	TA3FFCR (110DH)

3.7.1 Block Diagrams

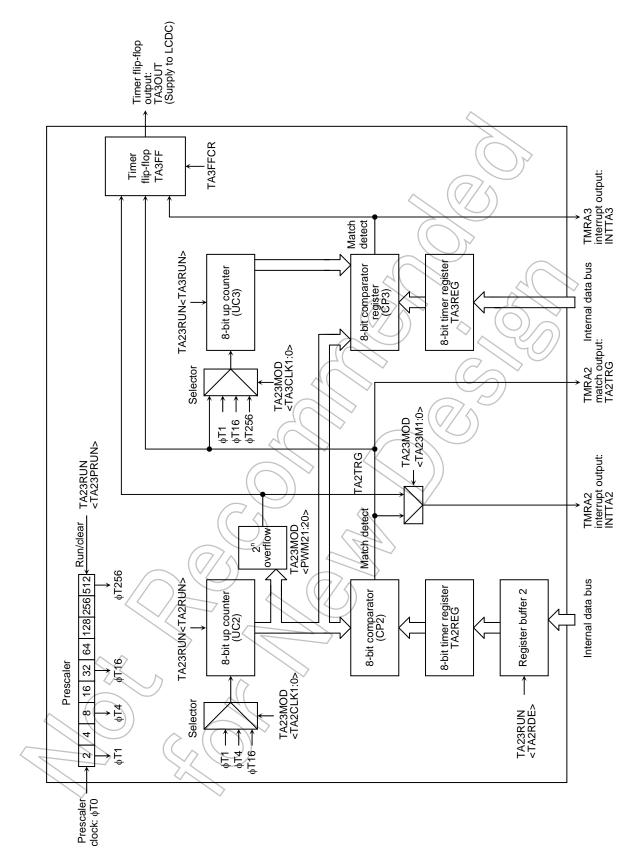


Figure 3.7.2 TMRA23 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The clock $\phi T0$ is divided into 8 by the CPU clock fsys and input to this prescaler.

The prescaler operation can be controlled using TA01RUN<TA01PRUN> in the timer control register. Setting <TA01PRUN> to "1" starts the count; setting <TA01PRUN> to "0" clears the prescaler to 0 and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

			•					
Clock gear selection SYSCR1	System clock selection SYSCR1	_	Timer counter input clock TMRA prescaler TAxMOD <taxclk1:0></taxclk1:0>					
<gear2:0></gear2:0>	<sysck></sysck>		φT1(1/2)	φT4(1/8)	φT16(1/32)	♦ T256(1/512)		
-	1 (fs)		fs/16	fs/64	fs/256	fs/4096		
000 (1/1)			fc/16	fc/64	fc/256	fc/4096		
001 (1/2)		1/8	fc/32	fc/128	fc/512	fc/8192		
010 (1/4)	0 (fc)	170	fc/64	fc/256	fc/1024	fc/16384		
011 (1/8)]		fc/128	fc/512	fc/2048	fc/32768		
100 (1/16)			fc/256	fc/1024	fc/4096	fc/65536		

					~
Table 3.7.2	Drescalar	Output	Clock	Posolution	. 1
	FIESCALE	Ouldu	CIUCK		_

(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

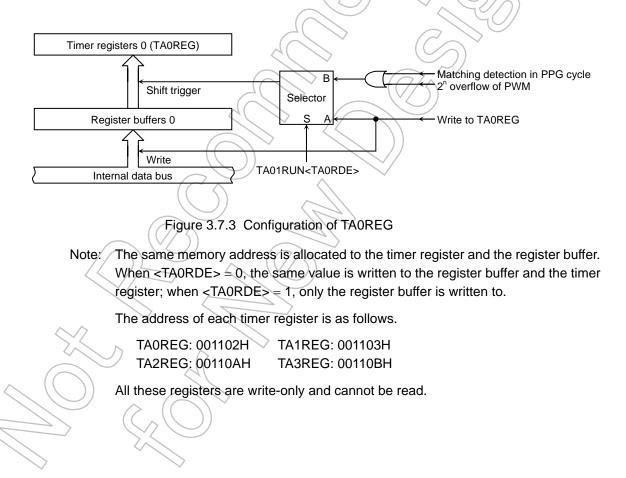
The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks ϕ T1, ϕ T4 or ϕ T16. The clock setting is specified by the value set in TA01MOD<TA01CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16, or ϕ T256, or the comparator output (The match detection signal) from TMRA0.

For each interval timer the timer operation control register bits

TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

(3) Timer registers (TA0REG and TA1REG)


These are 8-bit registers, which can be used to set a time interval. When the value set in the timer register TAOREG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes active. If the value set in the timer register is 00H, the signal goes active when the up counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if <TA0RDE> = "0" and enabled if <TA0RDE> = "1".

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A reset initializes <TA0RDE> to "0", disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to "1", and write the following data to the register buffer Figure 3.7.3 show the configuration of TA0REG.

(4) Comparator (CP0)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to zero and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

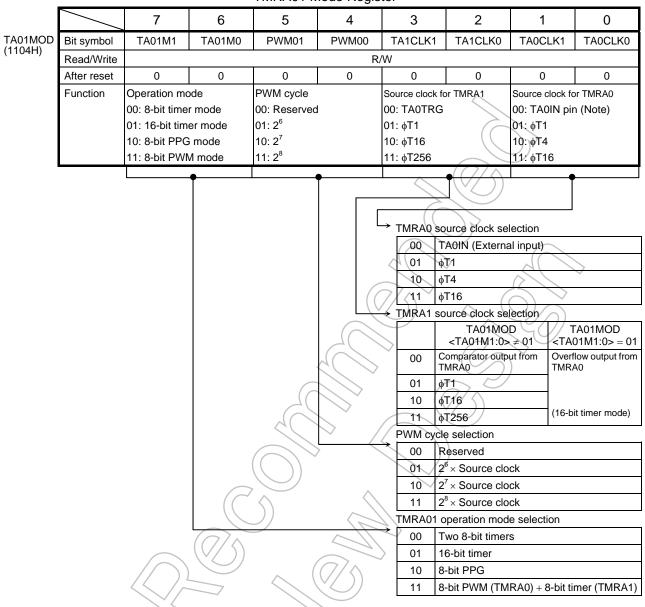
The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer. Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flops control register.

A reset clears the value of TA1FF to "0". Writing "01" or "10" to TA1FFCR<TA1FFC1:0> sets TA1FF to 0 or 1. Writing "00" to these bits inverts the value of TA1FF (this is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (which can also be used as PC1). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port C function register PCFC.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

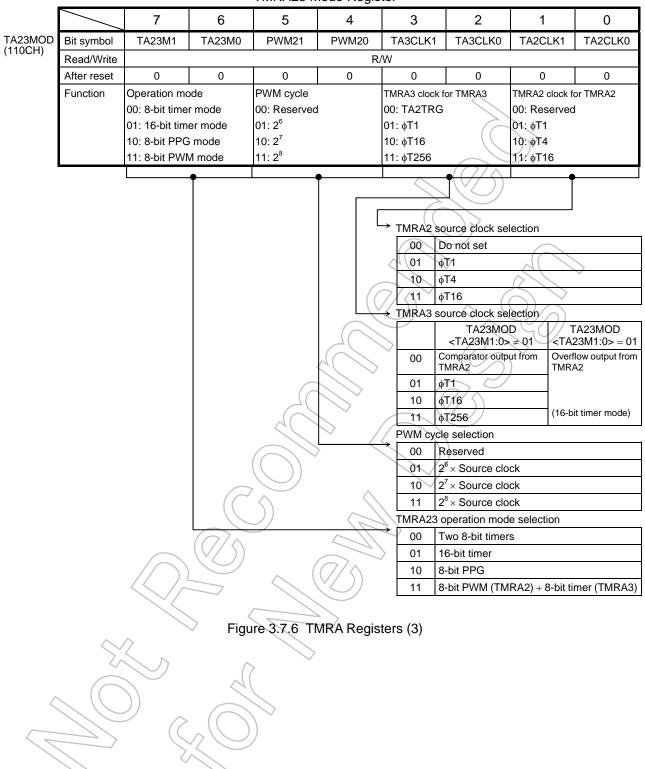
If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

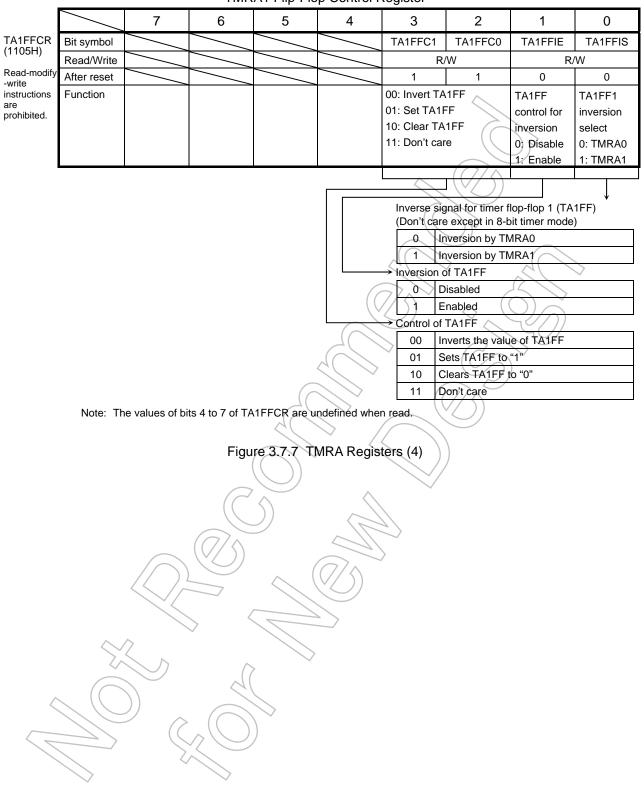

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ($f_{SYS} \times 6$) before the next overflow occurs by using an overflow interrupt.

When using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.

Example when using PWM mode Match between TAOREG and up-counter 2ⁿ overflow interrupt (INTTAO) TA1OUT TA1OUT Write new data to the register buffer before the next overflow occurs by using an overflow interrupt

3.7.3 SFRs



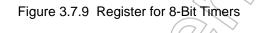

TMRA01 Mode Register

Note: When set TA0IN pin, must set TA01MOD after set port C.

Figure 3.7.5 TMRA Registers (2)

TMRA23 Mode Register

TMRA1 Flip-Flop Control Register



TMRA3 Flip-Flop Control Register

TMRA Register (TAUREG to TA3REG)												
Symbol	Address	7	6	5	4	3	2	1	0			
TA0REG	1102H		– W Undefined									
TA1REG	1103H		– W Undefined									
TA2REG	110AH		– W Undefined									
TA3REG	110BH		- W Undefined									

TMRA Register (TA0REG to TA3REG)

Note: Read-modify-write instruction is prohibited for above registers.

3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both timer 0 and timer 1 can be used independently as 8-bit interval timers.

1. Generating interrupts at a fixed interval (using TMRA1)

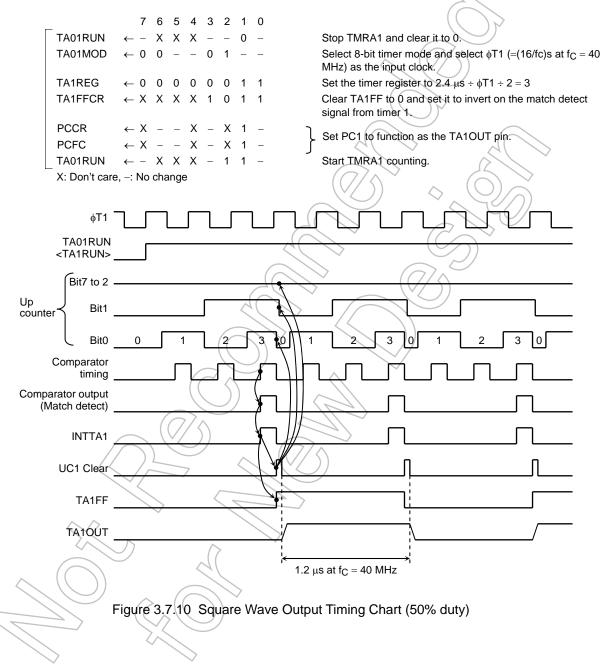
To generate interrupts at constant intervals using timer 1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 40 μ s at f_C = 40 MHz, set each register as follows:

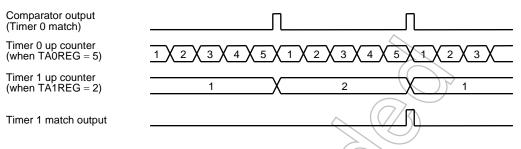
MSB LSB 7 6 5 4 3 2 0 1 TA01RUN Stop TMRA1 and clear it to 0. Х Х Х 0 TA01MOD 0 Select 8-bit timer mode and select ϕ T1 (=(16/fc)s at f_C = 40 0 MHz) as the input clock. Set TA1REG to 40 μ s ÷ ϕ T1 = 100 = 64H TA1REG 0 1 1 0 0 0 0 INTETA01 ← X 1 0 1 Enable INTTA1 and set it to level 5. TA01RUN Start TMRA1 counting. $\leftarrow - \ X \ X \ X \ -$ 1 1 X: Don't care, -: No change

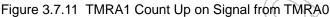
Select the input clock using Table 3.7.3

Input Clock	Interrupt Interval (at f _{SYS} = 20 MHz)	Resolution
φT1 (8/f _{SYS})	0.4 μs to 102.4 μs	0.4 μs
φT4 (32/f _{SYS})	1.6 μs to 409.6 μs	1.6 μs
φT16 (128/f _{SYS})	6.4 μs to 1.638 ms	6.4 μs
φT256 (2048/f _{SYS})	102.4 µs to 26.21 ms	102.4 μs


Note: The input clocks for TMRA0 and TMRA1 differ as follows:

TMRA0: Uses TMRA0 input (TA0IN) and can be selected from ϕ T1, ϕ T4, or ϕ T16 TMRA1: Match output of TMRA0 (TA0TRG) and can be selected from ϕ T1, ϕ T16, ϕ T256


2. Generating a 50% duty ratio square wave pulse


The state of the timer flip-flop (TA1FF1) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 2.4 μ s square wave pulse from the TA1OUT pin at f_C = 40 MHz, use the following procedure to make the appropriate register settings. This example uses timer 1; however, either timer 0 or timer 1 may be used.

3. Making TMRA1 count up on the match signal from the TMRA0 comparator Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

(2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1. To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to 01.

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA1CLK1:0>. Table 3.7.4 shows the relationship between the timer (Interrupt) cycle and the input clock selection.

To set the timer interrupt interval, set the lower eight bits in timer register TA0REG and the upper eight bits in TA1REG. Be sure to set TA0REG first (as entering data in TA0REG temporarily disables the compare, while entering data in TA1REG starts the compare).

Example: To generate an INTTA1 interrupt every 0.4 s at $f_c = 40$ MHz, set the timer registers TA0REG and TA1REG as follows:

If ϕ T16 (=(256/fc)s at f_{SYS} = 20 MHz) is used as the input clock for counting, set the following value in the registers: 0.4 s +=(256/fc)s = 62500 = F424H; e.g., set TA1REG to F4H and TA0REG to 24H.

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not be cleared.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparator TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

Example: When TA1REG = 04H	and TA0REG	= 80H	$\langle \overline{\mathcal{O}} \rangle$		
Value of up counter (UC1, UC0)	0080H	0180H	0280H 0380H	0480H	0080H
TMRA0 comparator match detect signal					
TMRA1 comparator					
match detect signal Interrupt INTTA0					\checkmark
		$(\bigcirc$	\sim	(h)	>
Interrupt INTTA1				Sto))
Timer output TA1OUT	(100		Invers	ion
	41				
		\searrow	$\overline{\Omega}$		
Figure 3.7.12	Timer Outpu	it by 16-B	it Timer Mode		

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used. TMRA0 outputs pulses on the TA1OUT pin (which can also be used as PC1).

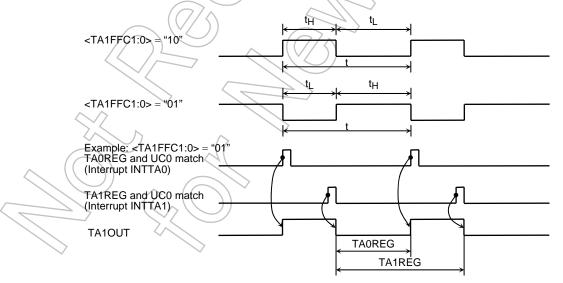


Figure 3.7.13 8-Bit PPG Output Waveforms

In this mode a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode,

TA01RUN<TA1RUN> should be set to "1" so that UC1 is set for counting.

Figure 3.7.14 shows a block diagram representing this mode.

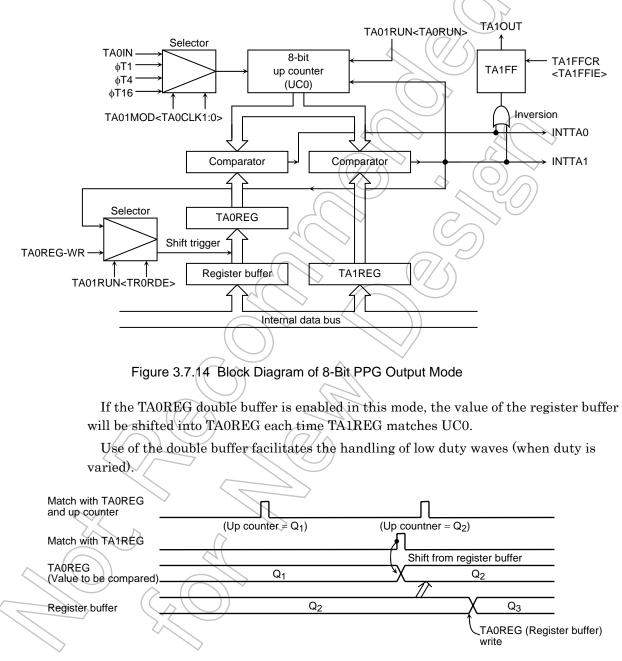
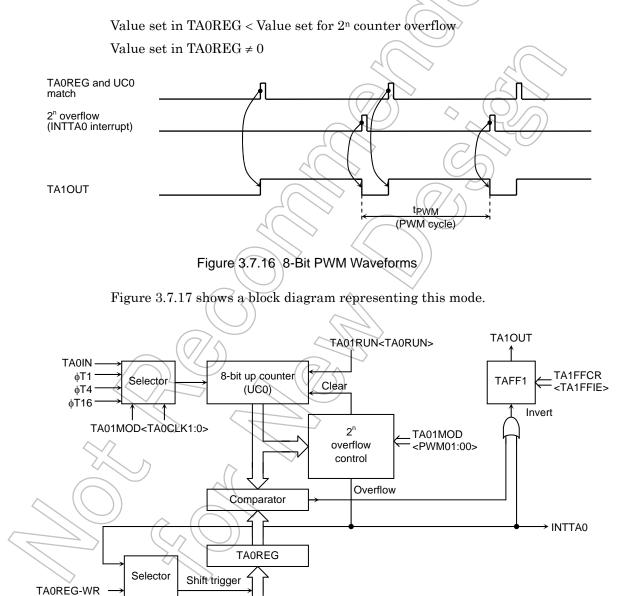


Figure 3.7.15 Operation of Register Buffer

Example: To generate 1/4 duty 62.5 kHz pulses (at $f_C = 40$ MHz): 16 μs Calculate the value which should be set in the timer register. To obtain a frequency of 62.5 kHz, the pulse cycle t should be: t = 1/62.5 kHz = 16 μ s ϕ T1 (=(16/fc)) (at f_C = 40 MHz); $16 \ \mu s \ \div (16/fc)s = 40$ Therefore set TA1REG to 40 (28H) The duty is to be set to 1/4: t \times 1/4 = 16 μs \times 1/4 = 4 μs 4 μs ÷ (16/fc)s = 10 Therefore, set TA0REG = 10 = 0AH. 7 6 5 4 3 2 1 0 TA01RUN Stop TMRA0 and TMRA1 and clear it to "0". $\leftarrow 0 X X X -$ 0 0 0 Set the 8-bit PPG mode, and select ϕ T1 as input clock. TA01MOD 1 0 _ _ _ _ 0 1 **TAOREG** $(0 \ 0 \ 0 \ 0 \rightarrow 0)$ 1 0 1 0 Write 0AH TA1REG $\leftarrow 0 \quad 0 \quad 1 \quad 0 \quad 1$ Write 28H 0 0 0 Set TA1FF, enabling both inversion and the double buffer. TA1FFCR $\leftarrow X \quad X \quad X \quad X \quad X$ 0 1 1 10 generates a negative logic pulse. PCCR X 1 – ← X – Х _ Set PC1 as the TA1OUT pin. PCFC $\leftarrow \mathsf{X} - - \mathsf{X} \rightarrow$ – X 1 _ TA01RUN $\leftarrow 1 X X X - 1 1 1$ Start TMRA0 and TMRA1 counting. X: Don't care, -: No change

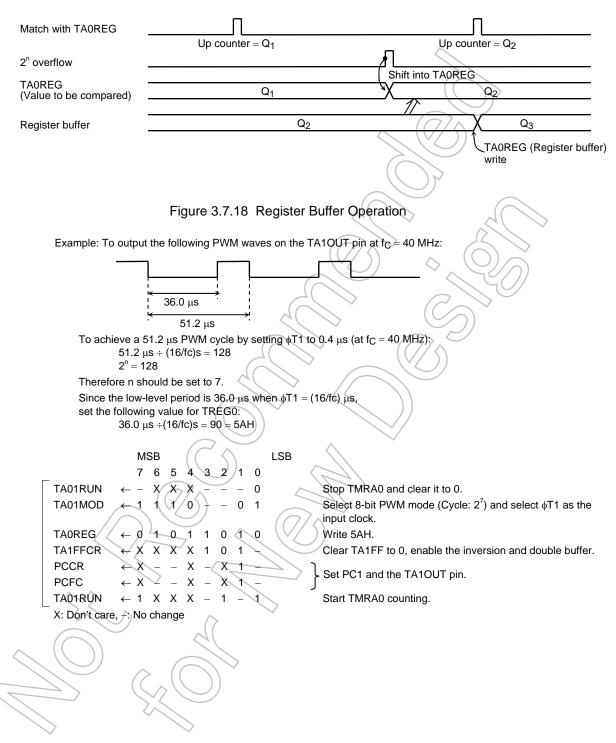

(4) 8-bit PWM output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as PC1). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.


Register buffer

Internal data bus

TA01RUN<TA0RDE>

In this mode the value of the register buffer will be shifted into TAOREG if 2^n overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

				PWM cycle								
Clock gear	System clock			TAxxMOD <pwmx1:0></pwmx1:0>								
SYSCR1	SYSCR0	-		2 ⁶ (x64)			2 ⁷ (x128)			2 ⁸ (x256)		
<gear2:0></gear2:0>	<sysck></sysck>		TAxxMOD <taxclk1:0></taxclk1:0>			TAxxN	TAxxMOD <taxclk1:0></taxclk1:0>			TAxxMOD <taxclk1:0></taxclk1:0>		
			φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	φT1(x2)	φT4(x8)	φT16(x32)	
-	1(fs)		1024/fs	4096/fs	16384/fs	2048/fs	8192/fs	32768/fs	4096/fs	16384/fs	65536/fs	
000(x1)			1024/fc	4096/fc	16384/fc	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	
001(x2)		×8	2048/fc	8192/fc	32768/fc	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	
010(x4)	0(fc)	×0	4096/fc	16384/fc	65536/fc	8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	
011(x8)			8192/fc	32768/fc	131072/fc	16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	
100(x16)]		16384/fc	65536/fc	262144/fc	32768/fc	131072/fc	524288/fc	65536/fc	262144/fc	1048576/fc	

Table 3.7.4 PWM Cycle

(5) Mode setting

Table 3.7.5 shows the SFR settings for each mode.

			io cotting rogio		
Register Name		TA01I	MOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	<ta1ffis></ta1ffis>
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00		Lower timer match,	External clock,	0: Lower timer output 1: Upper timer output
16-bit timer mode	01			External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PPG × 1 channel	10			External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	0 -	External clock, φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit timer × 1 channel	11		¢T1,	_	Output disabled

Table 3.7.5 Tim	er Mode Setting Registers
-----------------	---------------------------

-: Don't care

3.8 External Memory Extension Function (MMU)

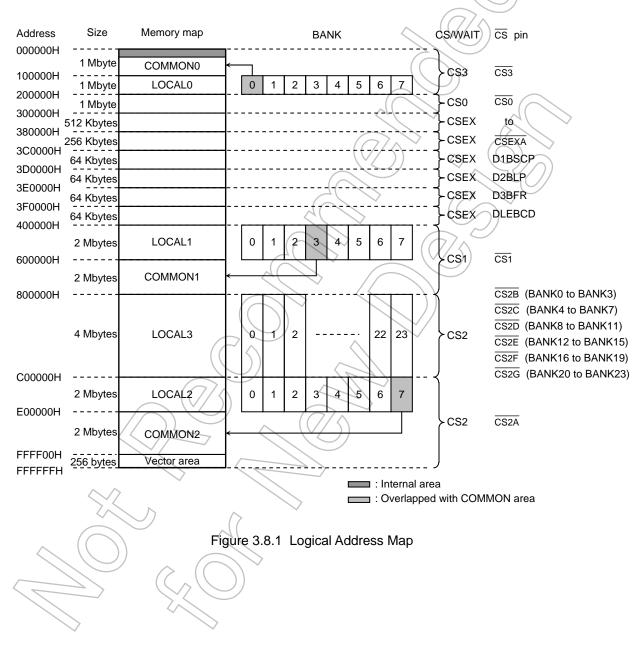
This is MMU function which can expand program/data area to 136 Mbytes by having 4 local area.

Address pins to external memory are 2 extended address bus pins (EA24, EA25) and 8 extended chip select pins ($\overline{CS2A}$ to $\overline{CS2G}$ and \overline{CSEXA}) in addition to 24 address bus pins (A0 to A23) which are common specification of TLCS-900/H1 and 4 chip select pins ($\overline{CS0}$ to $\overline{CS3}$) output from MEMC.

 \sim

The feature and the recommendation setting method of two types are shown below. In addition, AH in the table is the value which number address 23 to 16 displayed as hex.

Purpose	Item	For Standard For Many Kinds Class Extended Memory Extended Memory				
Dramman DOM	Marian and an and a size					
Program ROM	Maximum memory size	2 Mbytes: COMMON2 + 14 Mbytes: BANK (16 Mbytes × 1 pcs)				
	Used local area, BANK number	LOCAL2 (AH = C0 to DF: 2 Mbytes × 7 BANK)				
	Setting MEMC	Setup AH = "80 to FF" to CS2				
	Used CS pin					
Data ROM	Maximum memory size	96 Mbytes (16 Mbytes × 6 pcs)				
	Used local area, BANK number	LOCAL3 (AH = 80 to BF: 4 Mbytes × 24 BANK)				
	Setting MEMC	Setup AH = "80 to FF" to CS2				
	Used CS pin	CS2B, CS2C, CS2D, CS2E, CS2F, CS2G				
Data SDRAM*	Maximum memory size	2 Mbytes: COMMON1 + 14 Mbytes: BANK (16 Mbytes × 1 pcs)				
	Used local area, BANK number	LOCAL1 (AH = 40 to 5F: 2 Mbytes \times 7 BANK)				
	Setting MEMC	Setup AH = "40 to 7F" to CS1				
	Used CS pin	CS1				
Data RAM	Maximum memory size	1 Mbyte: COMMON0 + 7 Mbytes: BANK (8 Mbytes × 1 pcs)				
	Used local area, BANK number	LOCAL0 (AH = 10 to 1F: 1 Mbyte × 7 BANK)				
	Setting MEMC	Setup AH = "00 to 1F" to CS3				
	Used CS pin	CS3				
Extended memory 1	Maximum memory size	1 Mbyte (1 Mbyte × 1 pcs)				
	Used local area, BANK number	None				
	Setting MEMC	Setup AH = "20 to 2F" to CS0				
	Used CS pin	CSO				
Extended memory 2	Maximum memory size	256 Kbytes (256 Kbytes × 1 pcs)				
	Used local area, BANK number	None				
	Setting MEMC	Setup AH = "30 to 3F" to CSEX				
	Used CS pin	CSEXA				
Extended memory 3	Maximum memory size	256 Kbytes (64 Kbytes × 4 pcs)				
(Direct address assigned	Used local area, BANK number	None				
built-in type LCD driver)	Setting MEMC	Setup AH = "30 to 3F" to CSEX				
	Used CS pin	D1BSCP, D2BLP, D3BFR, DLEBCD				
Extended memory 4	Maximum memory size	512 Kbytes				
	Used local area, BANK number	None				
	Setting MEMC	Setup AH = "30 to 3F" to CSEX				
	Used CS pin	None				


*Note: SDRAM must be mapped in LOCAL1 area. It can't use other area.

3.8.1 Recommendable Memory Map

The recommendation logic address memory map at the time of variety extension memory correspondence is shown in Figure 3.8.1. And, a physical-address map is shown in Figure 3.8.2.

However, when memory area is less than 16 Mbytes and is not expanded, please refer to section of MEMC. Setting of register in MMU is not necessary.

Since it is being fixed, the address of a local-area cannot be changed. When SDRAM is used, must locate to LOCAL1 area.

TOSHIBA

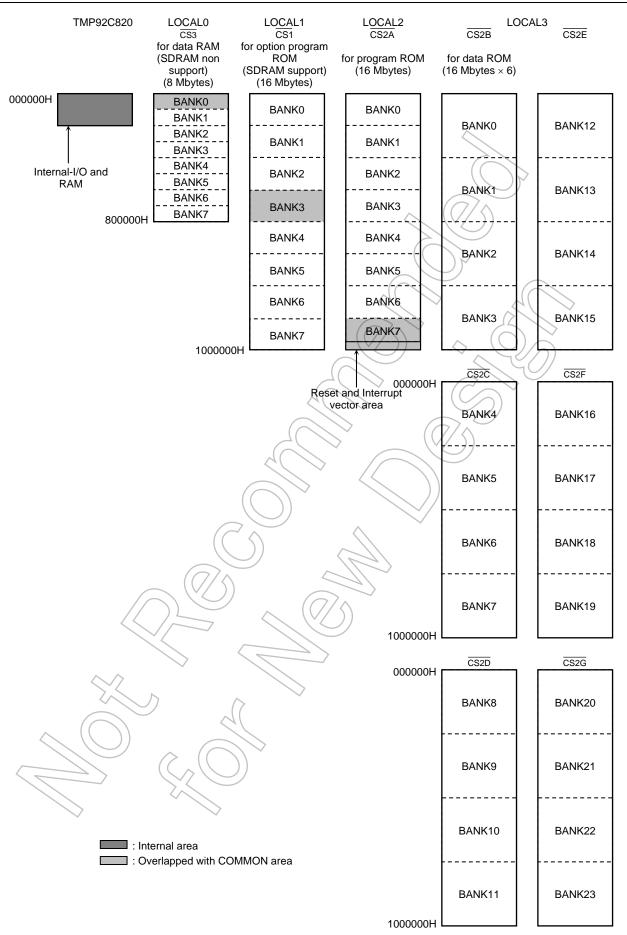
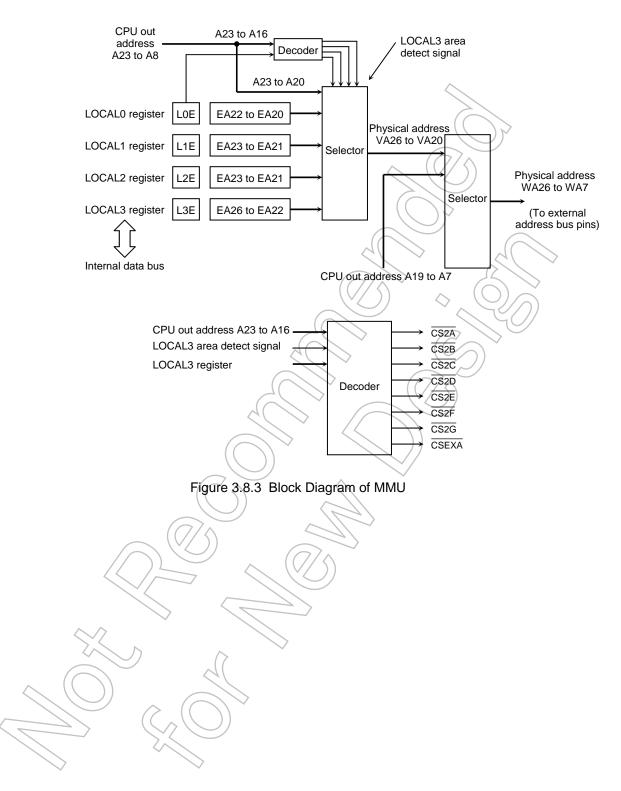



Figure 3.8.2 Physical Address Map

3.8.2 Block Diagram

3.8.3 Control Registers

				LOCAL	J Register					
		7	6	5	4	3	2	1	0	
LOCAL0	Bit symbol	L0E		/	\backslash		L0EA22	L0EA21	L0EA20	
(01D0H)	Read/Write	R/W	\sim	\backslash	\backslash		~	R/W		
	After reset	0	\sim	/	/		0	0	0	
	Function	Use BANK					Setting BA	NK number fo	or LOCAL0	
		for)7		
		LOCAL0 0: Not use						9		
		1: Use				\sim	$(// \uparrow)$			
		1.000								
LOCAL1 Register										
		7	6	5	4	3	2	t	0	
LOCAL1	Bit symbol	L1E	/			AL .	L1EA23	L1EA22	L1EA21	
(01D1H)	Read/Write	R/W		\backslash	\backslash	\downarrow		RAW		
	After reset	0			4		0	0	0	
	Function	Use BANK				\sum	Setting BA	NK number fo	or LOCAL1	
		for LOCAL1								
		0: Not use				\sim				
		1: Use			$\langle \langle \rangle \rangle$)		
				6	$\overline{\langle \rangle}$	()	7/~			
				LOCAL	2 Register		$\langle O \rangle$			
		7	6	5	4	3	2	1	0	
LOCAL2 (01D2H)	Bit symbol	L2E		\sim		$\overline{\lambda}$	L2EA23	L2EA22	L2EA21	
(010211)	Read/Write	R/W		$ \rightarrow $		\sim		R/W		
	After reset	0	$\overline{\mathcal{A}}$	\sim			0	0	0	
	Function	Use BANK))			Setting BA	NK number fo	or LOCAL2	
		for LOCAL2		\mathcal{I}	~/~	\sim				
		0: Disable	(//		\sim	>				
			$\langle \langle \rangle \rangle$			r				
		1: Enable		(Ω / Λ					
		1: Enable		\sim	<u> </u>					
		1: Enable		LOCAL	3 Register					
		1: Enable	6	LOCAL:	3 Register 4	3	2	1	0	
	Bit symbol		6			3 L3EA25	2 L3EA24	1 L3EA23	0 L3EA22	
LOCAL3 (01D3H)	Bit symbol Read/Write	7	6		4					
LOCAL3 (01D3H)	Read/Write After reset	7 L3E R/W 0	6		4 L3EA26	L3EA25 0	L3EA24 R/W 0	L3EA23 0		
LOCAL3 (01D3H)	Read/Write	7 L3E R/W 0 Use BANK	6		4 L3EA26 0 00000 to 000	L3EA25 0 11 CS2B 00	L3EA24 R/W 0 100 to 00111	L3EA23 0 CS2C	L3EA22	
LOCAL3 (01D3H)	Read/Write After reset	7 L3E R/W 0 Use BANK for	6		4 L3EA26 0 00000 to 000 01000 to 010	L3EA25 0 11 CS2B 00 11 CS2D 01	L3EA24 R/W 0 100 to 00111 0 100 to 01111 0	L3EA23 0 CS2C CS2E	L3EA22	
LOCAL3 (01D3H)	Read/Write After reset	7 L3E R/W 0 Use BANK for LOCAL3			4 L3EA26 0 00000 to 000 01000 to 010 10000 to 100	L3EA25 0 11 CS2B 00 11 CS2D 01 11 CS2F 10	L3EA24 R/W 0 100 to 00111 0 100 to 01111 0 100 to 10111 0	L3EA23 0 CS2C CS2E	L3EA22	
LOCAL3 (01D3H)	Read/Write After reset	7 L3E R/W 0 Use BANK for			4 L3EA26 0 00000 to 000 01000 to 010 10000 to 100	L3EA25 0 11 CS2B 00 11 CS2D 01	L3EA24 R/W 0 100 to 00111 0 100 to 01111 0 100 to 10111 0	L3EA23 0 CS2C CS2E	L3EA22	

Figure 3.8.4 MMU Control Register

3.8.4 Operational Description

Setup bank value and bank use in bank setting register of each local area of LOCAL register in common area. Moreover, in that case, a combination pin is set up and the MEMC simultaneously sets up mapping. When CPU outputs logical address of the local area, MMU outputs physical address to the outside pin according to value of bank setting register. Access of external memory becomes possible therefore.

Common area located in each local area should be passed surely when changing BANK. For example, when the program jump BANK0 of LOCAL2 to BANK6, please jump from BANK0 to COMMON2 once and afterwards jump to BANK6.

Please do not use as bank that overlaps with another bank since this common area overlaps with either of eight banks of local area on the physical map.

Example program is as next page follows.

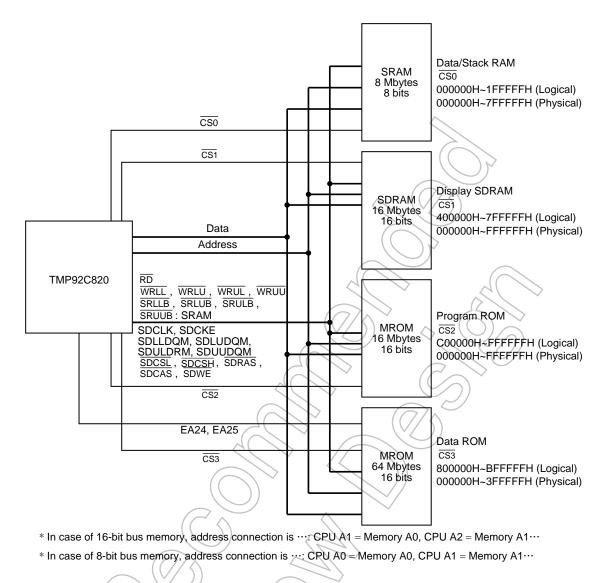


Figure 3,8.5 H/W Setting Example

At, Figure 3.8.5 it shows example of connection TMP92C820 and some memories: Program ROM: MROM, 16 Mbytes, Data ROM: MROM, 64 Mbytes, Data RAM of 8-bit bus: SRAM, 8 Mbytes, Display RAM: SDRAM, 16 Mbytes.

In case of 16-bit bus memory connection, it needs to shift 1-bit address bus from TMP92C820 and 8-bit bus case, direct connection address bus from TMP92C820.

In that figure, logical address and physical address are shown. And each memory allot each chip select signal, RAM: $\overline{CS0}$, SDRAM: $\overline{CS1}$, Program MROM: $\overline{CS2}$, Data MROM: $\overline{CS3}$. In case of this example, as data MROM is 64 Mbytes, this MROM connect to EA24 and EA25.

Initial condition after reset, because TMP92C820 access from $\overline{CS2}$ area, $\overline{CS2}$ area allots to program ROM. It can set free setting except program ROM.

; Initial Setting

TMP92C820

; CS0	0		
	LD	(MSAR0), 00H	; Logical address area: 000000H to 1FFFFFH
	LD	(MAMR0), FFH	; Logical address size: 2 Mbytes
	LD	(B0CSL), 22H	; Condition: WR 3 states (1 wait), RD 3 states (1 wait)
	LD	(B0CSH), 80H	; SRAM, 8 bits
; CS1 ; CS2	LD LD LD LD	(MSAR1), 40H (MAMR1), FFH (B1CSL), 11H (B1CSH), 8DH	; Logical address area: 400000H to 7FFFFFH ; Logical address size: 4 Mbytes ; Condition: WR 2 states (0 waits) RD 2 states (0 waits) ; Condition: SDRAM, 16 bits
; CS3	LD	(MSAR2),C0H	; Logical address area: C00000H to FFFFFH
	LD	(MAMR2), 7FH	; Logical address size: 4 Mbytes
	LD	(B2CSL), 11H	; Condition: WR 2 states (0 waits) RD 2 states (0 waits)
	LD	(B2CSH), 0C1H	; Condition: ROM, 16 bits
; CSX	LD	(MSAR3), 80H	; Logical address area: 800000H to BFFFFH
	LD	(MAMR3), 7FH	; Logical address size: 4 Mbytes
	LD	(B3CSL), 66H	; Condition: WR 5 states (3 waits), RD 5 states (3 waits)
	LD	(B3CSH), 81H	; Condition: ROM,16 bits
; Port	LD	(BEXCSL), 11H	; Condition: WR 2 states (0 waits), RD 2 states (0 waits)
	LD	(BEXCSH), 01H	; Condition: 16 bits
~	LD	(P8FC), 3FH	; $\overline{CS0}$ to $\overline{CS3}$, EA24, EA25: port 8 setting
	LD	(P8FC2), 02H	; $\overline{CS1} \rightarrow \overline{SDCSL}$ setting
~	LDW LD LD	(P7CR), 1F1FH (PJFC), 0FFH (SDACR), 083H	; WRUU, WRUL, WRLU, WRLL, RD ; PJ<7:0> = SDRAM control ; Add-MUX select type B, SDRAM, auto init enable SDRAM setup time
	LD	(SDRCR), 01H	; Interval refresh

Figure 3.8.6 Bank Operation S/W Example 1

Secondly, it shows example of initial setting at Figure 3.8.6.

Because $\overline{\text{CS0}}$ connect to RAM: 8-bit bus, 8 Mbytes, it need to set 8-bit bus. At this example, it set 3 states setting. In the same way $\overline{\text{CS1}}$ set to 16-bit bus and 2 states, $\overline{\text{CS2}}$ set 16-bit bus and 2 states, $\overline{\text{CS3}}$ set 16-bit bus and 5 states.

By MEMC controller, each chip selection signal's memory size, don't set actual connect memory size, need to set that logical address size: fitting to each local area. Actual physical address is set by each area's BANK register setting.

CSEX setting of MEMC is except above CS0 to CS3's setting. This program example isn't used CSEX setting.

Finally pin condition is set. Ports 80 to 85 set to $\overline{CS0}$, $\overline{CS1}$, $\overline{CS2}$, $\overline{CS3}$, EA24, EA25, and SDRAM condition.

	Dperation CS2 *****	i i
I, IORG	000000H	; Program ROM: Start address at BANK0 of LOCAL2
I ORG	200000H	; Program ROM: Start address at BANK1 of LOCAL2
I ORG	400000H	; Program ROM: Start address at BANK2 of LOCAL2
I ORG	600000H	; Program ROM: Start address at BANK3 of LOCAL2
ORG	800000H	; Program ROM: Start address at BANK4 of LOCAL2
ORG	a00000H	; Program ROM: Start address at BANK5 of LOCAL2
ORG	c00000H	; Program ROM: Start address at BANK6 of LOCAL2
i		
I ORG	E00000H	; Program ROM: Start address at BANK7
1		(= COMMON2) of LOCAL2
1		; Logical address E00000H to FFFFFFH
-		; Physical address 0E00000H to 0FFFFFFH
-	LD (LOCAL3), 85H	; LOCAL3 BANK5 set 14xxxxH
i	LDW HL, (800000H)	⊣; Load data (5555H) form BANK5
i		(140000H: Physical address) of LOCAL3 (CS3)
1	LD (LOCAL3), 88H	; LOCAL3 BANK8 set 20xxxxH
1	LDW BC, (800000H)-	; Load data (AAAAH) form BANK8
-		(200000H: Physical address) of LOCAL3 (CS3)
L~		
ORG	FFFFFH	; Program ROM: End address at BANK7
		(= COMMON2) of LOCAL2
г – – – – –		+
• /	CS3 ****	
I ORG	000000H	; Data ROM: Start address at BANK0 of LOCAL3
I ORG	0400000H	; Data ROM: Start address at BANK1 of LOCAL3
ORG	080000H	; Data ROM: Start address at BANK2 of LOCAL3
ORG	0C0000H	; Data ROM: Start address at BANK3 of LOCAL3
ORG	100000H	; Data ROM: Start address at BANK4 of LOCAL3
ORG	1400000H	; Data ROM: Start address at BANK5 of LOCAL3
1	dw 5555H	
	400000011	DOM CHARTER AND AN ICO AL O
	1800000H	; Data ROM: Start address at BANK6 of LOCAL3
	1C00000H	, Data ROM: Start address at BANK7 of LOCAL3
ORG	2000000H	; Data ROM: Start address at BANK8 of LOCAL3
1	dw AAAAH	
I~ IORG	2400000	; Data ROM: Start address at BANK9 of LOCAL3
	2400000H 2800000H	; Data ROM: Start address at BANK9 of LOCAL3 ; Data ROM: Start address at BANK10 of LOCAL3
I ORG	200000H	; Data ROM: Start address at BANK10 of LOCAL3
I ORG	3000000H	; Data ROM: Start address at BANK11 of LOCAL3
	3400000H	; Data ROM: Start address at BANK12 of LOCAL3
	3400000H	C: Data ROM: Start address at BANK13 of LOCAL3
	3C00000H	: Data ROM: Start address at BANK14 of LOCAL3
	3FFFFFFH	: Data ROM: End address at BANK15 of LOCAL3
/7		e 3.8.7 Bank Operation S/W Example 2

Figure 3.8.7 Bank Operation S/W Example 2

Here shows example of data access between one BANK and other BANK. Figure 3.8.7 is one software example. A dot line square area shows one memory and each dot line square shows $\overline{CS2}$'s program ROM and $\overline{CS3}$'s data ROM. Program start from E00000H address, firstly, write to BANK register of LOCAL3 area upper 5-bit address of access point.

In case of this example, because most upper address bit of physical address is EA25, most upper address bit of BANK register is meaningless. 4 bits of upper 5 bits address means 16 BANKs. After setting BANK5, accessing 800000H to BFFFFFH address: Logical LOCAL3 address, actually access to physical 1400000H to 1700000H address.

	Operation	ا
, ***** ORG	CS2 **** 000000H	; Program ROM: Start address at BANK0 of LOCAL2
ORG	200000H	; Program ROM: Start address at BANK1 of LOCAL2
 ~	NOP	; Operation at BANK1 of LOCAL2
1	JP E00100H	; Jump to BANK7 (= COMMON2) of LOCAL2
ORG	400000H	; Program ROM: Start address at BANK2 of LOCAL2
ORG	600000H NOP	; Program ROM: Start address at BANK3 of LOCAL2
 ~		
I I ORG	JP E00200H 800000H	; Jump to BANK7 (= COMMON2) of LOCAL2 ; Program ROM: Start address at BANK4 of LOCAL2
I ORG	a00000H	; Program ROM: Start address at BANK5 of LOCAL2
ORG	c00000H	; Program ROM: Start address at BANK6 of LOCAL2
	gram Start !!!!	
I ORG	E00000H	; Program ROM: Start address at BANK7
i		(= COMMON2) of LOCAL2
1		; Logical address E00000H to FFFFFH ; Physical address 0E00000H to 0FFFFFFH
1	LD (LOCAL2), 81H	; LOCAL2 BANK1 set 20xxxxH
1	JP C00000H	; Jump to BANK1 (200000H: Physical address) of LOCAL2
	E00100H ←	
I	LD (LOCAL2), 83H	; LOCAL2 BANK3 set 60xxxxH
1	JP C00000H	; Jump to BANK3 (600000H: Physical address) of LOCAL2
· ~ • ORG	E00200H	
1	LD (LOCAL1), 00H	; Disable Bank!
i~	LD (LSARCH), 60H	; LCD display set ; C_area start address
1	LD (LSARCH), 00H	; C area start address
i	LD (LSARCL), 00H	C_area start address
	SET 0, (LCTCTL)	; LCD Display start
ORG	FFFFFH	; Program ROM: End address at BANK7 (= COMMON2) of LOCAL2
		······································
ſ <u></u> -	CS1 ****	
ORG	000000H	; SDRAM: Start address at BANK0 of LOCAL1
ORG	200000H	; SDRAM: Start address at BANK1 of LOCAL1
I ORG	400000H 600000H	; SDRAM: Start address at BANK2 of LOCAL1
	dl 01234567H	; display data
~ \ 		
ORG	800000H	; SDRAM: Start address at BANK4 of LOCAL1
ORG	a00000H	; SDRAM: Start address at BANK5 of LOCAL1
ORG	c00000	➢ ; SDRAM: Start address at BANK6 of LOCAL1
I ORG	E00000H FFFFFH	; SDRAM: Start address at BANK7 of LOCAL1 ; SDRAM: End address at BANK7 of LOCAL1

Figure 3.8.8 Bank Operation S/W Example 3

At Figure 3.8.8, it shows example of program jump.

In the same way with before example, two dot line squares show each $\overline{\text{CS2}}$'s program ROM and $\overline{\text{CS1}}$'s (SDCS) SDRAM. Program start from E00000H common address, firstly, write to BANK register of LOCAL2 area upper 3-bit address of jumping point.

After setting BANK1, jumping C00000H to DFFFFFH address: Logical LOCAL2 address, actually jump to physical 200000H to 3FFFFFH address. When return to common area, it can only jump to E00000H to FFFFFFH without writing to BANK register of LOCAL2 area.

By a way of setting of BANK register, the setting that BANK address and common address conflict with is possible. When two kinds or more logical addresses to show common area exist, management of BANK is confused. We recommended not to use the BANK setting, BANK address and common address conflict with.

Please set similarly when jumping through \overline{CS} .

After setting BANK4, jumping 400000H to 5FFFFFH address: Logical local area of $\overline{CS1}$, actually jump to physical 800000H to 9FFFFFH address.

When using LCD display data for SDRAM, we recommend setting display area to common area in SDRAM. Because of, LCD displays DMA occurs at synchronous less. If SDRAM bank is change; you don't need to care only common area. It is a mark paid attention to here, it needs to go by way of common area by all means when moves from a bank to a bank. In other words, it must write to BANK register only in common area and it prohibits writing the BANK registers in BANK area. If it modify the BANK register's data in BANK area, program run away. Please do not set bank function of MMU as display RAM. This is because reading LCDC display data is not controlled by the CPU. Therefore if BANK of display area is changed during LCD displaying, it cannot display. It is recommended to allocate display data to a common area.

3.9 Serial Channels (SIO)

The TMP92C820 includes three serial I/O channels. For each channel either UART mode (Asynchronous transmission) or I/O interface mode (Synchronous transmission) can be selected. (Channel 2 can be selected only UART mode.)

•	I/O interface mode	Mode 0: For transmitting and receiving I/O data using
		the synchronizing signal SCLK for extending
		I/O.
		_Mode 1: 7-bit data
٠	UART mode	Mode 2: 8-bit data
		Mode 3: 9-bit data

In mode 1 and mode 2 a parity bit can be added. Mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (Multi-controller system).

Figure 3.9.2, Figure 3.9.3, and Figure 3.9.4 are block diagrams for each channel. Each channel can be used independently.

Each channel operates in the same fashion except for the following points; hence only the operation of channel 0 is explained below.

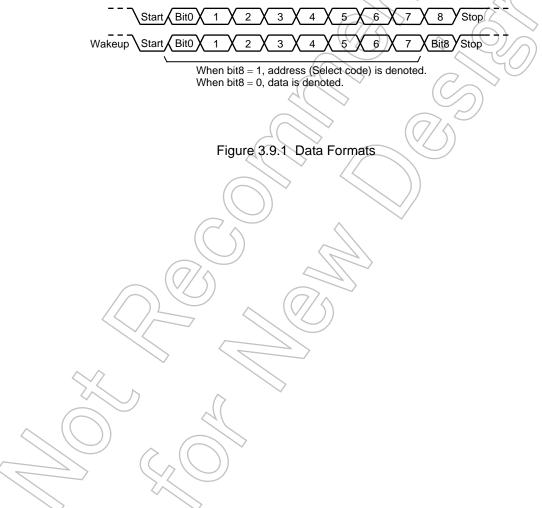
Table 3.9.1	Differences	between	Channels () to 2

	Channel 0	Channel 1	Channel 2
Pin name	TXD0 (PF0) RXD0 (PF1) CTS0 /SCLK0 (PF2)	TXD1 (PF3) RXD1 (PF4) CTS1/SCLK1 (PF5)	TXD2 (P95) RXD2 (P96)
IrDA mode	Yes	No	No

This chapter contains the following sections:

3.9.1 Block Diagrams


- 3.9.2 Operation for Each Circuit
- 3.9.3 SFRs
- 3.9.4 Operation in Each Mode
- 3.9.5 Support for IrDA


•

• Mode 0 (I/O interface mode)

• Mode 1 (7-bit UART mode)

3.9.1 Block Diagrams

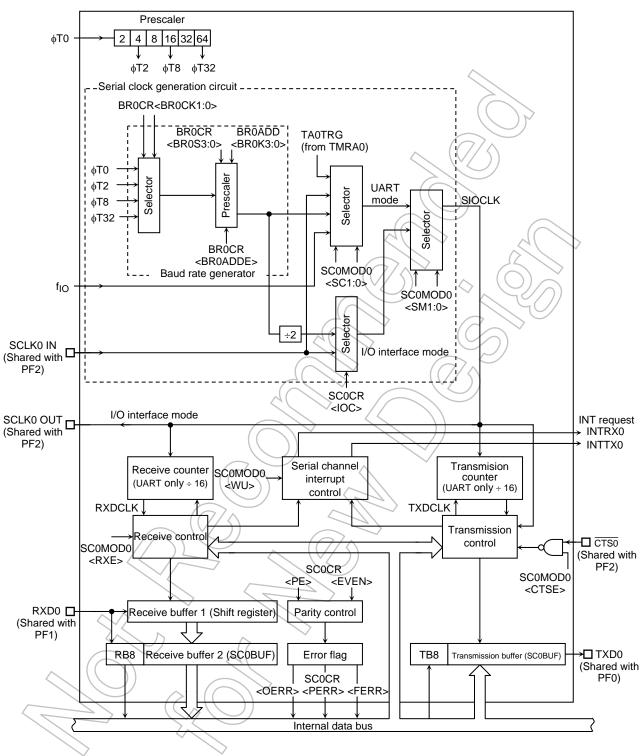
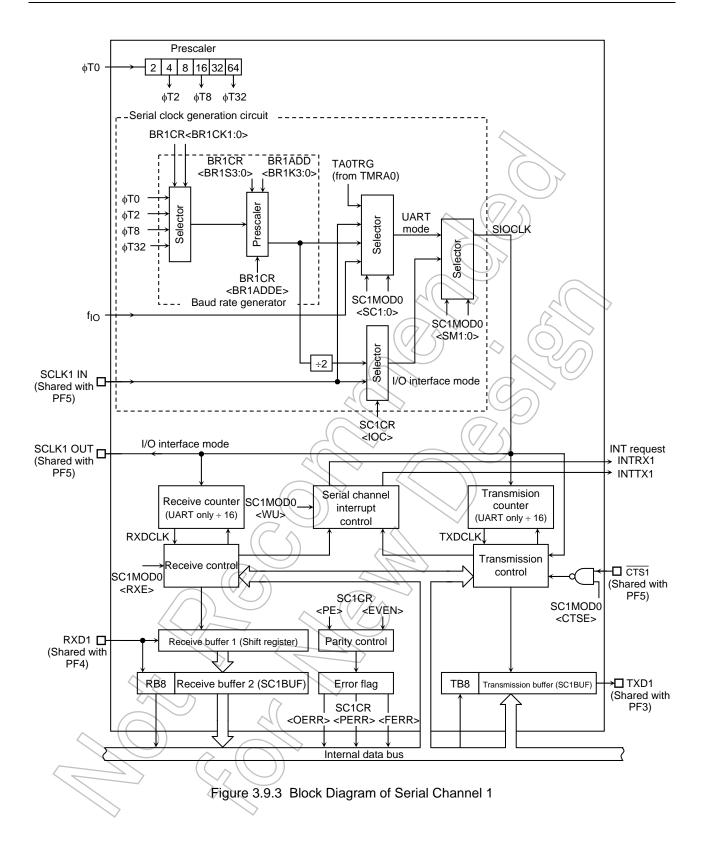
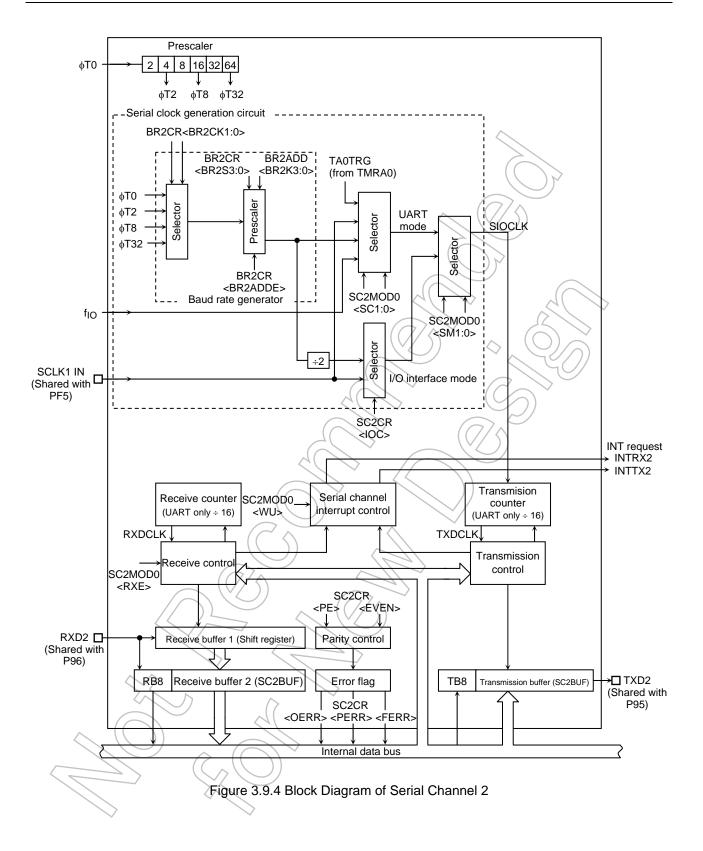




Figure 3.9.2 Block Diagram of Serial Channel 0

3.9.2 Operation for Each Circuit

(1) Prescaler, prescaler clock select

There is a 6-bit prescaler for waking serial clock.

The prescaler can be run by selecting the baud rate generator as the waking serial clock. Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

_	Clock gear selection SYSCR1	_	Bau	d rate gener SIO pre BR0CR <bi< th=""><th>escaler</th><th>lock</th></bi<>	escaler	lock
	<gear2:0></gear2:0>		φ Τ0	φT2(1/4)	φT8(1/16)	φT32(1/64)
	000(1/1)		fc/8	fc/32	fc/128	fc/512
	001(1/2)		fc/16	fc/64	fc/256	fc/1024
fc	010(1/4)	1/8	fc/32	fc/128	fc/512	fc/2048
-	011(1/8)		fc/64	fc/256	fc/1024	fc/4096
	100(1/16)		fc/128	fc/512	fc/2048	fc/8192

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator	Table 3.9.2	Prescaler C	Clock Resolution	to Baud Rate	Generator
---	-------------	-------------	------------------	--------------	-----------

The baud rate generator selects between 4 clock inputs: $\phi T0$, $\phi T2$, $\phi T8$, and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit which generates transmission and receiving clocks that determine the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$, or $\phi T32$, is generated by the 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 or 16 values, thereby determining the transfer rate.

The transfer rate is determined by the settings of BROCR<BROADDE, BROS3:0> and BROADD<BROK3:0>.

- In UART mode
- (1) When BROCR < BROADDE > = 0

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3:0>. (N = 1, 2, 3...16)

(2) When BR0CR < BR0ADDE > = 1

The N + (16 – K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 – K)/16 using the value of N set in BR0CR<BR0S3:0> (N = 2, 3...15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3...5)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR0CR<BR0ADDE> to 0.

In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O interface mode. Set BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

In UART mode

Baud rate = Input clock of baud rate generator Frequency divider for baud rate generator ÷ 16

- In I/O interface mode
 - Baud rate = Input clock of baud rate generator Frequency divider for baud rate generator ÷ 2

• Integer divider (N divider)

* Clock state

For example, when the source clock frequency (f_C) is 39.3216 MHz, the input clock is ϕ T2 (f_C/32), the frequency divider N (BR0CR<BR0S3:0>) = 8, and BR0CR<BR0ADDE> = 0, the baud rate in UART mode is as follows:

1/1 (f_C)

Baud rate =
$$\frac{f_{C}/32}{8} \div 16$$

= 39.3216 × 10⁶ ÷ 16 ÷ 8 ÷ 16 = 9600 (bps)

Clock gear:

- Note: The N + (16 K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.
- N + (16 K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (f_C) = 31.9488 MHz, the input clock is ϕ T2 (f_C/32), the frequency divider N (BR0CR<BR0S3:0>) = 6, K (BR0ADD<BR0K3:0>) = 8, and BR0CR<BR0ADDE> = 1, the baud rate in UART mode is as follows:

1/1 (fc)

* Clock state Clock gear:

Baud rate =
$$\frac{f_C/32}{6 + \frac{(16 - 8)}{16}}$$
 ÷ 16
= 31.9488 × 10⁶ ÷ 16 ÷ (6 + $\frac{8}{16}$) ÷ 16 = 9600 (bps)

Table 3.9.3 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock (Serial channels 0 and 1). The method for calculating the baud rate is explained below:

• In UART mode

Baud rate = External clock input frequency ÷ 16

- It is necessary to satisfy (External clock input cycle) $\ge 4/f_{SYS}$
- In I/O interface mode

Baud rate = External clock input frequency

It is necessary to satisfy (External clock input cycle) $\geq 16/f_{SYS}$

	(When baud rate generator is used	and BR0CR <br< th=""><th>ROADDE > = 0)</th><th></th><th>Unit (kb</th></br<>	ROADDE > = 0)		Unit (kb
f _{SYS} [MHz]	Input Clock Frequency Divider	φΤ0 (f _{SYS} /4)	φT2 (f _{SYS} /16)	фТ8 (f _{SYS} /64)	фТ32 (f _{SYS} /256)
9.8304	2	76.800	19.200	4.800	1.200
\uparrow	4	38.400	9.600	2.400	0.600
\uparrow	8	19.200	4.800	1.200	0.300
\uparrow	10	9.600	2.400	0.600	0.150
12.2880	5	38.400	9.600	2.400	0.600
\uparrow	А	19.200	4.800	1,200	0.300
14.7456	2	115.200	28.800	7.200	1.800
\uparrow	3	76.800	19.200	4.800	1.200
↑	6	38.400	9.600	2.400	0.600
↑	С	19.200	4.800	1.200	0.300
19.6608	1	307.200 <	76.800	19.200 🔿	4.800
\uparrow	2	153.600	38.400	9.600	2.400
\uparrow	4	76.800	19.200	4.800	1.200
↑	8	38.400	9.600	2.400	0.600
↑	10	19.200	4.800	1.200	0.300
22.1184	3	115.200	28.800	7.200	1.800
24.5760	1	384.000	96.000	24.000	6.000
↑	2	192,000	48.000	12.000	3.000
\uparrow	4	96.000	24.000	6.000	1.500
\uparrow	5	76.800	19.200	4.800	1.200
↑	8	48.000	12.000	3.000	0.750
\uparrow	A	38.400	9.600	2.400	0.600
\uparrow	10 ())	24.000	6.000	1.500	0.375

Note: Transfer rates in I/O interface mode are eight times faster than the values given above.

In UART mode, TMRA match detect signal (TA0TRG) can be used for serial transfer clock.

Method for calculating the timer output frequency which is needed when outputting trigger of timer

TA0TRG frequency = Baud rate \times 16

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O Interface mode.

- (3) Serial clock generation circuit
 - This circuit generates the basic clock for transmitting and receiving data.
 - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SCOCR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SCOCR<SCLKS> register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clock, the internal clock f_{IO}, the match detect signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode, which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times—on the 7th, 8th, and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

(5) Receiving control

• In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the RXD0 signal is sampled on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SCOCR < SCLKS > setting.

In SCLK input mode with the setting SCOCR<IOC> = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SCOCR<SCLKS> setting.

In UART mode

The receiving control block has a circuit, which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double-buffer structure. Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC0BUF); this causes an INTRX0 interrupt to be generated.

The CPU only reads receiving buffer 2 (SC0BUF). Even before the CPU reads receiving buffer 2 (SC0BUF), the received data can be stored in receiving buffer 1.

However, unless receiving buffer 2 (SC0BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC0CR<RB8> will be preserved.

SCOCR<RB8> is used to store either the parity bit-added in 8-bit UART mode-or the most significant bit (MSB) -in 9-bit UART mode.

In 9-bit UART mode the wakeup function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

SIO interrupt mode is selectable by the register SIMC.

(7) Transmission counter

The transmission counter is a 4-bit binary counter which is used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

SIOCLK 10 TXDCLK -

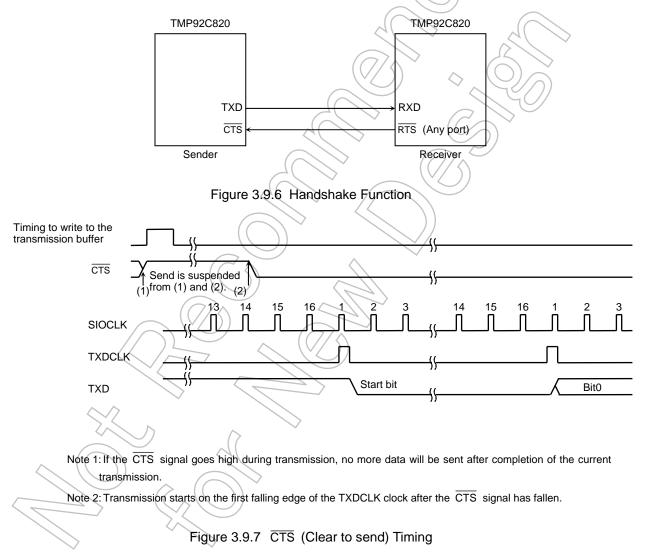
Figure 3.9.5 Generation of the Transmission Clock

- (8) Transmission controller
 - In I/O interface mode

In SCLK output mode with the setting SC0CR<IOC> = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SC0CR<SCLKS> setting.

In SCLK input mode with the setting SCOCR < IOC > = 1, the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SCOCR <SCLKS > setting.

In UART mode


When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

Serial channels 0, 1 each has a $\overline{\text{CTS}}$ pin. Use of this pin allows data can be sent in units of one frame; thus, overrun errors can be avoided. The handshake functions is enabled or disabled by the SCOMOD<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin goes high on completion of the current data send, data transmission is halted until the $\overline{\text{CTS0}}$ pin goes low again. However, the INTTX0 interrupt is generated, it requests the next data send to the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no $\overline{\text{RTS}}$ pin, a handshake function can be easily configured by setting any port assigned to be the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output "high" to request send data halt after data receive is completed by software in the RXD interrupt routine.

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU form the least significant bit (LSB) in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SCOBUF. The data is transmitted after the parity bit has been stored in SCOBUF<TB7> in 7-bit UART mode or in SCOMODO<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SCOBUF), and then compared with SCOBUF<RB7> in 7-bit UART mode or with SCOCR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SCOCR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun error is generated.

- (INTRX interrupt routine)
- (1) Read receiving buffer
- (2) Read error flag
- (3) If < OERR > = 1

then

- (a) Set to disable receiving (Write "0" to SC0MOD0<RXE>)
- (b) Wait to terminate current frame
- (c) Read receiving buffer
- (d) Read error flag
- (e) Set to enable receiving (Write "1" to SC0MOD0<RXE>)
- (f) Request to transmit again
- (4) Other
- 2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a parity error is generated. 3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

(12) Timing generation

- 1. In UART mode
 - Receiving

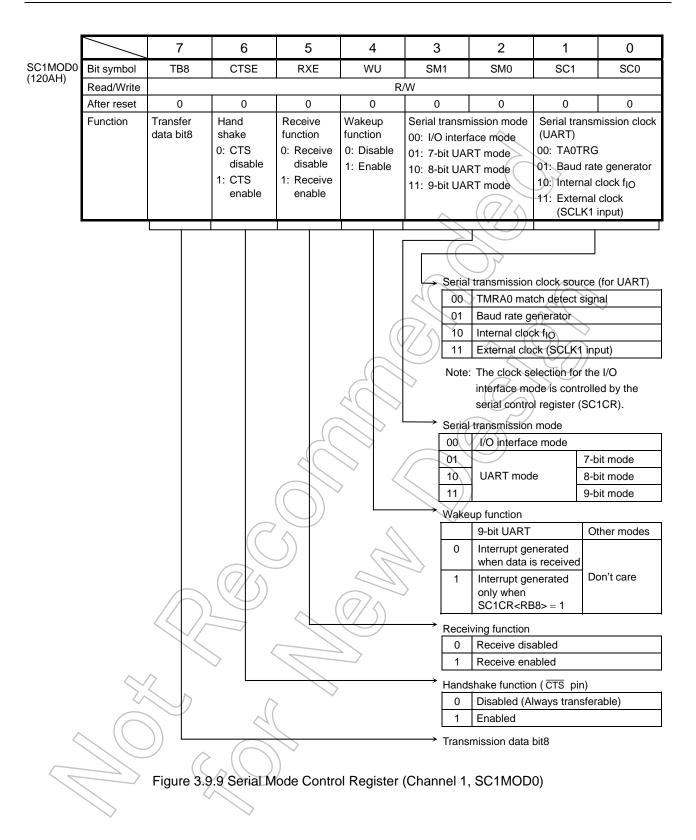
0			
Mode	9 Bits (Note)	8 Bits + Parity (Note)	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit
Framing error timing	Center of stop bit	Center of stop bit	Center of stop bit
Parity error timing	_	Center of last bit (Parity bit)	Center of stop bit
Overrun error timing	Center of last bit (Bit8)	Center of last bit (Parity bit)	Center of stop bit

Note1: In 9-bit and 8-bit parity modes, interrupts coincide with the ninth bit pulse.

Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Note2: The higher the transfer rate, the later than the middle receive interrupts and errors occur.

Transmitting


Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt timing	Just before stop bit is transmitted) ←

2. I/O interface

Transmission	SCLK output mode	Immediately after last bit data. (See Figure 3.9.25)
Interrupt timing	SCLK input mode	Immediately after rise of last SCLK signal rising mode, or immediately after fall in falling mode.) (See Figure 3.9.26)
Receiving Interrupt timing	SCLK output mode	Timing used to transfer received to data receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK) (See Figure 3.9.27)
P	SCLK input mode	Timing used to transfer received data to receive buffer 2 (SC0BUF) (e.g., immediately after last SCLK). (See Figure 3.9.28)

3.9.3 SFRs

		7		6	6	Ę	5	4	3		2	1	0																				
SC0MOD0	Bit symbol	TB	8	CT	SE	R	ΚE	WU	SM	1	SM0	SC1	SC0																				
(1202H)	Read/Write							R/	/W				-																				
	After reset	0		0	0		0		0		0		0		0		0		0		0		0		0)	0	0		0	0	0
	Function	Transfer		Hand shake		Rece		Wakeup			ission mode		smission clock																				
		data bi	data bit8		data Dita		data Dit8					functi 0: Re		function 0: Disable			ace mode	(UART) 00: TA0TF															
				0: CT dis	able		able	1: Enable			RT mode RT mode		ate generator																				
				1: CT	S	1: Re	ceive				RT mode	10: Interna	-																				
				ena	able	ena	able		<			11: Extern																					
										\geq		(SCLK	(0 input)																				
			I							(C	1																						
										\rightarrow	<u> </u>																						
									\rightarrow	Serial	transmission TMRA0 mat																						
									770	00	Baud rate g	~~ ~~																					
									(\bigcirc)	10	Internal cloc)																				
										11	External clo		input)																				
									\rightarrow	Note	The clock se	election for	the I/O																				
								$\langle () \rangle$		11010	interface mo	\																					
							G			6	serial contro		-																				
							20		\rightarrow	Serial	transmission	mode																					
						2	$(\)$	>		00	I/O interfac	e mode																					
						\frown	\geq		\leq	01		7	7-bit mode																				
						$(\frown$	γ			10	UART mod	e 8	3-bit mode																				
						\bigcirc	2			11/		ę	9-bit mode																				
					$\left(\begin{array}{c} - \end{array} \right)$	\wedge			\rightarrow	Wake	up function																						
					\bigcirc))			$\langle \rangle$		9-bit UART		Other modes																				
				6					\rightarrow	0	Interrupt ge when data i																						
									\rangle	1	Interrupt ge		Don't care																				
						\sim		$\left(\right) \left(\right) $		'	only when	nerated																					
		$\langle \langle \rangle$	/_		r		\bigcirc				SC0CR <re< td=""><td>88> = 1</td><td></td></re<>	88> = 1																					
			$\langle \langle$					<u> </u>	\longrightarrow	Recei	ving function																						
				7						0	Receive disa	abled																					
	\sim	2					$\langle \rangle$			1	Receive ena	abled																					
	4	\searrow	2		$\square \cap$	>	\sim		\longrightarrow	Hand	shake function	n (<u>CT</u> S pin))																				
	\bigcap	$\backslash \downarrow$	~		21					0	Disabled (Al																						
<	\mathcal{Y}			/		\geq				1	Enabled																						
				-(($\overline{}$	$\overline{)}$			\longrightarrow	Trans	mission data	bit8																					
$\langle \langle \langle \langle \rangle \rangle \rangle$			6	$\sqrt{2}$	\subseteq	/																											
	$\langle \rangle$	Figure	e 3.9	.8 Se	rial M	lode (Contro	l Reaister	(Chani	nel 0	, SC0MOD	0)																					
	\searrow	0	-		2	-		0		-		,																					

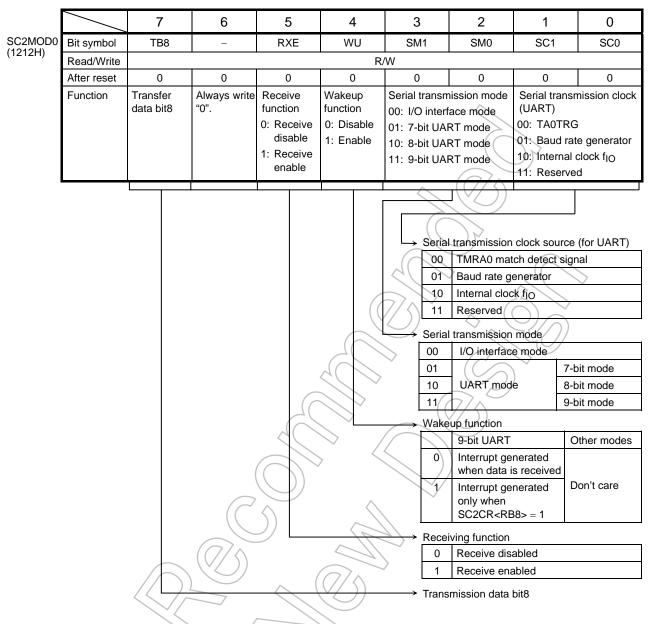
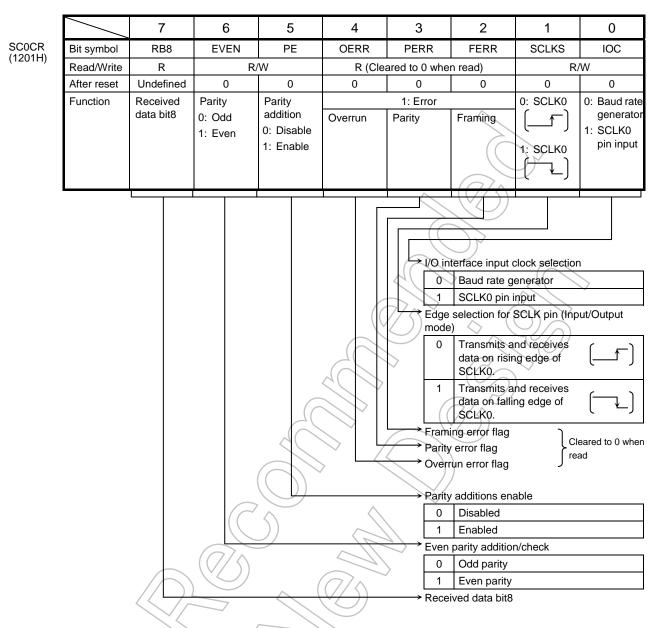
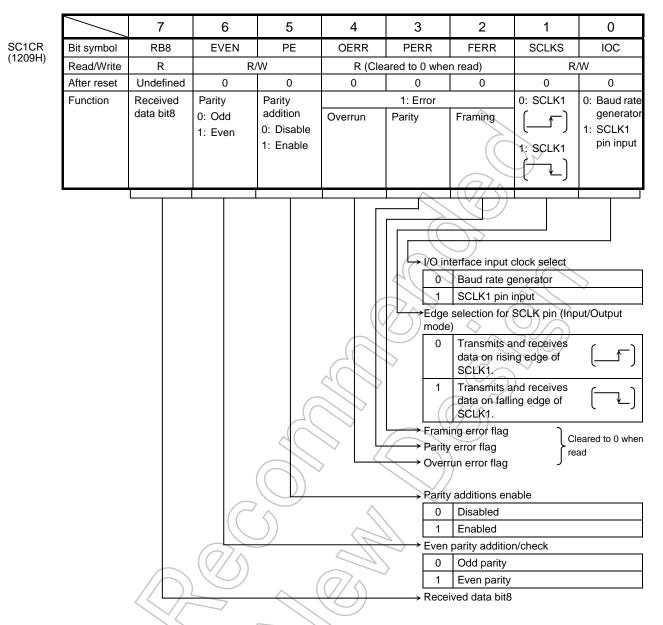




Figure 3.9.10 Serial Mode Control Register (Channel 2, SC2MOD0)

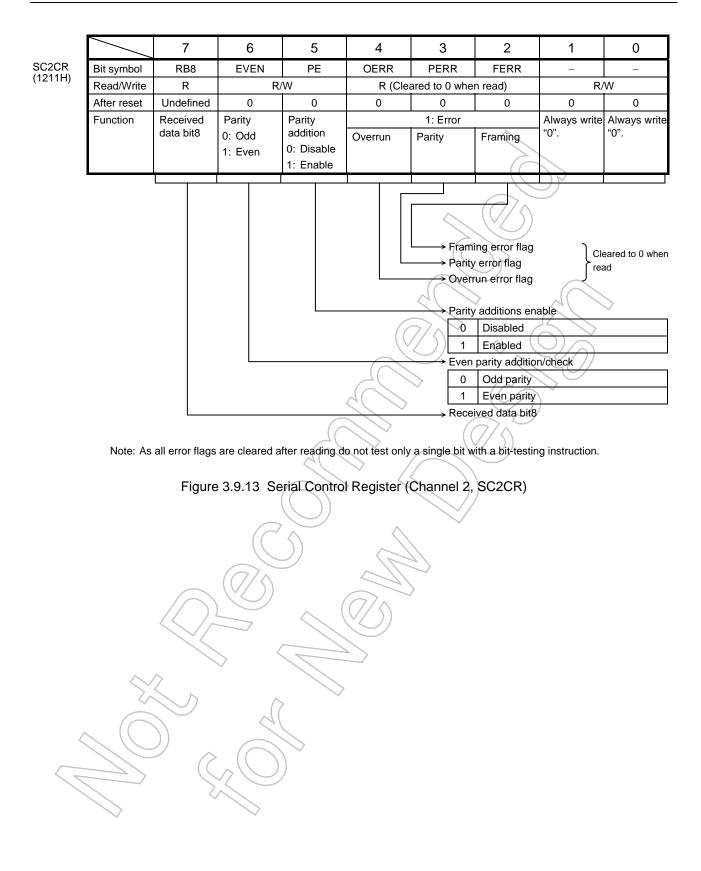

Note: As all error flags are cleared after reading do not test only a single bit with a bit-testing instruction.

Figure 3.9.11 Serial Control Register (Channel 0, SC0CR)

Note: As all error flags are cleared after reading do not test only a single bit with a bit-testing instruction.

Figure 3.9.12 Serial Control Register (Channel 1, SC1CR)

		7	6	5	4	3	2	1	0	
BR0CR	Bit symbol	-	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0	
(1203H)	Read/Write				<u>.</u> ۴	R/W	1			
	After reset	0	0	0	0	0	0	0	0	
	Function	Always	+ (16 – K)/16	00:						
		write "0".	division	01:			Divided free	quency setting	1	
			0: Disable 1: Enable	10:						
			I. Ellable	11:			(
	r					•			,	
	+ (16 – K)/	16 division er	nable	Setting	the input cloo	ck of baud rat	e generator	5)		
	0 Disab			00	Internal clock	φ T 0	Ĩ			
	1 Enab				nternal clock		Y ()			
				10	nternal clock	φT8				
				11	nternal clock	φT32	\searrow	2(
		7	6	5	4	(3)	2	6	>0	
BR0ADD	Bit symbol					BR0K3	BR0K2	BR0K1	BR0K0	
(1204H)	Read/Write				4		R/V	N YC	//	
	After reset					0	0	0	0	
	Function				$\forall (\land$	\supset	C)		
				/			Sets frequence			
				_	$(\searrow^{\vee}$	(c	livided by N +	⊦ (16 – K)/16)		
				AC						
		Sets baud	rate generato	or frequency	√ divisor ←					
				ROADDE> =		R <br0adde> = 0</br0adde>				
		ROCR	0000 (N = 16)	0010 (N =	2) 0001 (N = 1) (UART only)					
		3R0S3:0>	or	to	-/ to					
	BR0ADD <br0k3:0></br0k3:0>		0001 (N=1)	1111 (N =	13)	1111 (N = 15)				
				D : 11		0000 (N = 16)				
	000 0001 (K		Disable	Disabl						
	to		Disable	Divided by N + (16 – K		Divided by N				
	1111 (K	= 15)		IN + (10 - K						
	\sim	7	~							
	Note1: A	/ailability of +	-(16-K)/16 div	ision functio	'n	_				
	\square	N	UART	mode	I/O mode					
<	$\geq (C)$	2 to 15	0		×					
		1 , 16	> ((×		×					
/		/			"1" in UART	mode only w	hen the +(16	-K)/16 divisior	n function is not	
	U	sed. Do not ໂ	ise in I/O inter	face mode.						
									6-K)/16 division	
	fur	nction is used	d. Writes to ur	used bits in	the BR0AD	D register do	not affect ope	eration, and ur	ndefined data is	

Figure 3.9.14 Baud Rate Generator Control (Channel 0, BR0CR, BR0ADD)

read from these unused bits.

		7	6	5	4	3	2	1	0	
BR1CR	Bit symbol	-	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0	
(120BH)	Read/Write			_	1	/W		-		
	After reset	0	0	0	0	0	0	0	0	
	Function	Always	+ (16 – K)/16	00:						
		write "0".	division	01:				uency setting		
			0: Disable	10:			J			
			1: Enable	11:			(
							(
	_						$\overline{\Omega}$			
	\downarrow				(\sim		$\left(\right)$		
+	(16 – K)/16 div	vision enable	·	Input clock s	election for b	aud rate ger	lerator			
	0 Disabled			00 Intern	al clock	(
	1 Enabled				al clock					
			-		al clock			6	\geq	
			<u> </u>	11 Intern	al clock	2	\searrow	12	\searrow	
		7	6	5	4	3	2	6	0	
BR1ADD	Bit symbol		, 			BR1K3	BR1K2	BR1K1	BR1K0	
(120CH)	Read/Write		\sim	\sim		$\overline{\mathbf{\nabla}}$	R/W)/	
	After reset	\sim	\sim	\sim		0	0		0	
	Function						(C)	$\overline{\mathcal{A}}$		
					Set frequency divisor K					
				((divided by $N + (16 - K)/16$)					
				G	$\langle \rangle$	· ·	$\langle \mathcal{O} \rangle$. , ,		
						\square	\rightarrow		 	
					> L	$\langle -$				
	F	Baud rate der	nerator freque	ncy divisor s	ettina <					
				R1ADDE> =		R <br1adde< td=""><td>> = 0</td><td></td><td></td></br1adde<>	> = 0			
	BF	R1CR	0000 (N = 16)		0004	N = 1) (UART				
		3R1S3:0>	or	to	I = 2) to					
	BR1ADD		0001 (N=1)	1111 (N = 1	15)	111 (N = 15)				
	<br1k3:0></br1k3:0>	\geq	$(\vee \rangle)$			000 (N = 16)				
	000		Disable	Disable	$\left(\frac{1}{2}\right)$					
	0001 (K	= 1)	Disable	Divided by		Divided by N				
	to		Disable	N + (16 – K)/	16					
	1111 (K	= 15)	\rightarrow \sim	\bigvee	/					
	\sim	7								
	Note1: A	ailability of +	-(16-K)/16 div	ision functior	Ý	_				
N UART mode I/O mode										
		2 to 15			×					
		1,16	X		×					
		/	- N		UART mode	e only when the	ne +(16-K)/16	division func	tion is not used.	
			/O interface n							
									the +(16-K)/16	
	div	rision functio	n is used. Wri	tes to unused	d bits in the B	R1ADD regis	ster do not af	ect operation	, and undefined	

Figure 3.9.15 Baud Rate Generator Control (Channel 1, BR1CR, BR1ADD)

data is read from these unused bits.

		7	6	5	4	3	2	1	0
BR2CR	Bit symbol	-	BR2ADDE	BR2CK1	BR2CK0	BR2S3	BR2S2	BR2S1	BR2S0
(1213H)	Read/Write		•		R/	W			
	After reset	0	0	0	0	0	0	0	0
	Function	Always	+ (16 – K)/16						
		write "0".	division 0: Disable	01:			Divided freq	uency setting	
			1: Enable	10:			2	2	
				11. 9102			(($\overline{\gamma}(-)$	
	_							\bigcirc	
						\sim			
+	- (16 – K)/16 di	vision enable		Input clock s	election for b	aud rate gen	erator)	
	0 Disabled			00 Intern	al clock _{\$T0}	(\bigcirc		
	1 Enabled				al clock				
			-		al clock			6	
			L	11 Intern	al clock		\searrow	21	\searrow
		7	6	5	4	3	2	<u>5</u>	0
BR2ADD	Bit symbol	/				BR2K3	BR2K2	BR2K1	BR2K0
(1214H)	Read/Write				$\langle q \rangle$		R/W		//
	After reset					0	0	0	0
	Function				$\langle \langle \rangle$		Set frequency		
						(u	ivided by N +	(10 - K)/10)	
				($\left(\left(\right) \right)$		
				20					
					Ľ				
	_				~				
	E	saud rate ger	erator freque	ncy divisor so R2ADDE> = 7		<br2adde< td=""><td></td><td></td><td></td></br2adde<>			
	BE	R2CR	-1	\wedge	0004				
		3R2S3:0>	0000 (N = 16)	0010 (N = to	2) 0001(1	I (N = 1) (UART only)			
	BR2ADD		or 0001 (N=1)	1111 (N = 1	5) 11	11 (N = 15)			
	<br2k3:0></br2k3:0>	\geq				000 (N = 16)			
	000		Disable	Disable	$\left(\frac{1}{2} \right)$				
	0001 (K	i ≤ 1)	Disable	Divided by		ivided by N			
	to 1111 (K	- 15)	Diodolo	N + (16 – K)/	16				
		- 10)	\checkmark						
	Noto1-A	ailability of u	(16-K)/16 div	icion function	>				
	Note 17A	\sim		7					
		N	UART	mode	I/O mode				
<) /	2 to 15	0		×				
		1 , 16	()		×				
$\langle \langle \rangle$		ne baud rate	generator car	be set "1" in	UART mode	only when th	ne +(16-K)/16	division funct	ion is not used
		/	O interface n			-			
	Note2: Se	et BR2CR <	BR2ADDE> to	o 1 after sett	ing K (K = 1	to 15) to Bl	R2ADD <br2< td=""><td>(3:0> when</td><td>the +(16-K)/16</td></br2<>	(3:0> when	the +(16-K)/16

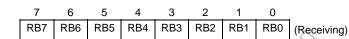
Note2: Set BR2CR <BR2ADDE> to 1 after setting K (K = 1 to 15) to BR2ADD<BR2K3:0> when the +(16-K)/16 division function is used. Writes to unused bits in the BR2ADD register do not affect operation, and undefined data is read from these unused bits.

Figure 3.9.16 Baud Rate Generator Control (Channel 2, BR2CR, BR2ADD)

TB7 SC0BUF (1200H)

7

6


TB6

5

TB5

4

TB4

3

TB3

2

TB2

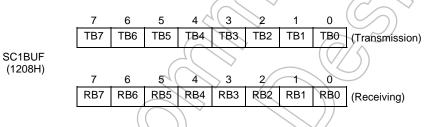
1

TB1

0

TB0

(Transmission)

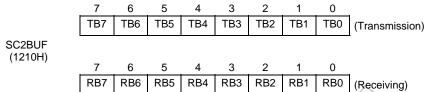

 $(\Pi \land$

Note: Prohibit read-modify-write for SC0BUF.

Figure 3.9.17 Serial Transmission/Receiving Buffer Registers (Channel 0, SC0BUF)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	I2S0	FDPX0		/	\rightarrow	\mathcal{A}		
(1205H)	Read/Write	R/W	R/W			\mathbb{R}	<u> </u>		
	After reset	0	0		/	Ź	/	\bigwedge	
	Function	IDLE2	Duplex				7	20	\geq
		0: Stop	0: Half		6			Ω	
		1: Run	1: Full			7/\$. (\sim	

Figure 3.9.18 Serial Mode Control Register 1 (Channel 0, SC0MOD1)



Note: Prohibit read-modify-write for SC1BUF.

Figure 3.9.19 Serial Transmission/Receiving Buffer Registers (Channel 1, SC1BUF)

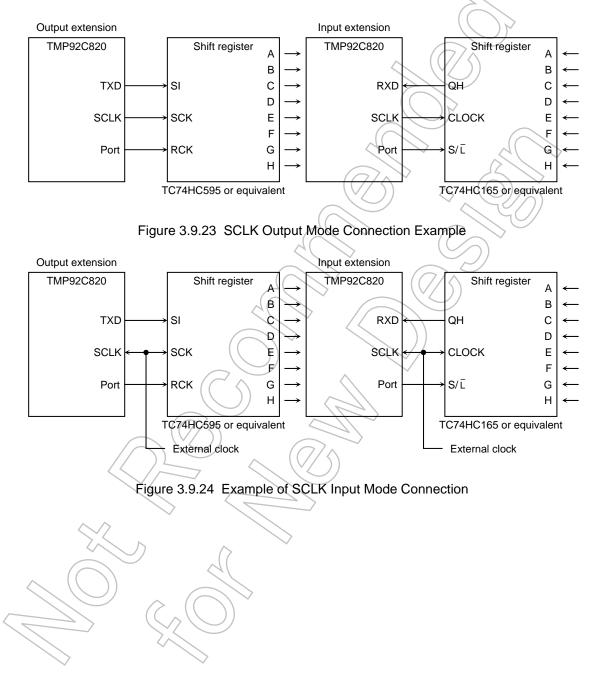
		7	(6)	5	4	3	2	1	0
SC1MOD1	Bit symbol	I2S1	EDPX1						
(120DH)	Read/Write	R/W	R/W	Å					
	After reset	0	0	\int	<i>M</i>				
	Function	IDLE2	Duplex		,				
		0: Stop	0: Half						
	\sim	1: Run	1: Full						

Figure 3.9.20 Serial Mode Control Register 1 (Channel 1, SC1MOD1)

Note: Prohibit read-modify-write for SC1BUF.

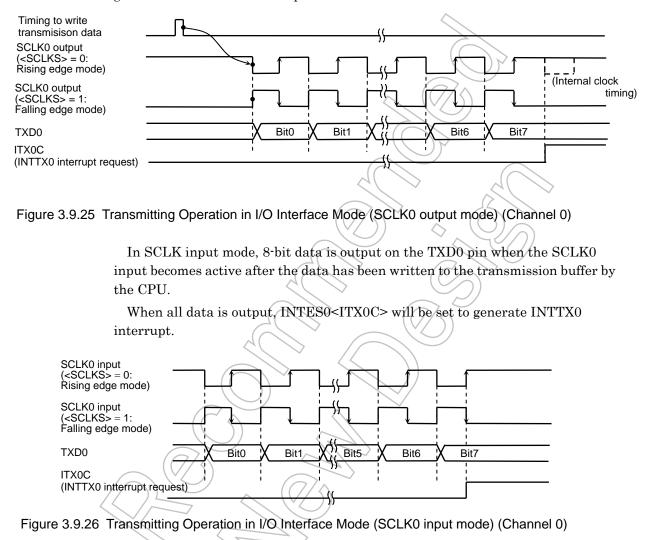
Figure 3.9.21 Serial Transmission/Receiving Buffer Registers (Channel 2, SC2BUF)

						\wedge	(7/5)		
	/	7	6	5	4	3	2	1	0
SC2MOD1	Bit symbol	I2S2	FDPX2			\rightarrow	\sum		
(1215H)	Read/Write	R/W	R/W		/	4			
	After reset	0	0		/	Ź	\checkmark		
	Function	IDLE2	Duplex			$\langle \langle \rangle$	\geq	7	\geq
		0: Stop	0: Half					2	
		1: Run	1: Full			7/ \\$		\square	


Figure 3.9.22 Serial Mode Control Register 1 (Channel 2, SC2MOD1)

3.9.4 Operation in Each Mode

(1) Mode 0 (I/O interface mode)


This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

1. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

2. Receiving

In SCLK output mode the synchronous clock is output on the SCLK0 pin and the data is shifted to receiving buffer 1. This is initiated when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is transferred to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

Figure 3.9.27 Receiving Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode the data is shifted to receiving buffer 1 when the SCLK input goes active. The SCLK input goes active when the receive interrupt flag INTESO<IRX0C> is cleared as the received data is read. When 8-bit data is received, the data is shifted to receiving buffer 2 (SC0BUF) following the timing shown below and INTESO<IRX0C> is set to 1 again, causing an INTRX0 interrupt to be generated.

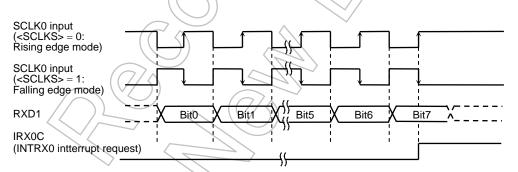


Figure 3.9.28 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

Note: The system must be put in the receive enable state (SC0MOD0<RXE> = 1) before data can be received.

3. Transmission and receiving (Full duplex mode)

When full duplex mode is used, set the receive interrupt level to 0 and set enable the level of transmit interrupt. Ensure that the program which transmits the interrupt reads the receiving buffer before setting the next transmit data.

The following is an example of this:

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting the serial channel mode register SC0MOD0<SM1:0> field to 01.

In this mode a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (Enabled).

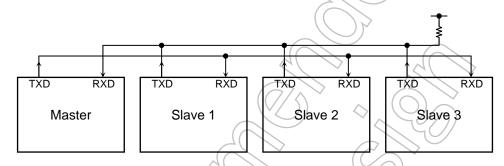
Example: When transmitting data of the following format, the control registers should be set as described below.

	Start	€В	it0	X	1		2	3	3 4 5 6 Even Stop
				←		Tra	nsm	nissi	on direction (Transmission rate: 2400 bps at f _{SYS} = 39.3216 MHz)
									ck state Clock gear 1/1 (fc)
_	7	6	5	4	3	2	1	0	
PFCR	← X	Х	_	_	_	_	_	1	Set PF0 to function as the TXD0 pin.
PFFC	← X	Х	_	Х	_	_	Х	1	Set Pro to function as the TADO pin.
SC0MOD0	\leftarrow –	0	_	_	0	1	0	1	Select 7-bit UART mode.
SC0CR	← -	1	1	_	_	_	0	0	Add even parity.
BR0CR	← 0	0	1	0	1	0	0	0	Set the transfer rate to 2400 bps.
INTES0	← X	1	0	0	_	_	_	- ,	Enable the INTTX0 interrupt and set it to interrupt level 4.
SC0BUF	← *	*	*	*	*	*	*	*	Set data for transmission.
X: Don't care	, –: No	cha	inge	e			2	(

(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SCOMODO<SM1:0> to 10. In this mode a parity bit can be added (Use of a parity bit is enabled or disabled by the setting of SCOCR<PE>); whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (Enabled).

Example: When receiving data of the following format, the control registers should be set as described below.

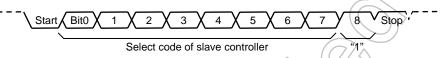

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to 11. In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SCOMODO<TB8>. In the case of receiving it is stored in SCOCR<RB8>. When the buffer is written and read, the MSB is read or written first, before the rest of the SCOBUF data.

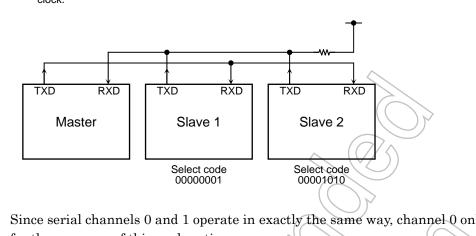
Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SC0MOD0<WU> to 1. The interrupt INTRX0 can only be generated when <RB8> = 1.



Note: The TXD pin of each slave controller must be in open-drain output mode.

Figure 3.9.29 Serial Link Using Wakeup Function

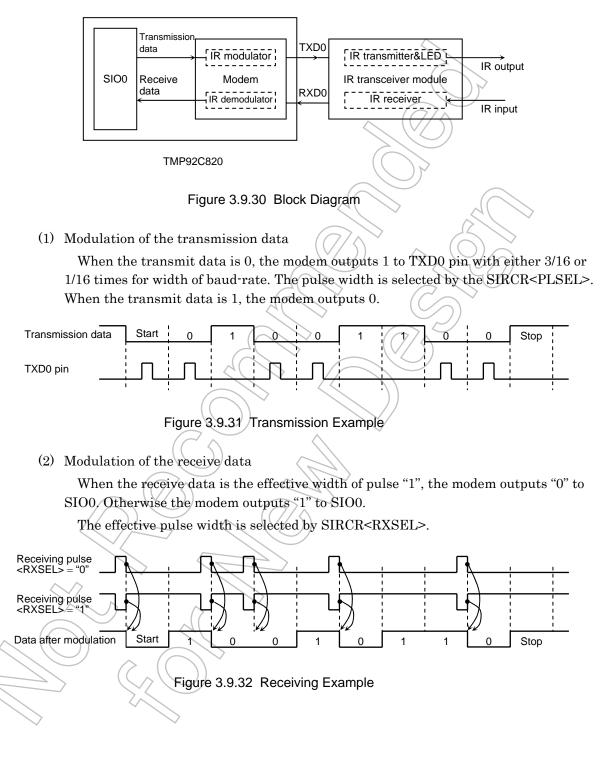

Protocol

- 1. Select 9-bit UART mode on the master and slave controllers.
- 2. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- 3. The master controller transmits data one frame at a time. Each frame includes an 8-bit select code which identifies a slave controller. The MSB (Bit8) of the data (<TB8>) is set to 1.

- 4. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its <WU> bit to 0.
- 5. The master controller transmits data to the specified slave controller (The controller whose SC0MOD0<WU> bit has been cleared to 0). The MSB (Bit8) of the data (<TB8>) is cleared to 0.

6. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (Bit8 or <RB8>) are set to 0, disabling INTRX0 interrupts. The slave controller whose <WU> bit = 0 can also transmit to the master controller. In this way it can signal the master controller that the data transmission from the master controller has been completed.

Example: To link two slave controllers serially with the master controller using the internal clock f_{IO} as the transfer clock.


Since serial channels 0 and 1 operate in exactly the same way, channel 0 only is used for the purposes of this explanation.

• Setting the master controller

```
Main
                    6
                       5
                          4
                              3
                                 2
                                     1
                                         0
                 7
PFCR
                                                      Set PF0 and PF1 to function as the TXD0 and RXD0 pins
                Х
                    Х
                                     0
                                         1
PFFC
                    Х
                           Х
                                     Х
                                                      respectively.
                 Х
                       _
                                        1
INTES0
                                                      Enable the INTTX0 interrupt and set it to interrupt level 4.
                    1
                       0
                          0
                                 1
                                     0
                              1
                                        1
                                                      Enable the INTRX0 interrupt and set it to interrupt level 5.
SC0MOD0
                                     1 0
                                                      Set f<sub>IO</sub> as the transmission clock for 9-bit UART mode.
                    0
                       1
                          0
                              1
                                 1
SCOBUF
                0
                    0
                       0
                          0
                              0
                                 0
                                    0 1
                                                      Set the select code for slave controller 1.
INTTX0 interrupt
                                                      Set TB8 to 0.
SC0MOD0
SCOBUF
                                                      Set data for transmission.
          Setting the slave controller
Main
                        5
                              3
                                  2
                                         0
                    6
PFCR
                    Х
                                     0
                                         0
                                                      Select PF1 and PF0 to function as the RXD and TXD pins
PFFC
                    X
                           Х
                                                      respectively (Open-drain output).
                                     х
                                         1
INTES0
                       0
                                                      Enable INTRX0 and INTTX0.
                 1
                     í
                          1
                              1
                                  1
                                     1
                                        0
                                                       Set <WU> to 1 in 9-bit UART transmission mode using f_{\mbox{SYS}}
SCOMOD0
                 0
                    0
                       1
                           1
                                     1
                                         0
                                                       as the transfer clock.
INTRX0 interrupt
             ← SC0BUF
Acc
if Acc = select code
                                                       Clear <WU> to 0.
Then SC0MOD0
```

3.9.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.9.30 shows the block diagram.

(3) Data format

The data format is fixed as follows:

Data length: 8 bits

Start transmission

- Parity bits: None
- Stop bits: 1
- (4) SFRs

Figure 3.9.33 shows the control register SIRCR. Set the data SIRCR during SIO0 is stopping. The following example describes how to set this register?

- ; Set the SIO to UART mode. 1) SIO setting
- (SIRCR), 07H ; Set the receive data pulse width to 16X. 2) LD
- (SIRCR), 37H ; TXEN, RXEN enable the transmission and receiving. 3) LD

SIO0

4)

- ; The modem operates as follows:
- and receiving for · SIO0 starts transmitting. IR receiver starts receiving.
- (5) Notes

The IrDA 1.0 specification is defined in Table 3.9.4.

1. Making baud rate when using IrDA

In baud rate during using IrDA, must set "01" to SC0M0D0<SC1:0> in SIO by using baud rate generator. TA0TRG, fIO, SCLK0 input can not using.

2. Output pulse width and baud rate generator during transmission IrDA As the IrDA 1.0 physical layer specification, the data transfer speed and infra-red pulse width is specified.

Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (Minimum)	Pulse Width (Typical)	Pulse Width (Maximum)
2.4 kbps	RŻ	±0.87	/1,41 μs	78.13 μs	88.55 μs
9.6 kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs
19.2 kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs
38.4 kbps	RZI	±0.87	1.41 μs	4.88 μs	5.96 μs
57.6 kbps	RZI	±0.87	1.41 μs	3.26 μs	4.34 μs
115.2 kbps	RZI	±0.87	1.41 μs	1.63 μs	2.23 μs

Table 3.9.4 Baud Rate and Pulse Width Specifications

The pulse width is defined either baud rate TX 3/16 or 1.6 µs (1.6 µs is equal to 3/16 pulse width when baud rate is 115.2 kbps).

The TMP92C820 has the function selects the pulse width of transmission either 3/16 or 1/16. But 1/16 pulse width can be selected when the baud rate is equal or less than 38.4 kbps.

As the same reason, +(16 - k)/16 division function in the baud rate generator of SIO0 can not be used to generate 115.2 kbps baud rate. Also when the 38.4 kbps and 1/16 pulse width, +(16 - k)/16 division function can not be used.

Table 3.9.5	Baud Rate and Pulse Width for	(16 – k)/16 Division Function
-------------	-------------------------------	-------------------------------

	Pulse Width						Baud	`	,				
	Puise	/viath	115.2	2 kbps	57.6	6 kbps	38	.4 kbps	19	9.2 kbps	9.6 kbps	2.4 kbps	
	T × 3	/16		×		0		0		0	0 ((010	
	T × 1	/16		-		-		×		0	0)	
	 Can be used (16 – k)/16 division Can not be used (16 – k)/16 divi Can not be set to 1/16 pulse wid 		(16 – k)/16 division function										
		7	,	6		5		4		3	2	1	0
SIRCR	Bit symbol	PLS	EL	RXSI	EL	TXEN	١	RXEN	1	SIRWD3	SIRWD2	SIRWD1	SIRWD0
(1207H)	Read/Write							I	R/	W	I		~
	After reset	0)	0		0		0	((7/(0)	0	0	0
	Function	Select		Receiv	e	Transm	it	Receive	V	Select rece	ive pulse wid	th	
		transm		data		0: Disat	ole	0: Disab	_			for equal or m	ore than $2x \times$
		pulse v 0: 3/10		0: "H" p		1: Enab	le	1: Enabl	е	(Value + 1)	1 /	\searrow	
		1: 1/10		1: "L" pı	ulse			$\langle \langle \rangle$	\geq	Can be set))	
		1	°				7	\rightarrow		Can not be	set: 0, 15		
										Formula 0000 0001 to 1110 1111 → Receive 0 1	$x = 1/f_{SYS}$ Can not be Equal to or Equal to or Cannot be s operation Disabled	se width $\ge 2x \times$ set more than 4x + more than 30x	+ 100 ns
			2		\mathcal{A}		>			0	Disabled (Input from Enabled	SIO is ignored.)
<	//	ノ「	~	6		\searrow					ransmit pulse	e wiath	
			$\left(\right)$	_(()				0	3/16 1/16		
$\langle \langle \rangle$			$\langle \rangle$	$\langle \langle \rangle$		1							
			4		>					st a	andard (1.6 µ low baud rate		guaranteed with t to "1" will result

Figure 3.9.33 IrDA Control Register

3.10 Serial Bus Interface (SBI)

The TMP92C820 has 1-channel serial bus interface which employs a clocked-synchronous 8-bit SIO mode and an $I^{2}C$ bus mode. It is called SBI0.

The serial bus interface is connected to an external device through P91 (SDA) and P92 (SCL) in the I²C bus mode; and through P90 (SCK), P91 (SO), P92 (SI) in the clocked-synchronous 8-bit SIO mode.

Each pin is specified as follows.

		($\langle \rangle \rangle \gamma \langle \rangle \gamma \langle \rangle$
	P9ODE <p92ode, P91ODE></p92ode, 	P9CR <p92c, p90c="" p91c,=""></p92c,>	P9FC <p92f, p90f="" p91f,=""></p92f,>
I ² C Bus Mode	11	11X	11X
Clocked Synchronous	XX	011	011
8-Bit SIO Mode		010	010 (Note)

X: Don't care

Note : When using SI input function and SCK input function, set P9FC<P92F,P90F> to "0" (Function setting).

3.10.1 Configuration

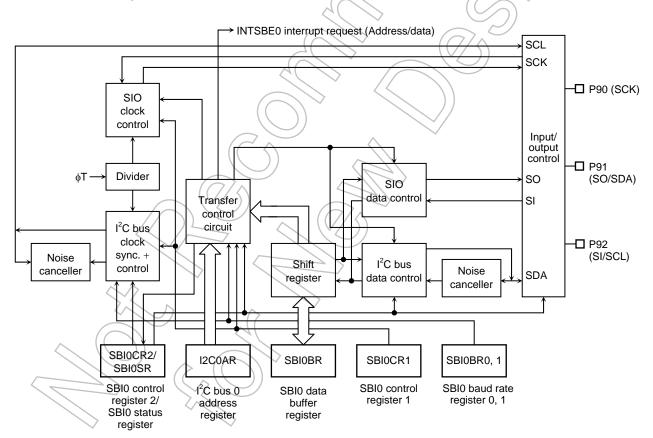
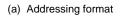


Figure 3.10.1 Serial Bus Interface 0 (SBI0)

3.10.2 Serial Bus Interface (SBI) Control


The following registers are used to control the serial bus interface and monitor the operation status.

- Serial bus interface 0 control register 1 (SBI0CR1)
- Serial bus interface 0 control register 2 (SBI0CR2)
- Serial bus interface 0 data buffer register (SBI0DBR)
- I²C bus 0 address register (I2C0AR)
- Serial bus interface 0 status register (SBI0SR)
- Serial bus interface 0 baud rate register 0 (SBI0BR0)
- Serial bus interface 0 baud rate register 1 (SBI0BR1)

The above registers differ depending on a mode to be used. Refer to section 3.10.4 "I²C Bus Mode Control Register" and 3.10.7 "Clocked-synchronous 8-Bit SIO Mode Control".

3.10.3 The Data Formats in the I²C Bus Mode

The data formats in the I²C bus mode are shown below.

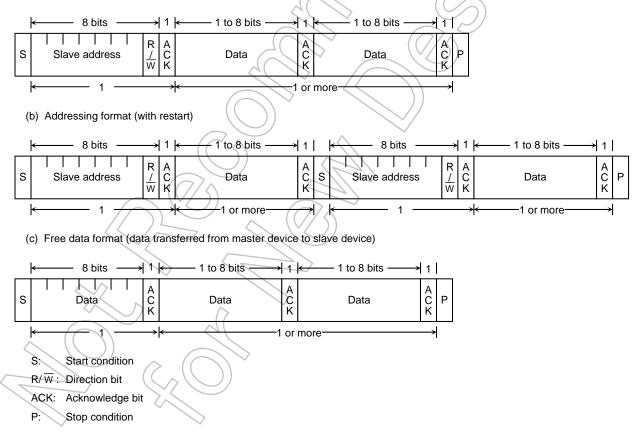
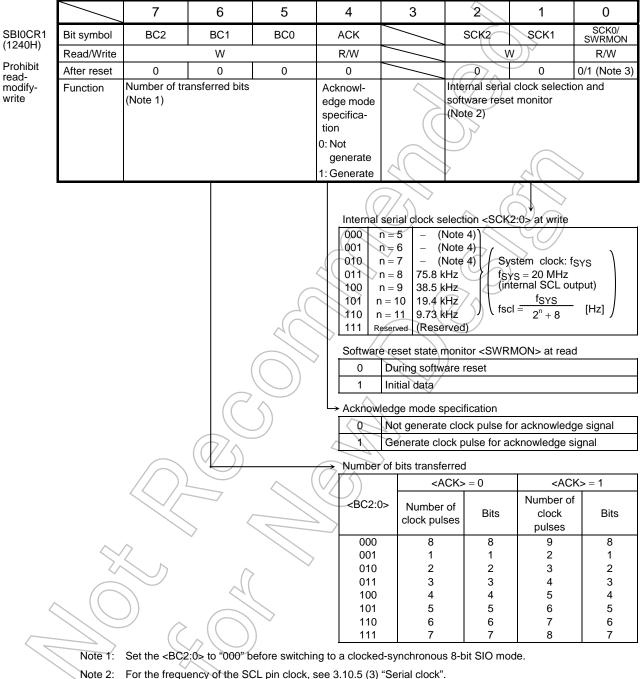
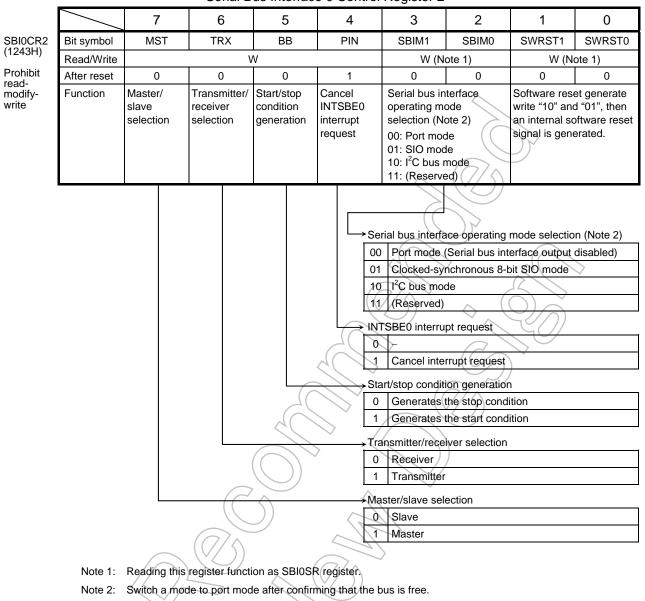



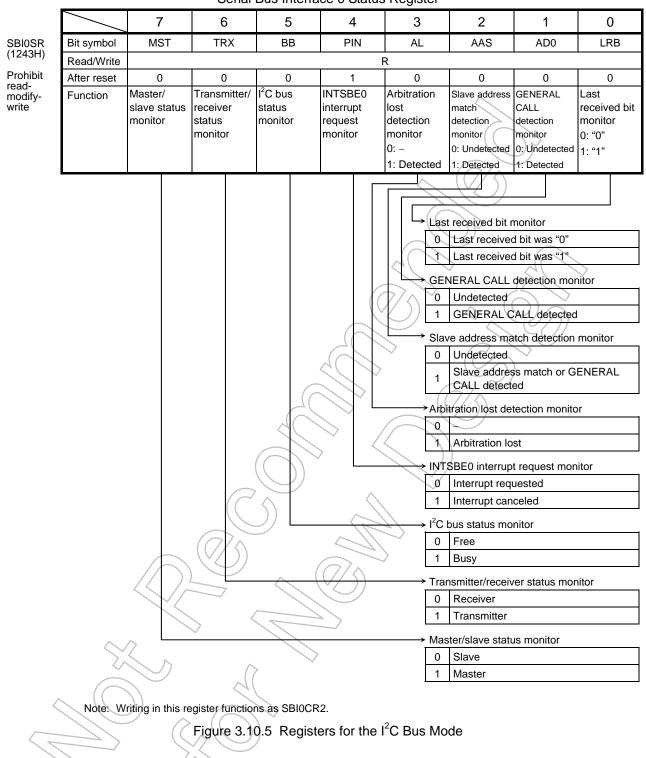
Figure 3.10.2 Data Format in the I²C Bus Mode

I²C Bus Mode Control Register 3.10.4


The following registers are used to control and monitor the operation status when using the serial bus interface (SBI) in the I²C bus mode.

Note 3: Initial data of SCK0 is "0", SWRMON is "1".

Note 4: This I²C bus circuit does not support Fast-mode, it supports the Standard mode only. Although the I²C bus circuit itself allows the setting of a baud rate over 100kbps, the compliance with the I²C specification is not guaranteed in that case.


Figure 3.10.3 Registers for the I²C Bus Mode

Serial Bus Interface 0 Control Register 2

Switch a mode between I²C bus mode and clocked-synchronous 8-bit SIO mode after confirming that input signals via port are high level.

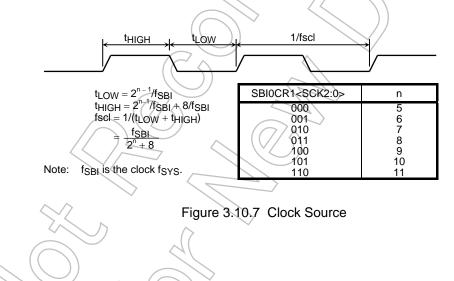
Figure 3.10.4 Registers for the I²C Bus Mode

	~								
		7	6	5	4	3	2	1	0
BIOBRO	Bit symbol	-	I2SBI0						
244H)	Read/Write	W	R/W				/		
ohibit ad-	After reset	0	0				/		
odify-	Function	Always write "0".	IDLE2				\sim		
ite		while 0.	0: Stop						
			1: Run				<u> </u>		
)7	
						→ Opera	tion during ID	LE2 mode	
						<u>_0</u> _S	top		
						1 0	peration		
			Serial Bus	s Interface () Baud Ra	te Register	1		
		7	6	5	4	3	\mathcal{I}_2	1	0
BIOBR1	Bit symbol	P4EN	-			X			
245H)	Read/Write	W	W		\frown	\mathcal{N}	\frown		
ohibit ad-	After reset	0	0		~ 4	77	\sim	\sim	
odify-	Function	Internal	Always			(\bigcirc)	\diamond	26	
ite		clock	write "0".					30	
		0: Stop 1: Operate			20	\triangleright	R	$\bigcirc \bigcirc$	
							$-(\bigcirc -)$		
							~ 2	/	
				6		→ Baud r	ate clock con	trol	
							ate clock con top	trol	
						0 \$		trol	
			Serial Bu	is Interface	0 Data Bu	0 \$	top perate	trol	
		7	Serial Bu	s Interface	0 Data Bu	0 \$	top perate	trol 1	0
BIODBR	Bit symbol	7 DB7				0 s 1 c ffer Registe	top perate r	I	0 DB0
310DBR 241H)	Bit symbol Read/Write		6	5 DB5	4 DB4	0 S 1 C ffer Registe 3 DB3	top perate r 2	1	
241H) ohibit	Read/Write		6	5 DB5	4 DB4 R (Received	0 S 1 C ffer Registe 3 DB3 W (Transfer)	top perate r 2	1	
241H) ohibit ad- odifv-	Read/Write After reset	DB7	6 DB6	5) DB5	4 DB4 R (Received Und	0 S 1 C ffer Registe 3 DB3 W (Transfer)	top perate r 2 DB2	1 DB1	DB0
241H) ohibit ad- odifv-	Read/Write After reset Note 1: W	DB7	6 DB6	5 DB5	4 DB4 R (Received Und e MSB (Bit7)	0 S 1 C ffer Registe 3 DB3 W (Transfer) efined Receiving dat	top perate r 2 DB2 ta is placed fr	1 DB1 om LSB (Bit0)).
241H) ohibit ad- odifv-	Read/Write After reset Note 1: W Note 2: St	DB7 hen writing tra	6 DB6	5) DB5	4 DB4 R (Received Und e MSB (Bit7)	0 S 1 C ffer Registe 3 DB3 W (Transfer) efined Receiving dat	top perate r 2 DB2 ta is placed fr	1 DB1 om LSB (Bit0)).
241H) ohibit ad- odifv-	Read/Write After reset Note 1: W Note 2: St	DB7	6 DB6	5 DB5	4 DB4 R (Received Und e MSB (Bit7)	0 S 1 C ffer Registe 3 DB3 W (Transfer) efined Receiving dat	top perate r 2 DB2 ta is placed fr	1 DB1 om LSB (Bit0)).
241H) ohibit ad- odifv-	Read/Write After reset Note 1: W Note 2: St	DB7 hen writing tra	6 DB6 ansmitted data be read the	5 DB5 a, start from the written data. T	4 DB4 R (Received Und MSB (Bit7) herefore rea	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate r 2 DB2 ta is placed fr	1 DB1 om LSB (Bit0)).
241H) ohibit ad- odifv-	Read/Write After reset Note 1: W Note 2: St	DB7 hen writing tra BIODBR can't ohibitted.	6 DB6 ansmitted data be read the	5 DB5 a, start from the written data. T C Bus 0 Ad	4 DB4 R (Received Und MSB (Bit7) herefore rea dress Rec	0 S 1 C ffer Registe 3 DB3 W (Transfer) affined Receiving data d-modify-write	top perate 2 DB2 ta is placed fro instruction (o	1 DB1 om LSB (Bit0 e.g., "BIT" ins	DB0). struction) is
241H) ohibit ad- odify- ite	Read/Write After reset Note 1: W Note 2: SF	DB7 Then writing tra BIODBR can't ohibitted.	6 DB6 ansmitted data be read the v	5 DB5 a, start from the written data. T C Bus 0 Ad 5	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Reg 4	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed fr instruction (o	1 DB1 om LSB (Bit0 e.g., "BIT" ins	DB0). struction) is
241H) ohibit ad- odify- ite	Read/Write After reset Note 1: W Note 2: St pr Bit symbol	DB7 hen writing tra BIODBR can't ohibitted.	6 DB6 ansmitted data be read the	5 DB5 a, start from the written data. T C Bus 0 Ad	4 DB4 R (Received Und MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed fro instruction (o	1 DB1 om LSB (Bit0 e.g., "BIT" ins	DB0). struction) is
BIODBR 241H) ohibit ad- odify- ite COAR 242H)	Read/Write After reset Note 1: W Note 2: Sf pr Bit symbol Read/Write	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6	6 DB6 ansmitted data be read the l ² 6 SA5	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4	4 DB4 R (Received Und MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed fro instruction (or 2 SA1	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0	DB0). struction) is 0 ALS
241H) ohibit ad- odify- ite COAR 242H) ohibit ad-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed from instruction (or 2 SA1 0	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS 0
241H) ohibit ad- odify- ite COAR 242H) ohibit ad- odify-	Read/Write After reset Note 1: W Note 2: Sf pr Bit symbol Read/Write	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed from instruction (or 2 SA1 0	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS 0 Address
241H) ohibit ad- odify- ite COAR 242H) ohibit ad-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed from instruction (or 2 SA1 0	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS 0 Address
241H) ohibit ad- odify- ite COAR 242H) ohibit odify-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed from instruction (or 2 SA1 0	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS 0 Address recognitio mode
241H) ohibit ad- odify- ite COAR 242H) ohibit odify-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	top perate 2 DB2 ta is placed from instruction (or 2 SA1 0	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS 0 Address recognitio mode
241H) ohibit ad- odify- ite COAR 242H) ohibit odify-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C 3 DB3 WW (Transfer) affined Receiving data d-modify-write ister 3 SA2 W 0 is operating at	top perate 2 DB2 ta is placed fre instruction (e 2 SA1 0 s slave device	1 DB1 om LSB (Bit0 e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS Address recognitio mode specificat
241H) ohibit ad- odify- ite COAR 242H) ohibit ad- odify-	Read/Write After reset Note 1: W Note 2: SF pr Bit symbol Read/Write After reset	DB7 hen writing tra BIODBR can't ohibitted. 7 SA6 0	6 DB6 ansmitted data be read the v l ² 6 SA5 0	5 DB5 a, start from the written data. T C Bus 0 Ad 5 SA4 0	4 DB4 R (Received Und e MSB (Bit7) herefore rea dress Rec 4 SA3	0 S 1 C 1 C ffer Register 3 DB3 W (Transfer) affined Receiving data d-modify-writer a ister 3 SA2 W 0 is operating as Address Address	top perate 2 DB2 ta is placed fre instruction (e 2 SA1 0 s slave device	1 DB1 om LSB (Bit0) e.g., "BIT" ins 1 SA0 0	DB0). struction) is 0 ALS Address recognitio mode specificati

Serial Bus Interface 0 Baud Rate Register 0

- 3.10.5 Control in I²C Bus Mode
 - (1) Acknowledge mode specification

Set the SBI0CR1<ACK> to "1" for operation in the acknowledge mode. The TMP92C820 generates an additional clock pulse for an acknowledge signal when operating in master mode. In the transmitter mode during the clock pulse cycle, the SDA pin is released in order to receive the acknowledge signal from the receiver. In the receiver mode during the clock pulse cycle, the SDA pin is set to the low in order to generate the acknowledge signal.

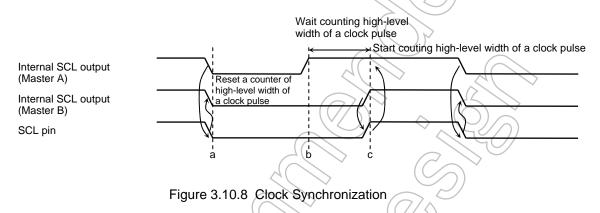

Clear the <ACK> to "0" for operation in the non-acknowledge mode. The TMP92C820 does not generate a clock pulse for the acknowledge signal when operating in the master mode.

(2) Number of transfer bits

Since the SBI0CR1<BC2:0> is cleared to "000" on start up, a slave address and direction bit transmissions are executed in 8 bits. Other than these, the <BC2:0> retains a specified value.

- (3) Serial clock
 - 1. Clock source

The SBI0CR1<SCK2:0> is used to specify the maximum transfer frequency for output on the SCL pin in the master mode. Set the baud rates, which have been calculated according to the formula below, to meet the specifications of the I²C bus, such as the smallest pulse width of t_{LOW} .



2. Clock synchronization

In the I²C bus mode, in order to wired-AND a bus, a master device which pulls down a clock pin to the low level, in the first place, invalidate a clock pulse of another master device which generates a high-level clock pulse. The master device with a high-level clock pulse needs to detect the situation and implement the following procedure.

This device has a clock synchronization function which allows normal data transfer even when more than one master exists on the bus.

The following example explains the clock synchronization procedures used when there are two masters present on the bus.

When master A pulls the internal SCL output to the low level at point "a", the bus's SCL pin goes to the low level. After detecting this, master B resets a counter of high-level width of an own clock pulse and sets the internal SCL output the low level.

Master A finishes counting low-level width of an own clock pulse at point "b" and sets the internal SCL output to the high level. Since master B is holding the bus's SCL pin the low level, master A waits for counting high-level width of an own clock pulse. After master B has finished counting low-level width of an own clock pulse at point "c" and master A detects the SCL pin of the bus at the high level, and starts counting high level of an own clock pulse.

The clock pulse on the bus is determined by the master device with the shortest high-level width and the master device with the longest low-level width from among those master devices connected to the bus.

(4) Slave address and address recognition mode specification

When this device is to be used as a slave device, set the slave address <SA6:0> and <ALS> in I2C0AR.

Clear the <ALS> to "0" for the address recognition mode.

(5) Master/slave selection

To operate this device as a master device set the SBI0CR2<MST> to "1".

To operate it as a slave device clear the SBI0CR2<MST> to "0". The <MST> is cleared to "0" in hardware when a stop condition is detected on the bus or when arbitration is lost.

(6) Transmitter/receiver selection

To operate this device as a transmitter set the SBI0CR2<TRX> to "1". To operate it as a receiver clear the SBI0CR2<TRX> to "0".

When data with an addressing format is transferred in the slave mode, when a slave address with the same value that an I2COAR or a GENERAL CALL is received (All 8-bit data are "0" after a start condition), the $\langle TRX \rangle$ is set to "1" in hardware if the direction bit (R/\overline{W}) sent from the master device is "1", and is cleared to "0" in hardware if the bit is "0".

In the master mode, when an acknowledge signal is returned from the slave device, the <TRX> is cleared to "0" in hardware if the value of the transmitted direction bit is "1", and is set to "1" in hardware if the value of the bit is "0". If an acknowledge signal is not returned, the current state is maintained.

The <TRX> is cleared to "0" in hardware when a stop condition is detected on the I²C bus or when arbitration is lost.

(7) Start/stop condition generation

When the SBI0SR<BB> = "0", slave address and direction bit which are set to SBI0DBR is output on the bus after generating a start condition by writing "1111" to the SBI0CR2<MST, TRX, BB, PIN>. It is necessary to set transmitted data to the data buffer register (SBI0DBR) and set "1" to the <ACK> beforehand.

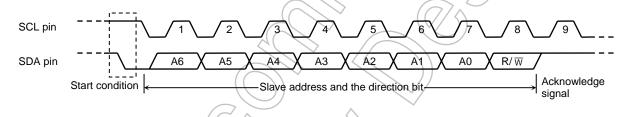
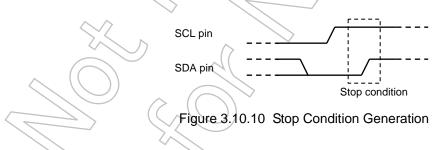



Figure 3.10.9 Start Condition Generation and Slave Address Generation

When the SBI0SR<BB> = "1", the sequence for generating a stop condition can be initiated by writing "111" to the SBI0CR2<MST, TRX, PIN> and writing "0" to the SBI0CR2<BB>. Do not modify the contents of the SBI0CR2<MST, TRX, BB, PIN> until a stop condition has been generated on the bus.

The state of the bus can be ascertained by reading the contents of the SBI0SR<BB>. The SBI0SR<BB> will be set to "1" if a start condition has been detected on the bus, and will be cleared to "0" if a stop condition has been detected.

Stop condition generation in master mode have limit. Therefore, please refer to 3.10.6 (4) "Stop condition generation".

(8) Interrupt service requests and interrupt cancellation

When a serial bus interface interrupt request 0 by transfer of the slave address or the data (INTSBE0) is generated, the SBI0SR<PIN> is cleared to "0". The SCL pin is pulled down to the low-level while the $\langle PIN \rangle = "0"$.

The <PIN> is cleared to "0" when a single word of data is transmitted or received. Either writing data to or reading data from SBI0DBR sets the <PIN> to "1".

The time from the $\langle PIN \rangle$ being set to "1" until the release of the SCL pin is t_{LOW}.

In the address recognition mode (e.g., when <ALS> = "0"), the <PIN> is cleared to "0" when the slave address matches the value set in I2COAR or when a GENERAL CALL is received (All 8-bit data are "0" after a start condition). Although the SBI0CR2<PIN> can be set to "1" by a program, writing "0" to the SBI0CR2<PIN> does not clear it to "0".

(9) Serial bus interface operation mode selection

The SBI0CR2<SBIM1:0> is used to specify the serial bus interface operation mode. Set the SBI0CR2<SBIM1:0> to "10" when the device is to be used in I²C bus mode after confirming pin condition of serial bus interface to "H".

Switch a mode to port after confirming a bus is free.

(10) Arbitration lost detection monitor

Since more than one master device can exist simultaneously on the bus in I²C bus mode, a bus arbitration procedure has been implemented in order to guarantee the integrity of transferred data.

Data on the SDA pin is used for I²C bus arbitration.

The following example illustrates the bus arbitration procedure when there are two master devices on the bus. Master A and master B output the same data until point "a". After master A outputs "L" and master B, "H", the SDA pin of the bus is wire-AND and the SDA pin is pulled down to the low level by master A. When the SCL pin of the bus is pulled up at point "b", the slave device reads the data on the SDA pin, that is, data in master A. Data transmitted from master B becomes invalid. The master B state is known as "ARBITRATION LOST". Master B device which loses arbitration releases the internal SDA output in order not to affect data transmitted from other masters with arbitration. When more than one master sends the same data at the first word, arbitration occurs continuously after the second word.

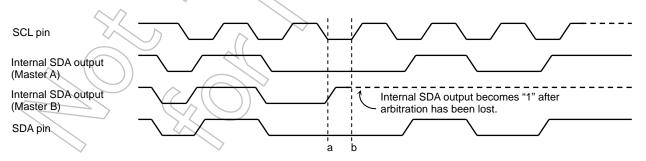


Figure 3.10.11 Arbitration Lost

This device compares the levels on the bus's SDA pin with those of the internal SDA output on the rising edge of the SCL pin. If the levels do not match, arbitration is lost and the SBI0SR<AL> is set to "1".

When the $\langle AL \rangle$ is set to "1", the SBI0SR $\langle MST, TRX \rangle$ are cleared to "00" and the mode is switched to a slave receiver mode. Thus, clock output is stopped in data transfer after setting $\langle AL \rangle =$ "1".

The <AL> is cleared to "0" when data is written to or read from SBI0DBR or when data is written to SBI0CR2.

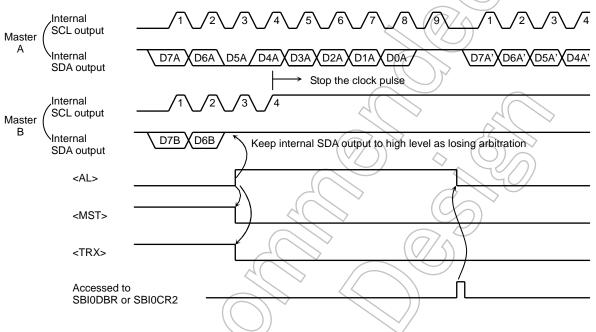


Figure 3.10.12 Example of a Master Device B (D7A = D7B, D6A = D6B)

(11) Slave address match detection monitor

The SBI0SR<AAS> is set to "1" in the slave mode, in the address recognition mode (e.g., when the I2COAR<ALS> = "0"), when a GENERAL CALL is received, or when a slave address matches the value set in I2COAR. When the I2COAR<ALS> = "1", the SBI0SR<AAS> is set to "1" after the first word of data has been received. The SBI0SR<AAS> is cleared to "0" when data is written to or read from the data buffer register SBI0DBR.

(12) GENERAL CALL detection monitor

The SBIOSR<AD0> is set to "1" in the slave mode, when a GENERAL CALL is received (all 8-bit received data is "0", after a start condition). The SBIOSR<AD0> is cleared to "0" when a start condition or stop condition is detected on the bus.

(13) Last received bit monitor

The value on the SDA pin detected on the rising edge of the SCL pin is stored in the SBI0SR<LRB>.

In the acknowledge mode, immediately after an INTSBE0 interrupt request has been generated, an acknowledge signal is read by reading the contents of the SBI0SR<LRB>.

(14) Software reset function

The software reset function is used to initialize the SBI circuit, when SBI is rocked by external noises, etc.

An internal reset signal pulse can be generated by setting SBI0CR2<SWRST1:0> to "10" and "01". This initializes the SBI circuit internally.

All command (except SBI0CR2<SBIM1:0>) registers and status registers are initialized as well.

The SBI0CR1<SWRMON> is automatically set to "1" after the SBI circuit has been initialized.

(15) Serial bus interface data buffer register (SBI0DBR)

The received data can be read and the transferred data can be written by reading or writing the SBI0DBR.

When the start condition has been generated in the master mode, the slave address and the direction bit are set in this register.

(16) I²C bus address register (I2C0AR)

I2C0AR<SA6:0> is used to set the slave address when this device functions as a slave device.

The slave address output from the master device is recognized by setting I2C0AR<ALS> is set to "0". The data format is the addressing format. When the slave address in not recognized at the <ALS> is set to "1", the data format is the free data format.

(17) Baud rate register (SBI0BR1)

Write "1" to the SBI0BR1<P4EN> before operation commences.

(18) Setting register for IDLE2 mode operation (SBI0BR0)

The setting of SBI0BR0<I2SBI0> determines whether the device is operating or is stopped in IDLE2 mode.

Therefore, setting <I2SBI0> is necessary before the HALT instruction is executed.

3.10.6 Data Transfer in I²C Bus Mode

(1) Device initialization

Set the SBI0BR1<P4EN> and the SBI0CR1<ACK, SCK2:0>. Set the SBI0BR1<P4EN> to "1" and clear bits 7 to 5 and 3 of the SBI0CR1 to "0".

Set a slave address in I2C0AR<SA6:0> and the I2C0AR<ALS> (<ALS> = "0" when an addressing format.)

For specifying the default setting to a slave receiver mode, clear "000" to the <MST, TRX, BB>, set "1" to the <PIN>, set "10" to the <SBIM1:0> and set "00" to the <SWRST1:0>.

- (2) Start condition generation and slave address generation
 - 1. Master mode

In the master mode the start condition and the slave address are generated as follows.

Check a bus free status (when $\langle BB \rangle = "0"$).

Set the SBI0CR1<ACK> to "1" (Acknowledge mode) and specify a slave address and a direction bit to be transmitted to the SBI0DBR.

When the <BB> is "0", the start condition is generated by writing "1111" to the SBIOCR2<MST, TRX, BB, PIN>. Subsequently to the start condition, 9 clocks are output from the SCL pin. While 8 clocks are output, the slave address and the direction bit which are set to the SBIODBR. At the 9th clock pulse the SDA pin is released and the acknowledge signal is received from the slave device.

An INTSBE0 interrupt request occurs on the falling edge of the 9th clock pulse. The <PIN> is cleared to "0". In the master mode the SCL pin is pulled down to the low level while the <PIN> is "0". When an INTSBE0 interrupt request occurs, the value of <TRX> is changed according to the direction bit setting only if the slave device returns an acknowledge signal.

2. Slave mode

In the slave mode the start condition and the slave address are received.

After the start condition has been received from the master device, while 8 clocks are output from the SCL pin, the slave address and the direction bit which are output from the master device are received.

When a GENERAL CALL or an address matching the slave address set in I2C0AR is received, the SDA pin is pulled down to the low level at the 9th clock pulse and an acknowledge signal is output.

An INTSBE0 interrupt request occurs on the falling edge of the 9th clock pulse. The <PIN> is cleared to "0". In the slave mode the SCL pin is pulled down to the low-level while the <PIN> = "0". When an interrupt request occurs, the value of <TRX> is changed according to the direction bit setting only if the slave device returns an acknowledge signal.

SCL pin		$-\frac{1}{2}$ 3 4 5 6 7 8 9
SDA pin		A6 A5 A4 A3 A2 A1 A0 R/W ACK Acknowledge Start condition Slave address + Direction bit slave device
<pin></pin>		
INTSBE0 interrupt reques	s <u>t</u>	
		Output of master Output of slave
	Fię	gure 3.10.13 Start Condition Generation and Slave Address Transfer
(3	3) 1-1	word data transfer
	ea	Check the <mst> setting using an INTSBE0 interrupt process after the transfer of ch word of data is completed and determine whether the device is in the master ode or the slave mode.</mst>
	1.	When the <mst> is "1" (Master mode)</mst>

Check the <TRX> setting and determine whether the device is in the transmitter mode or the receiver mode.

When the <TRX> is "1" (Transmitter mode)

Check the $\langle LRB \rangle$ setting. When the $\langle LRB \rangle = "1"$, there is no receiver requesting data. Implement the process for generating a stop condition (See section 3.10.6 (4).) and terminate data transfer.

When the $\langle LRB \rangle = "0"$, the receiver is requesting new data. When the next transmitted data is 8 bits, write the transmitted data to the SBI0DBR. When the next transmitted data is other than 8 bits, set the $\langle BC2:0 \rangle$, set the $\langle ACK \rangle$ to "1" and write the transmitted data to the SBI0DBR. After the data has been written, the $\langle PIN \rangle$ is set to "1") a serial clock pulse is generated to trigger transfer of the next word of data via the SCL pin, and the word is transmitted. After the data has been transmitted, an INTSBE0 interrupt request is generated. The $\langle PIN \rangle$ is set to "0" and the SCL pin is pulled down to the low level. If the length of the data to be transferred is greater than one word, repeat the latter steps of the procedure, starting from the check of the $\langle LRB \rangle$ setting.

SCL pin	1 2 3 4 5 6 7 8 Write to SBIODBR	9
SDA pin	$D7 \times D6 \times D5 \times D4 \times D3 \times D2 \times D1 \times D0 \times A$	ACK / Acknowledge
		└── signal from a
		receiver
<pin></pin>		
INTSBE0		
interrupt request		
	- Output from master	

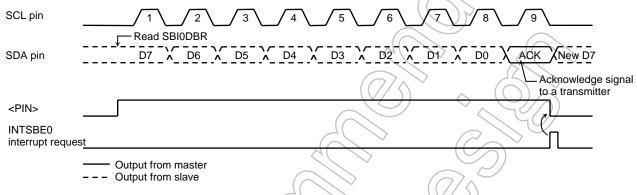

– – Output from slave

Figure 3.10.14 Example in which <BC2:0> = "000" and <ACK> = "1" in Transmitter Mode

When the <TRX> is "0" (Receiver mode)

When the next transmitted data is other than 8 bits, set the <BC2:0> again. Set the <ACK> to "1" and read the received data from the SBI0DBR so as to release the SCL pin. (The value of data which is read immediately after a slave address is sent is undefined.) After the data has been read, the <PIN> is set to "1". Serial clock pulse for transferring new 1 word of data is defined SCL and outputs "L" level from SDA pin with acknowledge timing.

An INTSBE0 interrupt request is generated and the <PIN> is set to "0". Then this device pulls down the SCL pin to the low level. This device outputs a clock pulse for 1 word of data transfer and the acknowledge signal each time that received data is read from SBI0DBR.

Figure 3.10.15 Example of when <BC2:0> = "000", <ACK> = "1" in Receiver Mode

In order to terminate the transmission of data to a transmitter, clear the <ACK> to "0" before reading data which is 1 word before the last data to be received. The last data does not generate a clock pulse for the acknowledge signal. After the data has been transmitted and an interrupt request has been generated, set the <BC2:0> to "001" and read the data. This device generates a clock pulse for a 1-bit data transfer. Since the master device is a receiver, the SDA pin on a bus keeps the high level. The transmitter receives the high-level signal as an ACK signal. The receiver indicates to the transmitter that data transfer is complete.

After 1-bit data is received and an interrupt request has occurred, this device generates a stop condition (See section 3.10.6 (4).) and terminates data transfer.

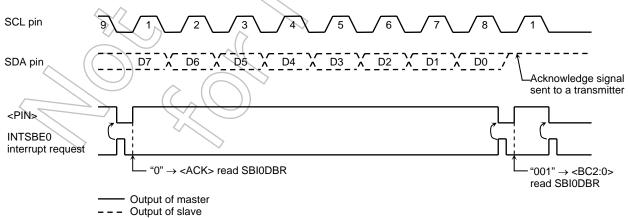


Figure 3.10.16 Termination of Data Transfer in Master Receiver Mode

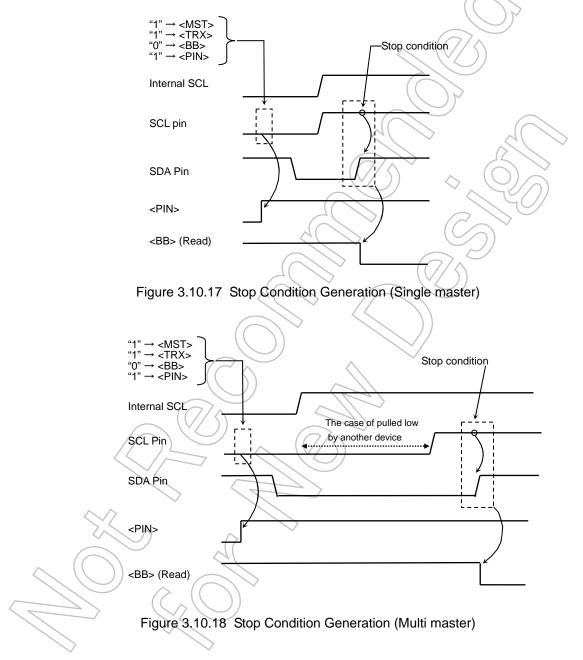
2. When the <MST> is "0" (Slave mode)

In the slave mode, this device operates either in normal slave mode or in slave mode after losing arbitration.

In the slave mode, an INTSBE0 interrupt request occurs when this device receives a slave address or a GENERAL CALL from the master device, or when a GENERAL CALL is received and data transfer is complete, or after matching a received slave address. In the master mode, this device operates in a slave mode if it is losing arbitration. An INTSBE0 interrupt request occurs when word data transfer terminates after losing arbitration. When an INTSBE0 interrupt request occurs, the <PIN> is cleared to "0", and the SCL pin is pulled down to the low level. Either reading data to or writing data from the SBI0DBR, or setting the <PIN> to "1" releases the SCL pin after taking tLOW time.

Check the SBI0SR<AL>, <TRX>, <AAS>, and <AD0> and implements processes according to conditions listed in the next table.

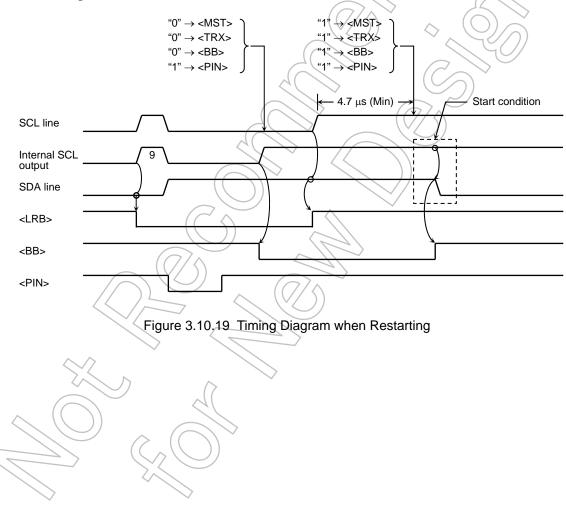
<trx></trx>	<al></al>	<aas></aas>	<ad0></ad0>	Conditions	Process
1	1	1	0	This device loses arbitration when transmitting a slave address and receives a slave address of which the value of the direction bit sent from another master is "1".	Set the number of bits in 1 word to the <bc2:0> and write the transmitted data to the SBI0DBR.</bc2:0>
	0	1	0	In the slave receiver mode, this device receives a slave address of which the value of the direction bit sent from the master is "1".	
		0	0	In the slave transmitter mode, 1-word data is transmitted.	Check the <lrb>. If the <lrb> is set to "1", set the <pin> to "1" since the receiver does not request the next data. Then, clear the <trx> to "0" to release the bus. If the <lrb> is cleared to "0", set the number of bits in a word to the <bc2:0> and write transmitted data to the SBI0DBR since the receiver requests next data.</bc2:0></lrb></trx></pin></lrb></lrb>
0	1	1	1/0	This device loses arbitration when transmitting a slave address and receives a GENERAL CALL or slave address of which the value of the direction bit sent from another master is "0".	Read the SBI0DBR for setting the <pin> to "1" (Reading dummy data) or set the <pin> to "1".</pin></pin>
		0	0	This device loses arbitration when transmitting a slave address or data and terminates transferring word data.	(75)
	0	1	1/0	In the slave receiver mode, this device receives a GENERAL CALL or slave address of which the value of the direction bit sent from the master is "0".	
		0	1/0	In the slave receiver mode, the device terminates receiving 1-word data.	Set the number of bits in a word to the <bc2:0> and read received data from the SBI0DBR.</bc2:0>


Table 3.10.1 Operation in the Slave Mode

(4) Stop condition generation

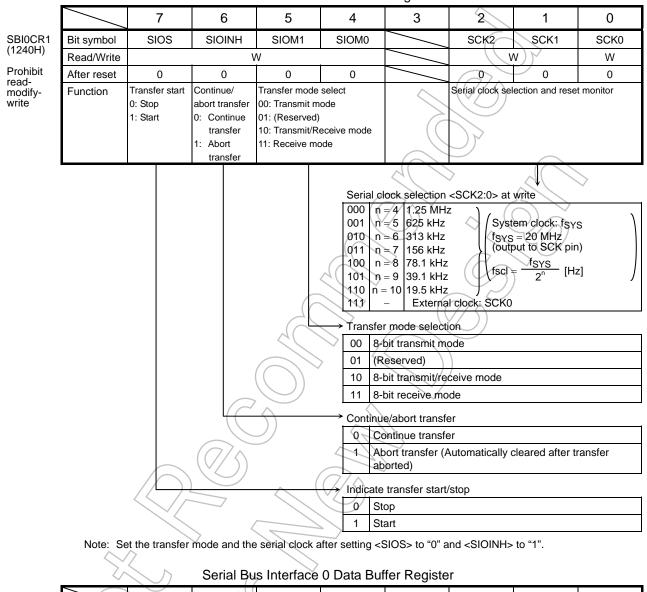
When the SBI0SR<BB> is "1", the sequence of generating a stop condition is started by setting "111" to the SBI0CR2<MST, TRX, PIN> and "0" to the SBI0CR2<BB>. Do not modify the contents of the SBI0CR2<MST, TRX, PIN, BB> until a stop condition is generated on a bus.

When a SCL pin of bus is pulled down by other devices, this device generates a stop condition after they release a SCL pin and the SDA becomes "1".



(5) Restart

Restart is used during data transfer between a master device and a slave device to change the data transfer direction. The following description explains how to restart when this device is in the master mode.


Clear the SBI0CR2<MST, TRX, BB> to "000" and set the SBI0CR2<PIN> to "1" to release the bus. The SDA line remains the high level and the SCL pin is released. Since a stop condition is not generated on the bus, other devices assume the bus to be in a busy state. Check the SBI0SR<BB> until it becomes "0" to check that the SCL pin of this device is released. Check the <LRB> until it becomes 1 to check that the SCL line on a bus is not pulled down to the low level by other devices. After confirming that the bus stays in a free state, generate a start condition with procedure described in 3.10.6 (2).

In order to meet setup time when restarting, take at least 4.7 μ s of waiting time by software from the time of restarting to confirm that the bus is free until the time to generate the start condition.

3.10.7 Clocked-synchronous 8-Bit SIO Mode Control

The following registers are used to control and monitor the operation status when the serial bus interface (SBI) is being operated in clocked-synchronous 8-bit SIO mode.

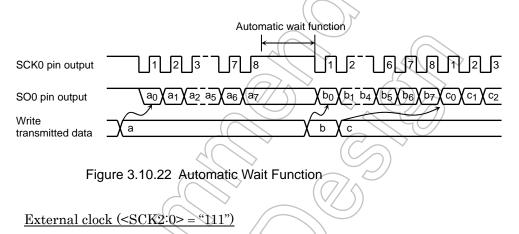
Serial Bus Interface 0	Control Register 1
------------------------	--------------------

7 6 5 4 3 2 1 0 SBI0DBR4 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Bit symbol (1241H) Read/Write R (Receiver)/W (Transfer) Prohibit After reset Undefined read-

modify-write

-3H) F									
3H) F		7	6	5	4	3	2	1	0
F	Bit symbol					SBIM1	SBIM0	-	-
ihit	Read/Write		/	/		١	N	W	W
	After reset					0	0	0	0
	Function					Serial bus int operation mo 00: Port moo 01: SIO moo 10: I ² C bus r 11: (Reserve	ode selection de le mode	(Note 2)	(Note 2
						· · · · ·	\square		
Nc	ote 1 Set t	the SBI0CR1<	·BC2·0> "000"	before switch	ning to Seria	al bus interfac	e operation m	ode selection	
		ocked-synchro			_		erial bus inter		
No		ise always wri				(chronous 8-bit		
		·				I ² C bus mode			
						(Reserved)	<u> </u>		
			Serial	Rus Interfa	ce 0 Status		~	24	\geq
Г	<u> </u>	-					^	\leq	
L		7	6	5	4 ((// 3	2	$)^1$	0
3H) –	Bit symbol					ŚIÓF	SEF	700	
F	Read/Write				\square		R		
	After reset					0			
F	Function				\sim	Serial transfer	Shift operation status monitor		
L				((status monitor	7/		
					ransfer termin ransfer in prog		0 Shi	tion status mo ift operation to	
			Carial Du						n proares
			Senal Bus	s interface.	0 Baud Rat	te Register			n progres
Г		7	Serial Bus	5 Milenace	0 Baud Rat 4	te Register 3		1	n progres
	Bit symbol	7				-	0		
4H) —	Bit symbol Read/Write	7 				-	0		
4H) ibit 4		_	6			-	0		
4H) iibit 4 -	Read/Write	- W	6 R/W			-	0	-	
4H) ibit 4 ify- F	Read/Write After reset Function	- W 0 Always write "0".	6 R/W 0 Always write "0".	5		3	0	-	
4H) ibit 4 ify- F	Read/Write After reset Function	- W 0 Always	6 R/W 0 Always write "0".	5		3	0	-	
4H) ibit 4 ify- F	Read/Write After reset Function	- W 0 Always write "0".	6 R/W 0 Always write "0".	5	4 e in IDLE2 mo	de.	0 2	-	
4H) ibit 4 ify- F	Read/Write After reset Function	- W 0 Always write "0".	6 R/W 0 Always write "0". Donous mode c Serial Bus	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F ibit / ify- F	Read/Write After reset Function Note: Cl	- W 0 Always write "0". ocked-synchro	6 R/W 0 Always write "0".	5	4 e in IDLE2 mo	de.	0 2	-	
4H) F ibit / ify- F 5H)	Read/Write After reset Function Note: Cl Bit symbol	- W 0 Always write "0". ocked-synchro 7 P4EN	6 R/W 0 Always write "0". onous mode c Serial Bus 6	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F ibit / ify- F 5H) F	Read/Write After reset Function Note: Cl Bit symbol Read/Write	- W 0 Always write "0". ocked-synchro 7 P4EN W	6 R/W 0 Always write "0". Donous mode c Serial Bus 6	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F ibit / ify- F 5H) F ibit /	Read/Write After reset Function Note: Cl Bit symbol Read/Write After reset	- W 0 Always write "0". ocked-synchro 7 P4EN W 0	6 R/W 0 Always write "0". Denous mode c Serial Bus 6 W	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F ibit / ify- F bBR1 F 5H) F ibit /	Read/Write After reset Function Note: Cl Bit symbol Read/Write	- W 0 Always write "0". ocked-synchro 7 P4EN W	6 R/W 0 Always write "0". Donous mode c Serial Bus 6	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F ibit / fy- F fy- F BR1 F 5H) F ibit / fy- F	Read/Write After reset Function Note: Cl Bit symbol Read/Write After reset	- W 0 Always write "0". ocked-synchro ocked-synchro 7 P4EN W 0 Internal clock	6 R/W 0 Always write "0". Donous mode c Serial Bus 6 W 0 Always	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de.	0 2		0
4H) F fy- F fy- F BR1 F 5H) F ibit f fy- F	Read/Write After reset Function Note: Cl Bit symbol Read/Write After reset	- W 0 Always write "0". ocked-synchro ocked-synchro 7 P4EN W 0 Internal clock 0: Stop	6 R/W 0 Always write "0". Donous mode c Serial Bus 6 W 0 Always	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de. te Register	0 2 1 2		0
4H) F fy- F fy- F BR1 F 5H) F ibit f fy- F	Read/Write After reset Function Note: Cl Bit symbol Read/Write After reset	- W 0 Always write "0". ocked-synchro ocked-synchro 7 P4EN W 0 Internal clock 0: Stop	6 R/W 0 Always write "0". Donous mode c Serial Bus 6 W 0 Always	5 annot operate	4 e in IDLE2 mo 0 Baud Rat	de. te Register	0 2		0

Serial Bus Interface 0 Control Register 2


- (1) Serial clock
 - 1. Clock source

SBI0CR1 < SCK2:0 > is used to select the following functions:

Internal clock

In an internal clock mode, any of seven frequencies can be selected. The serial clock is output to the outside on the SCK pin.

When the device is writing (in the transmit mode) or reading (in the receive mode) data cannot follow the serial clock rate, an automatic wait function is executed to stop the serial clock automatically and holds the next shift operation until reading or writing is complete.

An external clock input via the SCK pin is used as the serial clock. In order to ensure the integrity of shift operations, both the high and low-level serial clock pulse widths shown below must be maintained. The maximum data transfer frequency is 1.25 MHz (when $f_{\rm SYS} = 20 \text{ MHz}$).

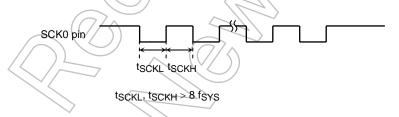


Figure 3.10.23 Maximum Data Transfer Frequency when External Clock Input

2. Shift edge

Data is transmitted on the leading edge of the clock and received on the trailing edge.

(a) Leading edge shift

Data is shifted on the leading edge of the serial clock (on the falling edge of the SCK pin input/output).

(b) Trailing edge shift

Data is shifted on the trailing edge of the serial clock (on the rising edge of the SCK pin input/output).

SCK pin output	
SO pin output	Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Shift register	76543210
	(a) Leading edge
SCK pin	-indander-
SI pin	Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Shift register	
	(b) Trailing edge *: Don't care Figure 3.10.24 Shift Edge

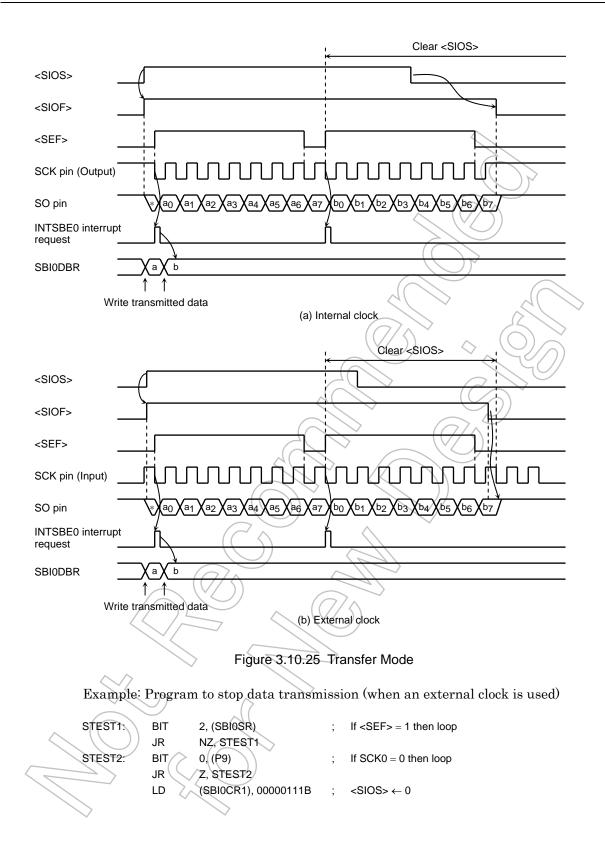
(2) Transfer modes

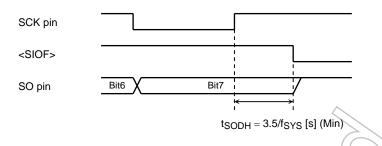
The SBI0CR1<SIOM1:0> is used to select a transmit, receive or transmit/receive mode.

1. 8-bit transmit mode

Set a control register to a transmit mode and write transmission data to the SBI0DBR.

After the transmit data has been written, set the SBI0CR1<SIOS> to "1" to start data transfer. The transmitted data is transferred from the SBI0DBR to the shift register and output, starting with the least significant bit (LSB), via the SO pin and synchronized with the serial clock. When the transmission data has been transferred to the shift register, the SBI0DBR becomes empty. The INTSBE0 (Buffer empty) interrupt request is generated to request new data.


When the internal clock is used, the serial clock will stop and the automatic wait function will be initiated if new data is not loaded to the data buffer register after the specified 8-bit data is transmitted. When new transmission data is written, the automatic wait function is canceled.

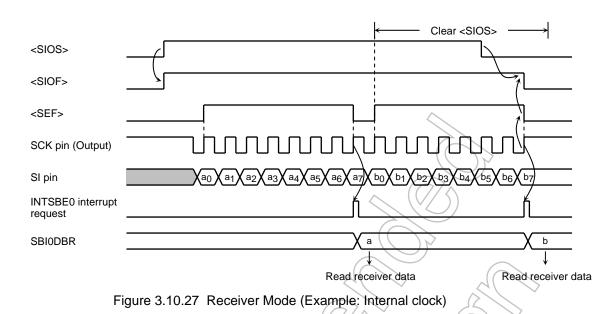

When the external clock is used, data should be written to the SBI0DBR before new data is shifted. The transfer speed is determined by the maximum delay time between the time when an interrupt request is generated and the time when data is written to the SBI0DBR by the interrupt service program.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Data transmission ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". When the <SIOS> is cleared to "0", the transmitted mode ends when all data is output. In order to confirm whether data is being transmitted properly by the program, the <SIOF> (Bit3 of the SBIOSR) to be sensed. The SBIOSR<SIOF> is cleared to "0" when transmission has been completed. When the <SIOINH> is set to "1", transmitting data stops. The <SIOF> turns "0".

When the external clock is used, it is also necessary to clear the <SIOS> to "0" before new data is shifted; otherwise, dummy data is transmitted and operation ends.

2. 8-bit receive mode


Set the control register to receive mode and set the SBI0CR1<SIOS> to "1" for switching to receive mode. Data is received into the shift register via the SI pin and synchronized with the serial clock, starting from the least significant bit (LSB). When the 8-bit data is received, the data is transferred from the shift register to the SBI0DBR. The INTSBE0 (Buffer full) interrupt request is generated to request that the received data be read. The data is then read from the SBI0DBR by the interrupt service program.

When the internal clock is used, the serial clock will stop and the automatic wait function will be in effect until the received data is read from the SBI0DBR.

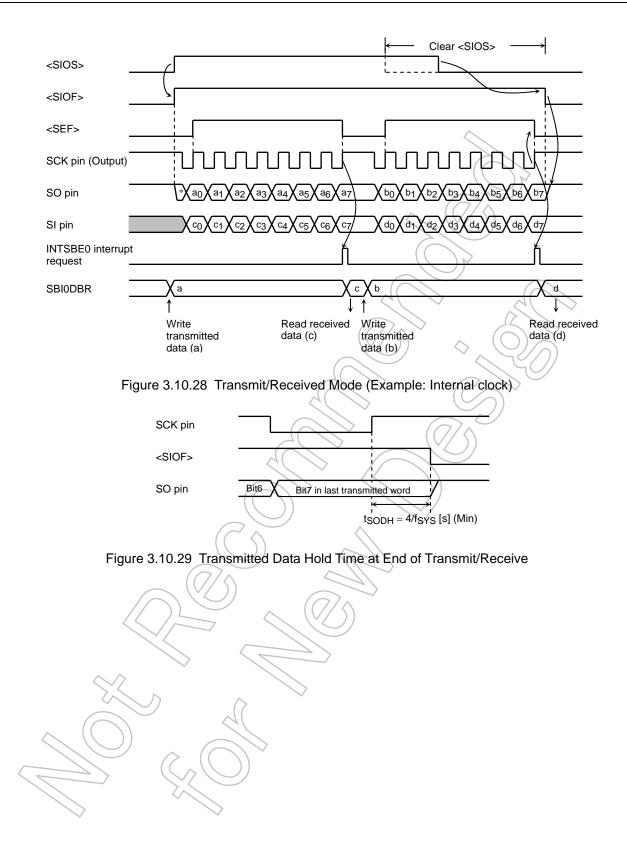
When the external clock is used, since shift operation is synchronized with an external clock pulse, the received data should be read from the SBI0DBR before the next serial clock pulse is input. If the received data is not read, further data to be received is canceled. The maximum transfer speed when an external clock is used is determined by the delay time between the time when an interrupt request is generated and the time when the received data is read.

Receiving of data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the <SIOINH> is set to "1". If <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The received mode ends when the transfer is complete. In order to confirm whether data is being received properly by the program, the SBI0SR<SIOF> to be sensed. The <SIOF> is cleared to "0" when receiving is complete. When it is confirmed that receiving has been completed, the last data is read. When the <SIOINH> is set to "1", data receiving stops. The <SIOF> is cleared to "0". (The received data becomes invalid, therefore no need to read it.)

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data receiving by clearing the <SIOS> to "0", read the last data, then change the mode.

3. 8-bit transmit/receive mode

Set a control register to a transmit/receive mode and write data to the SBI0DBR. After the data is written, set the SBI0CR<SIOS> to "1" to start transmitting/receiving. When data is transmitted, the data is output from the SO pin, starting from the least significant bit (LSB) and synchronized with the leading edge of the serial clock signal. When data is received, the data is input via the SI pin on the trailing edge of the serial clock signal. 8-bit data is transferred from the shift register to the SBI0DBR and the INTSBE0 interrupt request is generated. The interrupt service program reads the received data from the data buffer register and writes the data which is to be transmitted. The SBI0DBR is used for both transmitting and receiving. Transmitted data should always be written after received data is read.

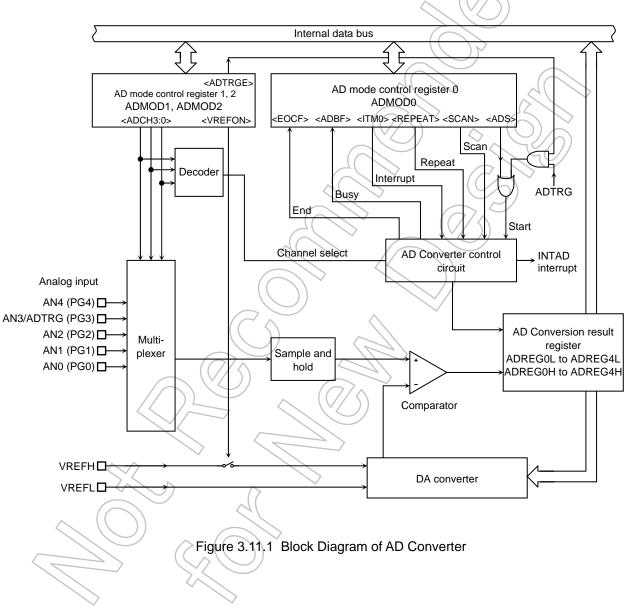

When the internal clock is used, the automatic wait function will be in effect until the received data is read and the next data is written.

When the external clock is used, since the shift operation is synchronized with the external clock, the received data is read and transmitted data is written before a new shift operation is executed. The maximum transfer speed when the external clock is used is determined by the delay time between the time when an interrupt request is generated and the time at which received data is read and transmitted data is written.

When the transmit is started, after the SBI0SR<SIOF> goes "1" output from the SO pin holds final bit of the last data until falling edge of the SCK.

Transmitting/receiving data ends when the <SIOS> is cleared to "0" by the INTSBE0 interrupt service program or when the SBI0CR1<SIOINH> is set to "1". When the <SIOS> is cleared to "0", received data is transferred to the SBI0DBR in complete blocks. The transmit/receive mode ends when the transfer is complete. In order to confirm whether data is being transmitted/received properly by the program, set the SBI0SR to be sensed. The <SIOF> is set to "0" when transmitting/receiving is completed. When the <SIOINH> is set to "1", data transmitting/receiving stops. The <SIOF> is then cleared to "0".

Note: When the transfer mode is changed, the contents of the SBI0DBR will be lost. If the mode must be changed, conclude data transmitting/receiving by clearing the <SIOS> to "0", read the last data, then change the transfer mode.

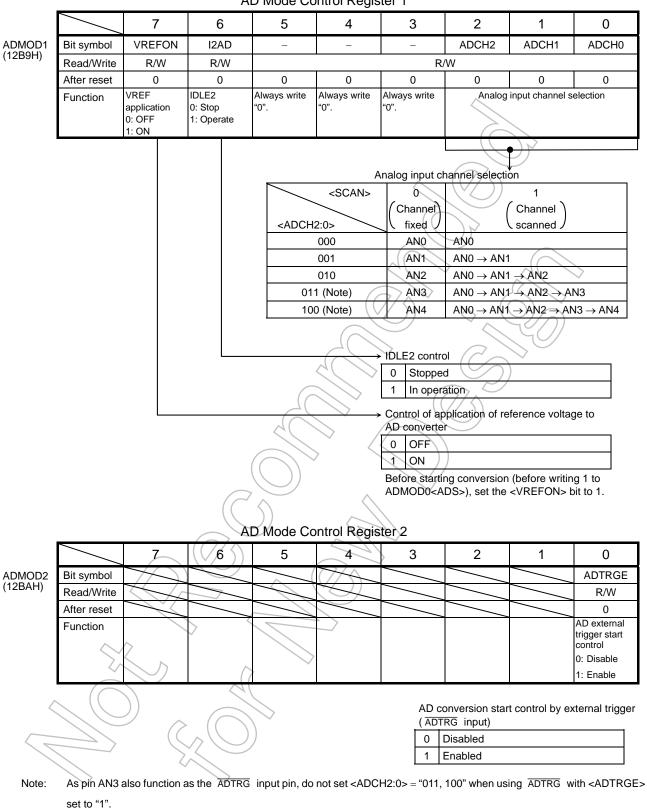

92C820-211

3.11 Analog/Digital Converter

The TMP92C820 incorporates a 10-bit successive approximation-type analog/digital converter (AD converter) with 5-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 5-channel analog input pins (AN0 to AN4) are shared with the input-only port (Port G) so they can be used as an input port.

Note: When IDLE2, IDLE1 or STOP mode is selected, as to reduce the power, with some timings the system may enter a standby mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.


3.11.1 Analog/Digital Converter Registers

The AD converter is controlled by the three AD mode control registers: ADMOD0, ADMOD1 and ADMOD2. The five AD conversion data result registers (ADREG0H/L to ADREG4H/L) store the results of AD conversion. Figure 3.11.2 shows the registers related to the AD converter.

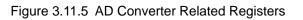
AD Mode Control Register 0

Figure 3.11.2 AD Converter Related Register

AD Mode Control Register 1

Figure 3.11.3 AD Converter Related Register

		7	6	5	4	3	2	1	0
ADREGOL	Bit symbol	ADR01	ADR00	//					ADR0RF
(12A0H)	Read/Write	F	2						R
	After reset	Unde	fined						0
	Function	Stores lower conversio							AD conversion data storage flag 1: Conver- sion result stored
			AD Co	nversion Re	esult Regist	ter 0 High			
		7	6	5	4	3))2	1	0
ADREG0H	Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02
(12A1H)	Read/Write	ADI(03	ADITOO	ADIO	F				ADINOZ
	After reset				Unde		7		\checkmark
	Function			Stores u	pper eight bits		on result.	$\overline{\bigcirc}$	
			AD Co	nversion R	esult Regis	ter 1 Low		30	
		7	6	5	$\langle 4 \rangle$	3	2	1	0
ADREG1L	Bit symbol	ADR11	ADR10	$\langle \gamma \rangle$	\mathcal{A}	\square			ADR1RF
(12A2H)	Read/Write	F	2	\sim	\sim		\mathcal{H}		R
	After reset	Unde	fined	Å		\searrow			0
	Function	Stores lower conversion)		AD conversion result flag 1: Conver- sion result stored
			AD Co)) nversion Re	esult Regist	ter 1 High			
		7	6	5	4	3	2	1	0
ADREG1H	Bit symbol	ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
(12A3H)	Read/Write				F	2			
	After reset		>		Unde Unde				
	Function	\sim	*	Stores up	per eight bits o	of AD convers	ion result.		
	Channel x conversion	result	ADREGXH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3 2 2 1 0		5 4 3	ADREGX 2 1 0	L
	~		v	 Bit0 is th conversion 	1 are always the AD convers tion result is sto s (ADREGxH,	ion data stora ored, the flag	is set to 1. WI	hen either of t	he


AD Conversion Result Register 0 Low

92C820-215

								1	
		7	6	5	4	3	2	1	0
ADREG2L	Bit symbol	ADR21	ADR20						ADR2RF
(12A4H)	Read/Write	F	2	/			/		R
	Read/Write R ADR21 ADR20 ADR2RF Read/Write R R 0 0 After reset Undefined R R 0 Function Stores tower 2 bits of AD conversion Result Register 2 High Conversion result. Conversion Result Register 2 High Atter reset Undefined R 3 2 1 0 Recard Bit symbol ADR29 ADR28 ADR27 ADR26 ADR26 ADR23 ADR23 Atter reset Undefined R								
	G2L Bit symbol ADR21 ADR20 ADR2RF ReadWiftle R R 0 Atter reset Undefined 0 Function Stores lower 2 bits of AD 0 conversion result Conversion Result Register 2 High 0 AD Conversion Result Register 2 High 1 G2H Bit symbol ADR29 ADR28 ADR29 ADR28 ADR27 ADR26 ADR24 Address Undefined R ADR22 ADR22 H) Read/Write R R ADR23 ADR28 AD Conversion Result Register 3 Low ADR31 ADR30 ADR31 ADR30 G3L T 6 5 4 3 2 1 0 After reset Undefined Read/Write R R R R R H) After reset Undefined R R R R R G3L T 6 5 4 3 2 1 0 Mater reset U								
		conversio	on result.						data storage
							6		-
								JY	
									stored
						\sim	$(\sqrt{3})$		
			AD Cor	nversion Re	esult Reaist	ter 2 High			
		7					M	1	0
ADREG2H (12A5H)	,	ADR29	ADR28	ADR27			ADR24	ADR23	ADR22
(<i>'</i>								<u>A</u> (\searrow
						$\overline{}$	/		
	Function			Stores up	per eight bits o	of AD convers	ion result.		
			AD Co	nversion R	esult Regis	ter 3 Low	R	\mathbf{a}	
		7	6	5	$\langle 4 \rangle$	3	(2)	1	0
ADREG3L	Bit symbol	ADR31	ADR30	\sim					ADR3RF
(12A6H)	-		2				+	\sim	
						\sim		\sim	
	Function	Stores lower	2 bits of AD		~ 7				
		conversio	on result.	\bigcirc	~)		
				())					Ũ
			\square		\wedge	\sim			
				$\langle \rangle$					
				Ľ	$\langle E \rangle$				
			(AD Cor	oversion Re	esult Redist	er 3 High			
	\leq		$\langle \langle \rangle \rangle$	/			0	4	0
ADREG3H (12A7H)	-	ADR39	ADR38	ADR37			ADR34	ADR33	ADR32
. ,			<u>} </u>						
	~	\sim	~	0			·		
	Function		~	Stores up	per eight bits c	of AD convers	sion result.		
	\sim	\mathbf{i}		>					
~			9 8	7 6 5	4 3 2	1 0			
<		conversion							
		- (?)	• • •				
/7				5 1 3	2 1 0	7 6	5 / 3		L
		4					$\overline{\mathcal{M}}$		
	\checkmark								
						C	Y		
					e AD conversion result is stor				
					(ADREGxH, A				
				9.0.070	、 .	,,	,		

AD Conversion Result Register 2 Low

Г

		7	6	5	4	3	2	1	0
ADREG4L	Bit symbol	ADR41	ADR40		/			/	ADR4RF
(12A8H)	Read/Write	F	२						R
	After reset	Unde	fined		/				0
	Function	Stores lower conversion)r	AD conversion data storage flag 1: Conver- sion result stored
			AD Cor	nversion Re	esult Regis	ter 4 High			
		7	6	5	4	3))2	1	0
ADREG4H	Bit symbol	ADR49	ADR48	ADR47	ADR46	ADR45	ADR44	ADR43	ADR42
(12A9H)	Read/Write					200	>		\geq
	After reset				Unde			Ω	× ·
	Function			Stores up	per eight bits	of AD convers	ion result.	$\overline{)}$	
	Channel x of result		ADREGXH 7 6	Bits 5 Bito is conve registe	rsion result is ers (ADREGxI		rage flag <ae g is set to 1. V is read, the fl</ae 	When either a	en the AD ff the

AD Conversion Result Register 4 Low

- 3.11.2 Description of Operation
 - (1) Analog reference voltage

A high-level analog reference voltage is applied to the VREFH pin; a low-level analog reference voltage is applied to the VREFL pin. To perform AD conversion, the reference voltage, the difference between VREFH and VREFL, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write a 0 to ADMOD1 <VREFON> in AD mode control register 1. To start AD conversion in the OFF state, first write a 1 to ADMOD1<VREFON>, wait 3 µs until the internal reference voltage stabilizes (This is not related to fc.), then set ADMOD0<ADS> to 1.

(2) Analog input channel selection

The analog input channel selection varies depends on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = 0) Setting ADMOD1<ADCH2:0> selects one of the input pins AN0 to AN4 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = 1) Setting ADMOD1<ADCH2:0> selects one of the five scan modes.

Table 3.11.1 illustrates analog input channel selection in each operation mode.

On a reset, ADMOD0<SCAN> is set to 0 and ADMOD1<ADCH2:0> is initialized to 000. Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

<adch2:0></adch2:0>	Channel Fixed <scan> = "0"</scan>	Channel Scan <scan> = "1"</scan>
000	ANO	ANO
001	AN1	$AN0 \rightarrow AN1$
010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
011	AN3	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3$
100	AN4	$AN0 \rightarrow AN1 \rightarrow AN2 \rightarrow AN3 \rightarrow AN4$

Table 3.11.1 Analog Input Channel Selection

(3) Starting AD conversion

To start AD conversion, write a 1 to ADMODO<ADS> in AD mode control register "0" or ADMOD2<ADTRGE> in AD mode control register 2, and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMODO<ADBF> will be set to 1, indicating that AD conversion is in progress. During A/D conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

The four AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMODO<EOCF> will be set to 1 to indicate that AD conversion has been completed.

a. Channel fixed single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 00 selects conversion channel fixed single conversion mode.

In this mode data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

b. Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 01 selects conversion channel scan single conversion mode.

In this mode data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to 1,

ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

c. Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 10 selects conversion channel fixed repeat conversion mode.

In this mode data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to 1 and ADMOD0<ADBF> is not cleared to 0 but held at 1. INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Setting <ITM0> to 0 generates an interrupt request every time an AD conversion is completed. Setting <ITM0> to 1 generates an interrupt request on completion of every fourth conversion.

d. Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 11 selects conversion channel scan repeat conversion mode.

In this mode data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to 1 and an INTAD interrupt request is generated, ADMOD0<ADBF> is not cleared to 0 but held at 1.

To stop conversion in a repeat conversion mode (e.g., in cases c. and d.), write a 0 to ADMOD0<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to 0, IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases c. and d.), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases a. and b.), conversion does not restart when the halt is released (The converter remains stopped).

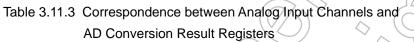
Table 3.11.2 shows the relationship between the AD conversion modes and interrupt requests.

Mode	Interrupt Request	ADMOD0				
Mode	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>		
Channel Fixed Single Conversion Mode	After completion of conversion	х	0	0		
Channel Scan Single Conversion Mode	After completion of scan conversion	х	0	1		
Channel Fixed Repeat	Every conversion	0	1	0		
Conversion Mode	Every 4th conversion	1	I	0		
Channel Scan Repeat Conversion Mode	After completion of every scan conversion	Х	1	1		

Table 3.11.2 Relationship between AD Conversion Modes and Interrupt Requests

X: Don't care

(5) AD conversion time


 $132\ state\ (6.6\ \mu s\ at\ fSYS$ = $20\ MHz)$ are required for the AD conversion of one channel.

(6) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG0H/L to ADREG4H/L) store the results of AD conversion. (ADREG0H/L to ADREG4H/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers ADREG0H/L to ADREG3H/L. In other modes the ANO, AN1, AN2, AN3, AN4 conversion results are stored in ADREG0H/L, ADREG1H/L, ADREG3H/L and ADREG4H/L respectively.

Table 3.11.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

	AD Conversion	Result Register
Analog Input Channel (Port G)	Conversion Modes other than at Right	Channel Fixed Repeat Conversion Mode (<itm0>=1)</itm0>
ANO	ADREGOH/L	
AN1	ADREG1H/L	ADREG0H/L ← ↓ ADREG1H/L
AN2	ADREG2H/L	ADREG2H/L
AN3	ADREG3H/L	ADREG3H/L
AN4	ADREG4H/L	
	(\vee)	

<ADRxRF>, bit0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to 1. When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to 0.

Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to 0.

Setting example:

Convert the analog input voltage on the AN3 pin and write the result, to memory address 0800H using the AD 1. interrupt (INTAD) processing routine.

Main routine:

_	7	6	5	4	3	2	1	0		
INTE0AD	← 1	1	0	0	_	_	_	_		
ADMOD1	← 1	1	0	0	0	0	1	1		
ADMOD0	\leftarrow –	_	0	0	0	0	0	1		
Interrupt routine processing example:										

WA ← ADREG3 WA > > 6 (0800H) ←WA

Enable INTAD and set it to interrupt level 4. Set pin AN3 to be the analog input channel. Start conversion in channel fixed single conversion mode.

Read value of ADREG3L and ADREG3H into 16-bit general-purpose register WA. Shift contents read into WA 6 times to right and zero-fill upper bits. Write contents of WA to memory address 0800H.

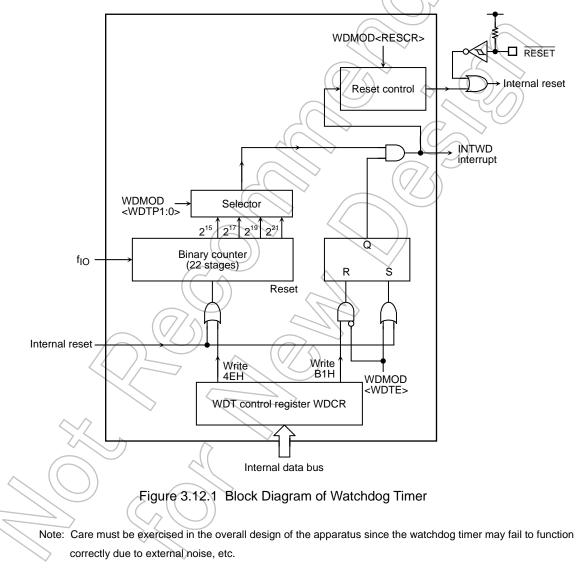
This example repeatedly converts the analog input voltages on the three pins AN0, AN1 and AN2, using channel 2. scan repeat conversion mode.

_									\sim
INTE0AD	← 1	0	0	0	_	_	_	-	Disable INTAD.
ADMOD1	← 1	1	0	0	0	0	1	0	Set pins AN0 to A
ADMOD0	← -	_	0	0	0	1	1	1	Start conversion i
X. Don't care	(• No	cha	nae						

X: Don't care, (: No change

AN2 to be the analog input channels. in channel scan repeat conversion mode.

3.12 Watchdog Timer (Runaway detection timer)


The TMP92C820 contains a watchdog timer of runaway detecting.

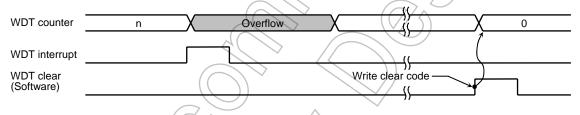
The watchdog timer (WDT) is used to return the CPU to the normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise. When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU of the malfunction.

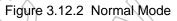
Connecting the watchdog timer output to the reset pin internally forces a reset. (The level of external $\overline{\text{RESET}}$ pin is not changed.)

3.12.1 Configuration

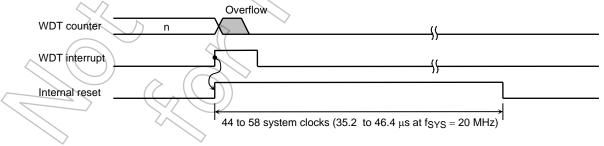
Figure 3.12.1 is a block diagram of the watchdog timer (WDT)

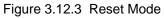
3.12.2 Operation


The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared to zero in software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (runaway) due to the INTWD interrupt, and in this case it is possible to return the CPU to normal operation by means of an anti-malfunction program.


The watchdog timer begins operating immediately on release of the watchdog timer reset.

The watchdog timer is reset and halted in IDLE1 or STOP mode. The watchdog timer counter continues counting during bus release (when BUSAK goes low).


When the device is in IDLE2 mode, the operation of the WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.


The watchdog timer consists of a 22-stage binary counter which uses the clock f_{SYS} as the input clock. The binary counter can output $2^{15}/f_{IO}$, $2^{17}/f_{IO}$, $2^{19}/f_{IO}$ and $2^{21}/f_{IO}$.

The runaway detection result can also be connected to the reset pin internally. In this case, the reset time will be between 44 and 58 system clocks (35.2 to 46.4μ s at $f_{OSCH} = 40$ MHz) as shown in Figure 3.12.3. After a reset, the f_{IO} clock (1 cycle = 1 state) is fFPH/4, where fFPH is generated by dividing the high-speed oscillator clock (f_{OSCH}) by sixteen through the clock gear function

3.12.3 Control Registers

The watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - a. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway.

On a reset this register is initialized to WDMOD < WDTP1:0 > = 00.

The detection times for WDT is $2^{15}/f_{IO}$ [s]. (The number of system clocks is approximately 65,536.)

b. Watchdog timer enable/disable control register <WDTE>

At reset, the WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

c. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR> is initialized to 0 at reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

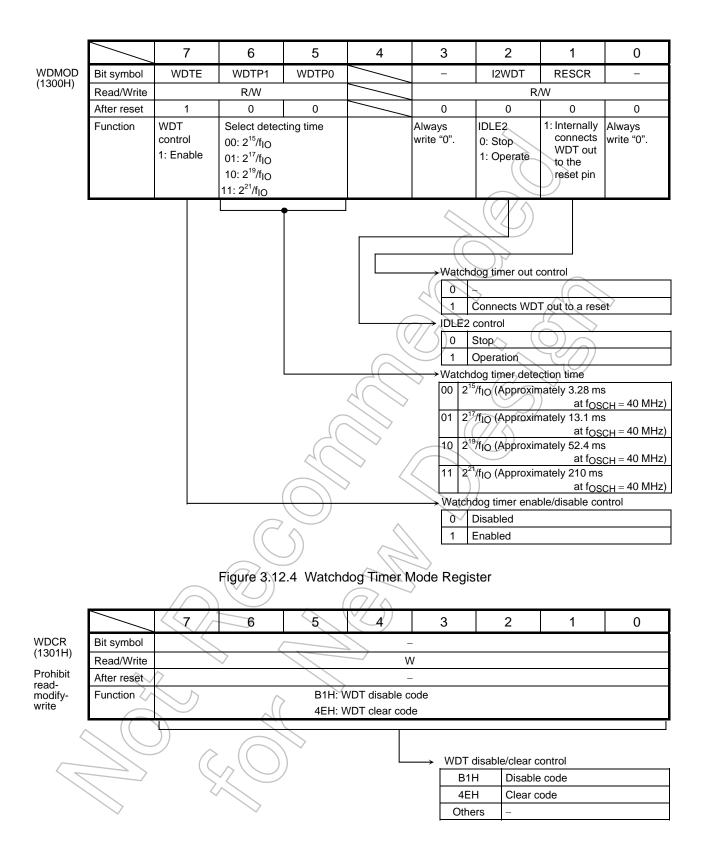
Disable control

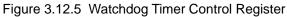
The watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

 $\begin{array}{c} \text{WDCR} \\ \text{WDMOD} \\ \text{WDCR} \end{array} \begin{array}{c} \leftarrow 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ \leftarrow 0 & - & - & X & 0 & - & 0 \\ \leftarrow 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{array} \end{array} \\ \begin{array}{c} \text{Write the clear code (4EH).} \\ \text{Clear WDMOD<WDTE> to 0.} \\ \text{Write the disable code (B1H).} \end{array} \end{array}$

- Enable control
- Set WDMOD<WDTE> to 1.
- Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.


```
WDCR
```


1 0 0 1 1 1

Write the clear code (4EH).

Note1: If the disable control is used, set the disable code (B1H) to WDCR after writing the clear code (4EH) once. (Please refer to setting example.)

Note2: If the watchdog timer setting is changed, change setting after setting to disable condition once.

- 3.13 Real Time Clock (RTC)
 - 3.13.1 Function Description for RTC
 - (1) Clock function (Hour, minute, second)
 - (2) Calendar function (Month and day, day of the week, and leap year)
 - (3) 24 or 12-hour (AM/PM) clock function
 - (4) ± 30 second adjustment function (by software)
 - (5) ALARM function (Alarm output)
 - (6) Alarm interrupt generate
 - (7) Divided power supply
 - 3.13.2 Block Diagram

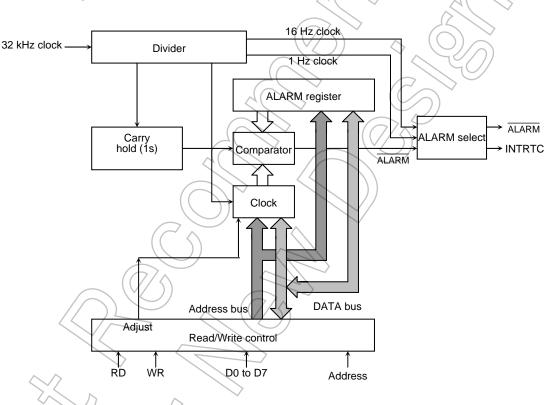


Figure 3.13.1 RTC Block Diagram

Note 1: Western calendar year column:

This product uses only the final two digits of the year. Therefore, the year following 99 is 00 years. In use, please take into account the first two digits when handling years in the western calendar.

Note 2: Leap year:

A leap year is divisible by 4, but the exception is any leap year which is divisible by 100; this is not considered a leap year. However, any year which is divisible by 400, is a leap year. This product does not take into account the above exceptions. Since this product accounts only for leap years divisible by 4, please adjust the system for any problems.

3.13.3 Detailed Explanation of Control Register

RTC is not initialized by system reset. Therefore, all registers must be initialized at the beginning of the program.

(1)	Second	column	register	(for	PAGE0	only)
-----	--------	--------	----------	------	-------	-------

SECR	
(1320H)

	7	6	5	4		3	2	1	0
Bit symbol		SE6	SE5	SE4	4 S	E3	SE2	SE1	SE0
Read/Write					R	R/W) [
After reset					Und	efined	77~		
Function	"0" is read.	40 sec.	20 sec.	10 se		sec.	4 sec	2 sec.	1 sec.
		column	column	colur	nn co	lumn	column	column	column
							7		
		0	0	0	0	0	0	0	0 sec
		0	0	0	0	0	0	$\langle 1 \rangle$	1 sec
		0	0	0	0	0	1	9	2 sec
		0	0	0	$\left(\left(0 \right) \right)$	0	1((3 sec
		0	0	0	$\langle 0 \rangle$	1	$\mathcal{O}_{\mathcal{O}}$	(9)	4 sec
		0	0	0((0	1	0	90/	5 sec
		0	0	0	0	1	$\overline{2}$) 0	6 sec
		0	0	0	0	1	\sum	1	7 sec
		0	0	0	1	0	N N	0	8 sec
		0	0 (0	1	0	0	1	9 sec
		0	Q		0		U o	0	10 sec
				\sim	. // :				
		0	6	1	1	0	0	1	19 sec
		0	$\begin{pmatrix} 1 \end{pmatrix}$	0	0	0	0	0	20 sec
		\bigcap			:	\sim			
		0	$\int 1$	0	1	0	0	1	29 sec
		0	ノ/ 1	1 🔇	6	0	0	0	30 sec
		$\overline{\Omega}$		4					
		((0)	1	4	7	0	0	1	39 sec
	$ \rangle \rangle$		0	$(0 \land$	0	0	0	0	40 sec
	$\langle\langle / \rangle$			$\langle O \rangle$:				
		1	0)0	1	0	0	1	49 sec
			þ		0	0	0	0	50 sec
$ \land /$	>				:				
\sim	\leq \wedge	1	0	> 1	1	0	0	1	59 sec
\sim	\searrow	Note	Do not set	data other	than as sho	own above			

		nute colum	6	5	4		3	2	1	0	
1INR 1321H)	Bit symbol		MI6	MI5	MI4		MI3	MI2	MI1	MIO	
102111)	Read/Write						R/W				
	After reset	"O" :	10	00	40		defined		0	4	
	Function	"0" is read.	40 min column	20 min column	10 m colun		3 min olumn	4 min column	2 min column	1 min column	
		II)}		
			0	0	0	0	○ 0 (0	0	0 min	
			0	0	0	0	0		1	1 min	
			0	0	0	0	0	1	0	2 min	
		0 0 0 0 0 1 1 3 min									
			0	0	0	0		0	0	4 min	
			0	0	0	0/1		0	$\langle 1 \rangle$	5 min	
			0	0	0	0	1	1 (0	6 min	
			0	0	0	(0/<	1	1 (1	7 min	
			0	0	0	\mathbb{V}	0	0	20	8 min	
			0	0	0	$\langle \rangle$	0	0	50/	9 min	
			0	0		0	0	0) O	10 min	
					2()) :		(\bigcirc)			
			0	0	1	1	0	0	1	19 min	
			0	1	0	0	0	0	0	20 min	
					\sim	·	\sim	\bigcirc			
			0	- S	0	1	0	0	1	29 min	
			0	Ĺ	> 1	6	0	0	0	30 min	
				()		,	$\sum / /$				
			0		1	ຸ 1	0	0	1	39 min	
			(1)	○ 0	0	0	0	0	0	40 min	
				\mathcal{D}	5	://	•				
				0	0		0	0	1	49 min	
			(//1))	0	1	0	0	0	0	50 min	
		$\langle \rangle$	\mathbf{i}	-	(0/	:					
		K//-	1	0		1	0	0	1	59 min	
			Note:	Do not set	data other	than as sh	nown abov	re.			

(2) Minute column register (for PAGE0/1)

(3) Hour column register (for PAGE0/1)

	1.	In 24-no	our clock n	node (MOI	NTHK<	MOU	>= 1)			
		7	6	5	4		3	2	1	0
IOURR	Bit symbol	/		HO5	HO	4	HO3	HO2	HO1	HO0
322H)	Read/Write				•		R	/w		•
	After reset	/					Und	efined (
	Function	"0" is	read.	20 hours column	10 ho colun		8 hours column	4 hours column	2 hours column	1 hour column
				0	0	0	(()	0	0	0 o'clock
				0	0	0	0	0 10	1	1 o'clock
				0	0	0	0	1	0	2 o'clock
						<	41	7	71	\geq
				0	0		0	0	0	8 o'clock
				0	0		0	0(()1	9 o'clock
				0	1	0) 0	0	(0)	10 o'clock
						\backslash	:			
				0	1	<u> </u>	0	0	1	19 o'clock
				1	$\langle 0 \rangle$	> 0		(0)	0	20 o'clock
				1	0	0	:	7/11	1	23 o'clock
									I	200000
				Note: Do not	i set data	other t	han as show	vn above.		
	9	L. 10-h	our clock n			MOO	"(O"))		
	2.		JUF CIOCK II		NINK~	MOG		/		
		7	6	5	4		3	2	1	0
URR	Bit symbol		-4	HO5	HO	4	HO3	HO2	HO1	HO0
22H)	Read/Write		\downarrow))	(\sum	R	/W		
	After reset				\sim		Vnde	efined		
	Function	"0" is	read.	PM/AM	10 ho		8 hours	4 hours	2 hours	1 hour
		()	\bigcirc		colun	nn	column	column	column	column
			> <	0	0	0	0	0	0	0 o'clock (AM)

1. In 24-hour clock mode (MONTHR<MO0> = "1")

Note: Do not set data other than as shown above.

:

(AM)

1 o'clock

2 o'clock

9 o'clock

10 o'clock

11 o'clock

0 o'clock (PM)

1 o'clock

		7	6	5	4	3	2	1	0				
DAYR	Ditaurahal				Ť	, , , , , , , , , , , , , , , , , , ,	WE2	WE1	WE0				
(1323H)	Bit symbol Read/Write					\leftarrow	VVE2	R/W	VVEU				
	After reset	\sim			\sim	\sim	`	Undefined					
	Function			"0" is read.				W1	W0				
	1 directori			0 10 10000.					***				
							0 0		Sunday				
							0 70	1	Monday				
						\sim	0 1	0	Tuesday				
							0 1	1	Wednesday				
						((1 0	0	Thursday				
								1	Friday				
							1 1	θ	Saturday				
						Note	e: Do not set da	ta other than					
							above.	\mathbb{Z}					
					((\sim (C					
	(5) Do		nomiaton (D	ACEO(1)		\mathcal{O}		$\exists U \cap I$					
	(5) Day column register (PAGE0/1)												
		7	6	5	4	3	(2)	✓ 1	0				
DATER	Bit symbol			DA5	DA4	DA3	DA2	DA1	DA0				
(1324H)	Read/Write				\searrow		R/W						
	After reset				\searrow	U	ndefined						
	Function	"0" is	read.	Day 20	Day 10	Dave	Dov 4	Day 2	Dov 1				
	Function"0" is read.Day 20Day 10Day 8Day 4Day 2Day												
						Dayo		Day 2	Day I				
				0	0	0	0 0	0	0				
									0 1st day				
			C		0	0 0 0	0 0 0 0 0 1	0 1 0	0 1st day 2nd day				
			(\mathbb{C})		0 0 0 0	0 0 0 0	0 0 0 0 0 1 0 1	0 1 0 1	0 1st day 2nd day 3rd day				
					0 0 0		0 0 0 0 0 1	0 1 0	0 1st day 2nd day				
					0 0 0 0 0		0 0 0 0 0 1 0 1 1 0	0 1 0 1 0	0 1st day 2nd day 3rd day 4th day				
		\bigcirc					0 0 0 0 0 1 0 1 0 0 0 0	0 1 0 1 0 1 0	0 1st day 2nd day 3rd day 4th day 9th day				
						0 0 0 0 0 1 1 0	0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0	0 1st day 2nd day 3rd day 4th day 9th day 10th day				
						0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 0 0 0 0	0 1 0 1 0 1 0	0 1st day 2nd day 3rd day 4th day 9th day				
						0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1	0 1st day 2nd day 3rd day 4th day 9th day 10th day 11th day				
						0 0 0 0 0 0 1 0 1 1 1 1	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1 1	0 1st day 2nd day 3rd day 4th day 9th day 10th day 11th day				
						0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 0 1	0 1st day 2nd day 3rd day 4th day 9th day 10th day 11th day				
						0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0	0 1st day 2nd day 3rd day 4th day 9th day 10th day 11th day 19th day 20th day				
						0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0	0 1st day 2nd day 3rd day 4th day 9th day 10th day 10th day 11th day 20th day 29th day				
<					0 0 0 0 0 0 0 1 1 0 1 0 1	0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0	0 1st day 2nd day 3rd day 4th day 9th day 10th day 10th day 11th day 19th day 20th day 29th day 30th day				
						0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0	0 1st day 2nd day 3rd day 4th day 9th day 10th day 10th day 11th day 20th day 29th day				
				0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1	0 1st day 2nd day 3rd day 4th day 9th day 10th day 10th day 11th day 19th day 20th day 29th day 30th day				
				0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1	0 1st day 2nd day 3rd day 4th day 9th day 10th day 10th day 11th day 19th day 20th day 29th day 30th day				

(4) Day of the week column register (for PAGE0/1)

					-						
		7	6	5	4		3		2	1	0
MONTHR	Bit symbol				MO	4	MO4	I	MO2	MO1	MO0
(1325H)	Read/Write	/							R/W		
	After reset	/	/	/				Un	defined		
	Function		"0" is read.		10 mor	nths	8 months	4 r	nonths	2 months	1 month
					0	0	0		0	<u>ا (ا</u>	January
					0	0	0	6	771	0	February
					0	0	0		())	1	March
					0	0	X		0	0	April
					0	0	((1		> 0	1	Мау
					0	0		\mathcal{I}	1	0	June
					0	0			1		July
					0	1	0		0	00	August
					0	A	> > 0		0	$\langle \rangle$	September
					1	(()	<u>)</u> 0		0(()) •	October
					1	0	0		0	$\mathcal{I}(\mathcal{A})$	November
					1	Q	0		$ \uparrow $		December

(6) Month column register (for PAGE0 only)

Note: Do not set data other than as shown above.

(7) Select 24-hour clock or 12-hour clock (for PAGE1 only)

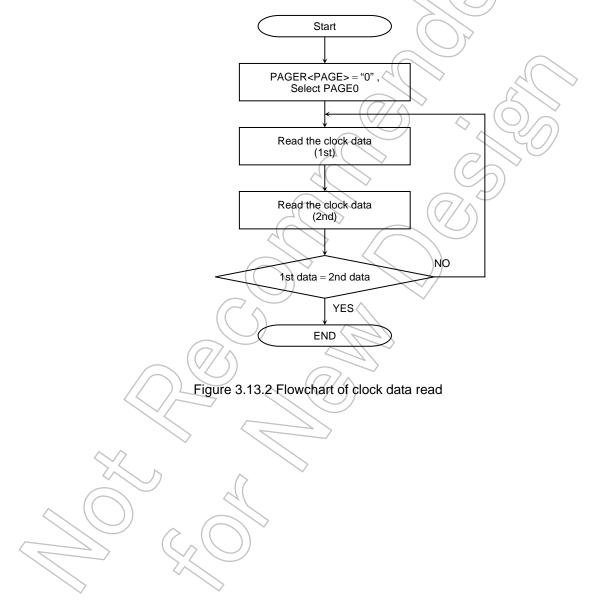
		7	6	5	4	3	2	1	0
MONTHR	Bit symbol	/	/	\mathbb{N}		\Box	/		MO0
(1325H)	Read/Write			\frown					R/W
	After reset			Ð		The second secon	/		Undefined
	Function		6	\sim	"0" is read.				1: 24-hour
					0 is lead.				0: 12-hour

		7	6	;	5	4	3	2		1	0
ARR	Bit symbol	YE7	YE6	Y	E5	YE4	YE3	YE2	2	YE1	YE0
826H)	Read/Write					R/	/W				
	After reset					Unde	efined	\frown			1
	Function	80 years	40 years	20 y	/ears	10 years	8 years	4 yea	irs	2 years	1 year
									\bigcirc	7	
			0	0	0	0	0	0	0	0	00 years
			0	0	0	0	0	0))0	1	01 years
			0	0	0	0	0	0	/1	0	02 years
			0	0	0	0	0 (0	1	1	03 years
			0	0	0	0	0		0	0	04 years
			0	0	0	0	0	1	0		05 years
					<u> </u>			~		$\frac{1}{2}$	
			1	0	0	than as show		0	0		99 years
	(9) Le	ap year re	gister (fo	r PAG	E1 on	y)	\geq	C C		≤ 0	
		7	6		5 <	4 4	3	2	$\bigcirc)$	1	0
ARR	Bit symbol			/		\checkmark			\searrow	LEAP1	LEAP0
26H)	Read/Write			/	A		\int	$\sqrt{2}$	/	R	W
	After reset				\square		\bigcirc			Unde	efined
					"0" is	read.)		00: Leap ye 01: One ye leap ye 10: Two ye leap ye 11: Three y leap ye	ar after ar ars after ar vears after
		\square		\sim		7/5		0 0	Curr	ent year is a	lean year
					\frown	\bigcirc					is the yea
			>	$\langle \rangle$	\geq	\geq		0 1	follow	wing a leap	
	\sim				$\langle \rangle$			1 0	a lea	ap year	three years
			\square	(1 1		a leap year	

(8) Year column register (for PAGE0 only)

	(10) Sett	ting PAGE	register (fe	or PAGE0	/1)				
		7	6	5	4	3	2	1	0
PAGER	Bit symbol	INTENA	/		ADJUST	ENATMR	ENAALM	/	PAGE
(1327H)	Read/Write	e R/W			W	R	/W	\sim	R/W
	After reset	0			Undefined	Unde	efined	\sim	Undefined
Read-modify-wr	ite Function	INTRTC			0: Don't	Clock	ALARM		PAGE
instruction is		0: Disable	"O" is	s read.	care	0: Disable	0: Disable	"0" is read.	selection
prohibited.		1: Enable			1: Adjust	1: Enable	1: Enable		
	(Example) (ld (pa	Alarm setting ager), 0ch ager), 8ch		k, Alarm enable	Select F Select F Don't ca Adjust s When th become is 0 – 29 30-59, t counter during 1	Page1 are sec. counter. his bit is set to se "0" when the 9. When the v he min. count becomes "0". I cycle of f _{SYS} djust is releas	e value of the value of the s er is carried . Output Adju s. After being	e sec. counter ec. counter is and sec. st signal adjusted
	(11) Sett	ing reset	register (før	PAGE0/1					_
		7	6	5	4	3	2	1	0
RESTR	Bit symbol	DIS1Hz	DIS16Hz	RSTTMR	RSTALM	-	-	-	-
(1328H)	Read/Write			$\langle \langle \langle \rangle$	() v	V			
Read-modify	After reset				Unde	fined			
write-instructio n is prohibited.		1Hz 0: Enable	16Hz 0: Enable	1:Clock reset	1: Alarm reset		Always	write "0"	
		1: Disable	1: Disable	\rightarrow					
~				Unused					
$\langle \rangle$		RSTALM		Reset alar	m register				
			$((\cdot))$	1 COOCT alai	milegister				
$\langle -$				Unused					
		RSTTMR	1	Reset cou	nter				
	Γ	<dis1hz:< td=""><td>> <d< td=""><td>IS1HZ></td><td>(PAGEI <enaal< td=""><td>-</td><td>Source signa</td><td>al</td><td></td></enaal<></td></d<></td></dis1hz:<>	> <d< td=""><td>IS1HZ></td><td>(PAGEI <enaal< td=""><td>-</td><td>Source signa</td><td>al</td><td></td></enaal<></td></d<>	IS1HZ>	(PAGEI <enaal< td=""><td>-</td><td>Source signa</td><td>al</td><td></td></enaal<>	-	Source signa	al	
	F	1		1	1		Alarm		
	F	0		1	0		1Hz		
		1		0	0		16Hz		
			(Others			Output "0"		

3.13.4 Operational description


(1) Reading clock data

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can read correctly if reading data after 1Hz interrupt occurred.

2. Using two times reading

There is a possibility of incorrect clock data reading when the internal counter carries over. To ensure correct data reading, please read twice, as follows:

(2) Writing clock data

When a carry over occurs during a write operation, the data cannot be written correctly. Please use the following method to ensure data is written correctly.

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can write correctly if writing data after 1Hz interrupt occurred.

2. Resetting a counter

There are 15-stage counter inside the RTC, which generate a 1Hz clock from 32,768 KHz. The data is written after reset this counter.

However, if clearing the counter, it is counted up only first writing at half of the setting time, first writing only. Therefore, if setting the clock counter correctly, after clearing the counter, set the 1Hz-interrupt to enable. And set the time after the first interrupt (occurs at 0.5Hz) is occurred.

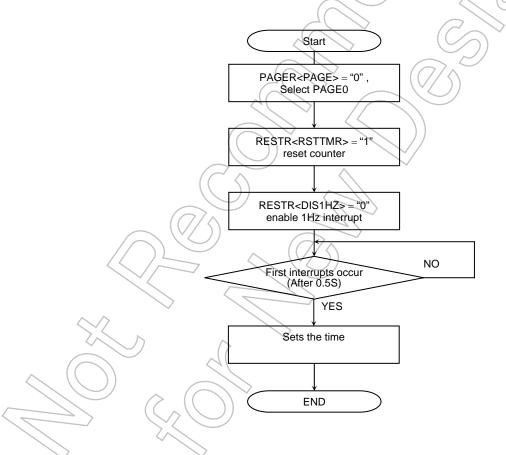
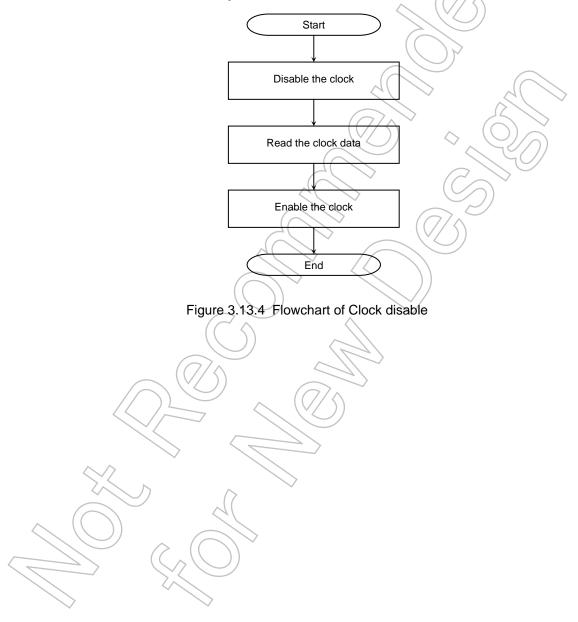



Figure 3.13.3 Flowchart of data write

2. Disabling the clock

A clock carry over is prohibited when "0" is written to PAGER<ENATMR> in order to prevent malfunction caused by the Carry hold circuit. While the clock is prohibited, the Carry hold circuit holds a one sec. carry signal from a divider. When the clock becomes enabled, the carry signal is output to the clock, the time is revised and operation continues. However, the clock is delayed when clock-disabled state continues for one second or more. Note that at this time system power is down while the clock is disabled. In this case the clock is stopped and clock is delayed.

3.13.5 Explanation of the interrupt signal and alarm signal

The alarm function used by setting the PAGE1 register and outputting either of the following three signals from $\overline{\text{ALARM}}$ pin by writing "1" to PAGER<PAGE>. INTRTC outputs a 1-shot pulse when the falling edge is detected. RTC is not initialized by RESET. Therefore, when the clock or alarm function is used, clear interrupt request flag in INTC (interrupt controller).

- (1) When the alarm register and the clock correspond, output "0".
- (2) 1Hz Output clock .
- (3) 16Hz Output clock.
- (1) When the alarm register and the clock correspond, output "0"

When PAGER<ENAALM>= "1", and the value of PAGE0 clock corresponds with PAGE1 alarm register, output "0" to $\overline{\text{ALARM}}$ pin and generate INTRTC.

The methods for using the alarm are as follows:

Initialization of alarm is done by writing "1" to RESTR<RSTALM>. All alarm settings become Don't care. In this case, the alarm always corresponds with value of the clock, and if PAGER<ENAALM> is "1", INTRTC interrupt request is generated.

Setting alarm min., alarm hour, alarm date and alarm day is done by writing data to the relevant PAGE1 register.

When all setting contents correspond, RTC generates an INTRTC interrupt if PAGER<INTENA><ENAALM> is "1". However, contents which have not been set up (don't care state) are always considered to correspond.

Contents which have already been set up, cannot be returned independently to the Don't care state. In this case, the alarm must be initialized and alarm register reset.

The following is an example program for outputting an alarm from ALARM -pin at noon (PM12:00) every day.

	LD	(PAGER), 09H	$\langle \cdot \rangle$	Alarm disable, setting PAGE1
	LD	(RESTR), DOH		Alarm initialize
	/LD))	(DAYR), 01H	(/;/	ŵp
$\langle \rangle$		(DATAR),01H	Ľ	1 day
	ĿŨ	(HOURR), 12H	;	Setting 12 o'clock
	LD	(MINR), 00H		Setting 00 min
			;	Set up time 31 μ s (Note)
	LD	(PAGER), 0CH	;	Alarm enable
1	LD	(PAGER), 8CH	;	Interrupt enable)

When the CPU is operating at high frequency oscillation, it may take a maximum of one clock at 32 kHz (about 30us) for the time register setting to become valid. In the above example, it is necessary to set 31us of set up time between setting the time register and enabling the alarm register.

Note:

This set up time is unnecessary when you use only internal interruption.

(2) With 1Hz output clock

RTC outputs a clock of 1Hz to ALARM pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "0", <DIS16HZ>= "1". RTC also generates an INTRC interrupt on the falling edge of the clock.

(3) With 16Hz output clock

RTC outputs a clock of 16Hz to ALARM pin by setting up PAGER<ENAALM>= "0", RESTR<DIS1HZ>= "1", <DIS16HZ>= "0". RTC also generates INTRC an interrupt on the falling edge of the clock.

3.14 LCD Controller (LCDC)

The TMP92C820 incorporates two types liquid crystal display driving circuit for controlling LCD driver LSI. One circuit handles a RAM built-in type LCD driver that can store display data in the LCD driver itself, and the other circuit handles a shift-register type LCD driver that must serially transfer the display data to LCD driver for each display picture.

• Shift-register type LCD driver control mode (SR mode)

Set the mode of operation, start address of source data save memory and LCD size to control register before setting start register. After set start register LCDC outputs bus release request to CPU and read data from source memory. After that LCDC transmits data of volume of LCD size to external LCD driver through data bus. At this time, control signals connected LCD driver output specified waveform synchronizes with data transmission.

After finish data transmission, LCDC cancels the bus release request and CPU will re-start. As the DISPLAY RAM, SDRAM burst mode can be used in TMP92C820.

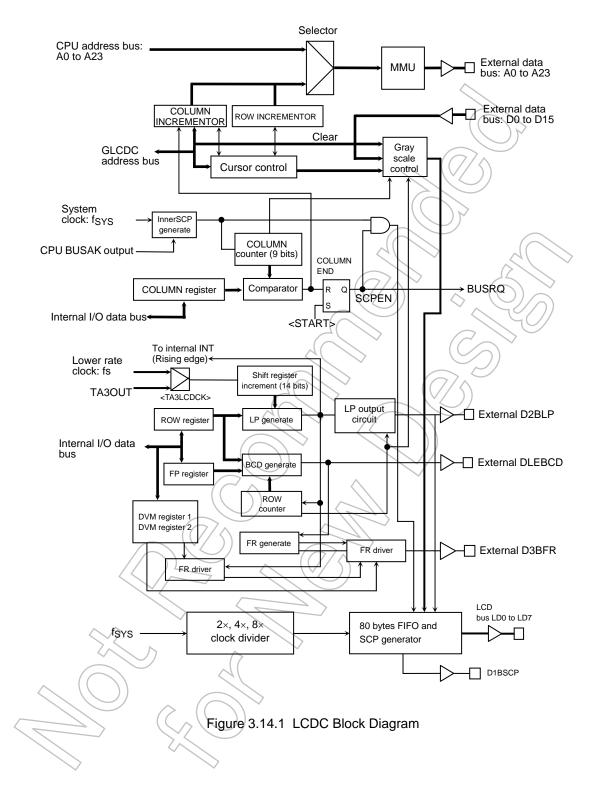
• RAM built-in type LCD driver control mode (RAM mode)

Data transmission to LCD driver is executed by move instruction of CPU.

After setting mode of operation to control register, when moves instruction of CPU is executed, LCDC outputs chip select signal to LCD driver connected to the outside from control pin (D1BSCP etc). Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU.

This section is constituted as follows.

- 3.14.1 Feature of LCDC of Each Mode
- 3.14.2 Block Diagram
- $3.14.3 \ \mathrm{SFRs}$
- 3.14.4 Shift Register Type LCD Driver Control Mode (SR mode)
 - 3.14.4.1 Operation (
 - 3.14.4.2 Grayscale Mode Indication
 - 3.14.4.3 Memory Mapping
 - 3.14.4.4 Hardware Cursor
 - 3.14.4.5 Frame Signal Settlement
 - 3.14.4.6 Timing Charts of Interpreting Memory Codes
 - 3.14.4.7 Examples to Use
 - 3.14.4.8 Sample Program
- 3.14.5 RAM Built-in Type LCD Driver Control Mode (RAM mode)
 - 3.14.5.1 Operation
 - 3.14.5.2 Examples to Use
 - 3.14.5.3 Sample Program


3.14.1 Feature of LCDC of Each Mode

Each feature and operation of pin is as follows.

Table 3.14.1 Feature of LCDC of Each Mode

		Shift-register Ty Control	•	RAM Built-in Type LCD Driver Control Mode		
	number of picture ints can be handled	3 Segment (Column): 1	28, 160, 200, 240, 20, 400, 480 28, 160, 240, 320, 400, 480, 560, 640	There is not a limitation		
Trans	sfer data bus width	32 bits or 16 bits		8 bits fixed		
	Internal RAM	Not allow to use		Allow to use		
	Transfer rate f _{SYS} = 20 [MHz])	50 ns/1 word at SDR 100 ns/1 word at SRA	AM/BURST	-		
	LCD data bus: LD7 to LD0 pin	Data bus: Connect to c column driver.	data input pin of	Not used		
	Data bus: D7 to D0 pin	Not used		Data bus: Connect to data input pin of LCD driver.		
	Bus state: R/W pin	Not used		Bus state: Connect with /WR pin of column/row driver.		
	Address bus: A0 pin	Not used		Address 0: Connect with D/L pin of column driver. When $A0 = 1$ data bus value means display data, when $A0 = 0$ data bus means instruction data.		
External pins	Shift clock pulse: D1BSCP pin	Shift clock pulses: Cor column driver. LCD dri value by falling edge o	ver latches data bus	Chip enable for column driver 1: Connect with CE pin of column driver 1.		
	Latch pulse: D2BLP pin	Latch pulses output: C pin of column/row drive latched in 1st shift regi rising edge of this pin. register by LP and SC	er. Display data is ister in LCD driver by And shift to next shift	Chip enable for column driver 2: Connect with \overline{CE} pin of column driver 2.		
	Frame: D3BFR pin	LCD frame output: Cor column/row driver.	nnect with FR pin of	Chip enable for column driver 3: Connect with \overline{CE} pin of column driver 3.		
	Cascade pulse: DLEBCD pin	Cascade pulses outpur pin of row driver. Thes pulse by every D3BFR	e pin outputs 1 shot	Chip enable for row driver: Connect with $\overline{\text{LE}}$ pin of row driver.		
	Display OFF: DOFF pin	Display OFF output: Connect with DSPOF terminal of column/row driver. "L" means display off and "H" means display ON.				

3.14.2 Block Diagram

3.14.3 SFRs

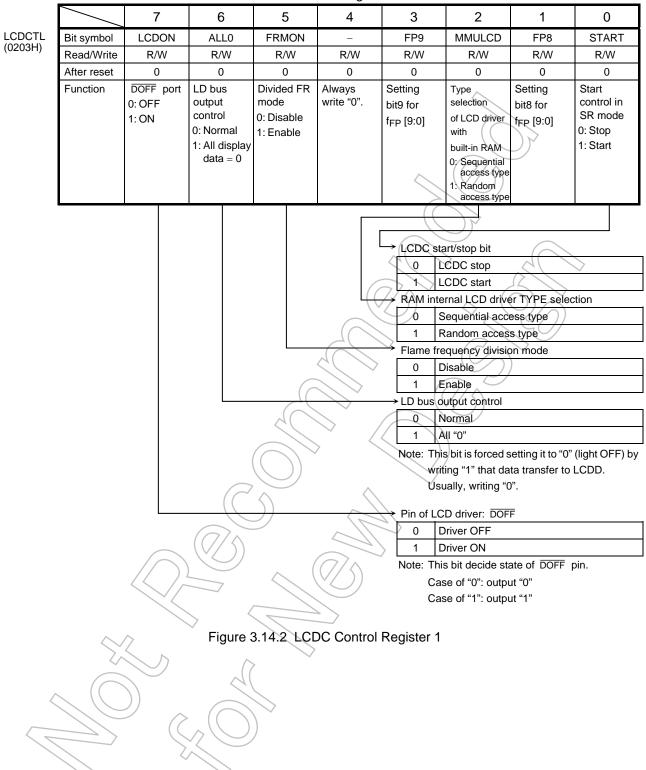
						-			
		7	6	5	4	3	2	1	0
LCDMODE	Bit symbol	BAE	AAE	SCPW1	SCPW0	TA3LCDCK	BULK	RAMTYPE	MODE
(0200H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	1	0	0	0	0	0
	Function	B-area 0: Disable 1: Enable	A-area 0: Disable 1: Enable	00: Base SC 01: 2 clocks 10: 4 clocks 11: 8 clocks		Select low- frequency clock 0: 32 kHz 1: TA3OUT	Byte- number/ Common 0: 512 bytes 1: 1024 bytes * (Note 4)	Display RAM 0: SRAM 1: SDRAM	Mode selection 0: RAM 1: SR

LCDMODE Register

Note 1: <BULK> is effective when <RAMTYPE> is set to "1". <BULK> shows how to generate address for next common.

Note 2: The SDRAM accessing way of LCDC is only "Burst 1CLK access".

- Note 3: Base SCPW<1:0> is introduced in section. 3.14.4.6.
- Note 4: Refer to Table 3.14.1.


Table 3.14.2 SDRAM BULK and Column Address

LCDMODE <bulk></bulk>	0	1014
SDRAMC SDACR <smuxw></smuxw>	Туре А	Туре В
Bulk of 1 page	512 bytes	1024 bytes
Divic	e FRM Registe	r

				Divide FI	Registe	r			
		7	6	5	4	3	2	1	0
	Bit symbol	FMN7	FMN6	FMN5	FMN4	FMN3	FMN2	FMN1	FMN0
(0201H)	Read/Write		$\overline{\Box}$		R	M~>			
	After reset	0	$(\sqrt{0})$	0	0	0	0	0	0
	Function	$\langle \rangle$	\bigcirc	. (Setting DV	M bit7 to 0			
		14 12		$\langle \rangle$					

LCD Size Setting Register

	\backslash	7	6	5	4	3	2	1	0		
LCDSIZE	Bit symbol	СОМЗ	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0		
(0202H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	After reset	0	0	0	0	0	0	0	0		
<	Function	Setting the L	.CD common	number for SF	R mode	Setting the I	LCD segment	number for S	R mode		
		0000: 128	0101: 400			0000: 128	0101: 480				
		0001: 160	0110: 480	/		0001: 160	0110: 560				
		0010: 200	\sim			0010: 240	0111: 640				
		0011: 240				0011: 320					
	~	0100: 320	Other: Rese	rved		0100: 400	Other: Rese	erved			

LCD Control Register

				LC	CD f _{FP} Regis	ster				
		7	6	5	5 4		3	2	1	0
LCDFFP	Bit symbol	FP7	FP6	FF	P5 FP4		FP3	FP2	FP1	FP0
(0204H)	Read/Write					R/W		1		
	After reset	0	0	0			0	0	0	0
	Function				Setting	g bit7 to	0 for f _{FP}	\frown		
			L	CD Gray	Level Settir	ng Reg	gister	$\langle \rangle$	\sum	
		7	6	5	5 4		3	2	1	0
LCDGL	Bit symbol		/			/	$\overline{\mathbb{A}}$	144	GRAY1	GRAY0
(0205H)	Read/Write						\sim		R/	V
	After reset		/	/	/	/	\rightarrow	\sum	0	0
	Function							\mathcal{O}^{r}	00: Monochro 01: 4 levels	ome
						<	$\mathcal{A}(\sim)$	\rightarrow	10: 8 levels	>
							\sim		11:16 levels	
			Figu	re 3.14.3	LCDC Con	trol R	egister 2	2 6 (\bigcirc	
			U		G	\sim	9		$\mathcal{L}(\mathcal{O})$	
			Table 3	14.3 C	D Start/End	Addre	ss Regi	ster	$\supset \bigcirc$	
				Idress Reg	24			Address Regis	ter	
		н		M			н		L	
			Bit16) (Bit	15 to Bit8)	(Bit7 to Bit0)		\	Bit15 to Bit8)	(Bit7 to Bit0)	
	A-area	LSAR	AH L	SARAM		LEA	ARAH	LEARAM		
	A-alea	(0211	H) (0210H)			43H)	(0212H)	_	
	After reset	40H		00H)) -	-	юн	00H	-	
	B-area	LSAR		SARBM	-	\sim			_	
	After reset	(0215 40F		0214H) 00H	~		217H) ЮН	(0216H) 00H	_	
		LSAR		SARCM	LSARCL			0011	_	
	C-area	(021A		0219H)	(0218H)	\geq	-	_	-	
	After reset	401		00Н	00H/		-	-	-	
	Note: All r	egisters are	available	for R (Read	d)/W (Write).)				
					\sum					
			\geq	\sim						
		7			$\langle \rangle$					
	$\langle \wedge \rangle$	\bigtriangledown		\bigwedge	~					
			<	7(
<))	6							
		\sim)) .						
<			\mathcal{A}	Ĺ						
		4	\sim							
	\sim		\sim							

			LC		Setting Reg	giotor			
		7	6	5	4	3	2	1	0
CDCM	Bit symbol	CDE	CCS					CBE1	CBE0
206H)	Read/Write	R/W	R/W	\sim				R/W	R/W
	After reset	0	0					0	0
	Function	Cursor 0: OFF 1: ON	Cursor color 0: White 1: Black			<u>^</u>		Cursor blink ir (XT1: 32 kHz) 00: Don't bli 01: 2 Hz 10: 1 Hz 11: 0.5 Hz	
		you use blink	function, you using timer ou	set low clock t "TA3OUT" t	condition. o LCDCK, cur	sor brink interr		-CDMODE. Th	erefore if
			LCD	Cursor Wic	th Setting	Register			~
		7	6	5	4 ((7∕⟨3 ~	2 (0
DCW	Bit symbol				CW4	ĆW3	CW2	(CW1)	CW0
207H)	Read/Write	\sim	\sim	\sim	R/W	R/W	R/W	R/W	R/W
	After reset	\sim	\sim		0	 ✓ 0 	0	0	0
	Function					00000	r width (X siz : 1 dot (Min) : 32 dots (M		
			LCD (Cursor Heig	ght Setting	Register			
		7	6	5)	4	3	2	1	0
DCH	Bit symbol		$\overline{\mathcal{Q}}$	\sim	CH4 🔨	CH3	CH2	CH1	CH0
208H)	Read/Write	\sim			R/W	R/W	R/W	R/W	R/W
	After reset	\sim		+	0	0	0	0	0
	Function			\wedge		00000	r height (Y si : 1 dot (Min) : 32 dots (M		
	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Figure	3.14.4 LCE	OC Control	Register 3			

LCD Cursor Setting Register

			Hot Point o	f LCD Cur	sor X Bit Se	tting Regis	ter			
		7	6	5	4	3	2	1	0	
LCDCP	Bit symbol	/		/		APB3	APB2	APB1	APB0	
(0209H)	Read/Write						R/\	N		
	After reset		/			0	0	0	0	
	Function					Settir		for cursor hot	point	
					(for 1-dot of	correction)				
	In case of mor	nochrome	0000: Posit	ion pixel 0			$(\bigcirc$			
	(Except BURS	ST mode)	1111: Posit	ion pixel 15				\mathcal{Y}		
			-		DC Control		ter			
	\backslash	7	6	5	4	3	$)_2$	1	0	
LCDCPL	Bit symbol	CAP7	CAP6	CAP5	CAP4	CAP3	CAP2	CAP1	CAP0	
(020AH)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	After reset	0	0	0	0		0	20	0	
	Function			Setting b	oit7 to bit0 for o	ursor absolute	position	\rightarrow		
			LCD Curso	r Absolute	Position Se	etting Regis	ter			
	/	7	6	5	$\langle 4 \rangle$	3	2	1	0	
LCDCPM	Bit symbol	CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP9	CAP8	
(020BH)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	After reset	0	0	<u>_0</u> (0	0	0	0	0	
	Function			Setting b	it15 to bit8 for	cursor absolut	e position			
			LCD Curso	r Absolute	Position Se	etting Regis	ter			
		7	6	5	4	3	2	1	0	
LCDCPH	Bit symbol	CAP23	CAP22	CAP21	CAP20	CAP19	CAP18	CAP17	CAP16	
(020CH)	Read/Write	R/W	(R/W	R/W	RAW	R/W	R/W	R/W	R/W	
	After reset	0		0	0	0	0	0	0	
	Function Setting bit23 to bit16 for cursor absolute position									
			Figure	3.14.6 LC	DC Control	Register 5				
	~	~				Ū				
					>					
		ζ								

LCDC1L, LCDC1H, LCDC2L, LCDC2H, LCDC3L, LCDC3H, LCDR1L and LCDR1H Register
--

	7	6	5	4	3	2	1	0
Bit symbol	D7	D6	D5	D4	D3	D2	D1	D0
Read/Write		Depend on the specification of external LCD driver						
After reset		Depend on the specification of external LCD driver						
Function		Depend on the specification of external LCD driver						
FUNCTION		Depend on the specification of external LCD driver						

Figure 3.14.7 LCDC Control Register 6

These registers do not exist on TMP92C820. These are image for instruction registers and display registers of external RAM built-in sequential access type LCD driver.

Address as Figure 3.14.4 is assigned to these registers, and the following chip enable pin becomes active when accesses corresponding address.

And, the area of these address is external area, so \overline{RD} , \overline{WR} terminal becomes active by external access.

Figure 3.14.5 shows the address map in the case of controlling RAM built-in random access type LCD driver. The explanation part of MMU circuit also explains this. This setup is performed by LCDCTL<MMULCD>.

Register	Address	Purpose Seque	ntial Access Type	Chip Enable Terminal	A0 Terminal
LCDC1L	1FE0H	RAM built-in type	Instruction	D1BSCP	0
LCDC1H	1FE1H	column driver 1	Display data	DIBSCF	1
LCDC2L	1FE2H	RAM built-in type	Instruction	D2BLP	0
LCDC2H	1FE3H	column driver 2	Display data	DZDLF	1
LCDC3L	1FE4H	RAM built-in type	Instruction	D3BFR	0
LCDC3H	1FE5H	column driver 3	Display data	DODER	1
LCDR1L	1FE6H	RAM built-in type	Instruction	DLEBCD	0
LCDR1H	1FE7H	row driver	Display data	DEEBCD	1

Table 3.14.4 Memory Mapping for Built-in RAM Sequential Access Type

Address	Purpose Random Access Type	Chip Enable Terminal
3C0000H to 3CFFFFH	RAM built-in type driver 1	D1BSCP
3D0000H to 3DFFFFH	RAM built-in type driver 2	D2BLP
3E0000H to 3EFFFFH	RAM built-in type driver 3	D3BFR
3F0000H to 3FFFFFH	RAM built-in type driver	DLEBCD

Table 3.14.5	Memory Mapping for Built-in RAM Random Access Type
--------------	--

- Note 1: We call built-in RAM sequential access type LCD driver that use register to access to display RAM without address. (Example: T6B65A, T6C84 etc., mar/2000)
- Note 2: We call built-in RAM random access type LCD driver that is same method to access to SRAM. (Example: T6C23,T6K01 etc., mar/2000)

3.14.4 Shift Register Type LCD Driver Control Mode (SR mode)

3.14.4.1 Operation

Set the mode of operation, start address of source data save memory, grayscale level and LCD size to control registers before setting start register.

After set start register LCDC outputs bus release request to CPU and read data from source memory. After that LCDC transmits data of volume of LCD size to external LCD driver through LD bus (LCD personal bus). At this time, control signals (DIBSCP etc.) connected LCD driver output specified waveform synchronizes with data transmission. After finish data transmission, LCDC cancels the bus release request and CPU will re-start.

Note: SR mode LCDC, during data reading (during DMA operation), CPU is stopped by internal BUSREQ signal. When using SR mode LCDC, programmer need to care the CPU stop time. For detail, see the Table 3.14.4.

3.14.4.2 Grayscale Mode Indication

Monochrome, 4, 8 and 16 grayscale mode can be selected by setting LCDGL<GRAY1:0>.

And when SDRAM mode, you can select the size of SDRAM by setting (LCDMODE)<BULK>.

TMP92C820 realize grayscale display by thinning out the frame. Grayscale control palette is defined by 16 bit register (LGnL/H) shown in Table 3.14.6. Palette is selected according to the grayscale level (Monochrome, 4, 8, 16 gray) for use. (cf. Table 3.14.7). ON/OFF for data of each level (e.g., each density) can modify by 16-bit register (LGnL/H). However each register of palette has a initial value, it is possible to adjust finely which matches to LCD driver you use and the characteristic of LCD panel.

Table 3.14.6 Grayscale Control Palette Default Setting

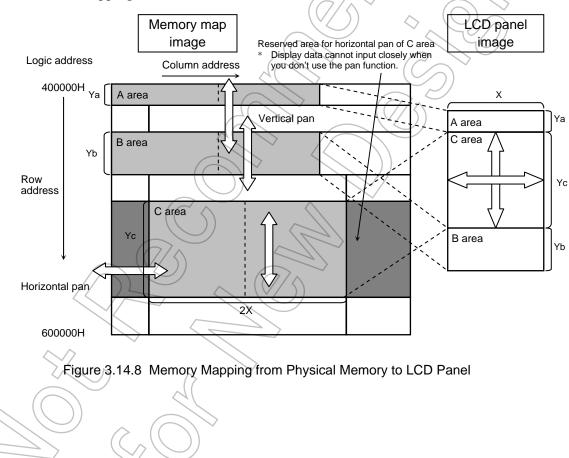
		D3BFR					-7	72	46			Ļ	4	7				
Level Code	Density	Data Setting Register (Address/After reset)	Bit 0	1	2	3	4) 5	6	7	8	9	10	11	12	13	14	15
F	16/16	LGFH/L (023FH to E/FFFFH)	٠	٠	Ý	•	>	٠	٠	٠	J	•)•	٠	٠	٠	•	٠
E	14/16	LGEH/L (023DH to C/FDFDH)	٠	0	-	·	> •	٠	٠	•	•	6	•	٠	٠	٠	•	•
D	1316	LGDH/L (023BH to A/FDDDH)	٠	0	•		٠	0	٠	(•/	/•\)0	٠	٠	٠	٠	•	٠
С	12/16	LGCH/L (0239H to 8/DDDDH)	•	0	•	٠	•	0	-	•	$\mathbf{)}$	0	٠	٠	٠	0	•	•
В	11/16	LGBH/L (0237H to 6/DDD5H)	•	9	•	0	•	0	•	•	•	0	٠	٠	٠	0	•	•
А	10/16	LGAH/L (0235H to 4/D5D5H)	•	9	~	0	•	6	•)•)	•	0	٠	0	٠	0	•	•
9	9/16	LG9H/L (0233H to 2/D555H)	•)0	•	0	•	0	4	ø	•	0	٠	0	٠	0	•	•
8	8/16	LG8H/L (0231H to 0/AAAAH)	6/		0	٠	~	٠	0	•	0	•	0	٠	0	•	0	•
7	7/16	LG7H/L (022FH to E/8AAAH)	0	•	0	٠	0	٠	0	•	0	•	0	٠	0	0	0	•
6	6/16	LG6H/L (022DH to C/8A8AH)	6	•	0	•	6	0	0	•	0	•	0	٠	0	0	0	•
5	5/16	LG5H/L (022BH to A/888AH)	0	•	0	7	0	0	0	•	0	0	0	٠	0	0	0	•
4	4/16	LG4H/L (0229H to 8/8888H)	0	0	0	, •)	6	0	0	•	0	0	0	٠	0	0	0	•
3	3/16	LG3H/L (0227H to 6/8880H)	9	0	(6/	$\langle \rangle \langle \rangle$	0	0	0	٠	0	0	0	٠	0	0	0	•
2	2/16	LG2H/L (0225H to 4/8080H)	0	Ø	Q	9	0	0	0	٠	0	0	0	0	0	0	0	•
1	1/16	LG1H/L (0223H to 2/8000H)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٠
0	0/16	LG0H/L (0221H to 0/0000H)	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0

•: Display ON, O: Display OFF

 Table 3.14.7
 Grayscale Control Palette Effective Registers for Each Gray Level

		<u></u>				\											
	\mathbb{D}	LG0 L/H	LG1 L/H>		LG3 L/H	\sim	LG5 L/H	LG6 L/H	LG7 L/H	LG8 L/H	LG9 L/H	LGA L/H	LGB L/H	LGC L/H	LGD L/H	LGE L/H	LGE L/H
$\overline{\}$	16 gray levels	٠	J	\mathbb{P}	$\mathbf{)}$	/•	•	•	•	•	•	•	•	•	٠	•	•
	8 gray levels	٠	×	1	×	٠	×	•	×	•	×	•	×	•	×	×	•
	4 gray levels	٠	×	×	\nearrow_{\times}	٠	×	×	×	•	×	×	×	×	×	×	•
	Monochrome	٠	×	×	×	×	×	×	×	×	×	×	×	×	×	×	•

×: Don't care, •: Effective


3.14.4.3 Memory Mapping

The LCDC can display the LCD panel image which is divided horizontally into 3 parts; upper, middle and lower. Each area calls A, B and C area that has some characteristics showing below.

Start/End address of each area in the physical memory space can be defined in the LCD Start/End address registers (See Table 3.14.3). (C area can be defined only start address.)

A and B areas are programmable visibility and they are set enable or not in LCDMODE register. When A and B area are disable, the C area take over all panel space. When the size of A or B area is greater than LCD panel, the area of the panel is all C area because the displaying priority is A > B > C.

If the A area set to enable while the panel area is defined as all C area (that is A and B area are disable), C area is shifted to under the LCD panel and A area is inserted from the top of the LCD panel. Similarly if the B area set to enable while the panel area is defined as all C area, B area is inserted from the bottom of the C area overlapping.

• Display memory mapping and panning function

LCDC can change the panel window if only you change each start address of A, B and C area. A and B area can be vertical panned by changing row address. While C area can be vertical and horizontal panned by changing row and column address.

An important thing is that display data from one line to the next line, cannot be input continuously even if you don't use the panning function. One row address of display RAM corresponds to 1st line of display panel. Now display data of 2nd line cannot be set within the 1st row address of display RAM even if the necessary data for the size you want to display do not fill the capacity of 1st row address of display RAM. Adding the one line to display panel is equal to adding one address to row address of display RAM.

And another important thing is, this limitation is also for SRAM as display RAM without address multiplex. When you use SDRAM as display RAM, you can select the size for display RAM capacity of one line (Number of column address: select 512 byte = 64 Mbytes 1024 byte = 128 Mbytes) bit. But in case of using SRAM, display RAM capacity of one line is fixed to 512 bytes.

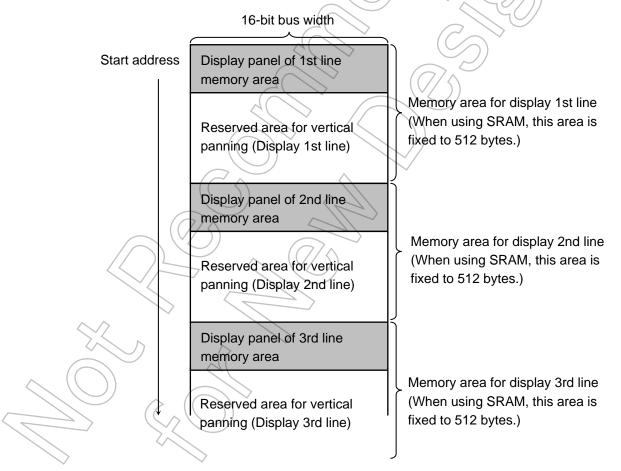


Figure 3.14.9 Memory Mapping Image for SRAM as Display RAM

TMP92C820 can select four display scale; monochrome, 4 gray, 8 gray and 16 gray levels. With the intrinsic property of gray levels, a pixel is decoded in each gray level from different memory size.

A pixel is equal to a bit in memory for monochrome, while a pixel is equal to 2 bits in memory for 4 gray levels, 3 bits for 8 gray levels and 4 bits for 16 gray levels. Therefore when the 4 gray mode, column address in the memory needs twice data capacity as large as dots that is displayed in the LCD panel actually showing Figure 3.14.8. Place for display data setting has some differences for each grayscale or sort of memory.

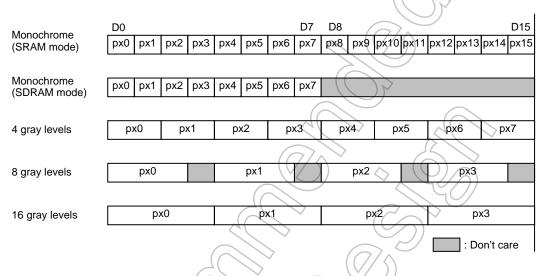


Figure 3.14.10 Memory Codes for Each Gray Level in a Read Cycle (16 bits)

And "px" in above Figure 3.14.10 corresponds to the image of LCD panel as below (Figure 3.14.11). But TMP92C820 outputs data of px0 from PE7 (LD7), and data of px7 from PE0 (LD0). Therefore PE0 (LD0) should be connected to the MSB of LCD driver (e.g., DI7) according to LCD driver you use. Please note that the way TMP92C820 outputs the data differs from LCD controller built-in TLCS-900/L1 series of TOSHIBA (e.g., TMP91C815, TMP91C016, and TMP91C025 etc.).

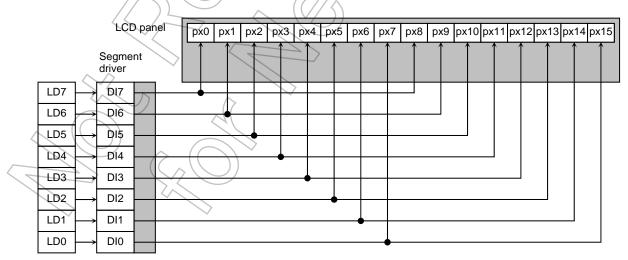
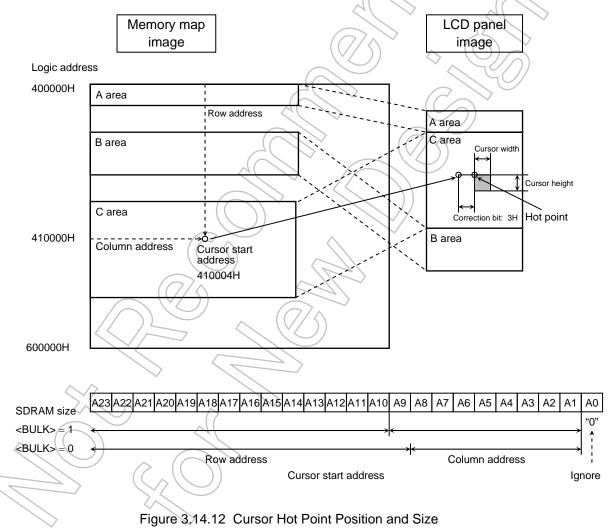


Figure 3.14.11 Connection between LD Bus of TMP92C820 and Data Bus of LCDD


3.14.4.4 Hardware Cursor

TMP92C820 has a cursor that is blinking interval, color and size can be specified, and maximum size is 32×32 .

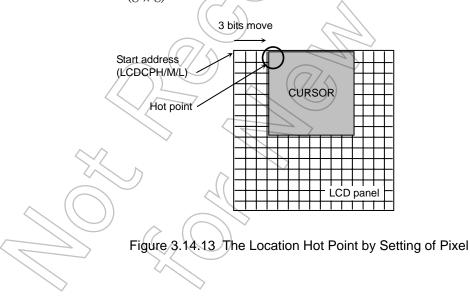
A programmer can control the cursor attributes easily by filling those cursor registers, for example color (White/black), blinking interval time, size and precise pixel location. Its space location is specified by left-up hot point. (See Figure 3.14.12)

The precise location of the hot point is determined by memory address (LCDCPH, LCDCPM, LCDCPL) and bit correction number (LCDCP). For example, however 1 pixel for displaying needs 2 bits of setting data under 4 gray mode, you can correct the location of hot point every 1 bit by setting pixel number which you want to move in the register (LCDCP).

Cursor image is showed under the setting A, B, C area are enable, 4 gray mode, start address = 410004H and correction bit (LCDCP) = 3H in the following figure.

Note: If panning function is set to enable during hardware cursor displaying, the cursor moves with the data in the memory. Because TMP92C820 sets the hardware cursor in the memory address.

					Setting Reg	,			
		7	6	5	4	3	2	1	0
LCDCM (0206H)	Bit symbol	CDE	CCS					CBE1	CBE0
(020011)	Read/Write	R/W	R/W					R/W	R/W
	After reset	0	0					0	0
	Function	Cursor	Cursor color				\sim	Cursor blink i	
		0: OFF 1: ON	0: White					00: Don't bli 01: 2 Hz	nk
		1.011	1: Black					10: 1 Hz	
								11: 0.5 Hz	
	Note 1:	The function	of cursor blink	is offective o	nly when low-	frequency osc	illator is input		
					-			e timer out "TA	ACULT. as
	11010 2.	LCDCK.			ne iow-neque		SVCINI YOU'US		0001 43
		LODON.	LCD	Cursor Wid	Ith Setting F	Register)r		
		7	6	5	4	3	2		0
LCDCW	Bit symbol	/	/		CW4	CW3	CW2	CW1	CW0
(0207H)	Read/Write		/	\sim	R/W ((R/W	R/W	R/W	R/W
	After reset	/	/		0	\bigcirc		(γ)	0
	Function						r width (X siz	e)	
): 1 dot (Min)	\sim	
						11111	: 32 dots (Ma	ax)	
	<		LCD (Cursor Heig	pht Setting	Register	7/5		
		7	6	5	4	3	2	1	0
LCDCH (0208H)	Bit symbol				∼ СН4	СНЗ	CH2	CH1	CH0
(020011)	Read/Write				R/W	R/W	R/W	R/W	R/W
	After reset				0	0	0	0	0
	Function		C	\sim	\frown		r height (Y si:): 1 dot (Min)	ze)	
))			: 32 dots (Mill)	ax)	
				sor Start Ac	Idroce Satti	ng Registe		,	
		7	ECD Guis	5		3	2	1	0
LCDCPL	Ditaymhal	CAP7	CAP6	CAP5	CAP4		CAP2		CAP0
(020AH)	Bit symbol					CAP3		CAP1	
	Read/Write After reset	R/W0	R/W 0	R/W	R/W	R/W	R/W0	R/W 0	R/W 0
	Function		~ 0	Setting	bit7 to bit0 for	· cursor start a		0	0
	- G	$\langle \rangle$		\rightarrow		ng Registe			
		7	6	5	4	3	2	1	0
LCDCPM	Bit symbol	CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP9	CAP8
(020BH)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
/	After reset	0		0	0	0	0	0	0
	Function	$\langle \rangle$		Setting	bit15 to bit8 fo	r cursor start a	address	1	
	\sim		LCD Curs	sor Start Ac	ldress Setti	ng Registe	r		
	/	7	6	5	4	3	2	1	0
LCDCPH	Bit symbol	CAP23	CAP22	CAP21	CAP20	CAP19	CAP18	CAP17	CAP16
(020CH)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	1	0	0	0	0	0	0
	Function			Sotting h	it23 to bit16 f	or cursor start	address		


		7	6	5	4	3	2	1	0					
	Bit symbol					APB3	APB2	APB1	APB0					
(0209H)	Read/Write						R/	W						
	After reset					0	0	0	0					
	Function					Setting bit3	to bit0 of pixe	n of hot point						
							(for 1-dot	correction)						
	In case of mor In case of mor and 4 gray lev	nochrome (SI		1111: x000 x001	: 0 pixels corr 0 pixels corr): 0 pixels corr : 1 pixel corre : 2 pixels corr	ect x100: 4 ect x101: 5	pixels correct pixels correct							
	In case of 8 ar	x010: 2 pixels correct x110: 6 pixels correct x011: 3 pixels correct x111: 7 pixels correct 8 and 16 gray levels xx00: 0 pixels correct xx10: 2 pixels correct xx10: 2 pixels correct												
	X: Don't care			xx01	: 1 pixel corre	ct xx11;3	1.3 pixels correct							

LCD Cursor Hot Point Pixel Number (Bit correction) Setting Register

Here, it is possible to correct the cursor per 1 bit from the start address set before. Pixel number should be adjusted in response to the gray mode setting showing above.

For example, when 4 gray levels and 16-bit bus mode, correction should be less than 7 because the smallest pixel is 8 pixels that can set by start address setting. Similarly correction pixel should be less than 15 at monochrome mode, 3 at 8 or 16 gray modes.

Example: When monochrome mode, correction value is (LCDCP) = 011H, and cursor size = (8×8)

3.14.4.5 Frame Signal Settlement

TMP92C820 defines so-called frame period (refresh interval for LCD panel) by the value set in fFP [9:0]. DLEBCD pin outputs pulse every frame period. D3BFR pin usually outputs the signal inverts polarity every frame period.

And TMP92C820 has a special function that can set the timing of inverting frame polarity irrelevant to above frame frequency for the purpose of preventing the patches of display.

LCD Control Register

(1) Settlement of frame frequency function

Basic frame period; DLEBCD signal, is made according to the resister fFP [9:0] setting mentioned before. However this fFP [9:0] setting is generally equal to common number, frame period can be corrected by increasing fFP [9:0] with ease. This function cannot correct frame frequency higher than that of Table 3.14.8. If it is necessary to set frame frequency higher or detailed, please refer to (3) Timer out LCDCK.

The equation can calculate frame period.

Frame period = $LCDCK/(D \times f_{FP})$ [Hz]

D: Constant for each common (Table 3.14.8)

fFP: Setting of fFP [9:0] register

LCDCK: Source clock of LCD (Low clock is usually selected)

Please select the value of f_{FP} [9:0] as the frame period you want to set in the Table 3.14.8

Note: Please make the value set to f_{FP} [9:0] into the following range. COM (Common number) $\leq f_{FP} \leq 1024$

Example 1: In the case where frame period is set to 72.10 Hz by 240 coms. $f_{FP} = 240 (COM) + 63 = 303 = 12FH (by Table 3.14.8)$

Therefore, LCDCTL<FP8> = 1_hex and LCDFFP<FP7:0> = 2FH are setup.

(2) Frame invert adjustment function

This mode can prevent the deterioration of display (e.g., patches of display). Note 1:

If N is set in (LCDDVM) register while this function is set to enable in register (LCDCTL)(<FRMON> "1"), D3BFR pin outputs the signal inverted polarity every (D2BLP × N) timing.

If this function isn't necessary, D3BFR pin outputs the signal inverted polarity every frequency of DLEBCD pin after setting this function disable ((LCDCTL) <FRMON> = "0").

And it is no change wave and timing for DLEBCD pin by LCDDVM setting.

Note: Effects of this function have some differences as the LCD driver or LCD panel you use actually.

(3) Timer out LCDCK

LCD source clock (LCDCK) can select low frequency (XT1, XT2: 32.768 [kHz]) or timer out (TA3OUT) outputs from internal TMRA23.

Example 2: Here indicates the method that frame period is set 70 [Hz] by selecting TA3OUT for source clock of LCD. (fc = 6 [MHz], 128 COM)

The next equation calculates frame period.

Frame period = $1/(t_{LP} \times f_{FP})$ [Hz]

tLP: The period of D2BLP

D: The value is 3 at 128 COM

Source clock for LCDC defines as XT [Hz] and then this t_{LP} represents

 $t_{LP} = D/XT$

Therefore if you set the frame period at 70 [Hz] under 128 COM,

```
XT = 128 \times 3 \times 70
```

= 26880 [Hz]

XT should be above value.

In order to make XT = 26880 [Hz] under fc = 6 [MHz] with $\phi T1$ of timer3,

```
1/XT = T3 \times 2 \times 8 \times 2/ fc [s] T3: the value of timer register (TA3REG)
```

in short,

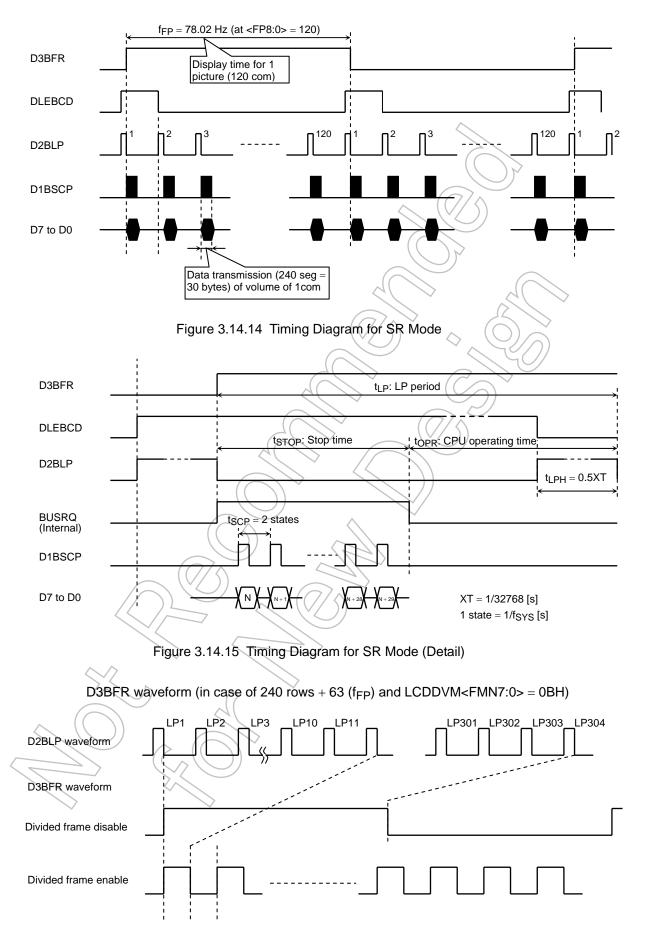
```
XT = fc/(T3 \times 2 \times 8 \times 2) [Hz]
```

However T3 = (TA3REG) is 6.98 after calculate, it's impossible to set the value under a decimal point. So if (TA3REG) is set 06H, XT = 31250 [Hz].

And because of D = 3,

Frame period = $31250/(128 \times 3)$

= 81.38 [Hz]


Further if f_{FP} is 148 (COM + 20) with correction,

Frame period = 31250/(148 × 3) = 70.38 [Hz]

Reference: To maintain quality for display, please refer to following value for each grayscale.

(You have to use settlement of frame frequency function, frame invert adjustment function and timer out LCDCK.) Monochrome: Frame period = 70 [Hz]

4/8/16 gray levels: Frame period = 140 [Hz]

	Table 3.14	i.o IFP Ia				er (1/2)	
D	3	2.5	2	1.5	1.5	1	1
COM	128	160	200	240	320	400	480
COM + 0	85.33	81.92	81.92	91.02	68.27	81.92	68.27
COM + 1	84.67	81.41	81.51	90.64	68.05	81.72	68.12
COM + 2	84.02	80.91	81.11	90.27	67.84	81/.51	67.98
COM + 3	83.38	80.41	80.71	89.90	67.63	81.31	67.84
COM + 4	82.75	79.92	80.31	89.53	67.42	81.11	67.70
COM + 5	82.13	79.44	79.92	89.16	67.22	80.91	67.56
COM + 6	81.51	78.96	79.53	88.80	67.01	80.71	67.42
COM + 7	80.91	78.49	79.15	88.44	66.81	80.51	67.29
COM + 8	80.31	78.02	78.77	88.09	66.60	80.31	67.15
COM + 9	79.73	77.56	78.39	87.73	66.40	80.12	67.01
COM + 10	79.15	77.10	78.02	87.38	66.20	79.92	66.87
COM + 11	78.58	76.65	77.65	87.03	66.00	79.73	66.74
COM + 12	78.02	76.20	77.28	86.69	65.80	79.53	66.60
COM + 13	77.47	75.76	76.92	86.35	65.60	79.34	66.47
COM + 14	76.92	75.33	76.56	86.01	65.41	79.15	66.33
COM + 15	76.38	74.90	76.20	85.67	65.21	78.96	66.20
COM + 16	75.85	74.47	75.85	85.33	65.02	78.77	66.06
COM + 17	75.33	74.05	75.50	85.00	64.82	78.58	65.93
COM + 18	74.81	73.64	75.16	84.67	64.63	78.39	65.80
COM + 19	74.30	73.22	74.81	84.34	64.44	78.21	65.67
COM + 20	73.80	72.82	74.47	84.02	64.25	78.02	65.54
COM + 21	73.31	72.42	74.14	83.70	64.06	77.83	65.41
COM + 22	72.82	72.02	73.80	83.38	63.88	77.65	65.27
COM + 23	72.34	71.62	73.47	83.06	63.69	77.47	65.15
COM + 24	71.86	71.23	73.14	82.75	63.50	77.28	65.02
COM + 25	71.39	70,85	72.82	82.44	63.32	77.10	64.89
COM + 26	70.93	70.47	72.50	82.13	63.14	76.92	64.76
COM + 27	70.47	70.09	72.18	81.82	62.95	76.74	64.63
COM + 28	70.02	69.72	71.86	81.51	62.77	76.56	64.50
COM + 29	69.57	69.35	71.55	81.21	62.59	76.38	64.38
COM + 30	69.13	68.99	71.23	80.91	62.42	76.20	64.25
COM + 31	68.70	68.62	70.93	80.61	62.24	76.03	64.13
COM + 32	68.27	68.27	70.62	80.31	62.06	75.85	64.00
COM + 33	67.84	67.91	70.32	80.02	61.88	75.68	63.88
COM + 34	67.42	67.56	70.02	79.73	61.71	75.50	63.75
COM + 35	67.01	67.22	69.72	79.44	61.54	75.33	63.63
COM + 36	66.60	66.87	69.42	79.15	61.36	75.16	63.50
COM + 37	66.20	66.53	69.13	78.86	61.19	74.98	63.38
COM + 38	65.80	66.20	68.84	78.58	61.02	74.81	63.26
COM + 39	65.41	65.87	68.55	78.30	60.85	74.64	63.14
COM + 40	65.02	65.54	68.27	78.02	60.68	74.47	63.02
COM + 41	64.63	65.21	67.98	77.74	60.51	74.30	62.89
COM + 42	64.25	64.89	67.70	77.47	60.35	74.14	62.77
COM + 43	63.88	64.57	67.42	77.19	60.18	73.97	62.65
COM + 44	63.50	64.25	67.15	76.92	60.01	73.80	62.53
COM + 45	63.14	63.94	66.87	76.65	59.85	73.64	62.42
COM + 46	62.77	63.63	66.60	76.38	59.69	73.47	62.30
COM + 47	62.42	63.32	66.33	76.12	59.52	73.31	62.18
COM + 48	62.06	63.02	66.06	75.85	59.36	73.14	62.06
COM + 49	61.71	62.71	65.80	75.59	59.20	72.98	61.94
COM + 50	61.36	62.42	65.54	75.33	59.04	72.82	61.83

Table 3.14.8 f_{FP} Table for Each Common Number (1/2)

		- 11 -				- (-)		
D	3	2.5	2	1.5	1.5	1	1	
COM	128	160	200	240	320	400	480	
COM + 52	60.68	61.83	65.02	74.81	58.72	72.50	61.59	
COM + 53	60.35	61.54	64.76	74.56	58.57	72.34	61.48	
COM + 54	60.01	61.25	64.50	74.30	58.41	72.18	61.36	
COM + 55	59.69	60.96	64.25	74.05	58.25	72.02	61.25	
COM + 56	59.36	60.68	64.00	73.80	58.10	71.86	61.13	
COM + 57	59.04	60.40	63.75	73.55	57.95	71.70	61.02	
COM + 58	58.72	60.12	63.50	73.31	57.79	71.55	60.91	
COM + 59	58.41	59.85	63.26	73.06	57.64	71,39	60.79	
COM + 60	58.10	59.58	63.02	72.82	57.49	71.23	60.68	
COM + 61	57.79	59.31	62.77	72.58	57.34	71.08	60.57	
COM + 62	57.49	59.04	62.53	72.34	57.19	70.93	60.46	
COM + 63	57.19	58.78	62.30	72.10	57.04	70.77	60,35	
COM + 64	56.89	58.51	62.06	71.86 <	56.89	70.62	60.24	
COM + 65	56.59	58.25	61.83	71.62	56.74	70.47	60.12	
COM + 66	56.30	58.00	61.59	71.39	56.59	70.32	60.01	7
COM + 67	56.01	57.74	61.36	71.16	56.45	70.17	59.90)
COM + 68	55.73	57.49	61.13	70.93	56.30	70.02	59.80	ľ
COM + 69	55.45	57.24	60.91	70.70	56.16	69.87	59.69	
COM + 70	55.16	56.99	60.68	70.47	56.01	69.72	59.58	
COM + 71	54.89	56.74	60.46	70.24	55.87	69.57	59.47	
COM + 72	54.61	56.50	60.24	70.02	55.73	69,42	59.36	
COM + 73	54.34	56.25	60.01	69.79	55.59	69.28	59.25	
COM + 74	54.07	56.01	59.80	69.57	55.45	69.13	59.15	
COM + 75	53.81	55.78	59.58	69.35	55.30	68.99	59.04	
COM + 76	53.54	55.54	59.36	69.13	55.16	68.84	58.94	
COM + 77	53.28	55.30	59.15	68.91	55.03	68.70	58.83	
COM + 78	53.02	55.07	58.94	68.70	54.89	68.55	58.72	
COM + 79	52.77	54.84	58.72	68.48	54.75	68.41	58.62	
COM + 80	52.51	54.61	58.51	68.27	² 54.61	68.27	58.51	

Table 3.14.8 f_{FP} Table for Each Common Number (2/2)

Note: The above time distance are value which used fs = 32.768 [kHz].

Table 3.14.9	Performance Listi	ng for Each Segmer	nt and Common Number
10010 0.111.0		ng ioi Each Cognioi	

(1) SDRAM (Burst) 16 bits, 8/16 gray levels

(I) DDIAN	(Buibt) 10		o graj i	01015					-
	Common	128	160	200	240	320	400	480	
Segment	D	3	2.5	2	1.5	1.5	1	1	
	t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5	
128	tSTOP [µS]	1.2	1.2	1.2	1.2	1.2	1.2	1.2	
	RATE [%]	1.3	1.6	2.0	2.6	2.6	3.9	3.9	
160	tSTOP [µS]	1.4	1.4	1.4	1.4	1.4	1.4) 1.4	
	RATE [%]	1.5	1.8	2.3	3.1	3.1	4.6	4.6	
240	tSTOP [µS]	1.9	1.9	1.9	1.9	1.9	1.9	1.9	
	RATE [%]	2.1	2.5	3.1	4.1	4.1	6.2	6.2	
320	t _{STOP} [μs]	2.4	2.4	2.4	2.4	2.4	2.4	2.4	
	RATE [%]	2.6	3.1	3.9	5.2	5.2	7.9	7.9	
400	t _{STOP} [μs]	2.9	2.9	2.9	2.9	2.9	2.9	2.9	
	RATE [%]	3.2	3.8	4.8	6.3	6.3	9.5	9.5	
480	t _{STOP} [μs]	3.4	3.4	3.4	3.4	√ 3.4	3.4	3.4	Þ
	RATE [%]	3.7	4.5	5.6	(7.4 <	011.1	11,1	
560	tSTOP [µS]	3.9	3.9	3.9	3.9	3.9	3.9	3.9	
	RATE [%]	4.3	5.1	6.4	8.5	8.5	12.8	12.8	
640	tstop [μs]	4.4	4.4	4.4	4.4	4.4	(4.4)	4.4	
	RATE [%]	4.8	5.8	7.2	9.6	9.6	14.4	14.4	

(2) SDRAM (Burst) 16 bits, 4 gray levels

		. 4						
	Common	128	160	200	240	320	400	480
Segment	D	3	2.5	2	1.5	1.5	1	1
	t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5
128	tstop [μs]	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	RATE [%]	13	1.6	2,0	2.6	2.6	3.9	3.9
160	tSTOP [µS]	1.4	1.4	14. 14.	1.4	1.4	1.4	1.4
$\int \int dr$	RATE [%]	1.5	1.8	2.3	3.1	3.1	4.6	4.6
240	tSTOP [µS]	1.9 🗸	1.9	1.9	1.9	1.9	1.9	1.9
	RATE [%]	2.1	2.5	3.1	4.1	4.1	6.2	6.2
320	tSTOP [µS]	2.4	2.4	2.4	2.4	2.4	2.4	2.4
\land	RATE [%]	2.6	3.1	3.9	5.2	5.2	7.9	7.9
400	tstop [μs]	2.9	2.9	2.9	2.9	2.9	2.9	2.9
×	RATE [%]	3.2	3.8	4.8	6.3	6.3	9.5	9.5
480	tSTOP [µS]	3.4	3.4	3.4	3.4	3.4	3.4	3.4
	RATE [%]	3.7	4.5	5.6	7.4	7.4	11.1	11.1
560	tSTOP [µS]	3.9	3.9	3.9	3.9	3.9	3.9	3.9
	RATE [%]	4.3	5.1	6.4	8.5	8.5	12.8	12.8
640	tSTOP [µS]	4.4	4.4	4.4	4.4	4.4	4.4	4.4
	RATE [%]	4.8	5.8	7.2	9.6	9.6	14.4	14.4

	Common	128	160	200	240	320	400	480
Segment	D	3	2.5	2	1.5	1.5	1	1
	t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5
128	tSTOP [µS]	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	RATE [%]	0.9	1.0	1.3	1.7	1.7	2.6	2.6
160	t _{STOP} [μs]	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	RATE [%]	1.0	1.2	1.5	2.0	2.0	3.0	3.0
240	t _{STOP} [μs]	1.2	1.2	1.2	1.2	1.2	1.2	/1.2
	RATE [%]	1.3	1.5	1.9	2.5	2.5	3.8	3.8
320	t _{STOP} [μs]	1.4	1.4	1.4	1.4	1.4	1.4	1.4
	RATE [%]	1.5	1.8	2.3	3.1	3.1	4.6	4.6
400	t _{STOP} [μs]	1.7	1.7	1.7	1.7	1.7) 1.7	1.7
	RATE [%]	1.8	2.2	2.7	3.6	3.6	5.4	5.4
480	t _{STOP} [μs]	1.9	1.9	1.9	9.1	1.9	1.9	19
	RATE [%]	2.1	2.5	3.1	4.1	4.1	6.2	6.2
560	t _{STOP} [μs]	2.2	2.2	2.2 ((2.2	2.2	2.2((2.2
	RATE [%]	2.3	2.8	3.5	4.7	4.7	7.0	-(7.0)
640	t _{STOP} [μs]	2.4	2.4	2.4	2.4	2.4	2.4	2.4
	RATE [%]	2.6	3.1	3.9	5.2	5.2 (7.9	7.9

(3) SDRAM (Burst) 16 bits, monochrome

(4) SRAM (2 states) 16 bits, 8/16 gray levels (Note 2)

					÷.				
		Common	128 🔇	(160	200	240	320	400	480
	Segment	D	3	2.5	2 <	1.5	1.5	1	1
		t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5
	128	tstop [μs]	3.4	3.4	3.4	3.4	3.4	3.4	3.4
		RATE [%]	3.7	4.4	5.5	7.3	7.3	11.0	11.0
	160	tSTOP [µS]	4.2	4.2	4.2	4.2	4.2	4.2	4.2
		RATE [%]	4.5	5.4	6.8	9.1	9.1	13.6	13.6
	240	tSTOR [µS]	6.2	6.2	6.2	6.2	6.2	6.2	6.2
		RATE [%]	6.7 🔿	8.1	10,1	13.4	13.4	20.2	20.2
	320	tSTOP [µS]	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	/	RATE [%]	8.9	10.7	13.4	17.8	17.8	26.7	26.7
	400	t _{STOP} [μs]	10.2	10.2	10.2	10.2	10.2	10.2	10.2
		RATE [%]	11.1	13.3	16.6	22.2	22.2	33.3	33.3
	480	t _{STOP} [μs]	12.2	12.2	12.2	12.2	12.2	12.2	12.2
~	()	RATE [%]	13.3	15.9	19.9	26.5	26.5	39.8	39.8
\sim	560	tSTOP [µS]	14.2	14.2	14.2	14.2	14.2	14.2	14.2
		RATE [%]	15.4	18.5	23.2	30.9	30.9	46.4	46.4
	640	tstop [µs]	16.2	16.2	16.2	16.2	16.2	16.2	16.2
		RATE [%]	17.6	21.2	26.5	35.3	35.3	53.0	53.0

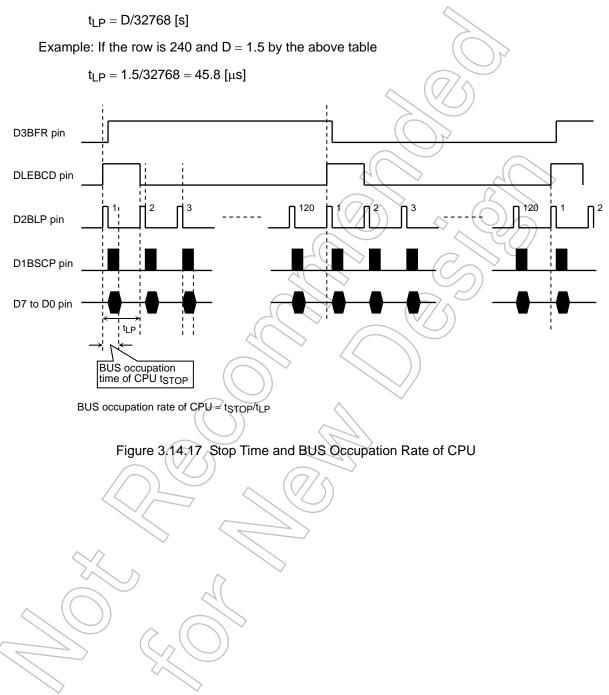
								-
Common	128	160	200	240	320	400	480	
D	3	2.5	2	1.5	1.5	1	1	
t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5	
tSTOP [µS]	1.8	1.8	1.8	1.8	1.8	1.8	1.8	
RATE [%]	1.9	2.3	2.9	3.8	3.8	5.7	5.7	
tSTOP [µS]	2.2	2.2	2.2	2.2	2.2	2.2	2.2	
RATE [%]	2.3	2.8	3.5	4.7	4.7	7.0	7.0	
tSTOP [µS]	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
RATE [%]	3.4	4.1	5.2	6.9	6.9	710.3	10.3	
tSTOP [µS]	4.2	4.2	4.2	4.2	4.2	4.2	4.2	
RATE [%]	4.5	5.4	6.8	9.1	9.1	13.6	13.6	
t _{STOP} [μs]	5.2	5.2	5.2	5.2	5.2	5.2	5.2	
RATE [%]	5.6	6.7	8.4	11.2	11.2	16.9	16.9	
tSTOP [µS]	6.2	6.2	6.2	6.2	6.2	6.2	6.2	\triangleright
RATE [%]	6.7	8.1	10.1	13.4	13.4	20.2	20.2	
tSTOP [µS]	7.2	7.2	7.2 ((7.2	7.2	7.2((7.2	
RATE [%]	7.8	9.4	11.7	15.6	15.6	23.4	23.4	
t _{STOP} [μs]	8.2	8.2	8.2	8.2	8.2	8.2	8.2	
RATE [%]	8.9	10.7	13.4	17.8	17.8 (26.7	26.7	
	Common D tLP [µS] tSTOP [µS] RATE [%] RATE [%] RATE [%] tSTOP [µS] RATE [%] RATE [%] RATE [%] RATE [%] RATE [%] RATE [%] RATE [%]	Common 128 D 3 t_LP [µS] 91.6 t_STOP [µS] 1.8 RATE [%] 1.9 t_STOP [µS] 2.2 RATE [%] 2.3 t_STOP [µS] 3.2 RATE [%] 3.4 t_STOP [µS] 4.2 RATE [%] 5.2 RATE [%] 5.6 t_STOP [µS] 6.2 RATE [%] 6.2 RATE [%] 7.2 RATE [%] 7.8 t_STOP [µS] 7.8	Common 128 160 D 3 2.5 t _L p [µs] 91.6 76.3 t _{STOP} [µs] 1.8 1.8 RATE [%] 1.9 2.3 t _{STOP} [µs] 2.2 2.2 RATE [%] 2.3 2.8 t _{STOP} [µs] 3.2 3.2 RATE [%] 3.4 4.1 t _{STOP} [µs] 4.2 4.2 RATE [%] 3.4 4.1 t _{STOP} [µs] 4.2 4.2 RATE [%] 5.2 5.2 RATE [%] 5.6 6.7 t _{STOP} [µs] 6.2 6.2 RATE [%] 6.7 8.1 t _{STOP} [µs] 6.2 7.2 RATE [%] 7.2 7.2 RATE [%] 7.8 9.4 t _{STOP} [µs] 8.2 8.2	Common128160200D32.52t_LP [µS]91.676.361tSTOP [µS]1.81.81.8RATE [%]1.92.32.9tSTOP [µS]2.22.22.2RATE [%]3.23.23.5tSTOP [µS]3.23.23.2RATE [%]3.44.15.2tSTOP [µS]4.24.24.2RATE [%]5.25.25.2RATE [%]5.66.78.4tSTOP [µS]6.26.26.2RATE [%]6.78.110.1tSTOP [µS]7.27.27.2RATE [%]7.89.411.7tSTOP [µS]8.28.28.2	D 3 2.5 2 1.5 tLP [μs] 91.6 76.3 61 45.8 tSTOP [μs] 1.8 1.8 1.8 1.8 RATE [%] 1.9 2.3 2.9 3.8 tSTOP [μs] 2.2 2.2 2.2 2.2 RATE [%] 2.3 2.8 3.5 4.7 tSTOP [μs] 3.2 3.2 3.2 3.2 RATE [%] 3.4 4.1 5.2 6.9 tSTOP [μs] 4.2 4.2 4.2 4.2 RATE [%] 4.5 5.4 6.8 9.1 tSTOP [μs] 5.2 5.2 5.2 5.2 RATE [%] 5.6 6.7 8.4 11.2 tSTOP [μs] 5.2 5.2 6.2 6.2 RATE [%] 6.7 8.1 10.1 13.4 tSTOP [μs] 7.2 7.2 7.2 7.2 RATE [%] 7.8 9.4 11.7	Common128160200240320D32.521.51.5t_P [µs]91.676.36145.845.8tSTOP [µs]1.81.81.81.81.8RATE [%]1.92.32.93.83.8tSTOP [µs]2.22.22.22.22.2RATE [%]3.23.23.54.74.7tSTOP [µs]3.23.23.23.23.2RATE [%]3.44.15.26.96.9tSTOP [µs]4.24.24.24.24.2RATE [%]4.55.46.89.19.1tSTOP [µs]5.25.25.25.25.2RATE [%]5.66.78.411.211.2tSTOP [µs]6.26.26.26.26.2RATE [%]6.78.110.113.413.4tSTOP [µs]7.27.27.27.27.2RATE [%]7.89.411.715.615.6tSTOP [µs]8.28.28.28.28.28.2	Common128160200240320400D32.521.51.51t_Lp [µs]91.676.36145.845.830.5tSTOP [µs]1.81.81.81.81.81.81.8RATE [%]1.92.32.93.83.85.7tSTOP [µs]2.22.22.22.22.22.2RATE [%]2.32.83.54.74.770tSTOP [µs]3.23.23.23.23.23.2RATE [%]3.44.15.26.96.910.3tSTOP [µs]4.24.24.24.24.2RATE [%]3.44.15.25.95.25.2RATE [%]5.46.89.19.113.6tSTOP [µs]5.25.25.25.25.25.2RATE [%]5.66.78.411.211.216.9tSTOP [µs]6.26.26.26.26.26.2RATE [%]6.78.110.113.413.420.2tSTOP [µs]7.27.27.27.27.27.2RATE [%]7.89.414.715.615.623.4tSTOP [µs]8.28.28.28.28.28.2	Common128160200240320400480D32.521.51.511t_P [µS]91.676.36145.845.830.530.5tSTOP [µS]1.81.81.81.81.81.81.81.8RATE [%]1.92.32.93.83.85.75.7tSTOP [µS]2.22.22.22.22.22.22.2RATE [%]3.23.23.54.74.77.07.0tSTOP [µS]3.23.23.23.23.23.23.23.2RATE [%]3.44.15.26.96.910.310.3tSTOP [µS]4.24.24.24.24.24.2RATE [%]3.44.15.25.95.25.25.2RATE [%]5.46.89.19.113.613.6tSTOP [µS]5.25.25.25.25.25.2RATE [%]5.66.78.411.211.216.916.9tSTOP [µS]6.26.26.26.26.26.26.2RATE [%]6.78.110.113.413.420.220.2tSTOP [µS]7.27.27.27.27.27.2RATE [%]7.89.414.715.615.623.423.4tSTOP [µS]8.28.28.2 <td< td=""></td<>

(5) SRAM (2 states) 16 bits, 4 gray levels (Note 2)

(6) SRAM (2 states) 16 bits, monochrome (Note 2)

	Common	128 🔇	160	200	240	320	400	480
Segment	D	3	2.5	2 <	1.5	1.5	1	1
	t _{LP} [μs]	91.6	76.3	61	45.8	45.8	30.5	30.5
128	tstop [μs]	1.0	1.0	1.0	1.0	✓ 1.0	1.0	1.0
	RATE [%]	1.0	1.2	1.6	2.1	2.1	3.1	3.1
160	tSTOP [µS]	1.2	1.2	1.2	1.2	1.2	1.2	1.2
	RATE [%]	1.3	1.5	1.9	2.5	2.5	3.8	3.8
240	tSTOP [µS])) 1.7	1.7	1.7	2 1.7	1.7	1.7	1.7
	RATE [%]	1.8 🗸	2.2	2,7	3.6	3.6	5.4	5.4
320	tSTOP [µS]	2.2	2.2	2.2	2.2	2.2	2.2	2.2
	RATE [%]	2.3	2.8	3.5	4.7	4.7	7.0	7.0
400	t _{STOP} [μs]	2.7	2.7	2.7	2.7	2.7	2.7	2.7
	RATE [%]	2.9	3.5	4.3	5.8	5.8	8.7	8.7
480	t _{STOP} [µs]	3.2	3.2	3.2	3.2	3.2	3.2	3.2
()	RATE [%]	3.4	4.1	5.2	6.9	6.9	10.3	10.3
560	tSTOP [µS]	3.7	3.7	3.7	3.7	3.7	3.7	3.7
	RATE [%]	4.0	4.8	6.0	8.0	8.0	12.0	12.0
640	tSTOP [µS]	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	RATE [%]	4.5	5.4	6.8	9.1	9.1	13.6	13.6

Note 1: These tables are calculated at following condition.


- 1) $f_{SYS} = 20 [MHz]$
- 2) fs = 32.768 [kHz]
- 3) Overhead state number are 8 states for SDRAM and 3 states for SRAM.

Note 2: For SRAM tables ((4) to (6)), t_{STOP} is calculated at 2-state accessing.

Monochrome 16.0 12.8 8.5 6.2 5.1 4.3 3.7 3.2 Pa 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Pa 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa Vertical COM 128 160 200 240 320 400 480 480 128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 <th></th> <th>٦</th>											٦
4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Pa 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa Vertical COM 128 160 200 240 320 400 480 560 640 Jash M/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 <td>Monochrome</td> <td>SEG</td> <td>128</td> <td>160</td> <td>240</td> <td>320</td> <td>400</td> <td>480</td> <td>560</td> <td>640</td> <td></td>	Monochrome	SEG	128	160	240	320	400	480	560	640	
8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa Vertical COM 128 160 200 240 320 400 480 128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 480 Monochrome 32.0 25.6 </td <td></td> <td></td> <td>16.0</td> <td>12.8</td> <td>8.5</td> <td>6.2</td> <td>5.1</td> <td>4.3</td> <td>3.7</td> <td>3.2</td> <td>Pane</td>			16.0	12.8	8.5	6.2	5.1	4.3	3.7	3.2	Pane
16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Pa Vertical COM 128 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels 128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7,3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7,3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1<	4 gray levels		16.0	12.8	8.5	6.4	5.1	4.3	3.7	3.2	Pane
Vertical COM 128 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels 128-Mbit SDRAM/BURST SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 Monochrome 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels Vertical COM 128 160 240 320 400 480 400	8 gray levels		8.0	6.4	4.3	3.2	2.6	2.1	1.8	1.6	Pane
32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels 128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320	16 gray levels		8.0	6.4	4.3	3.2	2.6	2.1	1.8	1.6	Pane
32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels 128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320									(\frown	
128-Mbit SDRAM/BURST Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par I 6 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 12.8 160 200 240 320 400 480 SRAM Horizontal SEG 12.8 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320 400 480 560 640 <tr< td=""><td>Vertical</td><td>COM</td><td>128</td><td>160</td><td>200</td><td>240</td><td>320</td><td>400</td><td>480</td><td>4()</td><td>7</td></tr<>	Vertical	COM	128	160	200	240	320	400	480	4()	7
Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7,3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 12.8 160 200 240 320 400 480 560 640 Vertical COM 128 160 200 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8			32.0	25.6	20.5	17.1	12.8	10.2	8.5	Panels	
Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 12.8 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels Vertical COM 128 160 200 240 320 400 480 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2	128-Mbit SDRA	۹M/BUR	ЭТ					\langle)	
Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 12.8 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels Vertical COM 128 160 200 240 320 400 480 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2	Horizontal	SEG	128	160	240	320	400	480	560	640	
4 gray levels 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 12.8 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Ranels SRAM Horizontal SEG 128 160 240 320 400 480 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 <td>Monochrome</td> <td></td> <td>32.0</td> <td>25.6</td> <td>17.1</td> <td>12.8</td> <td>10.2</td> <td>8.5</td> <td></td> <td>6.4</td> <td>Pane</td>	Monochrome		32.0	25.6	17.1	12.8	10.2	8.5		6.4	Pane
8 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 Vertical COM 128 160 200 240 320 400 480 SRAM 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pane</td></td<>											Pane
16 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par Vertical COM 128 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480							~			- (Panel
Vertical COM 128 160 200 240 320 400 480 32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480			16.0		8.5	6.4		4.3	3.7	3.2	Rane
32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels SRAM Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480							(7/)	\wedge	~	\bigcirc	\sim
SRAM Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480	Vertical	COM	128	160	200	240	320	400	480		$\langle \rangle$
Horizontal SEG 128 160 240 320 400 480 560 640 Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480 480			32.0	25.6	20.5	17.1	12.8	10.2	8.5	Panels	O
Monochrome 32.0 25.6 17.1 12.8 10.2 8.5 7.3 6.4 Par 4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480	SRAM				<		$\langle \rangle$		C	$\overline{)}$	0
4 gray levels 16.0 12.8 8.5 6.4 5.1 4.3 3.7 3.2 Par 8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480	Horizontal	SEG	128	160	240	320	400	480	560 <	640	
8 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par 16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480	Monochrome		32.0	25.6	17.1	12.8	10.2	8.5	7.3	6.4	Pane
16 gray levels 8.0 6.4 4.3 3.2 2.6 2.1 1.8 1.6 Par Vertical COM 128 160 200 240 320 400 480	4 gray levels		16.0	12.8	8.5	6.4	5.1	4.3	3.7	3.2	Pane
Vertical COM 128 160 200 240 320 400 480	8 gray levels		8.0	6.4	4.3	3.2	2.6	2.1	1.8	1.6	Pane
	16 gray levels		8.0	6.4	4.3	3.2	2.6	2.1	1.8	1.6	Pane
								\searrow	, 		
32.0 25.6 20.5 17.1 12.8 10.2 8.5 Panels			100	160	200	240	320	400	480		
	Vertical	COM	120								1
	Vertical	СОМ		-	20.5	17.1	12.8	10.2	8.5	Panels]

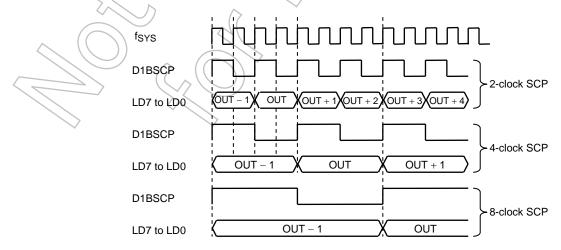
Table 3.14.10 Possible Panel Size of Panning

- Note 1: The value of the Table 3.14.8 is at $f_{FPH} = 36$ [MHz].
- Note 2: CPU stop time; t_{STOP} (in the Figure 3.14.17) is the time which CPU reads the memory of transferring with 0 waits.
- Note 3: The following equation can calculate t_{LP} listed below. (fs = 32.768 [kHz])

3.14.4.6 Timing Charts of Interpreting Memory Codes

TMP92C820 supports different memory accessing. They are SRAM with waits, SDRAM burst modes, and the size of SDRAM is 64 or 128 Mbits. The access signals for the LCD panel are shown in Figure 3.14.18. TMP92C820 include 80 bytes FIFO. Therefore, If CPU operate high speed, TMP92C820 can to use low-speed LCD driver. To catch low speed LCD drivers, 4 types of SCP rates (fsys, fsys/2, fsys/4, and fsys/8) can be selected. The output data (LD7:0) will be issued from the built-in FIFO at the rising edge of D1BSCP when the FIFO is no empty. The work of the FIFO is illustrated in Figure 3.14.19, where the buffer size 80 bytes. The FIFO latches BaseLD<7:0> signal at the falling edge of BaseSCP that is shown in Figure 3.14.20 and Figure 3.14.21 for SRAM and SDRAM modes respectively. The FIFO is always reset to the empty state by the rising edge of D2BLP. In base SCP mode (e.g., for SCPW1:0 = 00), D1BCP is equal to BaseSCP, LD<7:0> equal to BaseLD<7:0> and no FIFO used. Generally, the data input rate of FIFO should be greater than the output one.

To make FIFO work correctly, the following condition have to be satisfied by setting SFR properly.


 $(\text{SegNum/8} + 1) \times \text{tcw} + 24 \times \text{tFPH} < \text{tLP} - \text{tLPH}$

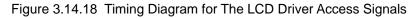

Here, SegNum is the segment number, and t_{CW} D1BSCP clock cycle width. Referring Figure 3.14.22, we can know this relation means that the last LD<7:0> data must be generated before the rising edge of D2BLP. For example, in case of f_{FPH} = 36 MHz, XT = 32 kHz, 4 gray levels, 240 commons, 640 segments, and SDRAM burst mode, the following table can be obtained, which tells user that 8 clock mode is impossible and base, 2, 4 clock modes can be used.


Table 3.14.11 f_{FPH} = 36 [MHz], XT = 32 [kHz], 4 Grayscale, 240 Common, 640 Segment, SDRAM Burst Mode

SCPW	D1BSCP Rate (MHz)	tcw (ns)	$\begin{array}{c} (SegNum/8 + 1) \times tcw + \\ 24 \times t_{FPH} \ (ns) \end{array}$	t _{LP} – t _{LPH} (ns)	Judgment
Base	9	111.2	9674.4	31250	ОК
2 CLK	(9)	111.2	9674.4	31250	ОК
4 CLK	4.5	222.4	18681.6	31250	ОК
8 CLK	2.25	444.8	36696	31250	Error

Note: In case of SDRAM burst mode and 8/16 gray, the speed of base setting is equal to that of 2 CLK.

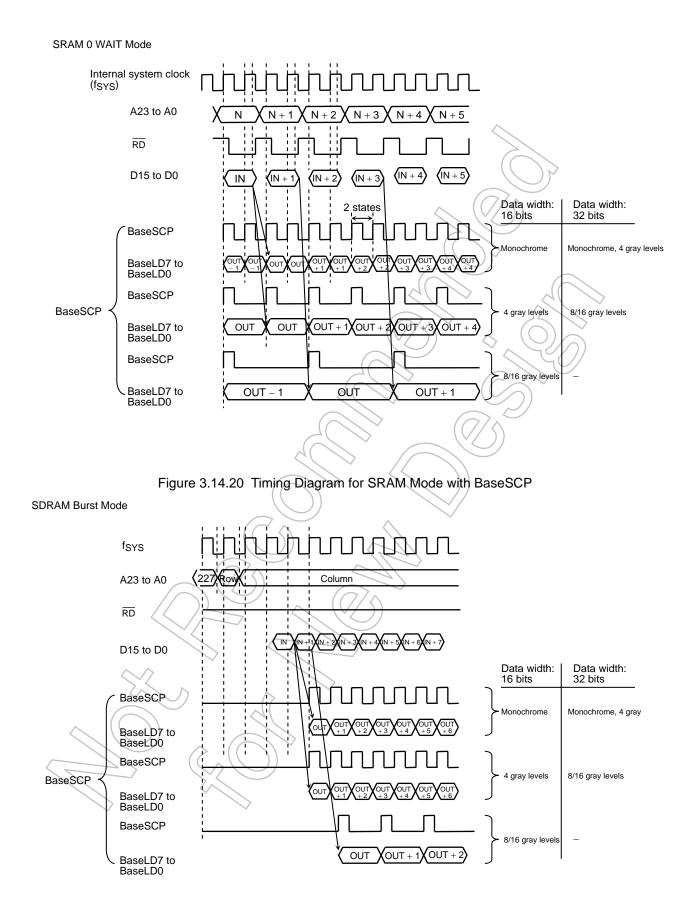
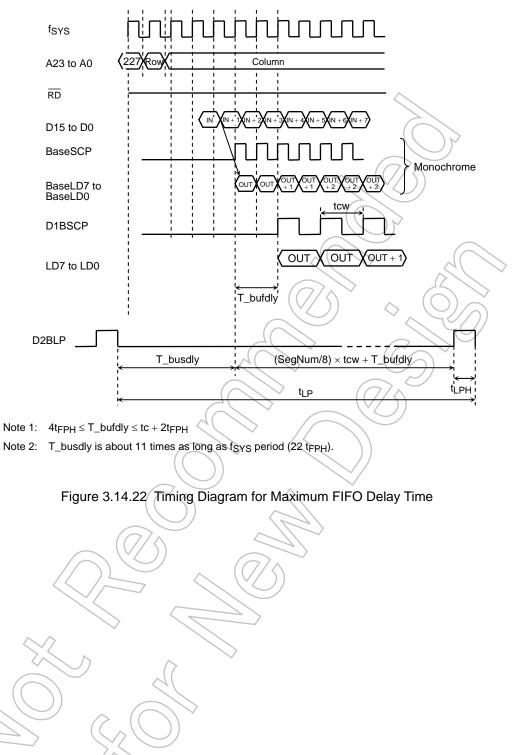
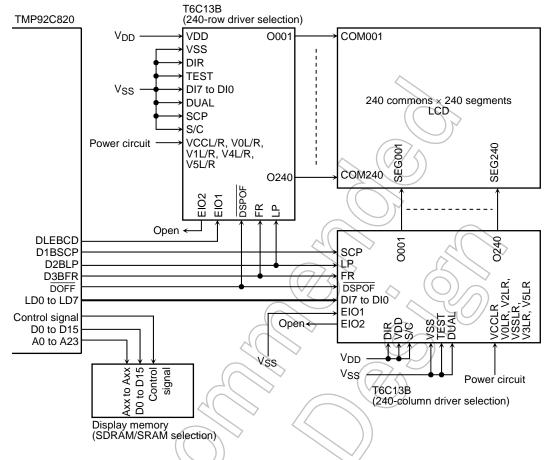
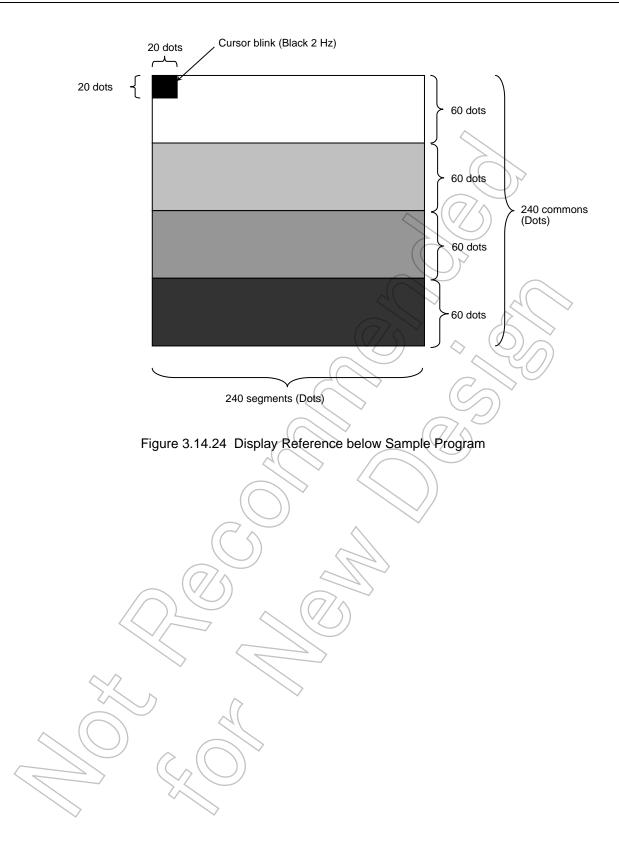




Figure 3.14.21 Timing Diagram for SDRAM Burst Mode with BaseSCP

SDRAM BURST1 Clock Mode

3.14.4.7 Examples to Use



Note 1: Display memory support only 16-bit bus.

Note 2: Other circuit is necessary for LCD drive power supply for LCD driver display.

Figure 3.14.23 Interface Example for Shift Register Type LCD Driver

Note: Because the connection between the line of display RAM data and output bus: LD<0:7> is just the mirror invertion, please care of connection. The data LSB of display RAM is output from LD7. In the above figure, LD0 should be connected to DI7 of LCDD driver, and LD1 to DI6. For detail information, please refer to Figure 3.14.11.

3.14.4.8 Sample Program

•	Setting example:	In case of use 240 segments \times 240 commons, 4-level grayscale
		display, 64-Mbit SDRAM.

This sample program operate correctly, LCD panel shows Figure 3.14.18 display.

;**** SDRAM SET ***** ld (sdacr), 2bH ; Add-MUX enable, 64-Mbit select ld (sdrcr), 01H ; Interval refresh ;***** GLCDC SET ***** ld (lcdmode), 17H ; A/B area OFF, SDRAM 64 Mbits, SR type ; SCP width 2clocks ; 11-count DVM set ld (lcddvm), 11 ; COM = 240, SEG = 240ld (lcdsize), 32H ld (lcdctl), 20H ; Divide frame ON, display OFF ld (lcdffp), 240 ; Frame frequency correction (91 Hz) ld (lcdgl), 01H ; 4-level grayscale ld (lcdcm), 0c1H ; Cursor ON, Black, 2 Hz blink ld (lcdcw), 19 ; Width = 20 dots ld (lcdch), 19 ; Height = 20 dotsld (lcdcp), 00H Pixel = 0ld (lcdcpl), 00H Cursor address ld (lcdcpm), 00H Cursor address ld (lcdcph), 40H ; Cursor address ld (lsarch), 40H ; C_area start address ld (lsarcm), 00H ; C area start address ld (lsarcl), 00H ; C_area start address ;***** 0/4 data write 60 ROW ***** ld xix, 400000H ld wa, 0000H ; Write data 0/4-level data (000000000000000B) ld (xix), wa loop1; inc 2, xix cp xix, 407800H 400000H to 4077FFH: 60 rows (Dots) jr nz, loop1 ;***** 2/4 data write 60 ROW ***** ld xix, 407800H ld wa, 05555H ; Write data 1/4-level data (0101010101010101B) loop2: ld (xix), wa inc 2, xix ep xix, 40F000H ; 407800H to 40EFFFH: 60 rows (Dots) jr nz, loop2 ***** 3/4 data write 60 ROW ***** ld xix, 40F000H ld wa, 0aaaaH ; Write data 2/4-level data (1010101010101010B) loop3: ld (xix), wa inc 2, xix ; 40F000H to 4167FFH: 60 rows (Dots) cp xix, 416800H jr nz, loop3

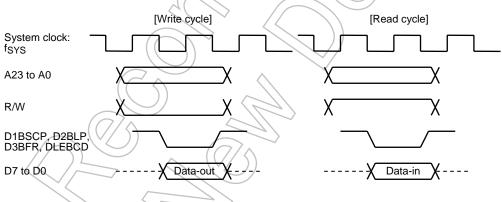
;***** 4/4 data write 60 ROW ***** ld xix, 416800H ; ; Write data 3/4-level data (1111111111111111) ld wa, 0ffffH ld (xix), wa loop4: inc 2, xix cp xix, 41e000H ; 416800H to 41DFFFH: 60 rows (Dots) jr nz, loop4 : ;**** 4-level gray palette pattern set ***** ld (lg0l), 00H ; 0/4 grayscale palette 0000Bld (lg1l), 05H ; 2/4 grayscale palette 0101B ld (lg2l), 0eH ; 3/4 grayscale palette 1110B ld (lg3l), 0fH ; 4/4 grayscale palette 1111B ;***** DMA, DISPLAY-ON start ***** ld (lcdctl), 0a1H ; Display ON, divide ON

3.14.5 RAM Built-in Type LCD Driver Control Mode (RAM mode)

3.14.5.1 Operation

Data transmission to LCD driver is executed by move instruction of CPU.

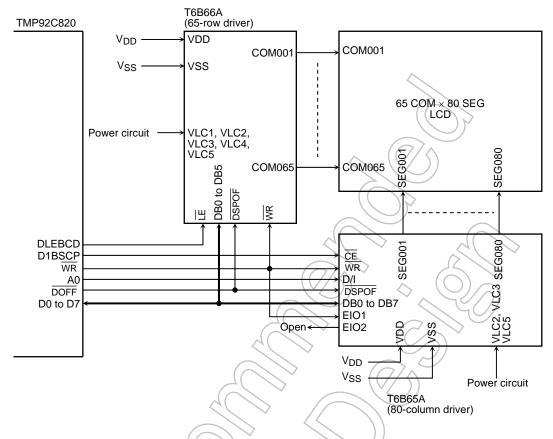
After setting mode of operation to control register, when move instruction of CPU is executed LCDC outputs chip select signal to LCD driver connected to the outside from control pin (D1BSCP etc.). Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU. There are 2 kinds of address of LCD driver in this case, and which is chosen determines by LCDCTL<MMULCD> register.


It corresponds to LCD driver which has every 1 byte of instruction register and display data register in LCD driver at the time of <MMULCD> = "0". Please make the transmission place address at this time into either of FEOH to FE7F. (SEQUENTIAL ACCESS TYPE: See Table 3.14.4.)

It corresponds to address direct writing type LCD driver at the time of <MMULCD> = "1."

The transmission place address at this time can also assign the memory area of 3C0000H to 3FFFFF to four area for every 64 Kbytes. (RANDOM ACCESS TYPE)

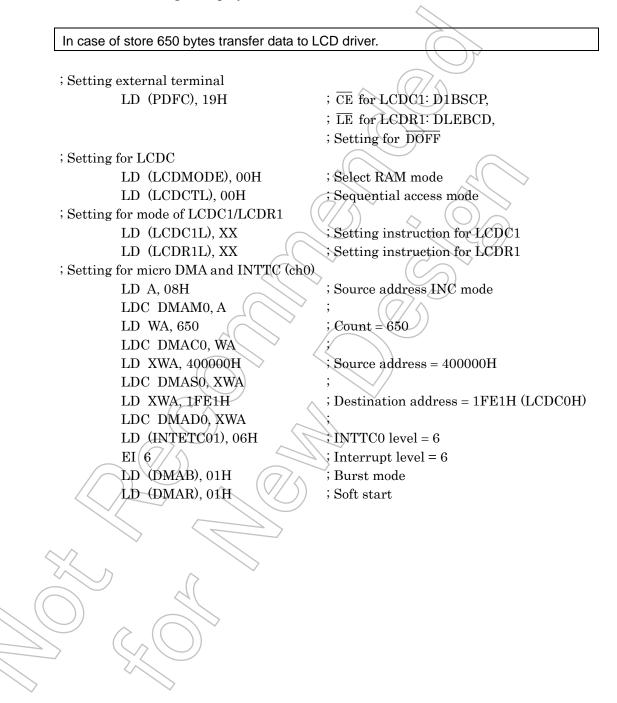
Note: This operation mode cannot use cursor function.


Figure 3.14.25 shows access timing example in $\langle MMULCD \rangle = "0"$. Also, Figure 3.14.26 shows example of connection.

Note 1: This waveform is the case of 3-state access. Note 2: Note the different rising timing for D1BSCP etc.

Figure 3.14.25 Example of Access Timing for RAM Built-in Type LCD Driver (Wait = 0)

3.14.5.2 Examples to Use



Note: Other circuit is necessary for LCD drive power supply for LCD driver display.

Figure 3.14.26 Interface Example for RAM Built-in Type Sequential Access Type LCD Driver

3.14.5.3 Sample Program

• Setting example: In case of use 80 segment × 65 commons LCD driver. Assign external column driver to LCDC1 and row driver to LCDR1. This example used LD instruction in setting of instruction and used burst function of micro DMA by soft start in setting of display data.

3.15 Melody/Alarm Generator (MLD)

The TMP92C820 contains a melody function and alarm function, both of which are output from the MLDALM pin. Five kinds of fixed cycle interrupt are generated using a 15-bit counter for use as the alarm generator.

The features are as follows.

1) Melody generator

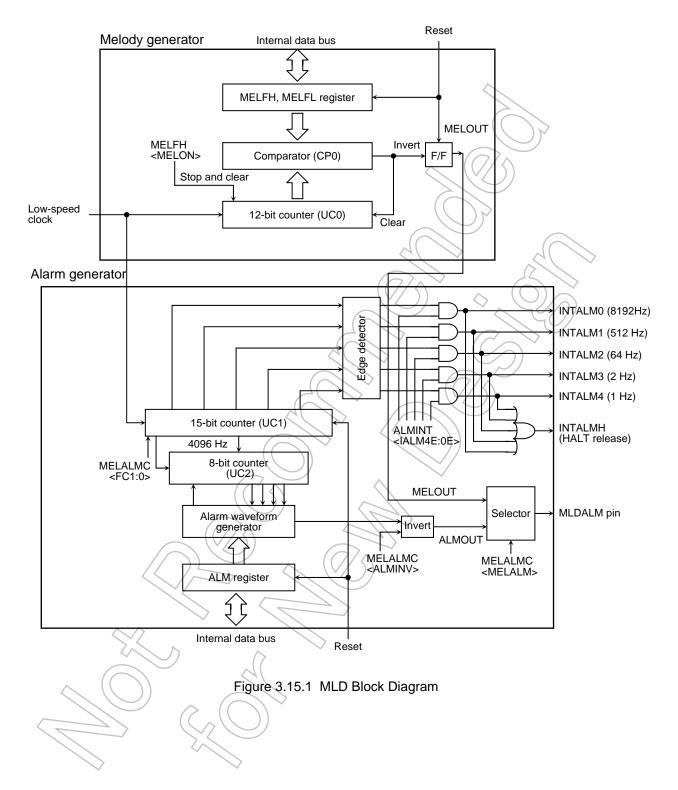
The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on a low-speed clock (32.768 kHz), and outputs the signals from the MLDALM pin.

The melody tone can easily be heard by connecting an external loudspeaker.

2) Alarm generator

The alarm function generates eight kinds of alarm waveform having a modulation frequency (4096 Hz) determined by the low-speed clock (32.768 kHz). This waveform can be inverted by setting a value to a register.

The alarm tone can easily be heard by connecting an external loudspeaker.


Five kinds of fixed cycle interrupts are generated (1 Hz, 2 Hz, 64 Hz, 512 Hz, and 8192 Hz) by using a counter which is used for the alarm generator.

This section is constituted as follows

- 3.15.1 Block Diagram
- 3.15.2 Control Registers
- 3.15.3 Operational Description
 - 3.15.3.1 Melody Generator

3.15.3.2 Alarm Generator

3.15.1 Block Diagram

3.15.2 Control Registers

				ALM R	egister				
		7	6	5	4	3	2	1	0
ALM	Bit symbol	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
(1330H)	Read/Write				R/	W	\sim	•	•
	After reset	0	0	0	0	0	0	0	0
	Function				Setting ala	arm pattern		$\langle \rangle$	
				MELALMO	Register	$\langle \langle \rangle$	75		
		7	6	5	4	3	2	1	0
MELALMC	Bit symbol	FC1	FC0	ALMINV	-	_(()>-	-	MELALM
(1331H)	Read/Write	R/\	N	R/W		RA	N	(R/W
	After reset	0	0	0	0		0	0	0
	Function	Free-run cour 00: Hold 01: Restart 10: Clear 11: Clear and		Alarm waveform invert 1: Invert		Always	vrite "0"		Output waveform select 0: Alarm 1: Melody
l	Note 1: N	IELALMC <fc< td=""><td></td><td>road "O"</td><td></td><td></td><td>\overline{C}</td><td>$\overline{\mathbf{V}}$</td><td></td></fc<>		road "O"			\overline{C}	$\overline{\mathbf{V}}$	
		Vhen setting M 01".	IELALMC reç	MELFL F	\mathbb{N}	the free-run		nning, <fc1:(< td=""><td>J> IS Kept</td></fc1:(<>	J> IS Kept
		7	6	5	4	3))	2	1	0
MELFL	Bit symbol	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0
(1332H)	Read/Write		\Box		R/	w			
	After reset	0	0	0	0	0	0	0	0
	Function			Setting	g melody frequ	uency (Lower	8 bits)		
				MELFH	Register				
		(< 7/5	6	5	<u> </u>	3	2	1	0
MELFH	Bit symbol	MELON		\sim	\sim	ML11	ML10	ML9	ML8
(1333H)	Read/Write	R/W	\sim				R/	W	
	After reset	0		\checkmark		0	0	0	0
	Function	Control melody counter 0: Stop and clear 1: Start				Setting	ı melody freq	uency (Upper	4 bits)
		\sim							
	\searrow	*	\searrow	ALMINT	Register				
		7	6	5	4	3	2	1	0
ALMINT	Bit symbol		/	_	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
(1334H)	Read/Write			R/W			R/W		
()	Reau/write		/						
()	After reset			0	0	0	0	0	0

3.15.3 Operational Description

3.15.3.1 Melody Generator

The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on a low-speed clock (32.768 kHz) and outputs the signals from the MLDALM pin.

The melody tone can easily be heard by connecting an external loud speaker.

(Operation)

MELALMC<MELALM> must first be set as 1 in order to select the melody waveform to be output from MLDALM. The melody output frequency must then be set to 12-bit registers MELFH and MELFL.

The following are examples of settings and calculations of melody output frequency.

Start to generate waveform

(Formula for calculating of melody waveform frequency)

 $\label{eq:main_state} \begin{array}{ll} \text{at fs} = 32.768 \ [kHz] \\ \text{Melody output waveform} & f_{MLD} \ [Hz] = 32768 \ (2 \times N + 4) \\ \text{Setting value for melody} & N = (16384 \ f_{MLD}) - 2 \\ (\text{Note: N} = 1 \ to \ 4095 \ (001H \ to \ FFFH), 0 \ is \ not \ acceptable.) \end{array}$

(Example program)

LD

When outputting an "A" musical note (440 Hz)

- LD (MELALMC), --XXXXX1B ; Select melody waveform
- LD (MELFL), 23H ; N = 16384/440 2 = 35.2 = 023H
 - (MELFH), 80H

Poteronae: Posic Musical Scale Setting Table)

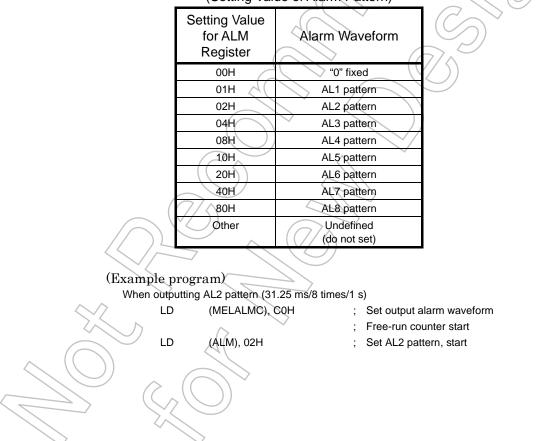
(Re	tere	eı	ice:	В	asic	Musi	cal S	Sca	lle	Setting	la	ble)
•				\wedge	-					0		. '

G	Scale	Frequency [Hz]	Register Value: N
\sim	¢)	264	03CH
\bigcirc)))	297	🔿 035H
	ш	330	030H
\sim	F	352	02DH
	с С	396	027H
~	А	440	023H
~	В	495	01FH
9	c(7	528	01DH
	$\langle \mathcal{A} \rangle$		

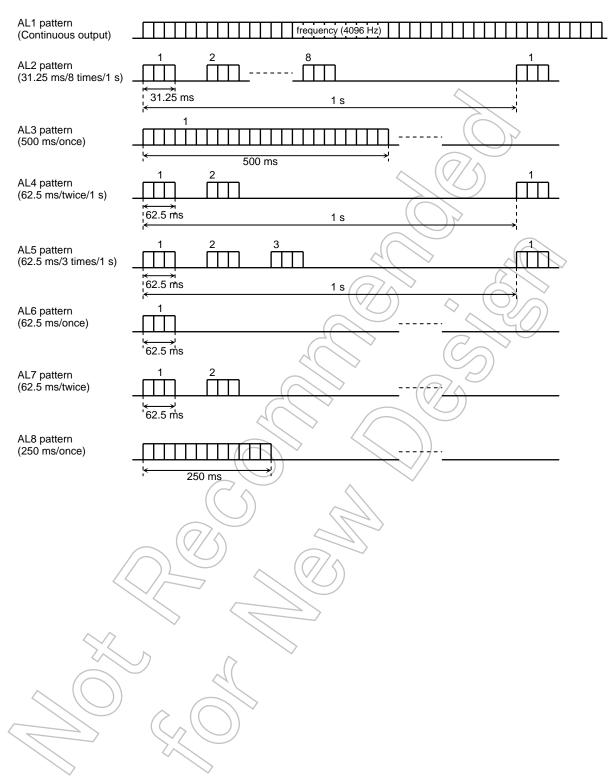
3.15.3.2 Alarm Generator

The alarm function generates eight kinds of alarm waveform having a modulation frequency of 4096 Hz determined by the low-speed clock (32.768 kHz). This waveform is reversible by setting a value to a register.

The alarm tone can easily be heard by connecting an external loud speaker .


Five kinds of fixed cycle (interrupts can be generated 1 Hz, 2 Hz, 64 Hz, 512 Hz, 8 192 Hz) by using a counter which is used for the alarm generator.

(Operation)


MELALMC<MELALM> must first be set as 0 in order to select the alarm waveform to be output from MLDALMC. The "10" must be set on the MELALMC <FC1:0> register, and clear internal counter.

Finally the alarm pattern must then be set on the 8-bit register of ALM. If it is inverted output-data, set <ALMINV> as invert.

The following are examples of program, setting value of alarm pattern and waveform of each setting value.

(Setting Value of Alarm Pattern)

Example: Waveform of alarm pattern for each setting value: Not inverted

3.16 SDRAM Controller (SDRAMC)

TMP92C820 includes SDRAM controller which supports SDRAM access by CPU/LCDC. The features are as follows.

(1) Support SDRAM

16-M/64-M/128-Mbit SDRAM (× 16 bits × 2/4 banks)

64-M/128-Mbit SDRAM (× 32 bits × 4 banks)

- (2) Automatic initialize function
 - All bank pre-charge command generate
 - Mode register set generate
 - 8 times auto refresh
- (3) Access mode

CPU Access	LCDC Access
1 word	Full page
Sequential	Sequential
2	2
Single write	
	1 word Sequential 2

- (4) Access cycle
 - CPU access (Read/write)

Read cycle: 4 states (200 ns at $f_{SYS} = 20 \text{ MHz}$)

Write cycle: 3 states (150 ns at $f_{SYS} = 20$ MHz)

Access data width: 8 bits/16 bits/32 bits

- LCDC burst access (Read only)
 Read cycle: 1 state (50 ns at fsys =20 MHz)
 Over head: 4 states (200 ns at fsys =20 MHz)
 Access data width: 16 bits/32 bits
- (5) Refresh cycle auto generate
 - Auto refresh is generated while another area is being accessed.
 - Refresh interval is programmable.
 - Self refresh is supported

Notes:

- Display data for LCDC must be set from the head of each page.
- Program is not operated on SDRAM.
- Condition of SDRAM's area is set by CS1 setting of Memory Controller.

3.16.1 **Control Registers**

Figure 3.16.1 shows the SDRAMC control registers. Setting these registers controls the operation of SDRAMC.

		7	6	5	4	3	2	1	0
SDACR (0250H)	Bit symbol	SDINI		SDBUS1	SDBUS0	/	SMUXW1	SMUXW0	SMAC
(023011)	Read/Write	R/W		R/	W	/	R/	w))	R/W
	After reset	0		0	0			0	0
	Function	Auto initialize 0: Disable 1: Enable		Selecting stru bus 00: 16 bits × 01: 16 bits × 10: 32 bits ×	2		Selecting add multiplex type 00: Type A 01: Type B 10: Type C 11: Reserved	•	SDRAM controller 0: Disable 1: Enable

SDRAM Access Control Register

SDR	AM Refres	h Control Register
6	5	

SDRCR (0251H)

	7	6	5	4	3	2		0
Bit symbol	SFRC	SRS2	SRS1	SRS0	SASFRC		\mathbb{Z}	SRC
Read/Write	R/W		R/W	$\langle \rangle \rangle$	R/W	HA A		R/W
After reset	0	0	0	0	0			0
Function	Self refresh 0: Disable 1: Enable	Refresh inter 000: 78 state 001: 97 state 010: 124 stat 011: 156 stat	s 100:19 s 101:21 tes 110:24	95 states 10 states 19 states 12 states	Auto self refresh 0: Disable 1: Enable			Interval refresh 0: Disable 1: Enable

Figure 3.16.1 SDRAMC Control Registers

3.16.2 Operation Description

(1) Memory access control

Access control block is enabled when SDACR<SMAC> = 1. And then SDRAM control signals (SDCSL, SDCSH, SDRAS, SDCAS, SDWE, SDLLDQM, SDLUDQM, SDULDQM, SDULDQM, SDCLK and SDCKE) are operating during the time CPU or LCDC accesses CS1 area.

1. Address multiplex function

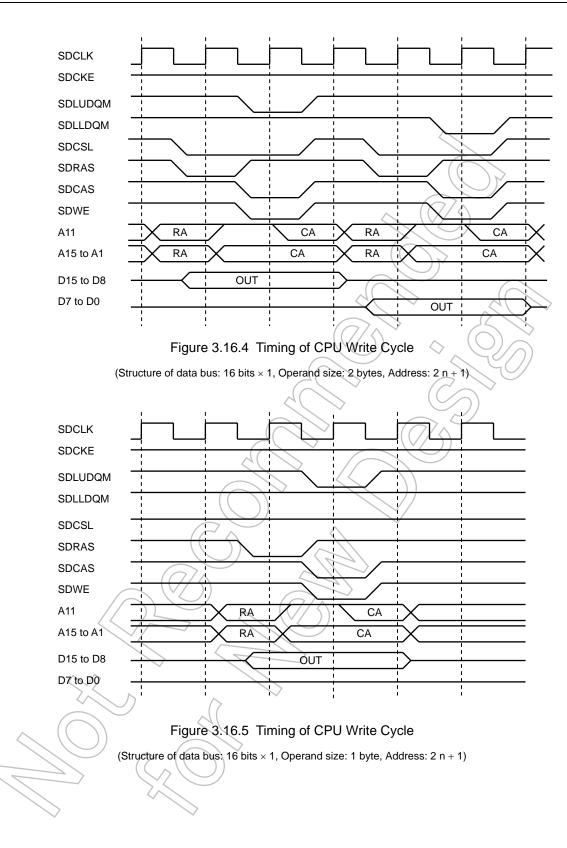
In the access cycle, address multiplex outputs row/column address through A1 to A15 pin. And multiplex width is decided by setting SDACR<SMUXW0:1> of use memory size. The relation between multiplex width and memory sizeRow/Column address is below.

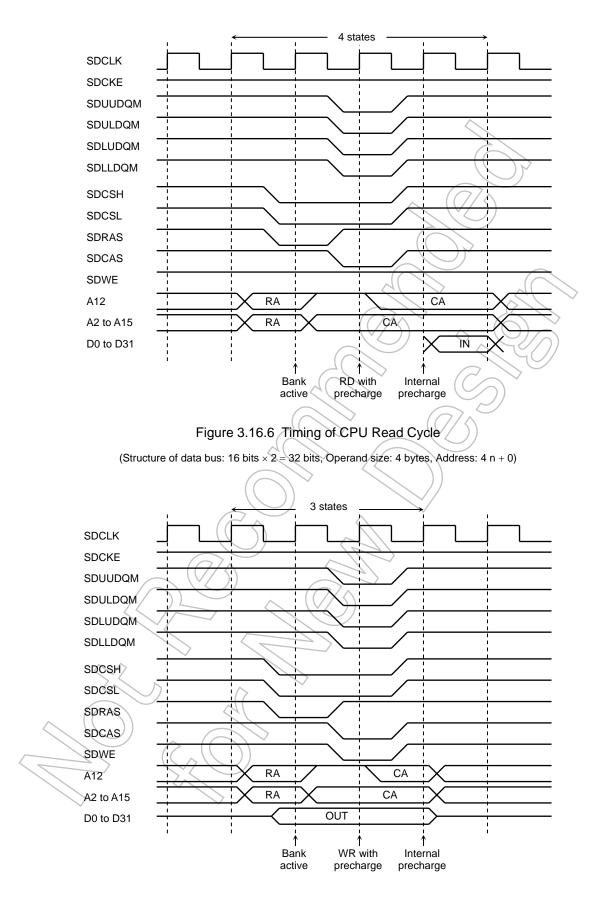
	Ac	dress of SDRA	Accessing Cyd	cle
92C820			Row Address	\diamond $O/$
Pin Name	Column Address	Type A SDACR <smuxw> = "00"</smuxw>	Type B SDACR <smuxw> = "01"</smuxw>	Type C SDACR <smuxw> = "10"</smuxw>
A0	A0	AO	A0 (7	A0
A1	A1	A9	A10) A11
A2	A2	A10	A11	A12
A3	A3	A11	A12	A13
A4	A4 ((A12	A13	A14
A5	A5	A13	A14	A15
A6	A6 🔨	A14	A15	A16
A7	A7	A15	A16	A17
A8	A8	A16	A17	A18
A9	(A9)	A17	A18	A19
A10	A10	A18	A19	A20
AM	A11	A19	A20	A21
A12	A12	A20	A21	A22
A13	A13	A21	A22	A23
A14	A14	A22	A23	A14
A15)	A15 🔿	A23	A15	A15

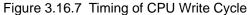
Table 3.16.1 Address Multiplex

2. Burst length

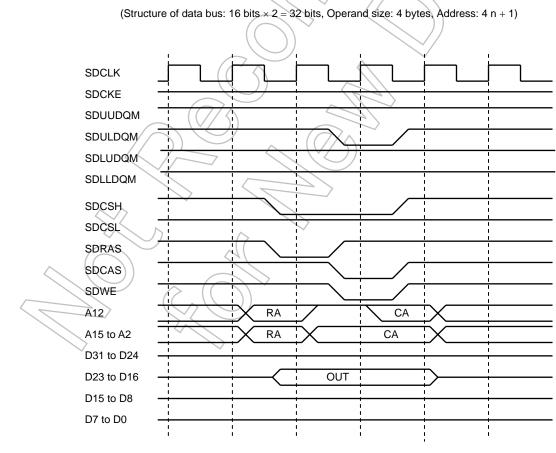
SDRAM access by CPU is performed by the 1-word burst mode. And SDRAM access by LCDC is performed by the full-page burst mode.

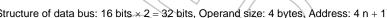

SDRAM access cycle is shown in Figure 3.16.2 to Figure 3.16.3.

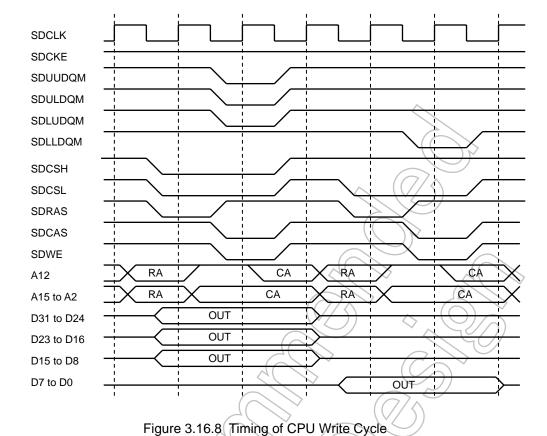

SDRAM accessing cycle number is depending on B1CSL register setting. For read cycle, setting of 4 states is necessary (B1CSL<B1WRn>). For write cycle, setting of 3 states is necessary (B1CSL<B1WWn>).

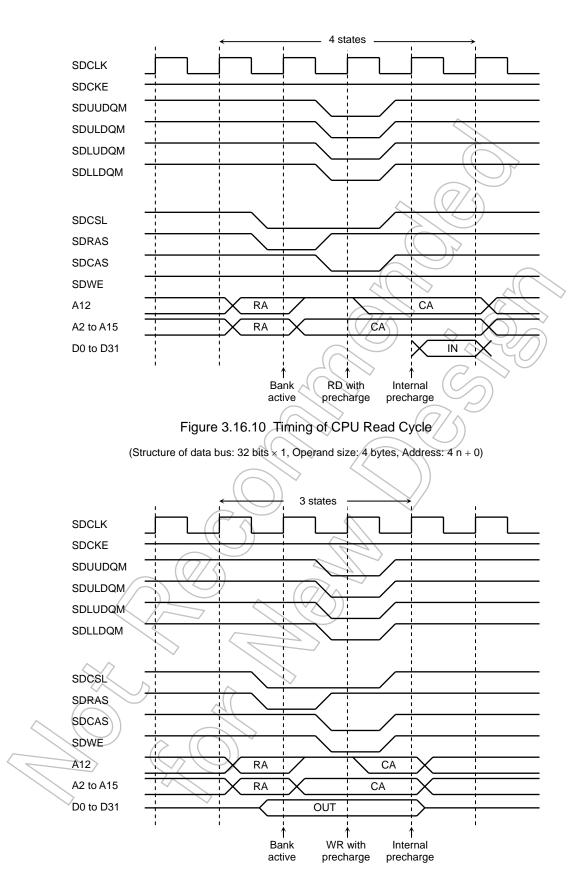

In the burst read cycle by LCDC, a mode setup and a pre-charge cycle are automatically inserted in a read cycle front and back.

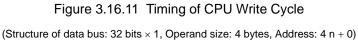
(Structure of data bus: 16 bits \times 1, Operand size: 2 bytes, Address: 2 n + 0)

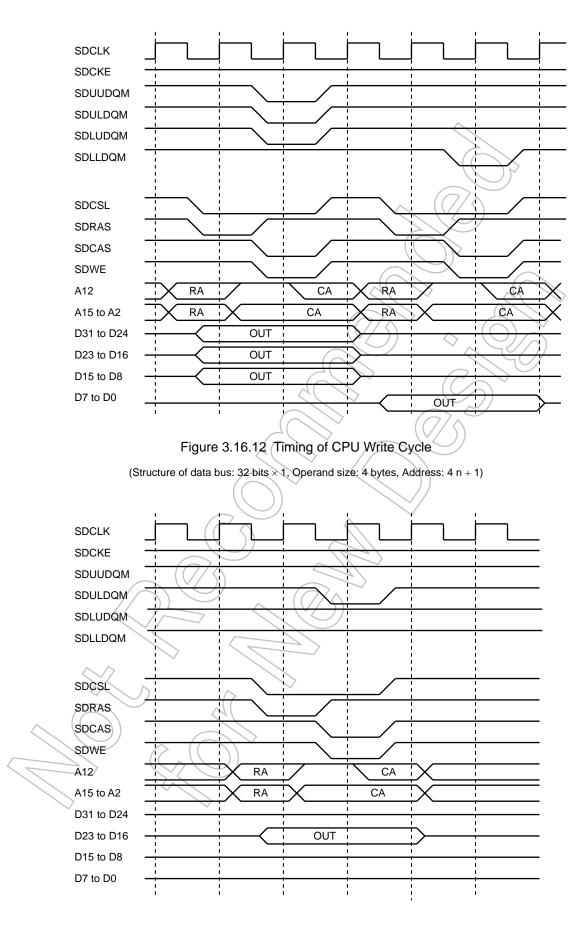


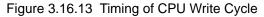


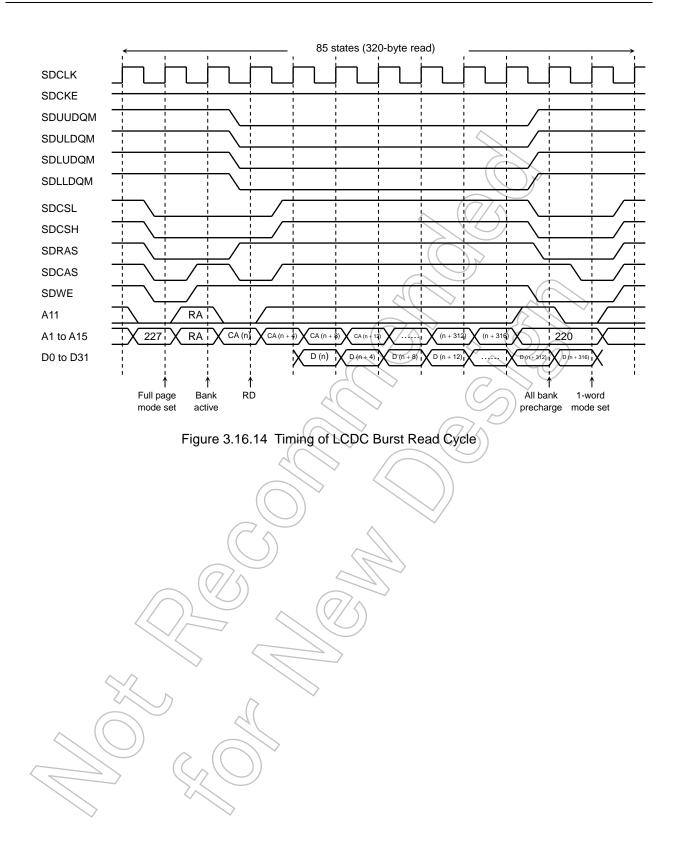


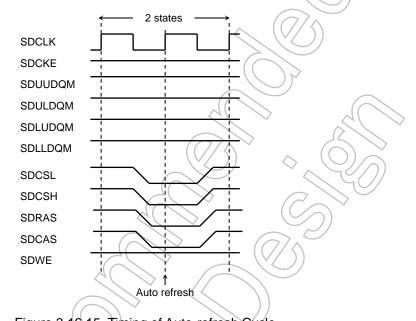

(Structure of data bus: 16 bits \times 2 = 32 bits, Operand size: 4 bytes, Address: 4 n + 0)


Figure 3.16.9 Timing of CPU Write Cycle (Structure of data bus: 16 bits × 2 = 32 bits, Operand size: 8 bytes, Address: 4 n + 3)







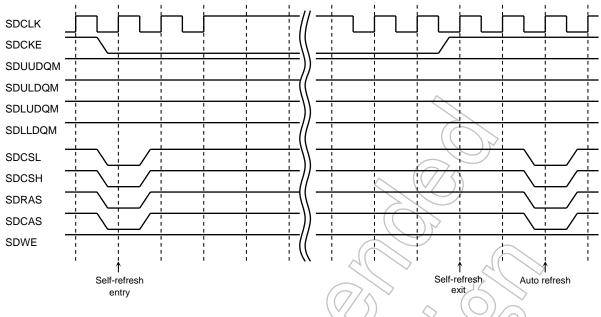

(Structure of data bus: 32 bits \times 1, size: 8 bytes, Address: 4 n + 3)

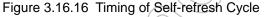
(2) Refresh control

TMP92C820 can generate automatically an auto-refresh cycle for data maintenance of SDRAM. Auto-refresh cycle is generated by setting SDRCR<SRC> to "1". Interval of auto refresh can be set by SDRCR<SRS0:2> from the 78 states to the 312 states (3.9 μ s to 15.6 μ s at 20 MHz).

The generating timing of an auto-refresh cycle becomes into accessing cycles other than SDRAM area (CS1). The auto-refresh cycle is shown in Figure 3.16.15 moreover, the interval of auto refresh is shown in Table 3.16.2.

Figure 3.16.15 Timing d	f Auto-refresh Cycle
	\sim


SDR	CR <srs< th=""><th>0:2></th><th>Insertion</th><th></th><th>fsys</th><th>S Erequency</th><th>v (System clo</th><th>ock)</th><th></th></srs<>	0:2>	Insertion		fsys	S Erequency	v (System clo	ock)	
SRS2	SRS1	SRS0	Interval (State)	5 MHz	10 MHz	12.5 MHz	15 MHz	17.5 MHz	20 MHz
0	0	0	78 🗸	15.6	7.8	6.2	5.2	4.5	3.9
0	0	1	97	19.4	9.7	7.8	6.5	5.5	4.9
0	\sum	0	124	24.8	12.4	9.9	8.3	7.1	6.2
0	\leq	5	156 🔿	31.2	15.6	12.5	10.4	8.9	7.8
1 /	6	0	195	39.0	19.5	15.6	13.0	11.1	9.8
1 (0	1	210	42.0	21.0	16.8	14.0	12.0	10.5
\sum	\mathbf{r}	0	247	49.4	24.7	19.8	16.5	14.1	12.4
1	1	1(312	62.4	31.2	25.0	20.8	17.8	15.6


Table 3.16.2	Refresh	Cycle I	nsertion	Interval
	/	. / 6		

It does not generate an auto-refresh cycle during the burst access to SDRAM by LCDC. The demand of auto-refresh cycle is held in this period. When it returns to CPU access cycle, an auto-refresh cycle is generated.

Furthermore, TMP92C820 can to generate a self-refresh cycle. The timing of a self-refresh cycle is shown in Figure 3.16.16.

(Unit: us)

- Note 1: When IDLE2 mode, continue with output clock. Therefore, If want to stop SDCLK, switch PF6 to output port before execution HALT instruction.
- Note 2: Pin condition in IDLE1/STOP mode depends on SYSCR2<DRVE> setting. However, when self-refresh mode, pin don't depend on SYSCR2<DRVE>, and output low level.

If SDRCR<SFRC> is set to "1", the self-refresh cycle shown in Figure 3.16.16 will occur. The self-refresh mode is used when using the standby mode (STOP, IDLE1), which an internal clock stops. In the case of standby mode using self refresh, please set SDRCR<SFRC> to "1", before HALT instruction (STOP, IDLE1).

Release of a self-refresh cycle is automatically performed by release in the standby mode. It inserts automatically one auto refresh after self refresh is released, and returns to the auto refresh mode.

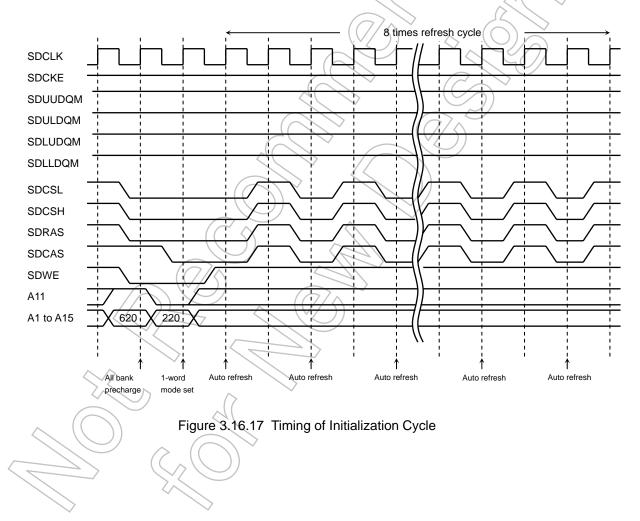
Note: When standby mode is cancelled by a reset, the I/O registers are initialized, therefore, auto refresh is not performed.

Please do not place the command which accesses SDRAM, just before setting SDRCR<SFRC> to "1". After setting SDRCR<SFRC> to "1", at least 4 times of "NOP (s)" are required before halt command execution.

Example

```
SET 7, (SDRCR)
NOP
NOP
NOP
NOP
* at least 4 times NOP(s).
NOP
HALT
```

(3) SDRAM initialize


TMP92C820 can generate the following SDRAM initialize routine after injection power-supply to SDRAM. The cycle is shown in Figure 3.16.17.

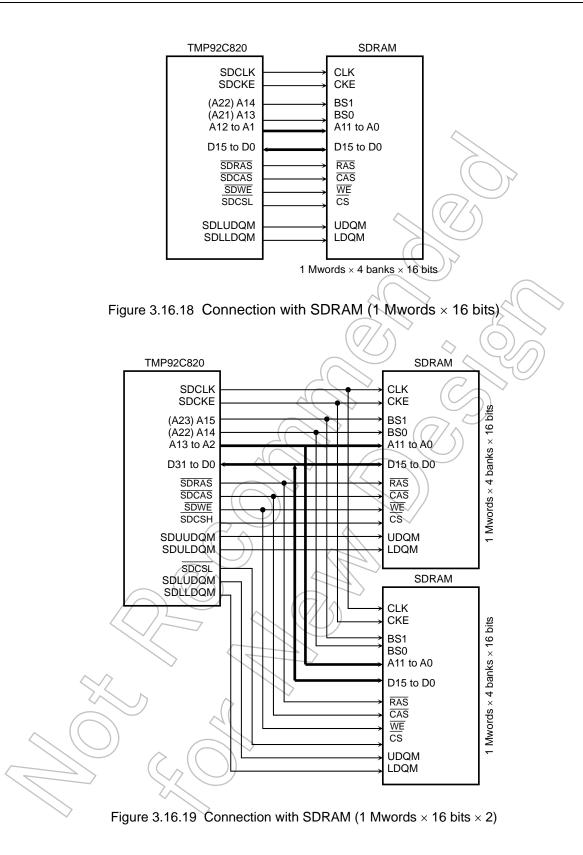
- 1. Precharge of all banks
- 2. The initial configuration to a mode register
- 3. The auto-refresh cycle of 8 cycles

The above cycle is generated by setting SDACR<SDINI> to "1"

While performing this cycle, operation (an instruction fetch, command execution) of CPU is stopped.

In addition, before performing an initialization cycle, a port needs to be set as SDRAM control signal and an address signal (A1 to A12). After the initialization cycle is finished, SDACR<SDINI> is cleared to "0" automatically.

(4) Connection example


The example of connection with SDRAM is shown in Figure 3.16.18 to Figure 3.16.20.

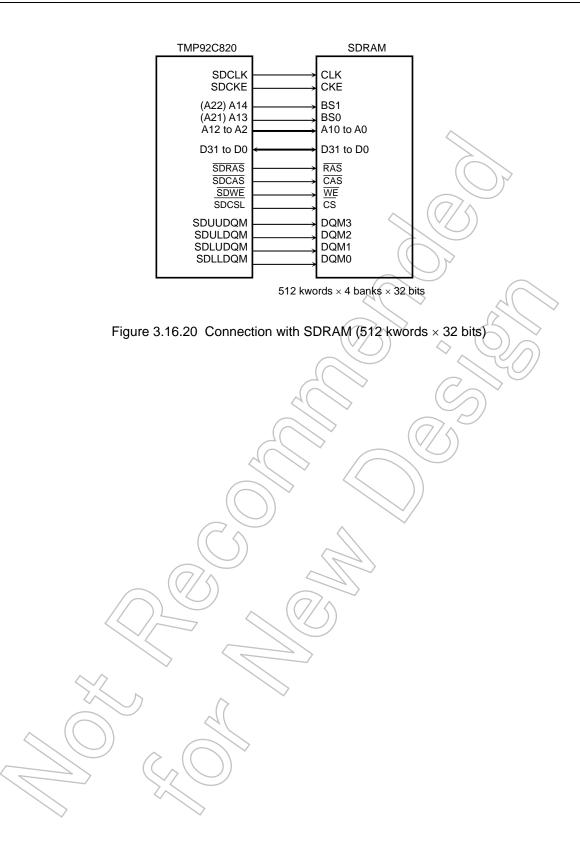

				SDR	AM Pir	n Name	1	\sim	
TMP92C820	Data Bus Width 16 Bits Data Bus Width 32 Bits								
Pin Name	2 616				16 Mbits × 64 Mbits ×			64 Mbits ×	128 Mbits ×
	16 Mbits	64 Mbits	128 Mbits		ts × 2		ts × 2	32 Bits	32 Bits
A0	-	-	=	-	-	-	- ($\overline{\gamma}$	-
A1	A0	A0	A0	_	_	_ <	\geq $/$	YO	_
7.1	(A9)	(A9)	(A10)				\geq		
A2	A1	A1	A1	A0	A0	A0	((A0	A0	A0
	(A10)	(A10)	(A11)	(A10)	(A10)	(A10)	(A10)	(A10)	(A10)
A3	A2	A2	A2	A1	A1	A1	A1	A1	A1
	(A11)	(A11)	(A12)	(A11)	(A11)	(A11)	(A11)	(A11)	(A11)
A4	A3	A3	A3	A2	A2	A2	A2	A2	A2
	(A12)	(A12)	(A13)	(A12)	(A12)	(A12)	(A12)	(A12)	(A12)
A5	A4 (A13)	A4 (A13)	A4 (A14)	A3 (A13)	A3 (A13)	A3 (A13)	A3 (A13)	A3 (A13)	A3 (A13)
	(A13) A5	(A13) A5	(A14) A5	(A13) A4	A4	(A13) A4	(A13) A4	(A13)	(A13) A4
A6	(A14)	(A14)	(A15)	(A14)	(A14)	(A14)	(A14)	(A14)	(A14)
	A6	A6	A6	(/11-) A5	A5	A5	A5	A5	A5
A7	(A15)	(A15)	(A16)	(A15)	(A15)	(A15)	(A15)	(A15)	(A15)
	(, (10) A7	A7	A7	A6	A6	A6	A6	A6	A6
A8	(A16)	(A16)	(A17)	(A16)	(A16)	(A16)	(A16)	(A16)	(A16)
	A8	A8	A8	A7	A7	A7	A7	A7	A7
A9	(A17)	(A17)	(A18)	(A17)	(A17)	(A17)	(A17)	(A17)	(A17)
	A9	A9	A9	A8	A8	A8	A8	A8	A8
A10	(A18)	(A18)	(A19)	(A18)	(A18)	(A18)	(A18)	(A18)	(A18)
	A10	A10	A10	A9	A9	A9	A9	A9	A9
A11	(A19)	(A19)	(A20)	(A19)	(A19)	(A19)	(A19)	(A19)	(A19)
A12	BS	A11	A11	A10	A10	A10	A10	A10	A10
AIZ	(A20)	(A20)	(A21)	(A20)	(A20)	(A20)	(A20)	(A20)	(A20)
A13		BSO	BS0	BS	BS	A11	A11	BS0	A11
A10		(A21)	(A22)	(A21)	(A21)	(A21)	(A21)	(A21)	(A21)
A14	_	BS1	BS1	$ \geq $	> _	BS0	BS0	BS1	BS0
,,,,,	~ ^	(A22)	(A23)			(A22)	(A22)	(A22)	(A22)
A15	X.	_	_	\searrow	_	BS1	BS1	_	BS1
-	\sim	1				(A23)	(A23)		(A23)
SDCSH		-	<u> </u>	CS	-	CS	-	-	-
SDCSL	cs	CS	CS	-	CS	-	CS	CS	CS
SDUUDQM		\wedge - ((<u> </u>	UDQM		UDQM		DQM3	DQM3
SDULDQM				LDQM		LDQM	LIDON	DQM2	DQM2
SDLUDQM	- UDQM	UDQM	UDQM		UDQM		UDQM	DQM1	DQM1
SDLLDQM	LDQM	LDQM	LDQM		LDQM		LDQM	DQM0	DQM0
SDRAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS
SDCAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS	CAS
SDWE	WE	WE	WE	WE	WE	WE	WE	WE	WE
SDCKE	CKE	CKE	CKE	CKE	CKE	CKE	CKE	CKE	CKE
SDCLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK	CLK
	00:	00:	00:	01:	0	01:	0	10:	10:
<sdbus></sdbus>	16 bits × 1	16 bits × 1	16 bits × 1	16 bits ×	2	16 bits ×	2	32 bits × 1	32 bits × 1
SDACR <smuxw></smuxw>	00: Type A	00: Type A	01: Type B	00: Туре	A	00: Туре	А	00: Type A	00: Type A

Table 3.16.3 Connection with SDRAM

(An): Row address

: Command address pin of SDRAM

(5) Limitation point for SDRAM

There are some points to notice when using SDRAMC. Please refer to the section under below and take care.

1) WAIT access

When using SDRAM, it is added some limitation of access to all other memories.

Under the WAIT pin input setting of Memory Controller, it is prohibited inserting the time over ($14 \times$ refresh interval time; in Auto Refresh function controlled by SDRAM controller).

2) Execution of SDRAM command before HALT instruction (SR(Self refresh)-Entry , Initialize , Mode-set)

It requires execution time (a few states) to execute the command that SDRAMC has (SR- Entry, Initialize).

Therefore when executing HALT instruction after the SDRAM command, please insert over 10 bytes NOP or other 10 bytes instructions before HALT instruction.

3) AR (Auto Refresh) interval time

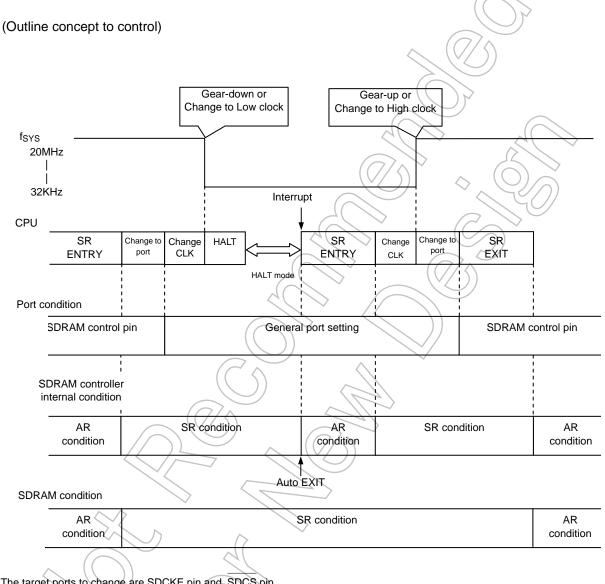
When using SDRAM, system clock frequency must be set suitable speed for SDRAM's specification that is minimum operating clock and minimum Refresh interval time.

When using SDRAM under slow mode or down the Clock Gear, please design the system with special care for Auto Refresh interval time.

And please set Auto Refresh interval time after adding 10 states to distributed Auto Refresh interval time, because it might not meet the A.C specification of SDRAM by stopping Auto Refresh.

(Example of calculation) Condition:

> f_{SYS} = 20MHz, SDRAM specification of distributed Auto Refresh interval time = ~ 4096 times/64 ms


> > 64ms/ 4096 times = 15.625µs/1 time = 312.5state/1 time

312.5 - 10 = 302.5 state/less than 1 time is needed $\rightarrow 247$ state is needed

4) Auto Exit problem when exiting from Self Refresh Mode of SDRAM

When using Self Refresh function together with stand-by function of CPU or changing clock, it might not be suit specification of SDRAM. Because automatic releasing Self Refresh function (Auto Exit function) operates by CPU releasing HALT mode.

Following figure shows example for avoid this problem by S/W.

*The target ports to change are SDCKE pin and SDCS pin.

*The method of Self refresh Entry includes the condition 4).

* SR : Self refresh , AR : Auto refresh

3.17 16-Bit Timer/Event Counters (TMRB)

The TMP92C820 incorporates one multifunctional 16-bit timer/event counter (TMRB0) which have the following operation modes:

- 16-bit interval timer mode
- 16-bit event counter mode
- 16-bit programmable pulse generation (PPG) mode

Timer/event counter consists of a 16-bit up counter, two 16-bit timer registers (one of them with a double-buffer structure), a 16-bit capture registers, two comparators, a capture input controller, a timer flip-flop and a control circuit. Timer/event counter is controlled by an 11-byte control SFR.

This chapter consists of the following items:

- 3.17.1 Block Diagram
- 3.17.2 Operation
- 3.17.3 SFRs
- 3.17.4 Operation in Each Mode
 - (1) 16-bit timer mode
 - (2) 16-bit programmable pulse generation (PPG) output mode

Spec	Channel	TMRB0
External	External clock/capture trigger input pins	None
Pins	Timer flip-flop output pins	TB0OUT0 (also used as PC6)
	Timer run register	TB0RUN (1180H)
	Timer mode register	TB0MOD (1182H)
	Timer flip-flop control register	TB0FFCR (1183H)
\sim		TB0RG0L (1188H)
SFR	Timer register	TB0RG0H (1189H)
(Address)		TB0RG1L (118AH)
(Juan coo)	2	TB0RG1H (118BH)
		TB0CP0L (118CH)
$\langle \rangle$	Capture register	TB0CP0H (118DH)
	Capitile legister	TB0CP1L (118EH)
72		TB0CP1H (118FH)

Table 3.17.1 Pins and SFR of TMRB0

3.17.1 Block Diagram

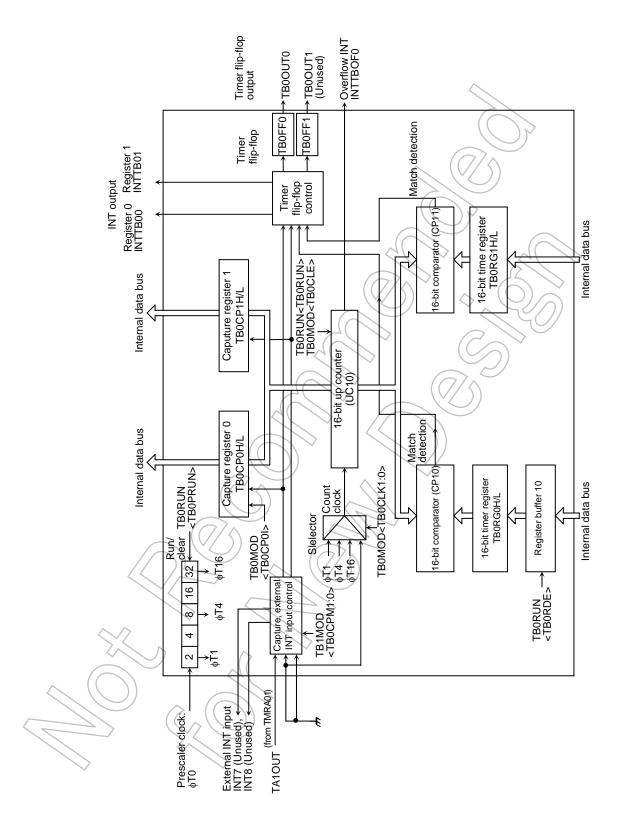


Figure 3.17.1 Block Diagram of TMRB0

3.17.2 Operation

(1) Prescaler

The 5-bit prescaler generates the source clock for timer 0. The prescaler clock (ϕ T0) is divided clock (Divided by 8) from the fFPH.

This prescaler can be started or stopped using TB0RUN<TB0PRUN>. Counting starts when <TB0PRUN> is set to 1; the prescaler is cleared to 0 and stops operation when <TB0PRUN> is cleared to 0.

Clock gear selection SYSCR1	System clock selection SYSCR1	_	Timer counter input clock TMRB prescaler TB0MOD <tb0clk1:0></tb0clk1:0>			
<gear2:0></gear2:0>	<sysck></sysck>		φT1(1/2)	 ♦T4(1/8)	φT16(1/32)	
-	1 (fs)		fs/16	fs/64	fs/256	
000 (1/1)			fc/16	🕖 fc/64 🛛 🛇	fc/256	
001 (1/2)		1/8	fc/32	fc/128	fc/512	
010 (1/4)	0 (fc)	1/0	fc/64	fc/256	fc/1024	
011 (1/8)			fc/128	fc/512	fc/2048	
100 (1/16)]		fc/256	fc/1024	fc/4096	

Table 3.17.2	Prescaler Clock Resolution	Ś

(2) Up counter (UC10)

UC10 is a 16-bit binary counter which counts up pulses input from the clock specified by TB0MOD<TB0CLK1:0>.

Any one of the prescaler internal clocks ϕ T1, ϕ T4 and ϕ T16 or an external clock input via the TB0IN0 pin can be selected as the input clock. Counting or stopping and clearing of the counter is controlled by TB0RUN<TB0RUN>.

When clearing is enabled, the up counter UC10 will be cleared to 0 each time its value matches the value in the timer register TB0RG1H/L. If clearing is disabled, the counter operates as a free-running counter.

Clearing can be enabled or disabled using TB0MOD<TB0CLE>.

A timer overflow interrupt (INTTBOF0) is generated when UC10 overflow occurs.

(3) Timer registers (TB0RG0H/L and TB0RG1H/L)

These two 16-bit registers are used to set the interval time. When the value in the up counter UC10 matches the value set in this timer register, the comparator match detect signal will go active.

Setting data for both Upper and Lower timer registers is always needed. For example, either using a 2-byte data transfer instruction or using 1-byte date transfer instruction twice for the lower 8 bits and upper 8 bits in order.

The TB0RG0H/L timer register has a double-buffer structure, which is paired with a register buffer. The value set in TB0RUN<TB0RDE> determines whether the double-buffer structure is enabled or disabled: It is disabled when $\langle TB0RDE \rangle = 0$, and enabled when $\langle TB0RDE \rangle = 1$.

When the double buffer is enabled, data is transferred from the register buffer to the timer register when the values in the up counter (UC10) and the timer register TB0RG1H/L match.

After a reset, TB0RG0H/L and TB0RG1H/L are undefined. If the 16-bit timer is to be used after a reset, data should be written to it beforehand.

On a reset <TB0RDE> is initialized to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TB0RDE> to 1, then write data to the register buffer as shown below.

TB0RG0H/L and the register buffer both have the same memory addresses (001188H and 001189H) allocated to them. If $\langle TB0RDE \rangle = 0$, the value is written to both the timer register and the register buffer. If $\langle TB0RDE \rangle = 1$, the value is written to the register buffer only.

The addresses of the timer registers are as follows:

- TMRB0						
	TBOR	G0H/L	,	твог	RG1H/L	
	per 8 bits 30RG0H)	Lower 8 bits (TB0RG0L)		Upper 8 bits (TB0RG1H)	Lower 8 bits (TB0RG1L)	
	1189H	1188H	\overline{a}	118BH	118AH	1

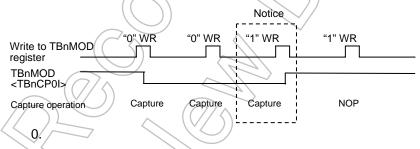
Note: The timer registers are write-only registers and thus cannot be read.

(4) Capture registers (TB0CP0H/L, TB0CP1H/L)

These 16-bit registers are used to latch the values in the up counters.

All 16 bits of data in the capture registers should be read both Upper and Lower. For example, using a 2-byte data load instruction or two 1-byte data load instructions. The least significant byte is read first, followed by the most significant byte. The addresses of the capture registers are as follows:

اT _ TI	MRB0		 	
	TB0CI	P0H/L	TB0C	P1H/L(())
	Upper 8 bits (TB0CP0H)	Lower 8 bits (TB0CP0L)	Upper 8 bits (TB0CP1H)	Lower 8 bits (TB0CP1L)
	118DH	118CH	 118FH	118EH


Note: The capture registers are read-only registers and thus cannot be written to.

(5) Capture input control

This circuit controls the timing to latch the value of the up counter UC10 into TB0CP0H/L, TB0CP1H/L.

The value in the up counter can be loaded into a capture register by software. Whenever 0 is written to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0H/L. It is necessary to keep the prescaler in Run Mode (i.e., TB0RUN<TB0PRUN> must be held at a value of 1).

Note: As described above, whenever 0 is programmed to TB0MOD<TB0CP0I>, the current value in the up counter is loaded into capture register TB0CP0H/L. However, note that the current value in the up counter is also loaded into capture register TB0CP0H/L when 1 is programmed to TB0MOD<TB0CP0I> while this bit is holding

(6) Comparators (CP10 and CP11)

CP10 and CP11 are 16 bit comparators which compare the value in the up counter UC10 with the value set in TB0RG0 or TB0RG1 respectively, in order to detect a match. If a match is detected, the comparator generates an interrupt (INTTB00 or INTTB01 respectively).

(7) Timer flip-flops (TB0FF0)

These flip flops are inverted by the match detect signals from the comparators and the latch signals to the capture registers. Inversion can be enabled and disabled for each element using TB0FFCR<TB0C0T1, TB0E1T1, TB0E0T1>. After a reset the value of TB0FF0 is undefined. If "00" is written to TB0FFCR<TB0FF0C1:0>, TB0FF0 will be inverted. If "01" is written to the capture registers, the value of TB0FF0 will be set to "1". If "10" is written to the capture registers, the value of TB0FF0 will be cleared to "0".

The values of TB0FF0 can be output via the timer output pin TB0OUT0 (which is shared with PC6). Timer output should be specified using the port C function register.

3.17.3 SFRs

TBORL	J
(1180	
(

	~								
		7	6	5	4	3	2	1	0
BORUN	Bit symbol	TB0RDE	-			I2TB0	TB0PRUN		TB0RUN
1180H)	Read/Write	R/W	R/W			R/W	R/W		R/W
	After reset	0	0			0	0		0
	Function	Double	Always write			IDLE2	TMRB0		Up counter
		buffer	"0".			0: Stop	Prescaler)2	(UC10)
		0: Disable				1: Operate	0: Stop and c		
		1: Enable					1: Run (Cour	nt up)	
						C		Count opera	
							7		and clear
								1 Cour	IL
	Note: 1,	4, and 5 of TI	BORUN are rea	ad as undefin	ed values.	4	>		>
									~
			Figure	3.17.2 The	Registers	for TMRB	~ ((\mathbb{O}	
						\bigcirc			
								90	
						\searrow	\mathcal{C}	\diamond	
					$\langle \langle \rangle \rangle$)	
				G			$ \rightarrow \mathcal{C} $		
				4	\searrow	((
						\square	\subseteq		
					\sim /				
				\bigcirc		$\langle \rangle$)		
				(())			/		
			\bigcap	\bigcirc	~	\sim			
			(C)	\bigtriangleup					
))					
			$\overline{\Omega}$			\searrow			
			$(\vee /))$			\rangle			
				~ ((7/s)				
					(\bigcirc)				
					\sim				
			>						
	\sim	\land	~						
	\sim	\leq		\sim					
	\sim	\mathbf{N}	. (7						
		$\langle \rangle$	91						
<	$) \mid $))		$\langle \rangle$					
_) Ť					
	$ \rightarrow $		\mathcal{N})					
		2	\sim						
	\searrow		\rightarrow						
	~		*						

TMRB0 Run Register

		7	6	5	4	3	2	1	0
TB0MOD	Bit symbol	_	_	TB0CP0I	TB0CPM1	TB0CPM0	TB0CLE	TB0CLK1	TB0CLK0
(1182H)	Read/Write	R/	W	W*			R/W		
Prohibit read-	After reset	0	0	1	0	0	0	0	0
modify- write	Function	Always write	"0".	Execute software capture 0: Software capture 1: Undefined	00: Disable 01: Reserved 10: Reserved	Capture timing Control up TMRB0 source c 00: Disable counter 00: Reserved 01: Reserved 0: Disable 01: \operation TA 10: Reserved 1: Enable 10: \operation TA 11: TA1OUT↑ TA1OUT↓ Image: Control up counter TMRB0 source c 00: Reserved 0: Disable 01: \operation TA 11: Enable 10: \operation TA 11: \operation TA			
	Note: W	henever progr	amming "0" to		TBOCPOI> bit, p	00 R 01 ∳ 10 ∲ 11 ∳ 0 D 1 E → Capture 00 D 1 E 00 D 1 E 00 D 1 E 00 D 0 T 1 E 00 D 0 D 1 E 0 D 0 D 1 E 0 D 0 D 1 E 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D	isable eserved apture to TB0CP e capture Fhe value in the FB0CP0H/L. Jndefined (Not	on match with g apture control 0H/L at rising ec 1H/L at falling ec e up counter is e)	dge of TA1OUT dge of TA1OUT s captured to
					FBOMOD <tbo< td=""><td></td><td></td><td></td><td>T 2</td></tbo<>				T 2
			· · , p. o	J					

TMRB0 Mode Register

TB0MOD<TB0CP0I> bit, present value of up counter is received to capture register TB0CP0H/L. Therefore you must to regard.

Figure 3.17.3 The Registers for TMRB

						.eg.ete.			
		7	6	5	4	3	2	1	0
TB0FFCR	Bit symbol	_	-	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FFC1	TB0FFC0
(1183H)	Read/Write	V	V		R	Ŵ		W	*
Prohibit read-	After reset	1	1	0	0	0	0	1	1
modify- write	Function	Always write	"11".	TB0FF0 inve 0: Disable tri	gger			Control TB0F 00: Invert	F0
				1: Enable trig Invert when the UC10 value is loaded into TB0CP1H/L.	gger Invert when the UC10 value is loaded into TB0CP0H/L.	Invert when the UC10 value matches the value in TB0RG1H/L.	Invert when the UC10 value matches the value in TB0RG0H/L.	01: Set 10: Clear 11: Don't car * Always re	
						00 01 10 11 10 11 10 11 10 10	Disable trigge Enable trigge when the UC10 Disable trigge when the UC10 /L. Disable trigge Enable trigge when the UC10) value matche er er) value matche er er) value is load er) value is load er	es the value
	\langle	2	Figure	3.17.4 The	Registers	for TMRB			

TMRB0 Flip-Flop Control Register

				TMR	B0 Registe	ər						
		7	6	5	4	3	2	1	0			
TB0RG0L	bit Symbol				-	-						
(1188H)	Read/Write				V	1						
	After reset				Unde	fined						
TB0RG0H	bit Symbol				-		<					
(1189H)	Read/Write				V	1		\geq				
	After reset				Unde	fined		()				
TB0RG1L	bit Symbol				-							
(118AH)	Read/Write		W A (7/A)									
	After reset		Undefined									
TB0RG1H	bit Symbol				-	-						
(118BH)	Read/Write				V	1	$\left(\left(\right) \right)$					
(- ,	After reset				Unde	fined	$\overline{}$					
TB0CP0L	bit Symbol				-	- 7(\frown			
(118CH)	Read/Write				W							
	After reset				Unde	fined	\checkmark	6	\searrow			
TB0CP0H	bit Symbol				-	$\langle \nabla \rangle$	\Diamond		\bigcirc			
(118DH)	Read/Write				(N	\sim		< V	\bigcirc			
	After reset				Unde	fined	6	2				
TB0CP1L	bit Symbol				$\mathcal{A}(\mathcal{A})$	>	(($\langle \rangle$				
(118EH)	Read/Write				N	Ĩ	(Ð				
	After reset				Unde	fined	(7/5)					
TB0CP1H	bit Symbol			.((<u> </u>			/				
(118FH)	Read/Write			ζ	v 🗸	1//	$\overline{)}$					
	After reset				Unde	fined						
							//					

Note: All registers are prohibited to execute read-modify-write instruction.

Figure 3.17.5 The Registers for TMRB

3.17.4 Operation in Each Mode

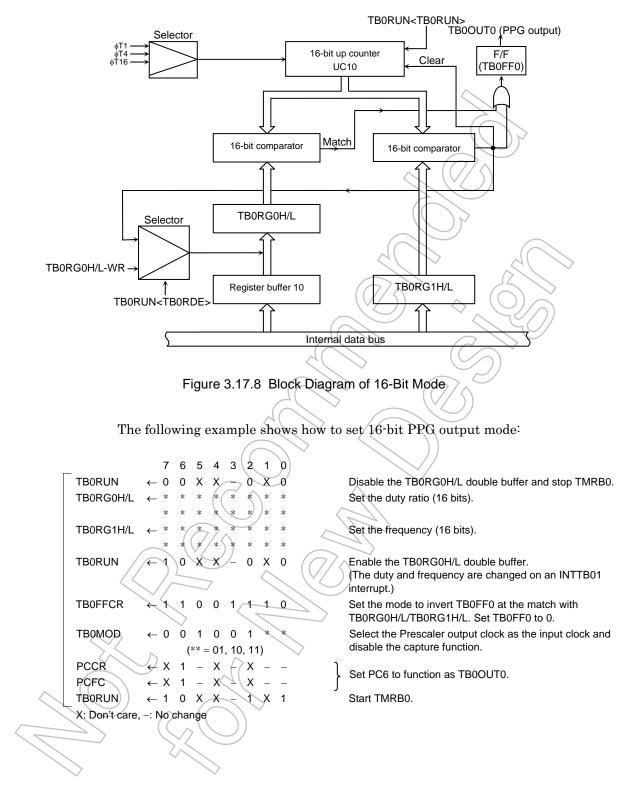
(1) 16-bit timer mode

Generating interrupts at fixed intervals

In this example, the interrupt INTTB01 is set to be generated at fixed intervals. The interval time is set in the timer register TB0RG1H/L.

7 6 5 4 3 2 1 0 **TBORUN** 0 0 Х Х 0 Х 0 INTTB01 0 0 0 Х 0 0 1 **TB0FFCR** 1 0 0 0 0 1 1 **TB0MOD** 0 0 0 1 0 = 01.10.11TB0RG1 **TBORUN** 0 X X – 1 X $\leftarrow 0$ 1 X: Don't care, -: No change

Stop TMRB0. Enable INTTB01 and set interrupt level 4. Disable INTTB00. Disable the trigger. Select internal clock for input and disable the capture function. Set the interval time (16 bits). Start TMRB0.


(2) 16-bit programmable pulse generation (PPG) output mode

Square wave pulses can be generated at any frequency and duty ratio. The output pulse may be either low active or high active.

The PPG mode is obtained by inversion of the timer flip flop TB0FF0 that is enabled by the match of the up counter UC10 with timer register TB0RG0H/L or TB0RG1H/L and is output to TB0OUT0. In this mode the following conditions must be satisfied.

(Value set i	in TB0RG0H/L) <	(Value set	in TB0RG1H/L)	
Match with TB0RG0 (INTTB00 interrupt)				Γ	
Match with TB0RG1 (INTTB01 interrupt) —			ÂU U		
TB0OUT0 pin					
Figure 3.17.6	Programmable Pu	lse Generat	ion (PPG) Outpu	ut Waveforms	
		\sum			
When the	rB0RG0 double b	uffer is ena	bled in this mod	le, the value o	of register buffer
0 will be shi	fted into TB0RG	0 at match	with TB0RG1	. This featur	e facilitates the
handling of le	ow-duty waves.	*			
Match with TB0RG0H/L -			ſ_		-
Match with TB0RG1H/L	Up counter = Q ₁	Æ	Up counter =	Q ₂	_
TBORGOH/L			Shift into TB0RG1H	/L	_
(Value to be compared)	Q1		Q ₂		
Register buffer 0		 Q ₂	χ	Q ₃	-
			Write TB	0RG0H/L	

Figure 3.17.7 Operation of Register Buffer

The following block diagram illustrates this mode.

3.18 PSB (Power supply backup)

The power supply input of TMP92C820 is divided into three systems as follows;

- Analog power supply input (AVCC to AVSS)
- Digital power supply input (DVCC to DVSS)
- Digital power supply input for RTC (RTCVCC to DVSS)

The individual power supply input is isolated from each other.

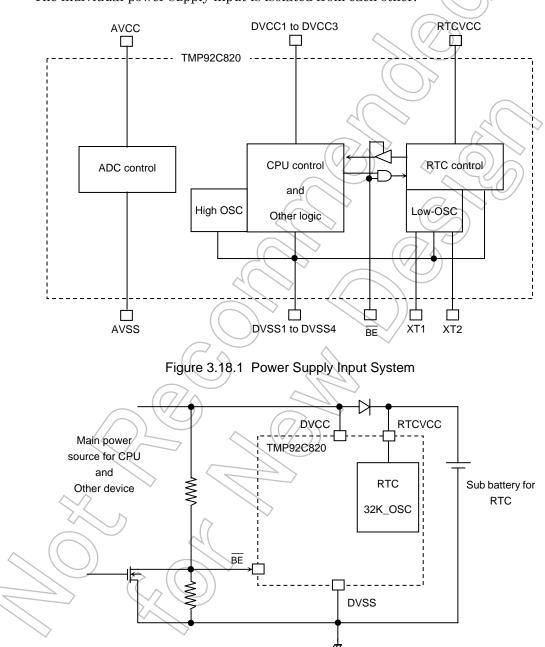


Figure 3.18.2 Outside Circuit Example for PSB

The TMP92C820 has the power supply backup mode which is designed to work for only RTC under sub battery supply. TMP92C820 enters the power supply backup mode using the $\overline{\text{BE}}$ (Backup enable signal pin) and the $\overline{\text{RESET}}$.

Figure 3.18.3 to Figure 3.18.4 show the timing diagram of \overline{BE} and \overline{RESET} .

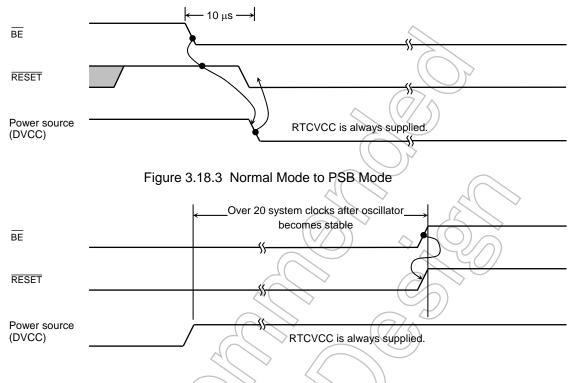


Figure 3.18.4 Normal Mode from PSB Mode

Backup enable pin (\overline{BE})

RTC can work under BE = "L". It is prohibited to access to RTC registers when BE = "L". In addition, low-frequency oscillator (fs) isn't provided except RTC circuit. Under this condition, only internal RTC circuit operates, output function (ALARM, INTRTC) is prohibited.

Caution

- 1) Because it might waste power consumption if control signal is "H" level with no-power supply to DVcc, control signal usually set "L" level or high impedance. However, when using backup function with no-power supply to DVcc, BE pin must be input "L" level.
- 2) When \overline{BE} pin is set to "L", low-frequency oscillator operates forcibly and RTC operates too. Therefore, don't set to \overline{BE} = "L", when low-frequency oscillator and RTC are not operating.
- 3) When releasing RESET , please confirm BE pin to be "H" level completely before releasing RESET .

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.0	<\v
Input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	
Output current (Per pin)	I _{OL}	2	$(\langle \rangle \rangle$
Output current (Per pin)	I _{OH}	-2	mA
Output current (Total)	Σl _{OL}	80	7/
Output current (Total)	ΣΙΟΗ	-80	$\langle \rangle \rangle$
Power dissipation (Ta = 85° C)	PD	600	mW
Soldering temperature (10 s)	Tsolder	260	\geq
Storage temperature	Tstg	-65 to +150	°C
Operation temperature	Topr	-20 to +70	
			. ~ (

Note: The absolute maximum ratings are rated values that must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products that include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead-free products

Test parameter	Test condition	Note
Solderability	 (1) Use of Sn-37Pb solder Bath Solder bath temperature =230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (2) Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature =245 °C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead-free) 	Pass: solderability rate until forming ≥95%

4.2 DC Electrical Characteristics

Parameter	Symbol	$V_{CC} = 3.3 \pm 0.3$ Condition	Min	Тур.	Max	Unit
Power supply voltage	,	X1 = 4 to 40 MHz (Internal 2 to 20		51		
(DVCC = AVCC = RTCVCC)	V _{CC}	MHz)	3.0		3.6	V
(DVSS = AVSS = 0 V)		XT1 = 30 to 34 kHz		$\langle \rangle$		
Input low voltage						
D0 to D7						
P10 to P17 (D8 to D15)	VILO				0.6	
P20 to P27 (D16 to D23)			(77~		
P30 to P37 (D24 to D31)			$\langle ($	(/))		
Input low voltage				\bigcirc		
P40 to P47						
P50 to P57)		
P60 to P67		((\sim		\bigcirc	
P76	V _{IL1}	21			0.3V _{CC}	>
P95				$\int \mathcal{L}$		
PF0, PF3		$(7/\langle$	\backslash	6	$0 \geq$	
PG0 to PG4			-0.3		2/2	V
PL0 to PL7			1		<i>GUI</i>	
Input low voltage		$\langle \langle \rangle$		\mathcal{C}		
P90 to P94, P96		$\mathcal{A}(\mathbb{N})$	(\sim		
PA0 to PA7				$\sum $		
PC0, PC1, PC3, PC5, PC6	V _{IL2}		(\mathcal{O})	\sim	0.25V _{CC}	
PF1, PF2, PF4, PF5			\sim))		
BE						
RESET						
Input low voltage			$\langle \rangle \rangle$			
AM0 to AM1	V _{IL3}		\sim		0.3	
Input low voltage	v (~		0.01/	
X1, XT1	V _{IL4}				0.2V _{CC}	
Input high voltage						
D0 to D 7	$(7/\langle$					
P10 to P17 (D8 to D15)	VIHO		2.0			
P20 to P27 (D16 to D23)		$\sim (1/5)$				
P30 to P37 (D24 to D31)						
Input high voltage						
P40 to P47	\bigtriangledown					
P50 to P57						
P60 to P67		\sim				
P76	VIH1	(7	$0.7 \times V_{CC}$			
P95	<					
PF0, PF3						
PG0 to PG4	> ((`					V
PL0 to PL7	$\sim \sim$	9			V _{CC} + 0.3	v
Input high voltage	\sim					
P90 to P94, P96	\rightarrow					
PA0 to PA7						
PC0, PC1, PC3, PC5, PC6	V _{IH2}		$0.75 \times V_{CC}$			
PF1, PF2, PF4, PF5						
BE						
RESET						
Input high voltage	V _{IH3}		V _{CC} - 0.3			
AM0 to AM1						
Input high voltage	Viii i		$0.8 \times V_{CC}$			
X1, XT1	V _{IH4}		0.0 × vCC			

$V_{CC} = 3.3 \pm 0.3$	$\sqrt{X1} = 4$ to	40 MHz/Ta	= -20 to 70°C

Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Output low voltage	V _{OL}	I _{OL} = 1.6 mA			0.45	V
Output high voltage	V _{OH}	$I_{OH} = -400 \ \mu A$	2.4			V
Input leakage current	ILI	$0.0 \leq V_{in} \leq V_{CC}$		0.02	±5	μΑ
Output leakage current	ILO	$0.2 \leq V_{in} \leq V_{CC} - 0.2$		0.05	±10	μΑ
Power down voltage at STOP (for internal RAM backup)	V _{STOP}	$\begin{split} V_{IL2} &= 0.2 \ V_{CC}, \\ V_{IH2} &= 0.8 \ V_{CC} \end{split}$	1.8		3.6	V
Pull-up resistor RESET	R _{RST}		100	\bigcup	400	kΩ
Programmable pull-up resistor	R _{KH}	4		(\mathcal{S})	400	1/22
Pin capacitance	CIO	fc = 1 MHz			10	pF
Schmitt width	V _{TH}	P90 to P94, P96, PA0 to PA7, PC0, PC1, PC3, PC5, PC6, PF1, PF2, PF4, PF5, BE, RESET	0.4	1.0		V
Operating current (NORMAL)	ICC		\langle	37.0	60	mA
IDLE2 mode	ICC _{IDLE2}	DV _{CC} = 3.6 V, X1 = 40 MHz (Internal 20 MHz)		26.0	39	mA
IDLE1 mode	ICC _{IDLE1}		~ ~	2.7	5.0	mA
STOP	ICC _{STOP}	DV _{CC} = 3.6 V		0.4	/15)	μΑ
SLOW	ICCS	DV _{CC} = 3.6 V, XT1 = 32.768 kHz		43.0	7(100	μΑ
SLOW, IDEL2 mode	ICCS _{IDLE2}	(Internal 15.8625 kHz)		30.0	70	μΑ
SLOW, IDLE1 mode	ICCS _{IDLE1}	$\langle \langle \rangle$	C	8.0	40	μΑ
RTC V _{CC} power dissipation	ICCRTC	RTCV _{CC} = 3.6 V, XT1 = 32.768 kHz RTCV _{CC} = 2.0 V, XT1 = 32.768 kHz	\overline{n}	4.0	7.0 2.0	μA

 $V_{CC} = 3.3 \pm 0.3 \; \text{V/X1} = 4 \text{ to } 40 \; \text{MHz/Ta} = -20 \text{ to } 70^\circ\text{C}$

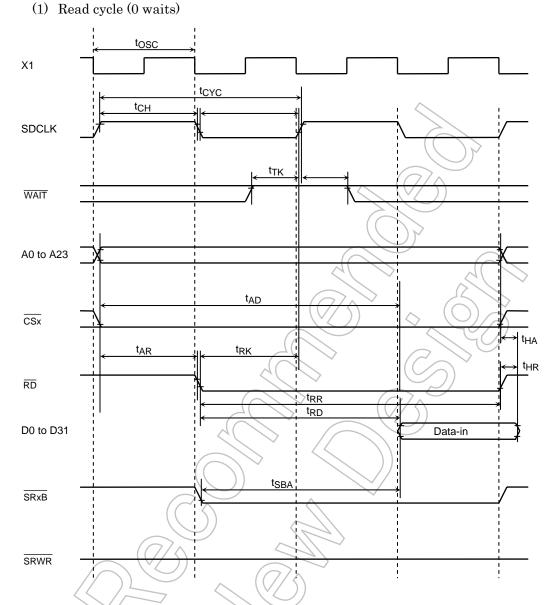
4.3 AC Characteristics

4.3.1 Basic Bus Cycle

Read cycle

 V_{CC} = 3.3 \pm 0.3 V/X1 = 4 to 40 MHz/Ta = –20 to 70°C

No.	Parameter	Symbol	Min	Max	at 20 MHz	at 16 MHz	Unit
1	OSC period (X1/X2)	tosc	25	250	25	31.25	ns
2	System clock period (= T)	tCYC	50	500	50	62.5	ns
3	SDCLK low width	t _{CL}	0.5T – 15		10	16	ns
4	SDCLK low width	t _{CH}	0.5T – 15	\sim	((/10 <)	16	ns
5-1	A0 to A23 valid \rightarrow D0 to D31 input at 0 waits	t _{AD}		2.0T - 30	70	95	ns
5-2	A0 to A23 valid \rightarrow D0 to D31 input at 1 wait	t _{AD3}		3.0T - 30	120	157.5	ns
6-1	$\overline{\text{RD}}$ fall \rightarrow D0 to D31 input at 0 waits	^t RD	< (1.5T – 30	45	63.75	ns
6-2	$\overline{\text{RD}}$ fall \rightarrow D0 to D31 input at 1 wait	t _{RD3}		2,5T – 30	95	126.25	ns
7-1	RD low width at 0 waits	t _{RR}	1.5T - 20		55	74	ns
7-2	RD low width at 1 wait	t _{RR3}	2.5T – 20		105	136	ns
8	A0 to A23 valid $\rightarrow \overline{RD}$ fall	t _{AR}	0.5T - 20		(5)	11	ns
9	RD rise \rightarrow SDCLK rise	t _{RK}	0.5T – 20		5	11	ns
10	A0 to A23 valid \rightarrow D0 to D31 hold	tHA	0		7/<0	0	ns
11	$\overline{\text{RD}}$ rise \rightarrow D0 to D31 hold	thr.	0		$\bigcirc 0$	0	ns
12	WAIT setup time	ttik 💛	15 / /		15	15	ns
13	WAIT hold time	tKL 🔪	5		5	5	ns
14	Data byte control access time for SRAM	t _{SBA}		1.5T - 30	45	63.75	ns

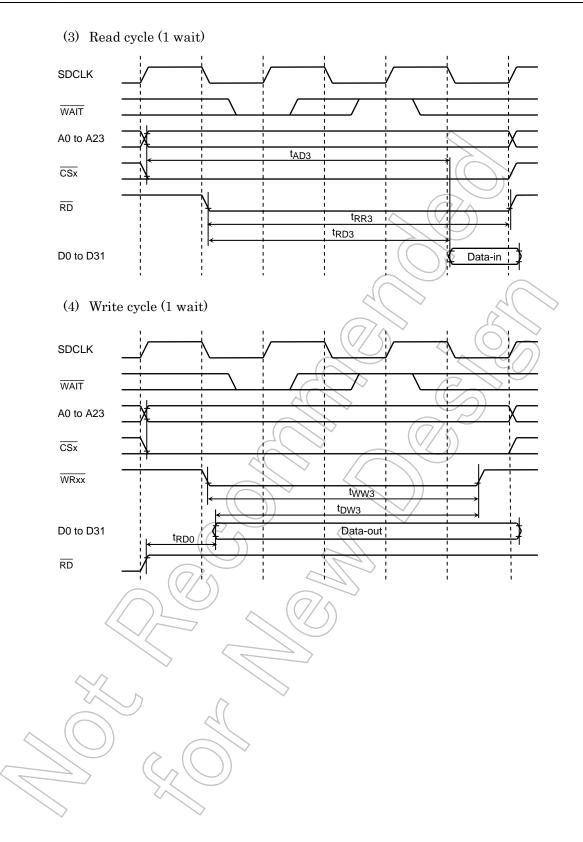

Write cycle

 $V_{CC} = 3.3 \pm 0.3 \text{ V/X1} = 4 \text{ to } \frac{40 \text{ MHz/Ta}}{40 \text{ MHz/Ta}} = -20 \text{ to } 70^{\circ}\text{C}$

No.	Parameter	Symbol	Min	Max	at 20 MHz	at 16 MHz	Unit
15-1	D0 to D31 valid $\rightarrow \overline{WRxx}$ rise at 0 waits	tow	1.25T – 35		28	43	ns
15-2	D0 to D31 valid $\rightarrow \overline{WRxx}$ rise at 1 wait	t _{DW3}	2.25T – 35		78	106	ns
16-1	WRxx low width at 0 waits	tww	1.25T – 30		33	48	ns
16-2	WRxx low width at 1 wait	tww3	2.25T – 30		83	111	ns
17	A0 to A23 valid \rightarrow WR fall	taw	0.5T – 20		5	11	ns
18	\overline{WRxx} fall \rightarrow SDCLK rise	twk	0.5T – 20		5	11	ns
19	WRxx rise \rightarrow A0 to A23 hold	t _{WA}	0.25T – 5		8	11	ns
20	WRxx rise \rightarrow D0 to D31 hold	t _{WD}	0.25T – 5		8	11	ns
21	\overrightarrow{RD} rise \rightarrow D0 to D31 output	t _{RDO}	0.5T – 5		20	26.25	ns
22	Write pulse width for SRAM	tSWP	1.25T – 30		32.5	48.125	ns
23	Data byte control to end of write for SRAM	t _{SBW}	1.25T – 30		32.5	48.125	ns
24	Address setup time for SRAM	tSAS	0.5T – 20		5	11.25	ns
25	Write recovery time for SRAM	tSWR	0.25T – 5		7.5	10.625	ns
26	Data setup time for SRAM	tSDS	1.25T – 35		27.5	43.125	ns
27	Data hold time for SRAM	tSDH	0.25T – 5		7.5	10.625	ns

AC condition

- Output: High = 0.7 V_{CC}, Low = 0.3 V_{CC}, C_L = 50 \text{ pF}
- Input: High = 0.9 V_{CC}, Low = 0.1 V_{CC}



Note: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

92C820-321

- tosc X1 tCYC tCH tCL SDCLK t_{TK} tкт WAIT A0 to A23 CSx twĸ t_{AW} twa WRxx tww tswr tow ₩ø Data-out D0 to D31 t_{RDO} $\overline{\mathsf{RD}}$ tSDH tSBW SRxB tsds tSAS **t**SWP SRWR
- (2) Write cycle (0 waits)

Note: The phase relation between X1 input signal and the other signals is unsettled. The timing chart above is an example.

4.3.2 Page ROM Read Cycle

(1) 3-2-2-2 mode

No.	Parameter	Symbol	Min	Max	at 20 MHz⊘	at 16 MHz	Unit
1	System clock period (= T)	tCYC	50	500	50	62.5	ns
2	A0 and A1 \rightarrow D0 to D31 input	t _{AD2}		2.0T – 50	50	75	ns
3	A2 to A23 \rightarrow D0 to D31 input	t _{AD3}		3.0T – 50	100	138	ns
4	RD fall \rightarrow D0 to D31 input	t _{RD3}		2.5T – 45	80	111	ns
5	A0 to A23 invalid \rightarrow D0 to D31 hold	t _{HA}	0		0))o	ns
6	RD rise \rightarrow D0 to D31 hold	t _{HR}	0		0	0	ns

t_{AD2}

tHA

 $V_{CC}=3.3\pm0.3$ V/X1 = 4 to 40 MHz/Ta = –20 to 70°C

TAD2

t_{HA}

+3

t_{HA}

t_{HR}

t_{AD2}

t_{RD:}

AC condition

- Output: High = $0.7V_{CC}$, Low = $0.3V_{CC}$, C_L = 50 pF
- Input: High = $0.9V_{CC}$, Low = $0.1V_{CC}$
 - (2) Page ROM read cycle (3-2-2-2 mode)

+0

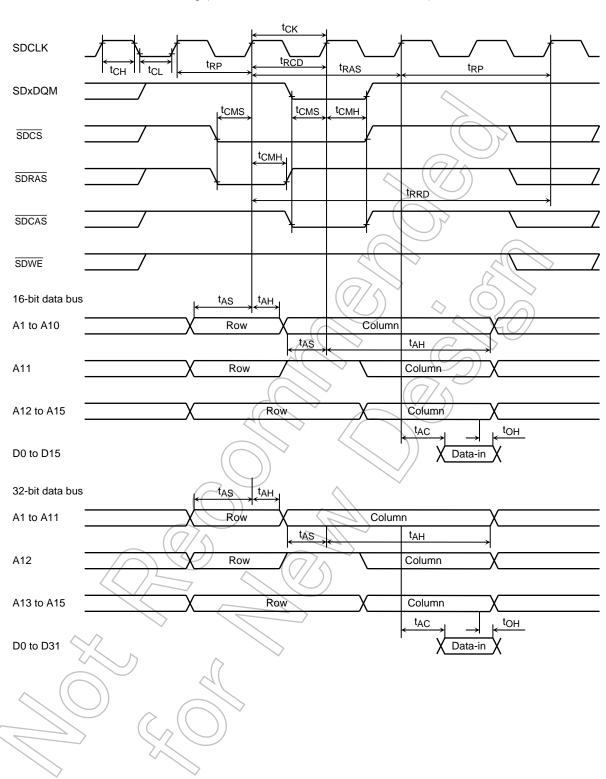
t_{AD3}

t_{RD3}

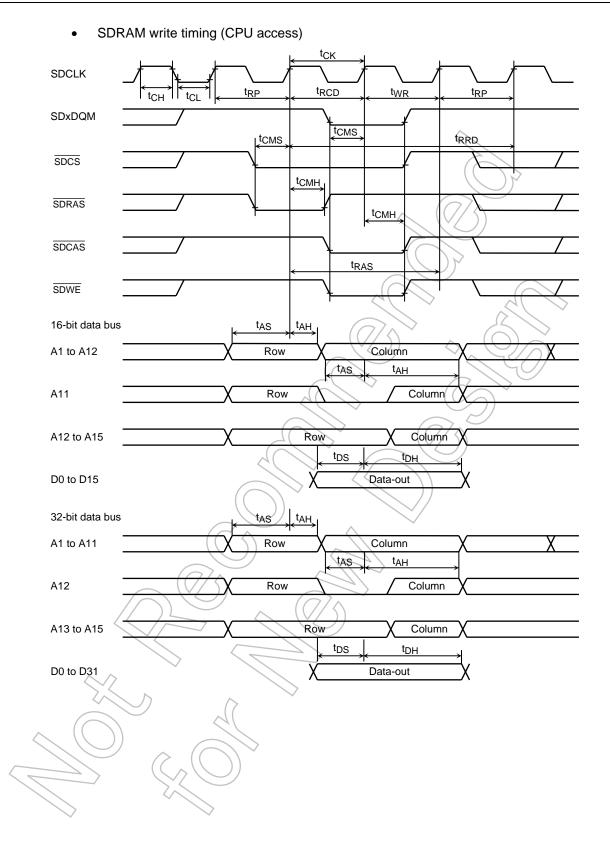
SDCLK

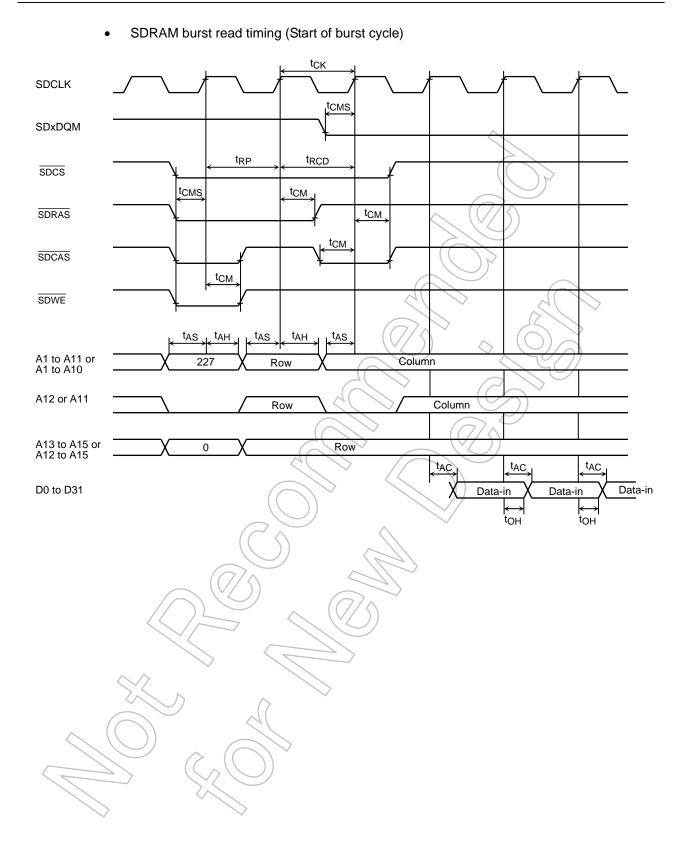
CS2 \overline{RD}

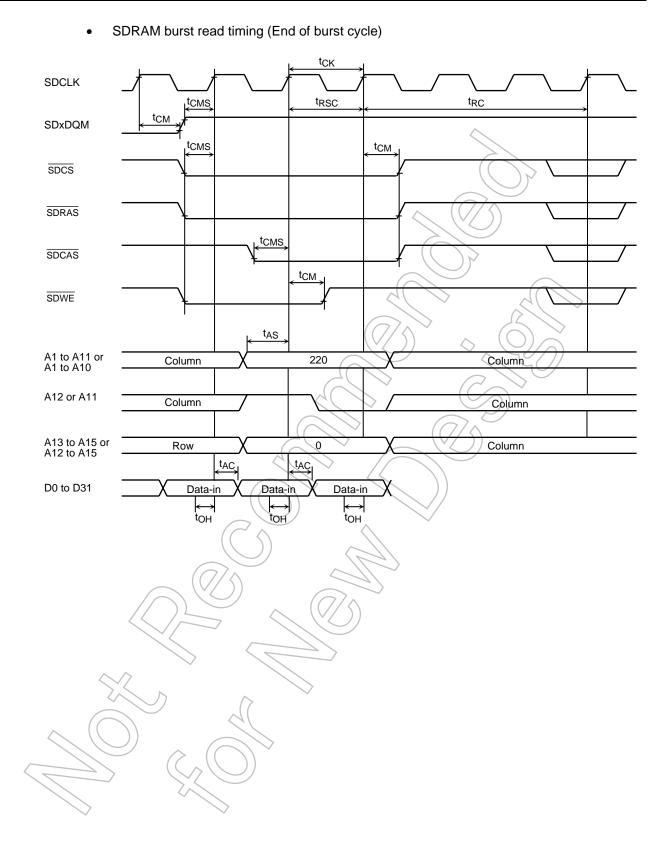
D0 to D31

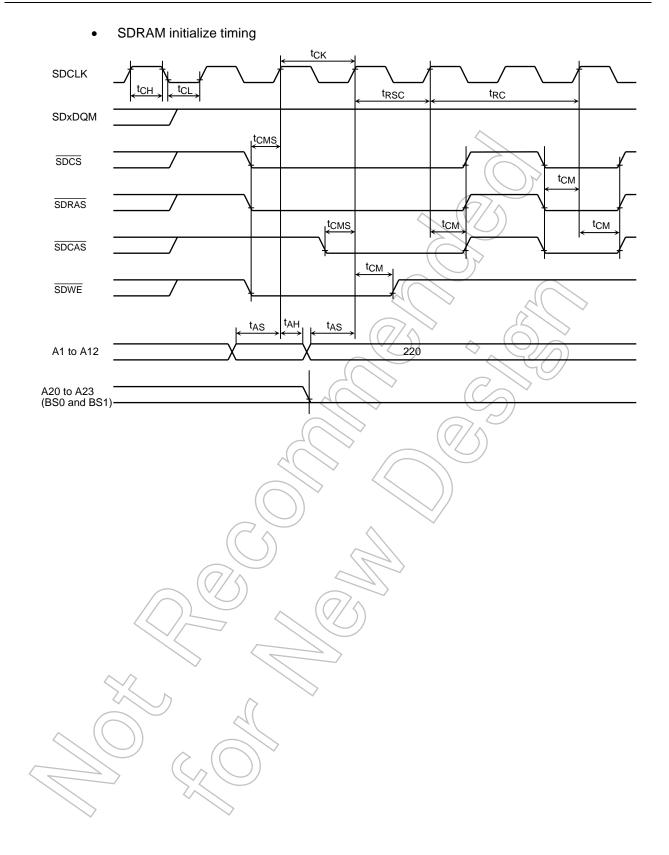

			V _{CC} =	= 3.3 ± 0.3	3 V/X1 =	4 to 40	MHz/Ta	= -20 to	o 70°C
No	Deremeter	Symbol	Vari	able	at 20	MHz	at 16	MHz	Linit
No.	Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Ref/active to Ref/active command period	t _{RC}	2T		100	\sim	125		ns
2	Active to precharge command period	t _{RAS}	2T		100	\sim	125		ns
3	Active to read/write command delay time	t _{RCD}	Т		50		62.5		ns
4	Precharge to active command period	t _{RP}	Т		50		62.5		ns
5	Active to active command period	t _{RRD}	3T		150	(7)	187.5		ns
6	Write recovery time (CL* = 2)	t _{WR}	Т		50	()	62.5		ns
7	CLK cycle time (CL* = 2)	t _{CK}	Т		50		62.5		ns
8	CLK high level width	t _{CH}	0.5T – 15		(10	\sum	16.25		ns
9	CLK low level width	t _{CL}	0.5T – 15		10	2	16.25		ns
10	Access time from CLK (CL* = 2)	t _{AC}		T – 30		20	(32.5	ns
11	Output data hold time	tон	0	\sim	0		0	\searrow	ns
12	Data-in setup time	t _{DS}	T – 35	$\overline{\overline{C}}$	15		27.5		ns
13	Data-in hold time	t _{DH}	T – 5) 45	\Diamond (57.50		ns
14	Address setup time	t _{AS}	0.75T – 35		2.5		11.88))	ns
15	Address hold time	t _{AH}	3 (3	\bigcap) "		ns
16	CKE setup time	t _{CKS}	0.5T - 15		10	(C_{a})	16.25		ns
17	Command setup time	tCMS	0.5T – 15	>	10	\square	16.25		ns
18	Command hold time	^t CMH	0.5T - 15	\geq	10	7	16.25		ns
19	Mode register set cycle time	tRSC	T		50	())	62.5		ns

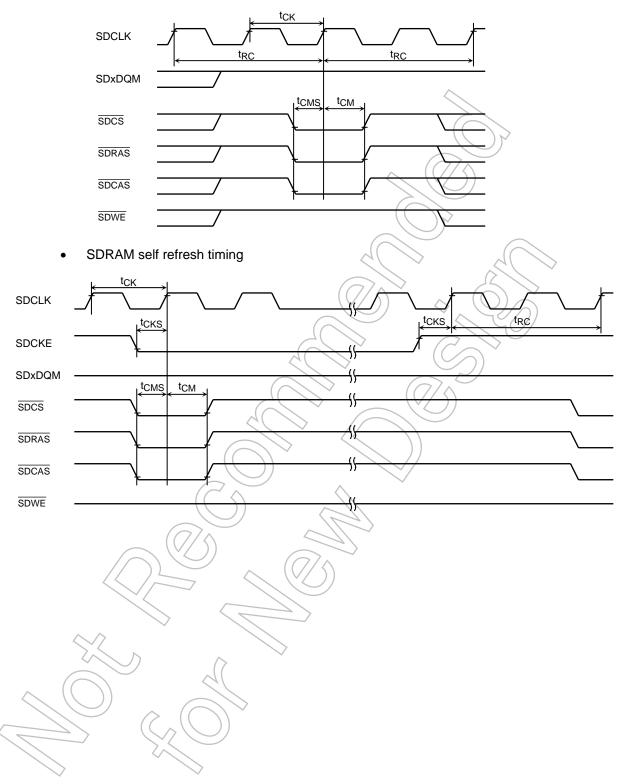
4.4 SDRAM Controller AC Electrical Characteristics


Note 1: CL* is CAS latency.


Note 2: AC measuring conditions


- Input level: High = 0.9 $V_{CC},\,Low$ = 0.1 $V_{CC}.$


• SDRAM read timing (CPU access or LCDC normal access)



92C820-329

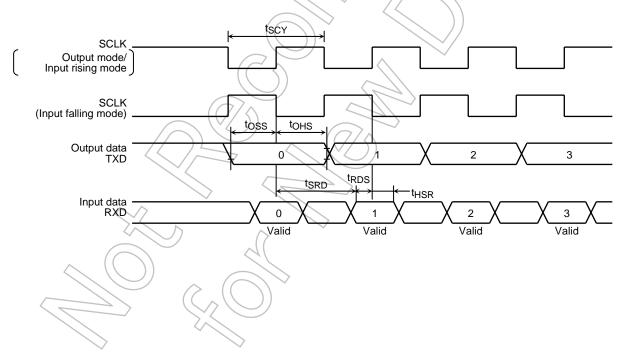
• SDRAM refresh timing

4.5 AD Conversion Characteristics

Pa	rameter	Symbol	Min	Тур.	Max	Unit
Analog reference volta	age (+)	V _{REFH}	$V_{CC} - 0.2$	V _{CC}	V _{CC}	
Analog reference volta	age (–)	V _{REFL}	VSS	VSS	VSS + 0.2	
AD converter power se	upply voltage	A _{VCC}	V _{CC}	V _{CC}	V _{CC}	V
AD converter ground		A _{VSS}	VSS	VSS	VSS	
Analog input voltage		A _{VIN}	VREFL		VREFH	
Analog current for analog reference voltage	<vrefon> = 1</vrefon>	IREF		0.8	1.2	mA
Analog current for analog reference voltage	<vrefon> = 0</vrefon>		<	0.02	5.0	UA
Total error (Quantize error of ±0.5	5 LSB is included)	ET		±1.0	±4.0	LSB

4.6 Event Counter (TI0, TI4, TI8, TI9, TIA, and TIB)

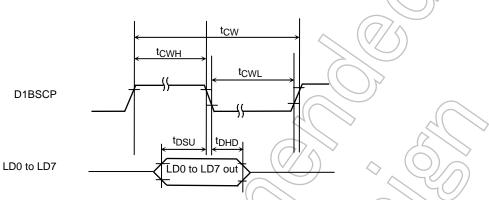
Parameter	Currents al	Vari	able	20/	MHz	161	MHZ	Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
Clock cycle	T _{VCK}	8T + 100		500	(600		ns
Clock low width	T _{VCKL}	4T + 40		240		290		ns
Clock high width	Т _{VСКН}	4T + 40	$\langle \rangle$	240	$(\overline{\Omega})$	290		ns


Serial Channel Timing 4.7

(1) SCLK input mode (I/O interface mode)

Parameter	Ci irrah al		able	20 1	MHz	16 I	MHz	Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	T _{SCY}	16T		0.8	\sim	1.0		μS
Output data \rightarrow SCLK rise	T _{OSS}	T _{SCY} /2 - 4T - 110		90		140		
SCLK rise \rightarrow Output data hold	TOHS	$\begin{array}{c} T_{SCY} / 2 + 2T \\ + 0 \end{array}$		500		625		ns
SCLK rise \rightarrow Input data hold	T _{HSR}	0		~0	$((// \leq$	0		_
SCLK rise \rightarrow Input data valid	T _{SRD}		T _{SCY} – 0		800		1000	
Input data \rightarrow SCLK rise	T _{RDS}	0		0				

(2) SCLK output mode (I/O interface mode)


(2) SCLK output mode	I/O int	erface mode)	$\langle \rangle$		G		
Parameter	Sumbol		able	201	MHz	161	MHz	Unit
Falanletei	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle (Programmable)	T _{SCY}	16T	8192T	0.8	409.6	1.0	512	μS
$Output\;data\toSCLK\;rise$	T _{OSS}	$T_{SCY}/2-40$		360		460	//	
SCLK rise \rightarrow Output data hold	TOHS	$T_{SCY}/2 - 40$	$\sum_{i=1}^{n}$	360	$\left(\overline{c} \right)$	460		
SCLK rise \rightarrow Input data hold	T _{HSR}	0	$\langle \rangle$	0	\bigcirc)) 0		ns
SCLK rise \rightarrow Input data valid	T _{SRD}		T _{SCY} – 1T – 180	((570		757.5	
Input data \rightarrow SCLK rise	T _{RDS}	0		_0	\bigcirc	0		

4.8 Interrupt Operation

Parameter	Symbol	Vari	able	20 N	ИНz	16 N	ИНz	Unit
Falameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
INT0 to INT3 low width	T _{INTAL}	4T + 40		200		290		ns
INT0 to INT3 high width	T _{INTAH}	4T + 40		200	\land	290		115

4.9 LCD Controller SR Mode

$V_{CC}=3.3\pm0.3$ V/X1 = 4 to 40 MHz/Ta = -20 to 70°C

No.	Parameter	Symbol	Variat	ble	$\left(V \right)$	VHz = 0)	16 M (tm		Unit
			Min	Max	Min	Max	Min	Max	
1	Data vaild \rightarrow D1BSCP fall	tDSU	0.5T – 20 + tm		5		11.25		ns
2	D1BSCP fall \rightarrow Data hold	t _{DHD}	0.5T – 5 + tm 🤇		20		26.25		ns
3	D1SBCP \rightarrow Clock high width	tewn	0.5T – 10 + tm	\sum	15		21.25		ns
4	D1BSCP \rightarrow Clock low width	tCWL	0.5T – 10 + tm		15		21.25		ns
5	D1BSCP \rightarrow Clock cycle	tcw	T + 2tm	7	50		62.5		ns

Note: $tm = (2^{scpw} - 1) \times$, e.g., if Scpw = 3 (8 clock mode) and 20 MHz, $tm = (2^3 - 1) \times 50 = 350$

4.10 Recommended Oscillation Circuit

The TMP92C820 has been evaluate by below the oscillator vender below. Use this information when selecting external parts.

Note: The total load value of the oscillation is the sum of external loads (C1 and C2) and the floating load of the actual assembled board. There is a possibility of operating error when using C1 and C2 values in the table below. When designing the board, design the minimum length pattern around the oscillator. We also recommend that oscillator evaluation be carried out using the actual board.

XT1

XT2

R

(1) Connection example

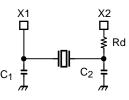


Figure 4.10.1 High-frequency Oscillator Figure 4.10.2 Low-frequency Oscillator

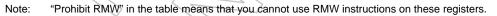
(2) TMP92C820 recommended ceramic oscillator: Murata Manufacturing Co., Ltd; JAPAN

	Oscillation			Pa	arameter	of Elemen	ts	Running	Condition
MCU	Frequency [MHz]	Туре	Oscillator Product number	C1 [pF] Note1	C2 [pF] Note1	Rf [Ω]	Rd [Ω]	Voltage [V]	Tc [°C]
	2.000	SMD	CSTCC2M00G56-R0	(47)	(47)	Open	0	1.8~2.7	
	4.000	SMD	CSTCR4M00G55-R0	(39)	(39)	Open	0		
	4.000	Lead	CSTLS4M00G56-B0	(47)	(47)	Open	0		
	6.000	SMD	CSTCR6M00G55-R0	(39)	(39)	Open	0	2.7~3.6	
TMP92C820FG	0.000	Lead	CSTLS6M00G56-B0	(47)	(47)	Open	0		-20~ +80
1111 0200201 0	\frown	SMD	CSTCE10M0G52-R0	(10)	(10)	Open	0		20 100
	10.000	Lead	CSTLS10M0G53-B0	(15)	(15)	Open	0		
		Leau	CSTLS10M0G53-B0	(15)	(15)	Open	0	1.8~2.7	
~	12.000	SMD	CSTCE12M5G52-R0	(10)	(10)	Open	0	1.0~2.1	
	20.000	SMD	CSTCG20M0V53-R0	(15)	(15)	Open	0	2.7~3.6	
		\sim							

Note 1: The figure in parentheses () under C1 and C2 is the built-in condenser type.

Note 2: The product numbers and specifications of the osillators made by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL:

http://www.murata.co.jp/


5. Table of Special Function Registers (SFRs)

The SFRs (Special function registers) include the I/O ports and peripheral control registers allocated to the 8-Kbyte address space from 000000H to 001FFFH.

- (1) I/O port
- (2) I/O port control
- (3) Interrupt control
- (4) DMA controller
- (5) Memory controller
- (6) MMU
- (7) Clock gear
- (8) LCD controller
- (9) SDRAM controller
- (10) 8-bit timer
- (11) 16-bit timer
- (12) UART/serial channel
- (13) I^2C bus/serial channel
- (14) AD converter
- (15) Watchdog timer
- (16) RTC (Real time clock)
- (17) Melody/alarm generator

Table layout

Symbol	Name	Address	7 6		1 0]
	(0)	\land		$\langle \cdot \cdot \rangle$		Bit symbol
	\sim)			-	Read/Write
			$\left(\left(2/2\right) \right)$	7/		\longrightarrow Initial value after reset
					i	

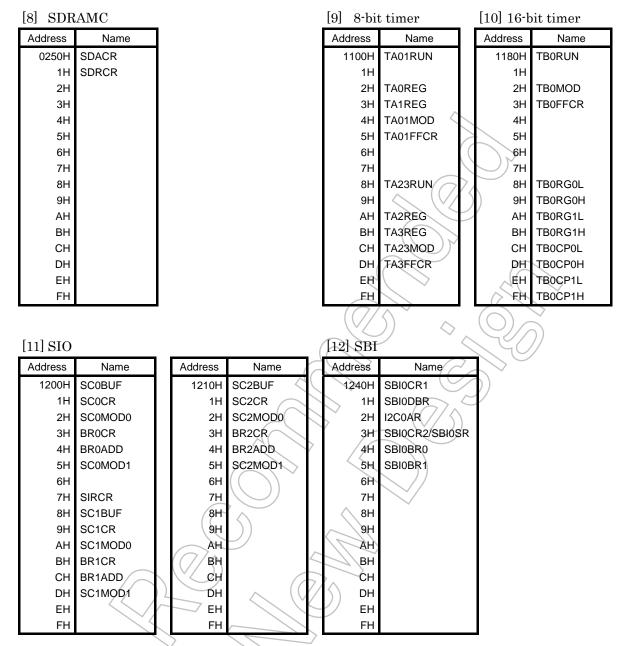
Example) When setting bit0 only of the register P0CR, the instruction "SET 0, (PxCR)" cannot be used. The LD (Transfer) instruction must be used to write all eight bits.

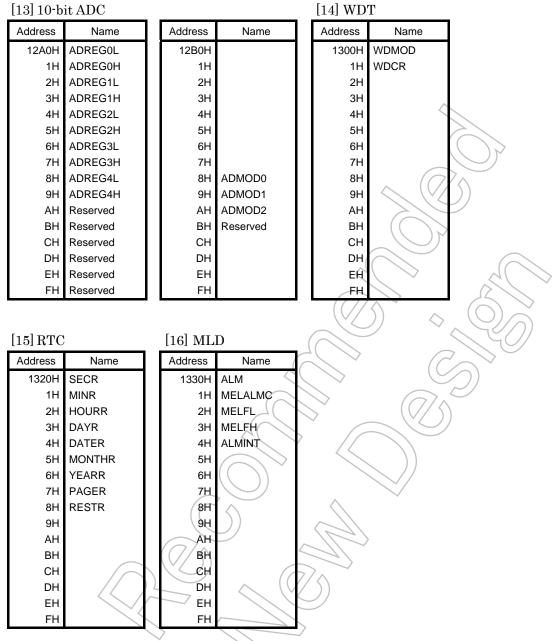
Read/Write

- R/W: Both read and write are possible.
- R: Only read is possible.
- W: Only write is possible.
- W*: Both read and write are possible (when this bit is read as 1).
- Prohibit RMW: Read-modify-write instructions are prohibited. (EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD, RRD instructions are read-modify-write instructions.)
- Prohibit RMW *: Read-modify-write is prohibited when controlling the pull-up resistor.

[1] Port							
Address	Name	Address	Name	Address	Name	Address	Name
0000H		0010H	P4	0020H	P8	0030H	PC
1H		1H		1H	P8FC2	1H	
2H		2H	P4CR	2H	C	2H	PCCR
3H		3H	P4FC	3H	P8FC	3H	PCFC
4H	P1	4H	P5	4H	P9	4H	
5H		5H		5H	P9ODE	5Н	
6H	P1CR	6H	P5CR	6H	P9CR	6Н	
7H	P1FC	7H	P5FC	7H	P9FC	7 H	
8H	P2	8H	P6	8H	PA	8H	
9H		9H		9H		9H	
AH	P2CR	AH	P6CR	AH	$\langle \langle \rangle \rangle$	AH	
BH	P2FC	BH	P6FC	BH	PAFC	ВН	
СН	P3	СН	P7	СН		CH	PF
DH		DH		DH		DH	\sim
EH	P3CR	EH	P7CR	EH		EH	PFCR
FH	P3FC	FH	P7FC	(FH	$)) \land$	(() FH	RFFC
))
Address	Name	Address	Name	$\neg (> $	\square		
0040H	PG	0050H	РК	\bigcirc	$(\bigcirc$	$\overline{\mathbf{A}}$	
1H		1H		\sim		\mathcal{I}	
2H		2H	$(\frown$		(7)		
3H		3H	PKFC	\searrow	$\sim (V ())$		
4H		4H	PL 2				
5H		5H					
6H			PLCR				
7H		7H	PLFC				
8H		8H		\wedge	\sim		
9H		9H	$\langle \rangle$				
AH		AH	\mathcal{I}	$\langle \bigcirc \rangle$			
BH		BH			/		
СН	· · · · · · · · · · · · · · · · · · ·	ÔH					
DH	PJFC2	DH	~ ((7/			
EH		EH .		\bigcirc			
FH	PJFC	FH					
	_	\geq $$	$\langle - \rangle$	\geq			

Table 5.1 I/O Register Address Map




Address	Name					Address	Name		Address	Name
10E0H	SYSCR0					0200H	LCDMODE		0210H	LSARAM
1H	SYSCR1					1H	LCDDVM		1H	LSARAH
2H	SYSCR2					2H	LCDSIZE		2H	LEARAM
ЗH	EMCCR0					ЗH	LCDCTL		ЗH	LEARAH
4H	EMCCR1					4H	LCDFFP	//	4H	LSARBM
5H	EMCCR2					5H	LCDGL	\geq	5H	LSARBH
6H	Reserved					6H	LCDCM		6H	LEARBM
7H						7H	LCDCW	\sum	7н	LEARBH
8H	Reserved					8H	LCDCH	77	8H	LSARCL
9H	Reserved					9H	LCDCP)) 9Н	LSARCM
AH						AH	LCDCPL		AH	LSARCH
BH						BH	LCDCPM		BH	
СН						СН	LCDCPH		СН	
DH						DH	Reserved		DH	
						EĤ			, ÉН	
EH									< 740	
FH						FH.		\sim	Ft	
FH 7] LCD		 	Address	Name	(FH	Name			
FH 7] LCD Address	Name	 	Address 0230H	Name		FH				
FH 7] LCD Address 0220H	Name LG0L		0230H	LG8L		FH Address 0240H	Name			
FH 7] LCD Address	Name LG0L LG0H			LG8L LG8H		FH Address 0240H 1H	Name			
FH 7] LCD Address 0220H 1H	Name LG0L		0230H 1H	LG8L LG8H LG9L		FH Address 0240H	Name			
FH 7] LCD Address 0220H 1H 2H	Name LGOL LGOH LG1L		0230H 1H 2H	LG8L LG8H		FH Address 0240H 1H 2H	Name			
FH 7] LCD Address 0220H 1H 2H 3H	Name LG0L LG0H LG1L LG1H		0230H 1H 2H 3H	LG8L LG8H LG9L LG9H LGAL		FH Address 0240H 1H 2H 3H	Name			
FH 7] LCD Address 0220H 1H 2H 3H 4H	Name LGOL LGOH LG1L LG1H LG2L		0230H 1H 2H 3H 4H	LG8L LG8H LG9L LG9H		FH Address 0240H 1H 2H 3H 4H	Name			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H	Name LGOL LGOH LG1L LG1H LG2L LG2H		0230H 1H 2H 3H 4H 5H	LG8L LG8H LG9L LG9H LGAL LGAH	(0)//	FH Address 0240H 1H 2H 3H 4H 5H	Name			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H	Name LGOL LGOH LG1L LG1H LG2L LG2H LG2L LG3L		0230H 1H 2H 3H 4H 5H	LG8L LG8H LG9L LG9H LGAL LGAH LGBL		FH Address 0240H 1H 2H 3H 4H 5H 6H	Name Reserved			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H	Name LG0L LG0H LG1L LG1H LG2L LG2H LG3L LG3H		0230H 1H 2H 3H 4H 5H 6H 7H	LG8L LG8H LG9L LG9H LGAH LGBL LGBH		FH Address 0240H 1H 2H 3H 4H 5H 6H 7H				
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H 8H	Name LG0L LG0H LG1L LG1H LG2L LG2H LG3L LG3H LG3H LG4L		0230H 1H 2H 3H 4H 5H 6H 7H 8H	LG8L LG8H LG9L LG9H LGAH LGBL LGBH LGCL		FH Address 0240H 1H 2H 3H 4H 5H 6H 7H 8H	Reserved			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H 8H 9H	Name LG0L LG0H LG1L LG1H LG2L LG2H LG3L LG3H LG4L LG4H		0230H 1H 2H 3H 4H 5H 6H 7H 8H 9H	LG8L LG8H LG9L LG9H LGAL LGBL LGBH LGCL LGCH	U/// ~ U	FH Address 0240H 1H 2H 4H 5H 6H 7H 8H 9H	Reserved Reserved			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Name LG0L LG0H LG1L LG1H LG2L LG2H LG3L LG3H LG4L LG4H LG5L		0230H 1H 2H 3H 4H 5H 6H 7H 8日 7日 8日 7日	LG8L LG9H LG9L LGAL LGAH LGBL LGCL LGCH LGDL		Address 0240H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH	Reserved Reserved Reserved			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH	Name LGOL LGOH LG1L LG1H LG2L LG2H LG3L LG3H LG4L LG4H LG5L LG5H		0230H 1H 2H 3H 4H 5H 6H 花 8 日 8 日 8 日 8 日 8 日 8 日 8 日 8 日 8 日 8	LG8L LG8H LG9L LG9H LGAL LGAH LGBL LGCL LGCH LGDL LGDH		Address 0240H 1H 2H 3H 4H 5H 6H 7H 8H 8H	Reserved Reserved Reserved Reserved			
FH 7] LCD Address 0220H 1H 2H 3H 4H 5H 6H 7H 8H 9H AH BH CH	Name LGOL LGOH LG1L LG1H LG2L LG2H LG2H LG3L LG3H LG4L LG5L LG5H LG6L		0230H 1H 2H 3H 4H 5H 4H 5H 7H 8H 8H 8H 8H 5H	LG8L LG8H LG9L LG9H LGAH LGBL LGCL LGCH LGCL LGCH LGDL LGDH LGEL		H Address 0240H 1H 2H 3H 4H 5H 7H 8H 8H 8H	Reserved Reserved Reserved Reserved Reserved Reserved			

TOSHIBA

(1) I/O port

					1			1	1	1
Symbol	Name	Address	7	6	5	4	3	2	1	0
			P17	P16	P15	P14	P13	P12	P11	P10
P1	Port 1	0004H				R	/W			
							ut latch regis			
			P27	P26	P25	P24	P23	P22	P21	P20
P2	Port 2	0008H					/W			
							ut latch regis			
D.			P37	P36	P35	P34	P33	P32	P31	P30
P3	Port 3	000CH				-	/W	$\overline{\gamma}$		
				1		1	ut latch regis			
D 4	Davit 4	004011	P47	P46	P45	P44	P43	P42	P41	P40
P4	Port 4	0010H		Data					11-0)	
			D.57				ut latch regis	/	1	DEA
P5	Port 5	0014H	P57	P56	P55	P54	P53	P52	P51	P50
FJ	FULD	00140		Doto f	rom ovtorno		/W	tor in cloore	dto 0)	
			Dez	P66	P65	P64	ut latch regis P63	P62	P61	P60
			P67	P00	P05		W 4			P0U
P6	Port 6	0018H		Data f	rom externo		ut latch regis	ter is cleare		
				Data I	IUIII externa		ut lateri regis			
				P76	P75	P74	P73 (P72	P71	P70
				F70	<u> </u>	<u> </u>	R/W			FTU
P7	Port 7	001CH		Data from		\diamond			1	
			\mathbf{i}	external		1	(1)	5)1	1	1
				port Note1		G		\mathcal{I}		
			P87	P86	P85	P84	P83	P82	P81	P80
P8	Port 8	0020H			\searrow	R	<u>(w))</u>			
			1	((1))) 1	1	1/	0	1	1
			\sum	P96	P95	P94	P93	P92	P91	P90
P9	Port 9	0024H	\rightarrow	$\langle \rangle$			R/W			
				\sum			ort (Output la		1	
	D		PAT	PA6	PA5	PA4	PA3	PA2	PA1	PA0
PA	Port A	0028H	\sim)		~	R			
						Data from e	external port			
			1	PC6	PC5	\sim	PC3		PC1	PC0
PC	Port C	0030H		R/	W	$ \rightarrow $	R/W		R/	Ŵ
			\sim	Data from e			Data from external		Data from e	•
	\sim	$\overline{\mathcal{D}}$		Not	te2		port Note2		Not	te2
	7	\sum			PF5	PF4	PF3	PF2	PF1	PF0
PF	Port F	003CH	\sim			•	R/	Ŵ	•	
\land					Dat	a from exter	nal port (Out	put latch re	gister is set t	o 1)
	$\mathcal{I}\mathcal{L}$		\mathcal{A}	\sim		PG4	PG3	PG2	PG1	PG0
PG	Port G	0040H	A					R		
$\langle \langle \rangle$			\mathcal{X}	\leq			Data	from externa	al port	
		<	PJ7	PJ6	PJ5	PJ4	PJ3	PJ2	PJ1	PJ0
PJ	Port J	004CH	\bigtriangledown			R	/W			
			1	1	1	1	1	1	1	1
				PK6		PK4	PK3	PK2	PK1	PK0
PK	Port K	0050H		R/W			;	R/W		
				1		1	1	1	1	1
			PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0
PL	Port L	0054H					/W			
				Dat	a from exter	nal port (Ou	tput latch reo	gister is set	to 1)	

Note 1: Output latch register is cleared to 0.

Note 2: Output latch register is set to 1

(2) I/O port control (1/3)

	-	control (1/								
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Port 1	0006H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	0		0	-	1: Output	<u> </u>	0	
								\sim		P1F
	Dout 4	0007H	$\overline{}$					$\langle \rangle$		W
P1FC	Port 1 function		$\overline{}$						\sim	1
	register	(Prohibit RMW)						25		0: Port 1:Data bus (D8 to D15)
	Devit 0	000AH	P27C	P26C	P25C	P24C	P23C	P22C	P21C	P20C
P2CR	Port 2					V	v (()	2		
1201	control register	(Prohibit	0	0	0	0	0	0	0	0
	0	RMW)		~	~	0: Input	1: Output	<u> </u>	()	
		0000						1	\mathcal{T}	P2F
	Port 2	000BH				$\mathcal{T}\mathcal{A}$	4		\sim	W
P2FC	function	(Prohibit				$\forall \forall \langle \rangle$		D C	172	0/1
	register	RMW)							20	0: Port 1: Data bus (D16 to D23)
	Port 3	000EH	P37C	P36C	P35C	P34C	P33C	P32C	P31C	P30C
P3CR	control						V	50	-	+
	register	(Prohibit	0	0		✓ 0	0	(<u>)</u> 0	0	0
		RMW)		((\sim	0: Input	1: Output	\mathcal{I}	< <u> </u>	
		000FH	\geq			\mathcal{A}				P3F
	Port 3		\geq	\searrow	\sum	\mathcal{N}				W
P3FC	function	(Prohibit		(\land)			\searrow			0/1
	register	RMW)	((r	$\langle \rangle$	\sim			0: Port 1: Data bus (D24 to D31)
	Port 4	0012H	P47C	P46C	P45C	P44C	P43C	P42C	P41C	P40C
P4CR	control		$(\overline{\Omega})$	<u> </u>	\sim	∕∧	i	i		
	register	(Prohibit	0) 0	0	0	0	0	0	0
		RMW)					1: Output	_	_	_
	Port 4	0013H	P47F	P46F	P45F	P44F	P43F	P42F	P41F	P40F
P4FC	function				\rightarrow	V				
	register	(Prohibit RMW)	1	1	1	1	1	1	1	1
	\sim		D:70	DEAC	0: Por		ss bus (A0 t		DC40	DEAG
	Port 5	0016H	P57C	P56C	P55C	P54C V	P53C	P52C	P51C	P50C
P5CR	control	(Prohibit	0	0	0	0	v 0	0	0	0
\sim	register	RMW)	U		U	0: Input		U	0	U
	\rightarrow		P57F) P56F	P55F	P54F	P53F	P52F	P51F	P50F
$\langle \langle \langle \rangle$	Port 5	0017H			1.991	Р94F V		1 JZF	TOTE	FUF
P5FC	function	(Prohibit		1	1	1	v 1	1	1	1
	register	RMW)	\rightarrow		0: Port		s bus (A8 to			L '
		001AH	P67C	P66C	P65C	P64C	P63C	P62C	P61C	P60C
	Port 6	UUTAH				V				
P6CR	control	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	0	5	5	0: Input			0	
		001BH	P67F	P66F	P65F	P64F	P63F	P62F	P61F	P60F
	Port 6	UUIBH	10/1	1 001	1001	1 041	W	1 021	1011	1 001
P6FC	function	(Prohibit	1	1	1	1	1	1	1	1
	register	RMW)			0: Port		' s bus (A16 t			<u> </u>
					5.1 511					

lame Port 7 ontrol	Address 001EH	7	6	l –	1	1	1	1	1
	001EH	/	, e	5	4	3	2	1	0
			P76C						
ontrol		/	W	/					
	(Prohibit		0						
egister	RMW)		0: Input 1: Output						
	001EH		P76F	P75F	P74F	P73F	P72F	P71F	P70F
	001111					W		7	
	(Prohibit		0	0	0	0	0	0	1
gister	RMW)		0: Port 1: WAIT	0: Port 1: R/W	0: Port 1: WRUU	0: Port 1: WRUL	0: Port 1: WRLU	0: Port 1: WRLL	0: Port 1: RD
	00220	P87F	-	P85F	P84F	P83F	P82F	P81F	P80F
Port 8	00238				V	w (()	71		
	(Prohibit	1	0	0	0	0	0	0	0
egister	RMW)	0: Port 1: SDCLK	Always write 0.	0: Port 1: EA25	0: Port 1: EA24	0: Port 1: CS3	0: Port 1: CS2	0: Port 1: CS1	0: Port 1: CS0
		-	P86F2	P85F2	P84F2	<u>></u> _	P82F2	P81F2	P80F2
Port 8	0021H					N) <	5 (C		
	(Prohibit	0	0	0	0	0	0	6/9/	0
gister 2	RMW)	Always	0: <p86f></p86f>	0: <p85f></p85f>	0: <p84f></p84f>	Always	0: <p82f></p82f>	0: <p81f></p81f>	0: <p80f></p80f>
	,	write "0"							1: SDCSH
Port 9	0026H		P96C	P95C	P94C		P92C	P91C	P90C
					\rightarrow				
			0					0	0
	RIVIVV)		21						
			P96F	P95F	P94F		P92F	P91F	P90F
	0027H								
	002711			1					0 0: Port,
	(Prohibit	((1: RXD2,	1: TXD2,			1: SCL	1: SO, SDA	
gister	RMW)		CSEXA	CS2G	$\langle L \rangle$		Note		input 1: SCK
	\frown	$\left(\right) $							output
		\sim		P95ODE	∧ -	-	P92ODE	P91ODE	
Port 9	0025H		\square))	W			
		\backslash		0	0	0	0	0	
egister		\supset	$\langle -$	0:3 states	Always	Always	0:3 states	0: 3 states	
\sim		Ť			write "0"	write "0"			
	00284	PA7F	~ PA6F		PA4F	PA3F			PA0F
Port A	00267			1 7.01				ТАП	170
	Prohibit	0	10	0			0	0	0
egister	RMW)			1				ů	Ŭ
	(PC6C	1			\sim	PC1C	PC0C
Port C	0032H	\sim		N	\backslash	W	\backslash		V
ontrol	(Prohibit		0	0	\sim	0	\sim	0	0
			0: Input	1: Output		0: Input 1: Output		0: Input	1: Output
egister	RMW)							1	
egister			PC6F	PC5F		PC3F	/	PC1F	PC0F
egister Port C	RMW) 0033H			PC5F N		PC3F W	//		PC0F V
	0033H								
Port C			\ \	N		W		v	V
	Port 7 Inction Agister Port 8 Inction Agister Port 9 Ontrol Agister Port 9 ODE Agister Port 9 ODE Agister Port 9 ODE Agister	Inction agister(Prohibit RMW)Port 8 inction agister0023H (Prohibit RMW)Port 8 inction gister 20021H (Prohibit RMW)Port 9 ontrol agister0026H (Prohibit RMW)Port 9 ontrol agister0027H (Prohibit RMW)Port 9 ontrol agister0027H (Prohibit RMW)Port 9 ontrol agister0027H (Prohibit RMW)Port 9 ont 00027H (Prohibit RMW)Port 9 oot 9 ODE agister0025H (Prohibit RMW)Port 4 inction agister0028H (Prohibit RMW)	Port 7 Inction agister (Prohibit RMW) Port 8 Inction agister (Prohibit RMW) Port 8 Inction gister 2 Port 8 Inction gister 2 Port 8 Inction gister 2 Port 9 O026H O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O027H Port 9 O025H Port 9 O025H Port 9 O025H Port 9 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 4 O025H Port 9 O025H Port 9 O025H O025H Port 9 O025H O	Port 7 Inction gister Port 8 Inction gister Port 8 Inction gister 2 Port 8 Inction gister 2 Port 8 Inction gister 2 Port 8 Inction gister 2 Port 8 Inction gister 2 Port 9 ontrol egister Port 9 O025H Port 9 O025H Port 9 O025H Port 9 O025H Port 4 Inction egister Port 9 O025H Port 9 Port 9 O025H Port 9 O025H Port 9 O025H Port 9 Port 9 Port 9 Port 9 Port 9 O025H Port 9	Port 7 inction agister 001FH (Prohibit RMW) 0 0 0023H anction agister 0023H (Prohibit RMW) P87F - P85F 0023H anction agister 0023H (Prohibit RMW) P87F - P85F 0021H anction gister 2 1 0 0 0 0021H anction gister 2 0021H (Prohibit RMW) - P86F2 P85F2 0021H anction gister 2 - P86F2 P85F2 P85F2 0026H anction gister 0 0 0 0 0026H anction gister 0026H P96C P95C 1: CS2D 1: CS2D 0027H anction gister 0027H 0 0 0 0 0027H anction gister 0027H 0 0 0 0 0027H anction gister 0027H 0 0 0 0 0025H Anction gister 0025H P95ODE 0 0 0 Port 9 Anction gister 0028H PA7F PA6F PA5F 0028H PA7F <t< td=""><td>Port 7 Inction egister 001FH (Prohibit RMW) 0 0 0 Port 8 Inction egister 0023H (Prohibit RMW) 0 0 0 0 Port 8 Inction egister 0023H (Prohibit RMW) P87F - P85F P84F 0021H ISDCLK 0 0 0 0 0 Port 8 Inction gister 2 0021H (Prohibit RMW) 0 0 0 0 Port 8 Inction gister 2 0021H (Prohibit RMW) - P86F2 P85F2 P84F2 Port 9 ont 9 ontrol egister 0026H P96C P95C P94C Port 9 ontrol egister 0027H 0 0 0 0 Port 9 ont 9 oDE egister 0027H 0 0 0 0 0 P96F P95F P94F - - 0 0 0 Port 9 oDE egister 0027H 0 0 0 0 0 0 Port 9 ODE egister 0025H P47F PA6F PA5F PA4F</td><td>Port 7 inction ingister 001FH (Prohibit RMW) W W 0 0 0 0 0 0 20rt 8 inction igister 0023H (Prohibit RMW) P87F - P85F P84F P83F 20rt 8 inction igister 0023H (Prohibit RMW) P87F - P85F P84F P83F 20rt 8 inction igister 0021H (Prohibit RMW) 1 0</td><td>Port 7 001FH W Image: Sector 7 001FH 0</td><td>Oort 7 O01FH W W Ogister (Prohibit RMW) 0</td></t<>	Port 7 Inction egister 001FH (Prohibit RMW) 0 0 0 Port 8 Inction egister 0023H (Prohibit RMW) 0 0 0 0 Port 8 Inction egister 0023H (Prohibit RMW) P87F - P85F P84F 0021H ISDCLK 0 0 0 0 0 Port 8 Inction gister 2 0021H (Prohibit RMW) 0 0 0 0 Port 8 Inction gister 2 0021H (Prohibit RMW) - P86F2 P85F2 P84F2 Port 9 ont 9 ontrol egister 0026H P96C P95C P94C Port 9 ontrol egister 0027H 0 0 0 0 Port 9 ont 9 oDE egister 0027H 0 0 0 0 0 P96F P95F P94F - - 0 0 0 Port 9 oDE egister 0027H 0 0 0 0 0 0 Port 9 ODE egister 0025H P47F PA6F PA5F PA4F	Port 7 inction ingister 001FH (Prohibit RMW) W W 0 0 0 0 0 0 20rt 8 inction igister 0023H (Prohibit RMW) P87F - P85F P84F P83F 20rt 8 inction igister 0023H (Prohibit RMW) P87F - P85F P84F P83F 20rt 8 inction igister 0021H (Prohibit RMW) 1 0	Port 7 001FH W Image: Sector 7 001FH 0	Oort 7 O01FH W W Ogister (Prohibit RMW) 0

I/O port control (2/3)

Note : When using SI and SCK input function, set P9FC<P92F, P90F> to "0" (Function setting).

	no porte	control (3				1	1			1
Symbol	Name	Address	7	6	5	4	3	2	1	0
		003EH	/	/	PF5C	PF4C	PF3C	PF2C	PF1C	PF0C
PFCR	Port F						. V	V		
FFOR	control register	(Prohibit			0	0	0	0	0	0
	regiotoi	RMW)					0: Input	1: Output		
					PF5F		PF3F	PF2F	/	PF0F
	Port F	003FH			W		١	N		W
PFFC	function	(Deck iki)	/	/	0		0	0		0
	register	(Prohibit RMW)			0: Port 1: SCLK1 output		0: Port 1: TXD1	0: Port 1: SCLK0 output		0: Port 1: TXD0
		004FH	PJ7F	PJ6F	PJ5F	PJ4F	PJ3F	PJ2F	PJ1F	PJ0F
	Port J	004FH				V	v (()	$\langle \rangle$		
PJFC	function	(Prohibit	0	0	0	0	0	0	0	0
	register	RMW)	0: Port	0:Port	0: Port	0: Port	0: Port	0: Port	0:Port	0: Port
		,	1: SDCKE	1: SDUUDQM		1: SDLUDQM			1: SDCAS	1: SDRAS
		004DH	_	PF6F2	PF5F2	PF4F2	PF3F2	PF2F2		-
D. 1500	Port J	00.211			1		M	(C		1
PJFC2	function register 2	(Prohibit	0	0	0	0	0	0	$\langle 0 \rangle$	0
	register z	RMW)	Always	0: <pj6f></pj6f>	0: <pj5f></pj5f>	0: <u><</u> PJ4F>	0: <u><pj3f< u="">></pj3f<></u>	0: <pj2f></pj2f>	Always write "0".	Always
			write "0".	1: SRUUB PK6F	1: SRULB	1: SRLUB PK4F	1: SRLLB PK3F	1: SRWR PK2F	PK1F	write "0". PK0F
				W		1,7,41	FKJF	W	FNIF	FINIF
		005011		0		0	67		0	0
	Port K	0053H		0: Port		0: Port	0: Port	0: Port	0: Port	0: Port
PKFC	function	(Prohibit		1: ALARM		1: DOFFB	1: DLEBCD		1: D2BLP	1: D1BSCP
	register	RMW)		at <pk6> ⇒ 1</pk6>	\searrow					
		,		1: MLDALM	Ň		//			
				at <pk6> = 0</pk6>	2		\sim			
		0056H	PL7C	PL6C	PL5C	RL4C	PL3C	PL2C	PL1C	PL0C
	Port L	003011			1 200		V 1 200	1 220	1 210	1 200
PLCR	control	(Prohibit	077	0	0 <	0	0	0	0	0
	register	RMW)	$-(\ddot{\vee}/\dot{\vee})$			11	1: Output	ů	ů	ů
		0057H) PL7F	PL6F	PL5F	PL4F	PL3F	PL2F	PL1F	PL0F
	Port L					<u> </u>	V	1 661		1 201
PLFC	function	(Prohibit	0	_0	0	0	0	0	0	0
	register	RMW)	0			I: Data bus f	-	-	v	
			\checkmark	<u> </u>	0.101		5, 2000 (LI			

I/O port control (3/3)

)

(3) Interrupt control (1/3)

-	Interrupt			<u> </u>	_		6	6		6
Symbol	Name	Address	7	6	5	4	3	2	1	0
				IN	T2	1		IN		
	INT1&		I2C	12M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0
INTE12	INT2	00D0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INT2	Level	of request in	iterrupt	1: INT1	Level	of request in	terrupt
					-			. N	Т3	-
			-	-	-	-	I3C	13M2	↓I3M1	I3M0
INTE3	INT3 enable	00D1H	-		-		R		R/W	
	enable		-	-	-	-	0	770	0	0
				Always	write "0".	•	1: INT3	Level	of request in	terrupt
				INTTA1	(TMRA1)		\geq	INTTA0	(TMRA0)	
	INTTA0&		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITAOC	TA0M2	ITA0M1	ITA0M0
INTETA01	INTTA1	00D4H	R		R/W			ſ	R/W	
	enable		0	0	0	0	0	0		0
			1: INTTA1	Level	of request in	terrupt	1: INTTA0	Level	of request in	terrupt
				•	(TMRA3)				(TMRA2)	
	INTTA2&		ITA3C	ITA3M2	ITA3M1	ITA3MO	ITA2C	ITA2M2	ITA2M1	ITA2M0
INTETA23	INTTA3	00D5H	R		R/W		R	J (C	RAW	
	enable		0	0	0	0	0			0
			1: INTTA3	÷	of request in		1: INTTA2		of request in	
				•	(TMRB1)			CINTTBO		h,
	INTTB0&		ITB1C	ITB1M2	ITB1M1	ITB1M0	ITB0C	ITB0M2	ITB0M1	ITB0M0
INTETB01	INTTBO	00D8H	R	TIDTIVIZ	R/W.		R	A DOMZ	R/W	TI DOIVIO
INTERBOT	enable	002011	0	0		0) 0	0	0
			1: INTTB1	• (/	of request in		1: INTTBO		of request in	-
			I. INTIDI	Level	orrequestin	nenupi	T IN I DO	INTT	-	tenupt
							ITBOOC	ITBO0M2	ITBO0M1	ITBO0M0
INTETBO0	INTTBO0 (Overflow)	00DAH	_	(-)	\		R	TIBOUIVIZ		
	enable	UUDAII	_		/ -			0	R/W 0	0
	onabio		- (-			-	-	-
					write "0".	\sim	1: INTTBO0		of request in	terrupt
			ITVOO			UTVOLO		INT		
	INTRX0&		ITX0C	ITX0M2	ITX0M1	ITXOMO	IRX0C	IRX0M2	IRX0M1	IRX0M0
INTES0	INTTX0 enable	00DBH)	R/W		R		R/W	
	enable			0	0	0	0	0	0	0
			1: INTTX0		of request in	terrupt	1: INTRX0		of request in	terrupt
					τχ1	-		INT		
	INTRX1&		ITX1C	(TX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1	00DCH	R		R/W	1	R		R/W	
	enable	K	0	0	0	0	0	0	0	0
	$\langle \rangle$	$ \land \land$	1: INTTX1	Level	of request in	iterrupt	1: INTRX1		of request in	terrupt
	\square	\sim	~	1(-	-	4			BE0	
\land	INTSBE0		_	<u> </u>	_	-	ISBE0C	ISBE0M2	ISBE0M1	ISBE0M0
INTESB0	enable	00E3H		$\langle \rangle$	-		R		R/W	
		6	> +()) -	-	-	0	0	0	0
$\langle \langle \langle \rangle$			\sim	Always	write "0".		1: INTSBE0	Level	of request in	terrupt
		4	$\langle \rangle$	INTA	ALM1			INTA	LM0	
			IA1G	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0
INTEALM01	& INTALM1	00E5H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
	GIADIO		1: INTALM1	Level	of request in	terrupt	1: INTALM0	Level	of request in	terrupt
					ALM3				LM2	
	INTALM2		IA3C	IA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0
INTEALM23	&	00E6H	R		R/W		R		R/W	
	INTALM3		0	0	0	0	0	0	0	0
	enable		1: INTALM3	-	of request in	-	1: INTALM2	-	of request in	-
			1. INTALIVIS	Level	or request lf	nonupi	I. INTALIVIZ	Level	or request in	ionupi

	merrupt	control (210)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
				-	-			INTA	ALM4	
			-	-	-	=	IA4C	IA4M2	IA4M1	IA4M0
INTEALM4	INTALM4 enable	00E7H	-		-		R		R/W	•
	enable		-	-	-	-	0	0	0	0
				Always	write "0".		1: INTALM4	Level	of request in	terrupt
				-	-			TØL	RTC	
			-	-	-	-	IRC	IRM2	NRM1	IRM0
INTERTC	INTRTC enable	00E8H	-		-		R		R/W	•
	enable		-	-	-	-	0	7/0	0	0
				Always	write "0".		1: INTRTC	Level	of request in	terrupt
				-	-				KEY	
	INTKEY		-	-	-	-	(IKC	IKM2	IKM1	IKM0
INTECKEY	enable	00E9H	-		-		R)	R/W	
	chabic		-	-	-	- (()	0	0	0
				Always	write "0".	21	1: INTKEY	Level	of request in	terrupt
				-	_			INŤ	LCD	
	INTLCD		-	-	-	(-7/<	ILCD1C	ILCDM2	ILCDM1	ILCDM0
INTLCD	enable	00EAH	-		_) R <	5	R/W	
	chable		-	-	- (0	6	Ğ(0/	0
				Always	write "0".		1: INTLCD	Level	of request in	terrupt
				INT	TX2		(RX2	
	INTRX2&		ITX2C	ITX2M2	ITX2M1	ITX2M0	IRX2C	IRX2M2	IRX2M1	IRX2M0
INTES2	INTTX2	00EDH	R		R/W	>	R		R/W	
	enable		0	0		0	0)) 0	0	0
			1: INTTX2	Level	of request in	terrupt	1: INTRX2	Level	of request in	terrupt
								INT	FP0	-
	INTP0		-	(\frown)	\sim –		IPOC	IP0M2	IP0M1	IP0M0
INTEP0	enable	00EEH	-) –		R		R/W	
			- (\sim			√ 0	0	0	0
				Always	write "0".		1: INTP0	Level	of request in	terrupt

Interrupt control (2/3)

	Interrupt	t control (.ə/ə/							
Symbol	Name	Address	7	6	5	4	3	2	1	0
				IN	TAD			IN	IT0	
	INT0&		IADC	IADM2	IADM1	IADM0	I0C	10M2	I0M1	I0M0
INTE0AD	INTAD	00F0H	R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTAD	Level	of request in	terrupt	1: INT0	Level	of request ir	nterrupt
				INTTC1	(DMA1)			INTTCO	(DMA0)	
	INTTC0&		ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	JTC0M1	ITC0M0
INTETC01	INTTC1	00F1H	R		R/W		R		R/W	
	enable		0	0	0	0	0 (770	0	0
			1: INTTC1	Level	of request in	terrupt	1: INTTCO	Level	of request ir	terrupt
					3 (DMA3)	•			(DMA2)	•
	INTTC2&		ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	TC2M2	ITC2M1	ITC2M0
INTETC23	INTTC3	00F2H	R		R/W		R) ·	R/W	
	enable		0	0	0	0	0	0		0
			1: INTTC3	Level	of request in	terrupt	1: INTTC2	Level	of request in	terrupt
					5 (DMA5)				(DMA4)	
	INTTC4&		ITC5C	ITC5M2	ITC5M1	ITC5M0	ITC4C	ITC4M2	ITC4M1	ITC4M0
INTETC45	INTTC5	00F3H	R	11001112	R/W		R <		RAW	
	enable		0	0	0		0		C 0	0
			1: INTTC5	-	of request in		1: INTTC4		of request in	-
			1		7 (DMA7)			<u> </u>	(DMA6)	nonupt
	INTTC6&		ITC7C	ITC7M2	ITC7M1	ITC7M0	ITC6C	ITC6M2	ITC6M1	ITC6M0
INTETC67	INTTC6&	00F4H	R	TT OT IVIZ	R/W		R		R/W	TI CONIO
INTETOO!	enable	001 411	0	0		0) o	0	0
			1: INTTC7	• (/	of request in		1: INTTC6		of request ir	-
								IR2LE	IR1LE	IROLE
				4	\rightarrow	\square		INZLL	W	INULL
		00F5H		\square			$\sim \rightarrow$		1	
	SIO interrupt	00-511			\rightarrow		\searrow	1 0: INTRX2		1 0: INTRX0
SIMC	mode	(Prohibit	((\sim \sim		$\langle \rangle$		edge	0: INTRX1 edge	edge
	control	RMW)				\sim		mode	mode	mode
		,		\sum		$\langle \frown \rangle$		1: INTRX2	1: INTRX1	1: INTRX0
			$(7/\langle$			$ \leq 1 \leq 1 \leq 2 \leq 2$		level	level	level
			\mathcal{A}	\leftarrow				mode	mode	mode
				/<	I3EDGE	I2EDGE	I1EDGE	IOEDGE	IOLE	-
				Y			V			/W
	Interrupt input	00F6H			0	0	0	0		0
IIMC	mode	(Prohibit	\geq	$\langle -$	INT3EDGE	INT2EDGE	INT1EDGE	INTOEDGE	edge	Always write "0".
	control	RMW)	~		0: Rising	0: Rising	0: Rising	0: Rising	mode	write 0.
		<,			1: Falling	1: Falling	1: Falling	1: Falling	1: INT0	
	$\langle \rangle$	\sim		\wedge	ann g	g	g	g	l level	
			Ċ		l				mode	
\wedge))			- 1	i		1	WD	İ
INTWDT	INTWD	00F7H		\rightarrow	-	-	ITCWD	-	-	-
		UUF/H))	-		R		-	
1			\times		-	-	0	-	-	-
		4			write "0".	ov = · ·	1: INTWD	a : - : :	-	0 · ·
	Interrupt	00F8H	CLRV7	CLRV6	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	clear	(D			1		V	i	1	1
	control	(Prohibit	0	0	0	0	0	0	0	0
		RMW)				Interrup	ot vector			

Interrupt control (3/3)

(4) DMA controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
	DM			/	DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	DMA0	0100H				•	R/	W	•	•
DIVIAUV	start vector	010011			0	0	0	0	0	0
	Vooloi						DMA0 st	art vector		
					DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1 start	0101H					R/	W		
DIVI/TIV	vector	010111			0	0	0	(0)	\geq 0	0
							DMA1 st	art vector)	
	DMA2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	start	0102H					R	W)	_	
DIVIALV	vector	010211			0	0	0	0	0	0
								art vector		
	DMA3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	start	0103H						Ŵ		
Diff. to v	vector	010011			0	0	0	0	0/0	> 0
			<					art vector		-
	DMA4				DMA4V5	DMA4V4		DMA4V2	DMA4V1	DMA4V0
DMA4V	start	0104H	$ \ge $			\sim		W	$U \cap $	1
	vector				0	0	0	0	7.0/	0
							(art vector	7	1
	DMA5		\geq		DMA5V5	DMA5V4	DMA5V3	\sim $+$	DMA5V1	DMA5V0
DMA5V	start	0105H				<u> </u>	10	w Z	-	
	vector				0	0	0	0	0	0
								art vector	D11011	B1 1 a 1 a
	DMA6				DMA6V5	DMA6V4	DMA6V3		DMA6V1	DMA6V0
DMA6V	start	0106H						W 0	0	0
	vector			(\bigcirc)	0	0	· · · ·	o art vector	0	0
				\sim	DMA7V5	DMA7V4	DMA7V3		DMA7V1	DMA7V0
	DMA7				DIVIATVS	DIVIAT V4		DMA7V2 W	DIVIATVI	DIVIATVO
DMA7V	start	0107H	$\prec \downarrow$	\rightarrow	0		0	0	0	0
	vector					$\langle \rangle $		art vector	0	0
			DDOT7	DDOTO	DROTE	DBST4	1		DDCT4	DDOTO
			DESTZ	DBST6	DBST5		DBST3	DBST2	DBST1	DBST0
DMAB	DMA burst	0108H					W o	0	0	0
	buist		0	0	0		0	0	0	0
			DDE07	DBERG		· · · ·	t on burst m			DDEOC
		0109H	DREQ7	DREQ6	DREQ5	DREQ4	DREQ3	DREQ2	DREQ1	DREQ0
DMAR	DMA request	(Prohibit	0				/W	0		0
	request	RMW)	0	0	0	-	0 est in softwa	0	0	0

(5) Memory controller (1/3)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Address				-	, 		•	
				B0WW2	B0WW1	B0WW0		B0WR2	B0WR1	B0WR0
					W				W	
				0	1	0		0	1	0
	BLOCK0 MEMC	0140H		Write waits				Read waits		
B0CSL	control				es (0 waits)				tes (0 waits)	
DUCOL	register	(Prohibit		010: 3 stat	es (1 wait) es (2 waits)			010: 3 stat	tes (1 wait) tes (2 waits)	
	low	RMW)			es (2 waits)				es (2 waits)	
					es (3 waits)				tes (3 waits)	
					pin input m	ode	\sim ((pin input m	node
				Others: (Re			$\langle \rangle \langle \rangle$	Others: (Re		
			B0E			B0REC	B00M1	BOOMO	B0BUS1	B0BUS0
			W	\sim				N W		
	BLOCK0	0141H	0	\backslash		0	\sim	0	0	0
	MEMCT	014111	CS select			0: No insert	00: ROM/S		Data bus w	vidth
B0CSH	control	(Prohibit	0: Disable			dummy	01: Reserve		00: 8 bits	>
	register	RMW)	1: enable			cycle (Default)	10: Reserve		01: 16 bits	
	high					1: Insert dummy	11: Reserve	10	10: 32 bits	
						cycle			11: Reserve	ed
				B1WW2	B1WW1	B1WW0		B1WR2	B1WR1	B1WR0
			\sim		W			2	W	
				0		0		()	1	0
	BLOCK1			Write waits	\sim			Read waits		•
	MEMC	0144H			es (0 waits)	\checkmark			tes (0 waits)	
B1CSL	control	(Prohibit		010: 3 stat	/ . /		\sim \lor	010: 3 stat		
	register	(PTOTIDIC RMW)		101: 4 stat	es (2 waits)		$\sim \sim$	101: 4 stat	tes (2 waits)	
	low	(((((()))))))))))))))))))))))))))))))))		110: 5 stat	es (3 waits)			110: 5 stat	tes (3 waits)	
				111: 6 stat	es (4 waits)			111: 6 stat	tes (4 waits)	
					pin input m	ode	\sim		pin input m	node
			(Others: (Re	eserved)		\sim	Others: (Re		
			B1E (B1REC	B1OM1	B1OM0	B1BUS1	B1BUS0
	BLOCK1		W	\sum		112	1	W	1	
	MEMC	0145H	(0)		1	0	0	0	0	0
B1CSH	control		CS select)		0: No insert dummy	00: ROM/S	RAM	Data bus w	vidth
2.001	register	(Prohibit	0: Disable 1: Enable	/	(7/2)		01: Reserve	ed	00: 8 bits	
	high	RMW)) (Ďefault) 1: Insert	10: Reserve	ed	01: 16 bits	
	-				$\langle \rangle$	dummy	11: SDRAM	1	10: 32 bits	
					\rightarrow	cycle			11: Reserve	ed
		~		B2WW2	B2WW1	B2WW0		B2WR2	B2WR1	B2WR0
	\sim	ζ			W				W	
	4	\sim		<u>∧</u> 0	<u> </u>	0		0	1	0
	BLOCK2	0148H	0	Write waits				Read waits		
DOCO	МЕМС		_		es (0 waits)				tes (0 waits)	
B2CSL	control register	(Prohibit		010: 3 stat	. ,			010: 3 stat	· · · ·	
	low	RMW)		11	es (2 waits)				tes (2 waits)	
$\langle -$			$\sim _{\rm N}$		es (3 waits)				tes (3 waits)	
		4	\sim		es (4 waits) pin input m	ode			tes (4 waits) pin input m	ode
	\searrow		\rightarrow	Others: (Re		UUE		Others: (Re		
			B2E	B2M		B2REC	B2OM1	B2OM0	B2BUS1	B2BUS0
			DZL V		\sim	DZILU		W	020001	525050
	BLOCK2	014011	1	0		0	0	0	0/1	0/1
	MEMC	0149H	CS select	0: 16 Mbytes		0: No insert			Data bus w	
B2CSH	control	(Prohibit	0: Disable	1: Sets area		dummy	00: ROM/S		00: 8 bits	iuu i
	register	RMW)	1: Enable			cycle (Default)	01: Reserve			
	high	,				1: Insert	10: Reserve		01: 16 bits 10: 32 bits	
						dummy cycle	11: Reserve	ed	10: 32 bits 11: Reserve	1

	-	controller		_	_			_		
Symbol	Name	Address	7	6	5	4	3	2	1	0
				B3WW2	B3WW1	B3WW0		B3WR2	B3WR1	B3WR0
					W				W	
			/	0	1	0		0	1	0
	BLOCK3	014CH		Write waits	i			Read waits	6	
	MEMC			001: 2 stat	es (0 waits)				tes (0 waits)	
B3CSL	control	(Prohibit		010: 3 stat	· · ·			010: 3 stat		
	register low	RMW)			es (2 waits)				tes (2 waits)	
	IOW				es (3 waits)				tes (3 waits)	
					es (4 waits)	ada	. ((tes (4 waits) pin input m	ada
				Others: (Re	pin input n	lode	$\langle ($	Others: (Re	• •	lode
			B3E			B3REC	B3OM1	B3OM0	B3BUS1	B3BUS0
			W			DJREC	BOUNT	W	D3D031	535030
	BLOCK3	014DH	0			0		0	0	0
	MEMC		CS select			0: No insert		-	Data bus w	
B3CSH	control	(Prohibit	0: Disable			dummy	00: ROM/S		00: 8 bits	
	register	RMW)	1: Enable			cycle (Default)	01: Reserve	(/	00. 8 bits 01: 16 bits	
	high	,				1: Insert	10. Reserve		10: 32 bits	
						dummy cycle	TT. Reserve		11: Reserve	he
			/	BEXWW2	BEXWW1	BEXWW0		BEXWR2	BEXWR1	BEXWR0
			\vee		W			$\overline{2}$	W	
	51.0.01/			0		0		()	1	0
	BLOCK	045011	/	Write waits	\sim			Read waits	5	
	EX MEMC	0158H			es (0 waits)	\checkmark			tes (0 waits)	
BEXCSL	control	Prohibit		010: 3 stat			\sim \lor $<$	010: 3 stat		
	register	RMW			es (2 waits)		\frown	101: 4 stat	tes (2 waits)	
	low				tes (3 waits)				tes (3 waits)	
					es (4 waits)		$\setminus //$		tes (4 waits)	
					pin input n	node	\sim		pin input m	node
				Others: (Re	eserved)	\wedge	DEVONA	Others: (Re	,	DEVDUOS
			+	\rightarrow		\rightarrow	BEXOM1	BEXOM0	BEXBUS1	BEXBUS0
	BLOCK		\sim	\rightarrow			0	0	N	0
	EX	0159H	-(7)		1		0	-	0 Data bus w	-
BEXCSH	MEMC control	(Prohibit	(∇y)	2	$\overline{\Omega}$	\sim	00: ROM/S			nutri
	register	RMW)	\sum	\sim	(//)		01: Reserve		00: 8 bits 01: 16 bits	
	high					/	10: Reserve		10: 32 bits	
	•						11: Reserve	ea	10: 32 bits 11: Reserve	od
			\checkmark	1	\sim	OPGE	OPWR1	OPWR0	PR1	PR0
	\sim		\sim	\searrow				R/W		1110
	Z.		\sim		\sim	0	0	0	1	0
	Dere		~	(ROM	Wait numbe	er on page	Byte numbe	-
~	Page ROM	$\langle \rangle$	<			page	00: 1 state	1 - 3 -	00: 64 byte	
PMEMCR	control	0166H		$\langle \rangle$		access	(n-1-1-1	mode)	01: 32 byte	
	register		> (())		0: Disable 1: Enable	01: 2 states	5	10: 16 byte	S
$\langle \langle \langle \rangle$	\rightarrow		\checkmark	リ		I. LIIADIE	(n-2-2-2	,	(Default	t)
			\sim				10: 3 states		11: 8 bytes	
	\searrow		\sim				(n-3-3-3			
	V		~				11: (Reserv	red)		

Memory controller (2/3)

	Wiemory	control (3)	5)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
			M0V20	M0V19	M0V18	M0V17	M0V16	M0V15	M0V14-9	M0V8
MAMR0	Memory	0142H			•	R/	W	•		
WAWRU	register 0	01421	1	1	1	1	1	1	1	1
					0: Comp	are enable	1: Compare	e disable		
	Memory		M0S23	M0S22	M0S21	M0S20	M0S19	M0S18	M0S17	M0S16
MSAR0	start	0143H				R/	W			
NISARU	address	01430	1	1	1	1	1	(1)	2 1	1
	register 0				Se	et start addre	ess A23 to A	16)	
	Memory		M1V21	M1V20	M1V19	M1V18	M1V17	M1V16	MV15-9	M1V8
MAMR1	address	0146H				R/	W ($\langle \rangle \rangle$		
	mask	014011	1	1	1	1			1	1
	register 1				0: Comp	are enable	1: Compare	e disable		
	Memory		M1S23	M1S22	M1S21	M1S20	_M1\$19	/ M1S18	M1S17	M1S16
MSAR1	start	0147H				R/	W			
MOAIL	address	014711	1	1	1	1	\geq	1	d(1)	> 1
	register 1				Se	t start addre	ess A23 to A	16		
			M2V22	M2V21	M2V20	M2V19	M2V18	M2V17	M2V16	M2V15
MAMR2	Memory	014AH				R/	yv <		2/	
	register 2	014/11	1	1	1 ()/	1	Ţ	501	1
					0: Comp	are enable	1: Compare	e disable	\rightarrow	
	Memory		M2S23	M2S22	M2\$21	M2S20	M2S19	M2S18	M2S17	M2S16
MSAR2	start	014BH				R/	W			
MO/ TO	address	UTTEIT	1	1	(\land)	2 1	101	$\bigwedge 1$	1	1
	register 2			6	Se	t start addre	ess A23 to A	16		
			M3V22	M3V21	M3V20	M3V19	M3V18	M3V17	M3V16	M3V15
MAMR3	Memory	014EH				R/	w))	-		
	register 3	UTTEIT	1		<u>1</u>			1	1	1
					0: Comp	are enable	1: Compare	e disable		
	Memory		M3S23	M3S22	M3S21	M3S20	M3S19	M3S18	M3S17	M3S16
MSAR3	start	014FH		$\langle \rangle$		R/	W			
MORINO	address		1	$\bigcirc 1$	1 <		1	1	1	1
	register 3		Set start address A23 to A16							

Memory control (3/3)

(6) MMU

.			_	-	_					-
Symbol	Name	Address	7	6	5	4	3	2	1	0
			L0E					L0EA22	L0EA21	L0EA20
			R/W						R/W	
			0	/	/			0	0	0
LOCAL0	LOCAL0	01D0H	Use BANK					Setting	g BANK num	ber for
	register		for						LOCAL0	
			LOCAL0 0: Not use							
			1: Use						$\langle \rangle$	
			L1E					L1EA23	L1EA22	L1EA21
			R/W			\sim		77	R/W	
			0	\backslash	/			(0)	0	0
LOCAL1	LOCAL1	01D1H	Use BANK					Setting	g BANK num	ber for
	register		for					$\langle \rangle$	LOCAL1	
			LOCAL1					0		
			0: Not use 1: Use			. ((\frown			
			L2E				\sim	L2EA23	L2EA22	L2EA21
			R/W			$\overline{\langle}$	$\overline{\mathcal{A}}$		R/W	
			0			$\neg \langle \langle Z \rangle$		~ 0((0	0
LOCAL2	LOCAL2	01D2H	Use BANK					Setting	BANK num	ber for
	register		for		(\sim			LOCAL2	
			LOCAL2		G			\mathcal{C}	\geq	
			0: Disable 1: Enable		$\leq \langle$	\searrow		()		
			L3E		$\overline{\mathcal{A}}$	L3EA26	L3EA25	L3EA24	L3EA23	L3EA22
			R/W		\mathcal{H}			R/W	101/120	
			0		\checkmark	0	0	0	0	0
LOCAL3	LOCAL3	01D3H	Use BANK			00000 to 00	0011: CS2B	01100 to 0	1111: CS2E	
	register		for		\searrow	00100 to 00	0111: CS2C	10000 to 1	0011: CS2F	
			LOCAL3			01000 to 01	1011: CS2D	10100 to 1	0111: CS2G	
			0: Disable 1: Enable		7		\sim	11000 to 1	1111:Set pr	ohibition

92C820-353

(7) Clock gear (1/2)

		Address	7	6	5	4	3	2	1	0		
			XEN	XTEN				WUEF		0 GEAR0 0 h		
			R/	W				R/W		GEAR1 GEAR0 V 0 Value of high c) 0 ved) Ved) SELDRV DRVE 0 0 0 0		
			1	1				0				
SYSCR0	System clock control register 0	10E0H	High- frequency oscillator (fc) 0: Stop 1: Oscillation	Low- frequency oscillator (fs) 0: Stop 1: Oscillation				Warm-up timer 0: Write Don't care 1: Write start timer 0: Read end warm up 1: Read do not end warm up) ⁻			
				\backslash			SYSCK)	GEAR2	GEAR1	GEAR0		
			/	/		\square	\sim	R/	W			
				/			0	1		0		
							Select	Select gear	value of high			
	System					\square	system	frequency ((fc)			
000004	clock	405411				(\vee)	clock 0: fc	000: fc				
SYSCR1	control	10E1H					1:fs	001: fc/2				
	register 1							010: fc/4				
						\sim	(011: fc/8 100: fc/16	7			
						\searrow		101: (Rese	arved)			
					$\langle \rangle$	>	$\overline{\Box}$	110: (Rese				
					$\langle \rangle \rangle$	Ň		1111: (Rese				
			-	A	WUPTM1	WUPTM0	HALTM1_	HALTMO	SELDRV	DRVE		
			R/W				R/	Ŵ				
			0	\sum	1	0	1)	1	0	0		
			Always	(())	Warm-up ti	mer	HALT mod	e	<drve></drve>	Pin state		
	System		write "0".	\sim	00: Reserv		00: Reserv	ved	mode	control in		
SYSCR2	clock	10E2H	((\sim	01: 2 ⁸ /inputted		01: STOP mode		select	STOP/		
	control register 2			\bigcirc	frequen		10: IDLE1		0: Stop 1: IDLE1	IDLE1 mode		
	register Z				10: 2 ¹⁴ /inpu	itted	11: IDLE2	mode		0: I/O off		
		(frequen 11: 2 ¹⁶ /inpu	icy				1: Remains		
				/	frequer					the state		
		$\left \right $		\frown						before halt		

	Clock gea	ar(2/2)								
Symbol	Name	Address	7	6	5	4	3	2	1	0
			PROTECT					EXTIN	DRVOSCH	DRVOSCL
			R						R/W	
	EMC		0 Drata at					R/W 0 1 1: External fc fs clock oscillator osci driver driv ability abili 1: Normal 1: No	1	
EMCCR0	control	10E3H	Protect flag					clock		rs oscillator
	register 0		0: OFF						driver	driver
			1: ON						ability	ability 1: Normal
									0: Weak	0: Weak
EMCCR1	EMC control	10E4H								
	register 1									
	EMC									
EMCCR2	control	10E5H				$\mathcal{A}($				
	register 2							0		/
								5		

(8)	LCD	controller	(1/6)
-----	-----	------------	-------

Symbol	Name	Address	7	6	5	4	3	2	1	0	
5,	Hamo	, (001000	BAE	AAE	SCPW1	SCPW0	TA3LCDCK	BULK	RAMTYPE	MODE	
			BAL	, u (L	00		W	BOLK		mode	
			0	0	1	0	0	0	0	0	
LCDMODE	LCD		Used by	Used by	SCP width		Select low	Byte-	Display	Mode	
	mode	0200H	B area	A area	00: BaseSC	P	frequency	number/	RAM	selection	
	register	ər	0: Disable	0: Disable	01: 2 clocks	6	0: fs	common	selection	0: RAM	
			1: Enable	1: Enable	10: 4 clocks	6	(32 kHz) 1: TA3OUT		0: SRAM 1: SDRAM	1: SR	
					11: 8 clocks	6		1:1024			
							(bytes			
	Divide		FMN7	FMN6	FMN5	FMN4	FMN3	FMN2	FMN1	FMN0	
LCDDVM	FRM	0201H					W				
	register		0	0	0	0	(0	0	0	0	
							M bit7 to 0	/			
			COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0	
			0	0	0	R	w v	0			
	LCD size register	ize 0202H	÷	-	0 Dn number fo					0	
LCDSIZE			000: 128		: 400		Setting the 0000: 128	LCD segme		or SR mode	
			0001: 160): 480		0000: 128 0101: 480 0001: 160 0110: 560				
	-		0010: 200		1		0010: 240 0111: 640				
			0011: 240			X Č	0011: 320				
			0100: 320	Othe	ers: Reserved	d 🗸	0100: 400 Others: Reserved				
			LCDON	ALL0	FRMON	> -	FP97	MMULCD	FP8	START	
					$\sim j^{2}$		w VZ))	i		
			0	0 /(0	0	0	0	0	-	
			DOFF	LD bus	Divided FR	Always	Setting bit				
	LCD control register		port 0: OFF	output control	mode 0: Disable	write "0".	9 for f _{FP} [9:0]	selection			
LCDCTL		0203H	1: ON	0: OFF	1: Enable		19.01	of LCD driver with	[0.0]		
				(= Normal) 1: ON		\land	\sim	built-in		1: Start	
			(((= ALL 0)				RAM			
				\mathcal{Y}	<	$\langle \geq \rangle$		0: Sequential			
			(7)			γ / γ		access			
			(∇Y))	$\overline{\Box}$	\sim		1:Random access			
		$// \rightarrow$	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0	
	LCD	000 411			<u> </u>	R/	_		0 0 Setting bit Start 8 for fFP control in [9:0] SR mode 0: Stop 1: Start ial FP1		
LCDFFP	frequency register	0204H	0	0	0	0	0	0	0	0	
	register		\geq			fFP set valu	ue bit7 to 0				
	$\langle \rangle$	7		/					GRAY1	GRAY0	
	2	\sum			×				R/	W	
	LCD								0	0	
LCDGL	gray level	0205H							00: Monoch		
	register	リー ^		\bigcirc					01: 4 levels		
		(()],]))					10: 8 levels		
17				/					11: 16 leve	S	
		4	\sim								

r		troller (2/			1							
Symbol	Name	Address	7	6	5	4	3	2	1	0		
			CDE	CCS		/			CBE1	CBE0		
			R	/W					R/	W		
	LCD		0	0					0	0		
LCDCM	cursor mode register	0206H	Cursor 0: OFF 1: ON	Cursor color 0: White 1: Black					Cursor blin 00: Don't k 01: 2 Hz 10: 1 Hz 11: 0.5 Hz	blink		
						CW4	CW3	CW2	CW1	CW0		
	LCD						$\langle $	R/W				
LCDCW	cursor	0207H				0	0	0	0	0		
	width register	020711				Cursor width (X size) 00000: 1 dot (Min) 11111: 32 dots (Max)						
						CH4	СНЗ	CH2	CH1	CH0		
	LCD							R/W	~ 22	0 0		
LCDCH	cursor	0208H				07	0	0	· · ·	0		
	height register				((000	sor height (` 00: 1 dot (M 11: 32 dots	lin)			
	LCD		/			\sim	APB3 /	APB2	APB1	APB0		
LCDCP	cursor APB register	0209H			A	\checkmark	(()R/	Ŵ			
LCDCF			/		$\langle \rangle$		9		0	0		
					$ \langle \ \rangle $	>	Setting bi	t3 to 0 for cu	ursor absolut	e position		
	LCD		CAP7	CAP6	CAP5	CAP4	CAP3	CAP2	CAP1	CAP0		
LCDCPL	cursor	020AH		\leq			Ŵ					
LODOIL	AP	020/11	0	0	0	0	Ò	0	0	0		
	register low		Setting bit7 to 0 for cursor absolute position									
	LCD		CAP15	CAP14	CAP13	CAP12	CAP11	CAP10	CAP9	CAP8		
	cursor	000511	((\sim	i		W		i			
LCDCPM	AP	020BH	0 ((0	0	0	0	0	0	0		
	register medium		$\overline{\Omega}$	Setting bit15 to 8 for cursor absolute position								
	LCD		CAP23	CAP22	CAP21	CAP20	CAP19	CAP18	CAP17	CAP16		
LCDCPH	cursor	020CH		/	(0)	R/	W					
LODOITI	AP		6	1	Ŏ	0	0	0	0	0		
	register high				Setting bit2	3 to 16 for c	cursor absolu	ute position				

 \geq

LCD controller (2/6)

	LUD COII	troller (3/6	0)		1				1	
Symbol	Name	Address	7	6	5	4	3	2	1	0
	A area		SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8 0 SA16 0 EA8 0 EA16 0 SA8 0 SA8 0 EA16 0 SA8 0 EA16 0 SA16 0 EA16 0 SA16 0 SA0 0 SA8 0 SA8 0 0 SA8 0
LSARAM	start	0210H				R	/W			
	address register	021011	0	0	0	0	0	0	0	0
	medium			Setting sta	art address A	15 to A8 for	the source	data memor	y in A area	
	A area		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
	start	0211				R	/W	(())	7	
LSARAH	address register	0211H	0	1	0	0	0	0	0	0
	high			Setting sta	rt address A	23 to A16 fo	r the source	data memo	ry in A area	
	A area		EA15	EA14	EA13	EA12	EA11	EA10	EA9	EA8
	end	004011				R	W	>		
LEARAM	address register	0212H	0	0	0	0	0	0	0	0
	medium			Setting er	nd address A	15 to A8 for	the source	data memor	y in A area	
	A area		EA23	EA22	EA21	EA20	EA19	EA18	EA17	EA16
	end	001011				R	Ŵ		$\overline{)}$	
LEARAH	address register	0213H	0	1	0	(0)) 0 <)0)	0
	high			Setting en	d address A	23 to A16 fo	r the source	data memor	ry in A area	
	B area		SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
	start	0214H			40	R/	w (\mathcal{S}		
LSARBM	address register		0	0	0	0	9		0	0
	medium			Setting sta	art address /	15 to A8 for	the source	data memor	y in B area	
	B area	0215H	SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
	start					R/	w)			
LSARBH	address register		0		0	0	0	0	0	0
	high			Setting sta	rt address A	23 to A16 fo	r the source	data memo	ry in B area	
	B area		EA15	EA14	EA13	EA12	EA11	EA10	EA9	EA8
	end	004014		\bigcirc		R	/W			
LEARBM	address register	0216H	0	0	0	0	0	0	0	0
	medium			Setting er	d address A	15 to A8 for	the source	data memor	y in B area	
	B area		EA23	EA22	EA21	EA20	EA19	EA18	EA17	EA16
	end				$\underline{\mathcal{N}}$	R	/W			
LEARBH	address register	0217H	0		0	0	0	0	0	0
	high		$\langle \rangle$	Setting en	d address A	23 to A16 fo	r the source	data memor	ry in B area	
	C area	ζ.	SA7	SA6	SA5	SA4	SA3	SA2	SA1	SA0
	start 🗸	\sum		\wedge		R	/W			
LSARCL	address register	0218H	o <	0	0	0	0	0	0	0
\sim	low))		Setting st	art address	A7 to A0 for	the source of	data memory	/ in C area	
	C area	()	SA15	SA14	SA13	SA12	SA11	SA10	SA9	SA8
\leq	start	9	N N	J		R	/w			
LSARCM	address	0219H 💡	~ 0	0	0	0	0	0	0	0
	register medium		\sim	Setting sta	art address A	15 to A8 for	the source	data memor	y in C area	
	C area		SA23	SA22	SA21	SA20	SA19	SA18	SA17	SA16
	start				<u> </u>		/W			-
LSARCH	address	021AH	0	1	0	0	0	0	0	0
	register high		-		rt address A					
									,	

LCD controller (3/6)

	LUD com	troller (4/	0)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
	LCD gray		_	-	_	-	_	-	_	_
LG0L	level	0220H	-	-	-	R/				
	data setting register low		0	0	0	0	0	0	0	0
			_	_	_	_	_		_	_
	LCD gray level									
LG0H	data setting	0221H	0	0	0	0	0		0	0
	register high					II			\mathcal{I}	
	LCD gray		_	-	-	-	· - ((7/a	-	_
LG1L	level	0222H				R/	W ($\langle O \rangle$		
	data setting register low		0	0	0	0	0	0	0	0
	Togister Iow			1					1	
	LCD gray		_	-	-	- R/		/ -	_	-
LG1H	level data setting	0223H	1	0	0	0	0	0	NON	> 0
	register high			0	0					0
	LCD gray		_	-	_	(-//	<u> </u>	-((_
LG2L	level	0224H					Ŵ	2,0	20	
LG2L	data setting	0∠∠4⊓	1	0	0	0	0	0	900/	0
	register low			1	21			$\overline{\mathcal{C}}$		
	LCD gray		_	-	$\square \triangleleft ()$	<u> </u>	- ((\mathcal{S})	-	-
LG2H	level	0225H				R/				
	data setting register high		1	0		✓ 0	-07	0	0	0
			_	- ~(10		2	_	_
	LCD gray level					R/	W	_		_
LG3L	data setting	0226H	1	0	0	0	0)	0	0	0
	register low		-)		\bigtriangledown			-
	LCD gray		- ()		1 –		-	-	-	_
LG3H	level	0227H	(((R/	W			
LOSIT	data setting	022711	1	Ø	0	0	1	0	0	0
	register high		(Q)		\sim			-	1	
	LCD gray		\sim) -		\rightarrow	-	-	-	-
LG4L	level data setting	0228H		0		R/		0	0	0
	register low		17	0	\sim	0	1	0	0	0
				$\langle -$	\rightarrow	_	_	_	_	_
	LCD gray level	000011	\vee			R/		1		
LG4H	data setting	0229H	1	0	0	0	1	0	0	0
	register high	\sum		\wedge	*					
	LCD gray		- <	4(-	-	-	-	-	-	-
LG5L	level	022AH		\rightarrow	-	R/		i _	<u> .</u>	
	data setting register low		<u>{</u>	0	0	0	1	0	1	0
				9-	_	_	_	_	_	_
	LCD gray level			_						-
LG5H	data setting	022BH	1	0	0	0	1	0	0	0
	register high		· ·		ı ~	~	•	. ~	Ť	
	LCD gray		-	-	-	-	-	-	-	_
LG6L	level	022CH		<u> </u>	•	R/	W	<u> </u>	••••••••••••••••••••••••••••••••••••••	
LOOL	data setting	022011	1	0	0	0	1	0	1	0
	register low			1				1	,	
	LCD gray		-	-	-	-	-	-	-	_
LG6H	level data setting	022DH	4	0	0	R/		0	4	0
	register high		1	0	0	0	1	0	1	0
		1								

LCD controller (4/6)

SymbolNameAddress76543210LG7LG7		LUD con	troller (5/	0)		r	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Name	Address	7	6	5	4	3	2	1	0
				_	-	-			-	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LG7L		022EH	1	0	1	r r		0	1	0
LOB by mapping 022FH 1 0 0 1 1 1 1 1 1 1		•		1	0	I	U	I	0		0
LG7H divertion 02/2FH I 0 0 1 0		LCD gray		-	-	-	-	_		-	_
debi setting register right 1 0 0 0 1 0 1 0 LGBL data sating register right register right regis	I G7H		022FH			•	R/	W			
LCD gray hered maginter low <t< td=""><td>LOIII</td><td>-</td><td>022111</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>(0</td><td>1</td><td>0</td></t<>	LOIII	-	022111	1	0	0	0	1	(0	1	0
LGBL Bod data sering regiser kph 0230H 1 0					1		1				
LGBL data setting register for well 020H 1 0 1 0 1 0 LGBH data setting well 023H -				_	-	-			//	-	_
ingester low Imagester	LG8L		0230H	1	0	1	I I			1	0
LGBH Bodi data setting data setting magnets high 0231H 1 0 1 1 1 <t< td=""><td></td><td>register low</td><td></td><td></td><td>-</td><td></td><td></td><td>$(\bigcirc$</td><td>></td><td></td><td></td></t<>		register low			-			$(\bigcirc$	>		
LGBH data setting register high 0231H 1 0 1 0 1 0 1 0 1 0 LG9L local data setting register high register high		LCD gray		_	-	-	-) –	-	_
Image: high register	LG8H	level	0231H		1	1			1		
LCD gray level and setting register low -		-		1	0	1	0	$\underline{\sim}$	0	A(1)	> 0
LC9L Description Q32H Q 1 Q Q Q					_	_		<u> </u>			_
LG9L data setting register low 02.2/H 0 1 1 1 1 0				_					5-(0		_
LCO gray level data setting register high register high register high tast setting register high -	LG9L		0232H	0	1	0		7	Í	GO	1
LCB yrac 0233H Image: constraint of the setting register high register high register high register low 0233H Image: constraint of the setting register high register low LGAL LCD yray lovel data setting register high register low - </td <td></td> <td>register low</td> <td></td> <td></td> <td></td> <td>2(</td> <td>$\overline{\langle } \rangle$</td> <td></td> <td>C</td> <td></td> <td></td>		register low				2($\overline{\langle } \rangle$		C		
LG9H data setting register low 02.3 H 1 1 0 1 0 1 0 1 LGAL lovel data setting register low 02.3 H - <td></td> <td>LCD gray</td> <td></td> <td>_</td> <td>-</td> <td>$\mathcal{A}()$</td> <td><u> </u></td> <td></td> <td>$\langle \rangle$</td> <td>-</td> <td>-</td>		LCD gray		_	-	$\mathcal{A}()$	<u> </u>		$\langle \rangle$	-	-
register high - <	LG9H		0233H		1 .						
LCD gray level data setting register low 0234H - <td></td> <td>-</td> <td></td> <td>1</td> <td> 1</td> <td></td> <td>√ 1</td> <td></td> <td></td> <td>0</td> <td>1</td>		-		1	1		√ 1			0	1
LGAL LCb gray register loop 0234H 1 1 0 1 1 0 1 1 1 0 1 <th1< th=""> 1</th1<>				_			40	$\overline{\underline{}}$	2		_
LGAL data setting register low 02.34H 1 1 0 1 0 1 0 1 LGAH data setting register logh 0235H -<			000.411				R/	w			
LCD gray level data setting register low 0235H - <td>LGAL</td> <td>-</td> <td>0234H</td> <td>1</td> <td></td> <td>0</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>1</td>	LGAL	-	0234H	1		0			1	0	1
LG0 gray register high 0235H 1 1 0 1 0 1 LGBL data setting register high 0235H 1 0 1 0 1 0 1 LGBL LCD gray level data setting register high 0236H 1 0 1 0 1 0 1 LGBL LCD gray level data setting register high 0237H -		register low))		\searrow	1	,	
LGAH data setting register high 0235H 1 1 0 4 0 1 0 1 LGBL LCD gray level data setting register high 0236H 1 1 0 1 0 1 0 1 LGBL LCD gray level data setting register high 0236H 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 <				- 6	$\square \ge$	-			—	-	_
register high - <	LGAH		0235H	1	$\overline{)}$	0			1		1
LGBL LGBL L <thl< th=""> L <thl< th=""> <thl< td="" thr<=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td>$\langle \langle \rangle$</td><td>0</td><td>I</td><td>0</td><td>I</td></thl<></thl<></thl<>		-					$\langle \langle \rangle$	0	I	0	I
LGBL level data setting register low O236H 1 1 1 0 1 0 1 0 1 LGBH LCD gray level data setting register high - <td></td> <td>LCD grav</td> <td>\frown</td> <td></td> <td>) –</td> <td></td> <td>\rightarrow</td> <td>_</td> <td>-</td> <td>_</td> <td>_</td>		LCD grav	\frown) –		\rightarrow	_	-	_	_
data setting register low 1 1 0 1 0 1 0 1 LGBH LCD gray level data setting register high - <td< td=""><td>I GBI</td><td></td><td>0236H</td><td></td><td>/</td><td>(0)</td><td>∧ R/</td><td>W</td><td></td><td></td><td></td></td<>	I GBI		0236H		/	(0)	∧ R/	W			
LCD gray level data setting register high -	LODE	-	$\langle \langle \rangle$	1	1	V) 1	0	1	0	1
LGBH lovel data setting register high 0237H 1 1 0 1 1 1 0 1 LGCL LCD gray (evel data setting register low -										1	
LGBH data setting register high 0237H 1 1 0 1 1 1 0 1 LGCI LCD gray level data setting register low 0238H - <				>					-		_
register high - <	LGBH	A	0237H	1	1	0			1	0	1
LGCL level data setting register low 0238H I I 0 1 1 1 0 1 LGCH data setting register low I 0 1 1 1 0 1 1 0 1 LGCH LCD gray level data setting register high Image: Comparison of the comparison of th			\searrow	· ·	\wedge			•		Ť	•
$ \begin{array}{c c c c c c c c c c c c c } LGCL & evel \\ data setting \\ register low \end{array} \begin{array}{c c c c c c c } & 0238H \\ \hline 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 0 & 1 & - & - & - & - & - & - & - & - & -$		LCD gray			1(-		_	_	_	_	_
data setting register low 1 1 0 1 1 1 0 1 LGCH LCD gray level data setting register high - <td< td=""><td>LGCL</td><td>level</td><td>0238H</td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td></td<>	LGCL	level	0238H							·	
LGDH LCD gray level data setting register high LGDL LCD gray level data setting register low LGDH LCD gray level data setting register low LGDH LCD gray level data setting register low LGDH LCD gray level data setting register low LGD gray level data setting register low LGD gray level data setting level data setting level level data setting level data setting level level data setting level data setting level leve					$\sqrt{\lambda}$	0	1	1	1	0	1
LGC gray level data setting register high 0239H Image: constraint of the setting register high 0239H Image: constraint of the setting register high 0239H Image: constraint of the setting register high <			(())					<u> </u>	
LGCH data setting register high 0239H 1 1 0 1 1 1 0 1 LGDL LCD gray level data setting register low D23AH - <					~ -					_	_
LGDL LCD gray level data setting register low - <td>LGCH</td> <td></td> <td>0239H</td> <td>1</td> <td>1</td> <td>0</td> <td></td> <td></td> <td>1</td> <td>0</td> <td>1</td>	LGCH		0239H	1	1	0			1	0	1
LGDL LGD gray level data setting register low 023AH Image: Constraint of the setting		register high			·		I		•		
LGDL data setting register low 023AH 1 1 0 1 1 0 1 LGDH LCD gray level data setting 023BH - - - - - - - LGDH 1 0 1 1 1 1 0 1		LCD gray		-	-	-			-	-	-
LGDH LCD gray level data setting 023BH Image: Constraint of the setting of the settin	LGDL		023AH		t .	1	1 1		i .	ہ _ ۱	_
LGDH LCD gray level 023BH		-		1	1	0	1	1	1	0	1
LGDH level 023BH 1 1 1 1 1 0 1					_	_	_ I		_	<u> </u>	
LGDH 023BH 1 1 1 1 1 1 0 1									_	_	_
	LGDH	data setting	023BH	1	1	1			1	0	1
		register high				·	·		•	I	

LCD controller (5/6)

		troller (6/	0)	-						
Symbol	Name	Address	7	6	5	4	3	2	1	0
	LCD gray		-	-	-	-	-	-	-	-
	level					R	z/W			
LGEL	data	023CH	1	1	0	1	1	1	0	1
	setting register low							\langle		
	LCD gray		-	-	-	-	-	X	-	-
	level					R	R/W			
LGEH	data	023DH	1	1	0	1	1	1	0	1
	setting register high							775		
	LCD gray		1	-	_	-	\geq		-	_
	level	000511		_		R	2/W (-	-
LGFL	data		1	1	1	1		ິ 1	1	1
	setting register low					~	\sim	~	\bigcirc	
	LCD gray		1	-	_	-		- ~	<u> </u>	7 —
	level					R	2/W	1		
LGFH	data	023FH	1	1	1		1	1((1
	setting register high								Ŷ	

LCD controller (6/6)

(9) SDRAM controller

Symbol	Name	Address	7	6	5	4	3	2	1	0
			SDINI		SDBUS1	SDBU0		SMUXW1	SMUXW0	SMAC
			R/W		R/	W			R/W	
			0		0	0		0	0	0
SDACR	SDRAM address	0250H	Auto initialize		Selecting s data bus	tructure of		Selecting a multiplex ty		SDRAM controller
	control		0: Disable		00: 16 bits :	× 1		00: Type A		0: Disable
			1: Enable		01: 16 bits :	× 2		01: Type B	\sim	1: Enable
				10: 32 bits × 1				10: Type C)	
							(11; Reserve	ed	
			SFRC	SRS2	SRS1	SRS0	SASFRC	\rightarrow		SRC
					R/W	r				R/W
			0	0	0	0	((0			0
	SDRAM		Self refresh 0: Disable	Refresh int 000: 78 sta		(Auto/self refresh)*		Interval refresh
SDRCR	refresh	0251H	1: Enable	100: 195 s	tates	21	0: Disable		$\langle () \rangle$	0: Disable
OBITOIT	control	020111		001: 97 sta	ates		1: Enable	0		1: Enable
				101: 210 s		$(\overline{\alpha})$	\sim			
				010: 124 s				\mathcal{S} (C		
				110: 249 s			/	\sim	\mathbb{Z}/\mathbb{Z}	
				011: 156 s				\sim		
			111: 312 states							

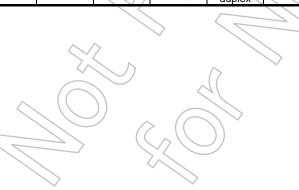
92C820-362

RW RW RW TA01RUN 1100H 0	TA1FFIS 0 A1FF
TMRA01 RUN register R/W R/W R/W 0 0 0 0 0 0 0 1100H Double Duble IDLE2 TMRA01 Up counter Up counter<	0 p counter JC0) TAOCLKO 0 for FA1FFIS 0 A1FF
TA01RUN TMRA01 RUN register 1100H 0	FAOCLKO
TA01RUN register RUN register 1100H Double buffer 0: Disable Double buffer 0: Disable Double buffer 0: Disable Double 0: Stop 1: Operate TMRA01 Prescaler Up counter (UC1) Up counter (UC1) <th< td=""><td>FAOCLKO</td></th<>	FAOCLKO
register Double buffer 0: Disable 1: Enable Differ 0: Disable 1: Operate Differ 0: Stop 1: Operate Differ 0: Operate Differ 0: Stop 1: Operate Differ 0: Stop 1: Operate Differ 0: Stop	AUCLKO
Normal Sector O: Disable 1: Enable O: Disable 1: Enable I: Operate 1: Rvin (Count, up) O: Stop and clear 1: Rvin (Count, up) TAOREG 8-bit timer 1102H Prohibit	AOCLKO 0 for TA1FFIS 0 A1FF
I: Enable I: Soft Soft Soft TAOREG 8-bit 1102H register 0 RMW	0 for TA1FFIS 0 A1FF
B-bit timer register 0 1102H Prohibit RMW - TA0REG 8-bit timer register 1 1103H Prohibit RMW - - TA1REG 8-bit timer register 1 1103H RMW - - TA1REG 8-bit timer register 1 1103H RMW - - TA1REG 8-bit timer register 1 1103H RMW - - TA01MOD PWR00 register TA01M1 TA01M0 PWM00 0 CA1CLK1 TA1CLK0 TA0CLK1 TA TA01MOD TMRA01 register 1104H 0	0 for TA1FFIS 0 A1FF
TAOREG timer register 0 Prohibit RMW Image: Control of the prohibit register Prohibit RMW Image: Control of the prohibit register Image: Control of the prohibit register Image: Control of the pr	0 for TA1FFIS 0 A1FF
register 0 RMW Undefined TA1REG 8-bit timer register 1 1103H RMW	0 for TA1FFIS 0 A1FF
B-bit timer register 1103H Prohibit RMW	0 for TA1FFIS 0 A1FF
TA1REG timer register 1 Prohibit RMW TMRMU Undefined TMRA01 TMRA01 TMRA01 TA01M1 TA01M0 PWM00 TA1CLK1 TA1CLK0 TA0CLK1 TA TMRA01 mode register 1104H TA01M1 TA01M0 PWM00 TA1CLK1 TA1CLK0 TA0CLK1 TA TMRA01 mode register 1104H TA01M0 PWM00 CO 0 <td>0 for TA1FFIS 0 A1FF</td>	0 for TA1FFIS 0 A1FF
register 1 RMW Undefined TA01MOD TMRA01 mode register TA01M1 TA01M0 PWM01 PWM00 TA1CLK1 TA1CLK0 TA0CLK1 TA TMRA01 mode register 1104H 0	0 for TA1FFIS 0 A1FF
TA01M0D TA01M1 TA01M0 PWM01 PWM00 TA1CLK1 TA1CLK0 TA0CLK1 TA TA01M0D mode register 1104H 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 for TA1FFIS 0 A1FF
TMRA01 mode register 1104H 0 <td>0 for TA1FFIS 0 A1FF</td>	0 for TA1FFIS 0 A1FF
TA01MOD TMRA01 mode register 1104H 0 <th< td=""><td>for TA1FFIS 0 A1FF</td></th<>	for TA1FFIS 0 A1FF
TA01MOD TMRA01 mode register Doperation mode 00: 8-bit timer mode 01: 16-bit timer mode 01: 16-bit timer mode 10: 8-bit PPG mode 11: 8-bit PPG mode 11: 28 PWM cycle 00: Reserved 01: 26 Source clock for TMRA1 Source clock for TMRA1 TMRA1 1104H 0 0 8-bit timer mode 01: 16-bit timer mode 10: 8-bit PPG mode 00: TA0TRG 00: TA0IN pin 01: \$T1 01: \$T1 01: \$T1 01: \$T1 10: \$T4 11: \$T4 11: \$T1 10: \$T4 11: \$T1 11: \$T1 11: \$T1 10: \$T4 11: \$T1	for TA1FFIS 0 A1FF
TA01MOD mode register 1104H 00: 8-bit timer mode 01: 16-bit timer mode 10: 8-bit PPG mode 10: 8-bit PPG mode 11: 8-bit PWM mode 00: Reserved 01: 2 ⁶ TMRA1 TMRA0 TMRA1 11: 6-bit timer mode 10: 8-bit PPG mode 11: 8-bit PWM mode 00: Reserved 10: 2 ⁷ 01: 4T1 01: 4T1 TMRA1 11: 8-bit PWM mode 11: 2 ⁸ 10: 4T1 10: 4T4 TMRA1 1105H TA1FFC1 TA1FFC0 TA1FFC0 TA1FFIE TA TMRA1 1105H Prohibit register Prohibit RMW Interpretation 00: Invert TA1FF TA	TA1FFIS 0 A1FF
register 01: 16-bit timer mode 10: 8-bit PPG mode 11: 8-bit PPG mode 11: 8-bit PPM mode 01: 2 ⁶ 10: 2 ⁷ 11: 2 ⁸ 00: TA0TRG 01: \$TA1TRG 00: TA0IN pin 01: \$TA0IN pin 01:	TA1FFIS 0 A1FF
TMRA1 11:8-bit PWM mode 11:28 10: \phiT6 10: \phiT4 11: \phiT6 11: \phiT6 TMRA1 1105H TA1FFC1 TA1FFC1 TA1FFC0 TA1FFIE TA TA1FFCR flip-flop control Prohibit RMW N R/W R/W TA1FFCR TMRA1 1105H TA1FFC1 TA1FFC1 TA1FFC0 TA1FFIE TA TA1FFCR Prohibit Prohibit RMW N 0 00: Invert TA1FF Inversion sel 0: Disable 0: Disable 0: Disable 0: Tisen TA1FF 0: Disable 0: Tisen TA1FF 0: Disable 0: Tisen TA1FF 1: Enable 1: Tisen TA1FF 1: Disable 0: Tisen TA1FF 0: Disable 0: Tisen TA1FF 1: Tisen TA1FF <t< td=""><td>0 A1FF</td></t<>	0 A1FF
TMRA1 1105H 11: \phiT256 11: \phiT256 11: \phiT16 TA1FFCR TMRA1 1105H TMRA1 TMRA1 100 flip-flop control Prohibit NW R/W R/W register Prohibit RMW 00: Invert TA1FF TA1FF TA1FF MW RMW Inversion self 01: Set TA1FF Control for Inv 10: Clear TA1FF 0: Disable 0: Tiset TA1FF 0: Disable 0: Tiset TA1FF 0: Disable 0: Tiset TA1FF TMRA23 TMRA23 RUN 1108H 0 0 0 0 TA23RUN T108H Double IDLE2 TMRA23 Up counter Up	0 A1FF
TMRA1 1105H TA1FFC1 TA1FFC0 TA1FFC0 TA1FFIE TA TA1FFCR Tip-flop 1 1 1 0 R/W TA1FFCR Prohibit Prohibit RMW 00: Invert TA1FF TA1FF TA1FF TA1FF TA1FF register RMW RMW Image: Control or inversion Image: Control or inversion<	0 A1FF
TMRA1 1105H R/W TA1FFCR TMRA1 1105H 0	0 A1FF
TMRA1 1105H 1 1 0 TA1FFCR flip-flop control register Prohibit RMW Prohibit RMW 00: Invert TA1FF TA1FF TA 10: Clear TA1FF 00: Invert TA1FF <	0 A1FF
TA1FFCR flip-flop control register Prohibit RMW Prohibit RMW Prohibit RMW TA1FF TA1FF TA1FF TA Inv 10: Clear TA1FF TA1FF TA Inv TA1FF TA Inv TA Inv TA1FF TA Inv TA Inv TA Inv Inv TA23PUN TA23PEUN TA23PUN TA3RUN TA A3RUN TA INV Inv	A1FF
TATFFCR control register Prohibit RMW Prohibit RMW Prohibit RMW Prohibit RMW Control RMW Control for inversion Inversion sel 0: Disable Inversion 0: Disable Inversion TA1FFCR TA1FF Control for inversion Control for inversion Inversion sel 0: Disable 0: Disable 0: Tisel TA23RUN TMRA23 RUN T108H TA2RDE I2TA23 TA23PRUN TA3RUN TA R/W TA23RUN T108H Double IDLE2 TMRA23 Up counter Up	
register RMW TA2RDE Inversion sel TA23RUN TMRA23 RUN 1108H TA2RDE I2TA23 TA23PRUN TA3RUN TA3RUN TA23RUN TMRA23 Double Double IDLE2 TMRA23 Up counter Up	version
TMRA23 RUN T108H TA2RDE 11: Don't care 0: Disable 1: Enable 0: Disable 1: Enable 0: Disable 1: Enable 0: Disable 1: Enable 0: Disable	elect
TMRA23 RUN T108H TA2RDE I2TA23 TA23PRUN TA3RUN TA TA23RUN 1108H 0	: TMRA0
TMRA23 RUN R/W R/W R/W 1108H 0 0 0 0 Double IDLE2 TMRA23 Up counter Up	: TMRA1
TMRA23 RUN 0 0 0 0 0 1108H Double IDLE2 TMRA23 Up counter Up	FA2RUN
TA23RUN RUN 1108H Double IDLE2 TMRA23 Up counter Up	
IDEEZ INIKAZS OP COUNTER OP	0
register buffer 0: Stop Prescaler (UC3) (UC	lp counte JC2)
0: Disable 0: Stop and clear	JOZ)
1: Enable	
8-bit 110AH –	
TA2REG timer Prohibit W	
register 2 RMW Undefined	
8-bit 110BH –	
TA3REG timer Prohibit W	
register 3 RMW Undefined	
R/W	A2CLK0
TMRA23 0 <td></td>	
TA23MOD mode 110CH Operation mode PWW cycle Source clock for Source clock for	0
register register 00: 8-bit timer mode 01: 2 ⁶ 00: TMRA1 TMRA2 00: Reserved 01: 2 ⁶ 00: TA2TRG 00: Reserved	0
10: 8-bit PPG mode $10 \cdot 2^7$ $01: \phiT1$ $01: \phiT1$	0 for
11: 8-bit PWM mode 11: 2 ⁸ 10: \phiT16 10: \phiT4	0 for
11: φ1256 11: φ116	0 for
	0 for
TMRA3 110DH W R/W	0 for FA3FFIS
	0 for TA3FFIS
	0 for TA3FFIS
TABLE CONTROL Dephibit	0 for TA3FFIS ' 0 A3FF
IA3FFCR control Prohibit 01: Set TA3FF Control for 01: Set TA3FF PMW	0 for TA3FFIS
TA3FFCR control Prohibit 00. Invert TA3FF TA3FF TA3FF control register RMW 01: Set TA3FF Control for Inv 10: Clear TA3FF inversion set	0 for TA3FFIS 0 A3FF iversion

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TB0RDE	-	/	/	I2TB0	TB0PRUN	/	TBORUN
			R/	Ŵ	/	/	R	W	\sim	R/W
	TMRB0		0	0			0	0		0
TBORUN	RUN	1180H	Double	Always			IDLE2	TMRB0		Up
	register		buffer	write "0".			0: Stop	prescaler		counter
	-		0: Disable				1: Operate	0: Stop and	d alaar	(UC10)
			1: Enable					1: Run (Co		
			_	-	TB0CP0I	TB0CPM1	TB0CPM0	TBOCLE	TB0CLK1	TB0CLK0
			R/		W	1 Door Mit		R/W	TBOOLIU	TBOOLING
		1182H	0	0	1	0	0	0	0	0
	TMRB0	110211	Always write	e "0".	Execute	Capture tim	9	Control up	TMRB0 so	urce clock
TB0MOD	mode	Prohibit			software	00: Disable		counter	00: Reserve	ed
	register	RMW			capture	01: Reserve 10: Reserve		0: Disable clearing	01:	
					0: Software capture	11: TA1OU		1: Enable	10. 014 11: 0T16	S
					1: Undefined	TA10U	ti –	clearing		/
			_	-	TB0C1T1	TB0C0T1	TB0E1T1	TB0E0T1	TB0FF0C1	TB0FF0C0
			٧	V		R	ýv <		V N	/*
			1	1	0	0	0	0	50/	1
	TMRB0	1183H	Always writ	te "11".		version trigg	er	\mathcal{C}	Control TB	0FF0
	flip-flop	110011			0: Disable		(()	00: Invert 01: Set	
TB0FFCR	control	Prohibit			1: Enable t Invert when		Invert when	Invert when	10: Clear	
	register	RMW				~		the UC10	11: Don't ca	are
				~ ((value is	value is	value	value	* Always	read as 11.
				$\leq \langle$	loaded in to			matches the		
					TB0CP1H/L.		value in TB0RG1H/L.	value in TB0RG0H/L.		
	16-bit	1188H		()				I BOILCOI I/L.		
TB0RG0L	timer register 0	Prohibit		\sim	/	~ V	v			
	low	RMW	((\sim		Unde	fined			
	16-bit	1189H	(\bigcirc	<	<u> </u>	-			
TB0RG0H	timer register 0	Prohibit	$(\overline{\alpha})$		~	$\sqrt{\sqrt{v}}$	V			
	high	RMW	$(\vee /)$)		Unde	efined			
	16-bit timer	118AH		<u> </u>	(0/)	<u></u>				
TB0RG1L	register 1	Prohibit					V			
	low	RMW			\rightarrow	Unde	efined			
TB0RG1H	16-bit timer	118BH Prohibit	\rightarrow —	$\overline{\langle}$		-	- V			
IDUKGIN	register 1 high	RMW		\rightarrow	<u> </u>		v efined			
	Capture			~	\searrow	Unde				
TB0CP0L	register 0	118CH	~	(7		F	 २			
~	low						fined			
	Capture	7	$(\frown$	$\langle \rangle$			_			
твосрон	register 0	118DH				F	२			
$\langle \langle \langle \rangle \rangle$	high	<u> </u>	Y N	<u> ノ </u>		Unde	efined			
	Capture	4	\sim			-	_			
TB0CP1L	register 1	118EH	\langle				२			
	low					Unde	fined			
	Capture					-	-			
TB0CP1H	register 1 high	118FH					२			
	IIIGH					Unde	efined			

Symbol	Name	Address	7	6	5	4	3	2	1	0	
	Serial	1200H	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
SC0BUF	channel 0	Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
000201	buffer	RMW			R (F	Receiving)/W	/ (Transmiss	ion)			
	register					Unde	efined	A			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC	
	Serial		R	-	/W		ar to 0 after r		R/	1	
SC0CR	channel 0	1201H	Undefined	0	0	0	0	(0	> 0	0	
	control		Receive	Parity	Parity 0: Disable		1: Error	\sim	0: SCLK0↑ 1: SCLK0↓	0: Baud rate generato	
	register		data bit8	0: Odd 1: Even	1: Enable	Overrun	Parity	Framing		1: SCLK0 pin input	
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0	
						R	/w (
	Serial		0	0	0	0	0	0	0	0	
SC0MOD0	channel 0	1202H	Trans-	0: CTS	0: Receive	Wakeup	00:I/O inter		00: TA0TR		
SCONODO	mode 0	12020	mission	disable 1: CTS	disable 1: Receive	0: Disable 1: Enable	01:7-bit UA 10:8-bit UA		01: Baud rate generator		
	register		data bit8	enable	enable		11:9-bit UA	/ ``	10: Internal clock f _{IO}		
						$(7/\langle$			11: Externa		
) <	\mathcal{S}	(SCLK		
			_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0	
	Serial				20	R/	W	\mathcal{P}			
	channel 0		0	0	_0	0	0 (0	0	0	
BR0CR	baud rate control register		Always	(16 – K)/16	00: ¢T0			Divided frequ	uency setting	9	
			write "0".	divided	01:¢T2	\supset	(0)	\sim			
				0: Disable 1: Enable	10: фТ8 11: фТ32))			
							BR0K3	BR0K2	BR0K1	BR0K0	
	Serial					$\langle \langle \rangle$	BROKS		W	BRURU	
BR0ADD	channel 0	1204H		$ \rightarrow $			0	0	0	0	
	K setting			$+(\bigcirc)$				-	cy divisor "K	_	
	register			\square	1	\land			+ (16 – K)/16		
			12S0	FDPX0		-			\sim	\sim	
			R/W	R/W		Res 1	\backslash		\sim		
	Serial		$\left(0 \right) $	0	1	J C	\sim	/	\sim	/	
SC0MOD1	channel 0	1205H	IDLE2	Duplex		\sim					
	mode 1		0: Stop	1: Full	((//	\cap					
	register	$\langle \langle \rangle$	1: Operate	duplex		0					
				0: Half duplex	\sim	r					
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0	
		N	~				/W			0	
		K .	0	0	<u>> о</u>	0	0	0	0	0	
0.0.5	IrDA 🗸	\searrow	Select	Receive	Transmit	Receive		ive pulse wi	_	-	
SIRCR	control	1207H	transmit \langle	data	0: Disable	0: Disable		•	th for equal of	or more	
\sim	register		pulse	0: "H" pulse		1: Enable	than $2x \times (V)$	/alue + 1) +			
	$\langle \rangle \rangle$	ν	width	1: "L" pulse			Can be set	: 1 to 14			
		- /	0.2/10								
		((0: 3/16 1: 1/16))			Can not be	set: 0 and 7	15		

(12) UART/serial channel (1/3)


						-					
Symbol	Name	Address	7	6	5	4	3	2	1	0	
	Serial	1208H	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
SC1BUF	channel 1	Prohibit	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0	
	buffer	RMW			R (F	Q /	/ (Transmiss	ion)			
	register			1	1		efined	<u> </u>	1		
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC	
	Serial		R		W		ar to 0 after r			/W	
SC1CR	channel 1	1209H	Undefined	0	0	0	0	(0	> 0	0	
	control register		Receive	Parity	Parity		1: Error		0: SCLK1↑ 1: SCLK1⊥	0: Baud rate generator	
	register		data bit8	0: Odd 1: Even	0: Disable 1: Enable	Overrun	Parity	Framing	1. SCLNI	1: SCLK1 pin input	
			TB8	CTSE	RXE	WU	SM1	SMO	SC1	SC0	
						R	w(()	>			
	Serial		0	0	0	0	0) 0	0	0	
SC1MOD0 mod	channel 1 mode 0 register	120AH	Trans- mission data bit8	0: CTS disable 1: CTS enable	0: Receive disable 1: Receive enable	Wakeup 0: Disable 1: Enable	00: I/O inter 01: 7-bit UA 10: 8-bit UA 11: 9-bit UA	RT mode	00: TA0TRG 01: Baud rate generator 10: Internal clock f _{IC} 11: External clock (SCLK1 input)		
			-	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0	
	Serial				G	⊂ R/	W /	$7 \sim$	\rangle		
00400	channel 1	400011	0	0	0	0	0	\bigcirc	0	0	
BR1CR	baud rate control register	120BH	Always write "0".	(16 – K)/16 divided 0: Disable 1: Enable	00: ¢T0 01: ¢T2 10: ¢T8 11: ¢T32	>		Divided frequ	uency setting	g	
	Qarial					\mathcal{A}	BR1K3	BR1K2	BR1K1	BR1K0	
	Serial channel 1		/	\langle	\downarrow	Į		R/	/W		
BR1ADD	K setting	120CH		+			0/	0	0	0	
	register		6		/	\land			cy divisor "k + (16 – K)/1		
			I2S1	FDPX1		\mathcal{H}			\sim		
	a		R	Ŵ		\longrightarrow					
	Serial		(0/)	0	1	Ł					
SC1MOD1	channel 1 mode 1 register		IDLE2 0: Stop 1: Operate	Duplex 1: Full duplex 0: Half duplex							

UART/serial channel (2/3)

	UAR'I'/se	rial chan	nel (3/3)							
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	404011	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
SC2BUF	channel 2	1210H	TB7	TB6	TB5	TB4	TB3	TB2	TB1	TB0
302DUF	buffer	Prohibit RMW			R (F	Receiving)/W	/ (Transmiss	sion)		
	register					Unde	efined	~		
			RB8	EVEN	PE	OERR	PERR	FERR	-	-
	Serial		R	R/	W	R (Clea	ar to 0 after r	eading)	R	W
SC2CR	channel 2	1211H	Undefined	0	0	0	0	((0	> 0	0
	control		Receive	Parity	Parity		1:Error	\sim	Always	Always
	register		data bit8	0: Odd 1: Even	0: Disable 1: Enable	Overrun	Parity	Framing	write "0".	write "0".
			TB8	-	RXE	WU	SM1	SMO	SC1	SC0
						R	\mathbb{W}			
	Serial		0	0	0	0	(ϱ)	Y O	0	0
SC2MOD0	channel 2 mode 0 register	1212H	Trans- mission data bit8	Always write "0".	0: Receive disable 1: Receive enable	Wakeup 0: Disable 1: Enable	00: I/O inte 01: 7-bit U/ 10: 8-bit U/ 11: 9-bit U/	G ate or clock f _{IO} ed		
			-	BR2ADDE	BR2CK1	BR2CK0	BR2S3	BR2S2	BR2\$1	BR2S0
	Serial				(R	Ŵ		<i>401</i>	
	channel 2		0	0	0	0	0	$\bigcirc 0$		0
BR2CR	channel 2 baud rate control register	1213H	Always write "0".	(16 – K)/16 divided 0: Disable 1: Enable	00:∲T0 01:∲T2 10:∲T8 11:∲T32	\rightarrow		Divided frequ	uency setting	9
	Serial				\sim	\sim	BR2K3	BR2K2	BR2K1	BR2K0
	channel 2					$\rightarrow \rightarrow$		-	/W	
BR2ADD	K setting	1214H			\sim	\wedge	Ò	0	0	0
	register							Sets frequen livided by N		
			12S2	FDPX2		\searrow				
			Ŕ	w))		\mathcal{H}	\sim	\sim	\sim	//
	Serial		0	0	\sim	RE)	\sim	\sim	\sim	\sim
SC2MOD1	channel 2 mode 1 register	el 2 1 1215H	IDLE2 0: Stop 1: Operate	Duplex 1: Full duplex 0: Half duplex						

UART/serial channel (3/3)

(13) I²C bus/serial channel (1/2)

Symbol	Name	Address	nnel (1/2) 7	6	5	4	3	2	1	0
- ,			BC2	BC1	BC0	ACK		SCK2	SCK1	SCK0/
		I ² C	202	W		R/W			N	SWRMON R/W
		mode	0	0	0	0		0	0	0/1
		1240H		transfer bits		Acknow			he divide va	1
		(Prohibit		01:1 010:		-ledge		000:5 0		
	SBI0	RMW)	100:4 10	01:5 110:	6 111:7	mode 0: Disable			01: 10 110:	11
SBI0CR1	control			r	r	1: Enable		111: Reser	2	•
	register 1		SIOS	SIOINH	SIOM1	SIOM0		SCK2	SCK1	SCK0
		SIO	0	0	v o	0		\bigcirc	W 0	0
		mode 1240H	Transfer	Transfer	Transfer m	-		\sim	he divide va	-
		(Prohibit	0: Stop	0: Continue		ansmit			01:5 010:	
		RMW)	1: Start	1: Abort	10:8 bits	traceive (01: 9 110:	
					transmi 11:8 bits re	t/receive eceive		111: Extern	nal clock SC	K0
	SBI0	1241H	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
SBI0DBR	buffer	(Prohibit			R (F		/ (Transmiss	sion)	$)) \sim$	
	register	RMW)	SA6	SA5	SA4	Unde SA3	efined SA2	SA1	SA0	ALS
			SAU	5A5	JA4		V SAZ	JAI	M SAU	ALS
I2C0AR	I ² CBUS0 Address	1242H	0	0	0	0	0	0	0	0
IZCUAR	register	(Prohibit RMW)						$\sum_{i=1}^{n}$		Address
	- g	,			Setti	ng slave ado	dress	$\langle \uparrow \rangle$		recognition 0: Enable
			1407	TDY		DAV			OWDOT	1: Disable
			MST	TRX	ВВ	PÍN	SBIM1 V	SBIM0	SWRST1	SWRST0
		l ² C	0	0	0	1		0	0	0
		mode	0: Slave	0: Receive	Start/Stop	INTSBE0	Operation	mode	Software r	eset
		1243H (Prohibit	1: Master	1: Transmit	condition	interrupt 0: Request	selection	do	generate w	
		RMW)			generation 0: Stop	1: Cancel	00: Port mo 01: SIO mo	de)1", then an set signal is
	SBI0				1: Start	$\langle \langle \rangle \rangle$	10: I ² C mod	de	generated.	-
SBI0CR2	control	\frown	$\langle \langle \rangle \rangle$			\rightarrow	11: Reserve SBIM1	ed SBIM0	_	_
	register 2				407		OBINIT		N	
		SIO		\sim	\sim	\leftarrow	0	0	0	0
		mode			\sum		Operation	mode	Always	Always
		1243H (Prohibit	\rightarrow	\square]		selection		write "0".	write "0".
	\sim	RMW)					00: Port mo 01: SIO mo			
	2~	\sum		\bigcap	\sim		10: I ² C mod	de		
	\square	\sim	MST	TRX	BB	PIN	11: Reserve	ed AAS	AD0	LRB
$\langle \rangle$))	INIS I		DB		AL R	AAS	ADU	LKR
		I ² C	> 0	0	0	. 1	0	0	0	0
$\langle \langle \langle \langle \rangle \rangle$		mode 1243H	0: Slave	0: Receive	Bus status	INTSBE0	Arbitration	Slave	General	Last
		(Prohibit	1: Master	1: Transmit	monitor 0: Free	interrupt 0: Request	lost detection	address match	call detection	receive bit monitor
	\searrow	RMW)	\searrow		1: Busy	1: Cancel	1: Detect	detection	1: Detect	0:0
SBI0SR	SBI0 status							monitor		1:1
ODIOOIX	register						SIOF	1: Detect SEF		
		SIO						R		
		mode					0	0		\square
		1243H					Transfer	Shift status		
		(Prohibit RMW)					status 0: Stopped			
		TNIVIV)					1: In	progress		
							progress			

		er far enfar								1
Symbol	Name	Address	7	6	5	4	3	2	1	0
		I ² C mode	-	I2SBI0						
		1 O mode	W	R/W	/	/				
		1244H	0	0						
SBI0BR0	SBI0 baud rate	(Prohibit RMW)	Always write "0".	IDLE2 0: Stop 1: Operate						
	register 0	SPI modo	-	-				$\underline{\gamma}$	\square	
		SBI mode 1244H	W	R/W				\mathcal{A}		
		(Prohibit	0	0			\sim	h	$\left(\right)$	
		RMW)	Always write "0".	Always write "0".			$\langle (($	(5)		
			P4EN	-	/	/	\neq			/
		1245H	V	V	/	/	Į			
0010004	SBI0		0	0	/	/				
SBI0BR1	baud rate register 1	(Prohibit RMW)	Clock control 0: Stop	Always write "0".		$\langle \langle$				7
			1: Operate			$\overline{\Omega}$	$\langle \rangle$		$\langle \rangle$	

I²C bus/serial channel (2/2)

(14) AD converter

Symbol	AD conve Name	Address	7	6	5	4	3	2	1	0
-,			EOCF	ADBF	_	_	ITMO	REPET	SCAN	ADS
				3			-	W	OUAN	ADO
			0	0	0	0	0	0	0	0
	AD mode		AD	AD	Always	Always	0: Every 1	Repeat	Scan mode	AD
ADMOD0	control	12B8H	conversion	conversion	write "0".	write "0".	time	mode	0: Fixed	conversion
	register 0		end flag	busy flag			1: Every 4 times	0: Single	channel mode	start
			1: End	1: Busy			unes	mode 1: Repeat	1: Channel	1: Start Always
								mode	scan mode	read as
			VREFON	I2AD	_		. ((ADCH2	ADCH1	"0" ADCH0
			VICEI ON	1240		R	w (Aboin	ADOIN
			0	0	0	0	0	0	0	0
	AD mode		Ladder	IDLE2	Always	Always	Always	Input chan		
ADMOD1	AD mode control	12B9H	resistance	0: Stop	write "0".	write "0".	write "0".	000: AN0	-	
ADMODI	register 1	120011	0: OFF 1: ON	1: Operate					$ANO \rightarrow AN1$ $ANO \rightarrow AN1$	× 4 N/2
	0						\sim		ANO \rightarrow AN1 ANO \rightarrow AN1	
						\square	\sim	AN3		
									$AN0 \rightarrow AN1$ $\rightarrow AN4$	\rightarrow AN2 \rightarrow
						\sim				ADTRG
			/	\sim	\sim	\sim				R/W
			/		X			$\nabla \mathcal{A}$		0
	AD mode							\sum		AD
ADMOD2	control	12BAH			$(\frown)]$	\sim		(\land)		external
	register 1				\sim			\mathcal{I}		trigger start
				$\leq \langle$						control
					\searrow					0: Disable
				$\left(\left(\right) \right)$				_	~	1: Enable
	AD result		ADR01	ADR00	\sim		\searrow			ADR0RF
ADREG0L	register 0 low	12A0H								R
			ADR09	ADR08	ADR07	ADR06				0 ADR02
ADREG0H	AD result register 0	12A1H	ADR09	ADRUO			ADR05	ADR04	ADR03	ADRUZ
	high)			efined			
	AD result		ADR11	ADR10	$+\overline{\mathcal{A}}$					ADR1RF
ADREG1L	register 1	12A2H		२ 🔿	R	\sim	\sim	\sim	\sim	R
	low		Unde	efined	ľ					0
	AD result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12
ADREG1H	register 1	12A3H					۲			
	high			() ==	\geq	Unde	efined		<u> </u>	400000
ADREG2L	AD result register 2	12A4H	ADR21	ADR20						ADR2RF
	low	12741		< efined						R 0
	AD result	/ ^	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG2H	register 2	12A5H))	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		R 701723	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
	high			I			efined			
	AD result		ADR31	ADR30						ADR3RF
ADREG3L	register 3	12A6H		२						R
	low		Unde	efined						0
	AD result		ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32
ADREG3H	register 3 high	12A7H					R			
	0		40004		<u> </u>	Unde	efined	<u> </u>	<u> </u>	
ADREG4L	AD result register 4	12A8H	ADR21	ADR20 R						ADR4RF R
	low	, (011		efined	\sim	\sim	\sim	\sim	\sim	0
	AD result		ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
ADREG4H	register 4	12A9H					3			
	high	-					efined			

	Naterido		7	C		A	0	0	4	0	
Symbol	Name	Address		6	5	4	3	2	1	0	
			WDTE	WDTP1	WDTP0		-	I2WDT	RESCR	-	
			R/W R/W 1 0 0 0 0 0						0	0	
WDMOD	WDT mode register	1300H	WDT control 1: Enable	WDT select time 00: 2 ¹⁵ /f _{IO} 01: 2 ¹⁷ /f _{IO} 10: 2 ¹⁹ /f _{IO} 11: 2 ²¹ /f _{IO}			Always	IDLE2 0: Stop 1: Operate	1: Internally	Always	
	WDT	1301H					-~ ((// 5)			
WDCR	control register	1301H Prohibit	W								
		RMW		ſ	31H: WDT d			T clear cod	e		

Symbol	Name	Address	7	6	5	4	3	2	1	0
- ,				SE6	SE5	SE4	SE3	SE2	SE1	SE0
SECR	Second		\sim	010	010	01.	R/W		011	010
	register	1320H	\sim	Undefined						
	-		"0" is read.	40 sec	20 sec	10 sec	8 sec	4 sec	2 sec	1 sec
			/	MI6	MI5	MI4	MI3	MI2	MI1	MIO
	Minute		\sim	-	-		R/W			-
MINR	register	1321H	\sim				Undefined	()	2	
			"0" is read.	40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.
			/	/	HO5	HO4	HO3	7 HO2	HO1	HO0
	Hour			R/W						
HOURR	register	1322H	/		Undefined					
	register	TOZZIT	"0" is	read.	20 hour (PM/AM)	10 hour	8 hour	4 hour	2 hour	1 hour
						\mathcal{A})/	WE2	WE1	WE0
DAYR	Day					4	1		R/W	>
BAIN	register	1323H					$\overline{\bigcirc}$	0	Undefined	
			_	~	"0" is read.			W2	\ ₩1∕	W0
					DA5	DA4	DA3	DA2	DA1	DA0
DATER	Date				(R/		<u> </u>	
	register	1324H						fined		
			"0" is	read.	20 day	10 day	8 day (4 day	2 day	1 day
		1325H				MO4	MO3	MO2	MO1	MO0
					\square		(7/	R/W		
	Month register							Undefined		
MONTHR		PAGE 0		"0" is read.	\rightarrow	10 month	8 month	4 month	2 month	1 month 0: Indicator
		PAGE 1	(("0" is read.				for 12 hours 1: Indicator for 24 hours
			YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0
	Year register	1326H				R/				
						Unde	efined	I	1	
YEARR		PAGE 0	80 year	40 year	20 year	10 year	8 year	4 year	2 year	1 year
		PAGE 1	"0" is read. "0" is read. Leap year setting 00: Leap year 01: One year after 10: Tow year after 11: Three year after						ear ar after ar after	
	\sim	2	INTENA		\int	ADJUST	ENATMR	ENAALM		PAGE
PAGER	Page register	1327H Prohibit RMW	R/W			W		/W		R/W
			0				Undefined			Undefined
\sim				"0" is	read.	0:Don't	Clock	Alarm	"0" is read.	PAGE
	$\$	RIVIV	0:disable 1:enable	\sim		care 1:Adjust	0:disable 1:enable	0:disable 1:enable		setting
$\langle -$	$ \geq $	(DIS1HZ	DIS16HZ	RSTTMR	RSTALM	RE3	RE2	RE1	RE0
		1328H								
RESTR	Reset register			Undefined						
			1 Hz	16 Hz	1: Reset	1: Reset	1	Always	write "O"	
	0	RMW	0:disable	0:disable	clock	alarm		Always	while 0.	

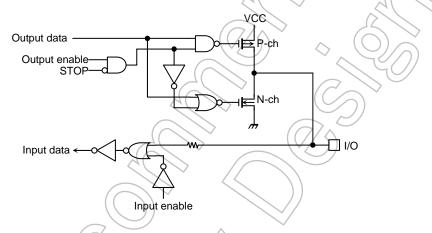
(16) RTC (Real time clock)

Symbol	Name	Address	7	6	5	4	3	2	1	0
,			AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
ALM	Alarm-	1330H	R/W							
	pattern register		0	0	0	0	0	0	0	0
	register					Alarm pa	attern set	~		
			FC1	FC0	ALMINV	-	_	\mathcal{A}	_	MELALM
			R/	W	R/W	R/W	R/W	R/W	R/W	R/W
	Melody/		0	0	0	0	0	(0)	> o	0
MELALMC	Alarm control register	1331H	Free-run co control 00: Hold 01: Restart 10: Clear 11: Clear &		Alarm frequency invert 1: Invert		Always	write "Q".)	Output frequency 0: Alarm 1: Melody
	Melody frequency L-register	1332H	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0
MELFL			R/W							
			0	0	0	0	0	0	0	0
					Melo	dy frequency				
	Melody frequency H-register	1333H	MELON			\mathcal{A}) ML11 (ML10	ML9	ML8
			R/W			\sim		R/		1 -
MELFH			0 Melody counter control 0: Stop & clear 1: Start			$h_{/ \gamma}$	0 Meloc	0 dy frequency	set (Upper	0 4 bits)
ALMINT	Alarm interrupt enable register	nable 1334H		\mathbb{N}		IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
					R/W			R/W		
				\mathcal{H}	0	0	0	0	0	0
			G		Always write "0".		ALM4 to INT	ALM0 alarm	interrupt er	nable

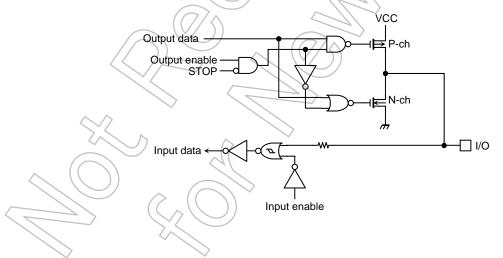
(17) Melody/alarm generator

6. Port Section Equivalent Circuit Diagram

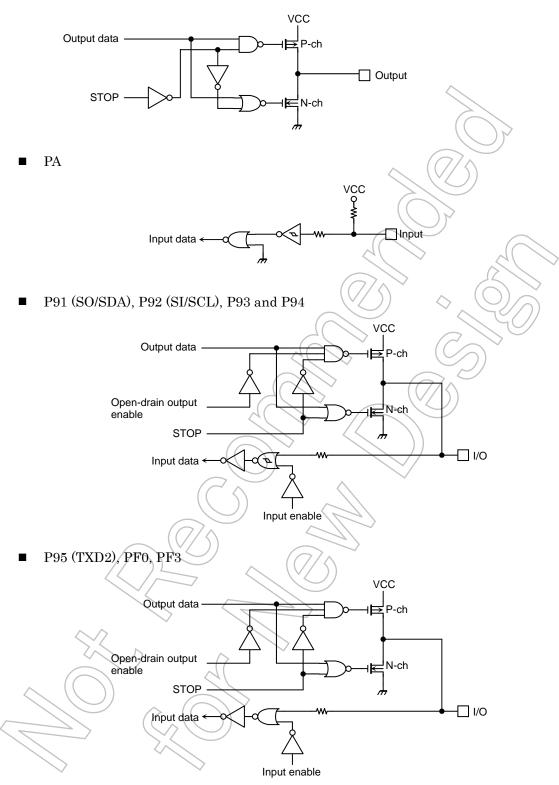
Reading the circuit diagram

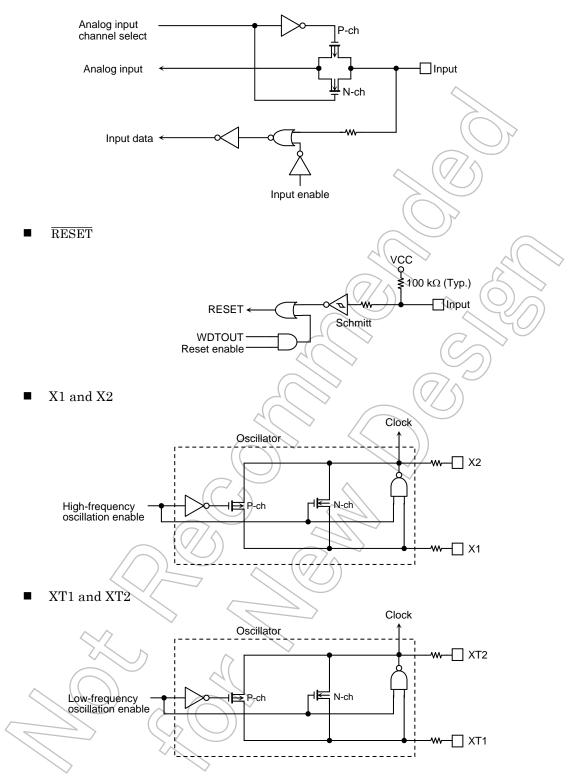

Basically, the gate symbols written are the same as those used for the standard CMOS logic IC [74HCXX] series.

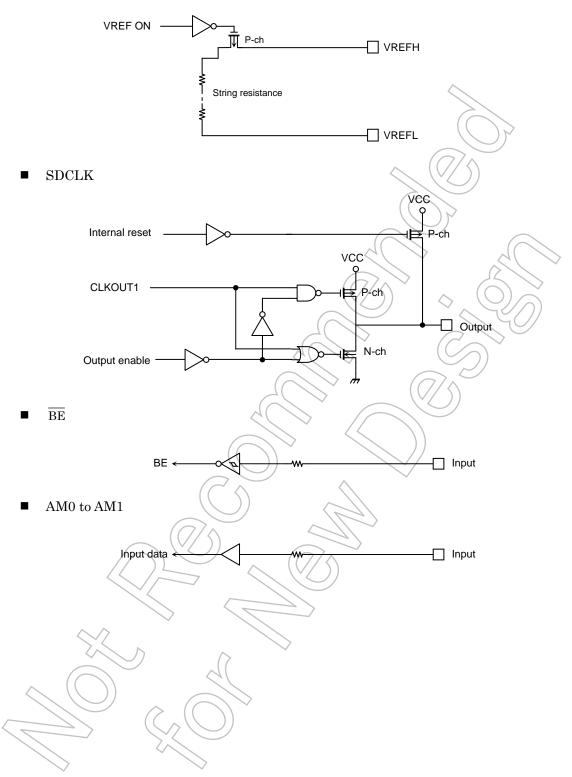
The dedicated signal is described below.


STOP: This signal becomes active "1" when the HALT mode setting register is set to the STOP mode and the CPU executes the HALT instruction. When the drive enable bit <DRVE> is set to "1", however, STOP remains at "0".

The input protection resistance ranges from several tens of ohms to several hundreds of ohms.


D0 to D7, P1 (D8 to D15), P2 (D16 to D23), P3 (D24 to D31), P4 (A0 to A7), P5 (A8 to A15), P6 (A16 to A23), P76 and PL0 to PL7


■ P90, P96, PC0, PC1, PC3, PC5, PC6, PF1, PF2, PF4, PF5


■ P70 to P75, P80 to P87, PJ0 to PJ7, PK0 to PK4 and PK6

■ PG (AN0 to AN4)

■ VREFH and VREFL

7. Points to Note and Restrictions

7.1 Notation

- (1) The notation for built-in/I/O registers is as follows register symbol <Bit symbol> Example: TA01RUN<TA0RUN> denotes bit TA0RUN of register TA01RUN.
- (2) Read-modify-write instructions (RMW)

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

```
Example 1:SET3, (TA01RUN); Set bit3 of TA01RUN.Example 2:INC1, (100H); Increment the data at 100H.
```

- Examples of read-modify-write instructions on the TLCS-900
 - Exchange instruction

EX (mem), R

Arithmetic operations

ADD	(mem), R/#
SUB	(mem), R/#
INC	#3, (mem)

ADC (mem), R/# SBC (mem), R/# DEC #3, (mem)

Logic operations

```
AND (mem), R/#
XOR (mem), R/#
```

OR (mem), R/#

```
Bit manipulation operations
```

```
      STCF#3/A, (mem)
      RES
      #3, (mem)

      SET
      #3, (mem)
      CHG
      #3, (mem)

      TSET#3, (mem)
      CHG
      #3, (mem)
```

```
Rotate and shift operations
```

RLC	(mem)		RRC	(mem)
RL	(mem)		RR	(mem)
SLA	(mem)	$\overline{)}$	SRA	(mem)
SLL	(mem)	al	SRL	(mem)
RLD	(mem)		RRD	(mem)

(3) fc, fs, fFPH, fSYS and one state

The clock frequency input on ins X1 and 2 is called f_{OSCH}. The clock selected by DFMCR0<ACT1:0> is called fc.

The clock selected by SYSCR1<SYSCK> is called f_{FPH}. The clock frequency give by f_{FPH} divided by 2 is called f_{SYS}.

One cycle of fSYS is referred to as one state.

7.2 Points to Note

(1) AM0 and AM1 pins

This pin is connected to the V_{CC} or the V_{SS} pin. Do not alter the level when the pin is active.

(2) EMU0 and EMU1

Open pins.

(3) Reserved address areas

The TMP92C820 does not have any reserved areas.

(4) Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

(5) Programmable pull-up resistance

The programmable pull-up resistor can be turned ON/OFF by a program when the ports are set for use as input ports. When the ports are set for use as output ports, they cannot be turned ON/OFF by a program. The data registers (e.g., P5) are used to turn the pull-up/pull-down resistors ON/OFF. Consequently read-modify-write instructions are prohibited.

(6) Watchdog timer

The watchdog timer starts operation immediately after a reset is released. When the watchdog timer is not to be used, disable it.

(7) AD converter

The string resistor between the VREFH and VREFL pins can be cut by a program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

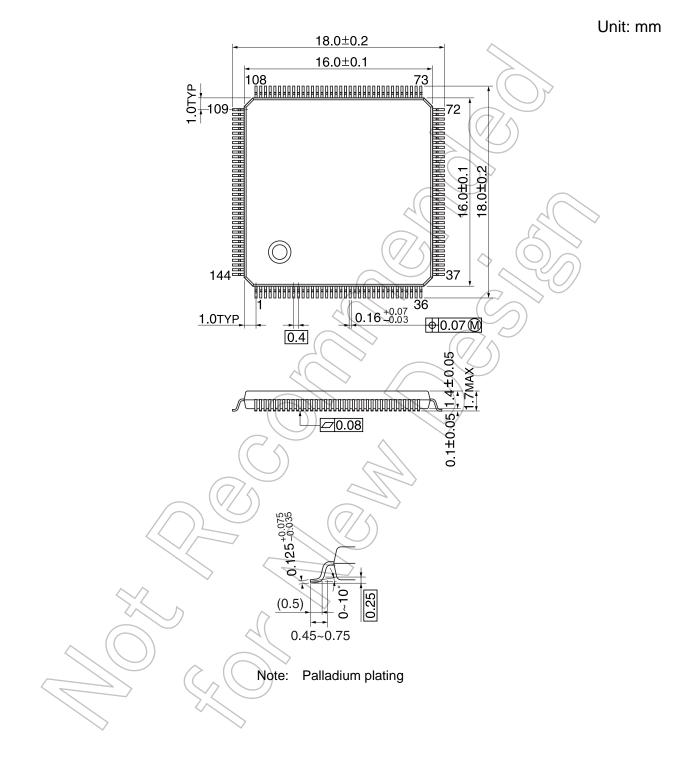
(8) CPU (Micro DMA)

Only the "LDC cr, r" and "LDC r, cr" instructions can be used to access the control registers in the CPU. (e.g., The transfer source address register (DMASn).)

(9) Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

(10) POP SR instruction


Please execute the POP SR instruction during DI condition.

(11) Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts = (INT0 to INT3, INTKEY, INTRTC and INTALM0 to INTALM4) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, release halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt. 8. Package Dimensions

P-LQFP144-1616-0.40C

