# TOSHIBA



Semiconductor Company

# Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

# \*\*CAUTION\*\* How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = ( $\overline{NMI}$ , INT0 to INT3, INTRTC, INTALM0 to INTALM4, INTKEY, INTVLD0 to INTVLD2), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f<sub>FPH</sub>) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

# CMOS 16-Bit Microcontrollers TMP91C016FG/JTMP91C016S

# 1. Outline and Features

TMP91C016 is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment.

TMP91C016FG comes in a 100-pin flat package. JTMP91C016S is a 100-pad-chip product. Listed below are the features.

- (1) High-speed 16-bit CPU (900/L1 CPU)
  - Instruction mnemonics are upward compatible with TLCS-90/900
  - 16 Mbytes of linear address space
  - General-purpose registers and register banks
  - 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
  - Micro DMA: 4 channels (592ns/ 2bytes at 27MHz)
- (2) Minimum instruction execution time: 148 ns (at 27 MHz)

# **RESTRICTIONS ON PRODUCT USE**

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

- (3) Built-in RAM: None Built-in ROM: None
- (4) External memory expansion
  - Expandable up to 105 Mbytes (Shared program/data area)
  - Can simultaneously support 8-/16-bit width external data bus: Dynamic data bus sizing
  - Separate bus system
- (5) 8-bit timers: 4 channels
- (6) General-purpose serial interface: 2 channels

Channel 0

- UART mode
- IrDA Ver.1.0 (115.2 kbps) mode selectable

Channel 1

- UART mode
- Synchronous mode selectable
- (7) LCD controller
  - Adapt to both Shift register type and Built in RAM type LCD driver
- (8) Timer for real time clock (RTC)
  - Based on TC8521A
- (9) Key-on wakeup (Interrupt key input)
- (10) Watchdog timer
- (11) Melody/alarm generator
  - Melody: Output of clock 4 to 5461 Hz
  - Alarm: Output of the 8 kinds of alarm pattern
  - Output of the 5 kinds of interval interrupt
- (12) Chip select/wait controller 4 channels

(13) MMU

• Expandable up to 105 Mbytes (4 local area/8 bank method)

(14) Display data reciprocal conversion function between the vertical and horizontal  $(8 \times 8)$ 

- (15) Interrupts: 40 interrupts
  - 9 CPU interrupts: Software interrupt instruction and illegal instruction

25 internal interrupts 7 priority levels are selectable

9 external interrupts: 7 priority levels are selectable

(among 4 interrupts are selectable edge mode)

(16) Input/output ports: 31 pins (at External 16-bit data bus memory)

(17) Standby function

Three HALT modes: IDLE2 (Programmable), IDLE1 and STOP

- (18) DRAM controller
  - $\overline{2CAS}$  mode
- (19) Voltage compare circuit: 3 channels

(20) Triple-clock controller

- Clock doubler (DFM) circuit is inside
- Clock gear function: Select a high-frequency clock fc/1 to fc/16
- Slow mode (fs = 32.768 kHz)

(21) Operating voltage

- VCC = 2.7 V to 3.6 V (fc max = 27 MHz)
- VCC = 1.8 V to 3.6 V (fc max = 10 MHz)

(22) Package

- 100-pin QFP: LQFP100-P-1414-0.50F
- Chip form supply also available. For details, contact your local Toshiba sales representative.



# 2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91C016, their names and functions are as follows:



Figure 2.1.1 Pin Assignment Diagram (100-pin QFP)

# 2.1.1 Pad Layout

| Table 2.1. | 1 PAD  | Lavout |
|------------|--------|--------|
|            | 1 1/10 | Layout |

| (Chip si   | ze 4.38 mm × 4 | 1.43 mm) |         |               |       |         |         |           |              |         | Unit: µm |
|------------|----------------|----------|---------|---------------|-------|---------|---------|-----------|--------------|---------|----------|
| Pin<br>No  | Name           | X Point  | Y Point | Pin<br>No     | Name  | X Point | Y Point | Pin<br>No | Name         | X Point | Y Point  |
| 1          | PB2            | -2057    | 1531    | 35            | P56   | -239    | -2082   | 69        | P21          | 2053    | 850      |
| 2          | VLDGND         | -2057    | 1417    | 36            | P60   | -125    | -2082   | 70        | P20          | 2053    | 964      |
| 3          | VLDVCC         | -2057    | 1303    | 37            | P61   | -11     | -2082   | 71 (      | A15          | 2053    | 1078     |
| 4          | P90            | -2057    | 990     | 38            | P62   | 103     | -2082   | 72        | A14          | 2053    | 1192     |
| 5          | P91            | -2057    | 876     | 39            | P63   | 217     | -2082   | 73        | A13          | 2053    | 1306     |
| 6          | P92            | -2057    | 762     | 40            | P64   | 331     | -2082   | 74        | )            | 2053    | 1420     |
| 7          | P93            | -2057    | 648     | 41            | P65   | 479     | -2082   | 75        | A11          | 2053    | 1534     |
| 8          | P94            | -2057    | 534     | 42            | P66   | 593     | -2082   | 76>       | A10          | 1503    | 2082     |
| 9          | P95            | -2057    | 420     | 43            | P67   | 707     | -2082   | 77        | A9           | 1389    | 2082     |
| 10         | P96            | -2057    | 306     | 44            | D0    | 821 ( ( | -2082   | 78        | A8 ((        | 1275    | 2082     |
| 11         | P97            | -2057    | 192     | 45            | D1    | 935     | -2082   | 79        | × ĄZ         | (1160)  | 2082     |
| 12         | P70            | -2057    | 55      | 46            | D2    | 1049    | -2082   | 80        | A6           | 1046    | 2082     |
| 13         | P71            | -2057    | -59     | 47            | D3    | 1163    | -2082   | 81        | (A5          | 932     | 2082     |
| 14         | P72            | -2057    | -174    | 48            | D4 <  | 1277    | -2082   | 82        | A4           | 818     | 2082     |
| 15         | P73            | -2057    | -290    | 49            | D5    | 1391    | -2082   | 83        | A3           | 704     | 2082     |
| 16         | PC3            | -2057    | -404    | 50            | D6    | 1505    | -2082   | 84        | ) A2         | 590     | 2082     |
| 17         | PC4            | -2057    | -521    | 51            | C (D2 | 2053    | -1534   | 85        | A1           | 476     | 2082     |
| 18         | PC5            | -2057    | -638    | 52            | P10   | 2053 <  | -1420   | 86        | A0           | 362     | 2082     |
| 19         | P52            | -2057    | -755    | 53 (          | P11   | 2053    | -1306   | 87        | RD           | 248     | 2082     |
| 20         | P53            | -2057    | -870    | 54            | P12   | 2053    | -1192   | 88        | WR           | 134     | 2082     |
| 21         | PB5            | -2057    | -991 /  | 55            | P13   | 2053    | -1078   | 89        | DVCC3        | 20      | 2082     |
| 22         | PB4            | -2057    | -1105   | 56            | ) P14 | 2053    | -964    | 90        | PD0          | -180    | 2082     |
| 23         | PB3            | -2057    | -1219   | 57            | P15   | 2053    | -850    | 91        | DVSS3        | -294    | 2082     |
| 24         | AM0            | -2057    | -1333   | 58            | P16   | 2053    | -736    | 92        | PD1          | -408    | 2082     |
| 25         | DVCC1          | -2057    | -1447   | 59            | P17 ( | 2053    | -606    | 93        | PD2          | -522    | 2082     |
| 26         | X2 🤇           | _1507    | -2082   | 60            | R27 V | 2053    | -450    | 94        | PD3          | -638    | 2082     |
| 27         | DVSS1          | -1342    | -2082   | 61            | P26   | 2053    | -295    | 95        | PD4          | -752    | 2082     |
| 28         | X1             | -1176    | 2082    | 62            | DVSS2 | 2053    | -140    | 96        | PD6          | -866    | 2082     |
| 29         |                | -1060    | -2082   | 63            | P74   | 2053    | 17      | 97        | PD7          | -980    | 2082     |
| 30         | RESET          | -946     | -2082   | 64            | DVCC2 | 2053    | 171     | 98        | VREF         | -1274   | 2082     |
| 31         | PC6            | -831     | -2082   | 65            | P25   | 2053    | 326     | 99        | PB0          | -1388   | 2082     |
| 32         | PC7            | -583     | -2082   | 66            | P24   | 2053    | 482     | 100       | PB1          | -1506   | 2082     |
| 33         | EMUO           | -467     | -2082   | 67            | P23   | 2053    | 622     |           | /            | $\sim$  |          |
| 34         | EMU1           | -353     | -2082   | 68            | P22   | 2053    | 736     | $\sim$    | $\backslash$ |         |          |
| $\swarrow$ |                |          |         | $\mathcal{D}$ |       |         |         |           |              |         |          |

# 2.2 Pin Names and Functions

The names of the input/output pins and their functions are described below.

| Pin Name   | Number<br>of Pins                 | I/O          | Functions                                                                                                |
|------------|-----------------------------------|--------------|----------------------------------------------------------------------------------------------------------|
| D0 to D7   | 8                                 | I/O          | Data (Lower): Bits 0 to 7 of data bus                                                                    |
| P10 to P17 | 8                                 | I/O          | Port 1: I/O port that allows I/O to be selected at the bit-level                                         |
|            |                                   |              | (When used to the external 8-bit bus)                                                                    |
| D8 to D15  |                                   | I/O          | Data (Upper): Bits 8 to15 of data bus                                                                    |
| P20 to P27 | 8                                 | Output       | Port 2: Output port                                                                                      |
| A16 to A23 |                                   | Output       | Address: Bits 16 to 23 of address bus                                                                    |
| A8 to A15  | 8                                 | Output       | Address: Bits 8 to 15 of address bus                                                                     |
| A0 to A7   | 8                                 | Output       | Address: Bits 0 to 7 of address bus                                                                      |
| RD         | 1                                 | Output       | Read: Strobe signal for reading external memory. P5 <rde>=0, output RD when reading internal area.</rde> |
| WR         | 1                                 | Output       | Write: Strobe signal for writing data to pins D0 to D7                                                   |
| P52        | 1                                 | I/O          | Port 52: I/O port (with pull-up resistor)                                                                |
| HWR        |                                   | Output       | High Write: Strobe signal for writing data to pins D8 to D15                                             |
| INT3       |                                   | Input        | Interrupt request pin 3: Interrupt request pin with programmable fising/falling                          |
| P53        | 1                                 | I/O          | Port 53: I/O port (with pull-up resistor)                                                                |
| WAIT       |                                   | Input        | Wait: Pin used to request CPU bus wait ((1 + N) WAIT mode)                                               |
| EXWR       |                                   | Output       | Ex write: Strobe signal for writing data for RAM                                                         |
| P56        | 1                                 | I/O          | Port-56: I/O port (with pull-up resistor)                                                                |
| R/W        |                                   | Output       | Read/write: 1 represents read or dummy cycle; 0 represents write cycle.                                  |
| MSK        |                                   | Input        | Request VEECLK clock for external LCD-driver.                                                            |
| P60        | 1                                 |              | Port 60: 1/O port (with pull-up resistor)                                                                |
|            |                                   | Output       | Chip select 0: Outputs 0 when address is within specified address area.                                  |
| P61        | 1                                 |              | Port 61: I/O port (with) pull-up resistor)                                                               |
|            | 1                                 | Output       | Chip select 1: Outputs when address is within specified address area                                     |
| CS2        | 1                                 | Output       | Chip select 2: Outputs 0 when address is within specified address area                                   |
| CS2A       |                                   | Output       | Expand chip select: 2A: Outputs 0 when address is within specified address                               |
|            | $\frown$                          | $(// \cdot)$ | area                                                                                                     |
| P63        |                                   | THO          | Port 63: 1/O port (with pull-up resistor)                                                                |
| CS3        | $\langle \langle \rangle \rangle$ | Output       | Chip select 3. Outputs 0 when address is within specified address area                                   |
| RAS        |                                   | Output       | Row address strobe: RAS strobe row address area for DRAM                                                 |
| P64        | 1                                 | 1/0          | Port 64: 1/O port (with pull-up resistor)                                                                |
| EA24       |                                   | Output       | Chip select 24: Outputs 0 when address is within specified address area                                  |
| CS2B       |                                   | Output       | Expand chip select 2B: Outputs 0 when address is within specified address area                           |
| P65        | 4                                 | 1/O ( )      | Port 65: I/O port (with pull-up resistor)                                                                |
| EA25       |                                   | Output       | Chip select 25: Outputs 0 when address is within specified address area                                  |
| CS2C       | ))                                | Output       | Expand chip select 2C: Outputs 0 when address is within specified address area                           |
|            |                                   |              | Lcd CI K: Command controll C/S for S/R type lcdd                                                         |
|            |                                   | Output       | Pomp-up CLK for external LCD driver                                                                      |
| P66        | 1                                 |              | Port 66: I/O port (with pull-up resistor)                                                                |
| UCAS       |                                   | Output       | Upper column address strobe: Upper CAS strobe for 2CAS type DRAM.                                        |
| UDS        |                                   | Output       | Upper data enable strobe                                                                                 |
| WE         |                                   | Output       | Write strobe for DRAM (only 8-bit access)                                                                |
| P67        | 1                                 | I/O          | Port 67: I/O port (with pull-up resistor)                                                                |
| LCAS       |                                   | Output       | Lower column address strobe: Upper CAS strobe for 2CAS type DRAM.                                        |
| LDS        |                                   | Output       | Lower data enable strobe                                                                                 |
| REFOUT     |                                   | Output       | Refresh cycle state singanl for DRAM (only 8-bit access)                                                 |

| Pin Name     | Number<br>of Pins | I/O          | Functions                                                                                 |
|--------------|-------------------|--------------|-------------------------------------------------------------------------------------------|
| P70          | 1                 | I/O          | Port 70: I/O port (with pull-up resistor)                                                 |
| SCOUT        |                   | Output       | System clock output: Selectable f <sub>FPH</sub> or fs                                    |
| TA1OUT       |                   | Output       | 8-bit timer output: Timer 0 or timer 1 out                                                |
| P71          | 1                 | I/O          | Port 71: I/O port (with pull-up resistor)                                                 |
| OPTTX0       |                   | Output       | SIO0 trance port                                                                          |
| CS2D         |                   | Output       | Expond chip select 2D: Outputs 0 when address is within specified address                 |
|              |                   |              | area                                                                                      |
| P72          | 1                 | I/O          | Port 72: I/O port (Shummit input, with pull-up/pull-down resistor)                        |
| OPTRX0       |                   | Input        | SIO0 receive port                                                                         |
| CS2E         |                   | Output       | Expond chip select 2E: Outputs 0 when address is within specified address area            |
| P73          | 1                 | I/O          | Port 73: I/O port (with pull-up resistor)                                                 |
| DRAMOE       |                   | Output       | DRAMOE: Strobe signal for reading external DRAM                                           |
| EXRD         |                   | Output       | External read: Strobe signal for reading external memory                                  |
| P74          | 1                 | I/O          | Port 74: I/O port (with pull-up resistor)                                                 |
| NMI          |                   | Input        | Non-maskable interrupt request pin:                                                       |
|              |                   |              | Interrupt request pin with programmable falling edge level or with both                   |
|              |                   |              | edge levels programmable                                                                  |
| WE           |                   | Output       | Strobe signal for writing data for DRAM (only 2CAS)                                       |
| CAS          |                   | Output       | Coulmn address strobe: Outputs 0 when address is within specified DRAM                    |
|              |                   |              | column address area (only 8 bits access)                                                  |
| P90 to P97   | 8                 | Input        | Port: 90 to 97 port: Pin used to input ports                                              |
| KIU to KI7   |                   | Input        | Key input 0 to Y. Pin used of key on wake-up 0 to 7                                       |
|              |                   |              | (Sonmitt Input, with pull-up resistor)                                                    |
| PB0          | 1                 | 1/0          | Port B0: I/O port (with pull-up resistor)                                                 |
| VLDO         |                   | Input        | Voltage level detector U. For main battery, interrupt request with edge, too              |
| PB1          | 1                 | 1/0          | Port B1: I/O port (with pull-up resistor)                                                 |
| VLD1         |                   | Input        | Voltage level detector 1: For back up/battery, interrupt request with edge, too           |
| PB2          | 1                 |              | Port B2: I/O port (with pull-up resistor)                                                 |
| VLD2         |                   | Input        | Voltage level detector 2: For micon battery, interrupt request with edge, too             |
| PB3          | 1                 | WO _         | Port B3: I/O port (Schmitt input, with pull-up resistor)                                  |
| INTO         |                   |              | level/rising/falling edge                                                                 |
| PB4 to PB5   | //2 )             | 1/0          | Port B4 to B5: //O port (Schmitt input, with pull-down resistor)                          |
| INT1 to INT2 |                   | Input        | Interrupt request pin 1 to 2: Interrupt request pin with programmable rising/falling edge |
| PC3          | 1                 | 1/0          | Port C3: #O port (with pull-up resistor)                                                  |
| TXD1         |                   | Output       | Serial 1 send data: Open-drain output pin by programmable                                 |
| PC4          | 1                 | I/O          | Port C4: I/O port (Schmitt input, with pull-up/pull-down resistor)                        |
| RXD1         | $\nabla \nabla$   | Input        | Serial 1 recive data                                                                      |
| PC5          |                   | I/O(         | Port C5: I/O port (Schmitt input, with pull-up/pull-down resistor)                        |
| SCLK1        | $\sum_{i=1}^{n}$  | I/O          | Serial clock I/O 1                                                                        |
| ন্থ্য //     |                   | Input        | Clear to send                                                                             |
| PC6          | 1 /               | > ( (I/O ) ) | Port C6: I/O port (Open-drain output)                                                     |
| XI1          |                   |              | Low-frequency oscillator connection pins                                                  |
| PCZ          | 1                 | 1/0          | Port C7: I/O port (Open-drain output)                                                     |
| XT2          |                   | Qutput       | Low-frequency oscillator connection pins                                                  |

| Pin Name   | Number<br>of Pins | I/O            | Functions                                                                        |
|------------|-------------------|----------------|----------------------------------------------------------------------------------|
| PD0        | 1                 | I/O            | Port D0: I/O port (with pull-up resistor)                                        |
| D1BSCP     |                   | Output         | LCD driver output pin                                                            |
| PD1        | 1                 | I/O            | Port D1: I/O port (with pull-up resistor)                                        |
| D2BLP      |                   | Output         | LCD driver output pin                                                            |
| PD2        | 1                 | I/O            | Port D2: I/O port (with pull-up resistor)                                        |
| D3BFR      |                   | Output         | LCD driver output pin                                                            |
| PD3        | 1                 | I/O            | Port D3: I/O port (with pull-up resistor)                                        |
| DLEBCD     |                   | Output         | LCD driver output pin                                                            |
| PD4        | 1                 | I/O            | Port D4: I/Ot port (with pull-up resistor)                                       |
| DOFFB      |                   | Output         | LCD driver output pin                                                            |
| PD6        | 1                 | I/O            | Port D6: I/O port (with pull-up resistor)                                        |
| ALARM      |                   | Output         | RTC alarm output pin                                                             |
| MLDALM     |                   | Output         | Logical invert for Melody/alarm output pin                                       |
| PD7        | 1                 | I/O            | Port D7: I/O port (with pull-up resistor)                                        |
| MLDALM     |                   | Output         | Melody/alarm output pin                                                          |
| AM0 to AM1 | 2                 | Input          | Operate mode:                                                                    |
|            |                   |                | Fixed to $AM1 = 0$ , $AM0 = 1.46$ -bit external bus or 8-/16-bit dynamic sizing. |
|            |                   |                | Fixed to $AM1 = 0$ , $AM0 = 0.8$ -bit external bus fixed.                        |
| EMU0       | 1                 | Output         | Open pin                                                                         |
| EMU1       | 1                 | Output         | Open pin                                                                         |
| RESET      | 1                 | Input          | Reset: Initializes TMP91C016. (with pull-up resistor)                            |
| VREF       | 1                 | Input          | Power supply pin for Low-frequency oscillator,)RTC and VLD.                      |
| VLDVCC     | 1                 |                | For VLD power supply pin                                                         |
| VLDVSS     | 1                 |                | For VLD: GND pins (0 V) (All pins should be connected with GND (0 V).)           |
| X1/X2      | 2                 | 6              | High-frequency oscillator connection pins                                        |
| DVCC       | 3                 |                | Power supply pins (All Vcc pins should be connected with the power Supply pin)   |
| DVSS       | 3                 | $\overline{C}$ | GND pins (0 V) (All pins should be connected with GND (0V).)                     |

# 3. Operation

This following describes block by block the functions and operation of the TMP91C016. Notes and restrictions for eatch book are outlined in 6. "Points of Note and Restrictions" at the end of this manual.

# 3.1 CPU

The TMP91C016 incorporates a high-performance 16-bit CPU (The 900/L1) CPU). For CPU operation, see the TLCS-900/L1 CPU.

The following describe the unique function of the CPU used in the TMP91C016; these functions are not covered in the TLCS-900/L1 CPU section.

# 3.1.1 Reset

When resetting the TMP91C016 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then set the  $\overline{\text{RESET}}$  input to low level at least for 10 system clocks (12 µs at 27 MHz).

Thus when turn on the switch, be set to the power supply voltage is within the operating voltage range, and that the internal high frequency oscillator has stabilized. Then hold the RESET input to low level at least for 10 system clocks.

Clock gear is initialized 1/16 mode by reset operation. It means that the system clock mode fsys is set to fc/32 (=  $fc/16 \times 1/2$ ).

When the reset is accept, the CPU:

- Sets as follows the program counter (PC) in accordance with the reset vector stored at address FFFF00H to FFFF02H:

PC<15:8> Value at FFFF01H address

PC<23:16 Value at FFFF02H address

- Sets the stack pointer (XSP) to 100H.
- Sets bits <IFF2:0> of the status register (SR) to 111 (Sets the interrupt level mask register to level 7).
- Sets the <MAX> bit of the status register (SR) to 1 (Max mode).
- (Note: As this product does not support Min mode, do not write a 0 to the <MAX>)
- Clears bits <RFP2:0> of the status register (SR) to 000 (Sets the register bank to 0).

When reset is released, the CPU starts executing instructions in accordance with the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports, and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general purpose input or output port mode.
- Note: The CPU internal register (except to PC, SR, XSP) and internal RAM data do not change by resetting.

Figure 3.1.1 is a reset timing chart of the TMP91C016.



Figure 3.1.1 TMP91C016 Reset Timing Chart

# 3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP91C016.



# 3.3 Triple Clock Function and Standby Function

TMP91C016 contains (1) clock gear, (2) clock doubler (DFM), (3) standby controller and (4) noise-reduction circuit. It is used for low-power, low-noise systems.

- This chapter is organized as follows:
  - 3.3.1 Block Diagram of System Clock
  - 3.3.2 SFRs
  - 3.3.3 System Clock Controller
  - 3.3.4 Prescaler Clock Controller
  - 3.3.5 Clock Doubler (DFM)
  - 3.3.6 Noise Reduction Circuits
  - 3.3.7 Standby Controller

The clock operating modes are as follows: (a) Single clock mode (X1, X2 pins only), (b) Dual clock mode (X1, X2, XT1 and XT2 pins) and (c) Triple clock mode (the X1, X2, XT1 and XT2 pins and DFM).





once, and then shift to STOR mode. (You should stop high frequency oscillator after you stop DFM.)

Figure 3.3.1 System Clock Block Diagram

The clock frequency input from the X1 and X2 pins is called fc, and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<SYSCK> is called the system clock  $f_{FPH}$ . The system clock  $f_{SYS}$  is defined as the divided clock of  $f_{FPH}$ , and one cycle of  $f_{SYS}$  is regret to as one state.

### 3.3.1 Block Diagram of System Clock



### 3.3.2 SFRs

|          |                           | 7                                                                                                                                           | 6                         | 5                                        | 4                                  | 3                              | 2                      | 1                         | 0                              |
|----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|------------------------------------|--------------------------------|------------------------|---------------------------|--------------------------------|
| SYSCR0   | Bit symbol                | XEN                                                                                                                                         | XTEN                      | RXEN                                     | RXTEN                              | RSYSCK                         | WUEF                   | PRCK1                     | PRCK0                          |
| (00E0H)  | Read/Write                |                                                                                                                                             |                           |                                          | R                                  | Ŵ                              |                        | $\sim$                    |                                |
|          | After reset               | 1                                                                                                                                           | 1                         | 1                                        | 0                                  | 0                              | 0                      | >0                        | 0                              |
|          | Function                  | High-<br>frequency                                                                                                                          | Low-<br>frequency         | High-<br>frequency                       | Low-<br>frequency                  | Selects clock<br>after release | Warm-up<br>timer       | Select presca<br>00: fFPH | ler clock                      |
|          |                           | 0: Stop                                                                                                                                     | 0: Stop                   | after release                            | after release                      | mode                           | 0: Write               | 01: Reserved              |                                |
|          |                           | 1: Oscillation                                                                                                                              | 1: Oscillation            | of STOP                                  | of STOP                            | 0: fc <                        | Don't care             | 11: Reserved              |                                |
|          |                           |                                                                                                                                             |                           | mode                                     | mode                               | 1: fs                          | timer                  |                           |                                |
|          |                           |                                                                                                                                             |                           | 1: Oscillation                           | 1: Oscillation                     |                                | 0: Read end            | $\geq$                    |                                |
|          |                           |                                                                                                                                             |                           |                                          |                                    |                                | 1: Read Do             |                           |                                |
|          |                           |                                                                                                                                             |                           |                                          |                                    |                                | not end<br>warm up     |                           | $\bigcirc$                     |
|          |                           | 7                                                                                                                                           | 6                         | 5                                        | 4                                  | 3                              | 2                      | 1                         | 0                              |
| SYSCR1   | Bit symbol                |                                                                                                                                             |                           |                                          |                                    | SYSCK                          | GEAR2                  | GEAR1                     | GEAR0                          |
| (00E1H)  | Read/Write                |                                                                                                                                             |                           |                                          |                                    | $\langle \rangle \rangle$      | Ŕ                      | w C                       | 2                              |
|          | After reset               |                                                                                                                                             |                           |                                          |                                    | O                              | 1                      | CO (                      | 4 (Ø/                          |
|          | Function                  |                                                                                                                                             |                           |                                          |                                    | Select                         | Select gear va         | alue of high fre          | quency (fc)                    |
|          |                           |                                                                                                                                             |                           |                                          | $\lambda($                         | 0: fc                          | 000.1C<br>001: fc/2 (( | $\sim$                    |                                |
|          |                           |                                                                                                                                             |                           |                                          | $\sim$                             | 1: fs                          | 010: fc/4              |                           |                                |
|          |                           |                                                                                                                                             |                           | ((                                       | $\sim \sim \sim$                   |                                | 011:/fc/8              | $\wedge$                  |                                |
|          |                           |                                                                                                                                             |                           | G                                        | $\sim$                             |                                | 101: (Reserve          | ed)                       |                                |
|          |                           |                                                                                                                                             |                           | $\leq \langle$                           | $\searrow$                         |                                | 110: (Reserve          | ed)                       |                                |
|          |                           | 7                                                                                                                                           | 0                         |                                          |                                    | $\langle \rangle$              | 111: (Reserve          | ed)                       | 0                              |
|          |                           |                                                                                                                                             | 0                         |                                          |                                    | 3                              |                        |                           |                                |
| SYSCR2   | Bit symbol                |                                                                                                                                             | SCOSEL                    |                                          |                                    | HALIMI                         |                        | SELDRV                    | DRVE                           |
| (002211) | After react               |                                                                                                                                             | R/W                       |                                          | R/W                                |                                | ~ R/W                  | R/W                       | R/W                            |
|          | Aller reset               |                                                                                                                                             |                           | Warm-up time                             |                                    | HALTmode                       |                        |                           | U<br>Pin state                 |
|          | Function                  |                                                                                                                                             |                           | 00: Reserved                             |                                    | 00: Reserved                   |                        | -DRVE-                    | control in                     |
|          |                           | (                                                                                                                                           |                           | 01: 2 <sup>8</sup> /inputted             | d frequency                        | 01: STOP mo                    | de                     | select                    | STOP/IDLE1                     |
|          |                           | $\bigcirc$                                                                                                                                  | $(\bigcirc)$              | 10: 2 <sup></sup><br>11: 2 <sup>16</sup> |                                    | 10: IDLE1 mo                   | de<br>de               | 0: STOP                   | mode<br>0 <sup>.</sup> I/O off |
|          |                           |                                                                                                                                             |                           | ~                                        | $\left( \left( // \right) \right)$ |                                | uc                     | 1: IDLE1                  | 1: Remains                     |
|          | $\langle \langle \rangle$ |                                                                                                                                             |                           |                                          |                                    |                                |                        |                           | the state                      |
|          |                           |                                                                                                                                             | /                         |                                          | $\backslash$                       |                                |                        |                           | before<br>HALT                 |
|          | Bit symbol                | $\searrow$                                                                                                                                  | /                         | $\mathcal{V}$                            |                                    | XT1VSEL                        | VLD2VSE                | VLD1VSE                   | VLD0VSE                        |
| (0449H)  | Read/Write                | $\sim$                                                                                                                                      | /                         |                                          | $\sim$                             | W                              | R/W                    | R/W                       | R/W                            |
|          | After reset               | 1                                                                                                                                           | /                         |                                          |                                    | 0                              | 0                      | 0                         | 0                              |
|          | Function                  | $\mathcal{D}$                                                                                                                               | . (7                      |                                          |                                    | 0: Vcc                         | 0: VLD don't           | 0: VLD don't              | 0: VLD don't                   |
| ~        | $( \bigcirc )$            |                                                                                                                                             | $\langle \langle \rangle$ |                                          |                                    | operation                      | use                    | use                       | use                            |
|          | $(\bigcirc)$              |                                                                                                                                             |                           | $\geq$                                   |                                    | operation                      | 1: VLD use             | 1: VLD use                | 1: VLD use                     |
|          | $\overline{\langle}$      | $\langle \rangle$                                                                                                                           | ()                        |                                          |                                    |                                |                        |                           |                                |
|          | Note1: SY                 | SCR1 <bit7< td=""><td>&gt;,SYSCR2</td><td>bit7&gt; are rea</td><td>ad as undefir</td><td>ned value.</td><td></td><td></td><td></td></bit7<> | >,SYSCR2                  | bit7> are rea                            | ad as undefir                      | ned value.                     |                        |                           |                                |
|          | Note2 <sup>·</sup> By     | reset. low-fr                                                                                                                               | equency osc               | illator becom                            | e to enable                        | condition                      |                        |                           |                                |

Figure 3.3.3 SFR for System Clock

| Symbol                    | Name        | Address |    | 7                                                            |      | 6           | 5            | 4             | 3                   | 2                         | 1                                      | 0          |
|---------------------------|-------------|---------|----|--------------------------------------------------------------|------|-------------|--------------|---------------|---------------------|---------------------------|----------------------------------------|------------|
|                           |             |         |    | ACT1                                                         |      | ACT0        | DLUPFG       | DLUPTM        |                     |                           |                                        |            |
|                           |             |         |    | R/W                                                          |      | R/W         | R            | R/W           | /                   | /                         | /                                      | /          |
|                           | DEM         |         |    | 0                                                            |      | 0           | 0            | 0             | /                   | Ł                         | /                                      | /          |
| DFMCR0                    | Control     | F8H     |    | DFM                                                          | LUP  | Select fFPH | Lockup       | Lockup time   |                     | $\geq$                    |                                        |            |
| 21.1.01.00                | Register 0  |         | 00 | STOP                                                         | STOP | fosch       | status flag  | 0: 212/fOSCH  |                     |                           | $\sum$                                 |            |
|                           | · · · · · · |         | 01 | RUN                                                          | RUN  | fosch       | 0: End       | 1: 210/fosch  |                     |                           | $\mathcal{Y}$                          |            |
|                           |             |         | 10 | RUN                                                          | STOP | fdfm        | 1: Not end   |               |                     | $\overline{\Omega}$       |                                        |            |
|                           |             |         | 11 | RUN                                                          | STOP | fosch       |              |               | $\wedge$            | $\left( / / \leq \right)$ |                                        |            |
|                           |             |         |    | D7                                                           |      | D6          | D5           | D4            | D3                  | D2                        | D1                                     | D0         |
|                           | DEM         |         |    | R/W                                                          |      | R/W         | R/W          | R/W           | R/W                 | R/W                       | R/W                                    | R/W        |
| DFMCR1 Control<br>Registe | Control     | FOH     |    | 0                                                            |      | 0           | 0            | 1             | 6                   | ) MO                      | 1                                      | 1          |
|                           | Register 1  | 2311    |    | DFM revision                                                 |      |             |              |               |                     |                           |                                        |            |
|                           | rtegister i |         |    | Input frequency 4 to 6.75 MHz (at 2.7 V to 3.6 V): Write 0BH |      |             |              |               |                     |                           |                                        |            |
|                           |             |         |    |                                                              |      | Inp         | ut frequency | / 2 to 2.5 MH | $z$ (at 2.0 $\pm$ 1 | 0%): Write 1              | BĦ </td <td><math>\searrow</math></td> | $\searrow$ |

Figure 3.3.4 SFR for DFM

Limitation point on the use of DFM

- 1. It's prohibited to execute DFM enable/disable control in the SLOW mode (fs) (write to DFMCR0<ACT1:0> = "10"). You should control DFM in the NØRMAL mode.
- 2. If you stop DFM operation during using DFM (DEMCR0<ACT1:0> = "10"), you shouldn't executions should be separated into two procedures as showing below.
  - LD (DFMCR0), COH ; Change the clock f<sub>DFM</sub> to f<sub>OSCH</sub>
  - LD (DFMCR0), 00H
- ; DFM stop

3. If you stop high frequency oscillator during using DFM (DFMCR0<ACT1:0> = "10"), you should stop DFM before you stop high requency oscillator.

Please refer to 3.3.5 "Clock Doubler (DFM)" for the details.

|         | //            | 7                                                                                                                                   | 6                                                                                             | 5               | 4              | 3                    | 2                 | 1             | 0                                 |
|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|----------------|----------------------|-------------------|---------------|-----------------------------------|
| EMCCR0  | Bit symbol    | PROTECT                                                                                                                             | -                                                                                             | -               | -              | -                    | EXTIN             | DRVOSCH       | DRVOSCL                           |
| (00E3H) | Read/Write    | R                                                                                                                                   | R/W                                                                                           | R/W             | R/W            | R/W                  | R/W               | R/W           | R/W                               |
|         | After reset   | 0                                                                                                                                   | 0                                                                                             | 1               | 0              | 0                    | 0                 | <             | 1                                 |
|         | Function      | Protect flag                                                                                                                        | Always                                                                                        | Always          | Always         | Always               | 1: External       | fc oscillator | fs oscillator                     |
|         |               | 0: OFF                                                                                                                              | Write "0"                                                                                     | Write "1"       | Write "0"      | Write "0"            | clock             | drivability   | drivability                       |
|         |               | 1: ON                                                                                                                               |                                                                                               |                 |                |                      |                   | 1: Normal     | Normal                            |
|         |               |                                                                                                                                     |                                                                                               |                 |                |                      |                   | 0: Weak       | 0: Weak                           |
| EMCCR1  | Bit symbol    |                                                                                                                                     |                                                                                               |                 |                |                      | ~ ((              | $7/ \land$    |                                   |
| (00E4H) | Read/Write    |                                                                                                                                     | 0                                                                                             | - 41            |                | ›<br>: المع المع الم |                   |               |                                   |
|         | After reset   |                                                                                                                                     | Switchin                                                                                      | g the protect   | ON/OFF by      |                      | wing 1st key,     | 2nd key       |                                   |
|         | Function      |                                                                                                                                     | ISL Ke                                                                                        |                 |                |                      | in succession     | write         |                                   |
| EMCCR2  | Bit symbol    |                                                                                                                                     | ZHU KE                                                                                        | Y. ENICCRI      | = AOH, EIVIC   | JURZ = SAN           |                   | I write       |                                   |
| (00E5H) | Read/Write    |                                                                                                                                     |                                                                                               |                 |                | ((                   | $\overline{)}$    |               | $\bigcirc$                        |
|         | After reset   |                                                                                                                                     |                                                                                               |                 |                | $\leq \langle$       | $\searrow$        | 4             | $\langle \langle \rangle \rangle$ |
|         | Function      |                                                                                                                                     |                                                                                               |                 |                |                      | $\searrow$        | $\Omega$      |                                   |
| EMCCR3  | Bit symbol    | /                                                                                                                                   | ENFROM                                                                                        | ENDROM          | ENPROM         | 1740                 | FFLAG             | DFLÁG         | PFLAG                             |
| (00E6H) | Read/Write    |                                                                                                                                     | R/W                                                                                           | R/W             | R/W            | $\forall Q$          | R/W <             | R/W           | /R/W)                             |
|         | After reset   |                                                                                                                                     | 0                                                                                             | 0               | 0              | $\sim$               | 0                 |               | - (Ø/                             |
|         | Function      |                                                                                                                                     | CS1A area                                                                                     | CS2B-2G         | CS2A area      | $\sim$               | CS1A write        | CS2B-2G       | CS2A write                        |
|         |               |                                                                                                                                     | detect                                                                                        | area detect     | detect         |                      | operation (       | write         | operation                         |
|         |               |                                                                                                                                     | control                                                                                       | control         | control        | $\sim$               | flag              | opération     | flag                              |
|         |               |                                                                                                                                     | 0: Disable                                                                                    | 0: Disable      | 0: Disable     |                      | $\left( \right) $ | flag          |                                   |
|         |               |                                                                                                                                     | 1: Enable                                                                                     | 1: Enable       | 1: Enable      |                      | When readin       | g))           |                                   |
|         |               |                                                                                                                                     |                                                                                               | $\mathcal{A}()$ |                |                      | 0: Not writter    |               |                                   |
|         |               |                                                                                                                                     |                                                                                               |                 |                |                      | 1: Written        |               |                                   |
|         |               |                                                                                                                                     |                                                                                               | $\bigcirc$      | $\sim$         |                      | When writing      | I             |                                   |
|         |               |                                                                                                                                     |                                                                                               | ()              |                |                      | 0: Clear flag     |               |                                   |
| EMCCR4  | Bit symbol    |                                                                                                                                     | $\langle$                                                                                     | $\searrow$      |                |                      | $\neq$            | TA3MLDE       | <b>TA3LCDE</b>                    |
| (00E7H) | Read/Write    |                                                                                                                                     | $\neg \leftarrow$                                                                             | $\searrow$      |                | $\sim$               | /                 | R/W           | R/W                               |
|         | After reset   |                                                                                                                                     | ł                                                                                             | +               | 4              | $\mathcal{M}$        |                   | 0             | 0                                 |
|         | Function      |                                                                                                                                     |                                                                                               | $\mathcal{D}$   |                | $\langle \rangle$    |                   | MLD CLK:      | LCD CLK:                          |
|         |               | (                                                                                                                                   | $(// \land$                                                                                   |                 |                | $\Delta \setminus$   |                   | 0: 32 kHz     | 0: 32 kHz                         |
|         |               | $\bigcirc$                                                                                                                          | $\langle \bigcirc \rangle$                                                                    |                 | $\bigcap$      | $\geq$               |                   | 1: TA3        | 1: TA3                            |
|         | Note1: /n     | case restart                                                                                                                        | ing the oscil                                                                                 | lator/in the s  | top oscillatio | n state (e.g.        | Restart the       | oscillator in | STOP mode).                       |
|         | EM            | CCR0 <drvc< td=""><td>DSCH&gt;. <dr< td=""><td>VOSCL&gt;="1</td><td></td><td></td><td></td><td></td><td> /,</td></dr<></td></drvc<> | DSCH>. <dr< td=""><td>VOSCL&gt;="1</td><td></td><td></td><td></td><td></td><td> /,</td></dr<> | VOSCL>="1       |                |                      |                   |               | /,                                |
|         | Note2: W      | hen VCC=2                                                                                                                           | /+10% set ⊭                                                                                   | MCCRO           | WOSCH> to      | "1"                  |                   |               |                                   |
|         | NUICZ. W      |                                                                                                                                     | - 10 /0, SELĘ                                                                                 |                 |                |                      |                   |               |                                   |
|         | $\land \land$ |                                                                                                                                     |                                                                                               |                 |                |                      |                   |               |                                   |
|         | $\sum$        |                                                                                                                                     | Figure                                                                                        | -335 SF         |                | se Reducti           | on                |               |                                   |
|         |               |                                                                                                                                     |                                                                                               |                 |                |                      |                   |               |                                   |

### 3.3.3 System Clock Controller

The system clock controller generates the system clock signal (fsys) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR0:2> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings  $\langle XEN \rangle = 1$ ,  $\langle XTEN \rangle = 0$ ,  $\langle SYSCK \rangle = 0$  and  $\langle GEAR0:2 \rangle = 100$  will cause the system clock (f<sub>SYS</sub>) to be set to fc/32 (fc/16 × 1/2) after a Reset.

For example, fSYS is set to 0.84 MHz when the 27-MHz oscillator is connected to the X1 and X2 pins. And TMP91C016 has another power terminal: VREF except DVCC, this VREF power terminal supply to low-frequency oscillator operation and reference voltage for VLD operation. That can controll low-frequency oscillator's power DVCC or VREF by VLDCTL<XTVSEL>.

(1) Switching from NORMAL mode to SLOW mode

When the resonator is connected to the X1 and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

The warm-up time can be selected using SYSCR2<WUPTMO.1>.

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

Table 3.3.1 shows the warm up time.

Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.

Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time,

| Warm-up Time<br>SYSCR2<br><wurtm1:0></wurtm1:0> | Change to<br>NORMAL Mode | Change to<br>SLOW Mode | at |
|-------------------------------------------------|--------------------------|------------------------|----|
| 01 (2 <sup>8</sup> /frequency)                  | 9.0 μs                   | 7.8 ms                 |    |
| 10 (2 <sup>14</sup> /frequency)                 | 0.607 ms                 | 500 ms                 |    |
| 11 (2 <sup>16</sup> /frequency)                 | 2.427 ms                 | 2000 ms                |    |

Table 3.3.1 Warm-up Times

fOSCH = 27 MHz, fs = 32.768 kHz





(2) Clock gear controller

When the high-frequency clock fc is selected by setting SYSCR1<SYSCK> = 0, fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR0:2> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

Example 3: Changing to a high-frequency gear

| SYSCR1 | EQU | 00E1H  |
|--------|-----|--------|
|        | LD  | (SYSCI |
|        | LD  | (SYSCI |

SCR1), XXXX0000B ; Changes f<sub>SYS</sub> to fc/2. SCR1), XXXX0100B ; Changes f<sub>SYS</sub> to fc/32

#### X: Don't care

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary the warm-up time until changing after writing the register value.

There is the possibility that the instruction next to the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction next to the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (Instruction to execute the write cycle).

#### Example:

|               |                                                                                                                   | $\frown$                     |                   |                                   |                |
|---------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-----------------------------------|----------------|
| SYSCR1        | EQU                                                                                                               | 00E1H                        |                   |                                   |                |
|               | LD                                                                                                                | (SYSCR1), XXXX0001B          | ;                 | Changes f <sub>SYS</sub> to fc/4. |                |
|               | LD                                                                                                                | (DUMMY), OOH                 | ;                 | Dummy instruction                 | _              |
|               | Instructi                                                                                                         | on to be executed after cloc | k gea             | ar has changed                    | ]              |
|               |                                                                                                                   | $(\bigcirc)$                 | $\langle \rangle$ | $\sim$                            | _              |
|               | 6                                                                                                                 |                              |                   |                                   |                |
| (3) Internal  | l clock/t                                                                                                         | erminal out function         |                   | 77                                |                |
| It can        | outint                                                                                                            | ernal clock (frpH or f       | )<br>fr           | om P70 (TA10UT                    | SCOUT)         |
|               |                                                                                                                   |                              | )                 |                                   | 50001).        |
| P70/p         | in funct                                                                                                          | ion is set to SCOUT (        | əutr              | but by the following              | g bit setting. |
| : <b>P</b> 76 | R <p70< td=""><td>F&gt; = 1, P7FC<p70f></p70f></td><td>=0</td><td>, P7FC2<p70f2>=</p70f2></td><td>: 1</td></p70<> | F> = 1, P7FC <p70f></p70f>   | =0                | , P7FC2 <p70f2>=</p70f2>          | : 1            |
| Outru         | ut clock                                                                                                          | select                       |                   |                                   |                |

Refer to SYSCR2<SCOSED> bit setting

| Table 3.3.2 | SCOUT | Output | Condition  |
|-------------|-------|--------|------------|
| 10010 Q.O.L | 0000. | ouput  | Contaition |

|             | HALT Mode           | NORMAL Mode |              | HALT Mode      |           |  |
|-------------|---------------------|-------------|--------------|----------------|-----------|--|
| $\langle =$ | SCOUT Select        | SLOW Mode   | IDLE2 Mode   | IDEL1 Mode     | STOP Mode |  |
|             | <scosel>=0</scosel> |             | fs clock out |                |           |  |
|             | SCOSEL> = 1         | fFPH clo    | ock out      | 0 or 1 fix out |           |  |

### 3.3.4 Prescaler Clock Controller

For the internal I/O (TMRA01 to TMRA23, SIO0 to SIO1, SBI) there is a prescaler which can divide the clock.

The  $\phi$ T clock input to the prescaler is either the clock fFPH divided by 2 or the clock fc/16 divided by 2. The setting of the SYSCR0<PRCK0:1> register determines which clock signal is input.

The  $\phi$ T0 clock input to the prescaler is either the clock fFPH divided by 4 or the clock fc/16 divided by 4. The setting of the SYSCR0<PRCK0:1> register determines which clock signal is input.

### 3.3.5 Clock Doubler (DFM)

DFM outputs the f<sub>DFM</sub> clock signal, which is four times as fast as f<sub>OSCH</sub>. It can use the low-frequency oscillator, even though the internal clock is high-frequency.

A reset initializes DFM to stop status, setting to DFMCR0 register is needed before use. Like an oscillator, this circuit requires time to stabilize. This is called the lock up time. The following example shows how DFM is used.



 $f_{OSCH} = 2$  to 2.5 MHz (Vcc = 2.0 V  $\pm$  10%): Write 1BH to DFMCR1

#### Limitation point on the use of DFM

- 1. It's prohibited to execute DFM enable/disable control in the SLOW mode (fs) (Write to DFMCR0<ACT1:0> = "10"). You should control DFM in the NORMAL mode.
- 2. If you stop DFM operation during using DFM (DFMCRO<ACT1:0> = "10"), you shouldn't execute the commands that change the clock fDFM to fOSCH and stop the DFM at the same time. Therefore the above execution should be separated into two procedures as showing below.
- 3. If you stop high frequency oscillator during using DFM (DFMCR0<ACT1:0> = "10"), you should stop DFM before you stop high frequency oscillator.



ĻÚΡ:

(1) Start-up/change control

(OK) Low-frequency oscillator operation mode (fs) (High-frequency oscillator STOP)  $\rightarrow$  High-frequency oscillator start up  $\rightarrow$  High-frequency oscillator operation mode (fosch)  $\rightarrow$  DFM start up  $\rightarrow$  DFM use mode (f<sub>DFM</sub>)

|      | LD     | (SYSCR0), 111B; High-frequency oscillator start-up/warm-up start               |
|------|--------|--------------------------------------------------------------------------------|
| WUP: | BIT    | 2, (SYSCRO) ; Check for the flot of warm up and                                |
|      | JR     | NZ, WUP ; Check of the hag of warn-up end                                      |
|      | LD     | (SYSCR1),0B, Change the system clock fs to f <sub>OSCH</sub>                   |
|      | LD     | (DFMCR0), 01 - 0 B ; DFM start-up/lockup start                                 |
| LUP: | BIT    | 5, (DFMCR0)                                                                    |
|      | JR     | (NZ, LUP ;) Check for the hag of lock up end                                   |
|      | LD     | (DFMCR0), 10-0B; Change the system clock f <sub>OSCH</sub> to f <sub>DFM</sub> |
|      | $\sim$ |                                                                                |

(OK) Low-frequency oscillator operation mode (fs) (High-frequency oscillator Operator)  $\rightarrow$  High-frequency oscillator operation mode (fOSCH)  $\rightarrow$  DFM (start up  $\rightarrow$  DFM use mode (fDFM)

(OK) Low-frequency oscillator operation mode (f<sub>s</sub>) (High-frequency oscillator STOP)  $\rightarrow$  High-frequency oscillator start up  $\rightarrow$  DFM start up  $\rightarrow$  DFM use mode (fDFM)

| WUP! |      | (SYSCR0),<br>2, (SYSCR0)<br>NZ, WUP | 11B ; High-frequency oscillator start up/warm-up start<br>;<br>;<br>} Check for the flag of warm-up end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------|------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | LP . | (DFMCR0),                           | 01 - 0 B ; DFM start-up/lockup start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LUP: | BIT  | 5, (DFMCR0)                         | ; Check for the flag of look up and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | JR   | NZ, LUP                             | ; $\int C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = C f = $ |
|      | LD   | (DFMCR0),                           | 10 - 0 B ; Change the system clock $f_{OSCH}$ to $f_{DFM}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | LD   | (SYSCR1),                           | 0 B ; Change the system clock fs to f <sub>DFM</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(2) Change/stop control (OK) DFM use mode (fDFM)  $\rightarrow$  High-frequency oscillator operation mode  $(fOSCH) \rightarrow DFM \text{ stop} \rightarrow Low-frequency oscillator operation mode (fs) \rightarrow$ High-frequency oscillator stop (DFMCR0), 11----B; Change the system clock fDFM to fOSCH LD LD (DFMCR0), 00----B; DFM stop (SYSCR1), ----1---B ; Change the system clock fOSCH to fs LD LD (SYSCR 0), 0 - - - - - B ; High-frequency oscillator stop (OK) DFM use mode ( $f_{DFM}$ )  $\rightarrow$  Low-frequency oscillator operation mode (fs)  $\rightarrow$ DFM Stop  $\rightarrow$  High-frequency oscillator stop ) LD (SYSCR1), ----1---B; Change the system clock fDFM to fs (DFMCR0), 11-----B ; Change the system clock fDFM to fOSCH LD LD (DFMCR0), 00----B; DFM stop (SYSCR 0), 0 - - - - - B ; High-frequency oscillator stop LD (OK) DFM use mode (f<sub>DFM</sub>)  $\rightarrow$  Set the STOP mode  $\rightarrow$  DFM stop  $\rightarrow$  HALT (High-frequency oscillator stop) (SYSCR2), ----01-(-B; Set STOP mode LD (This command can execute before use of DFM) ---B; Change the system clock for M to fosch LD (DFMCR0). 11 - -- - B; DFM stop LD (DFMCR0), 00/ HALT ; Shift to STOP mode (OK) DFM use (mode ( $f_{DFM}$ )  $\rightarrow$  Set the STOP mode  $\rightarrow$  HALT (High-frequency oscillator stop) LD (SYSCR2), 01 - - B ; Set STOP mode (This command can execute before use of DFM) Shift to STOP mode HALT

#### 3.3.6 Noise Reduction Circuits

Noise reduction circuits are built in, allowing implementation of the following features.

- (1) Reduced drivability for high-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator
- (3) Single drive for high-frequency oscillator
- (4) SFR protection of register contents
- (5) ROM protection of register contents

The above functions are performed by making the appropriate settings in the EMCCR0 to EMCCR3 registers.

(1) Reduced drivability for high-frequency oscillator (Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)



(Setting method) The drivability of the

The drivability of the oscillator is reduced by writing 0 to EMCCR0<DRVOSCH> register. By reset, <DRVOSCH> is initialized to 1 and the oscillator starts oscillation by normal-drivability when the power-supply is on. When VCC=2V±10%, don't set EMCCR0<DRVOSCH> to "0". (2) Reduced drivability for low-frequency oscillator

### (Purpose)

Reduces noise and power for oscillator when a resonator is used.



(4) Runaway provision with SFR protection register

#### (Purpose)

Provision in runaway of program by noise mixing.

Write operation to specified SFR is prohibited so that provision program in runaway prevents that it is it in the state which is fetch impossibility by stopping of clock, memory control register (CS/WAIT controller, MMU) is changed.

And error handling in runaway becomes easy by INTPO interruption.



(Operation explanation)

Execute and release of protection (Write operation to specified SFR) become possible by setting up a double key to EMCCR1 and EMCCR2 register.

### (Double key)

1st-KEY: Succession writes in 5AH at EMCCR1 and A5H at EMCCR2 2nd-KEY: Succession writes in A5H at EMCCR1 and 5AH at EMCCR2

A state of protection can be confirmed by reading EMCCR0<PROTECT>.

By reset, protection becomes OFF.

And INTPO interruption occurs when write operation to specified SFR was executed with protection ON state.

(5) Runaway provision with ROM protection register

#### (Purpose)

Provision in runaway of program by noise mixing.

#### (Operation explanation)

When write operation was executed for external three kinds of ROM by runaway of program, INTP1 is occurred and detects runaway function.

Three kinds of ROM is fixed as for Flash ROM (Option program ROM), Data ROM, Program ROM are as follows on the logical address memory map.

- 1. Flash ROM: Address 400000H to 7FFFFFH
- 2. Data ROM: Address 800000H to BFFFFFH
- 3. Program ROM: Address C00000H to FFFFFFH

For these address, admission/prohibition of detection of write operation sets it up with EMCCR3<ENFROM, ENDROM, ENPROM> And INTP1 interruption occurred within which ROM can confirm each with EMCCR3<FFLAG, DFLAG, PFLAG>. This flag is cleared when write in 0.

#### (6) <EMCCR4> register explanation

It is assigned <TA3LCDE> at bit0 and <TA3MLDE> at bit1, of EMCCR4 register (00E7hex). These bits are used when you want to operate LCDD and MELODY circuit without low-frequency clock (XTIN, XTOUT). After reset these two bits set to 0 and low clock is supplied each LCDD and MELODY circuit. If you write these bits to 1, TA3 (Generate by timer 3) is supplied each LCDD and MELODY circuit. In this case, you should set 32 kHz timer 3 frequency. For detail, look AC specification characteristics.

### 3.3.7 Standby Controller

(1) HALT modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

a. IDLE2: Only the CPU HALTs.

The internal I/O is available to select operation during IDLE2 mode. By setting the following register.

Table 3.3.3 shows the registers of setting operation during IDLE2 mode.

| Table 3.3.3 | SFR Seting ( | Operation | During I | DĽ(Ę | 2 Mo | ġġ |
|-------------|--------------|-----------|----------|------|------|----|
|-------------|--------------|-----------|----------|------|------|----|

| Internal I/O | SFR                       | /            |
|--------------|---------------------------|--------------|
| TMRA01       | TA01RUN <i2ta01></i2ta01> |              |
| TMRA23       | TA23RUN <i2ta23></i2ta23> |              |
| SIO0         | SC0MOD1 280               | . (          |
| SIO1         | SC1MOD1<251>              | $\bigcirc$ ( |
| WDT          | WDMQD <i2wdt></i2wdt>     |              |
|              |                           | _ \          |

- b. IDLE1: Only the oscillator and the RTC (Real time clock) and MLD continue to operate.
- c. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.3.4.

| STOP     |  |  |
|----------|--|--|
| 01       |  |  |
|          |  |  |
| .3.8 are |  |  |
|          |  |  |
|          |  |  |
| Stop     |  |  |
| le       |  |  |
|          |  |  |
|          |  |  |
| -        |  |  |

### Table 3.3.4 I/O Operation During HALT Modes

Note: It is only self refresh mode of DRAM. It can't move normal operation and interval refresh mode of DRAM.

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination between the states of interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.5.

• Released by requesting an interrupt



The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of interrupt mask register, the interrupt due to the source is processed after releasing the HALT mode, and CPU status executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is not executed. (In non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.) However only for INT0 to INT3, INTRTC, INTALM0 to INTALM4, INTKEY interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt request level set before executing the HALT instruction is less than the value of the interrupt request level of the interrupt request level of the mask register.) However, only for INT0 to INT3, INTRTC, INTALM0 to INTALM4, INTKEY interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the the HALT mode is executed. In this case, interrupt processing, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at 1.

Note: Usually, interrupts can release all halts status. However, the interrupts (NMI, INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4, INTVLD0 to INTVLD2) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f<sub>FPH</sub>) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Releasing by resetting

Releasing all halt status is executed by resetting.

When the STOP mode is released by reset, it is necessry enough resetting time (See Table 3.3.6) to set the operation of the oscillator to be stable.

| Status of Received Interrupt |     | us of Received Interrupt         | Interrupt Enabled<br>(Interrupt level) ≥ (Interrupt mask) |       |                 | Interrupt Disabled<br>(Interrupt level) < (Interrupt mask) |       |            |
|------------------------------|-----|----------------------------------|-----------------------------------------------------------|-------|-----------------|------------------------------------------------------------|-------|------------|
| HALT mode                    |     | HALT mode                        | IDLE2                                                     | IDLE1 | STOP            | IDŁE2                                                      | IDLE1 | STOP       |
|                              | NMI |                                  | •                                                         | •     | ★*1             | - >                                                        | -     | _          |
| е                            |     | INTWD                            | •                                                         | ×     | ×               | -( ( )                                                     | -     | -          |
| clearanc                     |     | INT0 to INT3 (Note 1)            | •                                                         | •     | ★ <sup>*1</sup> | 0                                                          | ) o   | 0*1        |
|                              |     | INTALM0 to INTALM4               | •                                                         | •     | ×               |                                                            | 0     | ×          |
| ate                          |     | INTTA0 to INTTA3                 | •                                                         | ×     | × <             |                                                            | ×     | ×          |
| t sta                        |     | INTRX0 to INTRX1, TX0 to TX1     | •                                                         | ×     | ×               |                                                            | ×     | ×          |
| hal                          |     | INTKEY                           | •                                                         | •     | ★*1             | 0                                                          | 0     | 0*1        |
| e of                         | pt  | INTRTC                           | •                                                         | •     | ×               |                                                            | 0     | ×          |
| urc                          | eru | INTLCD                           | •                                                         | ×     |                 | ×                                                          | ×     | ×          |
| So                           | Int | INTVLD0 to INTVLD2 <sup>*2</sup> | •                                                         | •     | <b>(</b> 1      | -                                                          | (-)   |            |
|                              |     | RESET                            |                                                           | R     | eset initial    | izes the LSI                                               | 20    | $\searrow$ |

Table 3.3.5 Source of Halt State Clearance and Halt Clearance Operation

- ♦: After clearing the HALT mode CPU starts interrupt processing.
- •: After clearing the HALT mode CPU resumes executing starting from instruction following the HALT instruction.
- ×: It can not be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- \*1: Releasing the HALT mode is executed after passing the warm-up time.
- \*2:INTVLD0 to INTVLD2 are NMI (Non maskable interrupt) class in point of view from interrupt circuit, but these signals are actually maskable signals. If you want to mask these signals, you can controll by VLD circuit.
- Note: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

Example: Clearing IDLE1 mode An INTO interrupt clears the halt state when the device is in IDLE1 mode.



- (3) Operation
  - a. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.6 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.



Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

b. IDLE1 mode

In IDLE1 mode, only the internal oscillator and the RTC, MLD continue to operate. The system clock in the MCU stops. The pin status in the IDLE1 mode is depended on setting the register SYSCR2<SELDRV to DRVE>. Table 3.3.7, Table 3.3.8 summarizes the state of these pins in the IDLE mode1.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g., restart of operation) is synchronous with it.

Figure 3,3.7 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.



Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

c. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator pin status in STOP mode depends on the settings in the SYSCR2<DRVE> register. Table 3.3.7, Table 3.3.8 summarizes the state of these pins in STOP mode.

After STOP mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize. After STOP mode has been cleared, either NORMAL mode or SLOW mode can be selected using the SYSCR0<RSYSCK> register. Therefore, CRSYSCK>, RSYSCK>, RSYSCK>, RSYSCK>, ARSYSCK>, ARSYSCK, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Figure 3.3.8 illustrates the timing for clearance of the STOP mode halt state by an interrupt.





|                   |                              | at fo                 | SCH = 27 MHz, fs = 32.768 kHz |  |  |
|-------------------|------------------------------|-----------------------|-------------------------------|--|--|
| SYSCR0            | SYSCR2 <wuptm1:0></wuptm1:0> |                       |                               |  |  |
| <rsysck></rsysck> | 01 (2 <sup>8</sup> )         | 10 (2 <sup>14</sup> ) | 11 (2 <sup>16</sup> )         |  |  |
| 2.0.(fc)          | _9.0 μs                      | 0.607 ms              | 2.427 ms                      |  |  |
| 1 (fs)            | ( <b>7</b> .8 ms             | 500 ms                | 2000 ms                       |  |  |
|                   |                              |                       |                               |  |  |

| Table 3.3.6 Sample | Warm-up | Times after | Clearance of | f STOP | Mode |
|--------------------|---------|-------------|--------------|--------|------|
|                    |         |             |              |        |      |
### Example:

The STOP mode is entered when the low frequency operates, and high-frequency operates after releasing due to NMI.



Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of HALT instruction (during 6 state). In the system which accepts the interrupts during execution HALT instruction, set the same operation mode before and after the STOP mode.

|            |                       |                 | Input Buffer State                 |                               |                                    |                               |                                    |                               |                                    |                               |  |
|------------|-----------------------|-----------------|------------------------------------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|-------------------------------|------------------------------------|-------------------------------|--|
|            |                       |                 | When the                           | e CPU is                      |                                    |                               | In ļ                               | ALT mode(                     | IDLE1/STO                          | )P)                           |  |
|            | Innut Function        |                 | oper                               | ating                         | IN HALI M                          | ode (IDLE2)                   | Condition                          | A (Note)                      | Condition                          | n B (Note)                    |  |
| Port Name  | Name                  | During<br>Reset | When<br>Used as<br>function<br>Pin | When<br>Used as<br>Input Port | When<br>Used as<br>function<br>Pin | When Used<br>as Input<br>Port | When<br>Used as<br>function<br>Pin | When<br>Used as<br>Input Port | When<br>Used as<br>function<br>Pin | When<br>Used as<br>Input Port |  |
| D0-7       | -                     |                 | ON upon                            | _                             |                                    | - <                           |                                    | $\left( \right) \right)$      |                                    | _                             |  |
| P10-17     | D8-15                 | OFF             | external read                      |                               | OFF                                | OFF                           | OFF                                |                               | OFF                                | OFF                           |  |
| P52(*1)    | INT3                  |                 |                                    |                               |                                    | (                             | (ON) M                             | 7                             |                                    |                               |  |
| P53(*1)    | WAIT                  |                 | ON                                 |                               | ON                                 |                               |                                    |                               | ON                                 |                               |  |
| P56(*1)    | MSK                   | ON              |                                    |                               |                                    |                               |                                    |                               | $\langle \langle \rangle$          |                               |  |
| P60-67(*1) | -                     | OFF             |                                    |                               |                                    |                               | /                                  |                               |                                    |                               |  |
| P70-71(*1) | _                     | UFF             | _                                  |                               | _                                  |                               | 7 -                                |                               | $\langle  \rangle$                 | UFF                           |  |
| P72(*1)    | OPTRX0                | ON              | ON                                 |                               | ON                                 | (√∕on))                       | OFF                                | $(\bigcirc$                   | ON                                 | ON                            |  |
| P73(*1)    | -                     | OFF             | -                                  | ON                            |                                    | OFF                           | _                                  | $\langle \ \rangle$           |                                    | OFF                           |  |
| P74(*1)    | NMI                   | 011             | ON                                 | 011                           | ON                                 |                               | ON                                 | $> \searrow$                  | ON                                 | 011                           |  |
| P90-97(*1) | KI0-7                 | ON              | 0.1                                |                               |                                    | ON                            | ((                                 | ON V                          | 0.1                                | ON                            |  |
| PB0-B2     | _                     |                 | _                                  |                               |                                    | $\sim$                        |                                    | $\sim$                        | _                                  |                               |  |
| (*1)(*2)   |                       | OFF             |                                    |                               |                                    | OFF                           | $(\Omega)$                         |                               |                                    | OFF                           |  |
| PB3-B5(*1) | INT0-2                |                 | ON                                 |                               | QN                                 |                               |                                    | )                             | ON                                 |                               |  |
| PC3(*1)    | -                     |                 | -                                  | $\forall ( \ )$               | >                                  |                               |                                    | /                             | _                                  |                               |  |
| PC4(*1)    | RXD1                  |                 |                                    |                               | ~                                  | $\langle \langle \rangle$     |                                    |                               |                                    |                               |  |
| PC5(*1)    | SCLK1                 | 011             |                                    | $\sim$                        | <b>O</b> 11                        | ON                            |                                    | 055                           | ON                                 | ON                            |  |
|            |                       | ON              | ON                                 |                               | ON                                 |                               | OFF                                | OFF                           |                                    |                               |  |
| DCC        | For<br>XT1 costillate |                 |                                    | OFF                           | /                                  | OFF                           | $\checkmark$                       |                               |                                    | OFF                           |  |
| PCO        | Eor port              |                 |                                    |                               | OFF                                | $\langle \rangle$             |                                    |                               | OFF                                |                               |  |
| PC7        | -                     | _               |                                    | /                             |                                    | NON                           | _                                  |                               | _                                  | ON                            |  |
| PD0-D4.    | _                     | - OFF           | 7                                  | ON                            |                                    |                               |                                    |                               |                                    |                               |  |
| PD6-D7(*1) |                       |                 | ())                                |                               |                                    |                               | -                                  |                               | -                                  | OFF                           |  |
| MSK        | -//                   |                 |                                    | <u> </u>                      |                                    | -                             |                                    | -                             |                                    | _                             |  |
| AM0,AM1    |                       |                 | 7                                  | /-/ '                         |                                    | -                             | UN                                 | _                             | UN                                 | _                             |  |
| X1         | -                     | ♦ ON            | ON                                 |                               | ON                                 | _                             | ID                                 | LE1: ON ,                     | STOP : OF                          | F                             |  |

| Table 3.3.7 | Input | Buffer | State | Table |
|-------------|-------|--------|-------|-------|
| 10010 0.0.1 | mput  | Danoi  | olulo | iubio |

ON:The buffer is always turned on A current flows \*1?Port having a pull-up/pull-down resistor.

the input buffer if the input pin is not driven.

OFF: The buffer is always turned off.

 $^{\ast}2:VLD$  input does not cause a current to flow through the buffer.

-: No applicable Note: Condition A/B are as follows

|          | NO                | applicable         | 17             |             |
|----------|-------------------|--------------------|----------------|-------------|
| Note: Co | ndition A/B       | are as follows.    | $\mathcal{A}($ |             |
| ~        | (\$Y\$CR2)        | register setting   | HALT           | mode        |
|          | <d(rv(e></d(rv(e> | ) <b></b> ∮SELDRV> | JOLEI          | STOP        |
| $\sim$   | $\binom{1}{2}$    |                    | Çondition B    | Condition A |
|          | Q                 | 1 ( (              | Condition A    | Oblighton A |
|          | 1                 | 0 (                | Condition B    | Condition B |
|          |                   | 1                  | Condition B    | Condition D |
|          |                   | $\langle \rangle$  |                |             |

|                                                    |                                |                         |                    |             | Out                    | put Buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | State                    |                   |                            |          |
|----------------------------------------------------|--------------------------------|-------------------------|--------------------|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|----------------------------|----------|
|                                                    |                                |                         | When the           | e CPU is    | In HAL                 | r mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In H                     | ALT mode          | (IDLE1/ST                  | OP)      |
|                                                    | Output Function                |                         | Opera              | ating       | (IDL                   | E2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Condition                | A (Note)          | Condition                  | B (Note) |
| Port Name                                          | Name                           | During                  | When               | When        | When                   | When                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | When <                   | When              | When                       | When     |
|                                                    |                                | Reset                   | Used as            | Used as     | Used as                | Used as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Used as                  | Used as           | Used as                    | Used as  |
|                                                    |                                |                         | Pin                | Port        | Pin                    | Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pin                      | Port              | Pin                        | Port     |
| D0-D7                                              | _                              |                         | ON upon            | -           | • •••                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                   | )                          | -        |
| P10-17                                             | D8-15                          | OFF                     | external           |             | OFF                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                        |                   | OFF                        |          |
| P20-27                                             | A16-23                         |                         | write              | ON          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | OFF               |                            | ON       |
| A0-15                                              | -                              |                         |                    |             | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OFF                      | $ \rightarrow $   |                            |          |
|                                                    | _                              | ON                      |                    | _           |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\langle \rangle$        | _                 |                            | _        |
|                                                    |                                |                         |                    |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left( \right) \right)$ | >                 |                            |          |
| P52(*1)                                            |                                |                         |                    |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\searrow$               |                   | $\frown$                   |          |
| P53(*1)                                            |                                |                         |                    |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle \rangle$        |                   | $( \land )$                |          |
| P56(*1)                                            | R/W                            | OFF                     |                    | ON          |                        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\sim$                   | OFF of            | ( )                        | ON       |
| P60(*1)                                            | CS0 ,LCLK0                     |                         |                    | 0.11        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\triangleright$         | 52                |                            | 0.11     |
| P61(*1)                                            | CS1                            |                         |                    |             | ( (                    | $\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                        | $( \subset$       | $) \sim$                   |          |
| $\overline{\text{CS2}}$ , $\overline{\text{CS2A}}$ | _                              | ON                      |                    | _           |                        | $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sim$                   | K-V               | $\mathcal{L}(\mathcal{A})$ | -        |
| P63(*1)                                            | CS3 , RAS                      |                         |                    |             | $\square(\square$      | $\geq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                   |                            |          |
| P64(*1)                                            | EA24, CS2B                     |                         | ON                 | ~           |                        | , The second sec | ((                       | $\langle \rangle$ | ON                         |          |
| P65(*1)                                            | EA25, CS2C,                    |                         |                    |             | $\searrow$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OFF                      | $\mathcal{D}$     |                            |          |
| P66(*1)                                            |                                |                         |                    |             | $\searrow$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                            |          |
| P67(*1)                                            | LCAS, UDS, WE                  | OFF                     | <                  | ON          |                        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | OFF               |                            | ON       |
| D70(*1)                                            | REFOUT                         |                         |                    |             | · <                    | $\leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                   |                            |          |
| P70(*1)                                            |                                |                         | $( \subset$        | $\sim \sim$ |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ))                       |                   |                            |          |
| P72(*1)                                            |                                |                         |                    | ))          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\langle / \rangle$      |                   |                            |          |
| D73(*1)                                            |                                |                         | $\bigcirc$         |             | $\land$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~                        |                   |                            |          |
| P74(*1)                                            |                                | (                       | ())                |             |                        | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                   |                            |          |
| PB0-B2(*1)                                         | WE, CAS                        |                         | $\sim$             |             | 7/                     | $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                   |                            |          |
| (*2)                                               | —                              | (7)                     | $\langle \frown -$ |             | $\langle \neg \rangle$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | —                        |                   | —                          |          |
| PB3-B5                                             | -                              | $\backslash \lor \land$ | 27_                |             |                        | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                        |                   | _                          |          |
| PC3(*1)                                            |                                | OFF                     | ON /               | ON ( (      | ON                     | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OFF                      |                   | ON                         | ON       |
| PC4(*1)                                            |                                |                         | -                  |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |                   | -                          |          |
| PC5(*1)                                            | SCLK1                          |                         | ON                 |             | ON                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OFF                      |                   | ON                         |          |
| PC6                                                | - \                            | $\rightarrow$           | 27                 |             | ) -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                        |                   | -                          |          |
| PC7                                                | XT2 For oscillator             | <sup>∼</sup> ON         | ON                 | OFF         | ON                     | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                        | OFF               | OFF                        | OFF      |
| DD0(*1)                                            | For port                       |                         | OFF                | $\sim$      | OFF                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |                   |                            |          |
| PD0(*1)<br>PD1(*1)                                 | DIBSCP<br>D2BLP                |                         | $\bigwedge$        |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                            |          |
| PD2(*1)                                            | D3BFR                          | OFF                     | $\Delta$           | ON          |                        | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OFF                      |                   |                            | ON       |
| PØ3(*1)                                            | DLEBCD                         |                         | ON                 |             | ON                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   | ON                         |          |
| PD4(*1)                                            | DOFFB                          |                         | $\sim \sim \sim$   |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                            |          |
| PD6(*1)                                            |                                | $ \sum_{i=1}^{n} $      |                    |             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                            |          |
| X2                                                 |                                | MON N                   | ON                 | _           | ON                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IDLE1                    | ON, STO           | P : output "H              | l" level |
| $\sim$                                             | ON: The buffer is a            | ways turn               | ed on.When         | the bus is  | *1: Port havi          | ng a pull-up/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oull-down resi           | stor.             |                            |          |
| $\sim$                                             | released, howev<br>turned off. | er, output t            | ouffers for sor    | me pins are |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                   |                            |          |

Table 3.3.8 Output buffer State Table

Note: Condition A/B are as follows.

| SYSCR2        | register setting  | HALT        | mode        |
|---------------|-------------------|-------------|-------------|
| <drve></drve> | <seldrv></seldrv> | IDLE1       | STOP        |
| 0             | 0                 | Condition B | Condition A |
| 0             | 1                 | Condition A | Condition A |
| 1             | 0                 | Condition B | Condition B |

OFF:The buffer is always turned off. —: No applicable \*2: If one of VLD0-2 pin is used as VLD function, others cannot be used as output port even if set port function.

## 3.4 Interrupts

Interrupts are controlled by the CPU interrupt mask register SR<IFF2:0> and by the built-in interrupt controller.

The TMP91C016 has a total of 40 interrupts divided into the following three types:

- Interrupts generated by CPU: 9 sources (Software interrupts, illegal instruction interrupt)
- Internal interrupts: 25 sources
- Interrupts on external pins (NMI and INTO to INT3, INTKEY): 6 sources

A Fixed individual interrupt vector number is assigned to each interrupt.

One of six (Variable) priority level can be assigned to each maskable interrupt.

The priority level of non-maskable interrupts are fixed at 7 as the highest level.

When an interrupt is generated, the interrupt controller sends the piority of that interrupt to the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends the interrupt with the highest priority to the CPU. (The highest priority is level 7 using for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is higher than the value of the interrupt mask register, the CPU accepts the interrupt.

The interrupt mask register <IFF2:0> value can be updated using the value of the EI instruction ("EI num" sets <IFF2:0> data to num).

For example, specifying "EI 3" enables the maskable interrupts which priority level set in the interrupt controller is 3 or higher, and also non-maskable interrupts.

Operationally, the DI instruction (<IFF2:0 > = 7) is identical to the "EI 7" instruction. DI instruction is used to disable maskable interrupts because of the priority level of maskable interrupts is 1 to 6. The El instruction is vaild immediately after execution.

In addition to the above general purpose interrupt processing mode, TLCS-900/L1 has a micro DMA interrupt processing mode as well. The CPU can transfer the data (1/2/4 bytes) automatically in micro DMA mode, therefore this mode is used for speed-up interrupt processing, such as transferring data to the internal or external peripheral I/O. Moreover, TMP91C016 has software start function for micro DMA processing request by the software not by the hardware interrupt.

Figure 3.4.1 shows the overall interrupt processing flow.



### 3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. That is also the same as TLCS-900/L and TLCS-900/H.

- (1) The CPU reads the interrupt vector from the interrupt controller.
  - If the same level interrupts occur simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt request.

(The default priority is already fixed for each interrupt: the smaller vector value has the higher priority level.)

- (2) The CPU pushes the value of program counter (PC) and status register (SR) onto the stack area (Indicated by XSP).
- (3) The CPU sets the value which is the priority level of the accepted interrupt plus 1 (+1) to the interrupt mask register <IFF2:0>. However, if the priority level of the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increases the interrupt nesting counter INTNEST by 1 (+1).
- (5) The CPU jumps to the address indicated by the data at address "FFFF00H + interrupt vector" and starts the interrupt processing routine.

The above processing time is 18 states (1.33  $\mu$ s at 27 MHz) as the best case (16-bit data-bus width and 0 waits).

When the CPU compled the interrupt processing, use the RETI instruction to return to the main routine. RETI restores the contents of program counter (PC) and status register (SR) from the stack and decreases the interrupt nesting counter INTNEST by 1 (-1).

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request which has a priority level equal to or greater than the value of the CPU interrupt mask register <1FF2:0> comes out, the CPU accepts its interrupt. Then, the CPU interrupt mask register <1FF2:0> is set to the value of the priority level for the accepted interrupt plus 1 (+1).

Therefore, if an interrupt is generated with a higher level than the current interrupt during its processing, the CPU accepts the later interrupt and goes to the nesting status of interrupt processing.

Moreover, if the CPU receives another interrupt request while performing the said (1) to (5) processing steps of the current interrupt, the latest interrupt request is sampled immediately after execution of the first instruction of the current interrupt processing routine. Specifying DI as the start instruction disables maskable interrupt nesting.

A reset initializes the interrupt mask register <IFF2:0> to 111, disabling all maskable interrupts.

Table 3.4.1 shows the TMP91C016 interrupt vectors and micro DMA start vectors. The address FFFF00H to FFFFFFH (256 bytes) is assigned for the interrupt vector area.

(6) INTVLD0 to INTVLD2 are treated non-maskable interrupt in this interrupt circuit, but these interruption actually are maskable at VLD circuit source level.

|        | Default<br>Priority | Туре          | Interrupt Source and Source of<br>Micro DMA Request | Vector<br>Value (V) | Vector<br>Reference<br>Address | Micro<br>DMA<br>Start |
|--------|---------------------|---------------|-----------------------------------------------------|---------------------|--------------------------------|-----------------------|
|        |                     |               |                                                     |                     |                                | Vector                |
|        | 1                   |               | Reset or SWI 0 instruction                          | 0000H               | FFFF00H                        | -                     |
|        | 2                   |               | SWI 1 instruction                                   | 0004H( (            | FFFF04H                        | -                     |
|        | 3                   |               | INTUNDEF: Illegal instruction or SWI 2 instruction  | 0008H               | FFFF08H                        | -                     |
|        | 4                   |               | SWI 3 instruction                                   | 000CH/              | FFFF0CH                        | -                     |
|        | 5                   | Non-          | SWI 4 instruction                                   | (dotoH)             | ) FFFF10H                      | -                     |
|        | 6                   | maskable      | SWI 5 instruction                                   | 0014H               | FFFF14H                        | -                     |
|        | 7                   |               | SWI 6 instruction                                   | 0018H               | FFFF18H                        | -                     |
|        | 8                   |               | SWI 7 instruction                                   | 001¢H               | FFFF1CH                        | _                     |
|        | 9                   |               | NMI pin                                             | 0020H               | FFFF20H                        | -                     |
|        | 10                  |               | INTWD: Watchdog timer                               | ∕0024H              | FFFF24H                        | <u> </u>              |
|        | 11                  | (Note)        | INTVLD0 pin                                         | 0098H               | FFFF98H                        | > -                   |
|        | 12                  | Non-          | INTVLD1 pin                                         | 009CH               | FEEF9CH                        | > -                   |
|        | 13                  | maskable      | INTVLD2 pin                                         | 00A0H               | FEEFAOH                        | - \                   |
|        | -                   |               | Micro DMA (MDMA)                                    | - <                 |                                | / _                   |
|        | 14                  |               | INT0 pin                                            | 0028H               | EFEF28H                        | 0AH                   |
|        | 15                  |               | INT1 pin                                            | 002CH               | FFFF2CH                        | 0BH                   |
|        | 16                  |               | INT2 pin                                            | 0030H               | ) ₽FFF30H                      | 0CH                   |
|        | 17                  |               | INT3 pin                                            | 0034H               | FFFF34H                        | 0DH                   |
|        | 18                  |               | INTALMO: ALMO (8k Hz)                               | (0038H)             | FFFF38H                        | 0EH                   |
|        | 19                  |               | INTALM1: ALM1 (512Hz)                               | О03СН               | FFFF3CH                        | 0FH                   |
|        | 20                  |               | INTALM2: ALM2 (64 Hz)                               | 0040H               | FFFF40H                        | 10H                   |
|        | 21                  |               | INTALM3: ALM3 (2 Hz)                                | 0044H               | FFFF44H                        | 11H                   |
|        | 22                  |               | INTALM4: ALM4 (1 Hz)                                | / 0048H             | FFFF48H                        | 12H                   |
|        | 23                  |               | INTTA0: 8-bit timer 0                               | 004CH               | FFFF4CH                        | 13H                   |
|        | 24                  |               | INTTA1: 8-bit timer, 1                              | 0050H               | FFFF50H                        | 14H                   |
|        | 25                  |               | INTTA2: 8-bit timer 2                               | 0054H               | FFFF54H                        | 15H                   |
|        | 26                  | maskable      | INTTA3: 8-bit timer 3                               | 0058H               | FFFF58H                        | 16H                   |
|        | 27                  |               | INTRX0: Serial reception (Channel 0)                | 005CH               | FFFF5CH                        | 17H                   |
|        | 28                  |               | INTTX0: Serial transmission (Channel 0)             | 0060H               | FFFF60H                        | 18H                   |
|        | 29                  |               | INTRX1: Serial reception (Channel 1)                | 0064H               | FFFF64H                        | 19H                   |
|        | 30                  |               | INTEX17 Serial transmission (Channel 1)             | 0068H               | FFFF68H                        | 1AH                   |
|        | 31                  |               | INTKEY: Key wake up                                 | 0070H               | FFFF70H                        | 1CH                   |
|        | 32                  |               | INTRTC: RTC (Alarm interrupt)                       | 0074H               | FFFF74H                        | 1DH                   |
|        | 33                  |               | INTLCD: LCDC/LP big                                 | 007CH               | FFFF7CH                        | 1FH                   |
|        | 34                  | $\sqrt{2}$    | INTP0: Protect 0 (WR to Special SFR)                | 0080H               | FFFF80H                        | 20H                   |
|        | 35                  | $\sim$        | INTP1: Protect (WR to ROM)                          | 0084H               | FFFF84H                        | 21H                   |
|        | 36                  |               | INTTC0: Micro DMA End (Channel 0)                   | 0088H               | FFFF88H                        | _                     |
|        | ∧ 37 (              | ))            | INTTC1: Micro DMA End (Channel 1)                   | 008CH               | FFFF8CH                        | _                     |
|        | 38                  | $\mathcal{I}$ | INTTC2: Micro DMA End (Channel 2)                   | 0090H               | FFFF90H                        | _                     |
| _      | 39                  |               | INTTC3: Micro DMA End (Channel 3)                   | 0094H               | FFFF94H                        | _                     |
| $\leq$ |                     | . (           | (Reserved)                                          | 0098H               | FFFF98H                        | _                     |
|        |                     |               | to                                                  | to                  | to                             | to                    |
|        |                     |               | (Reserved)                                          | 00FCH               | FFFFFCH                        | _                     |

| Table 3.4.1 | TMP91C016 | Interrupt | Vectors | Table |
|-------------|-----------|-----------|---------|-------|
|             |           |           |         |       |

Note: INTVLD0 to INTVLD2 are controlled by VLDCRx register. (Maskable: Source level)

### 3.4.2 Micro DMA Processing

In addition to general-purpose interrupt processing, the TMP91C016 supports a micro DMA function. Interrupt requests set by micro DMA perform micro DMA processing at the highest priority level (Level 6) among maskable interrupts, regardless of the priority level of the particular interrupt source. Micro. The micro DMA has 4 channels and is possible continuous transmission by specifing the say later burst mode.

Because the micro DMA function has been implemented with the cooperative operation of CPU, when CPU goes to a standby mode (STOP, IDLE1 and IDLE2) by HALT instruction, the requirement of micro DMA will be ignored (Pending) and DMA transfer is started after release HALT.

### (1) Micro DMA operation

When an interrupt request specified by the micro DMA start vector register is generated, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request in spite of any interrupt source's level. The micro DMA is ignored on  $\langle IFF2:0 \rangle = (7^{\circ})^{\circ}$ 

The 4 micro DMA channels allow micro DMA processing to be set for up to 4 types of interrupts at any one time. When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared.

The data are automatically transferred once (1/2/4 bytes) from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decreased by 1 (-1).

If the decreased result is "0", the micro DMA transfer end interrupt (INTTC0 to INTTC3) passes from the CPU to the interrupt controller. In addition, the micro DMA start vector register DMAnV is cleared to "0", the next micro DMA is disabled and micro DMA processing completes. If the decreased result is other than "0", the micro DMA processing completes if it isn't specified the say later burst mode. In this case, the micro DMA transfer end interrupt (INTTC0 to INTTC3) aren't generated.

If an interrupt request is triggered for the interrupt source in use during the interval between the clearing of the micro DMA start vector and the next setting, general-purpose interrupt processing executes at the interrupt level set. Therefore, if only using the interrupt for starting the micro DMA (Not using the interrupts as a general-purpose interrupt: Level 1 to 6), first set the interrupts level to 0 (Interrupt requests disabled).

If using micro DMA and general-purpose interrupts together, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. (Note) In this case, the cause of general interrupt is limited to the edge interrupt.

The priority of the micro DMA transfer end interrupt (INTTC0 to INTTC3) is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

If a micro DMA request is set for more than one channel at the same time, the priority is not based on the interrupt priority level but on the channel number. The smaller channel number has the higher priority (Channel 0 (High) > channel 3 (Low)).

While the register for setting the transfer source/transfer destination addresses is a 32-bit control register, this register can only effectively output 24-bit addresses. Accordingly, micro DMA can access 16 Mbytes (The upper eight bits of the 32 bits are not valid).

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Table 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time.

This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished.

And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA

INTyyy: level 6 with micro DMA



Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte (One-word) transfer, and 4-byte transfer. After a transfer in any mode, the transfer source/destination addresses are increased, decreased, or remain unchanged.

This simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the transfer modes, see 3.4.2 (4) "Detailed description of the transfer mode register". As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to 65536 times per interrupt source. (The micro DMA processing count is maximized when the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 34 interrupts shown in the micro DMA start vectors of Table 3.4.1 and by the micro DMA soft start, making a total of 35 interrupts.

Figure 3.4.2 shows the word transfer micro DMA cycle in transfer destination address INC mode (Except for counter mode, the same as for other modes).

(The conditions for this cycle are based on an external 16 bit bus, 0 waits, transfer source/transfer destination addresses both even-numberd values).



(2) Soft start function

In addition to starting the micro DMA function by interrupts, TMP91C016 includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing "1" to each bit of DMAR register causes micro DMA once (If write "0" to each bit, micro DMA doesn't operate). At the end of transfer, the corresponding bit of the DMAR register is automatically cleared to "0".

Only one-channel can be set for micro DMA at once. (Do not write "1" to plural bits.) When writing again "1" to the DMAR register, check whether the bit is 0 before writing "1". If read "1", micro DMA transfer isn't started yet.

When a burst is specified by DMAB register, data is continuously transferred until the value in the micro DMA transfer counter is "0" after start up of the micro DMA. If execute soft start during micro DMA transfer by interrupt source, micro DMA transfer counter doesn't change. Don't use Read-modify write instruction to avoid writing to other bits by mistake.

|        |          |                   |   |              |    |              | /         | $\sim$ $\sim$ | 7 <i>U</i> /)) |       |
|--------|----------|-------------------|---|--------------|----|--------------|-----------|---------------|----------------|-------|
| Symbol | Name     | Address           | 7 | 6            | 5  | 74           | 3         | 2             |                | 0     |
|        |          |                   |   |              | Å, |              |           | ( DMA re      | equest         |       |
| DMAR   | DMA      | 89H<br>(Drohihit  |   |              | J. | $\downarrow$ | DMAR3     | DMAR2         | DMAR1          | DMAR0 |
| DIVIAI | register | (Profibit<br>RMW) |   | $\int$       |    |              | $\square$ | ∑R/           | W              |       |
|        | č        | ,                 |   | $\mathbf{X}$ | Ì  |              | @\//      | 0 ( (         | 0              | 0     |
|        |          |                   |   |              |    |              |           | / /           |                |       |

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers. Data setting for these registers is done by an "LDC cr, r" instruction.



| DMAM0          | <u> </u> |     |                                                                           | →<br>                                                                                                   |                               |                                             |
|----------------|----------|-----|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|
| to DMAM        | 3 0      | 0 0 | Mode                                                                      | Note: When setting a value in t<br>3 bits.                                                              | his register, write           | '0" to the upper                            |
| $\angle$       |          |     |                                                                           |                                                                                                         |                               |                                             |
|                |          |     | Number of<br>Transfer Bytes                                               | Mode Description                                                                                        | Number of<br>Execution States | Minimum<br>Execution Time<br>at fc = 27 MHz |
| 000<br>(Fixed) | 000      | 00  | Byte transfer                                                             | Transfer destination address INC mode                                                                   |                               | 500                                         |
| (******)       |          | 01  | Word transfer                                                             | (DMADn+) ← (DMASn)<br>DMACn ← DMACn – 1                                                                 | 8 states                      | 593 ns                                      |
|                |          | 10  | 4-byte transfer                                                           | If DMACn = 0, then INTTCn is generated.                                                                 | 12 states                     | 889 ns                                      |
|                | 001      | 00  | Byte transfer                                                             | Transfer destination address DEC mode                                                                   | 8 states                      | 593 ns                                      |
|                |          | 10  | 4-byte transfer                                                           | $(DMADh) \leftarrow (DMASh)$<br>DMACh $\leftarrow$ DMACh - 1<br>If DMACh = 0, then INTTCh is generated. | 12 states                     | 889 ns                                      |
|                | 010      | 00  | Byte transfer                                                             | Transfer source address INC mode                                                                        | 8 states                      | 593 ns                                      |
|                |          | 01  | Word transfer                                                             | $(DMADn) \leftarrow (DMASn+)$<br>DMACn $\leftarrow DMACn = 1$                                           |                               | 880 ns                                      |
|                |          | 10  | 4-byte transfer                                                           | If DMACn = 0, then INTTCn is generated.                                                                 |                               | 003 113                                     |
|                | 011      | 00  | Byte transfer                                                             | Transfer source address DEC mode<br>                                                                    | 8 states                      | 593 ns                                      |
|                |          | 10  | 4-byte transfer                                                           | $DMACn \leftarrow DMACn - 1$<br>If DMACn = 0, then INTTCn is generated.                                 | 12 states                     | 889 ns                                      |
|                | 100      | 00  | Byte transfer                                                             | Fixed address mode                                                                                      | 8 states                      | 593 ns                                      |
|                |          | 01  | Word transfer                                                             | $(DMADn) \leftarrow (DMASn-)$<br>$DMACn \leftarrow DMACn - 1$                                           |                               |                                             |
|                |          | 10  | 4-byte transfer                                                           | If DMACn = 0, then INTTCn is generated.                                                                 | 12 states                     | 889 ns                                      |
|                | 101      | 00  | Counter mode<br>For C<br>DMASN DMASN<br>DMACN DMACN<br>If DMACn = 0, then | counting number of times interrupt is generated<br>+ 1<br>- 1<br>INTTCn is generated.                   | 5 states                      | 370 ns                                      |

(4) Detailed description of the transfer mode register

Note 1: "n" is the corresponding micro DMA channels 0 to 3

DMADn+/DMASn+: Post-increment (Increment register value after transfer)

DMADn-/DMASn-: Post-decrement (Decrement register value after transfer)

The I/Os in the table mean fixed address and the memory means increment (INC) or decrement (DEC) addresses.

Note 2:> Execution time is under the condition of:

16-bit bus width (Both translation and destination address area)/0 waits/

fc = 27 MHz/selected high frequency mode (fc × 1)

Note 3: Do not use an undefined code for the transfer mode register except for the defined codes listed in the above table.

## 3.4.3 Interrupt Controller Operation

The block diagram inFigure 3.4.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 36 interrupt channels there is an interrupt request flag (Consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to "0" in the following cases:

- When reset occurs
- When the CPU reads the channel vector after accepted its interrupt
- When executing an instruction that clears the interrupt (Write DMA start vector to INTCLR register)
- When the CPU receives a micro DMA request (when micro DMA is set)
- When the micro DMA burst transfer/is terminated

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g., INTEOAD or INTE12). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupts (NMI pin interrupts and watchdog timer interrupts) is fixed at 7. If interrupt request with the same level are generated at the same time, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

The interrupt controller sends the interrupt request with the highest priority among the simulateous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> in the status register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 (+1) in the CPU SR<IFF2:0>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value sayed in the stack before the interrupt was generated to the CPU SR<IFF2:0>.

The interrupt controller also has registers (4 channels) used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (See Table 3.4.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g., DMAS and DMAD) prior to the micro DMA processing.



Figure 3.4.3 Block Diagram of Interrupt Controller

| Symbol            | Name          | Address       | 7          | 6              | 8           | 5         | 4             |                 | 3              | 2               | 1       | (        | )        |
|-------------------|---------------|---------------|------------|----------------|-------------|-----------|---------------|-----------------|----------------|-----------------|---------|----------|----------|
| Cymbol            | Turne         | 71001000      |            | $\sim$         |             |           |               |                 |                | -               |         |          |          |
|                   |               |               |            | $\sim$         |             | $\geq$    | $\sim$        | $\sim$          | 100            |                 | 10      | 101      | MO       |
| INTE0             | enable        | 90H           | $\sim$     | $\sim$         |             |           | $\sim$        |                 | R              |                 | R/W     | 101      | vio      |
|                   |               |               |            |                |             |           |               |                 | 0              | 0               | 0       | (        | 0        |
|                   |               |               |            |                | INT2        |           |               |                 | Ŭ              |                 | 11      |          |          |
|                   | INT1 and      |               | I2C        | 12M2           | 2 12        | M1        | 12M0          | )               | 11C /          | 11M2            | I1M1    | 111      | MO       |
| INTE12            | INT2          | 91H           | R          |                | R           | /W        |               | -               | ∧ R ((         | 7/5             | R/W     |          |          |
|                   | enable        |               | 0          | 0              |             | 0         | 0             |                 |                | $\leq$          | 0       | (        | 0        |
|                   |               |               |            | I              | NTALM4      |           |               |                 | $(\bigcirc$    |                 | Т3      |          |          |
|                   | INT3 and      | 0011          | IA4C       | IA4M           | 2 IA        | 4M1       | IA4M          | 0               | (I3C)          | ) I3M2          | I3M1    | 131      | MO       |
| INTE3ALM4         | enable        | 92H           | R          |                | R           | /W        |               | 6               | R              | /               | R/W     |          |          |
|                   |               |               | 0          | 0              |             | 0         | 0<            | 1(              | 0              | 0               |         | > 0      | 0        |
|                   | ΙΝΤΑΙ ΜΟ      |               |            | I              | NTALM1      |           | $\frown$      | $\overline{\ }$ | $\geq$         | INTA            | (DMO    | ~        |          |
|                   | and           | 020           | IA1C       | IA1M           | 2 IA        | 1M1       | (A1M          | d 🔿             | TAOC           | IA0M2           | 1A0M1   | IA0      | 0M0      |
| INTEALINUT        | INTALM1       | 930           | R          |                | R           | /W        |               | $\mathcal{I}$   | R <            | $\mathcal{D}$   | R/W)    |          |          |
|                   | enable        |               | 0          | 0              |             | 0 (       | 0             |                 | 0              | Q               | 90/     | (        | 0        |
|                   | INTALM2       |               |            | I              | NTALM3      | 20        | $\sim$        |                 |                |                 | LM2     |          |          |
| ΙΝΤΕΔΙ Μ23        | and           | 94H           | IA3C       | IA3M           | 2 (A        | 3M1       | ІАЗМ          | 0               | IA2C           | (IA2M2)         | IA2M1   | IA2      | 2M0      |
|                   | INTALM3       | 5411          | R          |                | R           | Ŵ         |               |                 | R              | $\mathcal{D}$   | R/W     |          |          |
|                   | enable        |               | 0          | 0              | $(\bigcirc$ | 0         | 0             |                 | 0              | ( ) O           | 0       | (        | 0        |
|                   | INTTA0        |               |            | INTT           | A1 (TMR     | A1)       |               |                 |                |                 | (TMRA0) |          |          |
| INTETA01          | and           | 95H           | ITA1C      | ITA1N          | 12 ITA      | ∕ім1      | IT/A1/N       | 10              | 1TAOC          | ITA0M2          | ITA0M1  | ITA      | 0M0      |
|                   | INTTAT        |               | R          |                | R           | /W        |               |                 | R              |                 | R/W     |          |          |
|                   | enable        |               | 0          | ( 0)           |             | 0         | 0             | $\sim$          | 0/             | 0               | 0       | (        | 0        |
|                   | INTTA2        |               |            |                | A3 (TMR     | A3)       | 1.            |                 |                | INTTA2          | (TMRA2) | ·        |          |
| INTETA23          | and           | 96H           | ITA3C      | /TA3M          | 12 ITA      | .3M1      | (ITA3N        | 10              | ITA2C          | ITA2M2          | ITA2M1  | ITA      | 2M0      |
|                   | enable        |               | R          | ))             | R           | <u>/w</u> | $\rightarrow$ |                 | R              |                 | R/W     | <u> </u> | -        |
|                   |               | (             |            | / 0            |             |           | $\sqrt{2}$    | >               | 0              | 0               | 0       | (        | 0        |
|                   | INTRTC        | $\frown$      |            |                |             |           |               |                 | 15.0           | INI             |         |          |          |
| NTERTCKEY         |               | 97H           | IKC        |                |             |           | IKIM          | )               |                | IRMZ            |         | IRI      | MU       |
|                   | enable        |               | R          |                |             |           |               |                 | ĸ              | 0               | R/W     | <u> </u> | <u> </u> |
|                   |               | $\leftarrow$  |            |                |             | 0         | 0             |                 | 0              | 0               | 0       | (        | 0        |
|                   |               |               | <          | $\overline{2}$ |             | >         |               |                 |                |                 |         |          |          |
| Inte              | rrupt request | flag 🚤        | <b>_</b>   | $\rightarrow$  |             |           |               |                 |                |                 |         |          |          |
|                   | $\sum$        |               | ~          |                | $\searrow$  |           |               |                 |                |                 |         |          |          |
|                   |               | $\mathcal{I}$ | лf         | ><br>\v\\\2    | ↓<br>       | Lv.       |               |                 | Eur            | notion (M       | rito)   |          |          |
| ~ (               | ( )           |               |            |                |             |           |               | Die             | Ful            |                 | nie)    |          |          |
| $\langle \rangle$ | $\square$     |               |            | $\sim$         | 0           |           | 0             | Dis             | sables interru | ipt requests    | in 1    |          |          |
|                   |               | $\bigcirc$    | (( ))      | )õ             | 1           |           | 0             | Se              | ts interrupt p | riority level t | to 2    |          |          |
|                   | $\geq$        | $\bigvee$     | $\sim$     | 0              | 1           |           | 1             | Se              | ts interrupt p | riority level 1 | to 3    |          |          |
| $\nearrow$        |               |               | $\geq 1$   | 1              | 0           |           | 0             | Se              | ts interrupt p | riority level 1 | to 4    |          |          |
| $\sim$            | 7             |               | $\searrow$ | 1              | 0           |           | 1             | Se              | ts interrupt p | riority level 1 | to 5    |          |          |
|                   |               |               |            | 1              | 1           |           | 0             | Set             | ts interrupt p | riority level 1 | to 6    |          |          |
|                   |               |               |            | 1              | 1           |           | 1             | Dis             | ables interru  | pt requests     |         |          |          |

| (1) | Interrupt p | oriority | setting | registers |
|-----|-------------|----------|---------|-----------|
|-----|-------------|----------|---------|-----------|

| Symbol   | Name          | Address                | 7                 | 6      | 5      | 4          | 3             | 2                 | 1       | 0            |  |
|----------|---------------|------------------------|-------------------|--------|--------|------------|---------------|-------------------|---------|--------------|--|
|          |               |                        |                   | INT    | TX0    |            | INTRX0        |                   |         |              |  |
|          | Interrupt     | 0011                   | ITX0C             | ITX0M2 | ITX0M1 | ITX0M0     | IRX0C         | IRX0M2            | IRX0M1  | IRX0M0       |  |
| INTESU   | serial 0      | 980                    | R                 |        | R/W    |            | R             | $\langle \rangle$ | R/W     |              |  |
|          |               |                        | 0                 | 0      | 0      | 0          | 0             | 0                 | 0       | 0            |  |
|          | INTRX1        |                        |                   | INT    | TX1    |            |               | ти ) )            | RX1     |              |  |
|          | and           | 00H                    | ITXT1C            | ITX1M2 | ITX1M1 | ITX1M0     | IRX1C         | IRX1M2            | IRX1M1  | IRX1M0       |  |
| INTEST   | INTTX1        | 990                    | R                 |        | R/W    |            | _ R ((        | 7/^               | R/W     | •            |  |
|          | enable        |                        | 0                 | 0      | 0      | 0          | Q             |                   | 0       | 0            |  |
|          |               |                        |                   | INT    | LCD    |            | $\neq$        | $\langle$         |         |              |  |
|          | INTLCD        | олы                    | ILCD1C            | ILCDM2 | ILCDM1 | ILCDM0     | $\mathcal{H}$ | 2                 |         |              |  |
| enable   |               | 9AH                    | R                 |        | R/W    |            | $\sim$        | $\sum$            |         |              |  |
|          |               |                        | 0                 | 0      | 0      | 0 (        | $\square$     |                   | ( )     |              |  |
| INTTCO   |               |                        |                   | INT    | TC1    | $\sim$     |               | INT               | ICO /   | $\checkmark$ |  |
|          | and           | -C1 9BH<br>ble         | ITC1C             | ITC1M2 | ITC1M1 | ITC1M0     | 17C0C         | ITC0M2            | TTCOM1  | ITC0M0       |  |
| INTERCOT | INTTC1        |                        | R                 |        | R/W    | $(\vee /)$ | ) R ,         | $\mathcal{O}$     | RAV     |              |  |
|          | enable        |                        | 0                 | 0      | 0      |            | 0             | 6                 | (0)     | 0            |  |
|          | INTTC2        |                        |                   | INT    | тсз Д  |            |               | ) INT             | TÇ2     | -            |  |
|          | and           | асн                    | ITC3C             | ITC3M2 | IT¢3M1 | ТСЗМО      | ITC2C         | ITC2M2            | VITC2M1 | ITC2M0       |  |
| INTETC23 | INTTC3        | 901                    | R                 |        | R/W    | $\sim$     | R             | $\mathcal{T}$     | R/W     | •            |  |
|          | enable        |                        | 0                 | 0 (    | 0      | > 0        | Ø             |                   | 0       | 0            |  |
|          | INTP0         |                        |                   |        | R1 💙   |            |               | )) INI            | FP0     |              |  |
|          | and           | ۹ПН                    | IP1C              | IP1M2  | IP1M1  | IP1M0      | IPOC          | IP0M2             | IP0M1   | IP0M0        |  |
|          | R R/W         |                        | $\langle \langle$ | R      |        | R/W        |               |                   |         |              |  |
|          | enable        |                        | 0                 | 0      | ✓ 0    | 0          | 9/            | 0                 | 0       | 0            |  |
|          |               |                        |                   | ( ) )  |        |            | $\sim$        |                   |         |              |  |
| Inte     | rrupt request | t flag <del>&lt;</del> | $\square$         |        |        | $\wedge$   | $\sim$        |                   |         |              |  |

| $\frown$ | $\subseteq$ | $\downarrow$                            | 1    |                                    |
|----------|-------------|-----------------------------------------|------|------------------------------------|
| -(7/4)   | lxxM2       | lxxM1                                   | cxMQ | Function (Write)                   |
|          | 0           | 9                                       | 0    | Disables interrupt requests        |
|          | 0 🔨         | • • • · · · · · · · · · · · · · · · · · | )1   | Sets interrupt priority level to 1 |
|          | 0           |                                         | /0   | Sets interrupt priority level to 2 |
|          | 0           | 1                                       | 1    | Sets interrupt priority level to 3 |
|          | $1 \subset$ |                                         | 0    | Sets interrupt priority level to 4 |
| ~ ~      | 1           | 0                                       | 1    | Sets interrupt priority level to 5 |
|          | 1           |                                         | 0    | Sets interrupt priority level to 6 |
|          | $\wedge$ 1  | <u> </u>                                | 1    | Disables interrupt requests        |
|          | 1(          |                                         |      |                                    |
|          |             |                                         |      |                                    |
|          | $\searrow$  |                                         |      |                                    |
|          |             |                                         |      |                                    |
|          | )           |                                         |      |                                    |
|          |             |                                         |      |                                    |

(()) +

| 4          | 3                                        | 2                                                                                                                               | 1                                                                                                                                                                                          | 0                                                                                                                                                                                                                                     |
|------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I2EDGE     | <b>I1EDGE</b>                            | <b>I0EDGE</b>                                                                                                                   | IOLE                                                                                                                                                                                       | NMIREE                                                                                                                                                                                                                                |
|            | W                                        | $\sim$                                                                                                                          |                                                                                                                                                                                            |                                                                                                                                                                                                                                       |
| 0          | 0                                        | 0                                                                                                                               | 0                                                                                                                                                                                          | 0                                                                                                                                                                                                                                     |
| INT2EDGE   | INT1EDGE                                 | INTOEDGE                                                                                                                        | 1NT0 mode                                                                                                                                                                                  | 1: Operates                                                                                                                                                                                                                           |
| 0: Rising  | 0: Rising                                | 0: Rising                                                                                                                       | 0: Édgé                                                                                                                                                                                    | even on                                                                                                                                                                                                                               |
| 1: Falling | 1: Falling                               | 1: Falling                                                                                                                      | 1: Level                                                                                                                                                                                   | rising/falling                                                                                                                                                                                                                        |
|            | $\sim$                                   | $((// \land$                                                                                                                    |                                                                                                                                                                                            | NMI                                                                                                                                                                                                                                   |
|            | 0<br>INT2EDGE<br>0: Rising<br>1: Falling | I2EDGE     I1EDGE       W     0     0       INT2EDGE     INT1EDGE       0: Rising     0: Rising       1: Falling     1: Falling | I2EDGE     I1EDGE     I0EDGE       W     0     0     0       INT2EDGE     INT1EDGE     INT0EDGE       0: Rising     0: Rising     0: Rising       1: Falling     1: Falling     1: Falling | I2EDGE     I1EDGE     I0EDGE     I0LE       W     0     0     0     0       INT2EDGE     INT1EDGE     INT0EDGE     INT0 mode       0: Rising     0: Rising     0: Rising     0: Rising       1: Falling     1: Falling     1: Falling |

(2) External interrupt control

| 0        | Edge detect INT                               |
|----------|-----------------------------------------------|
| 1        | H level INT                                   |
| NMI risi | ng edge enable <                              |
| 0        | INT request generation at falling edge        |
| 1        | INT request generation at rising/falling edge |

(3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, as given in Table 3.4.1 to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR  $\leftarrow$  0AH: Clears interrupt request flag INT0.

|        |           |           |                 |                   |       |           |          | /        |       |       |
|--------|-----------|-----------|-----------------|-------------------|-------|-----------|----------|----------|-------|-------|
| Symbol | Name      | Address   | 7               | 6                 | ))5   | 4         | 3        | 2        | 1     | 0     |
|        |           | 88H       | /               |                   | CLRV5 | CLRV4     | CLRV3    | CLRV2    | CLRV1 | CLRV0 |
|        | Interrupt | nterrupt  |                 | Ľ                 |       | $\sim$ // | V        | /        |       |       |
| INTOLK | control   | (Prohibit | /               | K                 | 0     | 0         | 0        | 0        | 0     | 0     |
|        |           | KMW)      | $(\mathcal{O})$ | $\langle \rangle$ | 4     |           | Interrup | t vector |       |       |

(4) Micro DMA start vector registers

This register assigns micro DMA processing to which interrupt source. The interrupt source with a micro DMA start vector that matches the vector set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, to continue micro DMA processing, set the micro DMA start vector register again during the processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the channel with the lowest number has a higher priority.

Accordingly, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the lower number is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel is not set again, the next micro DMA is started for the channel with the higher number. (Micro DMA chaining)

| Symbol  | Name          | Address | 7    | 6    | 5      | 4            | 3       | 2            | 1            | 0      |   |   |  |  |    |  |  |  |  |
|---------|---------------|---------|------|------|--------|--------------|---------|--------------|--------------|--------|---|---|--|--|----|--|--|--|--|
|         |               |         |      |      |        |              | DMA0 st | art vector   |              |        |   |   |  |  |    |  |  |  |  |
|         | DMA0          | 00LL    | /    | /    | DMA0V5 | DMA0V4       | DMA0V3  | DMA0V2       | DMA0V1       | DMA0V0 |   |   |  |  |    |  |  |  |  |
| DIVIAUV | vector        | 001     |      |      |        |              | R/      | w 📏          |              |        |   |   |  |  |    |  |  |  |  |
|         |               |         | /    | /    | 0      | 0            | 0       | 0            | 0            | 0      |   |   |  |  |    |  |  |  |  |
|         |               |         |      | /    |        |              | DMA1 st | art vector   | 7(           |        |   |   |  |  |    |  |  |  |  |
|         | DMA1<br>start | 81H     |      | /    | DMA1V5 | DMA1V4       | DMA1V3  | DMA1V2       | DMA1V1       | DMA1V0 |   |   |  |  |    |  |  |  |  |
| DIVIATV | vector        | 0111    | 0111 | 0111 | onn    | 0111         | 0111    | 0111         | 0111         | 0111   | / | / |  |  | R/ |  |  |  |  |
|         |               |         | /    | /    | 0      | 0            | 6       | O            | 0            | 0      |   |   |  |  |    |  |  |  |  |
|         |               |         |      | /    |        |              | DMA2 st | art vector   |              |        |   |   |  |  |    |  |  |  |  |
|         | DMA2<br>start | 821     | /    | /    | DMA2V5 | DMA2V4       | DMA2V3  | DMA2V2       | DMA2V1       | DMA2V0 |   |   |  |  |    |  |  |  |  |
| DIVIAZV | vector        |         | /    | /    | RAW    |              |         |              |              | /      |   |   |  |  |    |  |  |  |  |
|         |               |         |      | /    | 0      | 0 <          | 0       | 0            | 0            | 9      |   |   |  |  |    |  |  |  |  |
|         |               |         |      |      |        |              | DMA3 st | art vector   |              | ~      |   |   |  |  |    |  |  |  |  |
|         | DMA3<br>start | 83H     |      | /    | DMA3V5 | DMA3V4       | DMA3V3  | DMA3V2       | DMA3V1       | DMA3V0 |   |   |  |  |    |  |  |  |  |
| DIVIAGV | vector        |         |      |      |        |              | )) R/   | w $\bigcirc$ | $O_{\Gamma}$ |        |   |   |  |  |    |  |  |  |  |
|         |               |         |      |      | 0      | $\bigcirc 0$ | 0       | 0            |              | / 0    |   |   |  |  |    |  |  |  |  |

(5) Micro DMA burst specification

Specifying the micro DMA burst continues the micro DMA transfer until the transfer counter register reaches "0" after micro DMA start. Setting a bit which corresponds to the micro DMA channel of the DMAB registers mentioned below to "1" specifies a burst.

|        |                  |                  |                                |              | )                                      |                        |       |             |              |       |
|--------|------------------|------------------|--------------------------------|--------------|----------------------------------------|------------------------|-------|-------------|--------------|-------|
| Symbol | Name             | Address          | 7                              | 6            | 5                                      | 4                      | 3     | 2           | 1            | 0     |
|        | DMA              |                  | $\downarrow$                   | Ł            | /                                      | Ł                      | DMAR3 | DMAR2       | DMAR1        | DMAR0 |
|        | DIMA<br>software | 89H              |                                | ¥<br>Y       |                                        | $\langle \neg \rangle$ | R/W   | R/W         | R/W          | R/W   |
| DMAR   | request          | (Prohibit        | $\gamma \gamma \gamma \lambda$ | /            | 4                                      | $\mathcal{H}$          | 0     | 0           | 0            | 0     |
|        | register         | RMVV)            | $\langle \rangle$              | )            | $(\overline{O})$                       |                        |       | 1: DMA soft | ware request | t     |
|        |                  | // )]            | //                             | $\neq$       | -t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t | $\sum$                 | DMAB3 | DMAB2       | DMAB1        | DMAB0 |
|        | DMA <            | DMA<br>burst 8AH |                                | /            | K                                      | $\sum$                 |       | R/          | W            |       |
| DIVIAD | register         |                  |                                | $\backslash$ | ľ                                      |                        | 0     | 0           | 0            | 0     |
|        | 5                |                  | $\geq$                         | $\square$    |                                        |                        |       | 1: DMA bu   | rst request  |       |

### (6) Attention point

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag (Note) between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0004H and reads the interrupt vector address FFFF04H.

To avoid the above plogram, place instructions that clear interrupt request flags after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 1 instructions (e.g., "NOP" (x(1 times). If placed EI instruction without waiting NOP instruction after execution of clearing instruction, interrupt will be enable before request flag is cleared.

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following 2 circuits are exceptional and demand special attention.

| INTO level mode     | In Level mode INTO is not an edge-triggered interrupt. Hence, in Level mode the interrupt request flip-flop for INTO does not function. The peripheral interrupt request passes through the Sinput of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically.<br>If the CPU enters the interrupt response sequence as a result of INTO going from 0 to 1, INTO must then be held at 1 until the interrupt response sequence has been completed. If INTO is set to level mode so as to release a halt state, INTO must be held at 1 from the time INTO changes from 0 to 1 until the halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INTO to revert to 0 before the halt state has been released.) When the mode changes from level mode to edge mode, interrupt request flags which were set in level mode will not be cleared. |                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                     | Interrupt request flags must be cleared using the following sequence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|                     | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
|                     | LD (IIMC), 00H ; Switches interrupt input mode from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |
| $\sim$              | LD (INTCLR). 0AH : Clears interrupt request flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| $\langle \sqrt{2}$  | NOR ; Wait El instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                     | EI V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
|                     | The interrupt request flip-flop can only be cleared by a reset or by reading the serial channel receive buffer. It cannot be cleared by writing INTCLR register.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| Notes The fellewine | instructions or nin input state shanges are equivalent to in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | otructions that |
|                     | instructions of pin input state changes are equivalent to in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | structions that |
| clear the inter     | rupt request flag.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| INTO: Instru        | ctions which switch to level mode after an interrupt requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | est has been    |
| gener               | ated in edge mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |
| The pi              | n input change from high to low after interrupt request has be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | en generated    |

in level mode. (H  $\rightarrow$  L)

INTRX: Instruction which read the receive buffer

# 3.5 Port Functions

The TMP91C016 features 57-bit settings which relate to the various I/O ports.

As well as general-purpose I/O port functionality, the port pins also have I/O functions which relate to the built-in CPU and internal I/Os. Table 3.5.1 lists the functions of each port pin. Table 3.5.2 lists I/O registers and their specifications.

| Table 3 | 51 F | Port Fi | inctions |
|---------|------|---------|----------|
|         |      |         |          |

| (R: PU/D = with programmable pull-up/pull-down resistor |
|---------------------------------------------------------|
| PU = with programmable pull-up resistor                 |
| PD = with programmable oull-up resistor)                |

| Port Name                         | Pin Name          | Number of<br>Pins                               | Direction     | R       | Direction<br>Setting Unit | Pin Name for Built-in<br>Function |
|-----------------------------------|-------------------|-------------------------------------------------|---------------|---------|---------------------------|-----------------------------------|
| Port 1                            | P10 to P17        | 8                                               | I/O           | _       | Bit                       |                                   |
| Port 2                            | P20 to P27        | 8                                               | Output        | -       | (Fixed)                   | A16 to A23                        |
| Port 5                            | P52               | 1                                               | I/O           | PU/D    | Bit                       | HWR , INT3                        |
|                                   | P53               | 1                                               | I/O           | PU      | Bit                       | WAIT, EXWR                        |
|                                   | P56               | 1                                               | I/O           | PU 🥢    | Bit                       | R/W, MSK                          |
| Port 6                            | P60               | 1                                               | I/O           | PU 🖯    | )Bit                      | COSO, LCLKO)                      |
|                                   | P61               | 1                                               | I/O           | PU      | Bit                       |                                   |
|                                   | P63               | 1                                               | I/O           | (PU)    | Bit                       | CS3, RAS                          |
|                                   | P64               | 1                                               | I/O           | PU      | ─ Bit                     | EA24, CS2B                        |
|                                   | P65               | 1                                               | 1/0 🗸         | ( PU )  | Bit                       | EA25, CS2C, LCLK, VEECLK          |
|                                   | P66               | 1                                               | I/O           | RU      | Bit                       | UCAS, UDS, WE                     |
|                                   | P67               | 1                                               | I/O           | PV      | Bit                       | LCAS, LDS, REFOUT                 |
| Port 7                            | P70               | 1                                               | TO            | PU      | Bit                       | SCOUT, TA1OUT                     |
|                                   | P71               | 1                                               | ~ (I/O / )    | PU      | Bit                       | OPTTX0, CS2D                      |
|                                   | P72               | 1                                               | VO            | PU/D    | Bit                       | OPTRX0, CS2E                      |
|                                   | P73               | 1                                               | VO>           | PU      | Bit ) )                   | DRAMOE, EXRD                      |
|                                   | P74               | 1 ((                                            | γφ            | PU      | Bit                       | WE, NMI, CAS                      |
| Port 9                            | P90 to P97        | 8                                               | Input         | PU      | (Fixed)                   | KI0 to KI7                        |
| Port B                            | PB0               | 1 1                                             | I/O           | PU      | Bit                       | VLD0                              |
|                                   | PB1               | (1)                                             | ) I/O         | PU      | Bit                       | VLD1                              |
|                                   | PB2               |                                                 | / 1/0         | PU/     | Bit                       | VLD2                              |
|                                   | PB3               | (7/1)                                           | I/O           | PU      | Bit                       | INT0                              |
|                                   | PB4               | (√ <u>/</u> 1))                                 | 1/0           | PU/D    | Bit                       | INT1                              |
|                                   | PB5               |                                                 | I/O ( (       | 7 /PW/P | Bit                       | INT2                              |
| Port C                            | < (PC3 /          | 1                                               | < ko 🗸        | PU      | Bit                       | TXD1                              |
|                                   | RC4               | <u> </u>                                        | YQ            | −₽Ú/D   | Bit                       | RXD1                              |
|                                   | PC5               | 1 🤇                                             | <del>/O</del> | > PU/D  | Bit                       | SCLK1, CTS1                       |
|                                   | PC6               | 1                                               | 1/0           | _       | Bit                       | XT1                               |
| $\sim$                            | PC7               | 1                                               | 1/0           | -       | Bit                       | XT2                               |
| Port D                            | PDO               | 1                                               | 1/0           | PU      | Bit                       | D1BSCP                            |
|                                   | PD1/              | 1 ( 7                                           | I/O           | PU      | Bit                       | D2BLP                             |
| $( \subset$                       | PD2               | 1/1/                                            | I/O           | PU      | Bit                       | D3BFR                             |
| $\langle \langle \langle \rangle$ | ) ) PD3           | 1                                               | I/O           | PU      | Bit                       | DLEBCD                            |
|                                   |                   | $\left( \begin{array}{c} 1 \end{array} \right)$ | ∼ ı/o         | PU      | Bit                       | DOFFB                             |
| $ \longrightarrow $               | PD6 ( (           | ((1))                                           | I/O           | PU      | Bit                       | ALARM, MLDALM                     |
|                                   | PD7               | $\langle  \rangle$                              | I/O           | PU      | Bit                       | MLDALM                            |
|                                   | $\langle \rangle$ | $\langle \rangle$                               |               |         |                           |                                   |

| Port              | Din Nama   | Specification           | I,                           | /O Registe   | er Settin                                       | g Data            |        |
|-------------------|------------|-------------------------|------------------------------|--------------|-------------------------------------------------|-------------------|--------|
| Pon               | Pin Name   | Specification           | Pn                           | PnCR         | PnFC                                            | PnFC2             | PnFC3  |
| Port 1            | P10 to P17 | Input port              | Х                            | o <          |                                                 | -                 | _      |
| (Note 1)          |            | Output port             | Х                            | 1            | >-\                                             | -                 | -      |
|                   |            | D8 to D15 bus           | Х                            | Х            | $\left( \begin{array}{c} - \end{array} \right)$ | 5-                | -      |
| Port 2            | P20 to P27 | Output port             | Х                            | -            | $\langle 0 \rangle$                             | )~ -              | -      |
|                   |            | A16 to A23 output       | Х                            | -6           | $\sum$                                          | -                 | -      |
| Port 5            | P52, P53,  | Input port              | X 🔿                          | ( (//        | $\langle \langle \rangle \rangle$               | Х                 | -      |
|                   | P56        | Output port             | x                            | 1            | 0                                               | Х                 | -      |
|                   | P52        | HWR output              | X                            |              | 1                                               | 0                 | -      |
|                   |            | INT3 input              | X                            | Y ( 0 )      | Х                                               | 1                 | -      |
|                   | P53        | WAIT input (Note 2)     | 7                            |              | -                                               |                   | -      |
|                   |            | EXWR output             | X                            | 1            | 1                                               | (-                |        |
|                   | P56        | R/W output              | X                            | 1            | 1 ្                                             | 4F                | $\sim$ |
|                   |            | MSK input (Note 3)      | 7%                           | > x          | x [2                                            | Logical selection | -      |
| Port 6            | P60, P61,  | Input port              | $\langle \mathbf{x} \rangle$ | 0 🛇          | $\sim$                                          | 1/0               | 0      |
|                   | P63 to P67 | Output port             | X                            | 1            | 0                                               | 50/               | 0      |
|                   | P60        | CS0 output (Note 10)    | ∕> x                         | 1 (          | $\overline{2}$                                  | $\overline{)}$    | 0      |
|                   |            | LCLK output (Note 10)   | X                            | 1((          |                                                 | _                 | 1      |
|                   | P61        | CS1 output              | Х                            | 1            | ~1/                                             | 0                 | 0      |
|                   |            | CS2 output              | Х                            | $(\gamma)$   | 0                                               | -                 | _      |
|                   |            | CS2A output             | X                            | $(\sqrt{1})$ | ) 1                                             | _                 | _      |
|                   | P63        | CS3 output (Note 14)    | X                            |              | 1                                               | 0                 | _      |
|                   |            | RAS output (Note 14)    |                              | 1            | 1                                               | 0                 | _      |
|                   | P64        | FA24 output             | X                            | ))1          | 1                                               | 0                 | _      |
|                   |            |                         | X                            | //1          | X                                               | 1                 | _      |
|                   | P65        | FA25 output             | X                            | 1            | 1                                               | 0                 | 0      |
|                   |            | CS2C output (Note 5 11) | X                            | 1            | X                                               | 1                 | 0      |
|                   |            | VEECLK output (Note 5)  | X                            | 1            | X                                               | X                 | 0      |
|                   |            | CLK ontrout (Note 11)   | X                            | 1            | X                                               | 1                 | 1      |
|                   | P66        |                         | x                            | 1            | 1                                               | 0                 | _      |
|                   |            |                         | × x                          | 1            | ×                                               | 1                 | _      |
|                   |            |                         | x                            | 1            | 1                                               | 0                 | _      |
|                   | P67        |                         | X                            | 1            | 1                                               | 0                 |        |
|                   |            |                         | X                            | 1            | ×                                               | 1                 |        |
|                   |            |                         | ×                            | 1            | 1                                               | 0                 | _      |
| Port 7 ^          |            |                         | ^<br>V                       | 0            | 0                                               | 0                 | _      |
|                   |            |                         | × ×                          | 1            | 0                                               | 0                 | _      |
| <                 |            |                         |                              | 1            | ~                                               | 4                 | -      |
| (-                |            |                         |                              | 1            | ~                                               |                   | _      |
| $\sim$ ((         | DZ1        |                         | X                            | 1            |                                                 | 0                 | -      |
| ///               |            |                         | X                            | 1            | ×                                               | 1                 | _      |
|                   | D70        |                         | X                            |              |                                                 | U                 | _      |
|                   |            |                         | X                            | 0            | 0                                               | _                 | _      |
| $\langle \rangle$ | D70        |                         | X                            | 1            |                                                 | -                 | _      |
| $\searrow$        | P/3        |                         | X                            | 1            | X                                               | 1                 | -      |
| ~                 | D74        |                         | X                            | 1            | 1                                               | 0                 | -      |
|                   | P74        | WE output (Note 8)      | X                            | 1            | X                                               | 1                 | -      |
|                   |            |                         | X                            | 0            | 1                                               | Х                 | -      |
|                   |            | CAS output (Note 8)     | Х                            | 1            | Х                                               | 1                 | -      |

Table 3.5.2 I/O Registers and Specifications (1/2)

X: Don't care

| Port   | Pin Name       | Specification             | l,                           | /O Regist                  | er Settir           | ng Data          |               |
|--------|----------------|---------------------------|------------------------------|----------------------------|---------------------|------------------|---------------|
| 1 011  | 1 III I Galilo | opeomodien                | Pn                           | PnCR                       | PnFC                | PnFC2            | PnFC3         |
| Port 9 | P90 to P97     | Input port                | Х                            | - (                        | 0                   | _                | -             |
|        |                | KI0 to KI7 input          | Х                            | -                          |                     | -                | -             |
| Port B | PB0 to PB5     | Input port                | Х                            | 0                          | 0                   |                  | -             |
|        |                | Output port               | Х                            | 1                          | (0                  | ) 2              | -             |
|        | PB0            | VLD0 input (Note 12)      | Х                            | 0                          | ľ<br>ľ              | 2 -              | -             |
|        | PB1            | VLD1 input (Note 12)      | X _                          | 0 ( /                      | $\langle A \rangle$ | _                | -             |
|        | PB2            | VLD2 input (Note 12)      | x                            | <u> </u>                   | $\mathcal{A}$       | _                | -             |
|        | PB3            | INT0 input                | Х                            |                            | _1                  | _                | -             |
|        | PB4            | INT1 input                | Х                            | $\left( 0\right) \right)$  | > 1                 | _                | -             |
|        | PB5            | INT2 input                | X                            | Q                          | 1                   | -                | -             |
| Port C | PC3 to PC5     | Input port                | × C                          | 0                          | 0                   | $\left( \right)$ |               |
|        | PC6, PC7       | Output port               | $\langle \mathbf{x} \rangle$ | $\sim$                     | 0                   | St.              | $\rightarrow$ |
|        | PC3            | TXD1 output (Note 4)      | $\langle \mathbf{x} \rangle$ | > 1                        | 1 ]                 | $\sum$           | -             |
|        | PC4            | RXD1 input (Note 4)       | (//x<                        | ٥                          | -( (                |                  | / _           |
|        | PC5            | SCLK1 input (Note 4, 13)  | (x)                          | о 🛇                        | 0                   | $\mathcal{Y}$    | ) –           |
|        |                | SCLK1 output (Note 4, 13) | X                            | 1                          | Ź                   | GU/              |               |
|        |                | CTS1 input (Note 4, 13)   | ∕∕x                          | 0                          |                     | $\sim$           | -             |
|        | PC6            | XT1 input (Note 9)        | X                            | x ( (                      | ×                   | _                | -             |
|        | PC7            | XT2 output (Note 9)       | x                            | X                          | / <b>x</b> _        | _                | -             |
| Port D | PD0 to PD7     | Input port                | Х                            | $(\overline{A})$           | 0                   | _                | -             |
|        |                | Output port               | X                            | $\langle \sqrt{2} \rangle$ | ) 0                 | -                | -             |
|        | PD0            | D1BSCP output             | X                            | $\langle \gamma \rangle$   | 1                   | -                | -             |
|        | PD1            | D2BLP output              | /                            | 1                          | 1                   | -                | -             |
|        | PD2            | D3BFR output              | X                            | ) )1                       | 1                   | -                | -             |
|        | PD3            | DLEBCD output             | X                            | √/1                        | 1                   | -                | -             |
|        | PD4            | DOFFB output              | X                            | √ 1                        | 1                   | -                | -             |
|        | PD6            | MLDALM output             | 1                            | 1                          | 1                   | -                | -             |
|        |                |                           | ) 0                          | 1                          | 1                   | -                | -             |
|        | PD7            | MLDALM output             | X                            | 1                          | 1                   | -                | -             |

| Table 3.5.3 | I/O Registers and Specifications | (2/2)     |
|-------------|----------------------------------|-----------|
| 10010 0.0.0 |                                  | ( 2 / 2 ) |

X: Don't care

- Note 1: Port1 is able to set port function or data bus by AM1, AM0 setting.
- Note 2: If you want to use WAIT input, it needs BxCS register (1 + N) wait setting.
- Note 3: In case of P76/MSK set MSK input, it can set logical selection by P7FC<P76F>.
- Note 4: OPTRX0, OPTTX0, TXD1, RXD1, SCLK1, CTS1:

These pins can set input/output data's logical selection by each Pn register.

- Note 5: In case of P65F2D and P65F2, both write 1, it set P65F2D (VEECLK).
- Note 6: Selection of UCAS and WE depend on CS/WAIT bus width control (8 bits or 16 bits).
- Note 7: Selection of LCAS and REFOUT depend on CS/WAIT bus width control (8 bits or 16 bits).
- Note 8: Selection of WE and CAS depend on CS/WAIT bus width control (8 bits or 16 bits).
- Note 9: Oscillator setting of XT1 and XT2 is controlled by SYSCR0<XTEN> and this control have priority over other setting.
- Note 10: Selection of  $\overline{CS0}$  and LCLK is set by P6FC3<P60F3>.
- Note 11: Selection of  $\overline{CS2C}$  and LCLK is set by P6FC3<P65F3>.
- Note 12: If One of PB0 to PB2 is set VLD function, other PBx pin can't output function even port function setting. And these pin can only VLD input or port output. VLD function is set by VLDCTL<VLD\*USE>.
- Note 13: Selection of SCLK and  $\overline{CTS}$  is set by SC1MOD0<CTSE>.
- Note 14: Selection of  $\overline{CS3}$  and  $\overline{RAS}$  is set by B3CS<B3OM1:0>.

# 3.5.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P1CR. Resetting, the control register P1CR to 0 and sets Port 1 to input mode.

In addition to functioning as a general-purpose I/O port, Port 1 can also function as an address data bus (D8 to 15).

When AM1 = 0 and AM0 = 1, port 10 to 17 always operate data bus function, even if it changes P1CR setting.



# 3.5.2 Port 2 (P20 to P27)

Port 2 is an 8-bit output port. In addition to functioning as a output port, port 2 can also function as an address bus (A16 to A23).

Each bits can be set individually for address bus using the function register P2FC. Resetting sets all bits of the function register P2FC to 1 and sets port 2 to address bus.



|                                             | Port 1 Register   |            |             |              |               |                |                     |                           |        |  |  |
|---------------------------------------------|-------------------|------------|-------------|--------------|---------------|----------------|---------------------|---------------------------|--------|--|--|
|                                             |                   | 7          | 6           | 5            | 4             | 3              | 2                   | 1                         | 0      |  |  |
| P1                                          | Bit symbol        | P17        | P16         | P15          | P14           | P13            | P12                 | P11                       | P10    |  |  |
| (0001H)                                     | Read/Write        |            | •           |              | R             | R/W            | •                   | •                         |        |  |  |
|                                             | After reset       |            | Data        | from externa | al port (Outp | ut latch regis | ter is cleared      | to 0.)                    |        |  |  |
|                                             |                   |            |             | Port 1       | Control Reg   | ister          |                     | $\langle \rangle$         |        |  |  |
|                                             |                   | 7          | 6           | 5            | 4             | 3              | 2                   |                           | 0      |  |  |
| P1CR                                        | Bit symbol        | P17C       | P16C        | P15C         | P14C          | P13C           | P12C                | P11C                      | P10C   |  |  |
| (0004H)                                     | Read/Write        |            |             |              |               | W              | $\langle   \rangle$ | $\langle \rangle \rangle$ |        |  |  |
|                                             | After reset       | 0/1        | 0/1         | 0/1          | 0/1           | 0/1            | 0/1                 | 0/1                       | 0/1    |  |  |
|                                             | (Note)            |            |             |              |               |                | $(\bigcirc)$        |                           |        |  |  |
|                                             | Function          |            |             |              | 0: Input      | 1: Output      |                     | Υ                         |        |  |  |
| Port 1 I/O setting<br>0: Input<br>1: Output |                   |            |             |              |               |                |                     |                           |        |  |  |
|                                             |                   | 7          | 6           | 5            |               | 3              | 2                   |                           | 56/    |  |  |
| P2                                          | Bit symbol        | P27        | P26         | P25          | P24           | P23            | P22 /               | P21                       | P20    |  |  |
| (0006H)                                     | Read/Write        |            | 1 20        | 1 20         | A R           | W O            | (                   |                           | 1 . 20 |  |  |
|                                             | After reset       |            |             |              |               |                |                     |                           |        |  |  |
|                                             |                   |            |             | Port 21      | Eunction Red  | pister         |                     | $\langle \rangle$         |        |  |  |
|                                             |                   | 7          | 6           | 5            | 4             | 3              | 2                   | 1                         | 0      |  |  |
| P2FC                                        | Bit symbol        | P27F       | P26F        | P25F         | P24F          | P23F           | P22F                | P21F                      | P20F   |  |  |
| (0009H)                                     | Read/Write        |            | •           | ( )          | $\checkmark$  | w              |                     | •                         |        |  |  |
|                                             | After reset       | 1          | 1           |              | 1             | 1              | /1                  | 1                         | 1      |  |  |
|                                             | Function          |            | (           | )O: Po       | ort 1: Addres | s bus (A23 to  | o A16)              |                           |        |  |  |
|                                             | Note1: Rea        | ad-modify  | -write is p | rohibited fo | or P1CR       | and P2FC.      |                     |                           |        |  |  |
|                                             | Note2: It is      | set to "Po | rt" or "Da  | ta bus" by   | AM pins s     | tate.          |                     |                           |        |  |  |
| Figure 3.5.3 Registers for Ports 1 and 2    |                   |            |             |              |               |                |                     |                           |        |  |  |
|                                             | $\langle \rangle$ | $\searrow$ | ,           | $\square$    |               |                |                     |                           |        |  |  |
| $\sim$                                      |                   | $\sum$     |             |              | ~             |                |                     |                           |        |  |  |
| $\langle =$                                 |                   |            | 20          |              |               |                |                     |                           |        |  |  |
|                                             | $\geq$            | <~         | $\searrow$  |              |               |                |                     |                           |        |  |  |

# 3.5.3 Port 5 (P52, P53, P56)

Port 5 is an 3-bit general-purpose I/O port. This I/O port is set using control register P5CR, P5FC, P5FC2 and P5UDE. And P52 port have  $\overline{\text{HWR}}$  output, INT2 input, P53 port have  $\overline{\text{WAIT}}$  input,  $\overline{\text{EXWR}}$  output, P56 port have R/W output, MSK input, except port function.

Resetting resets all bits of P5 and bit 3, 5 of P5UDE to 1, all bits of P5CR, P5FC and P5FC2 to 0. And sets P52, P53, P56 to input mode with pull-up resistor.

In addition to functioning as a general-purpose I/O port, Port 5 also functions as I/O for the CPU's control/status signal.

When the P5<RDE> register clearing to 0, outputs the  $\overline{RD}$  strobe (used for the peused static RAM) of the  $\overline{RD}$  pin even when the internal addressed.

If the  $\langle RDE \rangle$  remains 1, the  $\overline{RD}$  strobe signal is output only when the external address is accessed.



Figure 3.5.4 Port 5 (P52)







# 3.5.4 Port 6 (P60, P61, P63 to P67)

Port 6 is 7-bit I/O port. This I/O port have standard chip select signal output function  $(\overline{CS0}, \overline{CS1}, \overline{CS3})$ , expand address signal output function (EA24, EA25), expand chip select signal output function ( $\overline{CS2B}, \overline{CS2C}$ ), clock output for LCDD (VEECLK), chip select for special command for Sift Register type (LCLK), and special signals for dynamic RAM access function ( $\overline{RAS}, \overline{CAS}, \overline{WE}, \overline{LCAS}, \overline{UCAS}, \overline{LDS}, \overline{UDS}, \overline{REFOUV}$ ). These function is set by P6FC and P6FC2 register. Resetting resets all bits of P6CR, P6FC2, and 3, 6, 7 bits of P6UE to 0 and 0, 1, 4, 5 bits of P6UE to 1. And P63, P66, P67 set to cut off resistance, P60, P61, P64, P65 set to pull-up resistance input mode.)

Selection of  $\overline{CS2}$  and  $\overline{CS2A}$  is set by P6FC<P62F>. (This terminal don't have pull-up resistance and port function)



Figure 3.5.7 Port 6

| Port 6 Register                                                    |                         |                                                                         |                     |                  |                                   |              |                    |               |                            |  |  |
|--------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|---------------------|------------------|-----------------------------------|--------------|--------------------|---------------|----------------------------|--|--|
|                                                                    |                         | 7                                                                       | 6                   | 5                | 4                                 | 3            | 2                  | 1             | 0                          |  |  |
| P6                                                                 | Bit symbol              | P67                                                                     | P66                 | P65              | P64                               | P63          |                    | P61           | P60                        |  |  |
| (0012H)                                                            | Read/Write              | R/W                                                                     |                     |                  |                                   |              |                    |               |                            |  |  |
|                                                                    | After reset             | After reset Data from external port (Output latch register is set to 1) |                     |                  |                                   |              |                    |               |                            |  |  |
|                                                                    | Port 6 Control Register |                                                                         |                     |                  |                                   |              |                    |               |                            |  |  |
|                                                                    |                         | 7                                                                       | 6                   | 5                | 4                                 | 3            | 2                  | (1)           | 0                          |  |  |
| P6CR                                                               | Bit symbol              | P67C                                                                    | P66C                | P65C             | P64C                              | P63C         |                    | P61C          | ) P60C                     |  |  |
| (0014H)                                                            | Read/Write              |                                                                         |                     | W                | •                                 | •            | $\checkmark$       |               | /                          |  |  |
|                                                                    | After reset             |                                                                         | 0                   | $\sim 4$         | $\langle \langle \rangle \rangle$ | )            |                    |               |                            |  |  |
|                                                                    | Function                |                                                                         | 0: Inpu             | ıt 1:            |                                   | 0: Input     | 1: Output          |               |                            |  |  |
| Port 6 Function Register                                           |                         |                                                                         |                     |                  |                                   |              |                    |               |                            |  |  |
|                                                                    | /                       | 7                                                                       | 6                   | 5                | 4                                 | 3            | <u>\2</u> )        | 1             | 0                          |  |  |
| P6FC                                                               | Bit symbol              | P67F                                                                    | P66F                | P65F             | P64F                              | P63F         | P62F               | P61F          | P60F                       |  |  |
| (0015H)                                                            | Read/Write              |                                                                         |                     |                  | V                                 | v A(         |                    |               |                            |  |  |
|                                                                    | After reset             |                                                                         |                     |                  | (                                 | o //         | <u> </u>           | ~             |                            |  |  |
|                                                                    | Function                | 0: Port                                                                 | 0: Port             | 0: Port          | 0: Port                           | 0: Port      | 0: CS2             | 0: Port       | 0: Port                    |  |  |
|                                                                    |                         | 1: LCAS or                                                              | 1: UCAS             | 1: EA25          | 1: EA24                           | 1: 053       | 1: CS2A            | 1: CS1        | 1) TCS0                    |  |  |
|                                                                    |                         | REFOUV                                                                  | or WE               |                  | 6                                 |              |                    | $\land$       | $\mathcal{I}(\mathcal{I})$ |  |  |
| i                                                                  | ~                       |                                                                         |                     | Port 6 F         | unction Regi                      | ster2        |                    |               | 70/                        |  |  |
|                                                                    |                         | 7                                                                       | 6                   | 5                | 4                                 | ्उ           | 2 (                |               | 0                          |  |  |
| P6FC2                                                              | Bit symbol              | P67F2                                                                   | P66F2               | P65F2            | P64F2                             | > -          | P65F2D             | $\rightarrow$ |                            |  |  |
| (001BH)                                                            | Read/Write              |                                                                         |                     | y                |                                   | >            | $\bigcirc$         | $\mathcal{A}$ |                            |  |  |
|                                                                    | After reset             |                                                                         |                     |                  | $\sim$                            | n            |                    |               |                            |  |  |
|                                                                    | Function                | 0: <p67f></p67f>                                                        | 0: <p66f></p66f>    | 0: <p65f></p65f> | 0: <p64f></p64f>                  | Always       | 0: <p65f2></p65f2> | $\mathcal{I}$ |                            |  |  |
|                                                                    |                         | 1: LDS                                                                  | 1: UDS              | 1: C\$2C         | 1: C\$2B                          | write '0'    | 1: VEECLK          |               |                            |  |  |
| 1                                                                  | <                       |                                                                         |                     | Port             | 6 UE Registe                      | er           |                    |               |                            |  |  |
| P6UE                                                               |                         | 7                                                                       | 6                   | (5)              | 4                                 | 3            | /2/                | 1             | 0                          |  |  |
| (0018H)                                                            | Bit symbol              | P67U                                                                    | P66U                | P65U             | P64U                              | P63U         | $\sum$             | P61U          | P60U                       |  |  |
|                                                                    | Read/Write              | W A                                                                     |                     |                  |                                   |              | W                  |               |                            |  |  |
|                                                                    | After reset             | (                                                                       |                     |                  | 1                                 | )0           |                    |               | 1                          |  |  |
|                                                                    | Function                | Pull-up                                                                 | Pull-up             | Pull-up          | Pull-up                           | Pull-up      |                    | Pull-up       | Pull-up                    |  |  |
|                                                                    |                         | 0: Disable                                                              | 0 Disable           | 0: Disable       | 0: Disable                        | 0: Disable   |                    | 0. Disable    | nesistor                   |  |  |
|                                                                    |                         | 1 Enable                                                                | 1: Fnable           | 1. Enable        | 1. Enable                         | 1. Enable    |                    | 1. Enable     | 1. Enable                  |  |  |
| I                                                                  |                         |                                                                         |                     | Bort 6 F         |                                   | etor3        |                    |               |                            |  |  |
|                                                                    | $\sim$                  | $\overline{\sqrt{7}}$                                                   | 6                   | 5                |                                   | 3            | 2                  | 1             | 0                          |  |  |
| PEEC3                                                              | Bit symbol              | $\sim$                                                                  | $\sim$              | P65E3            | $\overline{\mathcal{A}}$          | $\sim$       | $\sim$             | _             | P60E3                      |  |  |
| (0010H)                                                            | Read/Write              | $\searrow$                                                              | $\backslash$        | W                | $\sim$                            | $\sim$       | $\backslash$       | W             | W                          |  |  |
|                                                                    | After reset             | $\backslash$                                                            | $\vee$              | 0                | $\sim$                            | $\sim$       | $\backslash$       | 0             | 0                          |  |  |
|                                                                    | Function                | $\square$                                                               | ~                   | LCLK2            | /                                 |              |                    | Always        | LCLK0                      |  |  |
|                                                                    |                         | $\subseteq$                                                             |                     | selection        |                                   |              |                    | write "0"     | selection                  |  |  |
| ~                                                                  | ( )                     |                                                                         | $\langle 1 \rangle$ | 0: Normal        |                                   |              |                    |               | 0: Normal                  |  |  |
| $\langle \rangle$                                                  | $(\bigcirc)$            |                                                                         |                     | 1: LCLK2         |                                   |              |                    |               | 1: LCLK0                   |  |  |
| $\sim$                                                             | Note 1. Read-           | modify-write                                                            | is prohibited       | for registers    | P6CR P6F                          | C. P6FC2. Pf | FC3 and P6         | UE.           |                            |  |  |
| Note 1. Read-filled by register FOCK, FOFC, FOFC2, FOFC3 and FOEL. |                         |                                                                         |                     |                  |                                   |              |                    |               |                            |  |  |

Note 2: When P63 pin is used as a CS3 pin and RAS, set chip select/wait control register B3CS<B3OM1:0> to 10.

Figure 3.5.8 Port 6 Register

## 3.5.5 Port 7 (P70 to P74)

Port 7 is 5-bit general-purpose I/O port. This port can be set I/O on bit basis. Resetting resets all bits of P7CR, P7FC and P7FC2 to P7FC0, and become to input port, and all bits of P7 to P1.

In addition to functioning as a general-purpose I/O port, Port 7 also functions as follows.

- 1. Output function for 8-bit timer (TA1OUT)
- 2. Output function for internal clock (SCOUT)
- 3. Input/output function for IrDA (OPTRX0, OPTTX0)
- 4. Extend chip-select output ( $\overline{CS2E}$ ,  $\overline{CS2D}$ )
- 5. DRAM control output ( $\overline{WE}$ ,  $\overline{CAS}$ ,  $\overline{DRAMOE}$ )
- 6. Extend read signal output ( $\overline{\text{EXRD}}$ )
- 7. Non maskable interrupt request input ( MII )

Writing 1 in the corresponding bit of P7FC, P7FC2 enables the respective functions. Resetting resets the P7FC, P7FC2 to P7FC0, and sets all bits to input ports.

2008-02-20

(1) Port 70 (SCK, OPTRX0)

Port 70 is a general-purpose I/O port. It is also used as TA1OUT (8-bit timer output function) and SCOUT (Internal clock output function). In case of used as TA1OUT, it set to P7FC < P70F > = 1 and using SCOUT, set to P7FC < P70F > = 1.



(2) Port 71 ( $\overline{\text{CS2D}}$ , OPTTX0)

Port 71 also function as extend chip-select output ( $\overline{CS2D}$ ) and transmitting output for IrDA mode of SIO0 (OPTTX0). When P71 is used to OPTTX0 function, it possible to control logical reverse by P7<P71>.

Setting to P7UDE < P71U > = 1, set to pull-up resistor.

Resetting it becomes to cut off pull-up resistor and become to input mode.



(3) Port 72 ( $\overline{CS2E}$ , OPTRX0)

Port 72 have also function as extend chip-select output ( $\overline{CS2E}$ ) and receiving input for IrDA mode of SIO0 (OPTRX0). When P72 is used to OPTRX0 function, it possible to control logical reverse by P7<P72>.

Selection of pull-up or pull-down is decided with P7UDE<P72UD> and selection of enable or disable of that resistor's situation by P7UDE<P72U>. It become to input mode without pull-up/pull-down resistor by reset operation.



(4) Port 73 ( $\overline{\text{EXRD}}$ ,  $\overline{\text{DRAMOE}}$ )

Port 73 have also function as DRAM control output ( $\overline{\text{DRAMOE}}$ ) and extend read output ( $\overline{\text{EXRD}}$ ).  $\overline{\text{EXRD}}$  output same timing as  $\overline{\text{RD}}$  signal.

Setting to P7UDE<P73U> = 1, set to pull-up resistor. It become to pull-up situation by reset operation.



(5) Port 74 ( $\overline{\text{NMI}}$ ,  $\overline{\text{WE}}$ ,  $\overline{\text{CAS}}$ )

Port 74 have also function  $\overline{\text{NMI}}$  input and DRAM control output ( $\overline{\text{WE}}$ ,  $\overline{\text{CAS}}$ ).

And setting P7UDE<P74U> = 1, set to pull-up resistor. It become to pull-up situation by reset operation.



| Port 7 Register                                                        |             |                   |                           |               |                    |                   |                    |                  |                  |  |  |
|------------------------------------------------------------------------|-------------|-------------------|---------------------------|---------------|--------------------|-------------------|--------------------|------------------|------------------|--|--|
|                                                                        | /           | 7                 | 6                         | 5             | 4                  | 3                 | 2                  | 1                | 0                |  |  |
| P7<br>(0013H)                                                          | Bit symbol  | /                 | /                         | /             | P74                | P73               | P72                | P71              | P70              |  |  |
|                                                                        | Read/Write  |                   |                           |               | R/W                |                   |                    |                  |                  |  |  |
|                                                                        | After reset |                   |                           |               | Data from          | n external po     | ort (Output lat    | ch register is   | s set to 1)      |  |  |
| Port 7 Control Register                                                |             |                   |                           |               |                    |                   |                    |                  |                  |  |  |
|                                                                        |             | 7                 | 6                         | 5             | 4                  | 3                 | 2                  | (1)              | 0                |  |  |
| P7CR                                                                   | Bit symbol  | /                 | /                         | /             | P74C               | P73C              | P72C               | DIX9             | ) P70C           |  |  |
| (0016H)                                                                | Read/Write  |                   | /                         |               | W                  |                   |                    |                  |                  |  |  |
|                                                                        | After reset | /                 | /                         | /             | 0                  | 0                 | ○ 0 ( ( )          | 0                | 0                |  |  |
|                                                                        | Function    |                   |                           |               | 0: Input 1: Output |                   |                    |                  |                  |  |  |
| Port 7 Function Register                                               |             |                   |                           |               |                    |                   |                    |                  |                  |  |  |
|                                                                        | /           | 7                 | 6                         | 5             | 4                  | 3                 | $\left( 2 \right)$ | r∕ 1             | 0                |  |  |
| P7FC                                                                   | Bit symbol  | /                 | /                         | /             | P74F               | P73F              | P72F               | P71F             | P70F             |  |  |
| (0017H)                                                                | Read/Write  | /                 | /                         | /             |                    |                   |                    |                  |                  |  |  |
|                                                                        | After reset |                   |                           |               |                    |                   | Õ                  |                  |                  |  |  |
|                                                                        | Function    |                   |                           |               | 0: Port            | 0: Port           | 0: Port            | 0: Port          | 0: Port          |  |  |
|                                                                        |             |                   |                           |               | 1: NMI             | 1: EXRD           | 1: CS2E            | 1: CS2D          | 1) TATOUT        |  |  |
|                                                                        |             |                   |                           |               | input              | output            | output             | output           | output           |  |  |
|                                                                        | _           |                   |                           | Port 7 Fu     | unction Regis      | ster 2            |                    |                  | 70/              |  |  |
|                                                                        |             | 7                 | 6                         | 5             | 4                  | 3                 | 2 (                |                  | 0                |  |  |
| P7FC2                                                                  | Bit symbol  |                   |                           |               | P74F2              | P73F2             |                    | _P71F2           | P70F2            |  |  |
| (001CH)                                                                | Read/Write  |                   |                           | $\rightarrow$ | Ŵ                  | W                 | $\mathcal{A}$      | Ŵ                | W                |  |  |
|                                                                        | After reset |                   |                           |               | 0                  | 0                 | $\uparrow$         | <u> </u>         | 0                |  |  |
|                                                                        | Function    |                   |                           |               | 0: <p74f></p74f>   | 0: <p73f></p73f>  | $\$                | 0: <p71f></p71f> | 0: <p70f></p70f> |  |  |
|                                                                        |             |                   |                           |               | 1: WE ,            | 1: DRAMOE         |                    | 1: OPTTX0        | 1: SCOUT         |  |  |
|                                                                        |             |                   |                           | $\bigcirc$    |                    |                   |                    | output           | output           |  |  |
|                                                                        |             | P                 | ort 7 Pull-up             | Pull-down R   | esistor Oper       | -drain Enab       | le Register        |                  |                  |  |  |
|                                                                        |             | 7                 | 6                         | 5             | 4                  | <u> </u>          | 2                  | 1                | 0                |  |  |
| P7UDE                                                                  | Bit symbol  | /                 | $\neg \downarrow \subset$ | P72UD         | P74U               | R73U              | UDEP72             | P71U             | P70U             |  |  |
| (001FH)                                                                | Read/Write  | /                 | $\mathcal{A}$             | ))            |                    |                   | N                  |                  |                  |  |  |
|                                                                        | After reset |                   |                           | 0             | 1                  | $\langle \rangle$ | 0                  | 0                | 0                |  |  |
|                                                                        | Function    |                   | $\langle \rangle \rangle$ | 0: Pull up    | Pull-up            | resistor          | Resistor           | Pull-up          | resistor         |  |  |
|                                                                        | /           | $\langle \rangle$ |                           | 1: Pull down  | ( 0: Di            | sable             | control            | 0: Dis           | able             |  |  |
|                                                                        |             |                   |                           |               | \\/1: <b>E</b> r   | able              | 0: Disable         | 1: En            | able             |  |  |
|                                                                        |             |                   |                           |               | $\sim$             |                   | 1: Enable          |                  |                  |  |  |
| Note: Read-modify-write is prohibited for P7CR, P7FC, P7FC2 and P7UDE. |             |                   |                           |               |                    |                   |                    |                  |                  |  |  |
|                                                                        | ~ ~         | $\checkmark$      |                           |               |                    |                   |                    |                  |                  |  |  |


#### 3.5.6 Port 9 (P90 to P97)

Port 90 to 97 are 8-bit input ports with pull-up resistors. In addition to functioning as general-purpose I/O port, port 90 to 97 can also key-on wakeup function as keyboard interface. The various functions can each be enabled by writing 1 to the corresponding bit of the Port 9 function register (P9FC).

Resetting resets all bits of the register P9FC to 0 and sets all pins to be input port. And resetting resets all bits of the register P9UE to 1 and sets all pins to be pull-up port.



When P9FC = 1, if either of input of KIO to KI7 pins falls down, INTKEY interrupt is generated. INTKEY interrupt can be used release all HALT mode.

#### 3.5.7 Port B (PB0 to PB5)

Port B is 6-bit general-purpose I/O port. This I/O port have voltage level detector function (VLD0 to VLD2), external interrupt input function (INT0 to INT2). It can be controlled by IIMC register's setting to select of rise up/fall down for interruption.

External interrupt function is set by writing to 1 correspond bit of PBFC register. And it can set pull-up resistor to port B0 to B3, pull-up/pull-down register to port B4, B5. Selection of pull-up or pull-down, is set by writing 1 corresponding bit of PBUDE register.

Resetting resets to PBCR, PBFC, PBUDE register, port B0 to B2, B4, B5 input without resistor. Only port B3 become to input with pull-up resistor by reset operation.



#### (1) PB0 to PB2 (VLD0 to VLD2)



|         |                          |               |          | Pol             | rt B Register               |                                                  |               |               |                         |  |  |
|---------|--------------------------|---------------|----------|-----------------|-----------------------------|--------------------------------------------------|---------------|---------------|-------------------------|--|--|
|         | /                        | 7             | 6        | 5               | 4                           | 3                                                | 2             | 1             | 0                       |  |  |
| РВ      | Bit symbol               |               |          | PB5             | PB4                         | PB3                                              | PB2           | PB1           | PB0                     |  |  |
| (0022H) | Read/Write               |               |          |                 |                             | R/                                               | W             |               |                         |  |  |
|         | After reset              |               |          | Da              | ita from extei              | ister is set to                                  | 1)            |               |                         |  |  |
|         |                          |               |          | Port B          | Control Regi                | ster                                             |               |               |                         |  |  |
|         |                          | 7             | 6        | 5               | 4                           | 3                                                | 2             | (1)           | 0                       |  |  |
| PBCR    | Bit symbol               |               |          | PB5C            | PB4C                        | PB3C                                             | PB2C          | PB1C          | PB0C                    |  |  |
| (0024H) | Read/Write               |               |          |                 |                             | V                                                | V (           | $\overline{}$ | 1                       |  |  |
|         | After reset              |               |          |                 |                             | Į                                                |               |               |                         |  |  |
|         | Function                 |               |          |                 |                             | 0: Input                                         | 1: Output     | $\bigcirc$    |                         |  |  |
|         | Port B Function Register |               |          |                 |                             |                                                  |               |               |                         |  |  |
| PBFC    | /                        | 7             | 6        | 5               | 4                           | 3                                                | (2)           | r∕ 1          | 0                       |  |  |
|         | Bit symbol               |               |          | PB5F            | PB4F                        | PB3F                                             | $\mathcal{X}$ |               |                         |  |  |
| (0025H) | Read/Write               |               |          |                 | W                           | $ \downarrow                                   $ | $\downarrow$  |               | $\overline{\mathbb{N}}$ |  |  |
|         | After reset              |               |          |                 | 0                           | $\sim$                                           |               | 4             | $\sim$                  |  |  |
|         | Function                 |               |          | 0: Port         | 0: Port                     | 0: Port                                          | $\rightarrow$ |               | $\langle \rangle$       |  |  |
|         |                          |               |          | 1: INT2         | 1: INT1                     | 1:UNTO )                                         |               |               |                         |  |  |
|         |                          |               | Port B P | Pull-up/Pull-de | own Resistor                | Control Reg                                      | ister         | $\sim$        | //)                     |  |  |
|         |                          | 7             | 6        | 5               | 4                           | 3                                                | 2             | $\nearrow$    | ₹¶¢                     |  |  |
| PBUDE   | Bit symbol               | PB5UD         | PB4UD    | UDEPB5          | UDEPB4                      | PB3U                                             | PB2U          | ∕⊂́₽₿1Ų ∕     | <sup>7</sup> PB0U       |  |  |
| (0020H) | Read/Write               |               |          |                 | $\langle \langle v \rangle$ | $\sim$                                           | C             | S/))          |                         |  |  |
|         | After reset              |               | (        | 0               |                             | 1                                                | $\bigcirc$    |               |                         |  |  |
|         | Function                 | Pull-up/Pull- | down     | Resisto         | r control                   | Pull-up resistor                                 |               |               |                         |  |  |
|         |                          | control       |          | 0: Di           | sable                       |                                                  | 0: Di:        | sable         |                         |  |  |
|         |                          | 0: Pull-up re | sistor   | ( <b>1</b> :Er  | nable                       |                                                  | 1: Er         | able          |                         |  |  |
|         |                          | 1: Pull-dowr  | resistor |                 |                             |                                                  |               |               |                         |  |  |

Note 1: Read-modify-write is prohibited PBCR, PBFC and PBUDE.

Note 2: Because PB0/VLD0, PB1/VLD1 and PB2/VLD2 can't be controlled those terminal's function by register, VLD circuit also receive signals operating input port function.

Figure 3.5.20 Port B Register

#### 3.5.8 Port C (PC3 to PC5, PC6, PC7)

Port C is 5-bit general-purpose I/O port. By reset, these ports become to input port and set to 1 of all output latch.

Except I/O port function, this port have serial channel I/O function (SIO0, SIO1). This function is set by writing 1 data to correspond bit of PCFC register. All the data of PCCR, PCFC register, all port become to input port.

(1) Port C3 (TXD1)

Port C3 have also function as serial channel output (TXD1). When it is used to TXD1function, it possible logical reverse output by PC<PC3> register setting.

And this port's output buffer have also open-drain type except push-pull type and this selection is set by PCUDOE<ODEPC0> register.

Port C3 can set pull-up resistor by writing 1 data to PCUDOE<PC3U> register. This port become to input port without pull up, by reset operation.



(2) Port C4 (RXD1)

Port C4 have also function as serial channel input (RXD1). When it used to RXD1 function, it possible to out logical reverse by PC<PC4> register setting.

Port C4 can set pull-up or pull-down resistor by writing 1 data to PCUDOE<UDEPC4>. Selection of pull-up or pull-down, is set by PCUDOE<PC4UD>. This port become to input port without pull-up/down resistor by reset operation.



(3) Port C5 ( $\overline{\text{CTS1}}$ , SCLK1)

Port C5 have also function as serial channel I/O ( $\overline{\text{CTS1}}$ ) and clock I/O for SIO (SCLK1). When it used to serial channel port, it possible to set logical reverse I/O by PC<PC5>.

Port C5 can set pull-up or pull-down resistor by writing 1 data of PCUDOE<UDEPC5>.

Selection of pull-up or pull-down resistor is set by PCUDOE<PC5UD>. This port is to input port without pull-up/pull-down resistor by reset operation.



(4) Port C6 (XT1), C7 (XT2)

Port C6, C7 have low-frequency oscillator function, except I/O port function.



|                         |                               |                            |                                 | Por             | t C Register                          |              |                   |                  |                        |
|-------------------------|-------------------------------|----------------------------|---------------------------------|-----------------|---------------------------------------|--------------|-------------------|------------------|------------------------|
|                         |                               | 7                          | 6                               | 5               | 4                                     | 3            | 2                 | 1                | 0                      |
| PC                      | Bit symbol                    | PC7                        | PC6                             | PC5             | PC4                                   | PC3          | /                 |                  |                        |
| (0023H)                 | Read/Write                    | R                          | W                               |                 | R/W                                   |              | /                 |                  |                        |
|                         | Function                      | Data from                  | n external po                   | ort (Output lat | ch register is                        | s set to 1)  |                   | $\langle$        |                        |
| Port C Control Register |                               |                            |                                 |                 |                                       |              |                   |                  |                        |
|                         |                               | 7                          | 6                               | 5               | 4                                     | 3            | 2                 | (1)              | 0                      |
| CCR                     | Bit symbol                    | PC7C                       | PC6C                            | PC5C            | PC4C                                  | PC3C         |                   | Į                |                        |
| 0026H)                  | Read/Write                    | W                          | W                               |                 | W                                     |              | $\neq$            | $\sum_{i=1}^{n}$ |                        |
|                         | After reset                   | 1                          | 1                               | 0               | 0                                     | 0            | $\sim$            | 7                |                        |
|                         | Function                      | 0: Input                   | 1: Output                       | 0: Inpu         | ut 1: (                               | Dutput       |                   | $\bigcirc$       |                        |
| -                       |                               |                            |                                 | Port C F        | unction Reg                           | ister        | ( )               |                  |                        |
| PCFC<br>(0027H)         |                               | 7                          | 6                               | 5               | 4                                     | 3            | (2)               | r 1              | 0                      |
|                         | Bit symbol                    |                            | /                               | PC5F            | /                                     | PC3F         | $\langle \rangle$ | /                |                        |
|                         | Read/Write                    |                            |                                 | W               |                                       | W (          | $\downarrow$      |                  | $\sum$                 |
|                         | After reset                   |                            |                                 | 0               |                                       | 0            |                   |                  |                        |
|                         | Function                      |                            |                                 | 0: Port         |                                       | 0: Port      | $\searrow$        |                  | $\langle \rangle$      |
|                         |                               |                            |                                 | 1: SCLK1        |                                       | 1: TXD1 )    | <                 | (C)              |                        |
|                         |                               |                            |                                 | output          |                                       |              |                   |                  |                        |
|                         |                               |                            | Port C Pul                      | I-up/Pull-dow   | n Resistor, (                         | Open-drain R | egister           | $\rightarrow$    | 70/                    |
|                         |                               |                            | 6                               | 5               | 4                                     | ઝ            | 2 (               |                  | 0                      |
| CUDOE                   | Bit symbol                    |                            |                                 | ODEPC3          | PC5UD                                 | PC4UD        | UDEPC5            | UDEPO4           | PC3U                   |
| 028H)                   | Read/Write                    |                            |                                 | (               | $\rightarrow \rightarrow \rightarrow$ | V            | $\mathbf{v}$      |                  |                        |
|                         | After reset                   |                            |                                 |                 |                                       | (            |                   | $\overline{)}$   |                        |
|                         | Function                      |                            |                                 | 0: 3 states     | Pull-úp/F                             | Pull-down    | Resisto           | control          | Pull-up<br>resistor    |
|                         |                               |                            |                                 | drain           | 0. Pi                                 |              | 1. 5.             | sable            | 0 <sup>.</sup> Disable |
|                         |                               |                            |                                 |                 | 1: Pu                                 | ull down     | ))'. E'           | lable            | 1: Enable              |
|                         | Note 1: Rea                   | d-modify-wri<br>ause PC4/R | te is prohibite<br>XD1 can't be | ed for PCCR,    | , PCFC and                            | PCUDOE.      | ov register. S    | IO circuit al    | so receive sign        |
|                         | operating input port function |                            |                                 |                 |                                       |              |                   |                  | - 0                    |

Figure 3.5.25 Port C registers

#### 3.5.9 Port D (PD0 to PD4, PD6, PD7)

Port D is 7-bit general-purpose I/O port. And port D0 to D4, D6, D7 can be set pull-up resistor by setting 1 data correspond bit of PDUE register. Port D0 to D4 become to input with pull-up resistor and port D6, D7 become to input without pull-up resistor by reset operation.

Resetting set to 1 data for output latch of this port.

Except I/O port function, this port have also function LCD controller output (DIBSCP, D2BLP, D3BFR, DLEBCD, DOFFB), RTC alarm output (ALARM), MLD output (MLDALM, MLDALM).

Above setting is set by writing data to PDFC register. Only port D6 have two functions (ALARM, MLDALM) and this setting by PD<PD6> register's data.

(1) PD0 (D1BSCP), PD1 (D2BLP), PD2 (D3BFR), PD3 (DLEBCD), PD7 (MLDALM)



#### (2) PD4 (DOFFB)



Figure 3.5.28 Port D6

|                         | Port D Register                                                |           |                 |                |                                                  |                |                        |                |           |  |  |
|-------------------------|----------------------------------------------------------------|-----------|-----------------|----------------|--------------------------------------------------|----------------|------------------------|----------------|-----------|--|--|
|                         | /                                                              | 7         | 6               | 5              | 4                                                | 3              | 2                      | 1              | 0         |  |  |
| PD                      | Bit symbol                                                     | PD7       | PD6             |                | PD4                                              | PD3            | PD2                    | PD1            | PD0       |  |  |
| (0029H)                 | Read/Write                                                     | R/        | W               | /              | R/W                                              |                |                        |                |           |  |  |
|                         | After reset                                                    |           | Da              | ta from exter  | external port (Output latch register is set toر) |                |                        |                |           |  |  |
| Port D Control Register |                                                                |           |                 |                |                                                  |                |                        |                |           |  |  |
|                         | /                                                              | 7         | 6               | 5              | 4                                                | 3              | 2                      | (1)            | 0         |  |  |
| PDCR<br>(002BH)         | Bit symbol                                                     | PD7C      | PD6C            |                | PD4C                                             | PD3C           | PD2C                   | PD1C           | PD0C      |  |  |
|                         | Read/Write                                                     | V         | V               |                | W                                                |                |                        |                |           |  |  |
|                         | After reset                                                    | 0         |                 | /              | ○ ( ( // ≤)                                      |                |                        |                |           |  |  |
|                         | Function                                                       | 0: Input  | 1: Output       |                | 0: Input 1: Qutput                               |                |                        |                |           |  |  |
|                         |                                                                |           |                 | Port D F       | unction Reg                                      | ister          | ( )                    |                |           |  |  |
|                         | /                                                              | 7         | 6               | 5              | 4                                                | 3              | (2)                    | √ 1            | 0         |  |  |
| PDFC<br>(002AH)         | Bit symbol                                                     | PD7F      | PD6F            | /              | PD4F                                             | PD3F           | PD2F                   | PD1F           | PDQF      |  |  |
|                         | Read/Write                                                     | W         |                 | /              |                                                  | $\mathcal{A}($ | W                      |                |           |  |  |
|                         | After reset                                                    | 0         |                 | /              | 0 O                                              |                |                        |                |           |  |  |
|                         | Function                                                       | 0: Port   | 0: Port         |                | 0: Port                                          | 0: Port        | 0: Port                | 0: Port        | 0: Port   |  |  |
|                         |                                                                | 1: MLDALM | 1: ALARM at     |                | 1: DOFFB                                         | 1: DLEBCD      | 1: D3BFR               | 1: D2BLP       | 1) D1BSCP |  |  |
|                         |                                                                |           | <pd6> = 1</pd6> |                |                                                  |                |                        | $ \land \land$ | //))      |  |  |
|                         |                                                                |           | 1: MLDALM       |                | 10                                               |                |                        | $\sim$         | 70/       |  |  |
|                         |                                                                |           | 0               |                |                                                  |                |                        | $\sim$         | 2         |  |  |
| I                       | -                                                              |           | Po              | rt D Pull-up F | Resistor Con                                     | trol Register  | C                      | 2))            |           |  |  |
|                         | /                                                              | 7         | 6               | 5 (            | 4                                                | 3              | $2 \rightarrow$        | $\sim$         | 0         |  |  |
| PDUE                    | Bit symbol                                                     | PD7U      | PD6U            | (              | PD4U                                             | PD3U           | PD2U                   | ) PD1U         | PD0U      |  |  |
| (002CH)                 | Read/Write                                                     | V         | V               | X (            |                                                  |                | $\sim W$               | )              |           |  |  |
|                         | After reset                                                    | (         | )               | 0              |                                                  |                | $\langle \chi \rangle$ |                |           |  |  |
|                         | Function                                                       | Pull-up   | resistor        | Always         | $\langle \rangle$                                | F              | ull-up resisto         | or             |           |  |  |
|                         |                                                                | 0: Di     | sable           | (write "0"     |                                                  |                | 0: Disable             |                |           |  |  |
|                         |                                                                | 1: Er     | nable           | $\bigvee$      |                                                  |                | 1: Énable              |                |           |  |  |
|                         | Note: Read-modify-write is prohibited for PDCR, PDFC and PDUE. |           |                 |                |                                                  |                |                        |                |           |  |  |



# 3.6 Chip Select/Wait Controller

On the TMP91C016, four user-specifiable address areas (CS0 to CS3) can be set. The data bus width and the number of waits can be set independently for each address area (CS0 to CS3 and others).

The pins  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  (which can also function as port pins P60 to P63) are the respective output pins for the areas CS0 to CS3. When the CPU specifies an address in one of these areas, the corresponding  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  pin outputs the chip select signal for the specified address area (in ROM or SRAM). However, in order for the chip select signal to be output, the port 6 function register P6FC must be set.

 $\overline{\text{CS2A}}$  to  $\overline{\text{CS2G}}$  and  $\overline{\text{CSEXA}}$  (CS pin except  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$ ) are made by MMU.

These pins is  $\overline{CS}$  pin that area and bank value is fixed without concern in setting of CS/WAIT controller.

The areas CS0 to CS3 are defined by the values in the memory start address registers MSAR0 to MSAR3 and the memory address mask registers MAMR0 to MAMR3.

The chip select/wait control registers BOCS to B3CS and B2XCS should be used to specify the master enable/disable status the data bus width and the number of waits for each address area.

The input pin controlling these states is the bus wait request pin (WAIT).

#### 3.6.1 Specifying an Address Area

The CS0 to CS3 address areas are specified using the start address registers (MSAR0 to MSAR3) and memory address mask registers (MAMR0 to MAMR3).

At each bus cycle, a compare operation is performed to determine if the address on the specified a location in the CS0 to CS3 area. If the result of the comparison is a match, this indicates an access to the corresponding CS area. In this case, the  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  pin outputs the chip select signal and the bus cycle operates in accordance with the settings in chip select/wait control register B0CS to B3CS. (See 3.6.2. "Chip Select/Wait Control Registers".)

(1) Memory start address registers

Figure 3.6.1 shows the memory start address registers. The memory start address registers MSAR0 to MSAR3 set the start addresses for the CS0 to CS3 areas. Set the upper eight bits (A23 to A16) of the start address in <S23:16>. The lower 16 bits of the start address (A15 to A0) are permanently set to 0. Accordingly, the start address can only be set in 64-Kbyte increments, starting from 000000H Figure 3.6.2 shows the relationship between the start address and the start address register value.

|                            | 7                                                                                                                                                                                  | e       | F           | Λ           | 2              | $\overline{\langle}$ | 4                         | 0      |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|-------------|----------------|----------------------|---------------------------|--------|--|
|                            |                                                                                                                                                                                    | 0       | 5<br>801    | 4           | 040            | 2                    | 047                       | 0      |  |
| (00C8H) (00CAH) Bit symbol | 523                                                                                                                                                                                | 522     | 521         | 520<br>B/   | 5/9            | 518                  | 517                       | 516    |  |
| MSAR2 /MSAR3 After reset   | 1                                                                                                                                                                                  | 1       | 1           |             |                | 1                    |                           | 1      |  |
| (00CCH) (00CEH) Function   |                                                                                                                                                                                    |         | Determ      | ines A23 to | A16 of start a | ddress.              | $\langle \langle \rangle$ | $\geq$ |  |
| Address<br>000000H         | Address<br>000000H<br>64 Kbytes<br>010000H<br>020000H<br>03000H<br>040000H<br>03000H<br>05H<br>06H<br>050000H<br>06H<br>05H<br>06H<br>06H<br>06H<br>06H<br>06H<br>06H<br>06H<br>06 |         |             |             |                |                      |                           |        |  |
| Figure 3.6.2 Re            | elationship                                                                                                                                                                        | between | Start Addre | ess and St  | art Addres     | s Register           | · Value                   |        |  |
|                            |                                                                                                                                                                                    |         |             |             |                |                      |                           |        |  |

Memory Start Address Registers (for areas C\$0 to CS3)

(2) Memory address mask registers

Figure 3.6.3 shows the memory address mask registers. The memory address mask registers MAMR0 to MAMR3 are used to set the size of the CS0 to CS3 areas by specifying a mask for each bit of the start address set in memory start address registers MAMR0 to MAMR3. The compare operation used to determine if an address is in the CS0 to CS3 areas is only performed for bus address bits corresponding to bits set to 0 in these registers. Also, the address bits that can be masked by MAMR0 to MAMR3 differ between CS0 to CS3 areas. Accordingly, the size that can be each area is different.



(3) Setting memory start addresses and address areas

Figure 3.6.4 show an example of specifying a 64-Kbyte address area starting from 010000H using the CS0 areas.

Set 01H in memory start address register MSAR0<S23:16> (Corresponding to the upper 8 bits of the start address). Next, calculate the difference between the start address and the anticipated end address (01FFFFH) based on the size of the CS0 area. Bits 20 to 8 of the result correspond to the mask value to be set for the CS0 area. Setting this value in memory address mask register MAMR0<V20:8> sets the area size. This example sets 07H in MAMR0 to specify a 64-Kbyte area.



After a reset, MSAR0 to MSAR3 and MAMR0 to MAMR3 are set to FFH. B0CS<B0E>, B1CS<B1E> and B3CS<B3E> are reset to 0. This disabling the CS0, CS1 and CS3 areas. However, as B2CS<B2M> to 0 and B2CS<B2E> to 1, CS2 is enabled from 000FE0H to 000FFFH to 001000H to FFFFFFH in TMP91C016. Also, the bus width and number of waits specified in BEXCS are used for accessing addresses outside the specified CS0 to CS3 area. (See 3.6.2. "Chip Select/Wait Control Registers".) (4) Address area size specification

Table 3.6.1 shows the relationship between CS area and area size. The triangle  $(\Delta)$  indicates in the table below that areas cannot be set by memory start address register and address mask register combinations. When setting an area size using a combination indicated by this symbol  $(\Delta)$ , set the start address mask register in the desired steps starting from 000000H.

If the CS2 area is set to 16 Mbytes or if two or more areas overlap, the smaller CS area number has the higher priority.

Example: To set the area size for CS0 to 128 Kbytes:

a. Valid start addresses

| 000000H<br>020000H<br>040000H<br>060000H<br>128<br>128 | Kbytes<br>Kbytes A<br>Kbytes | ny of these addresses may be | set as the start address.     |
|--------------------------------------------------------|------------------------------|------------------------------|-------------------------------|
| '<br>b. Invalid start a                                | ddresses                     |                              |                               |
| >                                                      | ```                          | $  \land \lor \lor$          | $ \langle 1 \rangle   \wedge$ |

| 000000H<br>010000H<br>030000H<br>050000H | 64 Kbytes<br>128 Kbytes<br>128 Kbytes | This is not an integer multiple of the desired area size<br>setting. Hence, none of these addresses can be set as the<br>start address. |
|------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 050000H                                  | ((                                    |                                                                                                                                         |
| 1                                        |                                       |                                                                                                                                         |

| Table | 7610      | Id Area  | Cincer    | CC Area |
|-------|-----------|----------|-----------|---------|
|       | ).U. I< 1 | anu Alea | i Sizes i | US Alea |

| Size (Bytes)<br>CS Area | 256        | 512 | 32 K          | 64 K | 128 K      | 256 K               | 512 K | 1 M | 2 M | 4 M | 8 M |
|-------------------------|------------|-----|---------------|------|------------|---------------------|-------|-----|-----|-----|-----|
| CS0                     | 0          |     | )9            | 0    | A          | $\langle A \rangle$ | Δ     | Δ   | Δ   |     |     |
| CS1                     | 0          |     | $\mathcal{D}$ | 0    | $(\Delta)$ | $\triangle$         | Δ     | Δ   | Δ   | Δ   |     |
| CS2 🤇                   | < /        |     | , 0           | 6    | X          | $) \Delta$          | Δ     | Δ   | Δ   | Δ   | Δ   |
| CS3                     | $\searrow$ |     | 0             | 0    | $\Delta$   | Δ                   | Δ     | Δ   | Δ   | Δ   | Δ   |

∆: These areas cannot be set by memory start address register and address mask register combinations.

3.6.2 Chip Select/Wait Control Registers

Figure 3,6,5 lists the chip select/wait control registers.

The master enable/disable, chip select output waveform, data bus width and number of wait states for each address area (CS0 to CS3 and others) are set in their respective chip select/wait control registers, B0CS to B3CS and BEXCS.

|                                                                           |                                                                                                                             | 7          | 6             | 5                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                 | 2                                                                                                                                     | 1                                                                                                                                                        | 0                                                              |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|---------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| B0CS                                                                      | Bit symbol                                                                                                                  | B0E        |               | B0OM1                                                                                                 | B0OM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BOBUS                                             | B0W2                                                                                                                                  | B0W1                                                                                                                                                     | B0W0                                                           |
| (00C0H)                                                                   | Read/Write                                                                                                                  | W          | /             |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                 | V                                                                                                                                     |                                                                                                                                                          |                                                                |
| Read-                                                                     | After reset                                                                                                                 | 0          |               | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                 | 0                                                                                                                                     | $\langle 0 \rangle$                                                                                                                                      | 0                                                              |
| nodify-                                                                   | Function                                                                                                                    | 0: Disable |               | Chip select or                                                                                        | utput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data bus                                          | Number of w                                                                                                                           | vaits                                                                                                                                                    |                                                                |
| vrite                                                                     |                                                                                                                             | 1: Enable  |               | waveform sel                                                                                          | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | width                                             | 000: 2 waits                                                                                                                          | 100: Re:                                                                                                                                                 | served                                                         |
| nstructions                                                               |                                                                                                                             |            |               | 00: For ROM                                                                                           | /SRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0: 16 bits                                        | 001: 1 wait                                                                                                                           | (101: 3 w                                                                                                                                                | aits 🔿                                                         |
| are                                                                       |                                                                                                                             |            |               | 01:                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1:8 bits                                          | 010: (1 + N)                                                                                                                          | waits 110:4 w                                                                                                                                            | aits                                                           |
| prohibited.                                                               |                                                                                                                             |            |               | 10: ≻ Don't                                                                                           | care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | 011: 0 waits                                                                                                                          | 111:8w                                                                                                                                                   | aits                                                           |
| D100                                                                      | Dit Ormalia I                                                                                                               | DIE        |               |                                                                                                       | D40M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DADUO                                             | S DUARD                                                                                                                               |                                                                                                                                                          | DAMO                                                           |
| (00C1H)                                                                   | Bit Symbol                                                                                                                  | BIE        |               | BIOMI                                                                                                 | BIOMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BIBUS                                             | BHW2                                                                                                                                  | (BIW)                                                                                                                                                    | BIWO                                                           |
| (000)                                                                     | Read/Write                                                                                                                  | W          | $\sim$        |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                 | V (                                                                                                                                   |                                                                                                                                                          |                                                                |
| Read-                                                                     | After reset                                                                                                                 | 0          |               | 0                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                 | (0)                                                                                                                                   |                                                                                                                                                          | 0                                                              |
| nodify-                                                                   | Function                                                                                                                    | 0: Disable |               | Chip select or                                                                                        | utput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data bus                                          | Number of w                                                                                                                           | aits                                                                                                                                                     |                                                                |
| write                                                                     |                                                                                                                             | 1: Enable  |               | Waveform sel                                                                                          | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Width<br>0: 16 bite                               | 000: 2 Walts                                                                                                                          | - 100: Re                                                                                                                                                | served                                                         |
| nstructions                                                               |                                                                                                                             |            |               |                                                                                                       | SKAIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. 8 hits                                         | 010: (1 + N)                                                                                                                          | waits 110.3 v                                                                                                                                            | vaits                                                          |
| prohibited                                                                |                                                                                                                             |            |               | 10: > Don't                                                                                           | care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   | 011: 0 waits                                                                                                                          | 111: 8 v                                                                                                                                                 | vâits                                                          |
| , ionibitou.                                                              |                                                                                                                             |            |               | 11: J                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | $\langle \rangle$                                                                                                                     |                                                                                                                                                          | $\langle \rangle$                                              |
| B2CS                                                                      | Bit Symbol                                                                                                                  | B2E        | B2M           | B2OM1                                                                                                 | B2OM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B2BUS                                             | B2W2                                                                                                                                  | A B2W1                                                                                                                                                   | B2W0                                                           |
| (00C2H)                                                                   | Read/Write                                                                                                                  |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y CO                                              | /                                                                                                                                     | $\checkmark$                                                                                                                                             | -1/N                                                           |
| ) and                                                                     | After reset                                                                                                                 | 1          | 0             | 0                                                                                                     | 0((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | 0                                                                                                                                     |                                                                                                                                                          | 56/                                                            |
| kead<br>nodify                                                            | Function                                                                                                                    | 0: Disable | CS2 area      | Chip select or                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data bus                                          | Number of w                                                                                                                           | /aits                                                                                                                                                    | S                                                              |
| vrite                                                                     | T UNCLOIT                                                                                                                   | 1: Enable  | selection     | waveform sel                                                                                          | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | width                                             | 000: 2 waits                                                                                                                          | ( 100: Re                                                                                                                                                | served                                                         |
| nstructions                                                               |                                                                                                                             |            | 0: 16-Mbyte   | 00: For ROM                                                                                           | SRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0: 16 bits                                        | 001: 1 wait                                                                                                                           | 101:3/                                                                                                                                                   | vaits                                                          |
| are                                                                       |                                                                                                                             |            | area          | 01: ]                                                                                                 | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1:8 bits                                          | 010: (1 + N)                                                                                                                          | waits /110: 4 v                                                                                                                                          | vaits                                                          |
| prohibited.                                                               |                                                                                                                             |            | 1: CS area    | 10: ≻ Don't                                                                                           | care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                 | 011: Ø waits                                                                                                                          | 111: 8 v                                                                                                                                                 | vaits                                                          |
| <b>DAAA</b>                                                               |                                                                                                                             |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                                                                                                                                       |                                                                                                                                                          |                                                                |
| (00C3H)                                                                   | Bit Symbol                                                                                                                  | B3E        | $\sim$        | B3QM1                                                                                                 | R3OM0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B3BUS                                             | B3W2                                                                                                                                  | B3W1                                                                                                                                                     | B3W0                                                           |
| (000011)                                                                  | Read/Write                                                                                                                  | W          |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\prec$                                           | V                                                                                                                                     | 1                                                                                                                                                        | <u> </u>                                                       |
| Read-                                                                     | After reset                                                                                                                 | 0          |               |                                                                                                       | > 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                 | 0)                                                                                                                                    | 0                                                                                                                                                        | 0                                                              |
| nodify-                                                                   | Function                                                                                                                    | 0: Disable | (             | Chip select or                                                                                        | utput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data bus                                          | Number of w                                                                                                                           | /aits                                                                                                                                                    |                                                                |
| vrite                                                                     |                                                                                                                             | 1: Enable  |               | Waveform sel                                                                                          | ection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WIDTN                                             | 000: 2 waits                                                                                                                          | 100: Res                                                                                                                                                 | served                                                         |
| nstructions                                                               |                                                                                                                             |            | $( \subset )$ | 00. For ROW                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8 hits                                          | 001.  f wait<br>010. (1 + N)                                                                                                          | waits 110:4 w                                                                                                                                            | aits                                                           |
| prohibited                                                                |                                                                                                                             |            |               | 10: For DRAM                                                                                          | ۰<br>۸C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   | 011: 0 waits                                                                                                                          | 111: 8 w                                                                                                                                                 | aits                                                           |
| nombicou.                                                                 |                                                                                                                             |            |               | 11: Don't care                                                                                        | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sum$                                            |                                                                                                                                       |                                                                                                                                                          |                                                                |
| DEVCO                                                                     |                                                                                                                             |            | /             | X                                                                                                     | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BEVDHO                                            | BEXW2                                                                                                                                 | BEXW1                                                                                                                                                    | BEXW0                                                          |
| DEACS                                                                     | Bit Symbol                                                                                                                  |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEYR02                                            |                                                                                                                                       |                                                                                                                                                          |                                                                |
| (00C7H)                                                                   | Bit Symbol<br>Read/Write                                                                                                    |            | 7A            |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BEXBUS                                            | DEXWZ                                                                                                                                 | 0                                                                                                                                                        |                                                                |
| (00C7H)                                                                   | Bit Symbol<br>Read/Write<br>After reset                                                                                     |            | $\Delta$      |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 0                                                                                                                                     | 0                                                                                                                                                        | 0                                                              |
| (00C7H)                                                                   | Bit Symbol<br>Read/Write<br>After reset                                                                                     |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus                                     | 0<br>Number of w                                                                                                                      | 0<br>0<br>vaits                                                                                                                                          | 0                                                              |
| (00C7H)<br>Read-<br>nodify-<br>vrite                                      | Bit Symbol<br>Read/Write<br>After reset<br>Function                                                                         |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus<br>width                            | 0<br>Number of w<br>000: 2 waits                                                                                                      | 0<br>0<br>vaits<br>100: Re                                                                                                                               | 0<br>served                                                    |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions                       | Bit Symbol<br>Read/Write<br>After reset<br>Function                                                                         |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus<br>width<br>0: 16 bits              | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait                                                                                       | 0<br>/aits<br>100: Re:<br>101: 3 w                                                                                                                       | 0<br>served<br>vaits                                           |
| Read-<br>nodify-<br>vrite<br>nstructions<br>ire                           | Bit Symbol<br>Read/Write<br>After reset<br>Function                                                                         |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)                                                                       | 0<br>vaits<br>100: Re:<br>101: 3 w<br>waits 110: 4 w                                                                                                     | 0<br>served<br>vaits<br>vaits                                  |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>ire<br>rohibited.  | Bit Symbol<br>Read/Write<br>After reset<br>Function                                                                         |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits                                                       | 0<br>vaits<br>100: Re:<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w                                                                                         | 0<br>served<br>vaits<br>vaits<br>vaits                         |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function                                                                         |            |               |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of v<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits                                                       | 0<br>vaits<br>100: Re:<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w                                                                                         | 0<br>served<br>vaits<br>vaits<br>vaits                         |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable                                                        | e þit v    |               | Chip select out                                                                                       | půt waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits                                                       | 0<br>vaits<br>100: Re:<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w                                                                                         | 0<br>served<br>vaits<br>vaits<br>vaits                         |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable                                                        | e bit      |               | Chip select out                                                                                       | Qut waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits                                                       | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>fr of address are                                                                     | 0<br>served<br>vaits<br>vaits<br>vaits<br>ea waits             |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>rre<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable<br>0 Disable                                           | e bit      |               | Chip select out<br>selection<br>00 For RO                                                             | půt waveform<br>M/SRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits<br>Numbe<br>(See 3                                    | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>111: 8 w<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             | 0<br>served<br>vaits<br>vaits<br>vaits<br>ea waits<br>ontrol.) |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>rre<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable<br>0 Disable<br>1 Enable                               | e bit      |               | Chip select out<br>selection<br>00 For RO<br>01 Don't ca                                              | put waveform<br>M/SRAM<br>are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of w<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits<br>Numbe<br>(See 3                                    | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>111: 8 w<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0             | 0<br>served<br>vaits<br>vaits<br>vaits<br>ea waits<br>ontrol.) |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable<br>0 Disable<br>1 Enable<br>CS2 area sel               | e bit      |               | Chip select out<br>selection<br>00 For RO<br>01 Don't ca<br>10, Don't ca                              | put waveform<br>M/SRAM<br>are<br>are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of v<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits<br>Number<br>(See 3<br>Data bus                       | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>111: 8 w<br>0<br>x of address are<br>s.6.2 (3) Wait co                                | 0<br>served<br>vaits<br>vaits<br>ea waits<br>ontrol.)          |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable<br>0 Disable<br>1 Enable<br>CS2 area sele              | e bit      |               | Chip select out<br>selection<br>00 For RO<br>01 Don't ca<br>10, Don't ca<br>11 Don't ca               | And the second s | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of v<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits<br>Number<br>(See 3<br>→ Data bus<br>0 16-l           | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>111: 8 w<br>v of address are<br>3.6.2 (3) Wait co<br>s width selectio<br>bit data bus | 0<br>served<br>vaits<br>vaits<br>ea waits<br>ontrol.)          |
| (00C7H)<br>Read-<br>nodify-<br>vrite<br>nstructions<br>are<br>prohibited. | Bit Symbol<br>Read/Write<br>After reset<br>Function<br>Master enable<br>0 Disable<br>1 Enable<br>CS2 area sel<br>0 16-Mbyte | e bit      |               | Chip select out<br>selection<br>00 For RO<br>01 Don't ca<br>10 Don't ca<br>11 Don't ca<br>For DRAM or | And the second s | 0<br>Data bus<br>width<br>0: 16 bits<br>1: 8 bits | 0<br>Number of v<br>000: 2 waits<br>001: 1 wait<br>010: (1 + N)<br>011: 0 waits<br>Number<br>(See 3<br>→ Data bus<br>0 16-l<br>1 8-bi | 0<br>vaits<br>100: Re<br>101: 3 w<br>waits 110: 4 w<br>111: 8 w<br>vaits 2.6.2 (3) Wait co<br>s width selection<br>bit data bus<br>t data bus            | 0<br>served<br>vaits<br>vaits<br>ea waits<br>ontrol.)          |

Chip Select/Wait Control Register

Figure 3.6.5 Chip Select/Wait Control Registers

(1) Master enable bits

Bit7 (<B0E>, <B1E>, <B2E> or <B3E>) of a chip select/wait control register is the master bit which is used to enable or disable settings for the corresponding address area. Writing 1 to this bit enables the settings. Reset disables (Sets to 0) <B0E>, <B1E> and <B3E>, and enabled (Sets to 1) <B2E>. This enables area is only CS2.

(2) Data bus width selection

Bit3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> (%) & A chip select/wait control register specifies the width of the data bus. This bit should be set to 0 when memory is to be accessed using a 16-bit data bus and to 1 when an 8-bit data bus is to be used.

This process of changing the data bus width according to the address being accessed is known as "Dynamic bus sizing". For details of this bus operation see Table 3.6.2.

| 1                 |                   |                | j           |             |            |            |
|-------------------|-------------------|----------------|-------------|-------------|------------|------------|
|                   | Operand Data      | Operand Start  | Memory Data | CPU Address | CPU        | Data ///   |
|                   | Bus Width         | Address        | Bus Width   |             | D15 to D8  | D7 to D0   |
|                   | 8 bits            | 2n + 0         | 8 bits      | 2n+0        | XXXXX      | b7 to b0   |
|                   |                   | (Even number)  | 16 bits     | 2n + 0      | XXXXX      | b7 to b0   |
|                   |                   | 2n + 1         | 8 bits      | 2n + 1      | XXXXX      | b7 to b0   |
|                   |                   | (Odd number)   | 16 bits     | 2n + 1      | (b7 to b0) | XXXXX      |
|                   | 16 bits           | 2n + 0         | 8⁄bits      | 2n + 0      | XXXXX      | b7 to b0   |
|                   |                   | (Even number)  |             | ° 2n ≁ 1    | xxxxx      | b15 to b8  |
|                   |                   |                | 16 bits     | 2n + 0      | b15 to b8  | b7 to b0   |
|                   |                   | 2n + 1         | 8 bits      | 2n + 1      | ххххх      | b7 to b0   |
|                   |                   | (Odd number)   |             | 2n_+ 2      | × xxxxx    | b15 to b8  |
|                   |                   |                | 6 bits      | 2n + 1      | b7 to b0   | XXXXX      |
|                   |                   |                | $\bigcirc$  | 2n+2        | XXXXX      | b15 to b8  |
|                   | 32 bits           | 2n + 0         | 8 bits      | 2n+0        | XXXXX      | b7 to b0   |
|                   |                   | (Even number)  |             | 2n+1        | XXXXX      | b15 to b8  |
|                   |                   | $\frown) \lor$ | ((          | 2n + 2      | XXXXX      | b23 to b16 |
|                   |                   |                | $\sim$ ((   | )2n + 3     | XXXXX      | b31 to b24 |
|                   |                   |                | 16 bits     | 2n + 0      | b15 to b8  | b7 to b0   |
|                   |                   |                |             | 2n + 2      | b31 to b24 | b23 to b16 |
|                   |                   | 2n + 1         | 8 bits      | 2n + 1      | XXXXX      | b7 to b0   |
|                   | $\langle \rangle$ | (Odd number)   |             | 2n + 2      | XXXXX      | b15 to b8  |
|                   |                   | $\square$      | $\sim$      | 2n + 3      | XXXXX      | b23 to b16 |
|                   | ·                 |                |             | 2n + 4      | XXXXX      | b31 to b24 |
| ~                 | $(\bigcirc)$      |                | 16 bits     | 2n + 1      | b7 to b0   | XXXXX      |
| $\langle \rangle$ |                   |                |             | 2n + 2      | b23 to b16 | b15 to b8  |
|                   |                   |                |             | 2n + 4      | XXXXX      | b31 to b24 |
| _                 | _ \ \             |                | 11          |             |            |            |

Table 3.6.2 Dynamic Bus Sizing

Note: "xxxxx" indicates that the input data from these bits are ignored during a read. During a write, indicates that the bus for these bits goes to high-impedance; also, that the write strobe signal for the bus remains inactive.

(3) Wait control

Bits 0 to 2 (<B0W0:2>, <B1W0:2>, <B2W0:2>, <B3W0:2>, <BEXW0:2>) of a chip select/wait control register specify the number of waits that are to be inserted when the corresponding memory area is accessed.

The following types of wait operation can be specified using these bits. Bit settings other than those listed in the table should not be made.

| <bxw2:0></bxw2:0> | No. of Waits  | Wait Operation                                                                                                                                                           |
|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 000               | 2 waits       | Inserts a wait of 2 states, irrespective of the WAIT pin state.                                                                                                          |
| 001               | 1 wait        | Inserts a wait of 1 state, irrespective of the WAIT pin state.                                                                                                           |
| 010               | (1 + N) waits | Samples the state of the WAIT pin after inserting a wait of one state. If the WAIT pin is low, the waits continue and the bus cycle is extended until the pin goes high. |
| 011               | 0 waits       | Ends the bus cycle without a wait, regardless of the WAIT pin state                                                                                                      |
| 100               | Reserved      | Invalid setting                                                                                                                                                          |
| 101               | 3 waits       | Inserts a wait of 3 state, irrespective of the WAIT pin state.                                                                                                           |
| 110               | 4 waits       | Inserts a wait of 4 state, irrespective of the WAIT pin state.                                                                                                           |
| 111               | 8 waits       | Inserts a wait of 8 state, irrespective of the WAIT pin state.                                                                                                           |

| Tahlo | 363   | Wait    | Oneration | Setting |
|-------|-------|---------|-----------|---------|
| Table | J.U.C | ) vvait | Operation | Setting |

A Reset sets these bits to 000 (2 waits).

(4) Bus width and wait control for an area other than CS0 to CS3

The chip select/wait control register BEXCS controls the bus width and number of waits when memory locations which are not in one of the four user-specified address areas (CS0 to CS3) are accessed. The BEXCS register settings are always enabled for areas other than CS0 to CS3.

(5) Selecting 16-Mbyte area/specified address area

Setting B2CS<B2M> (Bit6 of the chip select/wait control register for CS2) to 0 designates the 16 Mbyte area 000FE0H to 000FFFH, 003000H to FFFFFFH as the CS2 area. Setting B2CS<B2M> to 1 designates the address area specified by the start address register MSAR2 and the address mask register MAMR2 as CS2 (e.g., if B2CS<B2M> = 1, CS2 is specified in the same manner as CS0, CS1 and CS3 are).

A Reset clears this bit to 0, specifying CS2 as a 16-Mbytes address area.



(6) Procedure for setting chip select/wait control

When using the chip select/wait control function, set the registers in the following order:

- 1. Set the memory start address registers MSAR0 to MSAR3. Set the start addresses for CS0 to CS3.
- 2. Set the memory address mask registers MAMR0 to MAMR3. Set the sizes of CS0 to CS3.
- 3. Set the chip select/wait control registers B0CS to B3CS./

Set the chip select output waveform, data bus width, number of waits and master enable/disable status for  $\overline{CS0}$  to  $\overline{CS3}$ .

The CS0 to CS3 pins can also function as pins P60 to P63. To output a chip select signal using one of these pins, set the corresponding bit in the port 6 function register P6FC to 1.

If a CS0 to CS3 address is specified which is actually an internal IO and RAM area address, the CPU accesses the internal address area and no chip select signal is output on any of the  $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$  pins.

Example:

In this example CS0 is set to be the 64 Kbyte area 010000H to 01FFFFH. The bus width is set to 16 bits and the number of waits is set to  $0^{-1}$ 

MSAR0 = 01H ...... Start address: 010000H

MAMR0 = 07H ......Address area: 64 Kbytes

BOCS = 83H......ROM/SRAM, 16-bit data bus, 0 waits, CS0 area settings

### 3.6.3 Connecting External Memory

Figure 3.6.6 shows an example of how to connect external memory to the TMP91C016. In this example the ROM is connected using a 16-bit bus. The RAM and I/O are connected using an 8-bit bus.



Figure 3.6.6 Example of External Memory Connection (ROM uses 16-bit bus; RAM and I/O use 8-bit bus.)

A Reset clears all bits of the port 6 control register P6CR and the port 6 function register P6FC to 0 and disables output of the CS signal. To output the CS signal, the appropriate bit

must be set to 1

# 3.7 8-Bit Timers (TMRA)

The TMP91C016 features 4 channel (TMRA0 to TMRA3) built-in 8-bit timers.

These timers are paired into 2 modules: TMRA01 and TMRA23. Each module consists of 2 channels and can operate in any of the following 4 operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 to Figure 3.7.2 show block diagrams for TMRA01 and TMRA23

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by 5 bytes registers SFRs (Special-function registers).

Each of the two modules (TMRA01 and TMRA23) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

The contents of this chapter are as follows.

- 3.7.1 Block Diagrams
- 3.7.2 Operation of Each Circuit
- 3.7.3 SFRs
- 3.7.4 Operation in Each Mode
  - (1) 8-bit timer mode
  - (2) 16-bit timer mode
  - (3) 8-bit PPG (Programmable pulse generation) output mode
  - (4) 8-bit RWM (Pulse width modulation) output mode
  - (5) Settings for each mode
  - (6) MELODY/ALARM circuit supply mode

| Table 3.7.1 | Registers and Pins for Each Module |
|-------------|------------------------------------|
|-------------|------------------------------------|

| >                                         | 3                          |                                     |                   |                   |  |  |  |
|-------------------------------------------|----------------------------|-------------------------------------|-------------------|-------------------|--|--|--|
|                                           | $\left  \right\rangle_{<}$ | Module                              | TMRA01            | TMRA23            |  |  |  |
| $\langle \langle \langle \langle \rangle$ | ))                         | Input pin for external clock        | None              | None              |  |  |  |
|                                           | External pin               | Output pin for timer                | TA1OUT            | TA3OUT            |  |  |  |
|                                           |                            | flip-flop                           | (Shared with P70) | No external       |  |  |  |
|                                           |                            |                                     |                   | terminal          |  |  |  |
|                                           |                            |                                     |                   | (LCDC, MLD source |  |  |  |
| $\sim$                                    |                            | $\rightarrow$                       |                   | clk use)          |  |  |  |
|                                           |                            | Timer run register                  | TA01RUN (0100H)   | TA23RUN (0108H)   |  |  |  |
|                                           | SFR<br>(Address)           | Timer register                      | TA0REG (0102H)    | TA2REG (010AH)    |  |  |  |
|                                           |                            | Timer register                      | TA1REG (0103H)    | TA3REG (010BH)    |  |  |  |
|                                           |                            | Timer mode register                 | TA01MOD (0104H)   | TA23MOD (010CH)   |  |  |  |
|                                           |                            | Timer flip-flop control<br>register | TA1FFCR (0105H)   | TA3FFCR (010DH)   |  |  |  |

#### 3.7.1 Block Diagrams





# 3.7.2 Operation of Each Circuit

#### (1) Prescaler

A 9-bit prescaler generates the input clock to TMRA01.

The " $\phi$ T0" as the input clock to pre-scaler is a clock divided by 4 which selected using the prescaler clock selection register SYSCR0<PRCK1:0>.

The prescaler's operation can be controlled using TA01RUN<TA01PRUN> in the timer control register. Setting <TA0PRUN> to 1 starts the count; setting <TA0PRUN> to 0 clears the prescaler to "0" and stops operation. Table 3.7.2 shows the various pre-scaler output clock resolutions.

|                                                        |                                                               |                                             |                             | $\mathcal{A}(\mathcal{N})$   | at fc = 27 MHz                | z, fs = 32.768 kHz             |
|--------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------------|------------------------------|-------------------------------|--------------------------------|
| System Clock<br>Selection<br>SYSCR1<br><sysck></sysck> | Prescaler Clock<br>Selection<br>SYSCR0<br><prck1:0></prck1:0> | Gear Value<br>SYSCR1<br><gear2:0></gear2:0> | φT1                         | rrescaler Outpu              | t Clock Resolution            | on<br>01256                    |
| 1 (fs)                                                 |                                                               | XXX                                         | 2 <sup>3</sup> /fs (244 μs) | 2 <sup>5</sup> ∕fs (977 μs)  | 2 <sup>7</sup> /fs (3,9 μs)   | 2 <sup>11</sup> /fs (62.5 μs)  |
| 0 (fc)                                                 | 00<br>(f <sub>FPH</sub> )                                     | 000 (fc)                                    | 2 <sup>3</sup> /fc (0.3 µs) | 2 <sup>5</sup> /fc (1.2 μs)  | 27/fc (4.7 us)                | 2 <sup>11</sup> /fc (75.85 μs) |
|                                                        |                                                               | 001 (fc/2)                                  | 2 <sup>4</sup> /fc (0.6 μs) | 2 <sup>6</sup> /fc (2.4 μs)  | 2 <sup>8</sup> /fc (9.5 µs)   | $2^{12}$ /fc (151.7 $\mu$ s)   |
|                                                        |                                                               | 010 (fc/4)                                  | 2 <sup>5</sup> /fc (1.2 µs) | 2 <sup>7</sup> /fc (4.7 μs)  | 2 <sup>9</sup> /fc (19.0 μs)  | $2^{13}$ /fc (303.4 $\mu$ s)   |
|                                                        |                                                               | 011 (fc/8)                                  | 2 <sup>6</sup> /fc (2.4 μs) | 2 <sup>8</sup> /fc (9.5 μs)  | 2 <sup>10</sup> /fc)(37.9 μs) | 2 <sup>14</sup> /fc ( 606.8µs) |
|                                                        |                                                               | 100 (fc/16)                                 | 2 <sup>7</sup> /fc (4.7 μs) | 2 <sup>9</sup> /fc (19.0 µs) | 2 <sup>11</sup> /fc (75.9 μs) | 2 <sup>15</sup> /fc (1214 μs)  |
|                                                        | 10<br>(fc/16 clock)                                           | xxx                                         | 2 <sup>7</sup> /fc (4.7 μs) | 2 <sup>9</sup> /fc (19.0 μs) | 2 <sup>11</sup> /fc (75.9 μs) | 2 <sup>15</sup> /fc (1214 μs)  |
| Mary Dan't can                                         |                                                               |                                             |                             |                              |                               |                                |

Table 3.7.2 Prescaler Output Clock Resolution

xxx: Don't care

#### (2) Up counters (U $C \emptyset$ and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TAOIN pin or one of the three internal clocks  $\phi$ T1,  $\phi$ T4 or  $\phi$ T16. The clock setting is specified by the value set in TAO1MOD<TAO1CLK1:0>.

The input clock for UCI depends on the operation mode. In 16-bit timer mode, the overflow output from UCO is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks  $\phi$ T1,  $\phi$ T16 or  $\phi$ T256, or the comparator output (The match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up-counters and to control their count. A reset clears both up counters, stopping the timers. (3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers which can be used to set a time interval. When the value set in the timer register TAOREG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes active. If the value set in the timer register is 00H, the signal goes active when the up counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if  $\langle TA0RDE \rangle = 0$  and enabled if  $\langle TA0RDE \rangle = 1$ .

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a  $2^n$  overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A Reset initializes <TA0RDE> to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set TA0RDE> to 1, and write the following data to the register buffer. Figure 3.7.3 show the configuration of TA0RE6.



#### (4) Comparator (CP0)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to "0" and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flop control register.

A reset clears the value of TA1FF1 to "0".

Writing 01 or 10 to TA1FFCR<TA1FFC1:0> sets TA1FF to 0 or 1. Writing 00 to these bits inverts the value of TA1FF (This is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (Concurrent with) P70). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port B function register PBCR, PBFC.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ( $f_{SYS} \times 6$ ) before the next overflow occurs by using an overflow interrupt. In the case of using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.

# Example when using PWM mode Match between TAOREG and up-counter 2" overflow interrupt (INITTAO) TA1OUT TA1OUT Vite new data to the register buffer before the next overflow occurs by using an overflow interrupt

# 3.7.3 SFRs





TMRA01 Mode Register





TMRA1 Flip-Flop Control Register



|                                                                                                                                                                   |               |             |                         | Ti                | mer register      |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------------------|-------------------|-------------------|---------------------------|---------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                   |               | 7           | 6                       | 5                 | 4                 | 3                         | 2                               | 1                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TA0REG                                                                                                                                                            | bit Symbol    |             |                         |                   | -                 | _                         |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0102H)                                                                                                                                                           | Read/Write    | W           |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | After reset   | Undefined   |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA1REG                                                                                                                                                            | bit Symbol    | - ((``\>    |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0103H)                                                                                                                                                           | Read/Write    |             |                         |                   | ٧                 | V                         |                                 |                   | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                   | After reset   |             |                         |                   | Unde              | efined                    | ((                              | 77^               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA2REG                                                                                                                                                            | bit Symbol    | $ (\vee ))$ |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (010AH)                                                                                                                                                           | Read/Write    |             |                         |                   | V                 | V                         | $\geq$                          | $\subseteq$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | After reset   |             |                         |                   | Unde              | efined                    | $\left( \left( \right) \right)$ | >                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA3REG                                                                                                                                                            | bit Symbol    |             |                         |                   | -                 | -                         | $\square$                       | )~                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (010BH)                                                                                                                                                           | Read/Write    |             |                         |                   | V                 | N (C                      | $\swarrow$                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | After reset   |             |                         |                   | Unde              | efined ⁄ 🗸                | $\sim$                          |                   | $\langle \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                   | Note          | : The avobe | registers are           | prohibited re     | ead-modifv-w      | rite instruction          | on.                             | $\langle \rangle$ | , series and the series of the |
|                                                                                                                                                                   |               |             | с<br>С                  | iguro 3.7         |                   |                           | $\sim$                          | 6                 | $\gamma > \gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                   |               |             | Г                       | igule 5.7.        |                   | egisters                  | ) <                             | >                 | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                   |               |             |                         |                   | $( \subset$       | $\sim$                    |                                 | $\sim \sim$       | 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                   |               |             |                         |                   |                   | $\searrow$                | /                               | $\supset$         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                   |               |             |                         |                   | $\mathcal{A}$     | $\geq$                    | ( )                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   | $\checkmark$              |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | (                 | $\sim$            | *                         | $(\Omega)$                      | $\wedge$          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | Ĝ                 | $\langle \rangle$ | $\frown$                  |                                 | ))                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | $\leq$            | $\searrow$        |                           | $\langle \backslash \subseteq$  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   | $\langle \langle \rangle$ |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | ( )               | $\checkmark$      |                           | ))                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | ( ) )             |                   |                           | $\geq$                          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             | $\square$               |                   |                   | $\wedge$                  | $\checkmark$                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             | ( (                     | $\langle \rangle$ |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         | ))                | 7                 | $\geq 1$                  |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\langle \rangle \rangle \simeq \langle \langle \rangle \langle $ |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | $\sim$ $\sim$ | $\sim$      |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   | $\geq$            |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               | $\bigcirc$  | $\bigcap$               | >                 |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               | $\bigcirc$  | 21                      |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               |             |                         |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               | $\land$     | ( )                     | $\sim$            |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | $\geq$        |             | $\langle ) \rangle_{c}$ | )                 |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\langle $                                                                                                                                                        | /             | $\sim$      | $\langle \smile$        | 7                 |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   |               | $\sim$      | $\langle \rangle$       |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                   | $\checkmark$  |             | $\sim$                  |                   |                   |                           |                                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers.

Setting its function or counter data for TMRA0 and TMRA1 after stop these registers.

a. Generating interrupts at a fixed interval (Using TMRAI)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every  $12 \ \mu s$  at fc = 27 MHz, set each register as follows:



Select the input clock using Table 3.7.2.

Note: The input clocks for TMRA0 and TMRA1 are different from as follows. TMRA0: TAOIN input,  $\phi$ T1,  $\phi$ T4 or  $\phi$ T46

TMRA1: Match output of TMRA0, oT1, oT16, oT256
b. Generating a 50% duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 1.8-µs square wave pulse from the TA1OUT pin at fc = 27 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.



c. Making TMRA1 count up on the match signal from the TMRA0 comparator

Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.



#### (2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to "01".

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.2 shows the relationship between the timer (Interrupt) cycle and the input clock selection.

LSB 8-bit set to TAOREG and MSB 8-bit is for TAIREG. Please keep setting TAOREG first because setting data for TAOREG inhibit its compare function and setting data for TA1REG permit it.

Example: To generate an INTTA1 interrupt every 0.3 [s] at fc = 27 MHz, set the timer registers TA0REG and TA1REG as follows:

\* Clock state

If  $\phi$ T16 (=(2<sup>7</sup>/fc) s @ 27 MHz) is used as the input clock for counting, set the following value in the registers:

Clock gear:

1/1

 $0.3 \text{ s} \div (2^7/\text{fc}) \text{ s} = 62500 = \text{F}424\text{H}$ 

(e.g., set TA1REG to F4H and TA0REG to 24H).

As a result, INTTA1 interrupt can be generated every 0.29[s].

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not be cleared and also INTTA0 is not generated.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparators TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

Example: When TA1REG = 04H and TA0REG = 80H

| Value of up counter<br>(UC1, UC0)       | 0080H    | 0180H | 0280H | 0380H | 0480H | 0080H     |  |
|-----------------------------------------|----------|-------|-------|-------|-------|-----------|--|
| TMRA0 comparator match<br>detect signal | <b>[</b> | [     |       |       |       |           |  |
| TMRA0 comparator match                  |          |       |       |       |       |           |  |
| INTTA0                                  |          |       |       |       |       |           |  |
| INTTA1                                  |          |       |       |       |       |           |  |
| TA10UT                                  |          |       |       |       |       | Inversion |  |



(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active-low or active-high. In this mode TMRA1 cannot be used.



In this mode, a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TAOREG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN<TA1RUN> should be set to 1, so that UC1 is set for counting.

Figure 3.7.14 shows a block diagram representing this mode.



Figure 3.7.14 Block Diagram of 8-Bit RPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TAIREG matches UC0.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).





(4) 8-bit PWM (Pulse width modulation) output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin. TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when  $2^n$  counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when  $2^n$  counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.





| Table 3.7.3 I | PWM Cycle |
|---------------|-----------|
|---------------|-----------|

at fc = 27MHz, fs = 32.768 kHz

| Select System            | Select Prescaler          |                                   | PWM Cycle |                |         |         |          |                |                 |                |          |  |
|--------------------------|---------------------------|-----------------------------------|-----------|----------------|---------|---------|----------|----------------|-----------------|----------------|----------|--|
| Clock<br><sysck></sysck> | Clock                     | Gear Value<br><gear2:0></gear2:0> |           | 2 <sup>6</sup> |         | 27      |          |                |                 | 2 <sup>8</sup> |          |  |
|                          | <prck1:0></prck1:0>       |                                   | φT1       | φT4            | φT16    | φT1     | φT4      | ¢ <b>†</b> 16  | ¢T4∕            | φT4            | φT16     |  |
| 1 (fs)                   |                           | XXX                               | 15.6 ms   | 62.5 ms        | 250 ms  | 31.3 ms | 125 ms   | 500 ms         | 62.5 ms         | 250 ms         | 1000 ms  |  |
|                          | 00<br>(f <sub>FPH</sub> ) | 000 (fc)                          | 19.0 μs   | 76 μs          | 303 µs  | 37.9 μs | 152 μs ( | 607 µs         | 76 µs           | 303 µs         | 1214 μs  |  |
|                          |                           | 001 (fc/2)                        | 37.9 μs   | 152 μs         | 607 μs  | 76 μs   | 303 µs   | 1214 µs        | 152 μs          | 607 μs         | 2427 μs  |  |
|                          |                           | 010 (fc/4)                        | 75.9 μs   | 303 µs         | 1214 μs | 152 μs  | 607 µs   | 2427 μs        | 303 µs          | 1214 μs        | 4855 μs  |  |
| 0 (fc)                   |                           | 011 (fc/8)                        | 151.7 μs  | 607 μs         | 2427 μs | 303 µs  | 1214 μs  | <b>4855 μs</b> | 607 μs          | 2427 μs        | 9709 μs  |  |
|                          |                           | 100 (fc/16)                       | 303.4 μs  | 1214 μs        | 4855 μs | 607 µs  | 2427 µs  | 9709 μs        | 1214 μs         | 4855 μs        | 19418 μs |  |
|                          | 10<br>(fc/16 clock)       | XXX                               | 303.4 μs  | 1214 μs        | 4855 μs | 607 µs  | 2427 µs  | 9709 µs        | 1214 µ <b>s</b> | 4855 µs        | 19418 μs |  |

XXX: Don't care

(5) Settings for each mode

Table 3.7.4 shows he SFR settings for each mode.

| Register Name            |                       | TAOIN                                                              | NOD                                                                      |                                                      | TA1FFCR                                        |
|--------------------------|-----------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|
| <bit symbol=""></bit>    | <ta01m1:0></ta01m1:0> | <pwm01:00></pwm01:00>                                              | <ta1clk1:0></ta1clk1:0>                                                  | <taøclk10></taøclk10>                                | TA1FFIS                                        |
| Function                 | Timer Mode            | PWM Cycle                                                          | Upper Timer Input<br>Clock                                               | Lower Timer<br>Input Clock                           | Timer F/F Invert Signal<br>Select              |
| 8-bit timer × 2 channels | 00                    |                                                                    | Lower timer<br>match<br>\$\$T1, \$\$T16, \$\$T256<br>(00, \$\$1, 10, 11) | External clock<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | 0: Lower timer output<br>1: Upper timer output |
| 16-bit timer mode        | 01                    | )                                                                  | A A                                                                      | External clock<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | _                                              |
| 8-bit PPG × 1 channel    |                       | ~ (2                                                               | -                                                                        | External clock<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | _                                              |
| 8-bit PWM × 1 channel    | 11                    | $\begin{array}{c} 2^{6}, 2^{7}, 2^{8} \\ (01, 10, 11) \end{array}$ | -                                                                        | External clock<br>φT1, φT4, φT16<br>(00, 01, 10, 11) | _                                              |
| 8-bit timer × 1 channel  | 11                    |                                                                    | φT1, φT16, φT256<br>(01, 10, 11)                                         | _                                                    | Output disabled                                |

Table 3.7.4 Timer Mode Setting Registers

-: Don't care

(6) MELODY/ALARM circuit supply mode

This function can operate only TMRA3. It can use MELODY/ALARM souce clock TA3 clock generated by TMRA3. But this function is special mode, without low clock (XTIN, XTOUT), so keep the rule under below.

#### OPERATE

- 1. Clock generate by timer 3
- 2. Connect to LCDCLK (EMCCR4 <TA3MLDE>= 1)
- 3. Need setup time
- 4. MELODY/ALARM start to operate

#### STOP

- 1. MELODY/ALARM stop to operate
- 2. Clock supply cut off  $\langle TA3MLD \rangle = 0$

|             |                           |                   |                                 | Timer Clk S   | upply Mode I           | Register          |            | $\sim$     | 70/            |
|-------------|---------------------------|-------------------|---------------------------------|---------------|------------------------|-------------------|------------|------------|----------------|
|             |                           | 7                 | 6                               | 5             | 4                      | n<br>N            | 2 (        | $\sim$     | <sup>7</sup> 0 |
| EMCCR4      | Bit symbol                |                   |                                 |               | Å.                     | $\downarrow$      | $\Big $    | TA3MLDE    | <b>TA3LCDE</b> |
| (00E7H)     | Read/Write                |                   |                                 | $\square$     | $\sim$                 |                   | $\searrow$ | RAV        | R/W            |
|             | After reset               |                   |                                 |               | $\mathcal{N}$          |                   | -++44      | 0          | 0              |
|             | Function                  |                   |                                 | $\mathcal{A}$ |                        |                   | $\searrow$ | MLD        | LCDC           |
|             |                           |                   |                                 |               | $\sim$                 |                   |            | source clk | source clk     |
|             |                           |                   |                                 | $\bigcirc$    | $\geq$                 | $\sim$            |            | 0: 32 kHz  | 0: 32 kHz      |
|             |                           |                   |                                 | ( )           |                        |                   |            | 1: TA3     | 1: TA3         |
|             |                           |                   | $\frown$                        | $\bigvee$     |                        |                   | $\sim$     |            |                |
|             |                           |                   |                                 | $\wedge$      |                        | $\land$           |            |            |                |
|             |                           |                   |                                 | ))            | $\sim$                 |                   |            |            |                |
|             |                           |                   | $\sim$                          | )             | /                      | $\langle \rangle$ |            |            |                |
|             |                           | (                 | $(7/ \land$                     |               |                        | 7/ ~              |            |            |                |
|             |                           |                   | $\mathcal{S}(\mathcal{O})$      |               |                        | $\searrow$        |            |            |                |
|             | /                         | ( ) )             |                                 | $\sim$        | $((// \land)$          |                   |            |            |                |
|             | $\langle \langle \rangle$ |                   |                                 |               | $\langle \cup \rangle$ |                   |            |            |                |
|             |                           | $\sim$            | ,                               |               | $\searrow$             |                   |            |            |                |
|             |                           |                   | <                               | $\langle -$   | $\rightarrow$          |                   |            |            |                |
|             | ~ ~                       | $\sim$            |                                 |               |                        |                   |            |            |                |
|             |                           |                   |                                 |               | >                      |                   |            |            |                |
|             |                           | $\mathcal{T}$     | $\wedge$                        | >             | ~                      |                   |            |            |                |
|             |                           |                   |                                 |               |                        |                   |            |            |                |
| $\wedge$    | (( ))                     |                   | $\sim$                          |               |                        |                   |            |            |                |
|             |                           | <u>_</u>          |                                 | $\searrow$    |                        |                   |            |            |                |
|             | $\searrow$                | $\langle \rangle$ | $\left( \left( \right) \right)$ |               |                        |                   |            |            |                |
| $\langle -$ | $\rightarrow$             |                   | $> \bigcirc$                    | /             |                        |                   |            |            |                |
|             |                           |                   | $\sim$                          |               |                        |                   |            |            |                |
| $\sim$      | $\geq$                    |                   | $\searrow$                      |               |                        |                   |            |            |                |

# 3.8 External Memory Extension Function (MMU)

This is MMU function which can expand program/data area to 105 Mbytes by having 4 local area.

Address pins to external memory are 2 extended address bus pins (EA24, EA25) and 5 extended chip select pins ( $\overline{CS2A}$  to  $\overline{CS2E}$ ) in addition to 24 address bus pins (A0 to A23) which are common specification of TLCS-900 family and 4 chip select pins ( $\overline{CS0}$  to  $\overline{CS3}$ ) output from CS/WAIT controller. And hook function protect program sedulity.

The feature and the recommendation setting method of two types are shown below. In addition, AH in the table is the value which number address 23 to 16 displayed as hex.

|                          |                              |                                                | N                                              |  |  |  |
|--------------------------|------------------------------|------------------------------------------------|------------------------------------------------|--|--|--|
| Purpose                  | Item                         | (A): For Standard<br>Extended Memory           | (B): For Many Kinds<br>Class Extended Memory   |  |  |  |
|                          | Maximum memory size          | 2 Mbytes: common 2 + 14 Mby                    | tes: bank (16 Mbytes × 1 pcs)                  |  |  |  |
| December DOM             | Used local area, bank number | Local 2 (AH = C0 - DF: 2 Mbytes × 7 banks)     |                                                |  |  |  |
| Program ROM              | Setting CS/WAIT              | Set up AH ≠ C0 – FF to CS2 <                   | Set up AH = 80 - FF to CS2                     |  |  |  |
|                          | Used CS pin                  | <del>CS</del> 2                                | C\$2A                                          |  |  |  |
|                          | Maximum memory size          | 64 Mbytes (64 Mbytes × 1 pcs)                  | 64 Mbytes (16 Mbytes × 6 pcs)                  |  |  |  |
| Data DOM                 | Used local area, bank number | Local 3 (AH = 80 – BF:<br>4 Mbytes × 16 banks) | Local 3 (AH = 80 – BF:<br>4 Mbytes × 16 banks) |  |  |  |
| Data ROM                 | Setting CS/WAIT              | Set up AH = 80 – BF to CS3                     | Set up AH = 80 – FF to CS2                     |  |  |  |
|                          | Used CS pins                 | CS3 , EA24, EA25                               | CS2B, CS2C<br>CS2D, CS2E                       |  |  |  |
|                          | Maximum memory size          | 2 Mbytes; common 1 + 14 Mby                    | ytes: bank (16 Mbytes $\times$ 1 pcs)          |  |  |  |
| Option program BOM       | Used local area, bank number | Local 1 (AH = 40 - 5F                          | : 2 Mbytes × 7 banks)                          |  |  |  |
| Option program ROM       | Setting CS/WAIT))            | Set up AH = 4                                  | 0 – 7F to CS1                                  |  |  |  |
|                          | Used CS pin                  |                                                | <u>51</u>                                      |  |  |  |
|                          | Maximum memory size          | 1 Mbyte: common + 7 Mbytes:                    | bank Mbyte (8 Mbytes $\times$ 1pcs)            |  |  |  |
| Data RAM                 | Used local area, bank number | Local 0 (AH = $10 - 1F$ : 1 Mbyte × 7 banks)   |                                                |  |  |  |
| (Available DRAM)         | Setting CS/WAIT              | Set up AH = 00 – 1F to CS0                     | Set up $AH = 00 - 1F$ to CS3                   |  |  |  |
|                          | Used CS pin                  | CS0 (Not available DRAM)                       | CS3 (Available DRAM)                           |  |  |  |
|                          | Maximum memory size          |                                                | 1 Mbyte (1 Mbyte × 1 pcs)                      |  |  |  |
| Extended memory 1        | Used local area, bank number | $\bigcirc$                                     | None                                           |  |  |  |
| Extended memory          | Setting CS/WAIT              |                                                | Set up AH = 20 – 2F to CS0                     |  |  |  |
|                          | Used CS pin                  |                                                | CS0                                            |  |  |  |
|                          | Maximum memory size          | 256 Kbytes (64                                 | Kbytes × 4 pcs)                                |  |  |  |
| Extended memory 2        | Used local area, bank number | No                                             | ne                                             |  |  |  |
| built-in type LCD driver | Setting CS/WAIT              | -                                              | -                                              |  |  |  |
|                          | Used CS pin                  | D1BSCP, D2BLP,                                 | D3BFR, DLEBCD                                  |  |  |  |
|                          | Maximum memory size          | 1 Mbyte + 768 Kbytes                           | 768 Kbytes                                     |  |  |  |
| Extended memory 3        | Used local area, bank number | No                                             | ne                                             |  |  |  |
|                          | Setting CS/WAIT              | -                                              | -                                              |  |  |  |
|                          | Used CS pin                  | No                                             | ne                                             |  |  |  |
|                          |                              |                                                |                                                |  |  |  |

## 3.8.1 Recommendable Memory Map

The recommendation logic address memory map at the time of varieties extension memory correspondence is shown in Figure 3.8.1. And, a physical-address map is shown in Figure 3.8.2.

However, when memory area is less than 16 Mbytes and is not expanded, please refer to section of CS/WAIT controller. Setting of register in MMU is not necessary.

Since it is being fixed, the address of a local-area cannot be changed.





## 3.8.2 Operational Description

Set up bank value and bank use in bank setting-register of each local area of local register in common area. Moreover, in that case, a combination pin is set up and mapping is simultaneously set up by the CS/WAIT controller. When CPU outputs logical address of the local area, MMU outputs physical address to the outside address bus pin according to value of bank setting-register. Access of external memory becomes possible therefore.

|        |             | 7          | 6                          | 5                 | 4                 | 3                         | 2 (                                             | 221           | 0                             |
|--------|-------------|------------|----------------------------|-------------------|-------------------|---------------------------|-------------------------------------------------|---------------|-------------------------------|
|        | Bit symbol  | LOF        |                            | · ·               | $\sim$            |                           | LOFA22                                          | 10FA21        | L0FA20                        |
| (350H) | Read/Write  | R/W        |                            | $\sim$            | $\sim$            | $\sim$                    |                                                 | R/W           | 202/20                        |
|        | After reset | 0          |                            | $\sim$            | $\sim$            | $\sim$                    | $\left( \begin{array}{c} 0 \end{array} \right)$ | 0             | 0                             |
|        | Function    | Bank for   |                            |                   |                   |                           | Setting ba                                      | nk number fo  | r LOCAL0                      |
|        |             | LOCAL0     |                            |                   |                   | 6                         |                                                 |               | $\frown$                      |
|        |             | 0: Not use |                            |                   |                   |                           | 000 setting                                     | is prohibited | because it                    |
|        |             | 1: Use     |                            |                   |                   |                           | preten                                          | d COMMON      | 9 area                        |
| LOCAL1 | Bit symbol  | L1E        | /                          | /                 |                   | $\downarrow$              | 1EA23                                           | L1EA22        | L1EA21                        |
| (351H) | Read/Write  | R/W        | /                          | /                 | /                 | $\mathbb{A}$              | $\land$                                         | R/W           | $)) \land $                   |
|        | After reset | 0          | /                          |                   | $\langle$         | $\searrow$                | 0                                               |               | $\langle \rangle (0) \rangle$ |
|        | Function    | Bank for   |                            |                   | $( \cap$          |                           | Setting bar                                     | nk number fo  | r LOCAL1                      |
|        |             | LOCAL1     |                            |                   |                   | $\searrow$                | 011 setting                                     | is prohibited | because it                    |
|        |             | 0: Not use |                            |                   | $\forall ( \land$ | $\supset$                 | preten                                          | d COMMON      | 1 area                        |
|        |             | 1: Use     | _                          |                   |                   | ~                         |                                                 |               |                               |
| LOCAL2 | Bit symbol  | L2E        | /                          | -4                | $\sim$            |                           | L2EA23/                                         | L2EA22        | L2EA21                        |
| (352H) | Read/Write  | R/W        |                            |                   | $\sim$            | $\geq$                    |                                                 | )) R/W        |                               |
|        | After reset | 0          | /                          | 24                | $\sim$            | $\searrow$                | 0                                               | 0             | 0                             |
|        | Function    | Bank for   |                            |                   |                   | $\langle \langle \rangle$ | Setting bar                                     | nk number fo  | r LOCAL2                      |
|        |             | LOCAL2     | (                          | $\bigcirc$        | $\sim$            |                           | 111 setting                                     | is prohibited | because it                    |
|        |             | 0: Disable | (                          | ())               |                   |                           | //preten                                        | d COMMON      | 2 area                        |
|        |             | 1: Enable  |                            |                   |                   | <u></u>                   | $\searrow$                                      |               |                               |
| LOCAL3 | Bit symbol  | L3E        | $\mathcal{A}$              | $\langle \rangle$ | L3EA26            | L3EA25                    | L3EA24                                          | L3EA23        | L3EA22                        |
| (353H) | Read/Write  | R/W        | $\mathcal{A}$              |                   | R/W               | R/W                       | R/W                                             | R/W           | R/W                           |
|        | After reset | 0          |                            | $\sum$            | 0                 |                           | 0                                               | 0             | 0                             |
|        | Function    | Bank for   |                            |                   | 01000 to 01       | 011 <u>CS2D</u>           | 01100 to 011                                    | 11: CS2E      |                               |
|        | /           | LOCAL3     | $\langle \bigcirc \rangle$ |                   | 00000 to 00       | 011 CS2B                  |                                                 |               |                               |
|        |             | 0: Disable |                            | $\wedge$          | 00100/to<00       | 111 CS2C                  |                                                 |               |                               |
|        |             | 1: Enable  | $\square$                  |                   |                   |                           | 10000 to 111                                    | 11: Set proh  | ibition                       |
|        |             | $\sim$     | _                          |                   | $\overline{)}$    |                           |                                                 |               |                               |
|        |             | $\searrow$ | Figur                      | e 3.8.3 №         | IMU Contr         | ol Registe                | er                                              |               |                               |
|        | Exa         | nple prog  | ram is as                  | next page         | follows.          |                           |                                                 |               |                               |
|        | $\square$   |            | $\triangleleft($           |                   |                   |                           |                                                 |               |                               |



Figure 3.8.4 H/W Setting Example

At Figure 3.8.4, it shows example of connection TMP91C016 and some memories: Program ROM: MROM, 16 Mbytes, Data ROM: MROM, 64 Mbytes, Data RAM: SRAM, 8 Mbytes, Option ROM: Flash, 16 Mbytes. In case of 16-bit bus memory connection, it need to shift 1 bit address bus from TMP91C016 and 8-bit bus case, direct connection address bus from TMP91C016.

In that figure, logical address and physical address are shown. And each memory allot each chip select signal, RAM:  $\overline{\text{CS0}}$ , FLASH\_ROM:  $\overline{\text{CS1}}$ , Program MROM:  $\overline{\text{CS2}}$ , Data MROM:  $\overline{\text{CS3}}$ . In case of this example, as Data MROM is 64 Mbytes, this MROM connect to EA24 and EA25.

If you want to use DRAM, it need to assign to CS3 DRAM.

At initial condition after reset, because TMP91C016 access from CS2 area, CS2 area allot to Program ROM. It can set free setting except Program ROM.

| ;Initia | l setting |                |                                                      |
|---------|-----------|----------------|------------------------------------------------------|
| ;CS0    |           |                |                                                      |
|         | LD        | (MSAR0), 00H   | ; Logical address area: 000000H to 1FFFFH            |
|         | LD        | (MAMR0), 7FH   | ; Logical address size: 1 Mbyte                      |
|         | LD        | (B0CS), 81H    | ; Condition: 16 bits,1wait (8 Mbytes, SRAM)          |
| ;CS1    |           |                |                                                      |
|         | LD        | (MSAR1), 40H   | ; Logical address area: 400000H to 7FFFFH            |
|         | LD        | (MAMR1), FFH   | ; Logical address size: 4 Mbytes                     |
|         | LD        | (B1CS), 80H    | ; Condition: 16 bits, 2 waits (16 Mbytes, Flash ROM) |
| ;CS2    |           |                |                                                      |
|         | LD        | (MSAR2), C0H   | ; Logical address area: C00000H to FFFFFH            |
|         | LD        | (MAMR2), 7FH   | ; Logical address size: 4 Mbytes                     |
|         | LD        | (B2CS), C3H    | ; Condition: 16 bits, 0 waits (16 Mbytes, MROM)      |
| ;CS3    |           |                |                                                      |
|         | LD        | (MSAR3), 80H   | ; Logical address area: 800000H to BFFFFFH           |
|         | LD        | (MAMR3), 7FH   | ; Logical address size: 4 Mbytes                     |
|         | LD        | (B3CS), 83H    | ; Condition: 16 bits, 3 waits (64 Mbytes, MROM)      |
| ;CSX    |           | ~              |                                                      |
|         | LD        | (BEXCS), 00H   | ; Other: 16 bits, 2 waits (Don't care)               |
| ;Port   |           |                |                                                      |
|         | LD        | (P6FC), 3FH    | ; CS0 to CS3, EA24, EA25: Port 6 setting             |
|         | LD        | (P6FC2), C0H   | ; LDS , UDS : Port 6 setting                         |
| ~       |           |                |                                                      |
|         | $\frown$  | Figure 3.8.5 B | ank Operation S/W Example1                           |
|         |           |                | $(\Omega \land A)$                                   |

Secondly, it shows example of initial setting at Figure 3.8.5.

Because  $\overline{\text{CS0}}$  connect to RAM: 16-bit bus, 8 Mbytes, it need to set 8-bit bus. At this example, it set 1 wait setting. In the same way  $\overline{\text{CS1}}$  set to 16-bit bus and 2 waits,  $\overline{\text{CS2}}$  set 16-bit bus and 0 waits,  $\overline{\text{CS3}}$  set 16-bit bus and 3 waits.

By CS/WAIT controller, each chip selection signal's memory size, don't set actual connect memory size, need to set that logical address size: fitting to each local area. Actual physical address is set by each area's bank register setting.

CSEX setting of CS/WAIT controller is except above CS0 to CS3's setting. This program example isn't used CSEX setting.

> Finally pin condition is set. Port 60 to 65 set to  $\overline{CS0}$ ,  $\overline{CS1}$ ,  $\overline{CS2}$ ,  $\overline{CS3}$ , EA24, EA25 and  $\overline{UDS}$ ,  $\overline{LDS}$ .

| F;Bank c | operation          |                |                                                             |
|----------|--------------------|----------------|-------------------------------------------------------------|
| *****    | CS2 ****           | *              |                                                             |
| ORG      | 000000H            | ł              | ; Program ROM: Start address at BANK0 OF LOCAL2             |
| ORG      | 200000             | 1              | ; Program ROM: Start address at BANK1 of LOCAL2             |
| ORG      | 400000             | 1              | ; Program ROM: Start address at BANK2 of LOCAL2             |
| ORG      | 600000F            | 1              | ; Program ROM: Start address at BANK3 of LOCAL2             |
|          | 800000F            | 1              | ; Program ROM: Start address at BANK4 of LOCAL2             |
|          |                    | 1              | ; Program ROM: Start address at BANK6 of LOCAL2             |
|          | 000001             | I              | , Togram Kowi. Start address at DANKO 0 206422              |
| ORG      | E00000H            | 4              | : Program ROM: Start address at BANK7 (=COMMON2) of LOCAL2  |
|          |                    |                | ; Logical address E00000H to FFFFFH                         |
|          |                    |                | ; Physical address 0E00000H to 0FFFFFFH                     |
| 1        | LD                 | (Local 3), 85H | ; LOCAL3 BANK5 set 14xxxxH                                  |
| I .      | LDW                | HL, (800000H)  | ; Load data (5555H) form BANK5 (140000H: Physical address)  |
| I        |                    | (1 1 0) 0011   | of LOCAL3 (CS3)                                             |
| I .      |                    | (Local 3), 88H | ; LOCAL3 BANK8 set 20xxxxH                                  |
| I.       | LDVV               | вс, (800000н)  | ; Load data (AAAAH) torth BANK8 (200000H: Physical address) |
| ١.,      |                    |                |                                                             |
| ORG      | FFFFF              | н              | ; Program ROM: End address at BANK7 (= COMMON2) of LOCAL2   |
|          |                    |                |                                                             |
|          |                    |                |                                                             |
| ·****    | CS3 ****           | *              |                                                             |
| ORG      | 0000000            | H              | ; Data ROM: Start address at BANKO of LOCAL3                |
|          | 0400000            |                | ; Data ROM: Start address at BANK1 of LOCAL3                |
| ORG      |                    | יח<br>ער       | , Data ROM: Start address at DANK2 of LOCAL3                |
| ORG      | 1000000            |                | Data ROM: Start address at BANK4 of LOCAL3                  |
| ORG      | 1400000            | Н              | : Data ROM: Start address at BANK5 of LOCAL3                |
| I        | dw                 | 5555H 🔶        |                                                             |
| ~        |                    | (              | $\overrightarrow{2}$                                        |
| ORG      | 1800000            | н (            | ; Data ROM: Start address at BANK6 of LOCAL3                |
| ORG      | 1C00000            | Н              | ; Data ROM: Start address at BANK7 of LOCAL3                |
| ORG      | 2000000            | н(7)           | ; Data ROM: Start address at BANK8 of LOCAL3                |
|          | dw                 |                |                                                             |
|          | 240000             |                | - Date DOM: Start address at DANIKO of LOCAL 2              |
|          | 2400000            |                | ; Data ROM: Start address at BANK9 of LOCAL3                |
|          | 200000             |                | : Data ROM: Start address at BANK10 of LOCAL3               |
| ORG      | 3000000            | Н              | : Data ROM: Start address at BANK12 of LOCAL3               |
| ORG      | 3400000            | H              | ; Data ROM; Start address at BANK13 of LOCAL3               |
| ORG      | 3800000            | H N            | ; Data ROM: Start address at BANK14 of LOCAL3               |
| ORG      | 3C0000             | ж. /           | Data ROM: Start address at BANK15 of LOCAL3                 |
| ORG      | 3FFFFF             | ĘH -           | Adata ROM: End address at BANK15 of LOCAL3                  |
|          | t DT               |                |                                                             |
| $\sim$   | $\langle \bigcirc$ | / <u>~ (</u> ( |                                                             |

Figure 3.8.6 Bank Operation S/W Example2

Here shows example of data access between one bank and other bank.Figure 3.8.6 is one software example. A dot line square area shows one memory and each dot line square shows  $\overline{CS2}$ 's program ROM and  $\overline{CS3}$ 's data ROM. Program start from E00000H address, firstly, write to bank register of Local 3 area upper 5 bit address of access point.

In case of this example, because most upper address bit of physical address is EA25, most upper address bit of bank register is meaningless. 4 bits of upper 5 bits address means 16 banks. After setting BANK5, accessing 800000H to BFFFFFH address: Logical LOCAL3 address, actually access to physical 1400000H to 1700000H address.

```
:Bank operation
:**** CS2 *****
ORG 000000H
                                 ; Program ROM: Start address at BANK0 OF LOCAL2
                                 ; Program ROM: Start address at BANK1 of LOCAL2
ORG
       200000H
        NOP
                                 ; Operation at BANK1 of LOCAL2
        JP
                E00100H
                                 ; Jump to BANK7 (= COMMON2) of LOCAL2
ORG
       400000H
                                 ; Program ROM: Start address at BANK2 of LOCAL2
       600000H
                                 ; Program ROM: Start address at BANK3 of LOCAL2
ORG
        NOP
                                 ; Operation at BANK3 of LOCAL2
        JP
                E00200H
                                 ; Jump to BANK7 (= COMMON2) of LOCAL2
 ORG
       800000H
                                 ; Program ROM: Start address at BANK4 of LOCAL2
ORG
                                 ; Program ROM: Start address at BANK5 of LOCAL2
       a00000H
ORG c00000H
                                 ; Program ROM: Start address at BANK6 of LOCAL2
 !!!! Program Start !!!!
 ORG E00000H
                                 ; Program ROM: Start address at BANK7 (= COMMON2) of LOCAL2
                                 ; Logical address E00000H to EFFFFFH
                                 ; Physical address 0E00000H to 0FFFFFH
                                 ; LOCAL2 BANK1 set 20xxxxH
       LD
                (Local 2), 81H
       JP
                C00000H
                                 ; Jump to BANK1 (200000H: Physical address) of LOCAL
 ORG
       E00100H+
                                 ; LOCAL2 BANK3 set 60xxxxH
       LD
                (Local 2), 83H
        JP
                C00000H
                                 ; Jump to BANK3 (600000H: Physical address) of LOCAL2
ORG E00200H <
                (Local 1), 84H
                                 ; LOCAL1 BANK4 set 80xxxxH
        LD
        JP
                400000H
                                 ; Jump to BANK4 (800000H/ Rhysical address) of LOCAL1
 ORG FFFFFH
                                 Program ROM: End address at BANK7(= COMMON2) of LOCAL2
  ***** <u>CS1</u> *****
 ORG
                                  Program ROM: Start address at BANK0 of LOCAL1
       000000H
                                  Program ROM: Start address at BANK1 of LOCAL1
ORG
       200000H
                                 Program ROM: Start address at BANK2 of LOCAL1
ORG
       400000H
       600000H
                                 Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 -
 ORG
       LD
                (Local 1), 87H
                                 ŁOCAL1 BANK7 set É0xxxxH
        JP
                400000H
                                 Jump to BANK7 (É00000H: Physical address) of LOCAL1
 ORG
       800000H
                                 Program ROM: Start address at BANK4 of LOCAL1
                                 Operation at BANK4 of LOCAL1
        NOP
       JP
                600000H
                                 ; Jump to BANK3 (= COMMON1) of LOCAL1
 ORG
       a00000H
                                 ; Program ROM: Start address at BANK5 of LOCAL1
 ORG
       c00000Ph
                                 ; Program ROM: Start address at BANK6 of LOCAL1
 ORG
       E00000H
                                 Program ROM: Start address at BANK of LOCAL1
                                 LOCAL1 BANK0 set 00xxxxH
      →LĎ
                (Local 1), 80H
                400000H
                                 Jump to BANK0 (000000H: Physical address) of LOCAL1
        .IŔ
                 It's prohibit to set other bank setting in except common area
                                    Program run-away
ORG FFFFFFH
                                 Program ROM: End address at BANK7 of LOCAL1
```

Figure 3.8.7 Bank Operation S/W Exapmle 3

At Figure 3.8.7, it shows example of program jump.

In the same way with before example, two dot line squares show each  $\overline{\text{CS2}}$ 's program ROM and  $\overline{\text{CS1}}$ 's option ROM. Program start from E00000H common address, firstly, write to bank register of LOCAL2 area upper 3-bit address of jumping point.

After setting BANK1, jumping C00000H to DFFFFFH address: Logical LOCAL2 address, actually jump to physical 2000000H to 3FFFFFH address. When return to common area, it can only jump to E00000H to FFFFFFH without writing to bank register of LOCAL2 area.

By a way of setting of bank register, the setting that bank address and common address conflict with is possible. When two kinds or more logical addresses to show common area exist, management of bank is confused. We recommends not to use. The bank setting, bank address and common address conflict with.

When it jump to one memory from other different memory, it can set same as the last time setting. It needs to write to bank register of LOCAL1 area upper 3-bit address of jumping point. After setting BANK4, jumping 400000H to 5FFFFFH address. Logical LOCAL1 address, actually jump to physical 8000000H to 9FFFFFH address.

It is a mark paid attention to here, it needs to go by way of common area by all means when moves from a bank to a bank. In other words, it must write to bank register only in common area. And it is prohibit to write the bank register in bank area. If it modifies the bank register's data in bank area, program run away.

# 3.9 Serial Channels

TMP91C016 includes 2 serial I/O channels. We call each channels, one is SIO0 and another is SIO1. SIO0 channel can selected either UART mode (Asynchronous transmission) or IrDA mode (Infrared rays transmission). And SIO1 channel can selected either UART mode (Asynchronous transmission) or I/O interface mode (Synchronous transmission).

It start to explain about SIO1 channel functions: UART mode and I/O interface mode below.

- I/O interface mode Mode 0: For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.

In mode 1 and mode 2 a parity bit can be added Mode 3 has a wake-up function for making the master controller start slave controllers via a serial link (A multi-controller system).

Figure 3.9.2 and Figure 3.9.3 are block diagrams for each channel.

Serial channels 0 and 1 can be used independently. Both channels operate in the same fashion except for the following points at Table 3.9.1; hence only the operation of channel 1 is explained below.

| Table 3.9.1        |                              |                                              |  |  |  |  |  |  |  |
|--------------------|------------------------------|----------------------------------------------|--|--|--|--|--|--|--|
|                    | Channel 1                    |                                              |  |  |  |  |  |  |  |
| Pin name           | OPTIX0 (P71)<br>OPTRX0 (P72) | TXD1 (PC3)<br>RXD1 (PC4)<br>CTS1/SCLK1 (PC5) |  |  |  |  |  |  |  |
| I/O interface mode | No support                   | Support                                      |  |  |  |  |  |  |  |
| IrDA mode          | Support                      | No support                                   |  |  |  |  |  |  |  |

This chapter contains the following sections:

3.9.1 Block Diagrams

- 3.9.2 Operation of Each Circuit
- 3.9/3/ SFRs
- 3.9.4 Operation in Each Mode
- 3.9.5 Support for IrDA



### 3.9.1 Block Diagrams

Figure 3.9.2 is a block diagram representing serial channel 0.





# 3.9.2 Operation of Each Circuit

#### (1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The clock selected using SYSCR<PRCK1:0> is divided by 4 and input to the prescaler as  $\phi$ T0. The prescaler can be run by selecting the baud rate generator as the serial transfer clock.

Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

| Select System            | Select Prescaler             | Gear Value          | Prescaler Output Cløck Resolution |                    |                     |                     |  |
|--------------------------|------------------------------|---------------------|-----------------------------------|--------------------|---------------------|---------------------|--|
| Clock<br><sysck></sysck> | Clock<br><prck1:0></prck1:0> | <gear2:0></gear2:0> | <b>φ</b> Τ0                       | •T2                | φT8                 | φT32                |  |
| 1 (fs)                   |                              | XXX                 | 2 <sup>2</sup> /fs                | 2 <sup>4</sup> /fs | 2 <sup>6</sup> /fs  | 2 <sup>8</sup> /fs  |  |
|                          |                              | 000 (fc)            | 2²/fc                             | 2 <sup>4</sup> /fc | 2 <sup>6</sup> /fc  | 2 <sup>8</sup> /fc  |  |
|                          | 00<br>(f <sub>FPH</sub> )    | 001 (fc/2)          | 2 <sup>3</sup> /fc                | 2 <sup>5</sup> /fc | 2 <sup>7</sup> /fc  | 2 <sup>9</sup> /fc> |  |
|                          |                              | 010 (fc/4)          | 24/fc                             | 2 <sup>6</sup> /fc | 28/fc               | 2 <sup>10</sup> /fc |  |
| 0 (fc)                   |                              | 011 (fc/8)          | 2 <sup>5</sup> /fc                | 2 <sup>7</sup> /fc | 2 <sup>9</sup> /fc  | 2 <sup>11</sup> /fc |  |
|                          |                              | 100 (fc/16)         | <sup>∨</sup> 2 <sup>6</sup> /fc   | 2 <sup>8</sup> /fc | 2 <sup>10</sup> /fc | 2 <sup>12</sup> /fc |  |
|                          | 10<br>(fc/16 clock)          | XXX                 | _                                 | 2 <sup>8</sup> /fc | 2 <sup>10</sup> /fc | 2 <sup>12</sup> /fc |  |

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

X: Don't care, -: Cannot be used

The baud rate generator selects between 4 clock inputs:  $\phi$ T0,  $\phi$ T2,  $\phi$ T8, and  $\phi$ T32 among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit, which generates transmission and receiving clocks, which determine the transfer rate of the serial channels.

The input clock to the baud rate generator,  $\phi T0$ ,  $\phi T2$ ,  $\phi T8$  or  $\phi T32$ , is generated by the 6-bit prescaler, which is shared by the timers. One of these input clocks is selected using the BR1CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or n + m/16 (n = 2 to 15, m = 0 to 15) to 16 values, determining the transfer rate.

The transfer rate is determined by the settings of BR1CR<BR1ADDE, BR1S3:0> and BR1ADD<BR1K3:0>.

- In UART mode
- (1) When BR1CR < BR1ADDE > = 0

The settings BR1ADD<BR1K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR1CK<BR1S3:0>. (N = 1, 2, 3 ... 16)

(2) When BR1CR < BR1ADDE > = 1

The N + (16 - K)/16 division function is enabled. The band rate generator divides the selected prescaler clock by N + (16 - K)/16 using the value of N set in BR1CR<BR1S3:0> (N = 2, 3 ... 15) and the value of K set in BR1ADD<BR1K3:0> (K = 1, 2, 3 ... 15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR1CR<BR1ADDE> to 0.

• In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O interface mode. Set BR1CR<BR1ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

• In UART mode

 $Baud rate = \frac{Input clock of baud rate generator}{Frequency divides for baud rate generator} \div 16$ 

Frequency divider for baud rate generator

- In I/O interface mode\_
  - Baud rate =  $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$

Integer divider (N divider)

For example, when the source clock frequency (fc) = 12.288 MHz, the input clock frequency =  $\phi$ T2 (fc/16), the frequency divider N (BR1CR<BR1S3:0>) = 5, and BR1CR<BR1ADDE> = 0, the baud rate in UART mode is as follows:



|            |                                    |             |             |           | Unit (kbps) |
|------------|------------------------------------|-------------|-------------|-----------|-------------|
|            | Input Clock                        |             |             | $\wedge$  |             |
| fc [MHz]   | Frequency Divider                  | <b>φ</b> Τ0 | <b>φ</b> Τ2 | 876       | φT32        |
|            | (set to BR1CR <br1s3:0>)</br1s3:0> |             | 1           |           | K. I        |
| 9.830400   | 2                                  | 76.800      | 19.200      | 4.800     | )1.200      |
| <u></u>    | 4                                  | 38.400      | 9.600       | 2,400     | 0.600       |
| <u></u>    | 8                                  | 19.200      | 4,800       | (1,200)   | 0.300       |
| <u></u>    | 0                                  | 9.600       | 2.400       | 0.600     | 0.150       |
| 12.288000  | 5                                  | 38.400      | 9.600       | 2.400     | 0.600       |
| $\uparrow$ | A                                  | 19.200      | 4.800       | 1.200     | 0.300       |
| 14.745600  | 2                                  | 115.200     | 28.800      | 7.200     | 1.800       |
| $\uparrow$ | 3                                  | 76.800      | (19.200     | 4.800     | 1,200       |
| $\uparrow$ | 6                                  | 38.400      | 9.600       | 2.400     | 0.600       |
| $\uparrow$ | С                                  | 19.200      | 4.800       | 1.200     | 0.300       |
| 19.6608    | 1                                  | 307.200     | 76.800      | A9.200( ( | 4.800       |
| $\uparrow$ | 2                                  | 153.600     | 38.400      | 9.600     | (2.400))    |
| $\uparrow$ | 4                                  | (76.800     | 19.200      | 4.800     | 1.200       |
| $\uparrow$ | 8                                  | 38.400      | 9.600       | 2.400     | 0.600       |
| $\uparrow$ | 10                                 | 19.200      | 4.800       | 1.200)    | 0.300       |
| 22.1184    | 3                                  | 115.200     | 28.800      | 7.200     | 1.800       |
| 24.576     | 1                                  | 384.000     | 96.000      | 24.000    | 6.000       |
| $\uparrow$ | 2                                  | 192.000     | 48.000      | 12,000    | 3.000       |
| $\uparrow$ | 4                                  | 96.000      | 24.000      | 6.000     | 1.500       |
| $\uparrow$ | 5                                  | 76.800      | 19.200      | 4.800     | 1.200       |
| $\uparrow$ | 8                                  | 48.000      | 12.000      | 3.000     | 0.750       |
| $\uparrow$ | A                                  | 38.400      | 9.600       | 2.400     | 0.600       |
| $\uparrow$ |                                    | 24,000      | 6.000       | 1.500     | 0.375       |

# Table 3.9.3 Transfer Rate Selection (when baud rate generator Is used and BR1CR<BR1ADDE> = 0)

Note 1: Transfer rates in I/O interface mode are eight times faster than the values given above.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc/1 and the system clock is the pre-scaler clock input f<sub>FPH</sub>.

Timer out clock (TA0TRG) can be used for source clock of UART mode only.

Calculation method the frequency of TA0TRG

Frequency of TA0TRG = Baud rate  $\times$  16

Note 1: The TMRA0 match detect signal cannot be used as the transfer clock in I/O interface mode.

(3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

In I/O interface mode

In SCLK output mode with the setting SC1CR<IOC> = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SC1CR < IOC > = 1, the rising edge or falling edge will be detected according to the setting of the SC1CR < SCLKS > register to generate the basic clock.

• In UART mode

The SC1MOD0<SC1:0> setting determines whether the baud rate generator clock, the internal system clock fSYS, the match detect signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1-bit of data; each data bit is sampled three times – on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

- (5) Receiving control
  - In I/O interface mode

In SCLK output mode with the setting SC1CR < IOC > = 0, the RXD1 signal is sampled on the rising or falling edge of the shift clock which is output on the SCLK0 pin.

In SCLK input mode with the setting SC1CR<IOC> = 1, the RXD1 signal is sampled on the rising or failing edge of the SCLK1 input, according to the SC1CR<SCLKS> setting.

• In UART mode

The receiving control block has a circuit, which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SC1BUF); this causes an INTRX0 interrupt to be generated. The CPU only reads receiving buffer 2 (SC1BUF). Even before the CPU reads receiving buffer 2 (SC1BUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SC1BUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SC1CR<RB8> will be preserved.

SC1CR<RB8> is used to store either the parity bit added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wake-up function for the slave controller is enabled by setting SC1MOD0<WU> to 1; in this mode INTRX1 interrupts occur only when the value of SC1CR<RB8> is 1.

(7) Transmission counter

The transmission counter is a 4-bit binary counter which is used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

Figure 3.9.4 Generation of the Transmission Clock

- (8) Transmission controller
  - In I/O interface mode

In SCLK output mode with the setting SC1CR < IOC > = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising edge or falling edge of the shift clock which is output on the SCLK1 pin.

In SCLK input mode with the setting SC1CR < IOC > = 1, the data in the transmission buffer is output one bit at a time on the TXD1 pin on the rising or falling edge of the SCLK1 input, according to the SC1CR < SCLKS> setting.

# • In UART mode

When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK. Handshake function

Use of  $\overline{\text{CTS1}}$  pin allows data can be sent in units of one frame; thus, overrun errors can be avoided. The handshake functions is enabled or disabled by the SC1MOD<CTSE> setting.

When the  $\overline{\text{CTS1}}$  pin goes high on completion of the current data send, data transmission is halted until the  $\overline{\text{CTS1}}$  pin goes low again. However, the INTTX1 interrupt is generated, it requests the next data send to the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no  $\overline{\text{RTS}}$  pin, a handshake function can be easily configured by setting any port assigned to be the  $\overline{\text{RTS}}$  function. The  $\overline{\text{RTS}}$  should be output high to request send data halt after data receive is completed by software in the RXD interrupt routine.



(9) Transmission buffer

The transmission buffer (SC1BUF) shifts out and sends the transmission data written from the CPU form the least significant bit (LSB) in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX1 interrupt.

(10) Parity control circuit

When SC1CR<PE> in the serial channel control register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SC1CR<EVEN field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SC1BUF. The data is transmitted after the parity bit has been stored in SC1BUF<TB7> in 7-bit UART mode or in SC1MOD0<TB8> in 8-bit UART mode. SC1CR<PE> and SC1CR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SC1BUF), and then compared with SC1BUF<RB7> in 7-bit UART mode or with SC1CR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SC1CR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC1BUF), an overrun error is generated.

The below is a recommended flow when the overrun error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag
- 3) If <OERR> = 1 then
  - a) Set to disable receiving (Write 0 to SC1MOD0<RXE>)
  - b) Wait to terminate current frame
  - c) Read receiving buffer
  - d) Read error flag
  - e) Set to enable receiving (Write 1 to SC1MOD0<RXE>)
  - f) Request to transmit again
- (4) Other
- 2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC1BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a Parity error is generated.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

### (12) Timing generation

#### a. In UART mode

## Receiving

| Mode                 | 9 Bits                       | 8 Bits + Parity                    | 8 Bits, 7 Bits + Parity, 7 Bits |
|----------------------|------------------------------|------------------------------------|---------------------------------|
| Interrupt timing     | Center of last bit (Bit8)    | Center of last bit<br>(Parity bit) | Center of stop bit              |
| Framing error timing | Center of stop bit           | Center of stop bit                 | Center of stop bit              |
| Parity error timing  | -                            | Center of last bit<br>(Parity bit) | Center of stop bit              |
| Overrun error timing | Center of last bit<br>(Bit8) | Center of last bit<br>(Parity bit) | Center of stop bit              |

Note: In 9-Bit and 8-Bit + parity mode, interrupts coincide with ninth bit pulse. Thus, when servicing the

interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transfered9 to allow checking for a framing error.

#### Transmitting

| Mode             | 9 Bits                              | 8 Bits + Parity                       | 8 Bits, 7 Bits + Parity, 7 Bits     |
|------------------|-------------------------------------|---------------------------------------|-------------------------------------|
| Interrupt timing | Just before stop bit it transmitted | s Just before stop bit is transmitted | Just before stop bit is transmitted |

## b. I/O interface

| Transmission<br>interrupt<br>timing | SCLK output mode | Immediately after the last bit. (See Figure 3.9.19.)                                                                        |
|-------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                     | SCLK input mode  | Immediately after rise of last SCLK signal rising mode, or<br>Immediately after fall in falling mode. (See Figure 3.9.20.)  |
| Receiving<br>interrupt              | SCLK output mode | Timing used to transfer received to data receive buffer 2 (SC1BUF) (e.g. immediately after last SCLK). (See Figure 3.9.21.) |
| timing                              | SCLK input mode  | Timing used to transfer received data to receive buffer 2 (SC1BUF) (e.g. immediately after last SCLK). (See Figure 3.9.22.) |

## 3.9.3 SFRs










function is used. Writes to unused bits in the BR0ADD register do not affext operation, and undefined data is read from these unused bits.

Figure 3.9.11 Baud Rate Generator Control (SIO0, BR0CR, BR0ADD)



22: Set BR1CR <BR1ADDE> to 1 after setting K (K = 1 to 15) to BR1ADD<BR1K3:0> when +(16-K)/16 division function is used. Writes to unused bits in the BR1ADD register do not affect operation, and undefined data is read from these unused bits.

Figure 3.9.12 Baud Rate Generator Control (SIO1, BR1CR, BR1ADD)

0



0



# 3.9.4 Operation in Each Mode

#### (1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.



a. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD1 and SCLK1 pins respectively each time the CPU writes the data to the transmission buffer. When all data is output, INTES1<ITX1C> will be set to generate the INTTX1 interrupt.



In SCLK input mode, 8-bit data is output on the TXD1 pin when the SCLK1 input becomes active after the data has been written to the transmission buffer by the CPU.

When all data is output, INTES1<ITX1C> will be set to generate INTTX1 interrupt.



b. Receiving

In SCLK output mode, the synchronous clock is outputted from SCLK1 pin and the data is shifted to receiving buffer 1. This starts when the Receive Interrupt flag INTES1<IRX1C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred to receiving buffer 2 (SC1BUF according to the timing shown below) and INTES1<IRX1C> will be set to generate INTRX1 interrupt.

The outputting for the first SCLK1 starts by setting SC1MOD0<RXE>to 1.





In SCLK input mode, the data is shifted to receiving buffer 1 when the SCLK input becomes active after the receive interrupt flag INTES1<IRX1C> is cleared by reading the received data. When 8 bit data is received, the data will be shifted to receiving buffer 2 (SC1BUF according to the timing shown below) and INTES1<IRX1C> will be set again to be generate INTRX1 interrupt.



Figure 3,9.22 Receiving Operation in I/O Interface Mode (SCLK1 input mode)

Note: The system must be put in the Receive Enable state (SC1MOD0<RXE> = 1) before data can be received.

c. Transmission and receiving (Full duplex mode)

When the full duplex mode is used, set the level of receive interrupt to 0 and set enable the interrupt level (1 to 6) to the transfer interrupt. In the transfer interrupt program, the receiving operation should be done like the above example before setting the next transfer data.

```
Example: Channel 0, SCLK output
                  Baud rate = 9600 bps
                  fc = 14.7456 MHz
       * Clock state
                                         Clock gear:
Main routine
               6
                               2
                                      0
            7
                   5
                       4
                           3
                                  1
                                                Set the INTTX1 level to 1. Set the INTRX1 level to 0.
INTES1
            0
               0
                   0
                       1
                           0
                               0
                                  0
                                      0
PCCR
                    1
                       0
                           1
                              Х
                                  х х
PCFC
                                                Set PC3, PC4 and PC5 to function as the TXD1, RXD1
            Х
               Х
                   1
                       Х
                           1
                              Х
                                  ХХ
                                                and SCLK1 pins respectively.
SC1MOD0
                               0
                                  0
                                      0
                                                Enable receiving and select I/O interface mode.
           0
                0
                       0
                           0
                    1
SC1MOD1
                                                Select full duplex mode.
                       0
                           0
                               0
                                  0
                                      0
            1
                                                SCLK out, transmit on negative edge mode
SC1CR
                           0
                               0
                                      0/
            0
                   0
                       0
                                  ۸Ì
                                                Baud rate = 9600 bps
BR1CR
            0
                           0
                       1
                                                Enable receiving/
SC1MOD0 0
                       0
                           0
                0
                    1
                               (0
SC1BUF
                                                Set the transmit data and start.
INTTX1 interrupt routine
Acc SC1BUF
                                               Read the receiving buffer.
SC1BUF *
                                               Set the next transmit data.
              *
                  *
X: Don't care, -: No change
```

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting serial channel mode register SC1MOD0 < SM1:0 > to 01.

In this mode, a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SC1CR<PE> bit; whether even parity or odd parity will be used is determined by the SC1CR<EVEN> setting when SC1CR<PE> is set to 1 (Enabled).

Example: When transmitting data of the following format, the control registers should be set as described below. This explanation applies to channel 0.



#### (3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SC1MOD0<SM1:0> to 10. In this mode, a parity bit can be added (Use of a parity bit is enabled or disabled by the setting of SC1CR<PE>); whether even parity or odd parity will be used is determined by the SC1CR<EVEN> setting when SC1CR<PE> is set to 1 (Enabled).

Example: When receiving data of the following format, the control registers should be set as described below.

Transmission direction (Transmission rate: 9600 bps at fc = 12.288 MHz)

|               | * Clock state                                                        | Clock gear: 1/1                                              |
|---------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| Main settin   | igs                                                                  |                                                              |
|               | 7 6 5 4 3 2 1 0                                                      | $\sim$                                                       |
| PCCR          | $\leftarrow 0 - X X X$                                               | Set PC4 to function as the RXD1 pin.                         |
| SC1MOD0       | 0 ← − 0 1 X 1 0 0 1                                                  | Enable receiving in 8-bit UART mode.                         |
| SC1CR         | $\leftarrow X 0 1 X X X 0 0$                                         | Add even parity.                                             |
| BR1CR         | $\leftarrow 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$                           | Set the transfer rate to 9600 bps.                           |
| INTES1        | ← 1 1 0 0                                                            | Enable the INTTX1 interrupt and set it to interrupt level 4. |
| Interrupt p   | rocessing                                                            |                                                              |
| Acc<br>if Acc | $\leftarrow \text{SC1CR AND 00011100} \\ \neq \text{ 0 then ERROR} $ | Check for errors.                                            |
| Acc           | $\leftarrow$ SC1BUF                                                  | Read the received data.                                      |

X: Don't care, -: No change

(4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC1MOD0<SM1:0> to 11. In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SC1MOD0<TB8>. In the case of receiving it is stored in SCICR<RB8>. When the buffer/is written and read, the MSB is read or written first, before the rest of the SC1BUF data.

Wake-up function

This function is operated on only SIO1. In 9-bit UART mode, the wake-up function for slave controllers is enabled by setting SC1MOD0<WU> to 1. The interrupt INTRX1 occurs only when  $\langle RB8 \rangle = 1$ 



The TXD pin of each slave controller must be in open-drain output mode. Note:

Figure 3.9.23 Serial Link using Wakeup Function

# Protocol

- a. Select 9-bit UART mode on the master and slave controllers.
- b. Set the SC1MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- c. The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (Bit8)<TB8> is set to 1.



- d. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its WU bit to 0.
- e. The master controller transmits data to the specified slave controller whose SC1MOD0<WU> bit is cleared to 0. The MSB (Bit8) <TB8> is cleared to 0.

f. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (Bit8 or <RB8>) are set to 0, disabling INTRX1 interrupts. The slave controller (WU bit = 0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.





## 3.9.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.9.24 shows the block diagram.



(3) Data format

The data format is fixed as follows:

- Data length: 8 bits
- Parity bits: none
- Stop bits: 1

It can't guarantee the correct operation in any other setting.

(4) SFR

Figure 3.9.27 shows the control register SIRCR. Set the data SIRCR during SIO0 is inhibited (Both TXEN and RXEN of this register should be set to 0).

Any changing for this register during transmission or receiving operation don't guarantee the normal operation.

The following example describes how to set this register:

- 1) SIO setting ; Set the SIO to VART mode.
- 2) LD (SIRCR), 07H
  - 07H ; Set the receive data pulse width to 16x.
- 3) LD (SIRCR), 37H ; TXEN, RXEN Enable the Transmission and receiving.
- $\downarrow$
- 4) Start transmission ; The modem operates as follows: and receiving for SIO0 • SIO0 starts transmitting.
  - IR receiver starts receiving.
- (5) Notes
  - 1) Baud rate generator for IrDA

To generate baud rate for IrDA, use baud rate generator in SIO0 by setting 01 to SC0MODO<SC1:0>. To use another source (TA0TRG, fsys and SCLK0 input) are not allowed.

2) As the IrDA 1.0 physical layer specification, the data transfer speed and infra-red pulse width is specified.

|     | Baud Rate  | Modulation | Rate Tolerance (% of rate) | Pulse Width<br>(min) | Pulse Width<br>(typ.) | Pulse Width<br>(max) |
|-----|------------|------------|----------------------------|----------------------|-----------------------|----------------------|
|     | 2.4 kbps   | RZI        | ±0.87                      | 1.41 μs              | 78.13 μs              | 88.55 μs             |
|     | 9.6 kbps   | RZI        | ±0.87                      | 1.41 μs              | 19.53 μs              | 22.13 μs             |
|     | 19.2 kbps  | ∕∕ RZI     | ∠ ±0.87 √                  | 1.41 μs              | 9.77 μs               | 11.07 μs             |
|     | 38.4 kbps  | RZI        | ±0.87                      | 1.41 μs              | 4.88 μs               | 5.96 μs              |
|     | 57.6 kbps  | RZI        | ±0.87                      | 1.41 μs              | 3.26 μs               | 4.34 μs              |
| / / | 115.2 kbps | RZI        | ±0.87                      | 1.41 μs              | 1.63 μs               | 2.23 μs              |
| 1   |            |            |                            |                      |                       |                      |

Table 3.9.4 Baud Rate and Pulse Width Specifications

The infra-red pulse width is specified either baud rate T  $\times$  3/16 or 1.6 µs (1.6 µs is equal to 3/16 pulse width when baud rate is 115.2 kbps).

The TMP91C016 has the function selects the pulse width on the transmission either 3/16 or 1/16. But 1/16 pulse width can be selected when the baud rate is equal or less than 38.4 kbps only. When 38.4 kbps and 115.2 kbps, the output pulse width should not be set to  $T \times 1/16$ .

As the same reason, + (16 - K)/16 division function in the baud rate generator of SIO0 can not be used to generate 115.2 kbps baud rate.

Also when the 38.4 kbps and 1/16 pulse width, + (16 - K)/16 division function can not be used. Table 3.9.5 shows Baud rate and pulse width for (16 - K)/16 division function.

| Table 3.9.6 | Baud Rate and Pulse | Width for   | (16 - K)  | /16 | Division | Fhi | nction  | ) |
|-------------|---------------------|-------------|-----------|-----|----------|-----|---------|---|
|             | Daud Male and Fulse | v viuli iui | (10 - 10) | 10  | DIVISION |     | I GLION |   |

| Pulso Width | Baud Rate  |           |           |           |                                     |          |  |  |  |  |  |
|-------------|------------|-----------|-----------|-----------|-------------------------------------|----------|--|--|--|--|--|
|             | 115.2 kbps | 57.6 kbps | 38.4 kbps | 19.2 kbps | 9.6 kbps                            | 2.4 kbps |  |  |  |  |  |
| T × 3/16    | ×          | 0         | 0         | 0         |                                     | 0        |  |  |  |  |  |
| T × 1/16    | _          | _         | ×         | 0         | $\langle \langle 0 \rangle \rangle$ | 0        |  |  |  |  |  |

•: Can be used (16 - K)/16 division function

×: Can not be used (16 – K)/16 division function

<sup>-:</sup> Can not be set to 1/16 pulse width



# 3.10 DRAM Controller

TMP91C016 incorporates a 1-channel DRAM controller for interface with  $\times$  8-/16-bit DRAM. The DRAM controller consists of a control circuit to refresh the DRAM, an access circuit for reading and writing, and a row/column address multiplexer.

- 1) Refresh mode  $\overline{CAS}$  before  $\overline{RAS}$  refreshing
- 2) Refresh interval Programmable (31 to 2700 states)
- Refresh cycle width Programmable (2 to 9 states)
- 4) Mapping areas  $\overline{\text{CS3}}$  area
- 5) Address mapping size <del>CS3</del> areas: 32 kbytes-8 Mbytes
- 6) Memory access mode 2CAS mode
- 7) Memory access address length 8 to 11 bits selectable
- 8) Wait control In according with CS/WAIT controller setting
- Arbitration of refresh/access contention Refresh has higher priority. Wait states are automatically inserted in the access cycle.





#### 3.10.1 Description of Operation

TMP91C016 has a one-channel internal DRAM controller. This channel is normally linked to CS3 of the CS/WAIT controller. The DRAM controller generates the DRAM access cycle. The DRAM signals share pins with port 6 and port 7 (for details on setting the pins to DRAM pins, see 3.5.4, Port 6 and 3.5.5 Port 7)

(1) Memory access control

Setting DMEMCR<MAC> to 1 enables access control. If the area set as the  $\overline{CS3}$  area in the CS/WAIT controller is accessed when access control is enabled, a valid signal is output to DRAM in accordance with the DRAM memory access control register setting. The access cycle (Bus cycle, number of waits) at this time depends on the  $\overline{CS3}$  area setting in the CS/WAIT controller.

If the bus size is 16-bits, the specified area is accessed using the 2CAS (RAS, UCAS LCAS and WE), depending on the DMEMCR MACS> setting. When the bus size is 8 bits, the specified area is accessed by the RAS, CAS and WE signals regardless of the <MACS> setting.

To facilitate the connection with low-speed DRAM, the DRAM controller accelerates the rising of  $\overline{RAS}$  signal when some waits are inserted, and extends the  $\overline{RAS}$ pre-charge time (RAS high width). Slow access mode is set by DMEMCR<MACM>. A reset clears <MACH> to 0 and sets NORMAL mode.

The internal address multiplexer outputs the row/column address from A0 to A11 during the access cycle. The DMEMCR<MUXE> bit specifies whether or not to multiplex addresses, and DMEMCR<MUX0:1> specifies the multiplexed address width. Note, however, that the multiplexed address lines depend on the bus size: 8 bits or 16 bits.

|   | Pin Name Mode           | 8-Bit Bus | 16-Bit Bus |
|---|-------------------------|-----------|------------|
|   | P63 ( CS3 , RAS )       | RAS       | RAS        |
|   | P74 (CAS, WE))          | GAS       | WE         |
|   | P67 (LCAS, LDS, REFOUT) | REFOUT    | LCAS       |
| < | P66 (UCAS, UDS, WE)     | WE        | UCAS       |
| / | P73 (DRAMOE, EXRD, NMI) | DRAMOE    | DRAMOE     |

| Pin Name Mode           | 8-Bit Bus | 16-Bit Bus |
|-------------------------|-----------|------------|
| P63 ( CS3 , RAS )       | RAS       | RAS        |
| P74 (CAS, WE))          | GAS       | WE         |
| P67 (LCAS, LDS, REFOUT) | REFOUT    | LCAS       |
| P66 (UCAS, UDS, WE)     | WE        | UCAS       |
| P73 (DRAMOE, EXRD, NMI) | DRAMOE    | DRAMOE     |
|                         |           |            |

| <              | $\sim$  | Tal            | ole 3.10.2        | 2 Addres | s Multiple | exing (–: I | Don't care | e)  |      | Multiplex           |
|----------------|---------|----------------|-------------------|----------|------------|-------------|------------|-----|------|---------------------|
|                | Row     | $\overline{)}$ | $\land$           |          | Column     | Address     |            |     |      | address length      |
| (              | Address | 8 E            | Bits 📈 🤇          | 9 E      | Bits       | 10          | Bits       | 11  | Bits | $\leftarrow$        |
|                |         | 8              | 16                | 8        | 16         | 8           | 16         | 8   | 16   | <b>←</b>            |
|                | ÂØ      | <u>A8</u>      | $\langle \rangle$ | ∕∕A9     | -          | A10         | -          | A11 | -    |                     |
| $\overline{)}$ | A1      | ( A9           | ( A9 )            | A10      | A10        | A11         | A11        | A12 | A12  | Access bus size     |
|                | A2      | A10/           | A10               | A11      | A11        | A12         | A12        | A13 | A13  | (Set in the CS/WAIT |
|                | A3      | A11            | A11               | A12      | A12        | A13         | A13        | A14 | A14  | controller)         |
| >              | A4      | A12            | A12               | A13      | A13        | A14         | A14        | A15 | A15  |                     |
|                | A5      | A13            | A13               | A14      | A14        | A15         | A15        | A16 | A16  |                     |
|                | A6      | A14            | A14               | A15      | A15        | A16         | A16        | A17 | A17  |                     |
|                | A7      | A15            | A15               | A16      | A16        | A17         | A17        | A18 | A18  |                     |
|                | A8      | -              | A16               | A17      | A17        | A18         | A18        | A19 | A19  |                     |
|                | A9      | -              | -                 | -        | A18        | A19         | A19        | A20 | A20  |                     |
|                | A10     | -              | -                 | -        | -          | -           | A20        | A21 | A21  |                     |
|                | A11     | -              | -                 | -        | -          | -           | -          | -   | A22  |                     |

Table 3.10.1 DRAM Pins

(2) Refresh control block

TMP91C016 outputs the  $\overline{RAS}$ ,  $\overline{CAS}$  ( $\overline{LCAS}$ ,  $\overline{UCAS}$ ) signals, which can be used for refreshing DRAM. When using an 8-bit bus, the device also outputs state signal  $\overline{REFOUT}$  to indicate a refresh cycle.

As the output cycle and pulse width of the  $\overline{RAS}$ ,  $\overline{CAS}$  ( $\overline{LCAS}$ ,  $\overline{UCAS}$ ) output can be set by program, the DRAM refresh is easily realized. The refresh controller block has the following features.

- Refresh mode: CAS -before- RAS interval refresh mode, CAS -before- RAS self-refresh mode
- Refresh interval: 31 to 2700 states (Programmable)
- Refresh cycle width: 2 to 9 states (Programmable)
- Dummy cycles can be generated.
- The refresh cycle is asynchronous the CPU operating cycle.

### $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ interval refresh mode

The refresh interval and the refresh cycle width in the CAS before-RAS interval refresh mode vary according to the DRAM being used.

The refresh interval and the refresh cycle width in TMP91C016 can be set in accordance with the system clock and type of DRAM used, by modifying the value of the refresh control register.

a. Refresh cycle insertion interval

3 bits of the DREFCR<RS2:0> register is used to set insertion interval in accordance with the system clock used.

Example: When using the system clock at 25 MHz, set these bits to 111 to set the DRAM refresh cycle to 216  $\mu s.$ 

| Re             | efresh Cyc | le   | Insertion | $\sim$ ( | $\left( \right) \left( \right) $ | Frequ    | uency (f <sub>C</sub> | скн)   |        |        |
|----------------|------------|------|-----------|----------|----------------------------------|----------|-----------------------|--------|--------|--------|
| RS2            | RS1        | R\$0 | (States)  | 8 MHz    | 10 MHz                           | 12.5 MHz | 14 MHz                | 16 MHz | 20 MHz | 25 MHz |
| 0              | 0          | 0    | 31 <      | 7.55     | 6.2                              | 4.96     | 4.43                  | 3.88   | 3.1    | 2.48   |
| 0              | 0          | 1    | 110       | 27.5     | 22                               | 17.6     | 15.7                  | 13.75  | 11     | 8.80   |
| 0              | $\sim$     | 0    | 220       | 55       | 44                               | 35.2     | 31.4                  | 27.5   | 22     | 17.6   |
| 0              | $\leq$     | ∕ 1  | 450       | 112.5    | 90                               | 72       | 64.3                  | 56.25  | 45     | 36     |
| 1 /            | þ          | 0    | 900       | 225      | 180                              | 144      | 128.6                 | 112.5  | 90     | 72     |
| <u>∧</u> 1 ( ) | )<br>)     | 1    | 1200      | 300      | 240                              | 192      | 171.4                 | 150    | 120    | 96     |
| $\nearrow$     |            | o    | 1800      | ∕450     | 360                              | 288      | 257.1                 | 225    | 180    | 144    |
| 1              | )1         | (1)  | (2700)    | 675      | 540                              | 432      | 385.7                 | 337.5  | 270    | 216    |

Table 3.10.3 Refresh Cycle Insertion Interval

b. Refresh cycle width

3 bits of the DREFCR<RW2:0> register can vary the refresh cycle width ( $\overline{\rm RAS}$  ,  $\overline{\rm CAS}$  , low output width).

c. Refresh cycle control

Manipulating the bits of the DREFCR <RC> register enables or disables the refresh cycle.

(Unit: µs)

 $\overline{CAS}$  -before-  $\overline{RAS}$  self-refresh mode

This mode is used when the clock supplied to the DRAM controller is stopped by a HALT instruction (IDLE, STOP) while refreshing using the  $\overline{CAS}$ -before-  $\overline{RAS}$  interval refresh mode.

To refresh DRAM in  $\overline{CAS}$  before  $\overline{RAS}$  self-refresh mode, first, set DRAM to  $\overline{CAS}$ -before  $\overline{RAS}$  interval refresh mode. Then, before entering the HALT instruction, set DMEMCR<SRFC> to 0 to execute a single  $\overline{CAS}$ -before  $\overline{RAS}$  interval refresh. Then the  $\overline{CAS}$  and  $\overline{RAS}$  pins maintain their low levels, and  $\overline{CAS}$ -before  $\overline{RAS}$  self-refresh mode starts. When the halt is released and the clock is supplied to the DRAM controller, DMEMCR<SRFC> is automatically set to 1 and  $\overline{CAS}$ -before  $\overline{RAS}$  self-refresh mode is released. After the release, be sure to execute a single  $\overline{CAS}$ -before  $\overline{RAS}$  interval refresh is refresh to return to interval refresh mode. (Note that when a halt is released by a reset, the I/O registers are initialized; therefore, the  $\overline{CAS}$ -before  $\overline{RAS}$  interval refresh is not executed.)

After setting DMEMCR<SRFC> to 0, execute any instruction, such as a NOP instruction, then execute a HALT instruction.

In case of resetting release HALT condition, register is cleared, too, refresh operation can not be moved. After reset,  $\overline{RAS}$  and  $\overline{CAS}$  ( $\overline{LCAS}$ ,  $\overline{UCAS}$ ) pins become to High-Z mode on TMP91C016.

If it need data protection after reset condition, it need external pull-down resistor to those pins.

(3) DRAM initialization

The DRAM controller can generate the continuous  $\overrightarrow{\text{CAS}}$ -before  $\overrightarrow{\text{RAS}}$  dummy cycles required when using DRAM. Setting the DREFCR<DMI> bit to 1 generates the dummy cycles. Dummy cycle generation is released by writing 0 to <DMI> (Including a write due to reset), by enabling refresh cycle insertion (DREFCR<RC> = 1), or by enabling access control (DMEMCR<MAC> = 1),

When during cycle generation is released by enabling refresh cycle insertion or by enabling access control, the <DMI> bit is not cleared to 0. The dummy cycle width is fixed to 4 states; the interval, to 6 states.

## 3.10.2 Priorities

As the DRAM refresh cycle is asynchronous to the CPU operating cycle, the refresh cycle may overlap with DRAM read and write cycles. If an overlap occurs, the DRAM controller gives priority to the cycle that started first. In case of CPU access first, refresh cycle occurs after CPU access, and in case of refresh cycle first, DRAMC automatically insert to WAIT to CPU until to finish that refresh cycle.

## 3.10.3 Connection Example



# 3.11 Watchdog Timer (Runaway detection timer)

The TMP91C016 features a watchdog timer for detecting runaway.

The watchdog timer (WDT) is used to return the CPU to normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise.

When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU. Connecting the watchdog timer output to the reset pin internally forces a reset. (The level of external RESET pin is not changed)

### 3.11.1 Configuration

Figure 3.11.1 is a block diagram of he watchdog timer (WDT).



The watchdog timer consists of a 22-stage binary counter which uses the system clock (fSYS) as the input clock. The binary counter can output  $fSYS/2^{15}$ ,  $fSYS/2^{17}$ ,  $fSYS/2^{19}$  and  $f_{SYS}/2^{21}$ . WDT counter Overflow 0 n WDT interrupt Write clear code WDT clear (Software) Figure 3.11.2 NORMAL Mode The runaway is detected when an overflow occurs, and the watchdog timer can reset device. In this case, the reset time will be between 22 and 29 states (26,1 to 34.4 us at fOSCH = 1 state ) is fFPH/2, where fFPH is generated by dividing the high-speed oscillator clock (fOSCH) by sixteen through the clock gear function. Overflow WDT counter n WDT interrupt Internal reset 22 to 29 states (26.1 to 34.4 µs at f<sub>OSCH</sub> = 27 MHz, f<sub>FPH</sub> = 1.7 MHz) Figure 3.11.3 RESET Mode

## 3.11.2 Control Registers

The watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
  - a. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway. After reset, this register is initialized to WDMOD<WDTP1:0> = 00.

The detection times for WDT are shown in Figure 3.11.4.

b. Watchdog timer enable/disable control register < WDTE>

After Reset, WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

c. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR>is initialized to 0 on reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer. Disable control the watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

 - - Clear WDMOD<WDTE> to 0.

 1
 0
 0
 1
 Write the disable code (B1H).

• Enable control

Set WDMOD<WDTE> to 1

0 1

Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

WDCR  $\leftarrow$  0 1 0 0 1 1 1 0 Write the clear code (4EH).

Note1: If it is used disable control, set the disable code (B1H) to WDCR after write the clear code (4EH) once. (Please refer to setting example.)

Note2: If it is changed Watchdog timer setting, change setting after set to disable condition once.





#### 3.11.3 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared 0 by software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g., if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (Runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-multifunction program. By connecting the watchdog timer out pin to a peripheral device's reset input, the occurrence of a CPU malfunction can also be relayed to other devices.

The watchdog timer works immediately after reset.

The watchdog timer does not operate in IDLE1 or STOP mode, as the binary counter continues counting during bus release (when BUSAK goes low).

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD<I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

Example: a. Clear the binary counter.

- WDCR  $\leftarrow$  0 1 0 0 1 1 1 0 Write the clear code (4EH)
- b. Set the watchdog timer detection time to  $2^{17}/f_{SYS}$ .
- WDMOD  $\leftarrow$  1 0 1 c. Disable the watchdog timer. WDMOD  $\leftarrow$  0 WDCR  $\leftarrow$  1 0 1 0 0 0 1 Write disable code (B1H).

# 3.12 Real Time Clock (RTC)

### 3.12.1 Function Description for RTC

- 1) Clock function (second, minute, hour, day, month, leap year)
- 2) Auto Calender function
- 3) 24 or 12-hour (AM/PM) clock function
- 4)  $\pm 30$  second adjustment function (by software)
- 5) Alarm output 1Hz/16Hz (from ALARM pin)
- 6) Interrupt generate by Alarm output 1Hz/16Hz

### 3.12.2 Block Diagram



## Note 1: The Christian era year column;

This product has year column toward only lower two columns. Therefore the next year in 99 works as 00 years. In system to use it, please manage upper two columns with the system side when handle year column in the Christian era.

#### Note 2: Leap year:

A leap year is the year which is divisible with 4, but the year which there is exception, and is divisible with 100 is not a leap year. However, the year which is divisible with 400 is a leap year. But there is not this product for the correspondence to the above exception. Because there are only with the year which is divisible with 4 as a leap year, please cope with the system side if this function is problem.

# 3.12.3 Control Registers

|        |         |                     |                |                | 0                        | ``              |                 | ,         | 0               |                                    |            |
|--------|---------|---------------------|----------------|----------------|--------------------------|-----------------|-----------------|-----------|-----------------|------------------------------------|------------|
| Symbol | Address | Bit7                | Bit6           | Bit5           | Bit4                     | Bit3            | Bit2            | Bit1      | Bit0            | Function                           | Read/Write |
| SECR   | 0320H   |                     | 40 s           | 20 s           | 10 s                     | 8 s             | 4 s             | 2 s       | 1 s             | Scound column                      | R/W        |
| MINR   | 0321H   |                     | 40 min         | 20 min         | 10 min                   | 8 min           | 4 min           | 2 min     | 1 mon           | Minute column                      | R/W        |
| HOURR  | 0322H   |                     |                | 20<br>/PM/AM   | 10 hours                 | 8 hours         | 4 hours         | 2 hours   | 1 hours         | Hour column                        | R/W        |
| DAYR   | 0323H   |                     |                |                |                          |                 | W2              | W1        | wo              | Day of the weel column             | R/W        |
| DATER  | 0324H   |                     |                | Day 20         | Day 10                   | Day 8           | Day 4           | Day 2     | Day 1           | Day column                         | R/W        |
| MONTHR | 0325H   |                     |                |                | Oct.                     | Aug.            | Apr.            | Deb.      | Jan.            | Month column                       | R/W        |
| YEARR  | 0326H   | Year 80             | Year 40        | Year 20        | Year 10                  | Year 8          | Year 4          | Year 2    | Year 1          | Year column<br>(Lower two columns) | R/W        |
| PAGER  | 0327H   | Interrupt<br>enable |                |                | Adjust-me<br>nt function | Clock<br>enable | Alarm<br>enable | 2         | PAGE<br>setting | PAGE register                      | W, R/W     |
| RESTR  | 0328H   | 1HZ<br>enable       | 16HZ<br>enable | Clock<br>reset | Alarm<br>reset           |                 | Always          | write "0" | $\searrow$      | Reser register                     | > w        |

Table 3.12.1 Page 0 (Timer function) Registers

Note1: As for SECR, MINR, HOURR, DAYR, MONTHR, YEARR of PAGE0, current state is read when read it.

|        |         |                     | Tu             | 0.12           | .z i ug           |                   |                   |                   | giotoro         |                        |            |
|--------|---------|---------------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-----------------|------------------------|------------|
| Symbol | Address | Bit7                | Bit6           | Bit5           | Bit4              | Bit3              | Bit2              | Bit1              | Bit0            | Eunction               | Read/Write |
| SECR   | 0320H   |                     |                |                |                   | $( \land )$       | $\langle \rangle$ |                   | (C)             |                        | R/W        |
| MINR   | 0321H   |                     | 40 min         | 20 min         | 10 min            | 8 min             | 4 min             | 2 min             | 1 mon           | Minute column          | R/W        |
| HOURR  | 0322H   |                     |                | 20<br>/PM/AM   | 10 hours          | 8 hours           | 4 hours           | 2 hours           | 1 hours         | Hour column            | R/W        |
| DAYR   | 0323H   |                     |                | /              | $\bigcirc$        | $\langle \rangle$ | W2                | W1                | wo)             | Day of the weel column | R/W        |
| DATER  | 0324H   |                     |                | Day 20         | Day 10            | Day 8             | Day 4             | Day 2             | Day 1           | Day column             | R/W        |
| MONTHR | 0325H   |                     |                | $\bigcap$      | ))                |                   | ~                 |                   | 24/12           | 24-hour clock mode     | R/W        |
| YEARR  | 0326H   |                     |                | (C             | $\langle \rangle$ |                   | $\langle$         | LEAP1             | LEAP0           | Leap-year mode         | R/W        |
| PAGER  | 0327H   | Interrupt<br>enable |                |                | Ŋ                 | Clock<br>enable   | Alarm<br>enable   | $\langle \rangle$ | PAGE<br>setting | PAGE register          | W, R/W     |
| RESTR  | 0328H   | 1HZ<br>enable       | 16HZ<br>enable | Clock<br>reset | Alarm<br>reset    | G                 | Always            | write "0"         |                 | Reset register         | W          |

Table 3.12.2 Page 1 (Alarm function) Registers

Note2: As for SECR, MINR, HOURR, DAYR, MONTHR, YEARR of PAGE1, current state is read when read it.

# 3.12.4 Detailed Explanation of Control Register

RTC is not initialized by reset.

Therefore, all registers must be initialized at the beginning of the program.

| (1) Se | econd column | register | (for Page | 0 only) |
|--------|--------------|----------|-----------|---------|
|--------|--------------|----------|-----------|---------|

|         |             |       |        |        |        |           |        | (      |                    |
|---------|-------------|-------|--------|--------|--------|-----------|--------|--------|--------------------|
|         |             | 7     | 6      | 5      | 4      | 3         | 2      | 1      | $\left( 0 \right)$ |
| SECR    | Bit symbol  | /     | SE6    | SE5    | SE4    | SE3       | SE2    | \$E17  | SE0                |
| (0320H) | Read/Write  | /     |        |        |        | R/W       | $\sim$ |        | ))                 |
|         | After reset | /     |        |        |        | Undefined |        | $\sim$ | $\mathcal{I}$      |
|         | Function    | 0 is  | 40 s   | 20 s   | 10 s   | 8 s       | 4 s (( | 2 s    | 1 s                |
|         |             | read. | column | column | column | column    | column | column | column             |

|                   | _                                  |        |               | 4            | $\langle \langle \rangle$ | $\geq$      | ~                    | $\frown$     |
|-------------------|------------------------------------|--------|---------------|--------------|---------------------------|-------------|----------------------|--------------|
|                   | 0                                  | 0      | 0             | 0            | 6                         | 0           | 0                    | 0 s          |
|                   | 0                                  | 0      | 0             | 9            |                           | 0           |                      | ∕ <b>∫</b> s |
|                   | 0                                  | 0      | 0             | d V          | ) <b>)</b>                | 1           | $(\mathbf{Q})$       | 2 s          |
|                   | 0                                  | 0      | 0             |              | 0                         | 1           | $\overline{\langle}$ | /3s          |
|                   | 0                                  | 0      | 0             |              | 1                         | 0           | 6                    | 4 s          |
|                   | 0                                  | 0      | 0.(           | <u>_</u> Q   | <b>1</b>                  | Ø           | 1                    | 5 s          |
|                   | 0                                  | 0      | o             | )<br>O       | 1                         | $\sim$      | ) ø                  | 6 s          |
|                   | 0                                  | 0      | 0             | 0            | 1                         |             | <u> </u>             | 7 s          |
|                   | 0                                  | 0      | ⊥( 0 ∕        | <u>ຼັ</u> 1  | <b>o</b> (                | $(/0 \leq)$ | 0                    | 8 s          |
|                   | 0                                  | 0 ((   | O             | ັ 1          |                           |             | 1                    | 9 s          |
|                   | 0                                  | 0      |               | 0 / /        | 0                         | 0           | 0                    | 10 s         |
|                   |                                    |        | $\searrow$    | $\langle$    |                           |             |                      |              |
|                   | 0                                  | ((0))  | ) 1           | 1            | 0                         | 0           | 1                    | 19 s         |
|                   | 0                                  |        | / 0           | 0            | 0                         | 0           | 0                    | 20 s         |
|                   |                                    |        |               | $\frown$     |                           |             |                      |              |
|                   | 0                                  | )1)    | 0             | 1            | 0                         | 0           | 1                    | 29 s         |
|                   | 0                                  | 1      | 1             | 10-1         | ) 0                       | 0           | 0                    | 30 s         |
|                   | $\left( \left( // \right) \right)$ |        | ~             | $\leq 1$     |                           |             |                      |              |
|                   | $\langle 0 \rangle$                | 1      | 10            | > <u></u> _1 | 0                         | 0           | 1                    | 39 s         |
| // )L             |                                    | 0      | 0             | 5)0          | 0                         | 0           | 0                    | 40 s         |
|                   |                                    |        | $\sum$        | J            |                           |             |                      |              |
|                   | 1                                  | 0      | 9             | 1            | 0                         | 0           | 1                    | 49 s         |
| $\sim$            | 1                                  | 0      |               | 0            | 0                         | 0           | 0                    | 50 s         |
| $\langle \rangle$ |                                    | $\sim$ |               |              |                           |             |                      |              |
|                   | 1                                  | 0      | $\searrow_1$  | 1            | 0                         | 0           | 1                    | 59 s         |
| · ·               |                                    |        | t sat tha dat | a other tha  | n showing a               | ahove       |                      |              |

|         |                    | 7                    | 6                          | 5                    | 4                      | 3              | 2            | 1                          | 0                          |        |
|---------|--------------------|----------------------|----------------------------|----------------------|------------------------|----------------|--------------|----------------------------|----------------------------|--------|
| MINR    | Bit symbol         | /                    | MI6                        | MI5                  | MI4                    | MI3            | MI2          | MI1 🚬                      | MI0                        |        |
| (0321H) | Read/Write         |                      |                            |                      |                        | R/W            |              | $\sim$                     |                            |        |
|         | After reset        | /                    |                            |                      |                        | Undefined      |              | /                          | $\geq$                     |        |
|         | Function           | 0 is                 | 40 min                     | 20 min               | 10 min                 | 8 min          | 4 min        | 2 min (                    | (1 min                     | >      |
|         |                    | read.                | column                     | column               | column                 | column         | column       | column                     | column                     |        |
|         |                    |                      |                            |                      |                        |                | $\sim$       |                            | $\langle \rangle$          |        |
|         |                    |                      | 0                          | 0                    | 0                      | 0              | 0            | $\sqrt{2}$                 | 0                          | 0 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              | 0 ( (        | 0                          | 1                          | 1 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              | 0            |                            | 0                          | 2 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              |              |                            | 1                          | 3 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              | $\sqrt{1}$   | 0                          | 0 (                        | 4 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              | X            | 0                          | 1                          | 5 min  |
|         |                    |                      | 0                          | 0                    | 0                      | 0              |              | 1                          | 0                          | 6 min  |
|         |                    |                      | 0                          | 0                    | 0                      | d V            | ( )1)        | 1                          | $(\mathbf{b})$             | 7 min  |
|         |                    |                      | 0                          | 0                    | 0                      |                |              | 0~ <                       | 070                        | 8/min  |
|         |                    |                      | 0                          | 0                    | 0                      |                | 0            | 0                          | $\backslash \chi \uparrow$ | 9 min  |
|         |                    |                      | 0                          | 0                    | 1 (                    | 0              | 0            | Ø C                        |                            | 10 min |
|         |                    |                      |                            |                      | $\leq \langle \langle$ | $\overline{)}$ |              | C                          | <))                        |        |
|         |                    |                      | 0                          | 0                    |                        | 1              | 0            |                            | <ul><li>✓1</li></ul>       | 19 min |
|         |                    |                      | 0                          | 1                    | ∠( 0 ∕                 | 0              | 0 (          | $(/ 0 \leq)$               | 0                          | 20 min |
|         |                    |                      |                            | ~                    | $\frown$               | ~ /            |              | $\langle \bigcirc \rangle$ |                            |        |
|         |                    |                      | 0                          | 1                    | 0 V                    | 1//            | 0            | 0                          | 1                          | 29 min |
|         |                    |                      | 0                          | 1                    | $\sum$                 | 0              | 0            | 0                          | 0                          | 30 min |
|         |                    |                      |                            |                      |                        |                | $\searrow$   | /                          |                            |        |
|         |                    |                      | 0                          |                      | / 1                    | 1              | 0            | 0                          | 1                          | 39 min |
|         |                    |                      | 1( (                       | ~Q                   | 0                      | Q              | 0            | 0                          | 0                          | 40 min |
|         |                    |                      |                            |                      |                        | $\sim$         |              |                            |                            |        |
|         |                    |                      |                            | 0                    | 0                      | X              | Q O          | 0                          | 1                          | 49 min |
|         |                    |                      | $(/) \land$                | 0                    | 1                      | 6              | 0            | 0                          | 0                          | 50 min |
|         | ,                  | $\square$            | $\langle \bigcirc \rangle$ | /                    | $\bigcap$              | $\sum$         |              |                            |                            |        |
|         |                    | / ) L                | 1                          | 0                    |                        | ))1            | 0            | 0                          | 1                          | 59 min |
|         | $\sim$             | $\bigtriangledown$   |                            | Note: Do no          | eb odt to 2 f          | ta other tha   | n chowing    | above                      |                            |        |
|         |                    | $\overline{\langle}$ | I                          | NOLE. DUTIC          |                        |                | an showing i | above.                     |                            |        |
|         |                    | $\sim$               | >                          | $\overline{\langle}$ |                        |                |              |                            |                            |        |
|         | $\bigtriangledown$ |                      |                            | $\sim$               | $\sim$                 |                |              |                            |                            |        |
|         |                    | . <i>Л</i>           |                            | $\land$              | $\searrow$             |                |              |                            |                            |        |

(2) Minute column register (for Page 0/1)

- (3) Hour column register (for Page 0/1)
  - a. In case of 24-hour clock mode (MONTHR<MO0> = 1) of Page 1

|                   |                   | -               | <u> </u>                  | -              |                           | 0                 | 0                   |                              |                         |                   |
|-------------------|-------------------|-----------------|---------------------------|----------------|---------------------------|-------------------|---------------------|------------------------------|-------------------------|-------------------|
|                   |                   | 1               | 6                         | 5              | 4                         | 3                 | 2                   | 1                            | $\geq 0$                |                   |
| HOURR             | Bit symbol        |                 |                           | HO5            | HO4                       | HO3               | HO2                 | HO1                          | HQO                     |                   |
| (0322H)           | Read/Write        |                 |                           |                | /                         |                   |                     |                              |                         |                   |
|                   | After reset       |                 |                           |                |                           | Unde              | fined               |                              |                         |                   |
|                   | Function          | 0 is            | read.                     | 20 h<br>column | 10 h<br>column            | 8 h<br>column     | 4 h<br>column       | 2 h<br>column                | 1∖h<br>column           |                   |
|                   |                   |                 |                           |                |                           |                   |                     |                              |                         |                   |
|                   |                   |                 |                           | 0              | 0                         | 0                 | 0                   |                              | 0                       | 0 o'clock         |
|                   |                   |                 |                           | 0              | 0                         | 0                 | (0)                 | 0                            | 1 /                     | 1 o'clock         |
|                   |                   |                 |                           | 0              | 0                         | 0                 | $\langle 0 \rangle$ | √ 1                          | 0 🗸                     | 2 o'clock         |
|                   |                   |                 |                           | P              | •                         |                   |                     |                              | $\langle \rangle$       | $\langle \rangle$ |
|                   |                   |                 |                           | 0              | 0                         | 1()               | 1/0                 | 0                            | (0)                     | 8 o'clock         |
|                   |                   |                 |                           | 0              | 0                         | 1                 | $\bigcirc \bullet$  | $\hat{\diamond}$             |                         | 9 o'clock         |
|                   |                   |                 |                           | 0              | 1                         |                   | 0                   | 0                            |                         | 10 o'clock        |
|                   |                   |                 |                           |                | C                         | $\frac{1}{2}$     | >                   | $\bigcap$                    |                         | 9/                |
|                   |                   |                 |                           | 0              | 1/(                       | $\langle \rangle$ | 0                   |                              | $\overline{\mathbf{h}}$ | 19 o'clock        |
|                   |                   |                 |                           | 1              | Q                         | 0                 | 0                   | 0                            |                         | 20 o'clock        |
|                   |                   |                 |                           |                | $\langle \langle \rangle$ | $\overline{}$     | (                   | $(// \wedge$                 |                         |                   |
|                   |                   |                 |                           | 1 (            | Q                         | ¥ 0 _             | 0                   | $\langle \mathbf{U} \rangle$ | 1                       | 23 o'clock        |
|                   |                   |                 | ,                         |                | set the da                | ta other the      | an showing          | above                        |                         |                   |
|                   | b                 | . In cas        | se of 12-h                | our clock      | x mode (I                 | MONTHI            | R <mo0></mo0>       | = 0) of P                    | age 1                   |                   |
|                   |                   | 7               | 6                         | 5)             | 4                         | ~3                | 2                   | 1                            | 0                       |                   |
| HOURR             | Bit symbol        |                 | $\sim$                    | HO5            | HO4                       | HO3               | )HO2                | HO1                          | HO0                     |                   |
| (0322H)           | Read/Write        | $\sim$          | 1943                      |                | 2                         | R/                | W                   |                              |                         |                   |
|                   | After reset       | $\sim$          | $\langle \langle \rangle$ | )              | 6                         | Unde              | fined               |                              |                         |                   |
|                   | Function          | Øis             | read.                     | PM/AM          | 10 h<br>column            | 8 h<br>eolumn     | 4 h<br>column       | 2 h<br>column                | 1 h<br>column           |                   |
|                   |                   |                 | >                         | $\langle $     |                           |                   |                     |                              |                         |                   |
|                   | $\langle \rangle$ |                 | *                         | 0              | 0                         | 0                 | 0                   | 0                            | 0                       | 0 o'clock<br>(AM) |
|                   |                   | $\mathcal{T}$   |                           | > 0            | 0                         | 0                 | 0                   | 0                            | 1                       | 1 o'clock         |
|                   |                   | $\bigcirc$      | $\sim$                    | ( O            | 0                         | 0                 | 0                   | 1                            | 0                       | 2 o'clock         |
| $\frown$          | (( ))             |                 |                           |                | _                         | _                 | :                   | _                            |                         |                   |
|                   |                   | $\sim$          | $( \frown$                | $\overline{}$  | 0                         | 1                 | 0                   | 0                            | 1                       | 9 o'clock         |
|                   |                   | $(\mathcal{C})$ | )/                        | )) 0           | 1                         | 0                 | 0                   | 0                            | 0                       | 10 o'clock        |
|                   |                   | $\sim$          | $\langle \rangle >$       | V o            | 1                         | 0                 | 0                   | 0                            | 1                       | 11 o'clock        |
| $\langle \rangle$ | $\geq$            | 4               |                           | 1              | 0                         | 0                 | 0                   | 0                            | 0                       | 0 o'clock<br>(PM) |
|                   | ~                 |                 | *                         | 1 .            | -                         |                   | -                   | 0                            | 1                       | 4 1 1 1           |

Note: Do not set the data other than showing above.

|             |                                                    | 7                  | 0                          | -           | 4                                            | 0             | 0           | 4                          | 0                 |               |  |  |  |
|-------------|----------------------------------------------------|--------------------|----------------------------|-------------|----------------------------------------------|---------------|-------------|----------------------------|-------------------|---------------|--|--|--|
|             |                                                    |                    | 0                          | о<br>С      | 4                                            | 3             | 2           | I                          | 0                 |               |  |  |  |
| DAYR        | Bit symbol                                         |                    |                            |             |                                              |               | WE2         | WE1                        | WE0               |               |  |  |  |
| (0323H)     | Read/Write                                         |                    |                            |             |                                              |               |             | R/W 🚿                      |                   |               |  |  |  |
|             | After reset                                        |                    |                            |             |                                              |               |             | Undefined                  |                   |               |  |  |  |
|             | Function                                           |                    |                            | 0 is read.  |                                              |               | 2 week      | 1 week                     | 0 week            | 2             |  |  |  |
|             |                                                    |                    |                            |             |                                              |               |             | $\frown$                   | $\mathbf{N}$      |               |  |  |  |
|             |                                                    |                    |                            |             |                                              |               |             | (                          | 7                 |               |  |  |  |
|             |                                                    |                    |                            |             |                                              | Γ             | 0           | 0                          | ) S               | unday         |  |  |  |
|             |                                                    |                    |                            |             |                                              | -             | 0           | > 0 /                      | 1 M               | onday         |  |  |  |
|             |                                                    |                    |                            |             |                                              | f             | 0 ((        | 1                          | 0 Tu              | uesdav        |  |  |  |
|             |                                                    |                    |                            |             |                                              |               | 0           | $\bigvee$                  | 1 W               | /ednesdav     |  |  |  |
|             |                                                    |                    |                            |             |                                              | ŀ             |             | 0                          | 0 TI              | oursday       |  |  |  |
|             |                                                    |                    |                            |             |                                              | ł             |             |                            | 1 5               | iday          |  |  |  |
|             |                                                    |                    |                            |             |                                              | ŀ             |             | 1                          |                   |               |  |  |  |
|             |                                                    |                    |                            |             |                                              |               |             |                            |                   |               |  |  |  |
|             | Note Do not set the data other than showing above. |                    |                            |             |                                              |               |             |                            |                   |               |  |  |  |
|             |                                                    |                    |                            |             |                                              | $\sim$        |             | $\sim$                     | ~ ~ ~             | $(/ \cap)$    |  |  |  |
|             |                                                    |                    |                            |             |                                              | $( \land )$   |             |                            | $//_{c}$          | 10/           |  |  |  |
|             | (5) Day column register (for Page 0/1)             |                    |                            |             |                                              |               |             |                            |                   |               |  |  |  |
|             |                                                    | •                  | 0                          |             | 4(                                           |               |             | $(\bigcirc$                | $\langle \rangle$ |               |  |  |  |
|             |                                                    | 7                  | 6                          | 5           | 4                                            | 3             | 2           |                            |                   |               |  |  |  |
|             | Bit symbol                                         |                    | $\backslash$               |             | $\left( \overrightarrow{\mathbf{h}} \right)$ |               |             |                            |                   |               |  |  |  |
| (0324H)     | Bit Symbol<br>Read/Write                           |                    |                            | DAJ         |                                              |               |             |                            | DAU               |               |  |  |  |
| ()          | After reset                                        |                    | $\backslash$               | 4           | $( \rightarrow )$                            | Linde         | fined       | $\sim$                     |                   |               |  |  |  |
|             | Function                                           | 0 is 1             |                            | 20 0        | 10.4                                         | 8 d           |             | 24                         | 1 d               |               |  |  |  |
|             | 1 unction                                          | 0131               | eau.                       | 200         | 100                                          | ou            | + u         | ) <u>zu</u>                | Tu                |               |  |  |  |
|             |                                                    |                    |                            |             | ))                                           |               |             |                            |                   |               |  |  |  |
|             |                                                    |                    |                            |             |                                              | Ń             |             | 0                          | 0                 | 0             |  |  |  |
|             |                                                    |                    | ((                         |             | 0                                            | 0             | 0           | 0                          | 0                 | U<br>1 at day |  |  |  |
|             |                                                    |                    |                            |             | 0                                            |               | 0           | 0                          | 1                 | Tst day       |  |  |  |
|             |                                                    |                    |                            |             | 0                                            | 10            |             | 1                          | 0                 | 2nd day       |  |  |  |
|             |                                                    | $\frown$           | $((// \le))$               | 0           | 0 <                                          | $\sim \alpha$ | 0           | 1                          | 1                 | 3rd day       |  |  |  |
|             | /                                                  | $\langle \rangle$  | $\langle \bigcirc \rangle$ | 0           |                                              |               | 1           | 0                          | 0                 | 4th day       |  |  |  |
|             |                                                    | / ) L              |                            | $\frown$    |                                              | ()            | 1           | 1                          |                   | 1             |  |  |  |
|             |                                                    | $\bigtriangledown$ |                            | 0           | 0                                            | /1            | 0           | 0                          | 1                 | 9th day       |  |  |  |
|             |                                                    | $\sim$             |                            |             | $\backslash \mathbf{N}$                      | 0             | 0           | 0                          | 0                 | 10th day      |  |  |  |
|             |                                                    |                    | >                          | 0           | 1                                            | 0             | 0           | 0                          | 1                 | 11th day      |  |  |  |
|             | $\land \land$                                      |                    |                            |             |                                              |               |             |                            |                   |               |  |  |  |
|             | $\sum$                                             |                    |                            | 0           | ∕_1                                          | 1             | 0           | 0                          | 1                 | 19th day      |  |  |  |
|             |                                                    | $\bigcirc$         |                            | 1           | 0                                            | 0             | 0           | 0                          | 0                 | 20th day      |  |  |  |
|             |                                                    | $\bigcirc$         | $\sim$                     | 11          |                                              |               |             | 1                          |                   |               |  |  |  |
| $\sim$      | (())                                               |                    |                            |             | 0                                            | 1             | 0           | 0                          | 1                 | 29th day      |  |  |  |
|             |                                                    | ~                  | $( \frown$                 | $\searrow$  | 1                                            | 0             | 0           | 0                          | 0                 | 30th day      |  |  |  |
|             |                                                    | (                  |                            |             | 1                                            | 0             | 0           | 0                          | 1                 | 31et dou      |  |  |  |
| $\langle -$ |                                                    | $\sim$             | 7 >                        | <u> </u>    | I                                            | U             | U           | U                          | I                 | STSLUAY       |  |  |  |
|             |                                                    | 7                  | $\sim$                     | Note1: Do r | not set the o                                | data other th | han showing | g above.                   |                   |               |  |  |  |
| $\sim$      | $\geq$                                             |                    | $\rightarrow$              | Note2: Do r | not set the o                                | day which is  | not existed | d. (ex: 30 <sup>th</sup> I | Feb)              |               |  |  |  |

(4) Day of the week column register (for Page 0/1)

- 5 2 7 6 4 3 0 1 MONTHR Bit symbol MO4 MO3 MO2 MO1 MO0 (0325H) Read/Write R/W After reset Undefined Function 0 is read. 10 month 8 month 4 month 2 month 1 month \0\/ 0 0 6 )1 January 0 0 0 Ĵ 0 February 0 0 0 X 1 March o 0 0 1 0 April 0 0 1 0 1 May 0 0 1 1 0 June 0 0 £ July 1 1 0 0 Q August 1  $^0$ 0 \1\ ) ø 0< 1 September October 1 Ò 0 0 Q 1 0 0 0 Y November (1 0 0 1( 0 December Note: Do not set the data other than showing above.
- (6) Month column register (for Page 0 only)

(7) Select 24-hour clock or 12-hour clock (for Page 1 only)


|            |             | 7                        | 6        | 5                                 | 4                 | 3                 | 2             | 1                         | 0                  | 7                                   |
|------------|-------------|--------------------------|----------|-----------------------------------|-------------------|-------------------|---------------|---------------------------|--------------------|-------------------------------------|
| YFARR      | Bit symbol  | YE7                      | YE6      | YE5                               | YE4               | YE3               | YE2           | YE1                       | YE0                | -                                   |
| (0326H)    | Read/Write  |                          | •        |                                   | R/                | W                 |               | <                         |                    | -                                   |
|            | After reset |                          |          |                                   | Unde              | fined             |               |                           |                    |                                     |
|            | Function    | 80                       | 40       | 20                                | 10                | 8 vears           | 4 vears       | 2 vears                   | 1 vears            |                                     |
|            |             | years                    | years    | years                             | years             | o youro           | i youro       | 2 youro                   |                    | )                                   |
|            |             |                          |          |                                   |                   |                   | $\sim$        |                           | $\sim$             |                                     |
|            |             | 1                        | 0        | 0                                 | 1                 | 1                 | 0             | 0                         | 1                  | 99 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 | 0                 | 0 ((          | 0                         | 0                  | 00 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 | 0                 | 0             | 0                         | 1                  | 01 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 | 0                 | 0             |                           | 0                  | 02 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 | 0                 | 40            | > 1                       | 1                  | 03 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 | 0                 | X             | 0                         | 0                  | 04 years                            |
|            |             | 0                        | 0        | 0                                 | 0                 |                   |               | 0                         |                    | 05 years                            |
|            |             | 1                        | 0        | 0                                 | 1                 |                   | 26            | 0                         | N Tr               | 99 y                                |
|            |             |                          |          | Note: Do no                       | ot set the da     | ta other that     | an showing    | above.                    |                    | $\overline{\mathbf{O}}$             |
|            |             |                          |          |                                   | $\wedge$          | $\sim$            |               | (C                        | $\sim$             |                                     |
|            | <i>.</i>    |                          |          |                                   |                   | $\sim$            |               |                           | $\mathcal{O}$      |                                     |
|            | (9) Le      | eap-year                 | register | (for Page                         | e 1 only)         | $\searrow$        | (             | (7)                       | <u> </u>           |                                     |
|            | _           |                          |          | (                                 |                   | $\checkmark$      | $\sim$        | $\langle \rangle \rangle$ | )                  | -                                   |
|            |             | 7                        | 6        | 5 <                               | 4                 | 3                 | 2             | $\overline{1}$            | 0                  | 4                                   |
| YEARR      | Bit symbol  |                          |          | $\langle$                         | $\searrow$        | X                 |               | LEAP1                     | LEAP0              |                                     |
| (0326H)    | Read/Write  |                          |          | $\square$                         | $\frac{1}{2}$     | /                 | $\sum$        | / R/                      | w .                |                                     |
|            | After reset |                          |          | $\sim$                            | ) >               |                   | $\rightarrow$ |                           | etined             | -                                   |
|            | Function    |                          | ((       |                                   |                   | $\land$           |               | 00: Leap y                | ear                |                                     |
|            |             |                          |          |                                   |                   | $\sim$            |               | leap ye                   | aranei             |                                     |
|            |             |                          | $\frown$ | 0 is r                            | ead.              |                   | $\rightarrow$ | 10: Two ye                | ears after         |                                     |
|            |             |                          | ((// ^   |                                   | 2                 | $ \rightarrow / $ |               | leap ye                   | ear                |                                     |
|            |             | $\bigcirc$               | Ľ)       | )                                 | $\overline{\Box}$ | $\sum$            |               | 11: Three y               | years after<br>ear |                                     |
|            |             | $\left( \right)^{\perp}$ |          | <u> </u>                          |                   | $\rightarrow$     |               | ioup ye                   |                    | J                                   |
|            |             | $\geq$ // $^{-}$         |          |                                   | $\frown$          |                   |               |                           |                    |                                     |
|            |             |                          | >        | $\langle \langle \langle \rangle$ |                   |                   |               | 0                         | 0 Cur              | rrent year is leap<br>r             |
|            | $\leq 2$    | ~                        |          |                                   | $\searrow$        |                   |               | 0                         | 1 Pre<br>a le      | sent is next year of<br>ap year     |
|            |             | $\mathcal{D}$            | $\sim$   | $\left( \right)$                  |                   |                   |               | 1                         | 0 Pre              | sent is two years<br>er a leap year |
| $\langle $ |             | ^                        |          | $\langle \rangle$                 |                   |                   |               | 1                         | 1 Pre<br>afte      | sent is three years<br>er leap year |
|            |             | Ś                        |          | ))                                |                   |                   |               |                           |                    |                                     |
|            | 2           |                          | \ /      |                                   |                   |                   |               |                           |                    |                                     |

(8) Year column register (for Page 0 only)

|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         |                                                                      |               |                                                           |               | _                  |  |  |
|---------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------|---------------|-----------------------------------------------------------|---------------|--------------------|--|--|
|                                       |             | 7                                                                                                                                                        | 6                            | 5                                                                                                           | 4                       | 3                                                                    | 2             | 1                                                         | 0             | 1                  |  |  |
| PAGER                                 | Bit symbol  | INTENA                                                                                                                                                   |                              |                                                                                                             | ADJUST                  | ENATMR                                                               | ENAALM        |                                                           | PAGE          | 1                  |  |  |
| (0327H)                               | Read/Write  | R/W                                                                                                                                                      |                              |                                                                                                             | W                       | R/W                                                                  | R/W           | $\searrow$                                                | R/W           | 1                  |  |  |
|                                       | After reset | 0                                                                                                                                                        |                              |                                                                                                             | Undefined               | Undefined                                                            | Undefined     | $\searrow$                                                | Undefined     |                    |  |  |
| Read-modify                           | Function    | Note:                                                                                                                                                    |                              |                                                                                                             |                         | Timor                                                                | Alorm         | ( (                                                       |               |                    |  |  |
| write                                 |             | Interrupt                                                                                                                                                | 0 is                         | read                                                                                                        | 1. Adjust               | 1: Enable                                                            |               | 0 is-read                                                 | Page          |                    |  |  |
| are proibited                         |             | 1: Enable                                                                                                                                                | 015                          | ieau.                                                                                                       | T. Aujust               |                                                                      |               |                                                           | select        |                    |  |  |
|                                       |             | 0: Disable                                                                                                                                               |                              |                                                                                                             |                         | 0. Disable                                                           | 0. Disable    |                                                           |               |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         |                                                                      | $\geq$        |                                                           |               |                    |  |  |
|                                       | Note: F     | Pleas keep                                                                                                                                               | the setting                  | order belov                                                                                                 | v and don't             | set same tim                                                         | ne. ((        |                                                           |               |                    |  |  |
|                                       | (           | Set differer                                                                                                                                             | nce time to                  | Clock/Alarn                                                                                                 | n setting an            | d interrupt se                                                       | etting)       | $\bigcirc$                                                |               |                    |  |  |
|                                       | ·           |                                                                                                                                                          |                              |                                                                                                             | Ũ                       |                                                                      |               |                                                           | (             | $\sim$             |  |  |
| (Example) Clock setting/Alarm setting |             |                                                                                                                                                          |                              |                                                                                                             |                         |                                                                      |               |                                                           |               |                    |  |  |
|                                       |             | ld                                                                                                                                                       | (pager), 0                   | ch :                                                                                                        | Clock, A                | larm enable                                                          |               |                                                           |               | $\langle \rangle$  |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         | $\left( \Omega \right)$                                              | $\sum$        |                                                           |               | $\searrow$         |  |  |
|                                       |             | ld                                                                                                                                                       | (pager), 8                   | ch :                                                                                                        | Interrup                | enable                                                               | ( ))          | $\bigcirc$                                                | $(\bigcirc)$  | $\bigcirc$         |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         | $\frown$                                                             | $\mathcal{I}$ | ~~ <                                                      |               | /))                |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | PAGE                    | Q                                                                    | Select        | Page0                                                     | <u> </u>      | 9                  |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | FAGE                    | 1                                                                    | Select        | Page1                                                     | $\sim$        |                    |  |  |
|                                       |             |                                                                                                                                                          |                              | _                                                                                                           | $\langle \zeta \langle$ | $\sim$                                                               |               |                                                           | ))            |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | $\square$               | 0                                                                    | Don't         | are <                                                     | )             |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | $\square()$             | <u> </u>                                                             | Adjust        | sec. counte                                               | er.           |                    |  |  |
|                                       |             |                                                                                                                                                          |                              | ~                                                                                                           | $\sim$                  | ~ /                                                                  | When          | set this bit to                                           | o "1" the sec | counter become     |  |  |
|                                       |             |                                                                                                                                                          |                              | $\sim$                                                                                                      | $\searrow$              |                                                                      | to "0"        | $\mathbb{P}$ when the value of sec. counter is $0 - 29$ . |               |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | ADJUST                  |                                                                      | min. q        | ounter is ca                                              | rried and be  | ecome sec.         |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         |                                                                      | counte        | er to "0". Ou                                             | tput Adjust   | signal during 1    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             | )                       |                                                                      | cycle         | of f <sub>SYS</sub> . Afte                                | r being adju  | isted once, Adjust |  |  |
|                                       |             |                                                                                                                                                          | 6                            | $^{7}$                                                                                                      |                         | $\frown$                                                             |               | ased autom                                                | atically.     |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         |                                                                      | (FAGE         | LO OITIY)                                                 |               |                    |  |  |
|                                       |             |                                                                                                                                                          |                              |                                                                                                             |                         | $\langle l \rangle$                                                  | $\rangle$     |                                                           |               |                    |  |  |
|                                       | (           | . (                                                                                                                                                      | $\left( \frac{1}{2} \right)$ | (a —                                                                                                        | <                       |                                                                      | ~             |                                                           |               |                    |  |  |
|                                       | (11) Re     | eset regis                                                                                                                                               | ter setti                    | ng (for Pa                                                                                                  | age 0/1)                | $\sim$                                                               |               |                                                           |               |                    |  |  |
|                                       |             | $\langle \rangle \rangle$                                                                                                                                | $\searrow$                   |                                                                                                             |                         | $\langle \land \rangle$                                              |               |                                                           |               |                    |  |  |
|                                       |             | <u> </u>                                                                                                                                                 | 6                            | 5                                                                                                           | 4.4                     | /3                                                                   | 2             | 1                                                         | 0             |                    |  |  |
| RESTR                                 | Bit symbol  | DISIHZ                                                                                                                                                   | DIS16HZ                      | RSTTMR                                                                                                      | RSTALM                  | RE3                                                                  | RE2           | RE1                                                       | RE0           |                    |  |  |
| (0328H)                               | Read/Write  |                                                                                                                                                          | >                            | $\langle -$                                                                                                 |                         | V                                                                    |               |                                                           |               |                    |  |  |
| Read-modify                           | After reset | Ň                                                                                                                                                        | -                            |                                                                                                             | Unde                    | fined                                                                |               |                                                           |               |                    |  |  |
| instruction                           | Function    | 0·⊾ Hz                                                                                                                                                   | 0 <sup>.</sup> 16 Hz         | 1: Timer                                                                                                    | 1: Alarm                |                                                                      | Always        | vrite "0"                                                 |               |                    |  |  |
| are proibited                         |             | <u> </u>                                                                                                                                                 | 01.10112                     |                                                                                                             | reset                   |                                                                      | , anayo       |                                                           |               |                    |  |  |
|                                       |             |                                                                                                                                                          | ~                            |                                                                                                             |                         |                                                                      |               |                                                           |               | 1                  |  |  |
| $\frown$                              | (())        | RSTAL                                                                                                                                                    | м                            | v ∪                                                                                                         | nused                   |                                                                      |               |                                                           |               |                    |  |  |
|                                       |             | $\frown$                                                                                                                                                 | $( \frown )$                 | <u>1</u> 🗸 🛛 R                                                                                              | eset alarm i            | egister                                                              |               |                                                           |               | J                  |  |  |
|                                       | $\geq$      | -(C)                                                                                                                                                     |                              | ))                                                                                                          |                         |                                                                      |               |                                                           |               | 1                  |  |  |
|                                       |             | RSTTM                                                                                                                                                    | R                            | ý U                                                                                                         | nused                   |                                                                      |               |                                                           |               |                    |  |  |
|                                       |             |                                                                                                                                                          | $\langle \rangle$            | 1 R                                                                                                         | eset timer r            | egister                                                              |               |                                                           |               | J                  |  |  |
|                                       | >           |                                                                                                                                                          | $\searrow$                   |                                                                                                             |                         |                                                                      |               |                                                           |               | 1                  |  |  |
|                                       |             | <dis1< td=""><td>HZ&gt;</td><td><dis1f< td=""><td>IZ&gt;</td><td>(PAGER)</td><td>)</td><td colspan="2">Source signal</td><td></td></dis1f<></td></dis1<> | HZ>                          | <dis1f< td=""><td>IZ&gt;</td><td>(PAGER)</td><td>)</td><td colspan="2">Source signal</td><td></td></dis1f<> | IZ>                     | (PAGER)                                                              | )             | Source signal                                             |               |                    |  |  |
|                                       |             |                                                                                                                                                          |                              | 2.011                                                                                                       | -                       | <enaaln< td=""><td> &gt;</td><td></td><td>J</td><td>ļ</td></enaaln<> | >             |                                                           | J             | ļ                  |  |  |
|                                       |             | 1                                                                                                                                                        |                              | 1                                                                                                           |                         | 1                                                                    |               | Alarm                                                     | 1             |                    |  |  |
|                                       |             | 0                                                                                                                                                        |                              | 1                                                                                                           | 1 0                     |                                                                      |               | 1Hz                                                       |               | ļ                  |  |  |
|                                       |             | 1                                                                                                                                                        |                              | 0                                                                                                           |                         | 0                                                                    |               | 16Hz                                                      | 2             |                    |  |  |
|                                       |             |                                                                                                                                                          |                              | Othe                                                                                                        | ers                     |                                                                      |               | Output "0"                                                |               |                    |  |  |

## 3.12.5 Operational Description

- (1) Reading timer data
  - a. There is the case which reads wrong data when carry of the inside counter happens during the operation which timer data reads. Therefore, please read two times with the following way for reading correct data.



(2) Timing of INTRTC and Clock data

When time is read by interrupt, read clock data within 0.5s(s) after generating interrupt. This is because count up of clock data occurs by rising edge of 1Hz pulse cycle.



(3) Writing timer data

When there is carry on the way of write operation, expecting data can not be wrote exactly.

Therefore, in order to write in data exactly please follow the below way.

a. Reset for a divider

Inside of RTC, there is 15-stage divider which generates 1 Hz clock from 32.768 kHz. Carry of a timer is not done for one second when reset this divider. So write in data during this interval.



b. Disabling the timer

Carry of a timer is prohibited when write "0" to PAGER<ENATMR> and can prevent malfunction by 1s Carry hold circuit. During a timer prohibited, 1s Carry hold circuit holds one sec. carry signal which is generated from divider. After becoming timer enable state, output the carry signal to timer and revise time and continue operation. However, timer is late when timer disabling state continues for one second or more. During timer disabling, pay attention with system power is downed. In this case the timer is stopped and time is delayed.

Since clock hold circuit is not initialized by external **RESET**, a second counter may added 1 or 2 sec at the case of only after power supply is on. To avoid it, the below is recommended setting flow.



#### 3.12.6 Explanation of the Alarm Function

Can use alarm function by setting of register of PAGE1 and output either of three signal from ALARM pin as follows by write "1" to PAGER<PAGE>. INTRTC outputs 1shot pulse when the falling edge is detected. RTC is not initializes by RESET. Therefore, when clock or alarm function is used, clear interrupt request flag in INTC (interrupt controller).

- (1) In accordance of alarm register and the timer, output "0"
- (2) Output clock of 1 Hz.
- (3) Output clock of 16 Hz.
- (1) In accordance of alarm register and a timer, output 0.

When value of a clock of PAGE0 accorded with alarm register of PAGE1 with a state of PAGER<ENAALM>= "1", output "0" to ALARM pin and occur INTRTC.

Follows are ways using alarm. Initialization of alarm is done by writing in "1" at RESTR<RSTALM>, setting value of all alarm becomes don't care. In this case, always accorded with value of a clock and request INTRTC interrupt if PAGER<ENAALM> is "1".

Setting alarm min., alarm hour, alarm day and alarm the day week are done by writing in data at each register of PACE1.

When all setting contents accorded, RTC generates INTRTC interrupt, if PAGER<INTENA><ENAALM> is "1". However, contents (don't care state) which does not set it up is considered to always accord.

The contents, which set it up once, cannot be returned to don't care state in independence. Initialization of alarm and resetting of alarm register set to Don't care.

The following is an example program for outputting alarm from ALARM -pin at noon (PM12:00) every day.



When CPU is operated by high-frequency oscillation, it may take a maximum of one clock at 32 kHz (about 30  $\mu$ s) for the time register setting to become valid. In the above example, it is necessary to set 31  $\mu$ s of set up time between setting the time register and enabling the alarm register.

Note: This set up time is unnecessary when you use only internal interruption.

## (2) When output clock of 1 Hz

RTC outputs clock of 1 Hz to  $\overline{\text{ALARM}}$  pin by setting up PAGER<ENAALM> = 0, RESTR<DIS1HZ> = 0, <DIS16HZ> = 1. And RTC generates INTRTC interrupt by falling edge of the clock.

(3) When output clock of 16 Hz

RTC outputs clock of 16 Hz to  $\overline{\text{ALARM}}$  pin by setting up PAGER<ENAALM> = 0, RESTR<DIS1HZ> = 1, <DIS16HZ> = 0. And RTC generates INTRTC interrupt by falling edge of the clock.

# 3.13 LCD Driver Controller (LCDC)

The TMP91C016 incorporates two types liquid crystal display driving circuit for controlling LCD driver LSI.

One circuit handles a RAM build-in type LCD driver that can store display data in the LCD driver in itself, and the other circuit handles a shift-register type LCD driver that must serially transfer the display data to LCD driver for each display picture.

#### Shift-register type LCD driver control mode (SR mode)

Set the mode of operation, start address of source data save memory and LCD size to control register before setting start register. After set start register LCDC outputs bus release request to CPU and read data from source memory. After that LCDC transmits data of volume of LCD size to external LCD driver through data bus. At this time, control signals (DIBSCP etc.) connected LCD driver output specified waveform synchronize with data transmission. After finish data transmission, LCDC cancels the bus release request and CPU will re-start.

#### RAM built-in type LCD driver control mode (RAM mode)

Data transmission to LCD driver is executed by move instruction of CPU,

After setting mode of operation to control register, when move instruction of CPU is executed LCDC outputs chip select signal to LCD driver connected to the outside from control pin (D1BSCP etc.). Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU.

#### Special mode

It is assigned <TA3LCDE> at bit0 and <TA3MLDE> at bit1, of EMCCR4 register (00E7hex). These bits are used when you want to operate LCDD and MELODY circuit without low frequency clock (XTIN, XTOUT). After reset these two bits set to 0 and low clock is supplied each LCDD and MELODY circuit. If you write these bits to 1, TA3 (Generate by timer 3) is supplied each LCDD and MELODY circuit. In this case, you should set 32 kHz timer 3 frequency. For detail, look AC specification characteristics.

## This section is constituted as follows. ((

- 3.13.1 Feature of LCDC of Each Mode
- 3.13.2 Block Diagram
- 3.13.3 Control Registers
- 3,13.4 Operation Explanation of Each Mode
  - 3.13.4.1 Shift-register Type LCD Driver Control Mode (SR mode)
  - 3.13.4.2 RAM Built-in Type LCD Driver Control Mode (RAM mode)

# 3.13.1 Feature of LCDC of Each Mode

Each feature and operation of pin is as follows.

Table 3.13.1 Feature of LCDC of Each Mode

|                                          |                                   | Shift- Register Type LCD Driver<br>Control Mode                                                                                                                | RAM Built-in Type LCD Driver<br>Control Mode                                                                                                                         |
|------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The numbe<br>elements ca                 | r of picture<br>an be handled     | Common (Row): 64, 68, 80, 100, 120,<br>128, 144, 160, 200, 240<br>Segment (Column): 32, 64, 80, 120, 128,<br>160, 240, 320, 360                                | There is not a limitation                                                                                                                                            |
| Receiver da                              | ata bus width                     | 8 bits,16 bits selectable                                                                                                                                      | 8 bits,16 bits, selectable<br>(Depend on CPU command)                                                                                                                |
| Transfer da                              | ta bus width                      | 8 bits, 4 bits,1 bit selectable                                                                                                                                | 8 bits fixed                                                                                                                                                         |
| Transfer rat<br>(at f <sub>FPH</sub> = 1 | te<br>6 [MHz])                    | 250 ns/1 byte at Byte mode<br>375 ns/1 byte at Nibble mode<br>1125 ns/1 byte at Bit mode                                                                       | Equal to memory cycle                                                                                                                                                |
|                                          | Data bus:<br>(D7 to D0)           | Data bus; Connect with DI pin of column<br>driver. Upper 7 pins do not use in Bit mode<br>and upper 4 pins do not use in Nibble mode.                          | Data bus; Connect with DB pin of column/row driver.                                                                                                                  |
|                                          | Write strobe:<br>( WR )           | Not used                                                                                                                                                       | Write strobe; Connect with WR pin of column/row driver.                                                                                                              |
|                                          | Address bus:<br>(A0)              | Not used                                                                                                                                                       | Address $\emptyset$ ; Connect with D/I pin of<br>column driver.<br>When A0 = 1 data bus value means<br>display data, when A0 = 0 data bus<br>means instruction data. |
| External                                 | Shift clock<br>pulse:<br>(D1BSCP) | Shift clock pulse; Connect with SCP pin of<br>column driver. LCD driver latches data bus<br>value by falling edge of this pin.                                 | Chip enable for column driver 1;<br>Connect with CE pin of column driver<br>1.                                                                                       |
| pino                                     | Latch pulse:<br>(D2BLP)           | Latch pulse output: Connect with LP/EIO1 pin<br>of column/row driver. Display data is latched<br>in output buffer in LCD driver by rising edge of<br>this pin. | Chip enable for column driver 2;<br>Connect with $\overline{CE}$ pin of column driver<br>2.                                                                          |
|                                          | Frame:<br>(D3BFR)                 | LCD frame output; Connect with FR pin of column/row driver.                                                                                                    | Chip enable for column driver 3;<br>Connect with $\overline{CE}$ pin of column driver 3.                                                                             |
|                                          | Cascade pulse:<br>(DLEBCD)        | Cascade pulse output; Connect with DIO1 pin<br>of row driver. This pin outputs 1 shot pulse by<br>every D3BFR pin changes.                                     | Chip enable for row driver;<br>Connect with LE pin of row driver.                                                                                                    |
|                                          | Display OFF:<br>( DOFF )          | Display off output; Connect with DSPOF termin<br>L means display off and H means display on.                                                                   | al of column/row driver.                                                                                                                                             |



3.13.2 Block Diagram



# 3.13.3 Control Registers

|         |                |                   |              | LCD               | SAL Register                                  | r                                    |                 |               |                            |
|---------|----------------|-------------------|--------------|-------------------|-----------------------------------------------|--------------------------------------|-----------------|---------------|----------------------------|
|         |                | 7                 | 6            | 5                 | 4                                             | 3                                    | 2               | 1             | 0                          |
| LCDSAL  | Bit symbol     | SAL15             | SAL14        | SAL13             | SAL12                                         |                                      | _               | <u> </u>      | MODE                       |
| (0360H) | Read/Write     | R/W               | R/W          | R/W               | R/W                                           |                                      | R/W             | RAW           | R/W                        |
|         | After reset    | 0                 | 0            | 0                 | 0                                             |                                      | 0               |               | <u> </u>                   |
|         | Function       | SR mode           |              |                   | Always                                        | Always                               | Mode            |               |                            |
|         |                | Display           | memory add   | dress (Low: A     | 15 to A12)                                    |                                      | write 0         | write 0       | select                     |
|         |                |                   |              |                   |                                               |                                      | $\sim ()$       | (/ 5)         | 0: RAM                     |
|         |                |                   |              |                   |                                               |                                      |                 |               | 1: SR                      |
|         |                |                   |              | LCDS              | SAH Registe                                   | r                                    | $(\bigcirc)$    | $\geq$        |                            |
|         |                | 7                 | 6            | 5                 | 4                                             | 3                                    | 2               | 1             | 0                          |
| LCDSAH  | Bit symbol     | SAL23             | SAL22        | SAL21             | SAL20                                         | SAL19                                | SAL18           | SAL17         | SAL16                      |
| (0361H) | Read/Write     | R/W               | R/W          | R/W               | R/W                                           | R/W                                  | R/W             | R/W           | R/W                        |
|         | After reset    | 0                 | 0            | 0                 | 0                                             | $\langle \mathcal{O} \rangle \wedge$ | $\searrow$ 0    | 0             | 0                          |
|         | Function       |                   |              |                   | SR r                                          | node                                 | ) <             | S(C)          | $)) \bigcirc$              |
|         |                |                   |              | Display n         | nemory addre                                  | ess (High: A2                        | 23 to A16)      | $\sim$        | $\mathcal{L}(\mathcal{M})$ |
|         |                |                   |              |                   |                                               | $\rightarrow$                        |                 | $\rightarrow$ |                            |
|         |                |                   |              |                   |                                               |                                      | (               | $\mathcal{C}$ | /                          |
|         | -              |                   |              | LCDS              | SIZE Registe                                  | $\sim$                               |                 | $\leq$        |                            |
|         |                | 7                 | 6            | 5 (               | $\langle 4 \rangle$                           | 3                                    | (2)             | $\sim$        | 0                          |
| LCDSIZE | Bit symbol     | COM3              | COM2         | COMI              | COMO                                          | SEG3                                 | SEG2            | ))SEG1        | SEG0                       |
| (0362H) | Read/Write     | R/W               | R/W          | Ŗ∕W               | R/W                                           | R/W                                  | R/W             | R/W           | R/W                        |
|         | After reset    | 0                 | 0            | 0                 | 0                                             | / (0                                 | Ò               | 0             | 0                          |
|         | Function       | LCD comm          | on number (  | (SR mode)         | $\checkmark$                                  | LCD segm                             | ent number      | (SR mode)     |                            |
|         |                | 0000: 64          | 0101:1:      | 28 ))             |                                               | 0000: 32                             | /0101:1         | 60            |                            |
|         |                | 0001: 68          | 0110:1       | 44                |                                               | 0001: 64                             | 0110:2          | 240           |                            |
|         |                | 0010: 80          | 0111:1       | 60                |                                               | 0010: 80                             | 0111:3          | 320           |                            |
|         |                | 0011:100          | 1000:2       | 00)<br>10 Others  | Basarius                                      | 0011:120                             | 1000:3<br>Other | Beenrund      |                            |
|         | Noto: Dit mo   | do con not o      | 1001.2       |                   | hor                                           | 10100.0120                           | Other.          | Reserved      |                            |
|         | NOLE. DIL MO   |                   |              |                   | ber.                                          | $\rightarrow$                        |                 |               |                            |
|         | /              | $\langle \rangle$ |              |                   |                                               | ſ                                    |                 |               |                            |
|         | $\frown$       | $\sqrt{\pi}$      | 6            | 5                 | $\left  \left\langle 4 \right\rangle \right $ | 3                                    | 2               | 1             | 0                          |
|         | Bit symbol     | LEDON             | - /          |                   | BUS1                                          | BUS0                                 | MMULCD          | FP8           | START                      |
| (0363H) | Read/Write     | R/W               | R/W          | R/W               | R/W                                           | R/W                                  | R/W             | R/W           | R/W                        |
|         | Afterreşêt     | 0                 | 0            | 0                 | 0                                             | 0                                    | 0               | 0             | 0                          |
|         | Function       | DOFF              | Always       | Always            | Data bus wi                                   | idth                                 | Setting         | Setting bit   | Start                      |
|         |                | (SR, RAM          | write 0      | write 0           | (SR mode)                                     | )                                    | direct          | 8 for fFP     | control                    |
|         | $( \bigcirc )$ | mode)             | <11          |                   | 00: 8 bits (E                                 | Byte mode)                           | RAM             |               | (SR mode)                  |
| $\sim$  | ( ) )          | 0: OFF            |              | $\langle \rangle$ | 01: 4 bits (N                                 | libble mode)                         | 0: OFF          |               | 0: Stop                    |
|         |                | 1: ON             | $(\bigcirc)$ |                   | 10: 1 bit (Bi                                 | t mode)                              | 1: ON           |               | 1: Start                   |
|         | $\rightarrow$  |                   | $> \bigcirc$ | )                 |                                               |                                      |                 |               |                            |
|         |                |                   | $\langle \ $ |                   |                                               |                                      |                 |               |                            |
| $\sim$  | Note 1: The    | re is a limi      | tation abo   | ut to set L       | CDSAH ar                                      | nd LCDSA                             | L start ad      | dress.        |                            |
|         | ∼ lt           | prohibit to       | set À13 c    | arry to A1        | 4 by all 1-f                                  | rame data                            | transmit.       |               |                            |
|         |                | Ex.:In            | case 240     | (Row)×36          | 0 (Columr                                     | n): 2a30 by                          | /tes            |               |                            |
|         |                | St                | art addres   | s of LCDC         | : SAL15 t                                     | o SAL12 =                            | = 0000 or (     | 0001;         |                            |

Note 2: Initial incriminator's address (LSB 14 bits) for LCDC DMA is 0000 (Hex).

|         |             |                                        |              | LODI   | i i i itogiotoi |              |                    |                                                       |     |  |  |  |
|---------|-------------|----------------------------------------|--------------|--------|-----------------|--------------|--------------------|-------------------------------------------------------|-----|--|--|--|
|         | /           | 7                                      | 6            | 5      | 4               | 3            | 2                  | 1                                                     | 0   |  |  |  |
| LCDFFP  | Bit symbol  | FP7                                    | FP6          | FP5    | FP4             | FP3          | FP2                | FP1                                                   | FP0 |  |  |  |
| (0364H) | Read/Write  |                                        |              |        | R/              | W            |                    |                                                       |     |  |  |  |
|         | After reset |                                        | 0            |        |                 |              |                    |                                                       |     |  |  |  |
|         | Function    | Setting bit 7 to 0 for f <sub>FP</sub> |              |        |                 |              |                    |                                                       |     |  |  |  |
|         |             |                                        |              | LCDC   | CTR2 Registe    | ır           |                    |                                                       | Y   |  |  |  |
|         |             | 7                                      | 6            | 5      | 4               | 3            | ~ 2 ( ( )          | $\langle \langle 1 \rangle$                           | 0   |  |  |  |
| LCDCTL2 | Bit symbol  | -                                      | -            | -      |                 | /            | RAMBUS             | AC1                                                   | AC0 |  |  |  |
| (0366H) | Read/Write  | R/W                                    | R/W          | R/W    |                 |              | R/W                | R/W                                                   | R/W |  |  |  |
|         | After reset | 0                                      | 0            | 0      |                 |              | $( \ 0 )$          | r ∕ o                                                 | 0   |  |  |  |
|         | Function    | Always                                 | write to 111 | (Note) |                 |              | 0: Byte<br>1: Word | 00: Type A<br>01: Type B<br>10: Type C<br>11: Reserve |     |  |  |  |
|         |             |                                        |              |        |                 | $(\sqrt{3})$ | ) <                | $>$ $(\overline{\mathbb{C}})$                         | )   |  |  |  |

I CDEEP Register

| Note: | Please write bit<7:5> to 111 | , even if you use | <rambu< th=""><th>S&gt;,<ac1> and</ac1></th><th><ac0> as</ac0></th><th>initilal setting.</th></rambu<> | S>, <ac1> and</ac1> | <ac0> as</ac0> | initilal setting. |
|-------|------------------------------|-------------------|--------------------------------------------------------------------------------------------------------|---------------------|----------------|-------------------|
|       |                              | , ,               | $ \ge 1 $                                                                                              | $\sum$              | $\frown$       |                   |

Figure 3.13.2 LCDC Register

|             | 7  | 6                                                  | 5           | 4             | 3              | 2// )        | )1 | 0  |  |  |
|-------------|----|----------------------------------------------------|-------------|---------------|----------------|--------------|----|----|--|--|
| Bit symbol  | D7 | D6                                                 | Ø5 (        | Dj4           | D3             | D2           | D1 | D0 |  |  |
| Read/Write  |    | Depend on the specification of external LCD driver |             |               |                |              |    |    |  |  |
| After reset |    | Depend on the specification of external LCD driver |             |               |                |              |    |    |  |  |
| Function    |    |                                                    | Depend on t | he specificat | ion of externa | aNLCD driver |    |    |  |  |

| LCDC0L/LCDC0H/LCDC1L/LCDC1H | /LCDC2      | 2L/LCDC2H/L | CDR0L/LC | DR0H Regist  |
|-----------------------------|-------------|-------------|----------|--------------|
|                             | 1. 1. 2. 2. |             |          | / / / / 3.5. |

These registers do not exist on TMP91C016. These are image for instruction registers and display registers of external RAM built-in sequential access type<sup>(Note)</sup> LCD driver.

Address as follows is assigned to these registers, and the following chip enable pin becomes active when accesses corresponding address.

And, the area of these address is external area, so  $\overline{\text{RD}}$ ,  $\overline{\text{WR}}$  terminal becomes active by external access. Table 3.13.3 shows the address map in the case of controlling RAM built-in random access type<sup>(Note)</sup> LCD driver.

/This selection is performed by DCDCTL<MMULCD>.

| Register | Address | Pur                   | Chip Enable<br>Terminal | A0<br>Terminal |      |
|----------|---------|-----------------------|-------------------------|----------------|------|
| LCDC1L   | 0FE0H   | RAM built-in type     | Instruction             |                | 0    |
| LCDC1H   | 0FE1H   | column driver 1       | Display data            | DIBSCF         | 1    |
| LCDC2L   | 0FE2H   | RAM built-in type     | Instruction             | DOBUD          | 0    |
| LCDC2H   | 0FE3H   | column driver 2       | Display data            | DZDLP          | 1    |
| LCDC3L   | 0FE4H   | RAM built-in type     | Instruction             | Dabed          | /) o |
| LCDC3H   | 0FE5H   | column driver 3       | Display data            | DOBER          | 1    |
| LCDR1L   | 0FE6H   | RAM built-in type row | Instruction             |                | 0    |
| LCDR1H   | 0FE7H   | driver                | Display data            | DIEBCD         | 1    |

| Figure 3.13.3 | Memory Mapping for Built-in | RAM Sequential Access | Туре |
|---------------|-----------------------------|-----------------------|------|
| J · · · · ·   |                             |                       |      |

|                       | /                          |                         |               |
|-----------------------|----------------------------|-------------------------|---------------|
| Address               | Purpose                    | Chip Enable<br>Terminal |               |
| 3C0000H to<br>3CFFFFH | RAM built-in type driver 1 | D1BSCP                  |               |
| 3D0000H to<br>3DFFFFH | RAM built-in type driver 2 | D2BLP                   |               |
| 3E0000H to<br>3EFFFFH | RAM built-in type driver 3 |                         | $\mathcal{O}$ |
| 3F0000H to<br>3FFFFFH | RAM built-in type driver 4 | DLEBCD                  |               |

Figure 3.13.4 Memory Mapping for Built-in RAM Random Access Type

Note: We call built-in RAM sequential access type LCD driver that use register to access to display ram without address pin. We call built-in RAM random access type LCD driver that is same method to access to SRAM with

We call built-in RAM random access type LCD driver that is same method to access to SRAM with address pin.

#### 3.13.4 Operation Explanation of Each Mode

#### 3.13.4.1 Shift-register Type LCD Driver Control Mode (SR mode)

Set the mode of operation, start address of source data save memory and LCD size to control registers before setting start register. After set start register LCDC outputs bus release request to CPU and read data from source memory. After that LCDC transmits data of volume of LCD size to external LCD driver through data bus. At this time, control signals (D1BSCP etc.) connected LCD driver output specified waveform synchronize with data transmission. After finish data transmission, LCDC cancels the bus release request and CPU will restart.

LCD controller uses the clock (LCDCK) different from f<sub>SYS</sub> to make D3BFR, DLEBCD and D2BLP signal.

LCDCK can be selected from the low frequency oscillator (fs: 32.768kHz) or timer out (TA3OUT) outputs from internal 8bit timer circuit (TMRA23) by EMCCR0<TA3LCDE>. After reset, this bit is cleared to "0" and low frequency oscillator is selected.

LCDC timing figure in the case of 240 seg × 120 com and BYTE mode is shown in Figure 3.13.6, Figure 3.13.7.

The table of  $t_{LP}$  (D2BLP pin cycle) by the number of segments and the common number and CPU stop timer ( $t_{STOP}$ )/stop ratio are shown in Table 3.13.2 and  $f_{FP}$  (Frame frequency) by the common number is shown in Table 3.13.3 and Table 3.13.4.

The example of a 240 seg  $\times$  120 com LCD connection circuit is shown Figure 3.13.8.

The circuit that can correspond without especially adding an external circuit outside is built into even when the command for LCDD is written (Read is prohibited). Please refer to Figure 3.13.5. When these signals are outputted from CS0, set P63FC3<P60F3>, and when these signals are outputted from CS2C, set P6FC3<P65F3>. Please refer the section of "Port 6".



3.13.4.2 Settlement to frame frequency function

TMP91C016 defines so-called frame period (Refresh interval for LCD panel) by the value set in fFP [8:0]. DLEBCD pin outputs pulse every frame period. D3BFR pin usually outputs the signal inverts polarity every frame period.

Basic frame period; DLEBCD signal, is made according to the resister  $f_{FP}$  [8:0] setting mentioned before. However this  $f_{FP}$  [8:0] setting is generally equal to common number, frame period can be corrected by increasing  $f_{FP}$  [8:0] with ease.

The equation can calculate frame period.

$$\label{eq:Frame period} \begin{split} \text{Frame period} = \text{LCDCK}/(\text{D} \times \text{fFP}) \ [\text{Hz}] & \text{D: constant for each common (Table 3.13.3)} \\ & \text{FFP: setting of fFP} \ [8:0] \ \text{resister} \end{split}$$

LCDCK: source clock of LCD

(Low clock is usually selected)

Please select the value of fFP [8:0] as the frame period you want to set in the Table 3.13.3.

Note: Please make the value set to  $f_{FP}$  [8:0] into the following range. COM(common number)  $\leq f_{FP} \notin 320$ 

Example1: In the case where frame period is set to 72.10 Hz by 240 coms.  $f_{FP} = 240 (COM) + 63 = 303 = 12FH$  (by Table 3.13.3) Therefore, LCDCTL<FP8> = 1 and LCDFFP<FP7:0> = 2FH are set up.

|                                     | LCDCTL Register |               |          |                             |                        |                            |         |                     |           |  |  |
|-------------------------------------|-----------------|---------------|----------|-----------------------------|------------------------|----------------------------|---------|---------------------|-----------|--|--|
|                                     |                 | 7             | 6        | 5                           | <sup>∼</sup> 4         | 3                          | 2/      | 1                   | 0         |  |  |
| LCDCTL                              | Bit symbol      | LCDON         | -        | $\langle - \rangle \rangle$ | BUS1                   | BUS0                       | MMULCD  | FP8                 | START     |  |  |
| (0363H)                             | Read/Write      | R/W           | R/W      | RAW                         | R/W                    | ∧ R/W                      | ~R/W    | R/W                 | R/W       |  |  |
|                                     | After reset     | 0             | þ (      | $\langle \rangle 0$         | 0                      | 0                          | 0       | 0                   | 0         |  |  |
|                                     | Function        | DOFF          | Always   | Always                      | Data bus wi            | dth                        | Setting | Setting bit 8       | Start     |  |  |
|                                     |                 | (SR, RAM      | write 0  | write 0                     | (SR mode)              |                            | direct  | for f <sub>FP</sub> | control   |  |  |
|                                     |                 | mode)         | (//)     |                             | 00: 8 bits (Byte mode) |                            |         |                     | (SR mode) |  |  |
|                                     | /               | 0: OFF        |          |                             | 01: 4 bits (N          | libble mode)               |         |                     | 0: Stop   |  |  |
|                                     |                 | (1: ON) /     |          | $\frown$                    | 10:/1/bit (Bi          | t mode)                    | 1: ON   |                     | 1: Start  |  |  |
|                                     | LCDFEP Register |               |          |                             |                        |                            |         |                     |           |  |  |
|                                     |                 | 7 🗸           | 6        | 5                           | 4                      | 3                          | 2       | 1                   | 0         |  |  |
| LCDFFP                              | Bit symbol      | FP7           | FP6      | FP5                         | FP4                    | FP3                        | FP2     | FP1                 | FP0       |  |  |
| (0364H)                             | Read/Write      | $\mathcal{N}$ | $\frown$ | >                           | ~ R/                   | W                          |         |                     |           |  |  |
|                                     | After reset     | $\bigcirc$    |          |                             | (                      | )                          |         |                     |           |  |  |
| $\wedge$                            | Function        |               |          |                             | Setting bit 7          | ' to 0 for f <sub>FP</sub> |         |                     |           |  |  |
| Function Setting bit 7 to 0 for fFP |                 |               |          |                             |                        |                            |         |                     |           |  |  |

3.13.4.3 Timer out LCDCK LCD source clock (LCDCK) can select low frequency (XT1, XT2: 32.768 [kHz]) or timer out (TA3OUT) outputs from internal TMRA23. Example2: Here indicates the method that frame period is set 70 [Hz] by selecting TA3OUT for source clock of LCD. (fc = 6 [MHz], 120COM) The next equation calculates frame period. Frame period =  $1/(t_{LP} \times f_{FP})$  [Hz]  $t_{LP}$ : The period of D2BLP Source clock for LCDC defines as XT [Hz] and then this the represents D: the value is 3.5 at 120 COM  $t_{LP} = D/XT$ Therefore if you set the frame period at 70 [Hz] under 120 COM,  $XT = 120 \times 3.5 \times 70$ = 29400 [Hz]XT should be above value. In order to make XT = 29400 [Hz] under fc/= 6 [MHz] with  $\phi T1$  of timer3,  $1/XT = (TA3REG) \times 2 \times 8/fc$  [s] (TA3REG): the value of timer register in short,  $XT = fc/(TA3REG) \times 2 \times 8) [Hz]$ However (TA3REG) is 12.75 after calculate, it's impossible to set the value under a decimal point. So if (TA3REG) is set 0CH, XT = 31250 [Hz]. And because of D = 3.5, Frame period =  $31250/(120 \times 3.5)$ =/74.404 [Hz] Further if  $f_{FP}$  is 127 (COM + 7) with correction, Frame period =  $31250/(127 \times 3.5)$ ∈ 70.30 ... [Hz] Reference: To maintain quality for display, please refer to following value for each gray scale (You have to use settlement of frame frequency function, frame invert adjustment function and timer out LCDCK.) Monochrome: Frame period = 70 [Hz]



Figure 3.13.7 Timing Diagram for SR Mode (Detail)

|                        |                                 | 64<br>com | 68<br>com | 80<br>com | 100<br>com | 120<br>com | 128<br>com | 144<br>com               | 160<br>com          | 200<br>com | 240<br>com     | Unit |
|------------------------|---------------------------------|-----------|-----------|-----------|------------|------------|------------|--------------------------|---------------------|------------|----------------|------|
| XT number<br>making: D | r of counts for t <sub>LP</sub> | 6.5       | 6.0       | 5.0       | 4.0        | 3.5        | 3.0        | 2.5                      | 2.5                 | 2.0        | 1.5            | _    |
| T <sub>LP</sub>        |                                 | 198.4     | 183.1     | 152.6     | 122.1      | 106.8      | 91.6       | 76.3                     | 76.3                | 61.0       | 45.8           | μs   |
| 32 seg                 | Тѕтор                           |           |           |           |            | 0          | .6         | ()                       | $\overline{\gamma}$ |            |                | μs   |
|                        | CPU stop rate                   | 0.3       | 0.3       | 0.4       | 0.5        | 0.6        | 0.6 <      | 0.8                      | (0.8)               | 1.0        | 1.3            | %    |
| 64 seg                 | Тѕтор                           |           |           |           |            | 1          | .2         | $\geq$ /,                |                     | ·          |                | μS   |
|                        | CPU stop rate                   | 0.6       | 0.6       | 0.8       | 1.0        | 1.1        | 1.3        | 1.6                      | 1.6                 | 1.9        | 2.6            | %    |
| 80 seg                 | Тѕтор                           |           | ·         |           | ·          | 1          | .5         | $\bigcirc$               | 7                   |            |                | μS   |
|                        | CPU stop rate                   | 0.7       | 0.8       | 1.0       | 1.2        | 1.4        | 1.6        | 1.9                      | 1.9                 | 2.4        | 3.2            | %    |
| 120 seg                | Тѕтор                           |           | ·         |           | ·          | 2          | .2/1       | $\overline{}$            |                     | 1          | $\nearrow$     | μS   |
|                        | CPU stop rate                   | 1.1       | 1.2       | 1.5       | 1.8        | 2.1        | 2.4        | 2.9                      | 2.9                 | 3.6        | 4.9            | %    |
| 128 seg                | Тѕтор                           |           |           |           |            | (2         | 747        | $\supset$                |                     | 3          | $\overline{}$  | μS   |
|                        | CPU stop rate                   | 1.2       | 1.3       | 1.6       | 1.9        | 2.2        | 2.6        | 3.1 (                    | 3.1 (               | 3.9 /      | 4.9            | %    |
| 160 seg                | Тѕтор                           |           | ·         |           | ·          | 3          | .0         |                          | $\sim$              | 207        | $\gamma\gamma$ | μS   |
| l                      | CPU stop rate                   | 1.5       | 1.6       | 1.9       | 2.4        | 2.8        | 3.2        | 3.9                      | 3,9                 | 4.9        | 6.5            | %    |
| 240 seg                | Тѕтор                           |           | 4.4       |           |            |            |            |                          | μS                  |            |                |      |
| l                      | CPU stop rate                   | 2.2       | 2.4       | 2.9       | 3.6        | 4.2        | 4.9        | 5.8                      | 5.8)                | 7.3        | 9.7            | %    |
| 320 seg                | Тѕтор                           |           | 5.9       |           |            |            |            |                          | μS                  |            |                |      |
|                        | CPU stop rate                   | 3.0       | 3.2       | 3.9       | ( 4.9      | 5.5        | 6.5        | (7.8//                   | 3.8                 | 9.7        | 12.9           | %    |
| 360 seg                | Тѕтор                           |           | ·         | ~(C       |            | 6          | 7          | $\overline{\mathcal{T}}$ | $\mathcal{I}$       |            |                | μS   |
|                        | CPU stop rate                   | 3.4       | 3.6       | 4.4       | 5.5        | 6.2        | 7.3        | 8.7                      | 8.7                 | 10.9       | 14.6           | %    |

| Lable 3 1.3 Z. Performance Listing for Each Segment and Common NL |       |
|-------------------------------------------------------------------|-------|
|                                                                   | lmber |

Note 1: The above time distance are value which used  $f_{FPH} = 27 [MHz], f_S = 32.768 [kHz].$ 

Note 2: CPU stop time t<sub>STOP</sub>: A value is value when reading a transmitting memory by 0 waits in the byte write/byte read mode. The value becomes × 1.5 in Nibble write mode and × 4.5 in Bit write mode. Details, see the "state/cycle" is each type timing table.

The time required to the transmission start accompanied by bus opening demand is not included in the above-mentioned numerical value.

Note 3:  $t_{LP}$  can be calculated in the following formulas.

t<sub>LP</sub> = D/32768 [s]

(Example) In case of 240 com,  $t_{LP} = 1.5/32768 = 45.8 \ [\mu s]$  because of D = 1.5

| -        | 1     | 1          |         |         | 1       |          |               | ( )      |         |       |
|----------|-------|------------|---------|---------|---------|----------|---------------|----------|---------|-------|
| D        | 6.5   | 6.0        | 5.0     | 4.0     | 3.5     | 3.0      | 2.5           | 2.5      | 2.0     | 1.5   |
| COM      | 64    | 68         | 80      | 100     | 120     | 128      | 144           | 160      | 200     | 240   |
| COM + 0  | 78.77 | 80.31      | 81.92   | 81.92   | 78.02   | 85.33    | 91.02         | 81.92    | 81.92   | 91.02 |
| COM + 1  | 77.56 | 79.15      | 80.91   | 81.11   | 77.37   | 84.67    | 90.39         | 81.41    | 81.51   | 90.64 |
| COM      | 76.38 | 78.02      | 79.92   | 80.31   | 76.74   | 84.02    | 89.78         | 80.91    | 81.11   | 90.27 |
| COM      | 75.24 | 76.92      | 78.96   | 79.53   | 76.12   | 83.38    | 89.16         | 80.41    | 80.71   | 89.90 |
| COM      | 74.14 | 75.85      | 78.02   | 78.77   | 75.50   | 82.75    | <b>88.5</b> 6 | (79.92 \ | 80.31   | 89.53 |
| COM      | 73.06 | 74.81      | 77.10   | 78.02   | 74.90   | 82.13    | 87.97         | 79.44    | 79.92   | 89.16 |
| COM      | 72.02 | 73.80      | 76.20   | 77.28   | 74.30   | 81.51    | 87,38         | 78.96    | 79.53   | 88.80 |
| COM      | 71.00 | 72.82      | 75.33   | 76.56   | 73.72   | 80.91    | 86.80         | 78.49    | 79.15   | 88.44 |
| COM      | 70.02 | 71.86      | 74.47   | 75.85   | 73.14   | 80.31    | 86.23         | 78.02    | 78.77   | 88.09 |
| COM      | 69.06 | 70.93      | 73.64   | 75.16   | 72.58   | 79.73    | 85.67         | 77.56    | 78.39   | 87.73 |
| COM + 10 | 68.12 | 70.02      | 72.82   | 74.47   | 72.02   | 79.15    | 85.11         | 77.10    | 78.02   | 87.38 |
| COM      | 67.22 | 69.13      | 72.02   | 73.80   | 71.47   | 78.58    | 84.56         | 76.65    | 77.65   | 87.03 |
| COM      | 66.33 | 68.27      | 71.23   | 73.14   | 70.93   | 78.02    | 84.02         | 76.20    | (77.28) | 86.69 |
| COM      | 65.47 | 67.42      | 70.47   | 72.50   | 70.39   |          | 83.49         | 75.76    | 76.92   | 86.35 |
| COM      | 64.63 | 66.60      | 69.72   | 71.86   | 69.87   | 76.92    | 82.96         | 75.33    | 76.56   | 86.01 |
| COM      | 63.81 | 65.80      | 68.99   | 71.23   | 69,35   | 76.38    | 82.44         | 74.90    | 76.20   | 85.67 |
| COM      | 63.02 | 65.02      | 68.27   | 70.62   | 68.84   | 75,85    | 81.92         | 74.47    | 75.85   | 85.33 |
| COM      | 62.24 | 64.25      | 67.56   | 70.02   | 68.34   | 75.33    | 81.41         | ~74.05~  | 75.50   | 85.00 |
| COM      | 61.48 | 63.50      | 66.87   | 69.42 ( | 67.84   | √74.81   | 80.91         | 73,64    | 75.16   | 84.67 |
| COM      | 60.74 | 62.77      | 66.20   | 68.84   | 67.35   | 74.30    | 80.41         | 73.22    | 74.81   | 84.34 |
| COM + 20 | 60.01 | 62.06      | 65.54   | 68,27   | 66.87   | 73.80    | 79.92         | 72.82    | 74.47   | 84.02 |
| COM      | 59.31 | 61.36      | 64.89   | 67.70   | 66.40   | 73.31    | 79.44         | 72.42    | 74.14   | 83.70 |
| COM      | 58.62 | 60.68      | 64.25   | 67.15   | 65.93   | 72.82    | 78.96         | 72.02    | 73.80   | 83.38 |
| COM      | 57.95 | 60.01      | 63.63   | 66.60)  | 65.47   | 72.34    | 78.49         | 71.62    | 73.47   | 83.06 |
| COM      | 57.29 | 59.36      | 63.02   | 66.06   | 65.02   | 71.86    | 78.02         | 71.23    | 73.14   | 82.75 |
| COM      | 56.64 | 58.72      | 62.42   | 65.54   | 64.57   | 71.39    | 77.56         | 70.85    | 72.82   | 82.44 |
| COM      | 56.01 | 58.10      | 61.83   | 65.02   | 64.13 < | 70.93    | 77.10         | 70.47    | 72.50   | 82.13 |
| COM      | 55.40 | 57.49      | 61.25   | 64.50   | 63.69   | 70.47    | 76.65         | 70.09    | 72.18   | 81.82 |
| COM      | 54.80 | 56.89      | 60.68   | 64.00   | 63.26   | 70.02    | 76.20         | 69.72    | 71.86   | 81.51 |
| COM      | 54.21 | 56.30      | 60.12   | 63.50   | 62.83   | ∕ 69.57  | 75.76         | 69.35    | 71.55   | 81.21 |
| COM + 30 | 53,63 | 55.73      | 59.58   | 63.02   | 62.42   | ) )69.13 | 75.33         | 68.99    | 71.23   | 80.91 |
| COM      | 53.07 | -<br>55.16 | 59.04   | 62.53   | 62.00   | 68.70    | 74.90         | 68.62    | 70.93   | 80.61 |
| COM      | 52.51 | 54.61      | 58.51 🗸 | 62.06   | 61.59   | 68.27    | 74.47         | 68.27    | 70.62   | 80.31 |
| COM      | 51.97 | 54.07      | 58.00   | 61.59   | 61.19   | 67.84    | 74.05         | 67.91    | 70.32   | 80.02 |
| COM <    | 51.44 | 53.54      | 57.49   | 61.13   | 60.79   | 67.42    | 73.64         | 67.56    | 70.02   | 79.73 |
| COM      | 50.92 | ∕_53.02    | 56.99   | 60.68   | √60.40  | 67.01    | 73.22         | 67.22    | 69.72   | 79.44 |
| СОМ      | 50.41 | 52.51      | 56.50   | 60.24   | 60.01   | 66.60    | 72.82         | 66.87    | 69.42   | 79.15 |
| сом ((   | 49.91 | 52.01      | 56.01   | 59.80   | 59.63   | 66.20    | 72.42         | 66.53    | 69.13   | 78.86 |
| COM //   | 49.42 | 51.52      | 55.54   | 59.36   | 59.25   | 65.80    | 72.02         | 66.20    | 68.84   | 78.58 |
| COM + 39 | 48.94 | 51,04      | ( 55.07 | 58.94   | 58.88   | 65.41    | 71.62         | 65.87    | 68.55   | 78.30 |

Table 3.13.3 f<sub>FP</sub> Table for Each Common Number (1/2)

Note: f<sub>FP</sub> can be calculated in the following formulas.

f<sub>FP</sub> = 32768/(D × FP) [Hz]

(Ex) In case of 120 com,  $\langle FP8:0 \rangle = 131$ , f<sub>FP</sub> = 32768/(3.5 × 131) = 71.5 [Hz]

|          |       |        |       |         |               |        |         | <u>,</u> |       |                |
|----------|-------|--------|-------|---------|---------------|--------|---------|----------|-------|----------------|
| D        | 6.5   | 6.0    | 5.0   | 4.0     | 3.5           | 3.0    | 2.5     | 2.5      | 2.0   | 1.5            |
| COM      | 64    | 68     | 80    | 100     | 120           | 128    | 144     | 160      | 200   | 240            |
| COM + 40 | 48.47 | 50.57  | 54.61 | 58.51   | 58.51         | 65.02  | 71.23   | 65.54    | 68.27 | 78.02          |
| COM      | 48.01 | 50.10  | 54.16 | 58.10   | 58.15         | 64.63  | 70.85   | 65.21    | 67,98 | 77.74          |
| COM      | 47.56 | 49.65  | 53.72 | 57.69   | 57.79         | 64.25  | 70.47   | 64.89    | 67.70 | 77.47          |
| COM      | 47.11 | 49.20  | 53.28 | 57.29   | 57.44         | 63.88  | 70.09   | 64.57    | 67.42 | 77.19          |
| COM      | 46.68 | 48.76  | 52.85 | 56.89   | 57.09         | 63.50  | 69.72   | 64,25    | 67.15 | 76.92          |
| COM      | 46.25 | 48.33  | 52.43 | 56.50   | 56.74         | 63.14  | 69.35   | 63.94    | 66.87 | 76.65          |
| COM      | 45.83 | 47.91  | 52.01 | 56.11   | 56.40         | 62.77  | 68.99   | 63.63    | 66.60 | 76.38          |
| COM      | 45.42 | 47.49  | 51.60 | 55.73   | 56.06         | 62.42  | 68.62   | 63.32    | 66.33 | 76.12          |
| COM      | 45.01 | 47.08  | 51.20 | 55.35   | 55.73         | 62.06  | 68.27   | 63.02    | 66.06 | 75.85          |
| COM      | 44.61 | 46.68  | 50.80 | 54.98   | 55.40         | 61.71  | 67.91   | 62.71    | 65.80 | 75.59          |
| COM + 50 | 44.22 | 46.28  | 50.41 | 54.61   | 55.07         | 61.36  | 67.56   | 62.42    | 65,54 | 75.33          |
| COM      | 43.84 | 45.89  | 50.03 | 54.25   | 54.75         | 61,02  | 67.22   | 62.12    | 65.27 | 75.07          |
| COM      | 43.46 | 45.51  | 49.65 | 53.89   | 54.43         | 60.68  | ) 66.87 | 61.83    | 65.02 | 74.81          |
| COM      | 43.09 | 45.13  | 49.28 | 53.54   | 54.12         | 60.35  | 66.53   | 61.54    | 64,76 | 74.56          |
| COM      | 42.72 | 44.77  | 48.91 | 53.19   | 53.81         | 60.01  | 66.20   | 61.25    | 64.50 | 74.30          |
| COM      | 42.36 | 44.40  | 48.55 | 52.85   | 53.50         | 59.69  | 65.87   | 60.96    | 64.25 | 74.05          |
| COM      | 42.01 | 44.04  | 48.19 | 52.51   | 53,19         | 59.36  | 65.54   | 60.68    | 64.00 | 73.80          |
| COM      | 41.66 | 43.69  | 47.84 | 52.18   | 52.89         | 59.04  | 65.21   | 60.40    | 63.75 | 73.55          |
| COM      | 41.32 | 43.34  | 47.49 | 51.85   | 52.60         | 58.72  | 64.89   | 60.12    | 63.50 | 73.31          |
| COM      | 40.99 | 43.00  | 47.15 | 51.52   | 52.30         | 58.41  | 64.57   | 59.85    | 63.26 | 73.06          |
| COM + 60 | 40.66 | 42.67  | 46.81 | 51.20   | 52.01         | 58,10  | 64.25   | 59.58    | 63.02 | 72.82          |
| COM      | 40.33 | 42.34  | 46.48 | 50.88   | <b>5</b> 1.73 | 57.79  | 63.94   | 59.31    | 62.77 | 72.58          |
| COM      | 40.01 | 42.01  | 46.15 | (50.57) | 51.44         | 57.49  | 63.63   | 59.04    | 62.53 | 72.34          |
| COM      | 39.69 | 41.69  | 45.83 | 50.26   | 51.16         | 57.19  | 63.32   | 58.78    | 62.30 | 72.10          |
| COM      | 39.38 | 41.37  | 45.51 | 49.95   | 50.88         | 56.89  | 63.02   | 58.51    | 62.06 | 71.86          |
| COM      | 39.08 | 41.06  | 45.20 | 49.65   | 50.61         | 56.59  | 62.71   | 58.25    | 61.83 | 71.62          |
| COM      | 38.78 | 40.76  | 44.89 | 49.35   | 50.33         | 56.30  | 62.42   | 58.00    | 61.59 | 71.39          |
| COM      | 38.48 | 40.45  | 44.58 | 49.05   | 50.07         | 56.01  | 62.12   | 57.74    | 61.36 | 71.16          |
| COM      | 38.19 | 40.16  | 44.28 | 48.76   | 49.80         | 55.4/3 | 61.83   | 57.49    | 61.13 | 70.93          |
|          | 37.90 | 39.86  | 43.98 | 48.47   | 49.54         | 55.45  | 61.54   | 57.24    | 60.91 | 70.70          |
| COM + 70 | 37:62 | 39,57  | 43.69 | 48.19   | 49.28         | 55.16  | 61.25   | 56.99    | 60.68 | 70.47          |
|          | 37.34 | 39.29  | 43.40 | 47.91   | 49.02         | 54.89  | 60.96   | 56.74    | 60.46 | 70.24          |
|          | 37.07 | 20 72  | 43.12 | 47.03   | 40.70         | 54.01  | 60.00   | 56.25    | 60.01 | 70.02<br>60.70 |
|          | 36.53 | 30.73  | 42.03 | 47.09   | 40.01         | 54.07  | 60.40   | 56.01    | 50.80 | 69.79          |
| COM      | 36.37 | D38 10 | 42.00 | 46.81   | /8.01         | 53.81  | 59.85   | 55 78    | 59.50 | 69.35          |
|          | 36.01 | 37.93  | 42.01 | 46.55   | 47 77         | 53.54  | 59.55   | 55.54    | 59.36 | 69.13          |
| MO3      | 35 75 | 37.66  | 41 74 | 46.28   | 47.52         | 53.28  | 59.31   | 55.30    | 59 15 | 68.91          |
| COM      | 35.50 | 37.41  | 41-48 | 46.02   | 47.28         | 53.02  | 59.04   | 55.07    | 58.94 | 68.70          |
| COM      | 35.25 | 37.15  | 41.22 | 45,77   | 47.05         | 52,77  | 58.78   | 54,84    | 58.72 | 68.48          |
| COM + 80 | 35.01 | 36.90  | 40.96 | 45.51   | 46.81         | 52.51  | 58.51   | 54.61    | 58.51 | 68.27          |
|          |       |        |       |         |               |        |         |          |       |                |
|          |       | ~ \    |       |         |               |        |         |          |       |                |

Table 3.13.4 f<sub>FP</sub> Table for Each Common Number (2/2)



Relation display panel and display memory (in case of above setting)

b. Transfer time by data bus width

Data bus width of LCD driver can be selected either of byte/nibble/bit by LCDCTL<BUS1:0>. And that cycle is selectable, type A, type B and type C. Each type have each timing, for detail, look for timing table.

Readout bus width of source is selectable 8 bits or 16 bits, without concern to bus width of LCD driver.

WAIT number of the read cycle is 0 waits in case of built-in RAM and works by setting value of CS/WAIT controller in case of external RAM.

c. LCDC operation in HALT mode

When LCDC is working, CPU executes HALT instruction and changes in HALT mode, LCDC continue operation if CPU in IDLE2 mode. But LCDC stops in case of IDLE1, STOP mode.

Note: It need to set the same bus width setting of display RAM, CSWAIT controller and LCDCTL2<RAMBUS>.

| Read Bus | -    | Write  |             |             | D1BSCP          | D1BSCP     |                           |
|----------|------|--------|-------------|-------------|-----------------|------------|---------------------------|
| Width    | Туре | Mode   | Set Up Time | Hold Time   | Pulse Width     | Cycle      | State/Cycle               |
| Byte     | А    | Byte   | 0.5x        | 1.0x        | 1.5x            | 4.0x       | 4.0x                      |
|          |      | Nibble | 0.5x        | 1.0x        | 1.0x            | 2.0x       | 6.0x                      |
|          |      | Bit    | 0.5x        | 1.0x        | 1.0x            | 2.0x       | ) 🚩 18.0x                 |
|          | В    | Byte   | 1.0x        | 0.5x        | 2.0x            | 4.0x       | 4.0x                      |
|          |      | Nibble | 1.0x        | 0.5x        | 1.0x            | ( ( 2.0x ) | 6.0x                      |
|          |      | Bit    | 1.0x        | 0.5x        | 1.0x            | 2.0x       | 18.0x                     |
|          | С    | Byte   | 1.0x        | 2.5x        | 1.5x            | 6.0x       | 6.0x                      |
|          |      | Nibble | 1.0x        | 1.5x        | 2.5x            | 5.0x       | 10.0x                     |
|          |      | Bit    | 1.0x        | 1.0x        | 1.0x            | 2.0x       | 20.0x                     |
| Word     | А    | Byte   | 0.5x        | 1.0x        | 1.0x            | 2.0x       | 6.0x                      |
|          |      | Nibble | 0.5x        | 1.0x        | 1.0x            | ✓ 2.0x     | _<\\0.0x                  |
|          |      | Bit    |             | No support. | Please use byte | read mode  | $\langle \langle \rangle$ |
|          | В    | Byte   | 1.0x        | 0.5x        | (/1.0x          | 2.0x ((    | 6.0x                      |
|          |      | Nibble | 1.0x        | 0.5x        | 1.0x            | 2.0x       | 10.0x                     |
|          |      | Bit    |             | No support. | Please use byte | read mode  | 50                        |
|          | С    | Byte   | 1.0x        | 1,5x        | ∕∕1.5x          | 3.0×       | 8.0x                      |
|          |      | Nibble | 1.0x        | (1.5x       | 2.5x            | (5.0x)     | 20.0x                     |
|          |      | Bit    |             | No support. | Please use byte | read mode  |                           |

Table 3.13.5 Timing Table Each Type

Note: Number in above table shows f<sub>FPH</sub> clock cycle, for example, in case of 27 MHz frequency Xin-Xout, 1.00 equal 37 ns.

Above table doesn't show to guarantee the time, it shows outline. For details, look for AC TIMING at after page.





Figure 3.13.10 Byte Read from RAM and Byte Write to LCDD



Figure 3.13.11 Byte Read from RAM and Nibble Write to LCDD



Figure 3.13.12 Byte Read from RAM and Bit Write to LCDD







Figure 3.13.14 Word Read from RAM and Nibble Write to LCDD

3.13.4.4 RAM Built-in Type LCD Driver Control Mode (RAM mode)

Data transmission to LCD driver is executed by move instruction of CPU.

After setting mode of operation to control register, when move instruction of CPU is executed LCDC outputs chip select signal to LCD driver connected to the outside from control pin (D1BSCP etc.). Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU. There are 2 kinds of addresses of LCD driver in this case, and which is chosen determines by LCDCTL

It corresponds to LCD driver which has every 1 byte of instruction register and display data register in LCD driver at the time of <MMULCD = 0. Please make the transmission place address at this time into either of FEOH to FE7FH. (Figure 3.13.2 references)

It corresponds to address direct writing type LCD driver at the time of <MMULCD> = 1.

The transmission place address at this time can also assign the memory area of 3C0000H to 3FFFFF to four area for every 64 Kbytes. (Figure 3.13.2 references)

The example of a setting is shown as follows and connection example is shown in Figure 3.13.6 (1) at the time below. [<MMULCD> = 0]

a. Setting example: In case of use  $80 \text{ seg} \times 65 \text{ com LCD driver.}$ 

Assign external column driver to LCDC0 and row driver to LCDR0.

This example used LD instruction in setting of instruction and used burst function of micro DMA by soft start in setting of display data.





Figure 3.13.16 Example of Access Timing for RAM Built-in Type LCD Driver (Wait = 0)



## 3.14 Melody/Alarm Generator (MLD)

TMP91C016 incorporates melody function and alarm function, both of which are output from the MLDALM pin. Five kinds of fixed cycle interrupts are generated by the 15-bit free-run counter which is used for alarm generator.

Features are as follows.

• Melody generator

The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on low-speed clock (32.768 kHz) and outputs several signals from the MLDALM pin. By connecting a loud speaker outside, Melody tone can sound easily.

• Alarm generator

The Alarm function generates eight kinds of alarm waveform having a modulation frequency (4096 Hz) determined by the low-speed clock (32.768 kHz). And this waveform is able to invert by setting a value to a register.

By connecting a loud speaker outside, Alarm tone can sound easily.

And also five kinds of fixed cycle (1 Hz, 2 Hz, 64 Hz, 512 Hz, 8192 Hz) interrupts are generated by the free-run counter which is used for alarm generator.

• Special mode

It is assigned <TA3LCDE> at bit0 and <TA3MLDE> at bit1, of EMCCR4 register (00E7hex). These bits are used when you want to operate LCDD and MELODY circuit without low frequency clock (XTHN, XTOUT). After reset these two bits set to 0 and low clock is supplied each LCDD and MELODY circuit. If you write these bits to 1, TA3 (Generate by timer 3) is supplied each LCDD and MELODY circuit. In this case, you should set 32 kHz timer 3 frequency. For detail, look AC specification characteristics.

This section is constituted as follows.

- 3.14.1 Block Diagram
- 3.14.2 Control Registers
- 3.14.3 Operational Description
  - 3.14.3.1) Melody Generator
  - 3.14.3.2 Alarm Generator

2008-02-20

## 3.14.1 Block Diagram



# 3.14.2 Control Registers

|           |                   |                                   |                                                 | ALM F                                                                                                                                                   | R Register                          |                                                           |                                  |                                                    |               |  |  |
|-----------|-------------------|-----------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|----------------------------------|----------------------------------------------------|---------------|--|--|
|           |                   | 7                                 | 6                                               | 5                                                                                                                                                       | 4                                   | 3                                                         | 2                                | 1                                                  | 0             |  |  |
| ALM       | Bit symbol        | AL8                               | AL7                                             | AL6                                                                                                                                                     | AL5                                 | AL4                                                       | AL3                              | AL2                                                | AL1           |  |  |
| (0330H)   | Read/Write        |                                   |                                                 |                                                                                                                                                         | F                                   | R/W                                                       |                                  | $\geq$                                             |               |  |  |
|           | After reset       |                                   |                                                 |                                                                                                                                                         |                                     | 0                                                         |                                  | $( \bigcirc )$                                     |               |  |  |
|           | Function          |                                   |                                                 |                                                                                                                                                         | Setting a                           | larm patterr                                              | ١                                | $\langle \bigcirc$                                 | ٢<br>٢        |  |  |
|           |                   |                                   |                                                 | MELALI                                                                                                                                                  | MC Register                         | r '                                                       |                                  | $\overline{\mathbb{Z}}$                            |               |  |  |
|           |                   | 7                                 | 6                                               | 5                                                                                                                                                       | 4                                   | 3                                                         | 2                                | $\mathbb{T}_1$                                     | 0             |  |  |
| MELAL MC  | Bit symbol        | FC1                               | FC0                                             | ALMINV                                                                                                                                                  | -                                   | -                                                         | $\left( \left( -\right) \right)$ | > -                                                | MELALM        |  |  |
| (0331H)   | Read/Write        |                                   | R/W                                             | R/W                                                                                                                                                     | R/W                                 | R/W                                                       | R/W                              | R/W                                                | R/W           |  |  |
| (00011)   | After reset       |                                   | 0                                               | 0                                                                                                                                                       | 0                                   | 6                                                         | 0                                | 0                                                  | 0             |  |  |
|           | Function          | Free-run co                       | ounter control                                  | Alarm                                                                                                                                                   |                                     | - 4/                                                      | $\sim$                           |                                                    | Output        |  |  |
|           | i dirediciti      | 00 <sup>.</sup> Hold              |                                                 | Waveform                                                                                                                                                |                                     | Alwa                                                      | vs write 0                       | $\langle \rangle$                                  | waveform      |  |  |
|           |                   | 01 <sup>.</sup> Restart           | •                                               | invert                                                                                                                                                  |                                     | $(\Omega / \wedge$                                        |                                  | 6                                                  | select        |  |  |
|           |                   | 10: Clear                         | •                                               | 1. Invert                                                                                                                                               |                                     | $(\vee / )$                                               |                                  | > (C                                               | 0. Alarm      |  |  |
|           |                   | 11: Clear a                       | nd start                                        | 1                                                                                                                                                       |                                     | $\searrow$                                                |                                  | $\sim$                                             | 1. Melody     |  |  |
|           | Note 1: MEL       |                                   | > is read alwa                                  | avs 0                                                                                                                                                   | 1                                   | $\overline{/}$                                            |                                  | $\sim$                                             |               |  |  |
|           | Note 2: When      | setting MFI                       | AI MC regist                                    | er except <f< td=""><td>C1.0&gt; durin</td><td>va the free-r</td><td>un counter is</td><td>rupning <f(< td=""><td>C1·0&gt; is kept</td></f(<></td></f<> | C1.0> durin                         | va the free-r                                             | un counter is                    | rupning <f(< td=""><td>C1·0&gt; is kept</td></f(<> | C1·0> is kept |  |  |
|           |                   | · •••••                           |                                                 | or oncopt in                                                                                                                                            | Sile and                            | >                                                         |                                  | ))                                                 | o nopr        |  |  |
|           |                   |                                   |                                                 |                                                                                                                                                         |                                     |                                                           |                                  | $ \ge $                                            |               |  |  |
|           |                   | ï                                 |                                                 | MELF                                                                                                                                                    | L Register                          |                                                           |                                  |                                                    |               |  |  |
|           |                   | 7                                 | 6                                               | 5(                                                                                                                                                      | <u> </u>                            | /3-                                                       | 2                                | 1                                                  | 0             |  |  |
| MELFL     | Bit symbol        | ML7                               | ML6                                             | ML5                                                                                                                                                     | ML4                                 | ∠ <ml3< td=""><td>ML2</td><td>ML1</td><td>ML0</td></ml3<> | ML2                              | ML1                                                | ML0           |  |  |
| (0332H)   | Read/Write        |                                   | (                                               | $\frown$                                                                                                                                                | <sup>7</sup> R.                     | <u>w</u>                                                  |                                  |                                                    |               |  |  |
|           | After reset       |                                   | ()                                              |                                                                                                                                                         |                                     | 0                                                         | $\searrow$                       |                                                    |               |  |  |
|           | Function          |                                   | $\frown$                                        | Setting                                                                                                                                                 | melody frec                         | luency (Low                                               | ver 8 bits)                      |                                                    |               |  |  |
|           |                   |                                   | $(C \land$                                      | $\sum$                                                                                                                                                  | <                                   |                                                           |                                  |                                                    |               |  |  |
|           |                   |                                   |                                                 | MELF                                                                                                                                                    | H Register                          | $ \leq $                                                  |                                  |                                                    |               |  |  |
|           |                   | 7 ((                              | 7/6                                             | 5                                                                                                                                                       | 4                                   | 3                                                         | 2                                | 1                                                  | 0             |  |  |
| MELFH     | Bit symbol        | MELON                             | $\mathcal{T}$                                   |                                                                                                                                                         |                                     | ML11                                                      | ML10                             | ML9                                                | ML8           |  |  |
| (0333H)   | Read/Write        | R/W                               |                                                 |                                                                                                                                                         | $\forall \not \rightarrow \uparrow$ |                                                           | R                                | /W                                                 |               |  |  |
| . ,       | After reset       | 0                                 |                                                 | Ł                                                                                                                                                       | $\overline{\langle}$                |                                                           |                                  | 0                                                  |               |  |  |
|           | Function          | Control                           | ~                                               | /                                                                                                                                                       |                                     |                                                           |                                  |                                                    |               |  |  |
|           |                   | melody                            | $\langle$                                       |                                                                                                                                                         | $\geq$                              | Settir                                                    | a melody free                    | a melody frequency (Linner 4 hits)                 |               |  |  |
|           |                   | 0. Stop                           |                                                 |                                                                                                                                                         |                                     |                                                           | ig molecy ne                     | 400109 (000                                        | 0             |  |  |
|           | $\langle \rangle$ | and                               |                                                 |                                                                                                                                                         |                                     |                                                           |                                  |                                                    |               |  |  |
|           |                   | clear                             | $\wedge$                                        | $\sim$                                                                                                                                                  |                                     |                                                           |                                  |                                                    |               |  |  |
|           |                   | 1:/Start                          |                                                 |                                                                                                                                                         |                                     |                                                           |                                  |                                                    |               |  |  |
| $\langle$ |                   |                                   |                                                 |                                                                                                                                                         | Register                            |                                                           |                                  |                                                    |               |  |  |
|           |                   | 62                                | $\left( \begin{array}{c} 6 \end{array} \right)$ | 5                                                                                                                                                       | 4                                   | 3                                                         | 2                                | 1                                                  | 0             |  |  |
|           | Bit symbol        | $\langle \langle \rangle \rangle$ |                                                 | -                                                                                                                                                       | IAI M4F                             |                                                           |                                  | IALM1F                                             |               |  |  |
| (0334H)   | Read/Write        | $\rightarrow$                     | $\overline{}$                                   | R/W                                                                                                                                                     |                                     |                                                           | R/W                              |                                                    |               |  |  |
|           | After reset       | $\overline{}$                     | $ \rightarrow $                                 | 0                                                                                                                                                       |                                     |                                                           | 0                                |                                                    |               |  |  |
|           | /                 |                                   | ~ \                                             | Δίωρυς                                                                                                                                                  | 1 · 1r                              |                                                           |                                  |                                                    | 40            |  |  |
|           | Function          |                                   |                                                 | write 0                                                                                                                                                 | 1.11                                | non upt end                                               |                                  |                                                    | við           |  |  |
|           |                   |                                   |                                                 |                                                                                                                                                         |                                     |                                                           |                                  |                                                    |               |  |  |

#### 3.14.3 Operational Description

#### 3.14.3.1 Melody Generator

The Melody function generates signals of any frequency (4 Hz to 5461 Hz) based on low-speed clock (32.768 kHz) and outputs the signals from the MLDALM pin.

By connecting a loud speaker outside, Melody tone can sound easily.

#### (Operation)

At first, MELALMC<MELALM> have to be set as "1" in order to select melody waveform as output waveform from MLDALM. Then melody output frequency has to be set to 12-bit register MELFH, MELFL.

Followings are setting example and calculation of melody output frequency.

(Formula for calculating of melody waveform frequency)

Melody output waveformat fs = 32.768 [kHz]Melody output waveform $f_{MLD} (Hz] = 32768/(2 \times N + 4)$ Setting value for melody $N = (16384/f_{MLD}) - 2$ 

(Note: N = 1 to 4095 (001H to FFFH), 0 is not acceptable)

(Example program)

In case of outputting "La" musical scale (440 Hz)

- LD (MELALMC), 11X00001B ; Select melody waveform
- LD (MELFL), 23H ; N = 16384/440 2 = 35.2 = 023H

Start to generate waveform

LD (MELFH), 80H

(Refer to "Basic musical scale setting table")

|                           | Scale | Frequency [Hz] | Register Value: N |
|---------------------------|-------|----------------|-------------------|
|                           | С     | 264            | 03CH              |
|                           | P     | 297 (          | 035H              |
|                           | Ē     | 330            | 030H              |
|                           | F     | 352            | O2DH              |
| $\langle \langle \rangle$ | G     | 396            | )) 027H           |
| $\sim$                    | A     | 440            | 023H              |
|                           | в     | 495            | 01FH              |
|                           | Ý     | 528            | 01DH              |
| 2                         |       |                |                   |

#### 3.14.3.2 Alarm Generator

The Alarm function generates 8 kinds of alarm waveform having a modulation frequency 4096 Hz determined by the low-speed clock (32.768 kHz). And this waveform is reversible by setting a value to a register.

By connecting a loud speaker outside, Alarm tone can sound easily.

Five kinds of fixed cycle (1 Hz, 2 Hz, 64 Hz, 512 Hz, 8 kHz) interrupts are generate by the free-run counter which is used for alarm generator.

#### (Operation)

At first, MELALMC<MELALM> have to be set as "0" in order to select alarm waveform as output waveform from MLDALM. Then "10" be set on MELALMC<FC1:0> register, and clear internal counter. Finally alarm pattern has to be set on 8-bit register of ALM. If it is inverted output data, set <ALMINV> as invert.

Followings are example program, setting value of alarm pattern and waveform of each setting value

(Setting value of alarm pattern)

| Setting Value for ALM Register                                  | Alarm Waveform        |
|-----------------------------------------------------------------|-----------------------|
| 00H                                                             | 0 fixed               |
| 01H 🔍                                                           | AL1 pattern           |
| 02H                                                             | AL2 pattern           |
| 04H                                                             | 💛 🛛 AL3 pattern ( ( / |
| 08H                                                             | AL4 pattern           |
| 10H <                                                           | AL5 pattern           |
| 20H                                                             | AL6pattern            |
| 40H                                                             | AL7 pattern           |
| 80H                                                             | AL8 pattern           |
| Other                                                           | ✓ Undefined           |
| $\left( \left( \begin{array}{c} \\ \end{array} \right) \right)$ | (Do not set)          |
|                                                                 |                       |

(Example program)

LD

In case of outputting AL2 pattern (31.25 ms/8 times/1 s)

(MELALMC), COH

; Set output alarm waveform

LD (ALM), 02H

- ; Free-run counter start
  - ; Set AL2 pattern, start



# Example: Waveform of alarm pattern for each setting value: not invert)
## 3.15 Voltage Level Detector

This function has 3-channel input voltage and reference voltage. Each channel can set own some voltage level and also have interrupt generator. These voltage level compare circuit (Voltage detector) are included in this LSI.

It shows Figure 3.15.1, Figure 3.15.2 and Figure 3.15.3 block diagram of 3-channel voltage level detector (VLD0 to VLD2).

These 3-channel VLD input can use also general purpose I/O port (Port B).







#### 3.15.1 SFR

Voltage level detector are controlled 3 registers: VLDCR0, VLDCR1 and VLDCR2. And the interruption can be controlled by voltage compare result.



Note: This register can't read and modify and write, because <VLD0IN> bit have different means between write data and read data.



|         |             | 7                         | 6                 | 5                | 4                                        | 3              | 2              | 1                        | 0             |
|---------|-------------|---------------------------|-------------------|------------------|------------------------------------------|----------------|----------------|--------------------------|---------------|
| VLDCR1  | Bit symbol  | V1EN                      | -                 | INT1EN           | VLD1IN                                   | -              | V12            | V11                      | V10           |
| (0441H) | Read/Write  | R/W                       | R/W               | R/W              | R/W                                      | R/W            | 4              | R/W                      |               |
|         | After reset | 0                         | 0                 | 0                | 0                                        | 0              | 0              | >0                       | 0             |
|         | Function    | Voltage                   | Always            | Interrupt        | Detect                                   | Always         | Detect         | level setting            | register      |
|         |             | detect                    | write 0           | enable           | voltage                                  | write 0        |                | 00H to 04H               | $\mathcal{P}$ |
|         |             | start flag                |                   | flag             | result and                               |                | C              | 5 steps                  |               |
|         |             |                           |                   |                  | clear write                              | <              | $\land$ (V)    | (/ 5)                    |               |
|         |             | 0: Disable                |                   | 0: Disable       | 0: Normal                                |                | >//            | $\subseteq$              |               |
|         |             | 1: Enable                 |                   | 1: Enable        | 1: Voltage                               |                | $( \bigcirc )$ |                          |               |
|         |             | ļ                         |                   |                  |                                          |                | $(\bigcirc)$   | ~                        |               |
|         |             |                           |                   |                  |                                          | 6              | $\succ$        |                          |               |
|         |             |                           |                   |                  |                                          | $\mathcal{A}($ | $\rightarrow$  | /                        |               |
|         |             |                           |                   |                  |                                          | D1 detector    | voltage setti  | ng                       |               |
|         |             |                           |                   |                  |                                          | 000 2.2        | $\mathcal{N}$  |                          |               |
|         |             |                           |                   |                  |                                          |                |                |                          |               |
|         |             |                           |                   |                  |                                          | 010 2.4        | V              |                          |               |
|         |             |                           |                   |                  |                                          | 011 2.5        | V              | $\rightarrow$            |               |
|         |             |                           |                   |                  |                                          | 100 2.6        | V              | $\overline{\mathcal{A}}$ |               |
|         |             |                           |                   |                  |                                          |                |                | $\rightarrow$            |               |
|         |             |                           |                   | G                |                                          | stact voltage  |                | ûlt (Only 0 d            | ata write OK) |
|         |             |                           |                   |                  |                                          |                | out voltage >  | Detect volta             |               |
|         |             |                           |                   | $\lambda()$      | $\rightarrow$ $-$                        |                | > enction tor  | Detect volta             | ge<br>de      |
|         |             |                           |                   |                  | _ ` <u> </u>                             | 7              |                | 201001 10110             | 90            |
|         |             |                           | (                 |                  | Inte                                     | errupt enable  | /disable       |                          |               |
|         |             |                           | (                 | ())              |                                          | 0 Inte         | errupt disable | )                        |               |
|         |             |                           | $\square$         |                  |                                          | _1 Inte        | errupt enable  |                          |               |
|         |             |                           | (                 | $\bigtriangleup$ |                                          |                | •              |                          |               |
|         |             |                           | $-\langle -$      |                  | $\longrightarrow \overline{\mathbb{V}Q}$ | tage detect s  | start          |                          |               |
|         |             | (                         | $\overline{\Box}$ |                  | $\sim$                                   | Vol            | tage compar    | e turn off               |               |
|         |             | $\frown$                  | (// 5)            |                  |                                          | 1 Vol          | tage compar    | e turn on                |               |
|         | /           | $\langle \rangle \rangle$ | $\bigcirc$        |                  | $(\Omega \wedge$                         | ~              |                |                          |               |
|         |             |                           |                   | $\sim$           | $(\vee / ))$                             |                |                |                          |               |

VLD Mode Control Register

Note: This register can't read and modify and write, because <VLD1IN> bit have different means between write data and read data.





VLD Mode Control Register 2



#### 3.15.2 Explanation of Function

#### Preferences

It select that does not use whether PB port is used as VLD with a register of low rank 3 bits of VLDCTR.

(1) Comparison reference voltage

Firstly, It supplies on VREF pin 1.5 V, reference voltage Each voltage level detector compare with the reference voltage and the voltage input from each VLD terminal. Setting of detect level is decided by doing a partial pressure of the voltage input from VLD terminal. And only VLD0 can set reference voltage to 0.9 V, and can compare the voltage value too to 0.9 V to 1.4 V.

It can OFF with detector about the voltage comparison device and resistor divider circuit and a switch between VLDGND by writing in 0 at each VLDCR\* <V\*EN> bit. And, if it start from disable condition of VLD circuit, it must need first write <V\*EN> to 1 and next wait about 1ms set-up time (no related with system clock frequency) and next write VLDCR\* <INT\*EN> to 1, or first read VLDCR\* <VLD\*IN> data and use of detect result.

\* (Asterisk) shows 0, 1 and 2 (3 channels)

(2) A selection of voltage level detector

A selection of three voltage level detector is different from next setting voltage detection level by a purpose of use.

Main battery voltage detection (VLDCR0<V0EN>=1)

Detection voltage range is 0.9 V to 2.6 V. The voltage comparison of totaled 18 level is possible by 0.1 V step.

Sub-battery voltage detection for back-up (VLDCR1<V1EN> = 1)

Detection voltage range is 2.2 V to 2.6 V. The voltage comparison of totaled 5 level is possible by 0.1 V step.

```
CPU-power source battery (VLDCR2<V2EN> = 1)
```

Detection voltage points are 1.7 V, 2.6 V and 2.9 V.

(3) The voltage comparison start

At first, It set detect level of VLD, and movement starts the voltage comparison by establishing 1 in VLDCR\* <V\*EN>. VLDCR\* <INT\*EN> can know comparison result afterwards after) progress more than (1mS between fixed time whether I establish 1 and wait for the interrupt input by leading VLDCR\* <VLD\*IN>.

It maintain the result by the comparison result control circuit after I became less than detect level that established it once, and having detect the voltage fall. It establish  $0 \rightarrow 1$  in VLDCR\* <INT\*EN> when let interrupt reflect the next comparison update result, and update becomes possible in clearing current maintenance result. It need to check result by all means when do not clear detect level and need to confirm current search result. In particular VLDCR\* <INT\*EN> establishes 1 already, and interrupt does not occur when detecting the voltage fall from starting detection when does not execute the above-mentioned clear (0: Off  $\rightarrow$  1: On light of interrupt flag) once.

\* (Asterisk) shows 0, 1 and 2 (3 channels)

(4) The voltage level comparison and comparison result interrupt

Next 3 are prepared in interrupt generated by comparison result of three VLD. INTVLD0, INTVLD1 and INTVLD2 can mask own interrupt at source level, but at interrupt circuit, these interruptions are recognized as non-maskable interruption. Because it is the non-maskable interruption entirely, interrupt level is fixed in 7. Besides, as non-maskable interruption, there are NMI terminal and watchdog timer. And I accept interrupt according to default priority when interrupt request of same level occurred simultaneously. Please refer to the control of interrupt controller in detail.

(5) VLD comparison time

Comparison state per 1 channel is 8064 states (1 ms at  $f_{FPH} = 16$  MHz).

(6) Housing and readout of VLD comparison result

VLD voltage comparison result is stored in <VLD\*IN>: bit4 of VLDCR0 to VLDCR2. It is stored away successively from the moment that established 1 in <INT\*EN> to <VLD\*IN> after movement started it by establishing 1 in <V\*EN> of VLD mode control register.

VLD comparison result housing flag <VLD\*IN> shows VLD comparison result. When the voltage falls than setting detect value the input voltage from VLD\* terminal this flag, 1 is led, and 0 is led when higher than setting detect value.

And this comparison result leads the output result of VLD. It is updated during data comparison movement at any time, and data will change, but the contents which data changed into last when comparison movement was stopped are maintained. On this account I can clear these data. In other words a write of 0 data becomes possible (Impossible a write of 1 data).

This signal comes to demand interrupt for CPU and, as for the interrupt, it is done edge interrupt request with a signal after it was controlled with a gate for interrupt permission flag.

I ask for the voltage setting, movement, interrupt to establish it by the following order.



Note: \* shows 0, 1 and 2 (3 channels)

Setting example

a. In case of setting that seems to jump to VLD0 interrupt (INTVLD0) handling routine, compare the analog input voltage of VLD0 terminal the voltage, and fall than detect voltage which the result analog input voltage established

b. In case of setting the voltage comparison result of analog input voltage of VLD1 terminal is led, and VLD1 cuts in by handling routine to continue, and (INTVLD1) is validated, and to wait for interrupt outbreak from comparison result

| Main routine setting<br>7 6 5 4 3 2 1 0        | $(7/)^{\sim} \diamond (0)^{\sim}$                        |
|------------------------------------------------|----------------------------------------------------------|
| VLDCR1 ← 1 X 0 1 X 0 1 0                       | VLD1 turn ON, detect voltage 2.4 V set, comparison start |
|                                                | <pre>&lt;<set-up time=""></set-up></pre>                 |
| $VLDCR1  \rightarrow -XX$                      | Read result of comparison                                |
|                                                | Don't/change the detect voltage and other setting        |
| $\forall LDCR^{T} \leftarrow -X - T X - T - T$ | Enable interruption Don't change detect voltage (2.4.V)  |
|                                                |                                                          |
| X: Don't care, –: No change                    |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                | $\langle \rangle$                                        |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                | 7/~                                                      |
|                                                | (                                                        |
|                                                |                                                          |
|                                                | $\geq$                                                   |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
|                                                |                                                          |
| $\searrow$ $\bigcirc$                          |                                                          |
|                                                |                                                          |

#### 3.15.3 Special Function Explanation of VLD

VLD circuit is different from the usual voltage search, and a special function is included.

This circuit is called interval operation function, and it operates the following movement. It is movement to repeat movement and standstill by the interval when interval operation function established each VLD. Without utilizing CPU and timer, VLD movement that reduced consumption electric current can come true.



Clearing the flag in the stop state of interval operation function should be executed after voltage detect start flag (VLDCRx  $\langle VxEN \rangle$ ) is disabled same as normal operation.



## 3.16 Data Horizontal and Vertical Conversion Circuit

This LSI built in data horizontal and vertical conversion (HVC) circuit.

Horizontal and vertical can convert data of maximum 8\*8 bit into. Horizontal and vertical of data of character ROM are the functions that a burden of software is lightened in case converted into.



### 3.16.1 SFR

There is each H/V conversion register A for H/V converter to store away H/V conversion data (HVREGA0 to HVREGA7), H/V conversion register B (HVREGB0 to HVREGB7) 8. It show Figure 3.16.2 to Figure 3.16.5 HVC registers.









## 3.16.2 Operation Explanation

Conversion result is stored away by HVREGB register when did a light of data to do H/V conversion to HVREGA register. The data which did a light begin to be read when led HVREGA register then. However, It is different from the data which a light did even if HVREGA register was led when did a light of HVREGB register after having done a light of HVREGA register. It operate the same movement about HVREGB register. It shows Table 3.16.1 "Relation of HVC Data".

|         |        |        | Table 3.16. | Relation |           | >//c   | )                                      |                 |
|---------|--------|--------|-------------|----------|-----------|--------|----------------------------------------|-----------------|
| Bit     | 7      | 6      | 5           | 4        | 3         |        | 1                                      | 0               |
| HVREGB7 | HVRA77 | HVRA67 | HVRA57      | HVRA47   | HVRA37    | HVRA27 | HVRA17                                 | HVRA07          |
| HVREGB6 | 76     | 66     | 56          | 46       | 36        | 26     | 1,6                                    | 06              |
| HVREGB5 | 75     | 65     | 55          | 45       | ∕35       | 25     | 15                                     | 05              |
| HVREGB4 | 74     | 64     | 54          | 44       | 34        | 24     | 14                                     | → <sub>04</sub> |
| HVREGB3 | 73     | 63     | 53          | 43       | 33        | 23     | 13                                     | ) 03            |
| HVREGB2 | 72     | 62     | 52          | 42       | ( // 32 ) | 22,    |                                        | 02              |
| HVREGB1 | 71     | 61     | 51          | 41       | 31        | 21     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | / 01            |
| HVREGB0 | 70     | 60     | 50          | 40       | 30        | 20     | 10                                     | 00              |
|         | •      | •      | •           |          |           |        | $\sim$                                 | <b>_</b>        |

Table 3.16.1 Relation of HVC Data

HVREGA7<> HVREGA6<> HVREGA5<> HVREGA4<> HVREGA3<> HVREGA2<> HVREGA1<> HVREGA0<>

# 4. Electrical Characteristics

## 4.1 Absolute Maximum Ratings

| Parameter                     | Symbol  | Rating            | Unit                       |
|-------------------------------|---------|-------------------|----------------------------|
| Power supply voltage          | Vcc     | –0.5 to 4.0       | $\geq w$                   |
| Input voltage                 | VIN     | -0.5 to Vcc + 0.5 |                            |
| Output current                | IOL     | 2                 | $\langle \bigcirc \rangle$ |
| Output current                | IOH     | -2                |                            |
| Output current (total)        | ΣΙΟL    | 80 🔨 🤇 🤇          | MA MA                      |
| Output current (total)        | ΣΙΟΗ    | -80               | $\bigcirc$                 |
| Power dissipation (Ta = 85°C) | PD      | 600               | mW                         |
| Soldering temperature (10 s)  | TSOLDER | 260               | $\searrow$                 |
| Storage temperature           | TSTG    | -65 to 150        | °C                         |
| Operating temperature         | TOPR    | -10 to 70         | $( \subset$                |

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

#### Solderability of lead free products

| Test<br>parameter | Test condition                                                                                                                                                                                                                                                                                                 | Note                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Solderability     | Use of Sn-37Pb solder Bath<br>Solder bath temperature = 230°C, Dipping time = 5 seconds<br>The number of times = one, Use of R-type flux<br>Use of Sn-3.0Ag-0.5Cu solder bath<br>Solder bath temperature = 245°C, Dipping time = 5 seconds<br>The number of times = one, Use of R-type flux (use of lead free) | Pass: solderability rate until forming $\ge$ 95% |

# 4.2 DC Characteristics (1/2)

| Parameter |                                      | Symbol  | Condition                   | Min                     | Typ.<br>(Note 1)    | Max                     | Unit |
|-----------|--------------------------------------|---------|-----------------------------|-------------------------|---------------------|-------------------------|------|
| Pow       | er supply voltage                    |         | fc = 2 to 27 MHz fs =       | 2.7                     |                     | 3.6                     |      |
| (         | AVCC = DVCC)                         | VCC     | to 2 to 10 MHz 30 to 34 kHz | 4.0                     |                     |                         |      |
| (         | AVSS = DVSS = 0 V)                   |         |                             | 1.8                     | $(\langle \rangle)$ | >                       |      |
| Pow       | er supply voltage                    | VREF    | 3.6 ≥ Vcc ≥ 1.8 V           | - (                     | 1.5                 | -                       |      |
|           | D0 to D15                            | VIL     | Vcc ≥ 2.7 V                 | $( \cap$                | $\sum$              | 0.6                     |      |
|           |                                      |         | Vcc < 2.7 V                 | $\setminus$ $\setminus$ | ())                 | 0.2 Vcc                 |      |
| ge        | P52 to PD7 (except RESET, P52, P72,  | VII 1   | Vcc ≥ 2.7 V                 | >//                     |                     | 0.3 Vcc                 |      |
| oltaç     | P74, P9, PB3, PB4, PB5, PC4, PC5)    | VIE1    | Vcc < 2.7 V                 | $\langle \ \rangle$     |                     | 0.2 Vcc                 |      |
| >         | RESET , P52, P72, P74, P9, PB3, PB4, | \//1 2  | Vcc ≥ 2.7 V                 |                         |                     | 0.25 Vcc                |      |
| N         | PB5, PC4, PC5                        | VILZ    | Vcc < 2.7 V                 | -0.3                    |                     | 0.15 Vcc                |      |
| nput      | AMO to AM1                           | \/// 2  | Vcc ≥ 2.7 V                 | $\langle \rangle$       |                     | 0.3                     |      |
| -         |                                      | VILO    | Vcc < 2.7 V                 | $\sim$                  | $\sim$              | 1 0.3                   |      |
|           | X1                                   |         | Vcc ≥ 2.7 V                 | >                       | 24                  | 0.2 Vcc                 |      |
|           |                                      | ••=•    | Vcc < 2.7 V                 | $\frown$                |                     | 0.1-Vcc                 |      |
|           |                                      |         | 3.6 ≥ Vcc ≥ 3.3 V           | 2.4 ~                   |                     | $(/ \cap)$              | V    |
|           | D0 to D15                            | VIH     | 3.3 > Vcc ≥ 2.7 V           | 2.0                     |                     | $\overline{\mathbb{C}}$ |      |
|           |                                      |         | Vcc < 2/7 V                 | 0.7 Vçc                 | $\sim$              |                         |      |
| age       | P52 to PD7 (except RESET , P52, P72, | 1/11.14 | Vcc ≥ 2.7 V                 | 0.7 Vcc                 | ()                  |                         |      |
| volt      | P74, P9, PB3, PB4, PB5, PC4, PC5)    | VITT    | Voc < 2.7 V                 | 0.8 Vcc                 | $\square$           |                         |      |
| igh       | RESET , P52, P72, P74, P9, PB3, PB4, | 1/1/10  | Vcc ≥ 2.7 V                 | 0.75 Vcc                |                     | Vcc + 0.3               |      |
| ut h      | PB5, PC4, PC5                        | VIH2    | VC6 < 2.7 V                 | 0.85 Vcc                | /                   |                         |      |
| Inpl      |                                      |         | Vcc ≥ 2.7 V                 | Vcc - 0.3               |                     |                         |      |
|           | AMU to AM1                           | VIH3    | Vcc < 2.7 V                 | Vcc - 0.3               |                     |                         |      |
|           |                                      |         | Vcc ≥ 2.7 V                 | 0.8 Vcc                 |                     |                         |      |
|           | X1                                   | VIH4    | Vcc < 2.7 V                 | 0.9 Vcc                 |                     |                         |      |
| <u> </u>  |                                      |         | IOL = 1.6 mA (Vcc ≥ 2.7 V   | V                       |                     | 0.45                    |      |
| Outp      | out low voltage                      | VQL     | IOL = 0.4 mA Vcc < 2.7 V    |                         |                     | 0.15 Vcc                |      |
|           |                                      |         | IOH = -400 μA Vcc ≥ 2.7 V   | Vcc - 0.3               |                     |                         |      |
| Outp      | out nign voltage                     | VOH     | IOH = -200 µA Vcc < 2.7 V   | 0.8 Vcc                 |                     |                         |      |

## 4.2 DC Characteristics (2/2)

| Parameter                                                     | Symbol       | Condition                                   | Min                    | Typ.<br>(Note 1)           | Max    | Unit |  |
|---------------------------------------------------------------|--------------|---------------------------------------------|------------------------|----------------------------|--------|------|--|
| Input leakage current                                         | ILI          | $0.0 \le VIN \le Vcc$                       | <                      | 0.02                       | ±5     |      |  |
| Output leakage current                                        | ILO          | $0.2 \leq \text{VIN} \leq \text{Vcc} - 0.2$ |                        | 0.05                       | ±5     | μA   |  |
| RESET pull-up resistor                                        | DDCT         | $2.7 \le Vcc \le 3.6 V$                     | 80                     | (( ) )                     | 400    | kO   |  |
|                                                               | RK31         | $Vcc = 2 V \pm 10\%$                        | 200                    | $\langle \bigcirc \rangle$ | 1000   | K22  |  |
| Pin capacitance                                               | CIO          | fc = 1 MHz                                  | 6                      | $\sum_{i=1}^{i}$           | 10     | рF   |  |
| Schmitt width                                                 |              | Vcc ≥ 2.7 V                                 | 0.4                    | ) 0.9                      |        |      |  |
| (RESET, INT3, OPTRX0, NMI, KI0 to KI7,                        | VTH          | V/cc + 2 7 V/                               |                        |                            |        | V    |  |
| INT0, INT1, INT2, RXD1, SCLK1/CTS1)                           |              | VCC < 2.7 V                                 | 0.3                    | 0.7                        |        |      |  |
| Programmable pull-up resistor                                 |              | $2.7 \leq Vcc \leq 3.6 \text{ V}$           | 80                     | 200                        | 400    |      |  |
| (P53, P56, P60 toP67, P70 to P71, P73, PD0 to P7)             | RKH1         | Vcc = 2 V ± 10%                             | 200                    |                            | 1000   |      |  |
| Programmable pull-up resistor                                 | DKUO         | 2.7 ≤ Vcc ≤ 3.6 V                           | 60                     | 180                        | 350    | 2    |  |
| (P90 to P97, PB0 to PB2, PB4 to PB5, P52,<br>P72, PC4 to PC5) | KKH2         | Vcc = 2 V ± 10%                             | 2 180                  | $(\bigcirc$                | 900    |      |  |
| Brogrammable pull up resistor (BB2 at )/ac)                   |              | 2.7 ≤ Vcc ≤ 3.6 V                           | 50 🛇                   | 167                        | /280   | KΩ   |  |
| r logrammable pull-up resistor (FBS at VCC)                   | ркнз         | Vcc = 2 V ± 10%                             | 120                    | $\langle \rangle_{C}$      | 1 (906 |      |  |
| Programmable pull-up resistor (PB3 at V/ss)                   |              | $2.7 \leq V cc \leq 3.6 V$                  | 400                    |                            | 2000   |      |  |
|                                                               |              | $Voc = 2V \pm 10\%$                         | 800( (                 | $\langle \rangle$          | 4500   |      |  |
| Programmable pull-down resistor                               | BKI          | 2.7 ≤ Vcc ≤ 3.6 V                           | 80                     | ~200                       | 600    |      |  |
| (P72, PB4 to PB5, PC4 to PC5)                                 |              | $Vcc = 2.0 \pm 10\%$                        | (200/ <                |                            | 1000   |      |  |
| NORMAL (Note 2)                                               | (            | 27 < Vrc < 3.6.V                            | $\langle \vee \rangle$ | ) 11.0                     | 15.0   |      |  |
| IDLE2                                                         | 4            | fc = 27 MHz                                 | $\searrow$             | 4.5                        | 6.7    | mA   |  |
| IDLE1                                                         |              |                                             |                        | 1.5                        | 2.9    |      |  |
| NORMAL (Note 2)                                               | $( \bigcirc$ | Vcc = 2 V ± 10%                             |                        | 2.5                        | 3.5    |      |  |
| IDLE2                                                         |              | )) fc = 10 MHz                              | //                     | 1.0                        | 1.4    | mA   |  |
| IDLE1                                                         |              | (Typ.: Vcc = 2.0 V)                         | ~                      | 0.3                        | 0.6    |      |  |
| SLOW (Note 2)                                                 |              | 27 < 1/00 < 261/                            |                        | 15.0                       | 30.0   |      |  |
| IDLE2                                                         | $\searrow$   | $2.7 \le 0.0 \le 3.0$ V                     |                        | 6.0                        | 23.0   | μΑ   |  |
| IDLE1                                                         |              | 13 - 32.100 MIZ                             |                        | 2.5                        | 20     |      |  |
| SLOW (Note 2)                                                 | )            | $Vec = 2V \pm 10\%$                         |                        | 9.0                        | 20     |      |  |
| IDLE2                                                         | · .          | (fs <i>= 3</i> 2.768 kHz                    |                        | 4.0                        | 15     | μΑ   |  |
| IDLE1                                                         |              | (Typ.: Vcc = 2.0 V)                         |                        | 1.0                        | 10     |      |  |
| STOP                                                          |              | 1.8 ≤ Vcc ≤ 3.6 V                           |                        | 0.3                        | 10     | μA   |  |
| XT: VREF power operation                                      | loc<br>Iref  | VREF = 1.5 V                                |                        | 0.8                        | 1.2    | μA   |  |

Note 1: Typical values are for when  $Ta = 25^{\circ}C$  and Vcc = 3.3 V unless otherwise noted.

Note 2: lcc measurement conditions (Normal, Slow):

All functions are operational; output pins are open and input pins are fixed. Data and address bus CL = 30 pF loaded.

Note 3: All lcc specifications are VREF = 1.5 V and fs power = VREF condition.

## 4.3 AC Characteristics

(1) Vcc = 2.7 to 3.6 V

| No   | Parameter                                                                                                                                                             | Symbol Variable fFPH | f <sub>FRH</sub> = 2 | 27 MHz             | Llnit         |                           |      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------|---------------|---------------------------|------|
| INO. |                                                                                                                                                                       | Cymbol               | Min                  | Max                | Min           | Max                       | Onic |
| 1    | f <sub>FPH</sub> period (= x)                                                                                                                                         | t <sub>FPH</sub>     | 37.0                 | 31250              | 37.0          | $\sum$                    | ns   |
| 2    | A0 to A23 valid $\rightarrow \overline{\text{RD}} / \overline{\text{WR}}$ fall                                                                                        | t <sub>AC</sub>      | x – 23               |                    | 14            | $\mathcal{Y}$             | ns   |
|      | SR mode (LCDC DMA case: READ only)                                                                                                                                    |                      | 1.5x – 13            |                    | 32            |                           | ns   |
| 3    | $\overline{\text{RD}}$ rise $\rightarrow$ A0 to A23 hold                                                                                                              | t <sub>CAR</sub>     | 0.5x – 13            | $\frown$           | ((5))         |                           | ns   |
| 4    | $\overline{\text{WR}}~\text{rise} \rightarrow \text{A0}$ to A23 hold                                                                                                  | tCAW                 | x – 13               |                    | 24            |                           | ns   |
|      | $\overline{\text{DS}}$ rise $\rightarrow$ A0 to A23 hold                                                                                                              |                      | x – 13               |                    | 24            |                           | ns   |
| 5    | A0 to A23 valid $\rightarrow$ D0 to D15 input                                                                                                                         | t <sub>AD</sub>      |                      | 3.5x – 24          | $\mathcal{Y}$ | 105                       | ns   |
| 6    | $\overline{\text{RD}}$ fall $\rightarrow$ D0 to D15 input                                                                                                             | t <sub>RD</sub>      |                      | 2,5x-24            |               | 68                        | ns   |
|      | SR mode (LCDC DMA case)                                                                                                                                               |                      |                      | 2.0x - 24          | $\geq$        | 50                        | ns   |
| 7    | RD low width                                                                                                                                                          | t <sub>RR</sub>      | 2.5x – 15            |                    | 77            | $\langle \rangle \rangle$ | ns   |
|      | SR mode (LCDC DMA case)                                                                                                                                               |                      | 2.0x – 15            | $7/\Lambda^{\vee}$ | 59 (          | $\sim$                    | ns   |
| 8    | $\overline{\text{RD}}$ rise $\rightarrow$ D0 to A15 hold                                                                                                              | t <sub>HR</sub>      | 0                    | ( ) )              | $\bigcirc 0$  |                           | ns   |
| 9    | WR low width                                                                                                                                                          | t <sub>WW</sub>      | 2.0x - 15            |                    | 59            |                           | ns   |
|      | DS Low Width                                                                                                                                                          |                      | 2.0x - 15            | $\geq$             | 59            | $\sum \bigcirc$           | ns   |
| 10   | D0 to D15 valid $\rightarrow \overline{\text{WR}}$ rise                                                                                                               | t <sub>DW</sub>      | 1.5x - 35            | *                  | (20           | $\backslash$              | ns   |
|      | D0 to D15 valid $\rightarrow \overline{\text{DS}}$ rise                                                                                                               |                      | 1.5x - 35            |                    | 20 /          | )                         | ns   |
| 11   | $\overline{\text{WR}}$ rise $\rightarrow$ D0 to D15 hold                                                                                                              | twp (                | x - 25               | (                  | 7/12          |                           | ns   |
|      | $\overline{\text{DS}}$ rise $\rightarrow$ D0 to D15 hold                                                                                                              |                      | x->25                | ((                 | / 12)         |                           | ns   |
| 12   | A0 to A23 valid $\rightarrow ~\overline{\text{WAIT}}~\text{input}{}^{(1~+~N)~\text{WAIT}~\text{mode}}$                                                                | t <sub>AW</sub>      | $\sum$               | 3.5x - 60          |               | 69                        | ns   |
| 13   | $\overline{\text{RD}} \ / \ \overline{\text{WR}} \ \ \text{fall} \ \rightarrow \ \overline{\text{WAIT}} \ \ \text{hold} \qquad \ \ ^{(1 \ + \ N) \ \text{WAIT mode}}$ | tcw                  | 2.5x + 0             | $\langle \rangle$  | 92            |                           | ns   |
|      | SR mode (LCDC DMA case: READ only)                                                                                                                                    | $\sim$               | 2.0x + 0             | $\langle \rangle$  | 74            |                           | ns   |
| 14   | A0 to A23 valid $\rightarrow$ Port input                                                                                                                              | taph)                |                      | 3.5x - 89          | /             | 40                        | ns   |
| 15   | A0 to A23 valid $\rightarrow$ Port hold                                                                                                                               | TAPH2                | 3.5x                 | $\sim$             | 129           |                           | ns   |
| 16   | A0 to A23 valid $\rightarrow$ Port valid                                                                                                                              | t <sub>APO</sub>     | $\langle \rangle$    | 3.5x + 60          |               | 189                       | ns   |

AC measuring conditions

- Output level: High = 0.7 Vcc, Low = 0.3 Vcc, CL = 50 pF
- Input level: High = 0.9 Vcc, Low = 0.1 Vcc
- Note: Symbol "x" in the above table means the period of clock "f<sub>FPH</sub>", it's half period of the system clock "f<sub>SYS</sub>" for CPU core. The period of f<sub>FPH</sub> depends on the clock gear setting or the selection of high/low oscillator frequency.

| No   | Parameter                                                                                                        | Symbol Variable f <sub>FPH</sub> = 1 |            | I0 MHz             | Llnit                              |               |      |
|------|------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|--------------------|------------------------------------|---------------|------|
| INU. | i arameter                                                                                                       | Symbol                               | Min        | Max                | Min                                | Max           | Onit |
| 1    | f <sub>FPH</sub> period (= x)                                                                                    | t <sub>FPH</sub>                     | 100        | 31250              | 100                                |               | ns   |
| 2    | A0 to A23 valid $\rightarrow \overline{\text{RD}} / \overline{\text{WR}}$ fall                                   | t <sub>AC</sub>                      | x – 46     |                    | 54                                 |               | ns   |
|      | SR mode (LCDC DMA case: READ only)                                                                               |                                      | 1.5x – 46  |                    | 104                                |               | ns   |
| 3    | $\overline{\text{RD}}$ rise $\rightarrow$ A0 to A23 hold                                                         | tCAR                                 | 0.5x –30   |                    | 20                                 | $\mathcal{I}$ | ns   |
| 4    | $\overline{\text{WR}} \text{ rise} \rightarrow \text{A0 to A23 hold}$                                            | tCAW                                 | x – 26     |                    | 74                                 |               | ns   |
|      | $\overline{\text{DS}}$ rise $\rightarrow$ A0 to A23 hold                                                         |                                      | x – 26     | $\frown$           | $\left( \left( 74 \right) \right)$ |               | ns   |
| 5    | A0 to A23 valid $\rightarrow$ D0 to D15 input                                                                    | t <sub>AD</sub>                      |            | 3.5x – 48          |                                    | 302           | ns   |
| 6    | $\overline{\text{RD}}$ fall $\rightarrow$ D0 to D15 input                                                        | t <sub>RD</sub>                      |            | 2.5x - 48          |                                    | 202           | ns   |
|      | SR mode (LCDC DMA case)                                                                                          |                                      |            | 2.0x - 48          | $)\gamma$                          | 152           | ns   |
| 7    | RD low width                                                                                                     | t <sub>RR</sub>                      | 2.5x - 30  |                    | 220                                | $\frown$      | ns   |
|      | SR mode (LCDC DMA case)                                                                                          |                                      | 2.0x - 30  | $\langle \rangle$  | > 170                              |               | ns   |
| 8    | $\overline{\text{RD}}$ rise $\rightarrow$ D0 to A15 hold                                                         | t <sub>HR</sub>                      | 0          |                    | 0                                  |               | ns   |
| 9    | WR low width                                                                                                     | t <sub>WW</sub>                      | 2.0x – 30  | $7/\Lambda^{\vee}$ | 170                                | $\leq$        | ns   |
|      | DS low width                                                                                                     |                                      | 2.0x - 30  | ( / ) )            | <170                               | $\bigcirc$    | ns   |
| 10   | D0 to D15 valid $\rightarrow \overline{\text{WR}}$ rise                                                          | t <sub>DW</sub>                      | 1.5x - 70  |                    | 80                                 |               | ns   |
|      | D0 to D15 valid $\rightarrow \overline{\text{DS}}$ rise                                                          |                                      | 1.5x - 70  | >                  | 80                                 |               | ns   |
| 11   | $\overline{\text{WR}}\ \text{rise} \rightarrow \text{D0}$ to D15 hold                                            | twp                                  | x-50       | ~                  | (50                                | $\backslash$  | ns   |
|      | $\overline{\text{DS}}$ rise $\rightarrow$ D0 to D15 hold                                                         |                                      | x - 50     |                    | 50                                 | )             | ns   |
| 12   | A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input (1 + N) WAIT mode                                     | t <sub>AW</sub>                      | $\searrow$ | 3.5x – 120         | $\overline{\mathcal{A}}$           | 230           | ns   |
| 13   | $\overline{RD} / \overline{WR} \text{ fall} \rightarrow \overline{WAIT} \text{ hold } (1 + N) \text{ WAIT mode}$ | tcw                                  | 2.5x+0     | ((                 | 250                                |               | ns   |
|      | SR mode (LCDC DMA case: READ only)                                                                               |                                      | 2.0x + 0   | $\bigcirc$         | 200                                |               | ns   |
| 14   | A0 to A23 valid $\rightarrow$ Port input                                                                         | t <sub>APH</sub>                     | $\sim$ /   | 3.5x - 178         |                                    | 172           | ns   |
| 15   | A0 to A23 valid $\rightarrow$ Port hold                                                                          | tarH2                                | 3.5x       |                    | 350                                |               | ns   |
| 16   | A0 to A23 valid $\rightarrow$ Port valid                                                                         | tAPO                                 |            | 3.5x + 120         | /                                  | 470           | ns   |

(2)  $Vcc = 2.0 V \pm 10\%$ 

AC measuring conditions

- Output level: High = 0.7 V, Low = 0 3 V, CL = 50 pF
- Input level: High =  $0.9 \vee$ , Low =  $0.1 \vee$

(3) Read cycle



Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as RD and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

#### (4) Write cycle



Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as WR and CS are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

| Ma   | Denerseter                                   | O was had          | Vari                | able                      | 27 N   | ЛНz                | L Los it |
|------|----------------------------------------------|--------------------|---------------------|---------------------------|--------|--------------------|----------|
| INO. | Parameter                                    | Symbol             | Min                 | Max                       | Min    | Max                | Unit     |
| 1    | RAS cycle time                               | t <sub>RC</sub>    | 4.0x                |                           | 148 <  |                    | ns       |
| 2    | RAS access time                              | t <sub>RAC</sub>   |                     | 3.0x - 35                 |        | > 76               | ns       |
| 3    | CAS access time                              | tCAC               |                     | 1.5x – 30                 | (      | 26                 | ns       |
| 4    | Column address access time                   | t <sub>AA</sub>    |                     | 2.5x - 45                 | (      | 48                 | ns       |
| 5    | After UCAS, LCAS data hold time              | t <sub>OFF1</sub>  | 0                   |                           | 0      | $\sim$             | ns       |
| 6    | RAS pre-charge time                          | t <sub>RP</sub>    | 1.5x – 4            | $\sim$                    | 52//   | $\left\{ \right\}$ | ns       |
| 7    | RAS pulse width                              | t <sub>RAS</sub>   | 2.5x – 20           |                           | 73     | J                  | ns       |
| 8    | RAS hold time                                | t <sub>RSH</sub>   | 1.0x – 15           | ((                        | 22     |                    | ns       |
| 9    | CAS hold time                                | tCSH               | 3.0x - 35           | (                         | 76     |                    | ns       |
| 10   | CAS pulse width                              | t <sub>CAS</sub>   | 1.5x – 15           |                           | 41     |                    | ns       |
| 11   | $\overline{RAS} - \overline{CAS}$ delay time | tRCD               | 1.5x – 30           | 1(5x                      | 26     | 55 📈               | ns       |
| 12   | RAS column address delay time                | t <sub>RAD</sub>   | 0.5x – 3            | 0.5x + 20                 | 16     | 38                 | ns       |
| 13   | CAS – RAS pre-charge time                    | tCRP               | 1.0x - 25           | 7767                      | 12     | 6                  | ns       |
| 14   | CAS pre-charge time                          | t <sub>CPD</sub>   | 2.5x - 35           | $\langle \rangle \rangle$ | 58     | $(\bigcirc)$       | ns       |
| 15   | Row address setup time                       | t <sub>ASR</sub>   | 0.5x - 15           | $\bigcirc$                | 4 <    | $\mathbb{Z}$       | ( /ns    |
| 16   | Row address hold time                        | t <sub>RAH</sub>   | 0.5x - 7            | $\geq$                    | 12     | $\cdot$            | ns       |
| 17   | Column address setup time                    | tASC               | 1.0x - 25           |                           | 12     | $\int_{t}$         | ns       |
| 18   | Column address hold time                     | tCAH               | 2.0x - 50           |                           | 24     | $\mathcal{I}$      | ns       |
| 19   | Column address RAS read time                 | tRAL               | 2.0x - 30           |                           | (44)   | )                  | ns       |
| 20   | Write command CAS read time                  | TCWL               | 2.0x - 35           |                           | (/39)) |                    | ns       |
| 21   | Data output setup time                       | t <sub>DS</sub>    | 0.5x – 17/          | $\frown$                  | 2      |                    | ns       |
| 22   | Data output hold time                        | t DH               | 2.0x - 35           |                           | 39     |                    | ns       |
| 23   | Write command setup time                     | twcs               | 0.5x – 18           |                           | ) / 0  |                    | ns       |
| 24   | CAS hold time (CAS before RAS)               | <sup>t</sup> CHR∗1 | 2.0x - 50           | $\sim$                    | 24     |                    | ns       |
| 25   | RAS pre-charge CAS active time               | TRPC               | 1.5x -⁄30           | $\sim$                    | 26     |                    | ns       |
| 26   | CAS setup time (CAS before RAS)              | t <sub>CSR*</sub>  | 0.5x - 2            |                           | 17     |                    | ns       |
| 27   | RAS pre-charge time (Self refresh)           | t <sub>RPS*2</sub> | 4.0x - 16           | · / ·                     | 132    |                    | ns       |
| 28   | CAS hold time (Self refresh)                 | t <sub>CHS*2</sub> | $\langle 0 \rangle$ | $\langle$                 | 0      |                    | ns       |
| 29   | Refresh setup/time                           | t <sub>CFL*</sub>  | 1.0x - 10           |                           | 27     |                    | ns       |
| 30   | Refresh hold time                            | t <sub>CFH</sub>   | 1.0x - 15           |                           | 22     |                    | ns       |
| 31   | Write command pulse width                    | twe                | 2.0x - 40           |                           | 34     |                    | ns       |
| 32   | Write command hold time                      | twch.              | 1.5x – 35           |                           | 21     |                    | ns       |
| 33   | OE access time 1                             | tOAC1              | >                   | 2.5x - 50                 |        | 43                 | ns       |
|      | OE access time 2                             | tOAC2              |                     | 2.0x - 40                 |        | 34                 | ns       |
| 34   | After OE input data hold time                | tOFF2              | 0                   |                           | 0      |                    | ns       |

(5) Vcc = 3.0 to 3.6 V

AC measuring conditions

• Output level: High = 0.7 V, Low = 0.3 V, CL = 50 pF

Input level: High = 
$$0.9 \, \forall$$
, Low = 0.1 V

| No   | Doromotor                          | Symbol               | Variable          |              | 27 N    | ИНz                       | Unit |
|------|------------------------------------|----------------------|-------------------|--------------|---------|---------------------------|------|
| INO. | Falameter                          | Symbol               | Min               | Max          | Min     | Max                       | Unit |
| 1    | RAS cycle time                     | t <sub>RC</sub>      | 4.0x              |              | 148     |                           | ns   |
| 2    | RAS access time                    | t <sub>RAC</sub>     |                   | 3.0x - 38    |         | 73                        | ns   |
| 3    | RAS access time                    | t <sub>CAC</sub>     |                   | 1.5x – 38    | (       | 23                        | ns   |
| 4    | Column address access time         | t <sub>AA</sub>      |                   | 2.5x - 48    | (       | 45                        | ns   |
| 5    | After UCAS, LCAS data hold time    | tOFF1                | 0                 |              | 0       |                           | ns   |
| 6    | RAS pre-charge time                | t <sub>RP</sub>      | 1.5x – 6          | $\sim$       | 50      | $\langle \rangle$         | ns   |
| 7    | RAS pulse width                    | t <sub>RAS</sub>     | 2.5x - 22         |              | N71     | $\mathcal{I}$             | ns   |
| 8    | RAS hold time                      | t <sub>RSH</sub>     | 1.0x – 18         | ((           | 19      |                           | ns   |
| 9    | CAS hold time                      | tCSH                 | 3.0x - 33         |              | 74      |                           | ns   |
| 10   | CAS pulse width                    | tCAS                 | 1.5x – 13         |              | 39      | /                         | ns   |
| 11   | RAS – CAS delay time               | tRCD                 | 1.5x – 32         | 1.5x         | 24      | 53                        | ns   |
| 12   | RAS column address delay time      | tRAD                 | 0.5x – 5          | 0.5x+20      | 13      | 36>                       | ns   |
| 13   | CAS – RAS pre-charge time          | tCRP                 | 1.0x - 27         | 77/~~        | 10      | 6                         | ns   |
| 14   | CAS pre-charge time                | tCPD                 | 2.5x - 37         | ())          | 56      | $(\bigcirc)$              | nş   |
| 15   | Row address setup time             | t <sub>ASR</sub>     | 0.5x - 16         | $\bigcirc$   | 3 <     | $\mathbb{N}^{\mathbb{N}}$ | ns   |
| 16   | Row address hold time              | t <sub>RAH</sub>     | 0.5x - 8          | $\geq$       | 10      | $\mathcal{A}$             | ns   |
| 17   | Column address setup time          | tASC A               | 1.0x - 27         |              | 10      | $\Delta$                  | ns   |
| 18   | Column address hold time           | tCAH                 | 2.0x - 52         |              | 22      | $\mathcal{I}$             | ns   |
| 19   | Column address RAS read time       | tRAL                 | 2.0x - 32         | /            | (742 A  |                           | ns   |
| 20   | Write command CAS read time        | tCWL                 | 2.0x – 37         |              | (37)    |                           | ns   |
| 21   | Data output setup time             | t <sub>DS</sub>      | 0.5x - 17⁄        | $\frown$     | 2       |                           | ns   |
| 22   | Data output hold time              | t DH                 | 2.0x - 37         |              | 37      |                           | ns   |
| 23   | Write command setup time           | twcs                 | 0.5x – 18         |              | ) o ( ( |                           | ns   |
| 24   | CAS hold time (CAS before RAS)     | <sup>t</sup> CHR∗1   | 2.0x - 52         |              | 22      |                           | ns   |
| 25   | RAS pre-charge CAS active time     | TRPC                 | 1.5x <u>-</u> √31 | $\sim$       | 24      |                           | ns   |
| 26   | CAS setup time (CAS before RAS)    | t <sub>CSR*</sub>    | 0.5x - 2          |              | 17      |                           | ns   |
| 27   | RAS pre-charge time (Self refresh) | tRPS*2               | 4.0x 18           | $\sim$       | 130     |                           | ns   |
| 28   | CAS hold time (Self refresh)       | t <sub>CHS*2</sub>   | 0                 | $\checkmark$ | 0       |                           | ns   |
| 29   | Refresh setup/time                 | t <sub>CFL*</sub>    | 1,0x - 10         |              | 27      |                           | ns   |
| 30   | Refresh hold time                  | t <sub>CFH</sub> ( / | 1.0x - 17         |              | 20      |                           | ns   |
| 31   | Write command pulse width          | twe                  | 2.0x - 42         |              | 32      |                           | ns   |
| 32   | Write command hold time            | twch                 | 1.5x – 36         |              | 20      |                           | ns   |
| 33   | OE access time1                    | toAC1                | >                 | 2.5x – 53    |         | 40                        | ns   |
|      | OE access time2                    | tOAC2                |                   | 2.0x - 43    |         | 31                        | ns   |
| 34   | After OE input data hold time      | tOFF2                | 0                 |              | 0       |                           | ns   |

(6) Vcc = 2.7 to 3.6 V

AC measuring conditions

• Output level: High = 0.7 V, Low = 0.3 V, CL = 50 pF

• Input level: High = 
$$\emptyset.9 \, \nabla$$
, Low = 0.1 V

91C016-241

(7) DRAM read/write cycle



(8) DRAM refresh cycle





## 4.4 VLD Detect Characteristics

|                                                |         |                                                                                                               |                 | VLDV | cc = Vcc, VLDO | GND = Vss |
|------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------|-----------------|------|----------------|-----------|
| Parameter                                      | Symbol  | Conditions                                                                                                    | Min             | Тур. | Max            | Unit      |
| VREF current<br>(Note 4)                       | IREF    | $\begin{array}{l} 3.6 \text{ V} \geq \text{Vcc} \geq 2.7 \text{ V} \\ \text{VREF} = 1.5 \text{V} \end{array}$ |                 | 0.2  | 1              | μΑ        |
| Detect voltage accuracy<br>(VLD0) (Note 1)     | ADCTV0  | $\begin{array}{l} 3.6 \ V \geq Vcc \geq 2.7 \ V \\ Vcc \geq VLD0 \geq VLDGND, \end{array}$                    | VLD0 	imes 0.98 |      | VLD0 × 1.02    | V         |
| Not-detect voltage accuracy<br>(VLD0) (Note1)  | NADCTV0 | VREF = 1.5 V (Note 2)                                                                                         | VLD0 × 0.98     | 7    | VLD0 × 1.02    | V         |
| VLD0 current (Note 3)                          | IVLD0   |                                                                                                               |                 | 0.3  | / 1            | μΑ        |
| Detect voltage accuracy<br>(VLD1) (Note 1)     | ADCTV1  | $\begin{array}{l} 3.6 \ V \geq Vcc \geq 2.7 \ V \\ Vcc \geq VLD0 \geq VLDGND, \end{array}$                    | VLD0 × 0.98     |      | VLD0 × 1.02    | V         |
| Not-detect voltage accuracy<br>(VLD1) (Note 1) | NADCTV1 | VREF = 1.5 V (Note 2)                                                                                         | VLD0 × 0.98     |      | VLD0 × 1.02    | >         |
| VLD1 current (Note 3)                          | IVLD1   | $\langle$                                                                                                     |                 | 0.3  |                | μA        |
| Detect voltage accuracy<br>(VLD2) (Note 1)     | ADCTV2  | $\begin{array}{l} 3.6 \ V \geq Vcc \geq 2.7 \ V\\ Vcc \geq VLD0 \geq VLDGND \end{array}$                      | VLD0 × 0.98     |      | VLD0 × 1.02    | > v       |
| Not-detect voltage accuracy<br>(VLD2) (Note1)  | NADCTV2 | VREF = 1.5 V (Note 2)                                                                                         | VLD0 × 0.98     | 2    | VLD0 × 1.02    | v         |
| VLD2 current (Note 3)                          | IVLD2   | $\square$                                                                                                     |                 | 0.3  | $\searrow$     | μA        |

Note 1: "Detect voltage accuracy" means accuracy of voltage down, "Not-detect voltage accuracy" means accuracy of voltage rise-up.

Note 2: It is prohibit that setting over the Vcc voltage. (Example: Vcc = 2.7 V, Detect Voltage = 2.9 V)

Note 3: It shows highest detect voltage setting by each channel

Note 4: In case detecting voltage only for VLD2 (Vcc = VLD2), the setting "Detecting voltage = 2.6V" is possible.

Note 5: XT (Low-frequency oscillator) operate by Vcc and Vss swing

#### Serial Channel Timing (I/O internal mode) 4.5

#### (1) SCLK input mode

| Paramotor                                                | Symbol           | Variab                                              | le     | 27 N              | ИН <u>z</u>              | 10 MHz |                   | Lloit |
|----------------------------------------------------------|------------------|-----------------------------------------------------|--------|-------------------|--------------------------|--------|-------------------|-------|
| Falametei                                                | Symbol           | Min                                                 | Max    | Min               | Max                      | Min    | Max               | Unit  |
| SCLK period                                              | T <sub>SCY</sub> | 16X                                                 |        | 0.59              |                          | 1.6    |                   | μS    |
| Output data $\rightarrow$ SCLK<br>Rising/falling edge*   | <b>-</b>         | t <sub>SCY</sub> /2 - 4X - 110<br>(Vcc = 3 V ± 10%) |        | 334               |                          | 290    | /                 | ns    |
|                                                          | IOSS             | $t_{SCY}/2 - 4X - 180$<br>(Vcc = 2 V ± 10%)         | $\sim$ | (                 | $\lor$                   | 220    |                   | ns    |
| SCLK rising/falling edge* $\rightarrow$ Output data hold | T <sub>OHS</sub> | $t_{SCY}/2 + 2X + 0$                                |        | 370               | 1                        | 1000   |                   | ns    |
| SCLK rising/falling edge*<br>→ Input data hold           | T <sub>HSR</sub> | 3X + 10                                             |        | 121               | $\mathcal{D}$            | 310    |                   | ns    |
| SCLK rising/falling edge* $\rightarrow$ Valid data input | T <sub>SRD</sub> |                                                     | tscy-0 | $\langle \rangle$ | 592                      | NN.    | 1600              | ns    |
| Valid data input<br>→ SCLK rising/falling edge*          | T <sub>RDS</sub> | 0                                                   |        | 0                 | $\langle \rangle$        |        | $\langle \rangle$ | ns    |
| (2) SCLK output mode                                     |                  |                                                     |        |                   | $\widetilde{\mathbb{C}}$ |        | $\bigcirc$        |       |

#### (2) SCLK output mode

| Paramotor                                                | Symbol           | X                        | ariable                        | 10 MHz 27 MHz |      |      |     | Unit |
|----------------------------------------------------------|------------------|--------------------------|--------------------------------|---------------|------|------|-----|------|
| Faiaillelei                                              | Symbol           | Min                      | Max                            | Min           | Max  | Min  | Max | Unit |
| SCLK period (Programmable)                               | T <sub>SCY</sub> | 16X                      | 8192X                          | 1.6           | 819  | 0.59 | 303 | μs   |
| Output data $\rightarrow$ SCLK rising edge               | T <sub>OSS</sub> | t <sub>SCY</sub> /2 - 40 |                                | 760           |      | 256  |     | ns   |
| SCLK rising edge $\rightarrow$ Output data hold          | TOHS             | t <sub>SCY</sub> /2-40   |                                | 760           |      | 256  |     | ns   |
| SCLK rising edge $\rightarrow$ Input data hold           | T <sub>HSR</sub> | ))0                      |                                | √ø∕           |      | 0    |     | ns   |
| SCLK rising edge $\rightarrow$ Valid data input          | TSRD             |                          | t <sub>SCY</sub> /2 - 1X - 180 | $\geq$        | 1320 |      | 375 | ns   |
| Valid data input $\rightarrow$ SCLK rising/falling edge* |                  | 1X + 180                 |                                | 280           |      | 217  |     | ns   |

Note: SCLK rinsing/falling/edge: The rising edge is used in SCLK rising mode.

The falling edge is used in SCLK falling mode.

Value of 27 MHz and 10 MHz in above table, are that one on t<sub>SCY</sub> = 16X case



## 4.6 Interrupt, Capture

(1)  $\overline{\text{NMI}}$ , INT0 to INT3 interrupts

| Parameter                                               | Symbol             | Varia   | 10 N | ЛНz | 27 N | Lloit |     |       |
|---------------------------------------------------------|--------------------|---------|------|-----|------|-------|-----|-------|
| Fardineter                                              | Symbol             | Min     | Max  | Min | Max  | Min   | Max | Offic |
| $\overline{\text{NMI}}$ , INT0 to INT3 low level width  | t <sub>INTAL</sub> | 4X + 40 |      | 440 |      | 188   | 7   | ns    |
| $\overline{\text{NMI}}$ , INT0 to INT3 high level width | t <sub>INTAH</sub> | 4X + 40 |      | 440 | ()   | 188   |     | ns    |

# 4.7 SCOUT Pin AC Characteristics

| Parameter        | Symbol           | Variable  |     | 10 MHz |                   | 27 MHz  |            | Condition   | Lloit |
|------------------|------------------|-----------|-----|--------|-------------------|---------|------------|-------------|-------|
|                  |                  | Min       | Max | Min    | Max <             | Min     | Max        | Condition   |       |
|                  | t <sub>SCL</sub> | 0.5T – 10 |     | 40     |                   | 8       |            | Vcc≥ 2.7 V  |       |
| Low level width  |                  | 0.5T – 30 |     | 20     |                   | $\land$ |            | VCC < 2.7 V | ns    |
| High level width | t <sub>SCH</sub> | 0.5T – 10 |     | 40     |                   | 8       | $\Diamond$ | Vcc≥2.7 X   |       |
|                  |                  | 0.5T – 30 |     | 20 (   | $\langle \rangle$ | _       |            | Vcc < 2.7 V | ns    |

Note: T = period of SCOUT

Measuring conditions

• Output level: High = 0.7 V, Low = 0.3 V, QL = 10 pF

# 4.8 LCD Controller (SR mode)



| Read Bus<br>Width                                         | Туре               | Write<br>Mode | Set Up Time<br>(t <sub>DSU</sub> ) | Hold Time<br>(tDHD)            | Clock High<br>Width<br>(t <sub>CWH</sub> ) | Cycle<br>(tc) | State/Cycle |
|-----------------------------------------------------------|--------------------|---------------|------------------------------------|--------------------------------|--------------------------------------------|---------------|-------------|
| Byte                                                      | А                  | Byte          | 0.5x – α                           | 1.0x – β                       | / 1.5x – γ                                 | 4.0x          | 4.0x        |
|                                                           |                    | Nibble        | 0.5x/- a                           | 1.0x – β                       | $1.0x - \gamma$                            | 2.0x          | 6.0x        |
|                                                           |                    | Bit           | 0.5x – α                           | ) <b>1.0x</b> – β              | 1.0x - y                                   | 2.0x          | 18.0x       |
|                                                           | В                  | Byte          | 1.0x - α                           | 0.5x – β                       | 2.0x – γ                                   | 4.0x          | 4.0x        |
|                                                           |                    | Nibble        | (1.0x - a                          | 0.5x – β                       | 1.0x – γ                                   | 2.0x          | 6.0x        |
|                                                           |                    | Bit           | $(1.0x - \alpha)$                  | 0.5x – β                       | 1.0x – γ                                   | 2.0x          | 18.0x       |
|                                                           | С                  | Byte          | 1.0x-α                             | 2.5x – β                       | 1.5x – γ                                   | 6.0x          | 6.0x        |
|                                                           |                    | Nibble(       | <u>1.0x – α</u>                    | 1.5x – β                       | 2.5x – γ                                   | 5.0x          | 10.0x       |
|                                                           |                    | Bit 🗸         | 1.0x – α                           | 1.0x - B                       | 1.0x – γ                                   | 2.0x          | 20.0x       |
| Word                                                      | A/ /               | Byte          | 0.5x – α                           | 1.0x - β                       | 1.0x – γ                                   | 2.0x          | 6.0x        |
|                                                           |                    | Nibble        | 7 0.5x – α                         | 1.0x - β                       | 1.0x – γ                                   | 2.0x          | 10.0x       |
|                                                           |                    | Bit           |                                    | No support.                    | Please use byte r                          | ead mode.     |             |
|                                                           | В                  | Byte          | 1.0x - α                           | <del>0.5x</del> <sup>2</sup> β | 1.0x – γ                                   | 2.0x          | 6.0x        |
| (                                                         | $\backslash \land$ | Nibble        | 1.0x – α                           | 0.5x – β                       | 1.0x – γ                                   | 2.0x          | 10.0x       |
|                                                           |                    | Bit           |                                    | No support.                    | Please use byte                            | read mode     |             |
|                                                           | $\sim$             | Byte          | 1.0x - α                           | <b>1.5x</b> – β                | 1.5x – γ                                   | 3.0x          | 8.0x        |
| ((                                                        | $\sim$             | Nibble        | $1.0x - \alpha$                    | <b>1.5x</b> – β                | 2.5x – γ                                   | 5.0x          | 20.0x       |
| $\langle \langle \langle \langle \langle \rangle \rangle$ | ))                 | Bit           | $\frown$                           | No support.                    | Please use byte r                          | ead mode.     |             |

\* Value of alpha, beta and gamma are showed next page.

| No   | Doromotor                    | Symbol           | Variab     | le                        | 27 N             | ИHz               | 10 N             | ИНz               | Condition                                          | Linit  |
|------|------------------------------|------------------|------------|---------------------------|------------------|-------------------|------------------|-------------------|----------------------------------------------------|--------|
| INO. | Parameter                    | Symbol           | Min        | Max                       | Min              | Max               | Min              | Max               | Condition                                          | Unit   |
| 1    | D1BSCP rising-up             | t <sub>DSU</sub> | 0.50x - 8  |                           | 10               |                   | 42               |                   | 3.6 V $\geq$ Vcc $\geq$ 2.7 V                      | ns     |
|      | ightarrow Data set up time   |                  | 0.50x - 20 |                           | -                |                   | 30               |                   | $Vcc = 2.0 V \pm 10\%$                             |        |
|      | ł                            | 1                | 1.00x - 8  |                           | 29               |                   | 92               |                   | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | <u> </u>                     |                  | 1.00x - 20 |                           | -                |                   | 80               |                   | Vcc = 2.0 V ± 10%                                  |        |
| 2    | D1BSCP falling down          | t <sub>DHD</sub> | 0.50x - 8  |                           | 10               |                   | 42               |                   | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | $\rightarrow$ Data hold time | 1                | 0.50x - 20 |                           | -                |                   | 30               |                   | Voc = 2.0 V ± 10%                                  |        |
|      | ł                            | 1                | 1.00x - 8  |                           | 32               |                   | 92               | $\langle \rangle$ | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | ł                            | 1                | 1.00x - 20 |                           | -                |                   | 80               |                   | Vcc=2.0 V ± 10%                                    |        |
|      | ł                            | 1                | 1.50x - 8  |                           | 50               |                   | 142              |                   | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | ł                            | 1                | 1.50x - 20 |                           | -                |                   | 130              |                   | $Vcc = 2.0 V \pm 10\%$                             |        |
|      | ł                            | 1                | 2.50x - 8  |                           | 87               |                   | 242 (            | $\langle$         | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | l                            |                  | 2.50x - 20 |                           | -                |                   | 230              |                   | Vcc = 2.0 V ± 40%                                  | $\geq$ |
| 3    | D1BSCP                       | tCWH             | 1.00x - 5  |                           | 32               |                   | 95               | /                 | 3.6 V ≥ Vcc ≥2.7 V                                 | $\sim$ |
|      | ightarrow High width         |                  | 1.00x - 15 |                           |                  | (                 | (85/             | $^{\sim}$         | Vcc = 2.0 V ± 10%                                  |        |
|      | ł                            | 1                | 1.50x – 5  |                           | 50               |                   | 1,45             | ))                | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | ł                            | 1                | 1.50x – 15 |                           | -                | $\bigcirc$        | 135              |                   | Vcc = 2.0 V ± 10%                                  |        |
|      | ł                            | 1                | 2.00x - 5  |                           | 69               | ( )               | 195              |                   | 3,6 ¥≥ Vcc ≥2.7 ¥                                  |        |
|      | ł                            | 1                | 2.00x - 15 |                           | 40               | $\langle$         | 185              |                   | Vcc = 2.0 V ± 10%                                  |        |
|      | l                            |                  | 2.50x - 5  |                           | 87               | /                 | <sup>7</sup> 245 |                   | $3.6 \text{ V} \geq \text{Vcc} \geq 2.7 \text{ V}$ |        |
|      | ł                            | 1                | 2.50x - 15 | C                         | $\mathcal{A}$    | $\langle \rangle$ | 235              |                   | $Vcc = 2.0 V \pm 10\%$                             |        |
| 4    | D1BSCP                       | t <sub>C</sub>   | 2.00x      | (                         | 74               | $\leq$            | 200              |                   | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | $\rightarrow$ Clock cycle    |                  | 2.00x      | $\langle \langle \rangle$ | $\left  \right $ |                   | 200              |                   | Vcc = 2.0 V ± 10%                                  |        |
|      | l                            |                  | 3.00x      |                           | 111              |                   | /300             | /                 | $3.6 \text{ V} \ge \text{Vcc} \ge 2.7 \text{ V}$   |        |
|      | ł                            | 1                | 3.00x      |                           | >-               | 4                 | 300              |                   | Vcc = 2.0 V ± 10%                                  |        |
|      | ł                            | 1                | 4.00x      | )                         | 148              |                   | 400              |                   | 3.6 V ≥ Vcc ≥ 2.7 V                                |        |
|      | ł                            | 1                | 4.00x      | $\mathcal{I}$             | -                |                   | 400              | $\langle \rangle$ | $Vcc = 2.0 V \pm 10\%$                             |        |
|      | ł                            | 1                | 5.00x      |                           | 185              | $\langle$         | 500              |                   | $3.6 \text{ V} \geq \text{Vcc} \geq 2.7 \text{ V}$ |        |
|      | ł                            | 1                | (5.00x)    |                           | -                | $\overline{)}$    | 500              |                   | $Vcc = 2.0 \text{ V} \pm 10\%$                     |        |
|      | 1                            |                  | 6.00x      |                           | 222              | 11                | 600              |                   | $3.6 \text{ V} \geq \text{Vcc} \geq 2.7 \text{ V}$ |        |
|      | 1                            | $( \cap$         |            |                           |                  | $\sim$            | 600              |                   | $V_{CC} = 2.0 V + 10\%$                            | 1      |

Note: The reading characteristics of display data from the memory which does not define above table, is same as 4.3 "AC Characteristics".

## 4.9 Recommended Crystal Oscillation Circuit

TMP91C016 is evaluated by below oscillator vender. When selecting external parts, make use of this information.

Note: Total loads value of oscillator is sum of external loads (C1 and C2) and floating loads of actual assemble board. There is a possibility of miss-operating using C1 and C2 value in below table. When designing board, it should design minimum length pattern around oscillator. And we recommend that oscillator evaluation try on your actual using board.



(2) TMP91C016 recommended ceramic oscillator: Murata Manufacturing. Co., Ltd. (JAPAN)

|           | Oscillation |                    | Para | ameter | of Elem | <b>Running Condition</b> |            |            |
|-----------|-------------|--------------------|------|--------|---------|--------------------------|------------|------------|
| MCU       | Frequency   | Item of Oscillator | C1   | C2     | Rf      | Rd                       | Voltage of |            |
|           | [MHZ]       | 1Z]                |      | [pF]   | [Ω]     | [Ω]                      | Power [V]  |            |
|           | 2.00        | CSTLS2M00G56-B0    | (47) | (47)   | Open    | 0                        |            |            |
|           | 2.50        | CSTLS2M50G56-B0    | (47) | (47)   | Open    | 0 ( (                    | 77~        |            |
| TMP91C016 | 10.00       | CSTLS10M0G53-B0    | (15) | (15)   | Open    | 0                        | 1.8 to 2.2 | -40 to +85 |
|           | 10.50       | CSALA12M5T55093-B0 | 30   | 30     | Open    | >0                       |            |            |
|           | 12.50       | CSTLA12M5T55093-B0 | (30) | (30)   | Open    | 0                        |            |            |

| Circuit | noromotor | rocommonded |
|---------|-----------|-------------|
| CIICUIL | Darameter | recommended |

|           |                    |                    |                |            | `         | $\bigtriangledown$ | )                              |                           |
|-----------|--------------------|--------------------|----------------|------------|-----------|--------------------|--------------------------------|---------------------------|
|           | Oscillation        |                    | Para           | ameter     | ofElem    | Running Condition  |                                |                           |
| MCU       | Frequency<br>[MHZ] | Item of Oscillator | C1<br>[pF]     | C2<br>[pF] | Rf<br>[Ω] | Rd<br>[Ω]          | Voltage of<br>Power [V]        | Tc [°C]                   |
|           | 4.00               | CSTLS4M00G56-B0    | (47)           | (47)       | Open      | 0 (                | $\langle ( \bigcirc ) \rangle$ |                           |
|           | 6.750              | CSTLS6M75G56-B0    | (47)           | (47)       | Open      | 0                  | $\sim$ $\sim$ $\sim$ $\sim$    | $\langle \rangle \rangle$ |
|           | 12.50              | CSALA12M5T55-B0    | 30 ( (         | 30         | Open      | 0                  | $\sim$                         | $\mathcal{I}$             |
|           |                    | CSTLA12M5T55-B0    | (30)           | (30)       | Open      | 0 (                | 27.402.6                       | 40 to 195                 |
| TWF91C010 | 20.00              | CSALS20M0X53-B0    | 5              | 5          | Open      | 0                  | 2.140 5.0                      | -40 10 +65                |
|           | 20.00              | CSTLS20M0X51-B0    | (5)            | (5)        | Open      | 0                  |                                |                           |
|           | 27.00              | CSALS27M0X51-B0    | Open           | Open       | 10K       | ( (0//             | $\langle \rangle$              |                           |
|           | 32.00              | CSALA32M0X51-B0    | 3              | 3          | Open      | Q<br>Q             | $\mathcal{I}$                  |                           |
|           |                    |                    | $\overline{)}$ |            |           |                    |                                |                           |

- The valves enclosed plackest in C1 and C2 columns apply to condenser built-in type.
- The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change.

For up-to-date information, please refer to the following URL: http://www.murata.co.jp/search/index.html
# 5. Table of SFRs

The SFRs (Special function registers) include the I/O ports and peripheral control registers allocated to the 4-Kbyte address space from 000000H to 000FFFH.

- (1) I/O ports
- (2) I/O port control
- (3) Interrupt control
- (4) Chip select/wait control
- (5) Clock gear
- (6) DFM control
- (7) 8-bit timer
- (8) UART/SIO channel
- (9) DRAM controller
- (10) Watchdog timer
- (11) RTC (Real time clock)
- (12) Melody/alarm generator
- (13) MMU
- (14) LCD control
- (15) HVC (Horizontal and vertical converter
- (16) HPLT, VLD

Table layout

| Symbol | Name             | Address | 7 | 6 |                 |                 | X      | 9                 | ))            |                                |
|--------|------------------|---------|---|---|-----------------|-----------------|--------|-------------------|---------------|--------------------------------|
|        |                  |         | / |   | $\frac{1}{2}$   |                 | 1      | $\langle \rangle$ | $\rightarrow$ | <ul> <li>Bit symbol</li> </ul> |
|        |                  | $\sim$  |   | 1 |                 | $\lambda$       | 1      | İ                 | $\rightarrow$ | Read/Write                     |
|        | (                | (5)     |   | ! | ~               | X               |        |                   | $\rightarrow$ | Initial value after reset      |
|        |                  |         |   |   | K               | $\mathbb{P}$    |        |                   | $\rightarrow$ | Remarks                        |
|        | $\left( \right)$ |         |   | [ | $\overline{\ }$ | $\overline{\ }$ | $\sim$ |                   | l             |                                |

Note: "Prohibit RMW" in the table means that you cannot use RMW instructions on these registers.

Example: When setting bit0 only of the register PxCR, the instruction "SET 0, (PxCR)" cannot be used. The LD (Transfer) instruction must be used to write all eight bits.

## Read/Write

R/W: Both read and write are possible.

R: Only read is possible.

W: Only write is possible.

W\*: Both read and write are possible (when this bit is read as "1")

- Prohibit RMW: Read-modify-write instructions are prohibited. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read-modify-write instructions.)
- R/W\*: Read-modify-write instructions are prohibited when controlling the pull-up resistor.

#### Table 5.1 Address Map SFRs



Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.



Table 5.2 Address Map SFRs





Table 5.3 Address Map SFRs

Note: Do not access to the unhamed addresses, e.g., addresses to which no register has been allocated.



# (1) I/O ports

| Symbol | Name   | Address | 7         | 6                 | 5              | 4              | 3                 | 2                | 1                         | 0         |
|--------|--------|---------|-----------|-------------------|----------------|----------------|-------------------|------------------|---------------------------|-----------|
|        |        |         | P17       | P16               | P15            | P14            | P13               | P12              | P11                       | P10       |
| P1     | Port 1 | 01H     |           | •                 |                | R/             | W                 | ~                |                           |           |
|        |        |         |           | Data              | from externa   | l port (Outpu  | ut latch regist   | ter is cleared   | d to 0)                   |           |
|        |        |         | P27       | P26               | P25            | P24            | P23               | P22              | P21                       | P20       |
| P2     | Port 2 | 06H     |           |                   |                | R/             | W                 |                  | 72                        |           |
|        |        |         | 1         | 1                 | 1              | 1              | 1                 |                  | <b>ノ</b> 1                | 1         |
|        |        |         |           | P56               |                |                | P53               | 7P52             |                           | RDE       |
| P5     | Port 5 | 0DH     | /         | R/W               |                | /              | RAW               | √/R/₩)           |                           | R/W       |
|        |        |         |           | Da                | ta from exter  | nal port (Out  | tput latch reg    | ister is set to  | o 1)                      |           |
|        |        |         | P67       | P66               | P65            | P64            | P63               |                  | P61                       | P60       |
| P6     | Port 6 | 12H     |           |                   |                | R/             | <u>w</u>          | )`               |                           |           |
|        |        |         |           | Da                | ta from exter  | nal port (Qu   | put latch reg     | jister is set to | o 1)                      |           |
|        |        |         | /         |                   |                | P74            | P73               | P72              | _P71                      | P70       |
| P7     | Port 7 | 13H     |           |                   |                | $\frown$       | $\langle \rangle$ | R/W              | $\langle \rangle \rangle$ | *         |
|        |        |         |           |                   |                | Data from      | external poi      | rt (Output lat   | ch register is            | set to 1) |
|        |        |         | P97       | P96               | P95            | P94            | P93               | ○P92 \           | P91                       | P90       |
| P9     | Port 9 | 19H     |           |                   | G              | $\sim$         | ર                 |                  | G(//                      |           |
|        |        |         |           |                   | 20             | Data from e    | external port     | $\square$        | $\leq$                    |           |
|        |        |         |           |                   | PB5            | PB4            | PB3               | (PB2)            | PB1                       | PB0       |
| PB     | Port B | 22H     |           |                   |                | ~              | R/                | N                |                           |           |
|        |        |         |           |                   | Dat            | a from exter   | nal port (Out     | put latch reg    | ister is set to           | 1)        |
|        |        |         | PC7       | PC6               | PC5            | PC4            | PC3               | $\neq$           |                           |           |
| PC     | Port C | 23H     | R/W       | R/₩ (             | R/W            | R/W            | RAW               | $\bigwedge$      |                           |           |
|        |        |         | Data from | n external po     | rt (Output lat | ch register is | s set to 1)       |                  |                           |           |
|        |        |         | PD7       | PD6               | $\downarrow$   | PD4            | PD3               | PD2              | PD1                       | PD0       |
| PD     | Port D | 29H     | R/W       | ( \ <b>r</b> /W ) |                | R/W            | R/W               | R/W              | R/W                       | R/W       |
|        |        |         |           | 7 Da              | ta from exter  | nal_port (Out  | tput latch reg    | jister is set to | o 1)                      |           |

#### (2) I/O port control (1/3)

| 1                 | Svmbol            | Name                         | Address           | 7                | 6                   | 5                                       | 4                                     | 3             | 2                   | 1              | 0                |
|-------------------|-------------------|------------------------------|-------------------|------------------|---------------------|-----------------------------------------|---------------------------------------|---------------|---------------------|----------------|------------------|
|                   |                   |                              | 04H               | P17C             | P16C                | P15C                                    | P14C                                  | P13C          | P12C                | P11C           | P10C             |
|                   | DIOD              | Port 1                       | •                 |                  |                     |                                         | V                                     | V             |                     |                |                  |
|                   | P1CR              | control                      | (Prohibit         | 0/1              | 0/1                 | 0/1                                     | 0/1                                   | 0/1           | 0/1                 | 0/1            | 0/1              |
|                   |                   |                              | `RMW)             |                  |                     |                                         | 0: Input                              | 1: Output     |                     |                |                  |
|                   |                   |                              | 09H               | P27F             | P26F                | P25F                                    | P24F                                  | P23F          | P22₽                | P21F           | P20F             |
|                   |                   | Port 2                       | 0011              |                  |                     |                                         | V                                     | V             |                     | - TR           |                  |
|                   | P2FC              | function                     | (Prohibit         | 1                | 1                   | 1                                       | 1                                     | . 1           | 1                   |                | 1                |
|                   |                   |                              | RMW)              |                  |                     | 0: Port                                 | t 1: Addres                           | s bus (A23 t  | 0/A167/             |                |                  |
|                   |                   |                              |                   | /                | P56C                |                                         | $\sim$                                | P530          | P52C                |                |                  |
|                   |                   | Port 5                       | 0AH               |                  | W                   |                                         |                                       |               | W                   |                |                  |
|                   | P5CR              | control                      | (Prohibit         |                  | 0                   |                                         | $\sim$                                | 0             | A                   |                |                  |
|                   |                   |                              | RIVIVV)           |                  |                     |                                         | 0: Input                              | 1: Output     | ) 🕅                 |                |                  |
|                   |                   |                              |                   | /                | P56F                |                                         | $\sim$                                | P53E          | P52F                | $\sim$         | $\sim$           |
|                   |                   |                              | 0BH               |                  | . 00.<br>W          |                                         |                                       | (W            | . <u>u</u>          | $\sim$         |                  |
|                   | P5FC              | Port 5                       | (Prohibit         |                  | 0                   |                                         |                                       |               | 0                   | -AF            | $\rightarrow$    |
|                   |                   | function                     | RMW)              | /                | 0 <sup>.</sup> Port |                                         |                                       | 0. Port       | 0 <sup>.</sup> Port | $\overline{2}$ | /                |
|                   |                   |                              |                   |                  | 1: R/ W             |                                         |                                       |               | 1: HWR              | $(\bigcirc)$   | $\sim$           |
|                   |                   |                              |                   | /                | P56F2               |                                         |                                       | $\rightarrow$ | P52F2               | $\swarrow$     |                  |
|                   |                   |                              |                   | $\sim$           | W                   | $\sim$                                  | $\sim$                                | $\sim$        | W                   |                | $\not\leftarrow$ |
|                   |                   | Port 5                       | OCH               | $\sim$           | 0                   | $\searrow$                              | $\langle  \rangle$                    | $\sim$        | 0                   | $\not\sim$     | $\frown$         |
|                   | P5FC2             | function                     | (Drobibit         |                  | MSK Logic           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | $\langle \rangle$                     |               | 0: <p52f></p52f>    |                | /                |
|                   |                   | 2                            | (PTOHIDIC<br>RMW) |                  | select              | $\langle \langle \rangle$               |                                       |               | 1: INT3             | ))             |                  |
|                   |                   |                              | ,                 |                  | 0: Clk by 1         |                                         | $\langle \rangle$                     |               | $\overline{\gamma}$ |                |                  |
|                   |                   |                              |                   | -                | 1: Clk by 0         | $\left \left( \right)\right $           |                                       |               |                     |                | -                |
|                   |                   |                              |                   | /                | P56U (              |                                         |                                       | P53U \        | UDEP52              | P52UD          | /                |
|                   |                   |                              | 0EH               | /                | w <                 | $\square$                               | $\rightarrow \rightarrow \rightarrow$ | W/            | ∕_₩                 | W              |                  |
|                   |                   | Port 5                       |                   | /                | 1                   | $\sim$                                  | $\neg \downarrow$                     | 1)            | 1                   | 0              | /                |
|                   | P50DE             | resister                     | (Prohibit         |                  | Pullup              | $\backslash \sim$                       |                                       |               | Pull                | Resistance     |                  |
|                   |                   |                              | RMW)              |                  | 0: Disable          | ))                                      |                                       | 0: Disable    | up/aown             | Control        |                  |
|                   |                   |                              |                   | /                | 1: Enable           |                                         | ~                                     | 1: Enable     | 1. Enable           | 0. Pull down   |                  |
|                   |                   |                              |                   | DETC             | Prec                | DeeC                                    | PEAC                                  | Deac          |                     | De1C           | DEOC             |
|                   |                   | Dort 6                       | 14H               | FUIC             | FUGG                | F03C                                    | F04Q                                  | FUSC          |                     | FOIC           | FUUC             |
|                   | P6CR              | control                      | (Prohibit         |                  |                     | vv                                      |                                       |               |                     | V              | v                |
|                   |                   | 00111101                     | RMW)              |                  |                     |                                         |                                       | 0             |                     | 0: Input       |                  |
|                   |                   |                              |                   |                  |                     |                                         |                                       | DOOF          | DOOF                |                |                  |
|                   |                   |                              |                   | PORE             |                     | Post                                    | C R64F                                | P63F          | P62F                | POIF           | POUF             |
|                   |                   | Port 6                       |                   |                  | 0                   |                                         |                                       | 0             | 0                   | 0              | 0                |
|                   | P6FC              | function                     | (Prohibit         |                  | 0. Port             |                                         |                                       |               | 0. 000              | 0: Port        |                  |
|                   |                   |                              | RMW)              | 1.1 CAS OF       | 1. 11040            | 1. FA95                                 | 1. FΔ2/                               | 1. CS2 or     | 1. 0.02             |                |                  |
|                   |                   |                              |                   | REFOUT           | or WE               | 1. LA23-                                | ·· L/\24                              | RAS           | 1. C32A             | 1. 031         | 1. 030           |
|                   |                   | $\sim$                       | p                 | P67F2            | P66F2               | P65F2                                   | P64F2                                 | -             | P65F2D              |                |                  |
|                   |                   | Port 6                       | 1BH               |                  | $\wedge$ V          | V                                       | 1                                     | W             | W                   | $\sim$         | $\sim$           |
|                   | P6FC2             | function                     |                   | /                |                     | 0                                       |                                       | 0             | 0                   | $\sim$         | $\sim$           |
|                   | ~                 | 2 ( )                        | (Prohibit         | 0: <p67f></p67f> | 0: <r66f></r66f>    | 0: <p65f></p65f>                        | 0: <p64f></p64f>                      | Alwavs        | 0: <p65f2></p65f2>  |                |                  |
|                   | $\langle \rangle$ | $\langle \backslash \rangle$ |                   |                  | 1: UDS              | 1: CS2C                                 | 1: CS2B                               | write 0       | 1: VEECLK           |                |                  |
|                   | $\overline{}$     | $\langle \cdot \rangle$      |                   | ≥ P67Ú           | P66U                | P65U                                    | P64U                                  | P63U          | /                   | P61U           | P60U             |
| $\langle \rangle$ |                   |                              | 18H ( (           | //               | $\mathcal{I}$       | W                                       | I                                     | 1             | $\sim$              | V              | V                |
| /                 | DENT              | FOLC                         |                   |                  | 0                   | 1                                       | 1                                     | 0             | $\sim$              | 1              | 1                |
|                   | FOUE              | control                      | (Prohibit         | Pullup           | Pull up             | Pull up                                 | Pull up                               | Pull up       |                     | Pull up        | Pull up          |
|                   |                   | Control                      | RMW)              | 0: Disable       | 0: Disable          | 0: Disable                              | 0: Disable                            | 0: Disable    |                     | 0: Disable     | 0: Disable       |
|                   |                   |                              |                   | 1: Enable        | 1: Enable           | 1: Enable                               | 1: Enable                             | 1: Enable     |                     | 1: Enable      | 1: Enable        |
|                   |                   |                              | 4611              | /                | /                   | P65F3                                   |                                       | $\sim$        |                     | -              | P60F3            |
|                   |                   | Port 6                       | 10H               | $\sim$           | //                  | W                                       | $\sim$                                | $\sim$        | $\sim$              | W              | W                |
|                   | P6FC3             | function                     | (Drohihit         | $\sim$           | $\sim$              | 0                                       | $\sim$                                |               | $\sim$              | 0              | 0                |
|                   |                   | 3                            | (Prohibit<br>RMW) |                  |                     | 0: Normal                               |                                       |               |                     | Always         | 0: Normal        |
|                   |                   |                              | ,                 |                  |                     | 1: LCLK2                                |                                       |               |                     | write 0        | 1: LCLK0         |

| <u> </u> |                    |                    |              | -                 | _          |                     | -                |                                                                                                    |                  | -         |
|----------|--------------------|--------------------|--------------|-------------------|------------|---------------------|------------------|----------------------------------------------------------------------------------------------------|------------------|-----------|
| Symbol   | Name               | Address            |              | 6                 | 5          | 4                   | 3                | 2                                                                                                  | 1                | 0         |
|          |                    | 16H                |              |                   |            | P74C                | P73C             | P72C                                                                                               | P71C             | P70C      |
| P7CR     | Port 7             |                    |              |                   |            |                     |                  | W                                                                                                  |                  |           |
|          | control            | (Prohibit          |              |                   |            | 0                   | 0                | 0                                                                                                  | 0                | 0         |
|          |                    | RIVIVV)            |              |                   |            |                     | 0 : In           | put 1:C                                                                                            | Output           |           |
|          |                    | 17⊔                |              |                   |            | P74F                | P73F             | P72F                                                                                               | P71F             | P70F      |
|          | Port 7             | 1/П                |              |                   |            |                     |                  | W                                                                                                  | $\mathcal{I}$    |           |
| P7FC     | function           | (Prohibit          |              |                   |            | 0                   | 0                | $( \sim  | 0                | 0         |
|          | runction           | (FIOIIIDIL<br>RMW) |              |                   |            | 0: Port             | 0: Rort          | 0: Port ) )                                                                                        | 0: Port          | 0: Port   |
|          |                    | ,                  |              |                   |            | 1: NMI              | 1: EXRD          | 1: CS2E                                                                                            | 1: CS2D          | 1: TA1C   |
|          |                    |                    | /            | /                 | /          | P74F2               | P73F2            | $\langle \rangle$                                                                                  | P71F2            | P70F      |
|          |                    | 1CH                |              |                   | /          | W                   |                  | ЭЖ.                                                                                                |                  |           |
| 5-500    | Port 7             | -                  |              |                   | $\sim$     | 0                   |                  | $\sim$                                                                                             | 0                | 0         |
| P7FC2    | function 2         | (Prohibit          |              | /                 |            | 0: <p74e></p74e>    | 0: <p73f></p73f> |                                                                                                    | 0: <p71f></p71f> | 0: ≼P70   |
|          |                    | RMW)               |              |                   |            | 1: WE or            | 1: DRAMOE        |                                                                                                    | 1: OPJTX0        | 1: SCO    |
|          |                    |                    |              |                   |            | CAS                 |                  |                                                                                                    | 14               | >         |
|          |                    |                    |              |                   | P72UD      | P740                | ) P73U           |                                                                                                    | P71U             | P70L      |
|          |                    |                    |              | $\backslash$      |            |                     | y                | v A                                                                                                | SIN              | )         |
|          | Port 7             | 1FH                |              |                   | 0          | $\langle \rangle$   | 1                | 0                                                                                                  | $\square$        | 0         |
|          | pull               |                    |              |                   | Resistance |                     | Pull up          | Resistance                                                                                         |                  | Pull up   |
| FIODL    | up/down            | (Prohibit          |              |                   | control    | 0: Disable          | 0: Disable       | control                                                                                            | 0: Disable       | 0: Disab  |
|          | control            | RMW)               |              |                   | 0; Pull up | 1: Enable           | 1: Enable        | 0: Pull up                                                                                         | 1: Enable        | 1: Enabl  |
|          |                    |                    |              |                   | 1: Pull    | $\sim$              | (()              | 1. Rúli                                                                                            |                  |           |
|          |                    |                    |              | (                 | 🗋 down 🖯   | >                   |                  | døwn                                                                                               |                  |           |
|          |                    | 1DH                | P97F         | P96F1             | P95F       | P94F                | R93F             | ₽92F                                                                                               | P91F             | P90F      |
| POFC     | Port 9<br>function |                    |              |                   |            |                     | V \ \            |                                                                                                    |                  | -         |
| 1 01 0   |                    | (Prohibit          | 0            | 0                 | $\sim 0$   | 0                   | 0))              | 0                                                                                                  | 0                | 0         |
|          |                    | RMW)               |              |                   | ) ) 0: Ke  | y-in disable        | 1:Key-in e       | nable                                                                                              |                  |           |
|          |                    |                    | P97U         | P96U              | P95U       | P94U                | P93U             | P92U                                                                                               | P91U             | P901      |
|          |                    | 1EH                | ( (          | $\langle \rangle$ |            |                     | V                |                                                                                                    |                  |           |
|          | Port 9             |                    | 1            | 1                 | 1          | $\langle 1 \rangle$ | 1                | 1                                                                                                  | 1                | 1         |
| P90E     | pull up            | (Prohibit          | Pullup       | Pull up           | Pull up 🔨  | Pull up             | Pull up          | Pull up                                                                                            | Pull up          | Pull up   |
|          | CONTROL            | RMW)               | 0: Disable   | 0: Disable        | 0: Disable | 0: Disable          | 0: Disable       | 0: Disable                                                                                         | 0: Disable       | 0: Disab  |
|          |                    |                    | 1: Enable    | 1: Enable         | 1: Enable  | 1; Enable           | 1: Enable        | 1: Enable                                                                                          | 1: Enable        | 1: Enab   |
|          |                    | 24H )              | $\sim$       | 4                 | PB5C       | ) PB4C              | PB3C             | PB2C                                                                                               | PB1C             | PB00      |
|          | Port B             | $\bigtriangledown$ |              |                   | //c        | <u> </u>            | V                | V                                                                                                  |                  |           |
| PBCK     | control            | (Prohibit          |              |                   | 0          | 0                   | 0                | 0                                                                                                  | 0                | 0         |
|          |                    | RMW)               | $\geq$       | $\langle -$       |            | •                   | 0: Input         | 1: Output                                                                                          |                  |           |
|          | $\land \land$      | 0511               |              | /                 | PB5F       | PB4F                | PB3F             |                                                                                                    |                  |           |
|          | Dort/D             | 25H                |              |                   | $\geq$     | W                   |                  |                                                                                                    |                  |           |
| PBFC     | function           | $\sum$             |              |                   | 0          | 0                   | 0                |                                                                                                    |                  |           |
|          |                    | (Prohibit<br>RMW)  | $\sim$       | 1(                | 0: Port    | 0: Port             | 0: Port          |                                                                                                    |                  |           |
|          | ( )                |                    |              |                   | 1: INT2    | 1: INT1             | 1: INT0          |                                                                                                    |                  |           |
| //       | $\bigtriangledown$ | /                  | PB5UD        | PB4UD             | UDEPB5     | UDEPB4              | PB3U             | PB2U                                                                                               | PB1U             | PB0L      |
|          |                    | (?                 |              | ))                | •          | V                   | V                | •                                                                                                  | •                | •         |
|          | Port B             | 20H                | $\sqrt{2}$   | U o               | 0          | 0                   | 1                | 0                                                                                                  | 0                | 0         |
| PRINCE   | pull               | Z                  | Resistance   | Resistance        | Resistance | Resistance          | Pull-up          | Pull-up                                                                                            | Pull-up          | Pull-up   |
| TROBE    | up/down            | (Prohibit          | control      | control           | control    | control             | resistance       | resistance                                                                                         | resistance       | resistanc |
| $\sim$   | control            | RMW)               | 0: Pull up   | 0: Pull up        | 0: Pull up | 0: Pull up          | 0: Disable       | 0: Disable                                                                                         | 0: Disable       | 0: Disabl |
|          |                    |                    | 1: Pull down | 1: Pull           | 1: Pull    | 1: Pull             | 1: Enable        | 1: Enable                                                                                          | 1: Enable        | 1: Enable |
|          | 1                  |                    |              | 1                 | 1 .        | 1 .                 | 1                | 1                                                                                                  |                  |           |

|        | - 1       |                   | o. o,       |                |                           |                   |               |            |                               |            |
|--------|-----------|-------------------|-------------|----------------|---------------------------|-------------------|---------------|------------|-------------------------------|------------|
| Symbol | Name      | Address           | 7           | 6              | 5                         | 4                 | 3             | 2          | 1                             | 0          |
|        |           | 26H               | PC7C        | PC6C           | PC5C                      | PC4C              | PC3C          |            |                               |            |
| PCCP   | Port C    |                   |             |                | W                         |                   |               |            | /                             | /          |
| FUUR   | control   | (Prohibit         | 1           | 1              | 0                         | 0                 | 0             | Į          | /                             | /          |
|        |           | RMW)              |             | 0: Input       | 1:                        | Output            |               | $\sim$     |                               |            |
|        |           |                   | /           | /              | PC5F                      | /                 | PC3F          | ł          | 12                            | /          |
|        | Darto     | 27H               |             |                | W                         |                   | W             |            | $\rightarrow$                 |            |
| PCFC   | POR C     | (Due hilbit       |             |                | 0                         |                   | 0             |            | $\sim$                        |            |
|        | Tunction  | (Pronibit<br>RMW) |             |                | 0: Port                   |                   | 0: Port       | $(\vee/)$  |                               |            |
|        |           |                   |             |                | 1: SCLK1                  |                   | 1: TXD1       | $\searrow$ |                               |            |
|        |           |                   | /           | /              | ODEPC3                    | PC5UD             | PC4UD         | UDEPC5     | UDEPC4                        | PC3U       |
|        |           |                   |             |                |                           |                   |               | V)         |                               |            |
|        | Bort C    | 28H               | /           | /              | 0                         | 0                 | $\bigcirc$    | 0          | 0                             | 0          |
| PCUDOE | open      |                   |             |                | 0: 3 states               | Resistance        | Resistance    | Resistance | Resistance                    | Rullup     |
|        | drain     | (Prohibit         |             |                | 1: Open                   | control           | control       | control    | control                       | 0: Disable |
|        |           | RMW)              |             |                | drain                     | 0: Pull up        | 0: Pullvup    | 0: Disable | 0: Disable                    | ): Enable  |
|        |           |                   |             |                |                           | 1: Pull           | 1: Pull       | 1: Enable  | 1: Enable                     |            |
|        |           |                   |             |                |                           | down              | down          | $ \wedge$  | $\langle \mathcal{O} \rangle$ | )          |
|        |           |                   | PD7F        | PD6F           |                           | PD4F              | PD3F          | PD2F       | PD1F                          | PD0F       |
|        |           |                   | W           | W              | $\rightarrow$             | _w∨               | W             |            | , ∕∕w                         | W          |
|        |           | 24日               | 0           | 0              | A                         | 0                 | 0             | $\bigcirc$ | ) 0                           | 0          |
|        | Port D    | 2711              | 0: Port     | 0: Port        |                           | 0: Port           | 0: Port       | 0: Port    | 0: Port                       | 0: Port    |
| PDFC   | function  | (Prohibit         | 1: MLDALM   | 1: ALARM       | $\langle \rangle \rangle$ | 1. DOFFB          | 1: DLEBCD     | 1:D3BFR    | 1: D2BLP                      | 1: D1BSCP  |
|        | Turiotion | RMW)              |             | at <pd6></pd6> | $\sim$                    |                   | $\sim$        | $\bigcirc$ |                               |            |
|        |           | ,                 |             |                |                           |                   | $\frown$      |            |                               |            |
|        |           |                   |             | at <pd6></pd6> | $\searrow$                |                   |               |            |                               |            |
|        |           |                   |             | ∉Ø             | $\sim$                    |                   | $\searrow //$ |            |                               |            |
|        |           | 2BH               | PD7C        | RD6C           |                           | PD4C              | PD3C          | PD2C       | PD1C                          | PD0C       |
| PDCP   | Port D    |                   | W           | $\supset \chi$ |                           | Ŵ                 | Ŵ             | W          | W                             | W          |
| FDCK   | control   | (Prohibit         | 0 ( (       | 0              |                           | 0                 | 0             | 0          | 0                             | 0          |
|        |           | RMW)              | 0: Input    | 1: Output      |                           | $\langle \rangle$ | 0: In         | put 1: C   | Dutput                        |            |
|        |           |                   | (PD7U)      | PD6U           | - <                       | RD4D              | PD3U          | PD2U       | PD1U                          | PD0U       |
|        | Port D    | 2CH               | $(\vee / )$ | )              | $\frown$                  | >                 | V             |            |                               |            |
|        | pull      | $/ \bigcirc$      | 0           | 0              | (@//                      |                   | 1             | 1          | 1                             | 1          |
| DODE   | up/down⁄  | (Prohibit         | Pull up7    | Pull up        | Always                    | Pull up           | Pull up       | Pull up    | Pull up                       | Pull up    |
|        | control   | RMW               | 0: Disable  | 0: Disable     | write 0                   | 0: Disable        | 0: Disable    | 0: Disable | 0: Disable                    | 0: Disable |
|        |           |                   | 1: Enable   | 1: Enable      | $\rightarrow$             | 1: Enable         | 1: Enable     | 1: Enable  | 1: Enable                     | 1: Enable  |

I/O port control (3/3)



| Symbol                    | Name                  | Address                  | 7          | 6                       | 5              | 4                         | 3          | 2                                               | 1             | 0                 |
|---------------------------|-----------------------|--------------------------|------------|-------------------------|----------------|---------------------------|------------|-------------------------------------------------|---------------|-------------------|
|                           |                       |                          | /          |                         |                |                           |            | IN                                              | ТО            |                   |
|                           |                       |                          |            | /                       |                | /                         | I0C        | I0M2                                            | I0M1          | I0M0              |
| INTE0                     | Interrupt<br>enable 0 | 90H                      | /          |                         |                |                           | R          | $\sim$                                          | R/W           |                   |
|                           | chable 0              |                          |            | $\backslash$            |                |                           | 0          | 0                                               | 0             | 0                 |
|                           |                       |                          |            |                         |                |                           | 1: INT0    | (( )                                            | nterrupt leve |                   |
|                           |                       |                          |            | IN.                     | T2             |                           |            |                                                 | F1/           |                   |
|                           | Interrupt             |                          | I2C        | I2M2                    | I2M1           | I2M0                      | I1C /      | T1M2                                            | I1M1          | I1M0              |
| INTE12                    | enable                | 91H                      | R          |                         | R/W            |                           | R          | $\vee$                                          | R/W           |                   |
|                           | INT2/1                |                          | 0          | 0                       | 0              | 0                         | 0          | 9                                               | 0             | 0                 |
|                           |                       |                          | 1: INT2    |                         | nterrupt level |                           | 1:(INT1    |                                                 | nterrupt leve |                   |
|                           |                       |                          |            | INTA                    | LM4            |                           |            | ノ) in                                           | Т3            |                   |
|                           | Interrupt             |                          | IA4C       | IA4M2                   | IA4M1          | IA4M0 (                   | (13C)      | I3M2                                            | I3M1          | I3M0              |
|                           | enable                | 92H                      | R          |                         | R/W            | 4                         | R          |                                                 | R/W           | $\langle \rangle$ |
|                           | ALM4                  |                          | 0          | 0                       | 0              | 0                         | 0          | 0                                               | 0             | 0                 |
|                           |                       |                          | 1: INTALM4 |                         | nterrupt level | $(\Omega)$                | A: INT3    | /1                                              | nterrupt leve | ł                 |
|                           |                       |                          |            | INTA                    | LM1            |                           | ))         |                                                 | LMO/          | )                 |
|                           | Interrupt             |                          | IA1C       | IA1M2                   | IA1M1          | TA1M0                     | IA0C       | IA0M2                                           | VAOM1/        | / IA0M0           |
| ALM01                     | enable                | 93H                      | R          |                         | R/W(           |                           | R          | $\square$                                       | R/W           |                   |
| , LEWIO I                 | ALM0/1                |                          | 0          | 0                       |                | 0                         | 0          | $\left( \begin{array}{c} 0 \end{array} \right)$ | 0             | 0                 |
|                           |                       |                          | 1: INTALM1 | l                       | nterrupt level | $\sim$                    | 1: INTALM0 |                                                 | nterrupt leve |                   |
|                           |                       |                          |            | INTA                    | /LM3           | $\geq$                    | $( \cap$   |                                                 | LM2           |                   |
|                           | Interrupt             |                          | IA3C       | IA3M2                   |                | IA3M0                     | IA2C       | IA2M2                                           | IA2M1         | IA2M0             |
| ALM23                     | enable                | 94H                      | R          | 20                      | RAW            |                           | R          | $\mathcal{T}$                                   | R/W           |                   |
| _                         | ALM2/3                |                          | 0          | 0                       | 0<br>0         | _0_                       | Ø          | 0                                               | 0             | 0                 |
|                           |                       |                          | 1: INTALM3 |                         | nterrupt level |                           | 1: INTALM2 | I                                               | nterrupt leve |                   |
|                           | Interrupt             |                          |            | (INTTA)(                | TMRA1)         |                           | $\searrow$ | INTTA0                                          | (TMRA0)       |                   |
|                           | enable                |                          | ITA1C      | TA1M2                   | ITA1M1         | ITA1M0                    | ITAÓC      | ITA0M2                                          | ITA0M1        | ITA0M0            |
| TA01                      | timer A               | 95H                      | R/         | $\langle \land \rangle$ | R/W            | $\square$                 | R          |                                                 | R/W           |                   |
|                           | 1/0                   |                          | 0          | ) ø                     | 0 (            | Q                         | 0          | 0                                               | 0             | 0                 |
|                           |                       |                          | 1. INTLAL  |                         | nterrupt level | $\langle \langle \rangle$ | 1: INTTA0  | I                                               | nterrupt leve |                   |
|                           | Interrupt             | $\frown$                 |            | INTTA3 (                | (TMRA5)        | 27                        |            | INTTA2                                          | (TMRA4)       |                   |
|                           | enable                | $\langle \frown \rangle$ | (ITA3C)    | ITA3M2                  | ITA3M1         | ITA3M0                    | ITA2C      | ITA2M2                                          | ITA2M1        | ITA2M0            |
| TA23                      | timer A               | ( 96H) L                 | R          | $\frown$                | (R/W/ )        | )                         | R          |                                                 | R/W           |                   |
|                           | 3/2                   | $\bigtriangledown$       | 0          | 0                       | 0              | 0                         | 0          | 0                                               | 0             | 0                 |
|                           |                       |                          | 1: INTTA3  |                         | nterrupt level |                           | 1: INTTA2  | I                                               | nterrupt leve |                   |
|                           | Interrupt             |                          | >          | INTI                    | KEY/           |                           |            | INT                                             | RTC           |                   |
| INTE                      | enable                | .                        | IKC        | IKM2                    | IKM1           | IKM0                      | IRC        | IRM2                                            | IRM1          | IRM0              |
| RTCKEY                    | RTC and               | 97H                      | R          |                         | ∕R/W           |                           | R          |                                                 | R/W           |                   |
|                           | KEY                   | $\mathcal{S}$            | 0 (        | ( 0                     | 0              | 0                         | 0          | 0                                               | 0             | 0                 |
|                           | $(\bigcirc)$          |                          | 1: INTKÉY  |                         | nterrupt level |                           | 1: INTRTC  | I                                               | nterrupt leve |                   |
| $\langle \langle \rangle$ | $(\bigcirc)$          |                          |            | $\searrow$              |                |                           |            |                                                 |               |                   |

# (3) Interrupt control (1/3)

| Symbol | Name         | Address    | 7         | 6           | 5               | 4                       | 3                | 2                                               | 1             | 0         |
|--------|--------------|------------|-----------|-------------|-----------------|-------------------------|------------------|-------------------------------------------------|---------------|-----------|
|        |              |            |           | INT         | TX0             |                         |                  | INT                                             | RX0           |           |
|        | Interrupt    |            | ITX0C     | ITX0M2      | ITX0M1          | ITX0M0                  | IRX0C            | IRX0M2                                          | IRX0M1        | IRX0M0    |
| INTES0 | enable       | 98H        | R         |             | R/W             |                         | R                | $\sim$                                          | R/W           |           |
|        | serial 0     |            | 0         | 0           | 0               | 0                       | 0                | 0                                               | 0             | 0         |
|        |              |            | 1: INTTX0 | I           | nterrupt leve   |                         | 1: INTRX0        | (()                                             | nterrupt leve | el l      |
|        |              |            |           | INT         | TX1             |                         |                  | ITM                                             | rx1/          |           |
|        | Interrupt    |            | ITX1C     | ITX1M2      | ITX1M1          | ITX1M0                  | IRX1C            | /RX1M2                                          | IRX1M1        | IRX1M0    |
| INTES1 | enable       | 99H        | R         |             | R/W             |                         | R                | $(\vee / ))$                                    | R/W           |           |
|        | serial 1     |            | 0         | 0           | 0               | 0                       | 0                | 9                                               | 0             | 0         |
|        |              |            | 1: INTTX1 | l           | nterrupt leve   |                         | 1: INTRX1        |                                                 | nterrupt leve | -         |
|        |              |            |           | INT         | LCD             |                         | $\mathcal{A}$    | <u>}</u>                                        | /             | /         |
|        | Interrupt    |            | ILCD1C    | ILCDM2      | ILCDM1          | ILCDM0                  |                  | /                                               | $\not\models$ | /         |
|        | enable       | 9AH        | R         |             | R/W             | 4                       | $\sum_{i=1}^{n}$ | /                                               | X             | $\langle$ |
| LOD    | LCD          |            | 0         | 0           | 0               | 0                       | ľ                | /                                               | Å             | /         |
|        |              |            | 1: INTLCD |             | nterrupt leve   | $\left( \Omega \right)$ | $\sim$           | (                                               |               | $\geq$    |
|        | laterrunt    |            |           | INT         | TC1             |                         | ))               | 🔷 імт                                           | teo)/         |           |
| INTETC | enable       | <b>OBH</b> | ITC1C     | ITC1M2      | ITC1M1          | TC1M0                   | ITC0C            | ITC0M2                                          | ITCOM1        | / ІТСОМО  |
| 01     | TC0/1        | 3011       | R         |             | R/W             |                         | R                | $\overline{Q}$                                  | R/W           |           |
|        |              |            | 0         | 0           | 2               | 0                       | 0                | $\left( \begin{array}{c} 0 \end{array} \right)$ | <u> </u>      | 0         |
|        | laterrunt    |            |           | INT         | тсз 🔨           |                         |                  |                                                 | 7C2           |           |
| INTETC | enable       | асн        | ITC3C     | ITC3M2      | ITC3M1          | <b>ЭТСЗМ</b> 0          | ITC2C            | ITC2M2                                          | ITC2M1        | ITC2M0    |
| 23     | TC2/3        | 3011       | R         |             | $^{\perp}(R/W)$ | >                       | R                | / ))                                            | R/W           |           |
|        |              |            | 0         | 0 \(        | 0               | 0                       | 0                | $\bigcirc 0$                                    | 0             | 0         |
|        | late www.upt |            |           | <u>T</u> MT | TRI V           |                         |                  | INT                                             | P0            |           |
|        | enable       | арн        | IP1C      | /P1M2       | ₩P1M1           | IP1MQ                   | IP0C)            | IP0M2                                           | IP0M1         | IP0M0     |
|        | PC0/1        | 3011       | R         | (())        | R/W             |                         | R                |                                                 | R/W           |           |
|        |              |            | 0         |             | 0               | 0                       | 0/               | 0                                               | 0             | 0         |

Interrupt control (2/3)



| <u> </u>      |                  |            | -                               | 2           | -             |                     | 2             | 2                                               |                   |          |
|---------------|------------------|------------|---------------------------------|-------------|---------------|---------------------|---------------|-------------------------------------------------|-------------------|----------|
| Symbol        | Name             | Address    |                                 | 6           | 5             | 4                   | 3             | 2                                               | 1                 | 0        |
|               |                  |            |                                 |             | DMA0V5        | DMA0V4              | DMA0V3        | DMA0V2                                          | DMA0V1            | DMA0V0   |
| DMA0V         | request          | 80H        |                                 |             |               | r                   | R/            | W                                               |                   |          |
| D11// 10 V    | vector           | 0011       |                                 |             | 0             | 0                   | 0             | Q                                               | 0                 | 0        |
|               |                  |            |                                 |             |               |                     | DMA0 sta      | art vector                                      | $\geq$            |          |
|               |                  |            |                                 |             | DMA1V5        | DMA1V4              | DMA1V3        | DMA1V2                                          | DMA1V1            | DMA1V0   |
|               | DMA 1            | 0111       |                                 |             |               |                     | R/            | W                                               | $\mathcal{I}$     |          |
| DIVIATV       | vector           | 0111       |                                 |             | 0             | 0                   | 0 /           | (79)                                            | 0                 | 0        |
|               |                  |            |                                 |             |               |                     | QMA1 st       | art vector)                                     |                   |          |
|               |                  |            |                                 | /           | DMA2V5        | DMA2V4              | DMA2V3        | DMA2V2                                          | DMA2V1            | DMA2V0   |
| <b>DMARY</b>  | DMA 2            | 0011       |                                 |             |               |                     | ( ( R/        | W                                               |                   |          |
| DIVIAZV       | vector           | 82H        |                                 |             | 0             | 0                   | a             | DTo                                             | 0                 | 0        |
|               | 100101           |            |                                 |             |               | (                   | DMA2 st       | art vector                                      |                   |          |
|               |                  |            | /                               | /           | DMA3V5        | DMA3V4              | DMA3V3        | DMA3V2                                          | DMA3V1            | DMA3V0   |
| <b>DMAO</b> V | DMA 3            | 0011       | $\backslash$                    | $\sim$      |               |                     | R/            | W                                               | $\langle \rangle$ | ~~~      |
| DMA3V         | request          | 83H        | /                               | $\sim$      | 0             | (07)                | $\wedge$      | 0 (                                             |                   | 0        |
|               | 100101           |            |                                 |             |               |                     | ) DMA3 st     | artvector                                       |                   |          |
|               |                  | 88H        | /                               | /           | CLRV5/        | CLRV4               | CLRV3         | CLRV2                                           | CLRV1/            | CLRV0    |
|               | Interrupt        |            | $\backslash$                    | $\sim$      | 1             |                     | V             | V                                               | $\overline{}$     |          |
| INTCLR        | clear<br>control | (Prohibit  | /                               | $\sim$      | Q (           | 0                   | 0             | $\left( \begin{array}{c} 0 \end{array} \right)$ | 0                 | 0        |
|               |                  | RMW)       |                                 |             | Clea          | rs interrupt r      | equest flag l | by writing to                                   | DMA start ve      | ector    |
|               | ПΜΑ              |            | /                               |             | $\sim$        |                     | DMAR3         | DMAR2                                           | DMAR1             | DMAR0    |
| DIAD          | software         | 0011       | $\sim$                          | $\searrow$  |               | $\sim$              | R/₩           | R/W                                             | R/W               | R/W      |
| DMAR          | request          | 89H        |                                 |             | $\mathcal{N}$ | $\searrow$          | Q             |                                                 | 0                 | 0        |
|               | register         |            |                                 |             |               |                     | 1             | : DMA reque                                     | est in softwar    | е        |
|               |                  |            | /                               | $\searrow$  | $\checkmark$  | $\sim$              | DMAB3         | DMAB2                                           | DMAB1             | DMAB0    |
| DIAD          | DMA burst        |            | $\backslash$                    | (           | $\sim$        |                     | R/W/          | R/W                                             | R/W               | R/W      |
| DMAB          | request          | 8AH        | $\backslash$                    | $\sim$      |               | $\sim$              | 0             | 0                                               | 0                 | 0        |
|               | register         |            |                                 | $\wedge$    |               | $\langle \rangle$   | 1:            | DMA reques                                      | t on burst mo     | ode      |
|               |                  |            | _//_                            | )]          | I3EDGE        | 12EDGE              | I1EDGE        | <b>IOEDGE</b>                                   | IOLE              | NMIREE   |
|               |                  |            | W                               | W           | W ~           | $\langle W \rangle$ | W             | W                                               | W                 | W        |
|               | Interrupt        | 8CH        | $\left( \left( \right) \right)$ | 0           | 0             | <u> </u>            | 0             | 0                                               | 0                 | 0        |
|               | input            |            | Always                          | Always      | INT3          | JNT2                | INT1          | INT0                                            | INT0              | 1:Operat |
| IIVIC         | mode             | (Prohibit) | write 0                         | write 0     | edge          | edge                | edge          | edge                                            | 0: Edge           | ion even |
|               | control <        | RMW        |                                 |             | 0: Rising     | 0: Rising           | 0: Rising     | 0: Rising                                       | 1: Level          | on NMI   |
|               |                  | $\searrow$ |                                 |             | 1: Falling    | 1: Falling          | 1: Falling    | 1: Falling                                      |                   | rising   |
|               |                  |            | >                               | $\langle -$ |               |                     |               |                                                 |                   | edge     |

Interrupt control (3/3)



# (4) Chip select/wait control (1/2)

| Biock 0<br>CS/WAIT<br>control<br>register         COH<br>(Prohibit<br>RMW)         BOE<br>(Prohibit<br>RMW)                                                                                                                                                                                                   | BOW0<br>W<br>0<br>served<br>vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BIOCS         COH<br>(SMVAIT<br>control)<br>register         COH<br>(Prohibit<br>RMW)         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W <t< td=""><td>W<br/>0<br/>served<br/>vaits<br/>vaits<br/>B1W0<br/>W<br/>0<br/>served<br/>vaits<br/>vaits<br/>vaits<br/>served<br/>vaits<br/>vaits<br/>W<br/>0<br/>0<br/>served<br/>vaits<br/>W<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W<br>0<br>served<br>vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>served<br>vaits<br>vaits<br>W<br>0<br>0<br>served<br>vaits<br>W<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| BIOCS         BIOCS (CSWAIT<br>control<br>register         COH<br>(Prohibit<br>RMW)         COH<br>(Prohibit<br>RMW)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th< td=""><td>0<br/>served<br/>vaits<br/>vaits<br/>B1W0<br/>W<br/>0<br/>served<br/>vaits<br/>vaits<br/>vaits<br/>vaits<br/>vaits<br/>vaits<br/>Vaits<br/>Vaits</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>served<br>vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>vaits<br>vaits<br>vaits<br>Vaits<br>Vaits                                                                                                                      |
| BOCS         CS/WAIT<br>control<br>register         (Prohibit<br>RMW)         © Disable<br>1: Enable         00: ROM/SRAM<br>10:<br>10:<br>10:<br>10:<br>10:<br>10:<br>10:<br>10:<br>10:<br>10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | served<br>vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                           |
| register         (1.0)Lit<br>RMW)         1: Enable         01:<br>10:<br>11:         width<br>REserved         001:<br>1: 8 bits         001:<br>0: (1+N), waits         101: 3 w<br>100: (1+N), waits           Block 1<br>CSWAIT<br>control<br>register         C1H<br>(Prohibit<br>RMW)         B1E         B1OM1         B1OM0         6HBUS         B1W2         B1W1         E           Block 1<br>CSWAIT<br>control<br>register         C1H<br>(Prohibit<br>RMW)         C1H         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>b2W0<br>W                                                                                                                                                                              |
| Block 1<br>control<br>register         C1H<br>(Prohibit<br>RMW)         B1E<br>(Prohibit<br>register         B1C<br>(Prohibit<br>RMW)         B1E<br>(Prohibit<br>RMW)         B1C<br>(Prohibit<br>RMW)         B1E<br>(Prohibit<br>RMW)         B1C<br>(Prohibit<br>RMW)         B1E<br>(Prohibit<br>RMW)         B1C<br>(Prohibit<br>RMW)         <                                                                                                                                                                                                | vaits<br>vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                     |
| Block 1<br>Control<br>register         C1H<br>(Prohibit<br>RMW)         B1E<br>B1E         B1OM1<br>B1OM1<br>B1OM0         B1OM0<br>(\$18US         Ø13:0<br>(\$18US         Ø13:0<br>(\$1902         B1W1<br>B1W1         E           Block 1<br>Control<br>register         C1H<br>(Prohibit<br>RMW)         B1E<br>B1E         B1OM1<br>B1OM1<br>B1OM0         B1OM0<br>(\$18US         Ø13:0<br>(\$1000         Ø14:0<br>(\$1000         Ø14:0<br>(\$1000         Ø14:0<br>(\$1000         Ø14:0<br>(\$1000         Ø14:0<br>(\$1000         Ø14:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø10:0<br>(\$1000         Ø11:0<br>(\$1000         Ø11:0<br>(\$10000         Ø11:0<br>(\$1000         Ø                                                                                                                                                                                                                                                                                                                                                                                  | vaits<br>B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                       |
| BIOCK 1<br>CONTROL<br>register         C1H<br>(Prohibit<br>register         B1E         B1OM1         B1OM0         Ø1BUS         Ø1W2         B1W1         E           BICS         CS/WAIT<br>control<br>register         C1H         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W11:         D10:         1 kas bits         D11:         D10:         N         D11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1W0<br>W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                       |
| BIOK 1<br>CS/WAIT<br>control<br>register         C1H<br>(Prohibit<br>RMW)         W<br>0         W<br>0 <td>W<br/>0<br/>served<br/>vaits<br/>vaits<br/>vaits<br/>B2W0<br/>W</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W<br>0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                               |
| B1CS         B1CK1<br>CS/WAIT<br>control<br>register         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>served<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                                    |
| B1CS         Control<br>register         (Prohibit<br>RMW)         0: Disable<br>1: Enable         00: ROM/SRAM         Data bus<br>00: 2 waits         000: 2 waits         100: Reserved<br>01: 1 wait           B1CS         Control<br>register         (Prohibit<br>RMW)         0: Disable<br>1: Enable         00: ROM/SRAM         Data bus<br>00: 2 waits         000: 2 waits         100: Reserved<br>01: 1 wait         00: (1 + N) waits         110: 3 w<br>010: (1 + N) waits         111: 3 w<br>010: (1 + N) waits         100: Reserved<br>01: 1 wait         00: 2 waits         100: Reserved<br>00: 1 + N) waits         00: 2 waits         100: Reserved<br>00: 1 + N) waits         100: 1 + N) waits         101: 3 w<br>00: 2 waits         100: Reserved<br>00: 1 + N) waits         00: 2 waits                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vaits<br>vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                                          |
| register         (1.0.0.0.4<br>RMW)         1: Enable         01:<br>10:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>10:<br>11:<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vaits<br>vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                                                   |
| Biock 2<br>CS/WAIT<br>control<br>register         C2H<br>(Prohibit<br>RMW)         B2E<br>B2CS         B2C<br>CS/WAIT<br>CONTOL<br>register         B2E<br>C2H<br>(Prohibit<br>RMW)         B2E<br>B2C         B2M<br>B2C         B2CM1<br>B2CM1<br>B2CM0<br>B2BUS<br>CS/WAIT<br>control<br>register         B2E<br>C2H<br>(Prohibit<br>RMW)         B2E<br>B2C         B2CM1<br>B2CM1<br>B2CM1<br>B2CM0<br>B2BUS<br>CS/WAIT<br>control<br>register         B2E<br>C2H<br>(Prohibit<br>RMW)         B2E<br>B2CM<br>B2CM1<br>CS/WAIT<br>control<br>register         B2C<br>C2H<br>(Prohibit<br>RMW)         B2E<br>C2H<br>CS/WAIT<br>CONTOL<br>register         B3E<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>(Prohibit<br>RMW)         B3E<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H<br>C3H                                                                                                                                                                                                                                                                                                                  | vaits<br>vaits<br>B2W0<br>W                                                                                                                                                                                                                            |
| BIOCK 2<br>CS/WAIT<br>control<br>register         C2H<br>(Prohibit<br>RMW)         B2E<br>(Prohibit<br>RMW)         B2M<br>(Prohibit<br>RMW)         B2E<br>(Prohibit<br>RMW)         B2M<br>(Prohibit<br>RMW)         B2CM<br>(Prohibit<br>RMW)         B2CM<br>(Prohibit<br>RMW)         B2C<br>(Prohibit<br>RMW)         B2E<br>(Prohibit<br>RMW)         B2M<br>(Prohibit<br>RMW)         B2OM1<br>(Prohibit<br>RMW)         B2OM1<br>(Prohibit<br>(Prohibit<br>RMW)         B2OM1<br>(                                                                                                                         | vaits<br>B2W0<br>W                                                                                                                                                                                                                                     |
| B2CS         Block 2<br>CS/WAIT<br>control<br>register         C2H         B2E         B2M         B2OM1         B2OM0         B2BUS         B2W2         B2W1         E           B2CS         Block 2<br>CS/WAIT<br>control<br>register         C2H         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B2W0                                                                                                                                                                                                                                                   |
| Block 2<br>CS/WAIT<br>control<br>register         C2H<br>(Prohibit<br>RMW)         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W <th< td=""><td>W</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W                                                                                                                                                                                                                                                      |
| B2CS       Block 2<br>CS/WAIT<br>control<br>register       C1<br>(Prohibit<br>RMW)       1<br>0: Disable<br>1: Enable       0<br>0: 16 M<br>Area<br>1: Area<br>setting       00: ROM/SRAM<br>00: ROM/SRAM       Data bus<br>width<br>0: 16 bits       000: 2 waits       100: Reserved<br>0: 14 N) waits         B3CS       Block 3<br>CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       B3E       B3QM1       B3OM0       B3BUS       B3W2       B3W1       E         B3CS       CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       B3E       B3QM1       B3OM0       B3BUS       B3W2       B3W1       E         B3CS       External<br>CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       B3QM1       B3OM1       B3OM0       B3BUS       B3W2       B3W1       E         B3CS       External<br>CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       C3H<br>(Prohibit<br>RMW)       0<br>0: Disable<br>0: Disable<br>1: Enable       00: ROM/SRAM<br>0: DATA bus<br>0: 16 bits<br>0: 16 bits<br>0: 16 bits<br>0: 11: 0 waits<br>0: 10: 0 Res<br>0: 00: 2 waits<br>0: 10: 0 Res<br>0: 0: 1 wait<br>0: 10: 10: 1 wait<br>0: 10: 10: 1 mait<br>0: 10                                                                                                                                                                                                                                                                                                                    | * *                                                                                                                                                                                                                                                    |
| B2CS       Control<br>control<br>register       (Prohibit<br>RMW)       0: Disable<br>1: Enable       0: 16 M<br>Area<br>1: Area<br>setting       00: ROM/SRAM<br>1: Area<br>1: Area<br>setting       Data bus<br>01:<br>10: Reserved       000: 2 waits<br>width<br>0: 16 bits       000: 2 waits<br>000: 2 waits       100: Rese<br>001: 1 wait         B3CS       Block 3<br>CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       B3E       B3QM1       B3OM1       B3OM0       B3BUS       B3W2       B3W1       E         B3CS       CS/WAIT<br>control<br>register       C3H<br>(Prohibit<br>RMW)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                      |
| register         RMW)         1: Enable         Area<br>1: Area<br>setting         01:<br>10:<br>14:         width<br>Reserved         001: 1 wait         101: 3 w<br>019: (1+N) waits         101: 3 w<br>019: (1+N) waits           Block 3<br>CS/WAIT<br>control<br>register         C3H         B3E         B3QM1         B3OM0         B3BUS         B3W2         B3W1         E           W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | served                                                                                                                                                                                                                                                 |
| Block 3       C3H       B3E       B3OM1       B3OM0       B3BUS       B3W2       B3W1       E         B3CS       CS/WAIT       Control       Prohibit       Reserved       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vaits                                                                                                                                                                                                                                                  |
| Block 3<br>CS/WAIT<br>control<br>register         C3H<br>(Prohibit<br>RMW)         B3E         B3QM1         B3OM0         B3BUS         B3W2         B3W1         E           B3CS         CS/WAIT<br>control<br>register         C3H<br>(Prohibit<br>RMW)         C3H<br>(Prohibit<br>RMW)         C3H<br>(Prohibit<br>RMW)         B3E         B3QM1         B3OM0         B3BUS         B3W2         B3W1         E           B3CS         CS/WAIT<br>control<br>register         C3H<br>(Prohibit<br>RMW)         C3H<br>(Prohibit<br>RMW)         C3H<br>(Prohibit<br>RMW)         B3E         B3QM1         B3OM0         B3BUS         B3W2         B3W1         E           B4CS         C3H<br>(Prohibit<br>control<br>control         C3H<br>(Prohibit         C3H<br>(Prohibit         C3H<br>(Prohibit         C7H<br>(Prohibit         C7H<br>(Prohibit <td>vaits</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vaits                                                                                                                                                                                                                                                  |
| Block 3<br>CS/WAIT<br>control<br>register         C3H<br>(Prohibit<br>RMW)         B3E         B3QM1         B3OM0         B3BUS         B3W2         B3W1         E           B3CS         CS/WAIT<br>control<br>register         C3H<br>(Prohibit<br>RMW)         C3H<br>(Proh                                                                                                                                                                                                                                                                     | vaits                                                                                                                                                                                                                                                  |
| Block 3<br>CS/WAIT<br>control<br>register       C3H       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       W       In: a bits       001: (1 + N) waits 110: 4 w       010: (1 + N) waits 110: 4 w       010: (1 + N) waits 110: 4 w       010: (1 + N) waits 110: 4 w       011: 0 waits       111: 8 w       000: 2 waits       100: Res       001: 1 wait       101: 3 w       001: 1 wait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B3W0                                                                                                                                                                                                                                                   |
| B3CS       Didok 9 T<br>CS/WAIT<br>control<br>register       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W                                                                                                                                                                                                                                                      |
| B3CS       control register       (Prohibit RMW)       0: Disable 1: Enable       00; ROM/SRAM       Data bus width       000: 2 waits       100: Res         01: Reserved       01: Reserved       width       01: 1 wait       101: 3 w         10: DRAMC       0: 16 bits       010: (1 + N) waits       111: 8 width       010: (1 + N) waits       111: 8 width         11: Reserved       11: Reserved       11: 8 bits       011: 0 waits       111: 8 width         BEXCS       C7H       W       W       W         (C7H       0       0       0         (Prohibit control register       (Prohibit control register       Data bus 000: 2 waits       100: Res         (D1: 1 wait       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                      |
| register       RMW)       1: Enable       01: Reserved       width       001: 1 wait       101: 3 w         10: DRAMC       0: 16 bits       010: (1 + N) waits       110: 4 w         11: Reserved       11: Reserved       11: 8 bits       010: (1 + N) waits       110: 4 w         BEXCS       C7H       BEXBUS       BEXW2       BEXW1       Bits         CS/WAIT       C7H       0       0       0         Prohibit       Prohibit       Data bus       000: 2 waits       100: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | served                                                                                                                                                                                                                                                 |
| BEXCS     C7H       CS/WAIT       control       (Prohibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vaits                                                                                                                                                                                                                                                  |
| BEXCS     C7H     0     0     0       Prohibit     Prohibit     Data bus     000: 2 waits     100: Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vaits                                                                                                                                                                                                                                                  |
| BEXCS External C7H<br>CS/WAIT control<br>register C7H (Prohibit C7H) ( |                                                                                                                                                                                                                                                        |
| BEXCS External CS/WAIT Control Prohibit Prohibit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |
| BEXCS CS/WAIT<br>control<br>register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        |
| Control (Prohibit ) Data bus 000. 2 waits 100. New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vaits                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vaits                                                                                                                                                                                                                                                  |
| 1: 8 bits 011: 0 waits 111: 8 w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vaits                                                                                                                                                                                                                                                  |
| Nu         S23         S22         S21         S20         S19         S18         S17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S16                                                                                                                                                                                                                                                    |
| start R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                    |
| MSAR0 address C8H 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                      |
| register 0 Start address A23 to A16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                        |
| V20 V19 V18 V17 V16 V15 V14 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |
| address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V8                                                                                                                                                                                                                                                     |
| MAMRO (mask) C9H 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V8                                                                                                                                                                                                                                                     |
| register 0 CS0 area size 0: Enable to address comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V8                                                                                                                                                                                                                                                     |
| S23         S22         S21         S20         S19         S18         S17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V8<br>1                                                                                                                                                                                                                                                |
| start R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V8<br>1<br>S16                                                                                                                                                                                                                                         |
| MSAR1 address CAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V8<br>1<br>S16                                                                                                                                                                                                                                         |
| register 1 Start address A23 to A16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V8<br>1<br>S16<br>1                                                                                                                                                                                                                                    |
| V21 V20 V19 V18 V17 V16 V15 to 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V8<br>1<br>S16<br>1                                                                                                                                                                                                                                    |
| Address R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V8<br>1<br>S16<br>1<br>V8                                                                                                                                                                                                                              |
| MAMR1 mask CBH 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V8<br>1<br>S16<br>1<br>V8                                                                                                                                                                                                                              |
| register 1 C:S1 area size 0: Enable to address comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V8<br>1<br>S16<br>1<br>V8                                                                                                                                                                                                                              |

| Symbol     | Name       | Address | 7                                             | 6     | 5            | 4             | 3            | 2          | 1             | 0   |  |  |  |  |
|------------|------------|---------|-----------------------------------------------|-------|--------------|---------------|--------------|------------|---------------|-----|--|--|--|--|
|            | Memory     |         | S23                                           | S22   | S21          | S20           | S19          | S18        | S17           | S16 |  |  |  |  |
| MEADO      | start      | CCH     |                                               |       |              | R/            | W            | ~          |               |     |  |  |  |  |
| WOARZ      | address    | ССП     | 1                                             | 1     | 1            | 1             | 1            |            | 1             | 1   |  |  |  |  |
|            | register 2 |         |                                               |       |              | Start address | s A23 to A16 |            |               |     |  |  |  |  |
|            | Memory     |         | V22                                           | V21   | V20          | V19           | V18          | V1X        | V16           | V15 |  |  |  |  |
|            | address    | CDH     |                                               |       |              | R/            | W            |            | $\mathcal{I}$ |     |  |  |  |  |
|            | mask       | CDH     | 1                                             |       |              |               |              |            |               |     |  |  |  |  |
| register 2 |            |         | CS2 area size 0: Enable to address comparison |       |              |               |              |            |               |     |  |  |  |  |
|            | Memory     |         | S23                                           | S22   | S21          | S20           | S19          | \$18       | S17           | S16 |  |  |  |  |
| MGAD2      | start      |         |                                               | R/W ( |              |               |              |            |               |     |  |  |  |  |
| WOARS      | address    | UEN     | 1                                             | 1     | 1            | 1             |              | ノ) 1       | 1             | 1   |  |  |  |  |
|            | register 3 |         |                                               |       |              | Start addres; | s A23 to A16 | 5          |               | /   |  |  |  |  |
|            | Memory     |         | V22                                           | V21   | V20          | V19<          | V18          | V17        | V16           | V15 |  |  |  |  |
|            | address    |         |                                               |       |              | R/            | W            |            |               | *   |  |  |  |  |
| IVIAIVIN3  | mask       | ULU     | 1                                             | 1     | 1            | (17)          | $^{1}$       | 1 (        | 1             | 21  |  |  |  |  |
|            | register 3 |         |                                               |       | CS3 area siz | ze 0: Enabl   | e to address | comparisor |               |     |  |  |  |  |

Chip select/wait control (2/2)

| Symbol | Name                                     | Address | 7                                                                     | 6                                                                          | 5                                                                                                                  | 4                                                                                                        | 3                                                                  | 2                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                   |
|--------|------------------------------------------|---------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|        |                                          |         | XEN                                                                   | XTEN                                                                       | RXEN                                                                                                               | RXTEN                                                                                                    | RSYSCK                                                             | WUEF                                                                                                                                   | PRCK1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRCK0                                               |
|        |                                          |         |                                                                       |                                                                            |                                                                                                                    | R/                                                                                                       | W                                                                  | ~                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |
|        |                                          |         | 1                                                                     | 1                                                                          | 1                                                                                                                  | 0                                                                                                        | 0                                                                  | Q                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                   |
| SYSCRO | System<br>clock<br>control<br>register 0 | EOH     | High-<br>frequency<br>oscillator (fc)<br>0: Stopped<br>1: Oscillation | Low-<br>frequency<br>oscillator<br>(fs)<br>0: Stopped<br>1:<br>Oscillation | High-<br>frequency<br>oscillator (fc)<br>after release<br>of STOP<br>mode<br>0: Stopped<br>1: Oscillation          | Low-<br>frequency<br>oscillator (fs)<br>after release<br>of STOP<br>mode<br>0: Stopped<br>1: Oscillation | Select clock<br>after release<br>of STOP<br>mode<br>0: fc<br>1: fs | Warm-up<br>timer<br>0 write:<br>Don't care<br>write:<br>Start timer<br>0 read: End<br>warm-up<br>1 read:<br>Not end<br>warm-up         | Select presca<br>00: (FPH<br>01: Reserved<br>10: fc/16<br>11: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aler clock                                          |
|        |                                          |         | /                                                                     | /                                                                          | /                                                                                                                  | $\sim$                                                                                                   | SYSCK                                                              | GEAR2                                                                                                                                  | GEAR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GEAR0                                               |
|        |                                          |         | /                                                                     | /                                                                          | /                                                                                                                  |                                                                                                          |                                                                    | R                                                                                                                                      | Ŵ \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|        |                                          |         | /                                                                     | /                                                                          | /                                                                                                                  | ++/                                                                                                      | 0                                                                  | _ 1 ()                                                                                                                                 | $\bigcirc 0 \bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                   |
| SYSCR1 | System<br>clock<br>control<br>register 1 | E1H     |                                                                       |                                                                            |                                                                                                                    |                                                                                                          | System<br>clock<br>selection<br>0: fc<br>1: fs                     | High-freque<br>selection (fr<br>000: fc<br>001: fc/2<br>010: fc/4<br>011: fc/8<br>100: fc/16<br>101: (Rese<br>110: (Rese<br>111: (Rese | ncv gear va<br>c)<br>rved)<br>rved)<br>rved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lue                                                 |
|        |                                          |         |                                                                       | SCOSEL                                                                     |                                                                                                                    | WUPTMO                                                                                                   | HALTM1                                                             | HALTMO                                                                                                                                 | SELDRV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DRVE                                                |
|        |                                          |         | $\rightarrow$                                                         | R/W                                                                        | 1 K/W                                                                                                              | R/W                                                                                                      | R/W                                                                | K/W                                                                                                                                    | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K/W                                                 |
| SYSCR2 | System<br>clock<br>control<br>register 2 | E2H     |                                                                       | 0: fs<br>1: ffpH                                                           | Varming-up<br>00: Reserve<br>01: 2 <sup>8</sup> /input<br>10: 2 <sup>14</sup> /input<br>11: 2 <sup>16</sup> /input | d<br>time<br>d<br>frequency<br>frequency                                                                 | 00: Reserv<br>01: STOP r<br>10: IDLE1 r<br>11: IDLE2 r             | ed<br>mode<br>mode<br>mode                                                                                                             | <pre></pre> <pre>&lt;</pre> | 1: Drive<br>the pin<br>in<br>STOP/<br>IDLE1<br>mode |

(5) Clock gear (1/2)

|                               | 0             | ,                    |                         |              |                     |                          |               |                        |              |             |  |
|-------------------------------|---------------|----------------------|-------------------------|--------------|---------------------|--------------------------|---------------|------------------------|--------------|-------------|--|
| Symbol                        | Name          | Address              | 7                       | 6            | 5                   | 4                        | 3             | 2                      | 1            | 0           |  |
|                               |               |                      | PROTECT                 | -            | -                   | -                        | -             | EXTIN                  | DRVOSCH      | DRVOSCI     |  |
|                               |               |                      | R                       | R/W          | R/W                 | R/W                      | R/W           | /R/W                   | R/W          | R/W         |  |
|                               | ENO           |                      | 0                       | 0            | 1                   | 0                        | 0             | 0                      | 1            | 1           |  |
| EMCCR0                        |               | E3H                  | Protection              | Always       | Always              | Always                   | Always        | 1: fc/is               | fc           | fs          |  |
| Lincorto                      | register 0    | 2011                 | flag                    | write 0      | write 1             | write 0                  | write 0       | external               | oscillator   | oscillator  |  |
|                               |               |                      | 0: Off                  |              |                     |                          |               | clock                  | drivability  | drivability |  |
|                               |               |                      | 1: On                   |              |                     |                          | (             | $(7/\land$             | 1: Normal    | 1: Normal   |  |
|                               |               |                      |                         |              |                     |                          | $\sim$        | $\langle \cup \rangle$ | 0: Weak      | 0: Weak     |  |
| EMCCR1                        | EMC           | F4H                  |                         |              |                     |                          | $\cdot$       | $\sim$                 |              |             |  |
| Lincolt                       | register 1    |                      | Set                     | protection ( | ON/OFF by 1         | Ist-key, 2nd-            | key (         | TMCCDO                 |              | -           |  |
|                               | EMC           |                      |                         | Protection ( | JIN: Set cont       |                          | CRI = SAH,    | ENCOR2 =               | A5H IN1St-K  | ey<br>I kov |  |
| EMCCR2                        | control       | E5H                  |                         | FIOLECTION   |                     |                          | JER I = ASF   |                        | = SAFUIT ZUC | з-кеу       |  |
|                               | register 2    |                      |                         |              |                     |                          |               |                        | AL           |             |  |
|                               |               |                      |                         | ENFROM       | ENDROM              | ENPROM                   | $\rightarrow$ | FFLAG                  | DFLAG        | PFLAG       |  |
|                               |               |                      |                         | R/W          | R/W                 |                          | $\rightarrow$ |                        |              | R/W         |  |
|                               |               |                      |                         | U<br>CS1A    | U<br>CS2B-202       | CS2A                     | $\succ$       | CS1A                   | C\$28-20     | CS2A        |  |
|                               |               |                      |                         | area         | area                | area                     |               | write                  | write        | write       |  |
| EMCCB3                        | EMC           | EGH                  |                         | detect       | detect              | detect                   |               | operation              | operation    | operation   |  |
| LIVICOI                       | register 3    | LOIT                 |                         | enable       | enable              | enable<br>0. Dischla     |               | flag                   | flag         | flag        |  |
|                               | U U           |                      |                         | 0: Disable   | U: Disable          | U: Disable               |               | When read              | ing          |             |  |
|                               |               |                      |                         | 1. LITADIE   |                     |                          |               | Ø: Not writte          | ən           |             |  |
|                               |               |                      |                         | ~((          | $\sim$              |                          |               | 1: When writin         |              |             |  |
|                               |               |                      |                         |              | $\sim$              |                          |               | 0: Clear flag          | a            |             |  |
|                               |               |                      |                         |              | $\checkmark$        | $\sim$                   | $\rightarrow$ |                        | TA3MLDE3     | TA3I CDF    |  |
|                               |               |                      | $\vee$                  | ( )          | $\sim$              | $\sim$                   | $\searrow$    | $\sim$                 | RW           | R/W         |  |
|                               | EMC           |                      | $\langle$               | $\sim$       | $\sim$              | $\backslash$             | $\sim$        | $\backslash$           | 0            | 0           |  |
| FMCCR4                        | control       | F7H                  |                         | $\land$      |                     | $\wedge$                 |               |                        | MLD          | LCD cloc    |  |
| Lincolt                       | register 4    | 2/11                 |                         |              |                     |                          |               |                        | clock        | selection   |  |
|                               | 5             |                      |                         |              | $\sim$              | $\langle \frown \rangle$ |               |                        | selection    | 0: 32 kHz   |  |
|                               |               |                      | $(// \uparrow)$         |              |                     | $\geq$                   |               |                        | 0: 32 KHZ    | 1: Timer 3  |  |
|                               |               |                      | $\langle \cdot \rangle$ |              | $\overline{\Omega}$ | $\sim$                   |               |                        | 1. Timer 3   |             |  |
| Note:                         | EMCCR/1/      | (2)_                 |                         | $\frown$     |                     | ))                       |               |                        |              |             |  |
|                               | If protection | on is on,th          | e followin              | g SFRs ca    | an't be rev         | vrite                    |               |                        |              |             |  |
|                               | 1. CS/W       | AIT Contro           | oller                   |              | $\geq$              |                          |               |                        |              |             |  |
|                               | B0CS.         | B1CS. B              | ,<br>2CS. B3C           | S. BEXC      | S.                  |                          |               |                        |              |             |  |
|                               | MSAR          | 0/1/2/3. N           | /<br>1AMR0/1/2          | 2/3          |                     |                          |               |                        |              |             |  |
|                               | 2. MMU        | $\backslash \square$ | /                       | >            | $\checkmark$        |                          |               |                        |              |             |  |
|                               | HOCA          | 0/1/2/3              |                         | (            |                     |                          |               |                        |              |             |  |
| $\wedge$                      | 3 Clock       | dear (FM)            |                         |              | n he writt          | en to)                   |               |                        |              |             |  |
|                               | SVSC          | RU SXSC              | RI SVS                  |              |                     |                          |               |                        |              |             |  |
|                               |               |                      |                         |              |                     |                          |               |                        |              |             |  |
|                               |               |                      |                         | /            |                     |                          |               |                        |              |             |  |
|                               |               | TO, DRIV             |                         |              |                     |                          |               |                        |              |             |  |
| $\sim$                        | DOLO          |                      |                         |              |                     |                          |               |                        |              |             |  |
|                               |               |                      |                         |              |                     |                          |               |                        |              |             |  |
| P7CR, P7FC, P7FC2, PDCR, PDFC |               |                      |                         |              |                     |                          |               |                        |              |             |  |
|                               | 6. DRAN       | IC                   |                         |              |                     |                          |               |                        |              |             |  |
|                               | DMEN          | ICR, DRE             | FCR                     |              |                     |                          |               |                        |              |             |  |

Clock gear (2/2)

| Symbol | Name                  | Address | 7       |      | 6                  | 5            | 4                         | 3             | 2                       | 1             | 0            |
|--------|-----------------------|---------|---------|------|--------------------|--------------|---------------------------|---------------|-------------------------|---------------|--------------|
|        |                       |         | ACT1    |      | ACT0               | DLUPFG       | DLUPTM                    |               |                         |               |              |
|        |                       |         | R/W     |      | R/W                | R            | R/W                       |               | $\rightarrow$           |               |              |
|        | DEM                   |         | 0       |      | 0                  | 0            | 0                         |               | $\mathcal{N}$           |               |              |
| DFMCR0 | control               | E8H     | DFM     | LUP  | fFPH               | Lockup       | Lockup                    |               | $\widehat{\mathcal{C}}$ |               |              |
|        | register 0            |         | 00 STOP | STOP | <sup>o</sup> fosch | 0. Out of    | $0.2^{12}/f_{0}$          |               |                         | )7            |              |
|        |                       |         | 01 RUN  | RUN  | fosch              | LUP          | 1: 2 <sup>10</sup> /foscн |               |                         | $\mathcal{D}$ |              |
|        |                       |         | 10 RUN  | STOP |                    | 1: In LUP    | 00011                     | $\sim$ (      | $(// \uparrow)$         |               |              |
|        |                       |         |         | 310P |                    | D5           | D4                        | 13            |                         | D1            | DO           |
|        |                       |         |         |      | DU                 | 5            | R/                        | w             |                         | DI            | DU           |
|        | DFM                   | 5011    | 0       |      | 0                  | 0            | 1                         | 0             | ) Yo                    | 1             | 1            |
| JFMCR0 | control<br>register 1 | E9H     |         |      |                    |              | DFM çó                    | rrection      | 9                       |               |              |
|        | logictor i            |         |         |      | Input              | frequency 4  | to 6.75 MHz               | (at 2.7 V to  | 3.6 V): Write           | э 0BH         | $\searrow$   |
|        |                       |         |         |      | Inp                | ut frequency | 2 to 2.5 MH               | z (at 2 V ± 1 | 0%): Write 1            | BH            | $\checkmark$ |
|        |                       |         |         |      |                    |              |                           |               | 3                       |               |              |

(7) 8-bit timer

(7-1) TMRA01

| Symbol      | Name           | Address           | 7             | 6                 | 5                       | 4                | 3            | 2                                       | 1                    | 0                     |
|-------------|----------------|-------------------|---------------|-------------------|-------------------------|------------------|--------------|-----------------------------------------|----------------------|-----------------------|
|             |                |                   | TA0RDE        | /                 |                         |                  | I2TA01       | TA01PRUN                                | TA1RUN               | <b>TAORUN</b>         |
|             |                |                   | R/W           | /                 |                         | /                | R/W          | RAW                                     | R/W                  | R/W                   |
| TA01        | Timer          |                   | 0             |                   |                         |                  | 0            | 0                                       | 0                    | 0                     |
| RUN         | RUN            | 100H              | Double        |                   |                         |                  | IDLE2        | 8-bit timer r                           | un/stop con          | trol                  |
|             |                |                   | buffer        |                   |                         |                  | 0: Stop      | 0: Stop and                             | l clear              |                       |
|             |                |                   | 0: Disable    |                   |                         |                  | 1: Run       | 1: Run (Co                              | unt up)              |                       |
|             |                |                   | 1: Enable     |                   |                         |                  | $\sim$       |                                         |                      |                       |
| TAODEO      | 8-bit          | 102H              |               |                   |                         | -                | -            | $\underline{\langle \bigcirc}$          |                      |                       |
| TAUREG      | register 0     | (Prohibit<br>RMW) |               |                   |                         | V                | V            |                                         |                      |                       |
|             | 0              | 40011             |               |                   |                         | Unde             |              | $\rightarrow \gamma$                    |                      |                       |
| TA1REG      | 8-bit<br>timer | 103H<br>(Prohibit |               |                   |                         | -                |              |                                         | $\frown$             |                       |
|             | register 1     | RMW)              |               |                   |                         | ,<br>Linde       | fined        |                                         |                      |                       |
|             |                |                   | TA01M1        | TA01M0            | PWM01                   | PWM00            |              | TA1CLK0                                 | TAOCLK1              | TAOCI KO              |
|             | 0.1.1          |                   |               |                   |                         |                  | W            | /////////////////////////////////////// |                      |                       |
|             | 8-Dit<br>timer |                   | 0             | 0                 | 0                       | 0                | )) o         | <b>○</b> 0 (                            | $\bigcirc 0 \subset$ | 0                     |
| TA01<br>MOD | Source         | 104H              | 00: 8-bit tin | her               | 00: Reserv              | ed               | 00: TAOTR    | G                                       | 00: 7Á01N            | pin                   |
| NIOD        | CLK and        |                   | 01: 16-bit ti | mer               | 01: 2 <sup>6</sup> PW(N | 1 cycle          | 01: φT1      |                                         | 01: 01               | /                     |
|             | MODE           |                   | 10: 8-bit PF  | ۶G                | 10: 27                  | $\langle \ \lor$ | 10:          | (//                                     | 10: oT4              |                       |
|             |                |                   | 11: 8-bit PV  | VM                | 11: 2 <sup>8</sup>      | $\searrow$       | 11:          | $\langle \cdot \rangle$                 | )11:                 |                       |
|             |                |                   |               |                   | $\langle \rangle$       |                  | TA1FFC1      | TA1FEC0/                                | TA1FFIE              | TA1FFIS               |
|             | 0.1-14         |                   |               |                   | $\square$               | 1                | ( (R         | ŴV 🔿                                    | R                    | W                     |
|             | 8-bit<br>timer | 105H              |               | $\sim$            | $\langle \rangle$       | $\sim$           | 1            | $\bigcirc 1$                            | 0                    | 0                     |
| TA1FFCR     | flip-flop      | (Prohibit         |               | $\leq \langle$    |                         |                  | 00: Invert 1 | FA1FÉ                                   | 1: TA1FF             | 0: TMRA0              |
|             | control        | RIVIVV)           |               |                   |                         |                  | 01: Set TA   | 1FF                                     | Invert               | 1: TMRA1<br>inversion |
|             |                |                   |               | $( \bigcirc )$    | $\sim$                  |                  | 10: Clear T  | A1FF                                    | chable               |                       |
|             |                |                   |               | ( )               | )                       |                  | VIL Dout c   | are                                     |                      |                       |
|             | (7-9) TV       | 0400              | 6             | $\overline{2}$    | /                       | $\wedge$         | $\sim$       |                                         |                      |                       |
|             | $(1^{-2})$ IMI | nAZ3              | ((            | $\langle \rangle$ |                         |                  |              |                                         |                      |                       |

|           | Symbol        | Name       | Address                                 | 7 6              | 5 (                             | 4                 | 3            | 2             | 1              | 0          |
|-----------|---------------|------------|-----------------------------------------|------------------|---------------------------------|-------------------|--------------|---------------|----------------|------------|
|           |               |            |                                         | TA2RDE           | /                               | $\mathcal{H}$     | I2TA23       | TA23PRUN      | <b>TA3RUN</b>  | TA2RUN     |
|           |               |            |                                         |                  |                                 | A                 | R/W          | R/W           | R/W            | R/W        |
|           | T423          | Timer      |                                         |                  | $\langle f \rangle$             |                   | 0            | 0             | 0              | 0          |
|           | RUN           | RUN /      | /108H)                                  | Double           |                                 | $\langle \rangle$ | IDLE2        | 8-bit timer r | un/stop cont   | trol       |
|           |               | <          | $\langle / -$                           | buffer           | $\langle \langle \cdot \rangle$ |                   | 0: Stop      | 0: Stop and   | l clear        |            |
|           |               |            | $\sim$                                  | 0: Disable       | $\searrow$                      |                   | 1: Run       | 1: Run (Co    | unt up)        |            |
|           |               | 8-bit      | 10AH                                    |                  |                                 |                   |              |               |                |            |
|           | TA2REG        | timer 🔈    | (Prohibit                               |                  |                                 | V                 | V            |               |                |            |
|           | _             | register Ø | RMW)                                    |                  | $\geq$                          | Unde              | fined        |               |                |            |
|           |               | 8-bit      | 10BH                                    | $\land$          |                                 | -                 | -            |               |                |            |
|           | <b>TA3REG</b> | timer      | (Prohibit                               |                  |                                 | V                 | V            |               |                |            |
|           | ~             | register 1 | RMW)                                    | )./              |                                 | Unde              | fined        |               |                |            |
|           | /             | $\square$  |                                         | TA23M1 TA23M0    | PWM21                           | PWM20             | TA3CLK1      | TA3CLK0       | TA2CLK1        | TA2CLK0    |
|           | $\sim$        | 8-bit      | $\wedge$                                |                  |                                 | R/                | W            |               |                |            |
| $\langle$ | TA23          | timer      |                                         | 0 0              | 0                               | 0                 | 0            | 0             | 0              | 0          |
|           | MOD           | source     | 10CH                                    | 00: 8-bit timer  | 00: Reserve                     | ed                | 00: TA2TR    | G             | 00: Reserve    | ed         |
|           |               |            | $\langle \rangle$                       | 01: 16-bit timer | 01: 2°PWM                       | cycle             | 01:          |               | 01:            |            |
|           |               | WODE       |                                         | 10: 8-bit PPG    | 10: 2'                          |                   | 10:          |               | 10:            |            |
|           |               |            |                                         |                  | 11:2                            |                   | 11:          |               | 11: φT16       |            |
|           |               |            |                                         |                  |                                 | $\geq$            | TA3FFC1      | TA3FFC0       | <b>TA3FFIE</b> | TA3FFIS    |
|           |               | 8-bit      | 40511                                   |                  |                                 |                   | R/           | W             | R/             | W          |
|           | TASEEOD       | timer      | 10DH                                    |                  |                                 |                   | 1            | 1             | 0              | 0          |
|           | INSFECK       | flip-flop  | (Pronibit<br>RMW)                       |                  |                                 |                   | 00: Invert T | A3FF          | 1: IA3FF       | U: IMRA2   |
|           |               | control    | (((((())))))))))))))))))))))))))))))))) |                  |                                 |                   | 10: Clear T  |               | enable         | inverision |
|           |               |            |                                         |                  |                                 |                   | 11: Don't c  | AJEE          | 0.13010        |            |
|           |               |            |                                         |                  |                                 |                   | TT. DUITU    |               |                |            |

(8) UART/SIO channel (1/2)

(8-1) UART/SIO channel 0

| Symbol            | Name               | Address                  | 6 7               | 6                    | 5                              | 4                   | 3                     | 2                                                                                                                                                                              | 1                   | 0                     |
|-------------------|--------------------|--------------------------|-------------------|----------------------|--------------------------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|
|                   | Serial             | 200H                     | RB7/TB7           | RB6/TB6              | RB5/TB5                        | RB4/TB4             | RB3/TB3               | RĘ2/TB2                                                                                                                                                                        | RB1/TB1             | RB0/TB0               |
| SC0BUF            | channel 0          | (Prohibit                |                   |                      | R (                            | Receiving)/V        | V (Transmiss          | ion)                                                                                                                                                                           | `                   |                       |
|                   | buffer             | RMW)                     |                   |                      |                                | Unde                | efined                | $( \subset$                                                                                                                                                                    |                     |                       |
|                   |                    |                          | RB8               | EVEN                 | PE                             | OERR                | PERR                  | FERR                                                                                                                                                                           | $\mathcal{H}$       |                       |
|                   | Sorial             |                          | R                 | R                    | ./W                            | R (Clea             | ared to 0 by r        | eading)                                                                                                                                                                        | $\rightarrow$       |                       |
| SC0CR             | channel 0          | 201H                     | Undefined         | 0                    | 0                              | 0                   | <b>○</b> <sup>0</sup> | $(/ \emptyset \land$                                                                                                                                                           |                     |                       |
| occon             | control            | 20111                    | Receiveing        | Parity               | 1: Parity                      |                     | 1: Error              | $\langle \cup \rangle$                                                                                                                                                         |                     |                       |
|                   |                    |                          | data bit 8        | 0: Odd               | enable                         | Overrun             | Parity                | Framing                                                                                                                                                                        |                     |                       |
|                   |                    |                          |                   | 1: Even              |                                |                     |                       | $\langle \rangle$                                                                                                                                                              |                     |                       |
|                   |                    |                          | TB8               | -                    | RXE                            | -                   | SM1                   | SM0                                                                                                                                                                            | SC1                 | SC0                   |
|                   |                    |                          |                   |                      |                                | R                   | Ŵ                     |                                                                                                                                                                                |                     |                       |
|                   |                    |                          | 0                 | 0                    | 0                              | 0 <                 | 0                     | 0                                                                                                                                                                              | <u>_0</u>           | <b>)</b> 0            |
| SC0               | Serial             |                          | Transfer          | Always               | Receive                        | Always              | 00: 1/O Interf        | ace                                                                                                                                                                            | 00: TAOTRO          | 3                     |
| MOD0              | channel 0          | 202H                     | data bit 8        | write 0              | function                       | write Ø             | 01: UART 7            | bits (                                                                                                                                                                         | 01: Baud rat        | e generater           |
|                   | mode0              |                          |                   |                      | 0: Receive                     |                     | 10: UART 8            | bits                                                                                                                                                                           | 10: Internal o      | lock f <sub>SYS</sub> |
|                   |                    |                          |                   |                      | disable                        |                     | 11: UART 9            | bits                                                                                                                                                                           | 11: IrDA cloc       | 2k                    |
|                   |                    |                          |                   |                      | 1: Receive                     | $\langle \rangle$   |                       | $\square$                                                                                                                                                                      | $\supset \bigcirc$  |                       |
|                   |                    |                          |                   |                      | enable                         |                     |                       | $(\bigcirc \bigcirc $ | Ť                   |                       |
|                   |                    |                          | -                 | BR0ADDE              | BR0CK1                         | BR0CK0              | BR0S3                 | BR0S2                                                                                                                                                                          | BR0S1               | BR0S0                 |
|                   |                    |                          |                   | -                    | ( )                            | R                   |                       |                                                                                                                                                                                | -                   | -                     |
|                   | Baud rate          | 00011                    | 0                 | 0                    |                                | 0                   | 0                     | () 9                                                                                                                                                                           | 0                   | 0                     |
| BRUCK             | control            | 203H                     | Always            | 1:(16 – K)/16        | 6 <b>00: ∳</b> 70              | (                   | Setti                 | ng thé dividi                                                                                                                                                                  | ed frequency        | y "N"                 |
|                   |                    |                          | write 0           | divded               | 01: 012                        |                     |                       | (0 t                                                                                                                                                                           | o F)                |                       |
|                   |                    |                          |                   | enable               | 10:018                         |                     |                       |                                                                                                                                                                                |                     |                       |
|                   |                    |                          |                   | ( )                  | Π. φ132                        |                     | DD01/0                | DDOKO                                                                                                                                                                          | DDOKA               | DDOKO                 |
|                   | Serial             |                          |                   | $\rightarrow$        | $\leftarrow$                   |                     | BRUKS                 | BRUKZ                                                                                                                                                                          | BRUKI               | BRUKU                 |
| BR0               | channel 0          | 2044                     |                   |                      |                                | $\square$           | 0                     | к/<br>0                                                                                                                                                                        | 0                   | 0                     |
| ADD               | K setting          | 20411                    | $-\mathcal{H}$    | $\rightarrow \frown$ |                                | $ \longrightarrow $ | 0                     | to the freque                                                                                                                                                                  | U<br>Dogy divisor ( | <u>ل</u>              |
|                   | register           |                          | $\overline{\Box}$ |                      | $\sim$                         | $\square$           |                       | ivided by N                                                                                                                                                                    | + (16 - K)/1        | 6)                    |
|                   |                    | $\frown$                 | (1280)            | EDBX0                | $\sim$                         | $\rightarrow$       |                       |                                                                                                                                                                                |                     | o,                    |
|                   |                    | $\langle \frown \rangle$ | RAM               | R/M                  | $\overline{\langle q \rangle}$ |                     | $\sim$                |                                                                                                                                                                                |                     |                       |
|                   |                    |                          |                   |                      |                                | +                   | $\sim$                | $\sim$                                                                                                                                                                         |                     | $\sim$                |
|                   | Serial             |                          |                   | 1/0                  | $\searrow$                     |                     |                       |                                                                                                                                                                                |                     |                       |
| SC0               | channel 0          | 205H                     | 0. Stop           | interface            | $\geq$                         |                     |                       |                                                                                                                                                                                |                     |                       |
| MOD1              | mode1              |                          | 1. Run            | 1: Full              |                                |                     |                       |                                                                                                                                                                                |                     |                       |
|                   | $\bigtriangledown$ |                          |                   | duplex               |                                |                     |                       |                                                                                                                                                                                |                     |                       |
|                   |                    |                          |                   | Q: Half              | $\sim$                         |                     |                       |                                                                                                                                                                                |                     |                       |
|                   | $\sim$             | $\sum$                   |                   | duplex               |                                |                     |                       |                                                                                                                                                                                |                     |                       |
| ~                 | $(\bigcirc)$       |                          | $\langle$         | 1                    |                                |                     |                       |                                                                                                                                                                                |                     |                       |
| $\langle \rangle$ | (a) In             |                          |                   | $\langle \rangle$    |                                |                     |                       |                                                                                                                                                                                |                     |                       |
|                   |                    | <u> </u>                 | · (( )            |                      |                                |                     |                       |                                                                                                                                                                                |                     | 1                     |
| Symbol            | Name               | Address                  | $\sqrt{\chi}$     | )]6                  | 5                              | 4                   | 3                     | 2                                                                                                                                                                              | 1                   | 0                     |
| $\sim$            |                    |                          | RLSEL             | RXSEL                | TXEN                           | RXEN                | SIRWD3                | SIRWD2                                                                                                                                                                         | SIRWD1              | SIRWD0                |
|                   | S                  | ]                        | RAW               | R/W                  | R/W                            | R/W                 |                       | R/                                                                                                                                                                             | W                   | 1                     |
|                   | IrDA               |                          | 0 ~               | 0                    | 0                              | 0                   | 0                     | 0                                                                                                                                                                              | 0                   | 0                     |
| SIRCR             | control            | 207H                     | Transmission      | Receiving            | Transmission                   | Receiving           | Set effective         | e SIRRxD pu                                                                                                                                                                    | ulse width          |                       |
|                   | register           |                          | pulse width       | data                 | 0: Disable                     | 0: Disable          | Pulse width           | more than 2                                                                                                                                                                    | 2x × (Set valu      | ue + 1) +             |
|                   |                    |                          | 0:3/16            | 0: H pulse           | 1: Enable                      | 1: Enable           | TUUNS                 | 1 to 14                                                                                                                                                                        |                     |                       |
|                   |                    |                          | 1:1/16            | 1: L pulse           |                                |                     | POSSIDAIE:            | 0.15                                                                                                                                                                           |                     |                       |
| 1                 |                    |                          |                   |                      |                                |                     | impossible:           | 0, 10                                                                                                                                                                          |                     |                       |

## UART/SIO channel (2/2)

(8-3) UART/SIO channel 1

| Symbol            | Name          | Address           | 7                         | 6                     | 5                         | 4                   | 3                   | 2                         | 1            | 0                      |
|-------------------|---------------|-------------------|---------------------------|-----------------------|---------------------------|---------------------|---------------------|---------------------------|--------------|------------------------|
|                   | Serial        | 208H              | RB7/TB7                   | RB6/TB6               | RB5/TB5                   | RB4/TB4             | RB3/TB3             | RB2/TB2                   | RB1/TB1      | RB0/TB0                |
| SC1BUF            | channel 1     | (Prohibit         |                           |                       | R (F                      | Receiving)/M        | / (Transmiss        | ion)                      |              |                        |
|                   | buffer        | RMW)              |                           |                       |                           | Unde                | efined              | $( \subset$               |              |                        |
|                   |               |                   | RB8                       | EVEN                  | PE                        | OERR                | PERR                | FERR                      | \$¢Ľks       | IOC                    |
|                   | Sorial        |                   | R                         | R/                    | W                         | R (Clea             | red to 0 by r       | eading)                   | R/           | W                      |
| SC1CR             | channel 1     | 209H              | Undefined                 | 0                     | 0                         | 0                   | <u></u> _0 (        | $(/ o \land$              | 0            | 0                      |
| COTOR             | control       | 20011             | Receiving                 | Parity                | 1: Parity                 |                     | 1: Error            | $\langle \bigcup \rangle$ | 0: SCLK1↑    | 1: SCLK1               |
|                   |               |                   | data bit 8                | 0: Odd                | enable                    | Overrun             | Parity              | Framing                   | 1: SCLK1↓    | Pin                    |
|                   |               |                   |                           | 1: Even               |                           |                     |                     | $\sum$                    |              |                        |
|                   |               |                   | TB8                       | CTSE                  | RXE                       | WU                  | SM1                 | /SM0                      | SC1          | SC0                    |
|                   |               |                   |                           |                       | -                         | R/                  | W                   | -                         |              |                        |
| SC1               | Serial        |                   | 0                         | 0                     | 0                         | o <<                | <ul><li>○</li></ul> | 0                         | $\sim 0$     | <b>)</b> 0             |
| MOD0              | channel 1     | 20AH              | Transmission              | 1: CTS                | 1: Receive                | 1: Wake up          | 00: 1/O Inter       | face                      | 00: TAOTRO   | ì                      |
|                   | mode          |                   | data bit8                 | enable                | enable                    | enable              | 01: UART 7          | bits                      | 01: Baud rat | e generator            |
|                   |               |                   |                           |                       |                           |                     | 10: UART 8          | bits                      | 10: Internal | clock f <sub>SYS</sub> |
|                   |               |                   |                           |                       | (                         |                     | 11: UART 9          | bits                      | 11: External | clock SCLK1            |
|                   |               |                   | -                         | BR1ADDE               | BR1CK1                    | BR1CK0              | BR1S3               | BR1S2                     | BR1S1        | BR1S0                  |
|                   |               |                   |                           | 1                     |                           | R/                  | W                   | $(\Box )$                 |              | 1                      |
|                   | Baud rate     |                   | 0                         | 0                     | 0                         | <u>0</u>            | 0                   |                           | 0            | 0                      |
| BR1CR             | control       | 20BH              | Always                    | 1:(16 – K)/16         | 00: •T0                   | $\supset$           | Setti               | ng the dividi             | ed frequenc  | y "N"                  |
|                   |               |                   | write 0                   | divded                | 01: ¢T2                   |                     |                     | /)) (0 t                  | o F)         |                        |
|                   |               |                   |                           | enable                | 10: \$18                  |                     |                     |                           |              |                        |
|                   |               |                   | <hr/>                     | $\sim$                | 11: 0132                  |                     |                     |                           |              |                        |
|                   | Serial        |                   |                           |                       | $\geq$                    | $\rightarrow$       | BR1K3               | BR1K2                     | BR1K1        | BR1K0                  |
| BR1               | channel 1     | 00011             |                           | $\downarrow \bigcirc$ |                           |                     |                     | R/                        | /W           |                        |
| ADD               | K setting     | 20CH              |                           |                       |                           |                     |                     | 0                         | 0            | 0                      |
|                   | register      |                   |                           | $\land$               |                           | $\langle \rangle$   | Se                  | ets the freque            | ency divisor | "K"                    |
|                   |               |                   | 1001                      |                       | $\langle$                 | $ \longrightarrow $ |                     | Divided by N              | + (16 – K)/1 | 6)                     |
|                   |               |                   | 1251                      |                       |                           |                     |                     |                           |              |                        |
|                   |               | $\frown$          |                           | K/W                   |                           | $\rightarrow$       |                     | $\sim$                    |              |                        |
|                   |               | $\langle \rangle$ |                           | 0                     | $\rightarrow$             | $\sim$              |                     |                           |              |                        |
| SC1               | Serial        |                   | IDLEZ                     | I/O<br>interface      |                           | ))                  |                     |                           |              |                        |
| MOD1              | channel 1     | 2000              | 0: Støp                   | mode                  | $\mathbb{N}^{\mathbb{N}}$ |                     |                     |                           |              |                        |
|                   | model         |                   | 1: Run                    | 1: Full               | $\geq$                    |                     |                     |                           |              |                        |
|                   |               |                   | >                         | duplex                |                           |                     |                     |                           |              |                        |
|                   | $\frown$      |                   |                           | 0: Half               |                           |                     |                     |                           |              |                        |
|                   | $\rightarrow$ | 1                 |                           | duplex                | $\searrow$                |                     |                     |                           |              |                        |
|                   |               | $\subseteq$       | (                         | 7                     |                           |                     |                     |                           |              |                        |
|                   | ( )           |                   | $\langle \langle \rangle$ |                       |                           |                     |                     |                           |              |                        |
| $\langle \rangle$ | ( ) )         |                   |                           | $\searrow$            |                           |                     |                     |                           |              |                        |
| $\sim$            |               | $\land$           | ( )                       |                       |                           |                     |                     |                           |              |                        |
|                   | $\geq$        |                   | $\wedge \bigcirc$         | リー                    |                           |                     |                     |                           |              |                        |
| $\sim$            |               | - Zr              | $\langle -$               | /                     |                           |                     |                     |                           |              |                        |
|                   |               | $\sim$            | \                         |                       |                           |                     |                     |                           |              |                        |

| Symbol    | Name     | Address   | 7          | 6         | 5             | 4           | 3          | 2             | 1                   | 0          |
|-----------|----------|-----------|------------|-----------|---------------|-------------|------------|---------------|---------------------|------------|
|           |          |           | DMI        | RS2       | RS1           | RS0         | RW2        | RW1           | RW0                 | RC         |
|           |          |           | R/W        | R/W       | R/W           | R/W         | R/W        | R/W           | R/W                 | R/W        |
|           |          |           | 0          | 0         | 0             | 0           | 0          | 6             | 0                   | 0          |
|           |          |           | Dummy      | Refresh-o | cycle insetsi | on interval | Re         | fresh-cycle w | vidth               | Refresh-   |
|           | DRAM     |           | cycle      | 00        | 00: 31 states | 3           |            | 000: 2 states | s \ \               | cycle      |
| DREECR    | function | 430H      | 0: Disable | 00        | 01: 110 state | es          |            | 001: 3 states | )                   | 0: Disable |
| DIVELOU   | control  | -10011    | 1: Dummy   | 01        | 10: 220 state | es          |            | 010: 4 states | 3                   | 1: Enable  |
|           | 00111101 |           | cycle      | 01        | 11: 450 state | es          | $\sim$     | 011: 5 states | 3                   |            |
|           |          |           |            | 10        | 00: 900 state | es          |            | 100: 6 states | 6                   |            |
|           |          |           |            | 10        | 01: 1200 sta  | tes         | 6          | 101: 7 states | 6                   |            |
|           |          |           |            | 11        | I0: 1800 sta  | tes         |            | 110:8 states  | 6                   |            |
|           |          |           |            | 11        | 1: 2700 sta   | tes         | $\frown$   | 111: 9 states | 5                   |            |
|           |          |           | SRFC       | -         | -             | MACM        | MUXE       | MUXW1         | MUXWO               | MAC        |
|           |          |           | W          | R/W       | R/W           | R/W         | R/W        | R/W           | RW                  | R/W        |
|           |          | 431H      | 1          | 0         | 0             | 0           |            | 0             |                     | 0          |
|           | memory   |           | Self       | Always    | Always        | Memory //   | Multiplex  | Multiplex ad  | dress length        | Memory     |
| DIVIENUOI | control  | (Prohibit | -refresh   | write 0   | write 0       | access      | address    | 00: 8 bits    | $\leq l/n$          | access     |
|           | control  | RMW)      | 0: Self    |           |               | control     | 0: Disable | 01: 9 bits    | \G(//               | control    |
|           |          |           | -refresh   |           | (             | 0: Normal   | 1: Enable  | 10; 10 bits   | $\searrow \bigcirc$ | 0: Disable |
|           |          |           | 1: Release |           | $\wedge$      | 1: Stow     |            | 11:11 bits    | ) Ť                 | 1: Enable  |
|           |          |           |            |           |               |             |            |               |                     |            |

| (10    | )) Watche               | dog timer                 |                  |                                                          | $\langle \rangle$                                                              | $\searrow$            | $( \bigcirc$         | 7/5                        |                                                                        |                   |
|--------|-------------------------|---------------------------|------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------|----------------------|----------------------------|------------------------------------------------------------------------|-------------------|
| Symbol | Name                    | Address                   | 7                | 6                                                        | ্ হ                                                                            | 4                     | 3                    | <u>2</u>                   | 1                                                                      | 0                 |
|        |                         |                           | WDTE             | WDTP1                                                    | WDTPO                                                                          | $\neq$                | Ŧ                    | I2WDT                      | RESCR                                                                  | -                 |
|        |                         |                           | R/W              | R/W                                                      | R/W                                                                            | ſ                     | 7                    | R/W                        | R/W                                                                    | R/W               |
|        |                         |                           | 1                | ((0))                                                    | ) 0                                                                            | /                     | $\downarrow$         | 0                          | 0                                                                      | 0                 |
| WDMOD  | WDT<br>MODE<br>register | 300Н                      | 1: WDT<br>enable | 00: 2 <sup>15</sup> /fSYS,<br>01: 2 <sup>17</sup> /fSYS, | 10: 2 <sup>19</sup> /f <sub>SYS</sub><br>11: 2 <sup>21</sup> /f <sub>SYS</sub> |                       |                      | IDLE2<br>0: Stop<br>1: Run | 1: RESET<br>connect<br>internally<br>WDT out<br>pin to<br>RESET<br>pin | Always<br>write 0 |
| WDCR   | WD<br>control           | 301H<br>(Prehibit<br>RMW) |                  |                                                          | B1H; V                                                                         | V<br>V<br>VDT disable | <br>V<br><br>4EH: WD | DT clear                   |                                                                        |                   |

## (9) DRAM control

| Symbol | Name      | Address   | 7              | 6                 | 5                 | 4                    | 3             | 2                           | 1         | 0            |
|--------|-----------|-----------|----------------|-------------------|-------------------|----------------------|---------------|-----------------------------|-----------|--------------|
|        |           |           |                | SE6               | SE5               | SE4                  | SE3           | SE2                         | SE1       | SE0          |
| SECR   | Second    | 320H      |                |                   |                   |                      | R/W           | ~                           |           |              |
| OLOIN  | register  | 02011     |                |                   |                   |                      | Undefined     |                             |           |              |
|        |           |           | 0 is read      | 40 s              | 20 s              | 10 s                 | 8 s           | 4 8                         | 2 s       | 1 s          |
|        |           |           | /              | MI6               | MI5               | MI4                  | MI3           | MI2                         | M∦1       | MIO          |
| MINR   | Minute    | 321H      |                |                   |                   |                      | R/W           | $\sim$                      | $\sum$    |              |
|        | register  |           |                |                   |                   |                      | Undefined     | $\overline{\Omega/\Lambda}$ |           | 1            |
|        |           |           | 0 is read      | 40 min            | 20 min            | 10 min               | 8 min         | (∨_4 min)                   | 2 min     | 1 min        |
|        |           |           |                |                   | HO5               | HO4                  | HO3           | HO2                         | HO1       | HO0          |
|        | Hour      |           |                |                   |                   |                      | ( ( R)        | $\mathbb{W}$                |           |              |
| HOURR  | register  | 322H      |                |                   |                   |                      | Unde          | efined                      |           |              |
|        | -         |           | 0 is           | read              | 20 h/             | 10 h                 | 8h            | 4 h                         | 2 h       | 1 h          |
|        |           |           |                | $\sim$            | (PM/AM)           |                      | $\overline{}$ | 14/50                       |           |              |
|        | Devi      |           |                |                   |                   | $\overline{\langle}$ |               | WE2                         | WWE1      | WEO          |
| DAYR   | Day       | 323H      |                |                   |                   |                      |               | ~ (                         |           | /            |
|        | register  |           |                |                   | 0 is read         |                      | -             | W2                          |           | wo           |
|        |           |           |                | $\sim$            |                   |                      |               | PA2                         |           |              |
|        | Date      |           |                |                   | DAS               | DA4                  | DAS           |                             | DAT       | DAU          |
| DATER  | register  | 324H      | $\backslash$   | $\sim$            | - 4(-             | $\rightarrow$        | Linde         |                             | )         |              |
|        | i oglotol |           | 0 is           | read              | 20.4              | ) 10 d               | 8 d           |                             | 2 d       | 1 d          |
|        |           |           |                |                   |                   | MO4                  | MO3           | MO2                         | MO1       | MOO          |
|        |           | 325H      |                | $\sim$            | $\sim$            | WIC4                 |               | RW                          | WICT      | MOO          |
|        |           |           | $\backslash$   | $\checkmark$      | $\nearrow$        |                      |               | Undefined                   |           |              |
|        | Month     | Page 0    |                | 0 is read         | $\langle \rangle$ | 10 month             | 8 month       | 4 month                     | 2 month   | 1 month      |
|        | register  | Page 1    |                |                   |                   |                      |               |                             |           | 0: Indicator |
|        |           |           |                |                   | /                 | 0 is read            | $\sim$        |                             |           | for 12 hou   |
|        |           |           | ((             |                   |                   | 0 is read            |               |                             |           | 1: Indicator |
|        |           |           |                |                   |                   |                      |               |                             |           | for 24hou    |
|        |           | 206U      | YE/            | YE6               | YE5               | YE4                  | YE3           | YE2                         | YE1       | YE0          |
|        | Year      | 3201      | $(// \uparrow$ |                   |                   | K/                   | VV            |                             |           |              |
| ILANN  | register  | Pade      | 80.1           | /<br>             | 201               |                      |               | 4 1                         | 2 1       | 1 v          |
|        | /         | Page 0    |                | 40 y              |                   | read                 | бу            | 4 y                         |           | r setting    |
|        |           |           | $\sim$         | $\searrow$        |                   |                      |               |                             |           |              |
|        |           | 327H      | $\backslash$   |                   |                   | AD3031               |               |                             |           | R/W          |
| PAGER  | Page      |           |                | $\sim$            | $\rightarrow$     | ~~~                  | Undefined     | •••                         |           | Lindefined   |
| _      | register  | (Prohibit |                | 0 is read         | $\leftarrow$      | Adjust               | Timer         | Alarm                       | 0 is read | Page         |
|        |           |           |                |                   | $\checkmark$      | / lajust             | enable        | enable                      | 0 10 1000 | setting      |
|        |           | 2201      | DIS1HZ         | DIS16HZ           | RSTTMR            | RSTALM               | RE3           | RE2                         | RE1       | RE0          |
| $\sim$ | Reset     | 328⊓      |                |                   |                   | V                    | V             |                             |           |              |
| RESTR  | register  | (Prohibit |                | $\langle \rangle$ |                   | Unde                 | fined         |                             |           |              |
|        |           |           |                |                   |                   |                      |               |                             |           |              |
|        | register  | RMW       | 0: 1 Hz        | 0. 16 Hz          | 1: Reset          | 1: Reset             |               | Alway                       | s write 0 |              |

(11) RTC (Real time clock)

| Symbol  | Name       | Address | 7                    | 6            | 5                 | 4                         | 3              | 2                         | 1               | 0           |
|---------|------------|---------|----------------------|--------------|-------------------|---------------------------|----------------|---------------------------|-----------------|-------------|
|         | Alarm-     |         | AL8                  | AL7          | AL6               | AL5                       | AL4            | AL3                       | AL2             | AL1         |
| AI M    | nattern    | 330H    |                      |              |                   | R/                        | W              |                           |                 |             |
| 712111  | register   | 00011   |                      |              |                   | (                         | 0              |                           |                 |             |
|         |            |         |                      |              |                   | Alarm-patt                | tern setting   |                           |                 |             |
|         |            |         | FC1                  | FC0          | ALMINV            | -                         | -              | (-(                       | $\gamma \sim -$ | MELALM      |
|         |            |         | R                    | W            |                   |                           | R              | W                         | $\mathcal{I}$   | r           |
|         | Melody/    |         | (                    | )            | 0                 | 0                         | 0              | $ \sqrt{2} $              | 0               | 0           |
|         | alarm      | 331H    | Free run co          | ounter       | Alarm             |                           | Always         | write 0)                  |                 | Output      |
| MELALMC | control    |         | control              |              | wave              |                           |                |                           |                 | wave        |
|         | register   |         | 00: Hold             |              | 1. Invert         |                           |                | $\sum$                    |                 | 0: Alarm    |
|         |            |         | 10: Clear            |              |                   |                           | $\sim$         | )                         |                 | 1. Ivielouy |
|         |            |         | 11: Clear a          | nd start     |                   | ~((                       | $\sim$         |                           | $\bigcirc$      |             |
|         |            |         | ML7                  | ML6          | ML5               | ML4                       | ML3            | ML2                       |                 | MLO         |
|         | Melody     | 22211   |                      |              | •                 | R                         | Ŵ              |                           | $\mathbb{Z}$    | >           |
|         | requency   | 33211   |                      |              |                   |                           | 9)             | ( (                       | $)) \sim$       |             |
|         | register-L |         |                      |              | Melod             | y frequency               | setting (low   | 8 bits)                   | 70N)            |             |
|         |            |         | MELON                | /            | $\mathcal{A}$     | ľ                         | ML11           | ML10                      | ML9             | ML8         |
|         |            |         | R/W                  |              | X                 | $\downarrow$              |                | R                         | $\sim$ -        |             |
|         |            |         | 0                    |              | A                 | $\searrow$                |                | $(\bigcirc)$              | 0               |             |
|         | Melody     |         | Melody               |              | $\sim$            |                           | Melod          | frequency:                | setting (High   | 4 bits)     |
| MELFH   | frequency  | 333H    | counter              |              | ()                | ~                         |                | $\langle \langle \rangle$ |                 |             |
|         | register-H |         | control              | .(C          | $\sim$            |                           | $\sim$         | $\mathcal{I}$             |                 |             |
|         |            |         | 0: Stop              |              | $\rightarrow$     |                           | $\frown$       |                           |                 |             |
|         |            |         | Clear                |              | $\geq$            | $\langle \langle \rangle$ |                |                           |                 |             |
|         |            |         | 1: Start             | $(\bigcirc)$ | $\sim$            |                           | $\setminus$ // |                           |                 |             |
|         |            |         |                      | $\swarrow$   | -                 | IALM4E                    | <b>TALM3E</b>  | IALM2E                    | IALM1E          | IALM0E      |
|         | Alarm      |         | $\overline{\langle}$ |              | R/W               | $\land$                   |                | R/W                       |                 | •           |
| ALMINT  | enable     | 334H    | A                    | +            | 0 /               |                           |                | 0                         |                 | _           |
|         | register   | (       | $\overline{\Omega}$  | 9            | Always<br>write 0 |                           | ALM4 to INT    | ALM0 interru              | upt output er   | able        |

(12) Melody/alarm generator

# (13) MMU

| Symbol | Name                | Address | 7                                             | 6            | 5                      | 4                 | 3          | 2                                   | 1                                           | 0                                   |
|--------|---------------------|---------|-----------------------------------------------|--------------|------------------------|-------------------|------------|-------------------------------------|---------------------------------------------|-------------------------------------|
|        |                     |         | L0E                                           |              |                        |                   |            | L0EA22                              | L0EA21                                      | L0EA20                              |
|        |                     |         | R/W                                           |              |                        |                   |            | ~                                   | R/W                                         |                                     |
|        | LOCAL0              |         | 0                                             |              | /                      |                   |            |                                     | 0                                           |                                     |
| LOCAL0 | control<br>register | 350H    | Bank for<br>LOCAL0<br>0: Disable<br>1: Enable |              |                        |                   |            | Setting ba<br>000 Setting<br>predet | nk number fo<br>is prohibited<br>end commor | or LOCAL0<br>I because it<br>0 area |
|        |                     |         | L1E                                           | /            | /                      | /                 | $\searrow$ | (LIEA23)                            | L1EA22                                      | L1EA21                              |
|        |                     |         | R/W                                           |              |                        |                   |            | $\langle \bigcirc \rangle$          | R/W                                         |                                     |
|        | LOCAL1              |         | 0                                             |              | /                      |                   |            |                                     | 0                                           |                                     |
| LOCAL1 | control<br>register | 351H    | Bank for<br>LOCAL1                            |              |                        |                   |            | \$etting ba                         | nk number fo                                | or LOCAL0                           |
|        | -                   |         | 0: Disable                                    |              |                        |                   | $\frown$   | because                             | it predetend                                | common1                             |
|        |                     |         | 1: Enable                                     |              |                        |                   |            |                                     | Antea                                       | $\searrow$                          |
|        |                     |         | L2E                                           |              |                        | $\sum$            | $\searrow$ | L2EA23                              | (L2EA22                                     | L2EA21                              |
|        |                     |         | R/W                                           |              |                        | 164               |            | $\sim$ ((                           | <u>R/W</u>                                  |                                     |
|        | LOCAL2              | 05011   | 0                                             |              |                        | $\overline{\}$    | $\sim$     |                                     | (0)                                         |                                     |
| LOCAL2 | control             | 352H    | Bank for                                      |              | ((                     | $\sim$            |            | Setting ba                          | nk number/fo                                | or LOCAL0                           |
|        | register            |         | LOCAL2                                        |              |                        | $\langle \rangle$ |            | 111 Setting                         | is prohibited                               | l because it                        |
|        |                     |         | 0: Disable                                    |              | $\leq \langle \rangle$ | $\searrow$        |            | predet                              | ena commor                                  | 2 area                              |
|        |                     |         |                                               |              | $\searrow$             | 1 3EA26           | 135/25-    |                                     | 13EV33                                      | 135422                              |
|        |                     |         | R/W                                           |              | $\sim$                 |                   |            | R/W                                 | LJLAZJ                                      | LULAZZ                              |
|        |                     |         | 0                                             | $\sim$       |                        |                   | $\sim$     |                                     |                                             |                                     |
| LOCAL3 | control             | 353H    | Bank for                                      | - < t        | $\rightarrow$          | 01000 to 010      | 11 . CS20  | 01100 to 01                         | 111 · CS2E                                  |                                     |
|        | register            |         | LOCAL3                                        |              | $\searrow$             | 000 ot 0000       | 11 · CS2B  |                                     |                                             |                                     |
|        |                     |         | 0: Disable                                    | $(\bigcirc)$ | $\backslash$           | 00100 to 001      | 11 CS2C    |                                     |                                             |                                     |
|        |                     |         | 1: Enable                                     |              | )                      |                   |            | 10000 to 11                         | 111: Set proh                               | bition                              |

| Symbol   | Name          | Address           | 7           | 6             | 5                     | 4                   | 3                         | 2              | 1                          | 0        |
|----------|---------------|-------------------|-------------|---------------|-----------------------|---------------------|---------------------------|----------------|----------------------------|----------|
|          |               |                   | SAL15       | SAL14         | SAL13                 | SAL12               |                           | -              | -                          | MODE     |
|          | LCD start     |                   |             | R/            | W                     |                     |                           | R/W            | R/W                        | R/W      |
|          | address       | 360H              |             | (             | )                     |                     |                           | 0              | 0                          | 0        |
| LODO/ L  | register      | 00011             | SR m        | node start ad | ldress A15 t          | o A12               |                           | Always         | Always                     | Mode     |
|          | IOW           |                   |             |               |                       |                     |                           | write 0        | write 0                    | 0: RAM   |
|          |               |                   |             |               |                       |                     |                           |                | $\mathcal{D}$              | 1: SR    |
|          | LCD start     |                   | SAL23       | SAL22         | SAL21                 | SAL20               | SAL19                     | SAL18          | SAL17                      | SAL16    |
| LCDSAH   | address       | 361H              |             |               |                       | R                   | M (                       | $\vee$         |                            |          |
|          | register      |                   |             |               |                       |                     | 0                         |                |                            |          |
|          | nign          |                   |             |               | SR n                  | node start ac       | dress A23 to              | A16            | h                          |          |
|          |               |                   | COM3        | COM2          | COM1                  | COM0                | ŚĘĞ3                      | SEG2           | SEG1                       | SEG0     |
|          |               |                   |             |               |                       | R                   | AW                        | /              |                            |          |
|          |               |                   |             |               |                       | <u> </u>            | 0                         |                | $\mathcal{A}(\mathcal{A})$ | $\geq$ — |
|          | LCD size      | 2620              | SR mode:    | LCD commo     | n setting             |                     | SR mode L                 | CD commor      | vsetting                   |          |
| LODSIZE  | register      | 30211             | 0000: 64    | 0101: 12      | 8                     | (7/4)               | 0000: 32                  | 0101: 16       |                            |          |
|          |               |                   | 0001:68     | 0110:14       | 4                     |                     | 0001:64                   | 0110: 24       |                            |          |
|          |               |                   | 0010.00     | 1000.20       |                       | $\sim$              | 0011.00                   | 1000-36        |                            |          |
|          |               |                   | 0100 120    | 1000.20       | 0 Other               | Reserved            | 0100 128                  | 1000.50        | Other                      | Reserved |
|          |               |                   |             | -             | <u> </u>              | BUS1                | BUS0                      |                | FP8                        | START    |
|          |               |                   |             |               |                       | R                   | W                         |                |                            | •        |
|          |               |                   |             | (             | $\overline{\bigcirc}$ | $\rightarrow$       | 0 (7)                     | $\overline{/}$ |                            |          |
|          | control       | 363H              | DOFF        | Always        | Always                | SR mode of          | ata bus                   | RAM type       | f <sub>FP</sub> set        | SR mode  |
| LODOTE   | register      | 00011             | pin         | write 0       | write 0               | width selec         | ज्ञ 🔪 🔶                   | setting        | value bit8                 | start    |
|          | regioter      |                   | 0: Off      |               |                       | 00: Byte            |                           | 0: Off         |                            | address  |
|          |               |                   | 1: On       | ( )           | $\sim$                | 01: Nibble          | $\langle \rangle \rangle$ | 1: On          |                            | 1: Start |
|          |               |                   |             | ( ) )         |                       | 10: Bit             |                           |                |                            |          |
|          | LCD           |                   | FP7         | , FP6         | FP5                   | FP4                 | TFP3                      | FP2            | FP1                        | FP0      |
| LCDFFP   | frame         | 364H              | (           | $\rightarrow$ | ~                     |                     | /W                        |                |                            |          |
|          | register      |                   |             | )             | <                     | $\langle - \rangle$ | 0                         |                |                            |          |
|          | rogiotor      | (                 | (A)         |               | $\sim$                | VIFP set val        | ue bit/ to 0              | DAMPLIO        | 101                        | 4.00     |
|          |               |                   |             | -             | -                     | $\sum$              |                           | RAMBUS         | AC1                        | AC2      |
|          |               | $\langle \rangle$ | R/VV        | R/W           |                       |                     | $\sim$                    | R/W            | R/W                        | R/W      |
|          |               | 3664              |             | 0             |                       | $\rightarrow$       |                           | U<br>O: D: de  |                            | 0        |
| 2020122  | register 2    |                   | Always with |               | $\searrow$            |                     |                           | U. Dyte        |                            |          |
|          |               |                   | 4           | $\langle -$   | $\rightarrow$         |                     |                           | 1. 10010       |                            |          |
|          | $\sim$ $\sim$ | $\sim$            |             |               | _                     |                     |                           |                | 11: Reserv                 | ed       |
| <u> </u> |               | L                 | I           |               | <u> </u>              |                     |                           |                |                            |          |

### (14) LCD control

| Symbol   | Name      | Address             | 7                              | 6          | 5      | 4            | 3                   | 2        | 1       | 0      |
|----------|-----------|---------------------|--------------------------------|------------|--------|--------------|---------------------|----------|---------|--------|
|          | H/V       |                     | HVRA07                         | HVRA06     | HVRA05 | HVRA04       | HVRA03              | HVRA02   | HVRA01  | HVRA00 |
|          | converter | 45011               | R/W                            | R/W        | R/W    | R/W          | R/W                 | R/W      | R/W     | R/W    |
| HVREGA0  | register  | 450H                | 0                              | 0          | 0      | 0            | 0                   | 0        | 0       | 0      |
|          | A0        |                     |                                |            | H      | /V conversio | n data hanga        | ar 🔶     |         |        |
|          | H/V       |                     | HVRA17                         | HVRA16     | HVRA15 | HVRA14       | HVRA13              | HVRA12   | HVRA11  | HVRA10 |
|          | converter | 4511                | R/W                            | R/W        | R/W    | R/W          | R/W                 | R/W      | R/W     | R/W    |
| HVREGAT  | register  | 4010                | 0                              | 0          | 0      | 0            | 0 (                 | 70       | 0       | 0      |
|          | A1        |                     |                                |            | H      | V conversio  | n data hanga        | ar ( ) ) |         |        |
|          | H/V       |                     | HVRA27                         | HVRA26     | HVRA25 | HVRA24       | HVRA23              | HVRA22   | HVRA21  | HVRA20 |
|          | converter | 4501                | R/W                            | R/W        | R/W    | R/W          | R/W                 | R/W      | R/W     | R/W    |
| HVREGAZ  | register  | 4020                | 0                              | 0          | 0      | 0            | _ 0                 | )) 0     | 0       | 0      |
|          | A2        |                     |                                |            | H      | /V conversio | n data hanga        | ar       |         |        |
|          | H/V       |                     | HVRA37                         | HVRA36     | HVRA35 | HVRA34       | HVRA33              | HVRA32   | HVRA31  | HVRA30 |
|          | converter | 4521                | R/W                            | R/W        | R/W    | RAW          | R/W                 | R/W      | RAW     | R/W    |
| HVREGA3  | register  | 4030                | 0                              | 0          | 0      | (0)/(        | <u></u> 0           | 0        | 0       | 0      |
|          | A3        |                     |                                |            | H      | /V conversio | n data hanga        | ) C      |         |        |
|          | H/V       |                     | HVRA47                         | HVRA46     | HVRA45 | HVRA44       | HVRA43              | HVRA42   | HYRA41/ | HVRA40 |
|          | converter | 151L                | R/W                            | R/W        | R/W-1  | RAW          | R/W                 | R/W      | R/₩     | R/W    |
| NVKEGA4  | register  | 4040                | 0                              | 0          | 0      | 0            | 0                   | (0)      | 0       | 0      |
|          | A4        |                     |                                |            | Н      | /V conversio | n data hanga        | ar //    |         |        |
|          | H/V       |                     | HVRA57                         | HVRA56 (   | HVRA55 | HVRA54       | HVRA53              | HVRA52   | HVRA51  | HVRA50 |
|          | converter | 155U                | R/W                            | R/W        | ( R/W) | R/W          | R/W//               | )R/W     | R/W     | R/W    |
| HVREGAS  | register  | 40011               | 0                              | 0          | Q      | 0            | $\langle q \rangle$ | 0        | 0       | 0      |
|          | A5        |                     |                                |            | н      | /V conversio | n data hanga        | ar       |         |        |
|          | H/V       |                     | HVRA67                         | HVRA66     | HVRA65 | HVRA64       | HVRA63              | HVRA62   | HVRA61  | HVRA60 |
|          | converter | <b>456H</b>         | R/W                            | ( (R/W ) ) | R/W    | R/W          | R/W                 | R/W      | R/W     | R/W    |
| INTEGRO  | register  | 43011               | 0                              |            | 0      | 0            | <u>\</u> 0          | 0        | 0       | 0      |
|          | A6        |                     |                                | $\land$    | H      | /V conversio | n data hanga        | ar       |         |        |
|          | H/V       |                     | HVRATZ                         | HVRA76     | HVRA75 | HVRA74       | HVRA73              | HVRA72   | HVRA71  | HVRA70 |
|          | converter | 457H                | R/W                            | R/W        | R/W    | R/W          | R/W                 | R/W      | R/W     | R/W    |
| INICLOAT | register  |                     | $(/ 0 \leq)$                   | 0          | 0      | 10           | 0                   | 0        | 0       | 0      |
|          | A7        | $\langle \ \rangle$ | $\langle \bigcirc \mathcal{T}$ |            | ( )H   | (V conversio | n data hanga        | ar       |         |        |

(15) HVC (Horizontal and vertical converter) (1/2)

|         | 1110 (110                          | , incontrained a    |                            |            | (_,_)   |                                                                            |            |        |         |        |
|---------|------------------------------------|---------------------|----------------------------|------------|---------|----------------------------------------------------------------------------|------------|--------|---------|--------|
| Symbol  | Name                               | Address             | 7                          | 6          | 5       | 4                                                                          | 3          | 2      | 1       | 0      |
| HVREGB0 | H/V                                |                     | HVRB07                     | HVRB06     | HVRB05  | HVRB04                                                                     | HVRB03     | HVRB02 | HVRB01  | HVRB00 |
|         | converter<br>register<br>B0        | 458H                | R/W                        | R/W        | R/W     | R/W                                                                        | R/W        | R/W    | R/W     | R/W    |
|         |                                    |                     | 0                          | 0          | 0       | 0                                                                          | 0          | 0      | 0       | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB1 | H/V                                |                     | HVRB17                     | HVRB16     | HVRB15  | HVRB14                                                                     | HVRB13     | HVRB12 | HVRB11  | HVRB10 |
|         | converter<br>register<br>B1        | 459H                | R/W                        | R/W        | R/W     | R/W                                                                        | R/W        | R/W    | /R/W    | R/W    |
|         |                                    |                     | 0                          | 0          | 0       | 0                                                                          | 0 (        | 70     | 0       | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB2 | H/V<br>converter<br>register       | 45AH                | HVRB27                     | HVRB26     | HVRB25  | HVRB24                                                                     | HVRB23     | HVRB22 | HVRB21  | HVRB20 |
|         |                                    |                     | R/W                        | R/W        | R/W     | R/W                                                                        | R/W        | R/W    | R/W     | R/W    |
|         |                                    |                     | 0                          | 0          | 0       | 0                                                                          |            | ) 0    | 0       | 0      |
|         | B2                                 |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB3 | H/V                                |                     | HVRB37                     | HVRB36     | HVRB35  | HVRB34                                                                     | HVRB33     | HVRB32 | HVRB31  | HVRB30 |
|         | converter<br>register<br>B3        | 45BH                | R/W                        | R/W        | R/W     | RAW                                                                        | R/W        | R/W    | RAW     | R/W    |
|         |                                    |                     | 0                          | 0          | 0       | $\left( \begin{array}{c} 0 \end{array} \right) \left\langle \right\rangle$ | <u></u> 0  | 0      | 0       | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB4 | H/V                                | 45CH                | HVRB47                     | HVRB46     | HVRB45  | HVRB44                                                                     | HVRB43     | HVRB42 | HYRB41/ | HVRB40 |
|         | converter<br>register<br>B4        |                     | R/W                        | R/W        | R/₩-1 ( | RAV                                                                        | R/W        | R/W    | R∕₩     | R/W    |
|         |                                    |                     | 0                          | 0          | 0       | 0                                                                          | 0          | (0)    | ~ 0     | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB5 | H/V<br>converter<br>register<br>B5 | 45DH                | HVRB57                     | HVRB56 (   | HVRB55  | HVRB54                                                                     | HVRB53     | HURB52 | HVRB51  | HVRB50 |
|         |                                    |                     | R/W                        | R/W        |         | R/W                                                                        | R/W/       | )R/W   | R/W     | R/W    |
|         |                                    |                     | 0                          | <u>ø</u> ( | Q       | 9                                                                          |            | 0      | 0       | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB6 | H/V<br>converter<br>register<br>B6 | 45EH                | HVRB67                     | HVRB66     | HVRB65  | HVRB64                                                                     | HVRB63     | HVRB62 | HVRB61  | HVRB60 |
|         |                                    |                     | R/W                        | ( (R/W ) ) | R/W     | R/W                                                                        | R/W        | R/W    | R/W     | R/W    |
|         |                                    |                     | 0                          |            | 0       | 0                                                                          | <u>\</u> 0 | 0      | 0       | 0      |
|         |                                    |                     | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |
| HVREGB7 | H/V<br>converter<br>register       | 45FH                | HVRB77                     | HVRB76     | HVRB75  | HVRB74                                                                     | HVRB73     | HVRB72 | HVRB71  | HVRB70 |
|         |                                    |                     | R/W                        | R/W        | R/W     | R/W                                                                        | R/W        | R/W    | R/W     | R/W    |
|         |                                    |                     | $(/ 0 \leq)$               | 0          | 0       | 10                                                                         | 0          | 0      | 0       | 0      |
|         | B7                                 | $\langle \ \rangle$ | H/V conversion data hangar |            |         |                                                                            |            |        |         |        |

HVC (Horizontal and vertical converter) (2/2)

# (16) HPLT, VLD

| Symbol     | Name                                 | Address                   | 7                  | 6                 | 5                       | 4             | 3                 | 2                                                             | 1                                 | 0              |  |
|------------|--------------------------------------|---------------------------|--------------------|-------------------|-------------------------|---------------|-------------------|---------------------------------------------------------------|-----------------------------------|----------------|--|
|            |                                      |                           | V0EN               | LHSEL             | INT0EN                  | <b>VLD0IN</b> | V03               | V02                                                           | V01                               | V00            |  |
|            | VLD<br>mode<br>control<br>register 0 |                           | R/W                | R/W               | R/W                     | R/W           | R/W               | R/W                                                           | R/W                               | R/W            |  |
|            |                                      |                           | 0                  | 0                 | 0                       | 0             | 0                 | - Â                                                           | 0                                 | 0              |  |
| VLDCR0     |                                      |                           | Voltage            | Detect            |                         | Comparison    | The register      | r of voltage d                                                | etection leve                     | <br>           |  |
|            |                                      | 440H<br>(Prohibit<br>RMW) | detection          | level flag        | permission              | result of     |                   | ): 12 levels (00H to 0BH)<br>I: 6 levels<br>Total) can be set |                                   |                |  |
|            |                                      |                           | start flag         | 0: Over           | flag                    | voltage       |                   |                                                               |                                   |                |  |
|            |                                      |                           | 0: Detection       | 1.5 V             | 0: Interrupt            | detection     | $19 \log \log (T$ |                                                               |                                   |                |  |
|            |                                      |                           | off                | 1: Below          | off                     | (Read-clear   |                   |                                                               |                                   |                |  |
|            |                                      |                           | 1: Detection       | 1.4 V             | 1: Interrupt            | -write)       |                   | $\langle \rangle \rangle$                                     |                                   |                |  |
|            |                                      |                           | on                 |                   | on                      | 0: Voltage    | $\geq$            |                                                               |                                   |                |  |
|            |                                      |                           |                    |                   |                         | 1: Voltago    | ( (               |                                                               |                                   |                |  |
|            |                                      |                           |                    |                   |                         | decline       |                   | $\mathcal{I}$                                                 |                                   |                |  |
|            |                                      |                           | V1FN               | -                 | INT1FN                  | VI D1IN       |                   | V12                                                           | V11                               | V10            |  |
|            | VLD<br>mode<br>control<br>register 1 |                           | R/W                | R/W               | R/W                     | R/W <         | R/W               | R/W                                                           | RAW                               | R/W            |  |
|            |                                      | 441H<br>(Prohibit<br>RMW) | 0                  | 0                 | 0                       | 0             |                   | 0                                                             |                                   | 0              |  |
|            |                                      |                           | Voltago            | Alwaya            | Intorrupt               | Completed     | Alwove            | The registed                                                  | r cotting of ve                   | togo           |  |
|            |                                      |                           | detection          | Always            | permission              | result of     | write 0           | detection level                                               |                                   |                |  |
|            |                                      |                           | start flag         | write 0           | flag                    | voltage       | Wille U           | $\sim$                                                        | $\langle \langle \rangle \rangle$ | )              |  |
| VLDCR1     |                                      |                           | 0: Detection       |                   | 0: Interrupt            | detection     |                   | 5 levels (00                                                  | H to 04H) ca                      | n be set       |  |
|            |                                      |                           | off                |                   | off                     | (Read-clear   |                   |                                                               | , · · ·                           |                |  |
|            |                                      |                           | 1: Detection       |                   | 1: Interrupt            | -write)       |                   |                                                               | ))                                |                |  |
|            |                                      |                           | on                 |                   | on                      | 0: Voltage    |                   | $\neg \sub$                                                   |                                   |                |  |
|            |                                      |                           |                    |                   |                         | Voltage       |                   | $7/ \land$                                                    |                                   |                |  |
|            |                                      |                           |                    |                   | $\langle \rangle$       | decline       | $\sim$            | $\bigcirc$                                                    |                                   |                |  |
|            |                                      | 442H<br>(Prohibit<br>RMW) | V2EN               | <                 | INT2EN                  | VLD2IN/       |                   | <u> </u>                                                      | V21                               | V20            |  |
|            | VLD<br>mode<br>control<br>register 2 |                           | R/W                | R/₩               | R/W                     | R/W           | R/W               | R/W                                                           | R/W                               | R/W            |  |
|            |                                      |                           | 0                  | 0                 | 0                       | 0             |                   | 0                                                             | 0                                 | 0              |  |
|            |                                      |                           | Voltage            | Always            | Interrupt               | Comparison    | Always            | Always                                                        | The register                      | setting of     |  |
|            |                                      |                           | detection          | write 0           | permission              | result of     | write 0           | write 0                                                       | voltage detection level           |                |  |
|            |                                      |                           | start flag         |                   | flag                    | voltage       |                   |                                                               | -                                 |                |  |
| VLDCR2     |                                      |                           | 0: Detection       | $\square$         | 0: Interrupt            | detection     |                   |                                                               | 2 levels (00                      | H to 02H)      |  |
|            |                                      |                           | off                |                   | off                     | (Read-clear   | $\geq$            |                                                               | can be set                        |                |  |
|            |                                      |                           | 1: Detection       | $\langle \rangle$ | 1: Interrupt            | 0: Voltage    |                   |                                                               |                                   |                |  |
|            |                                      |                           | \on\`              |                   |                         | normal        |                   |                                                               |                                   |                |  |
|            |                                      |                           |                    |                   |                         | 1: Voltage    |                   |                                                               |                                   |                |  |
|            |                                      |                           | $\square$          |                   | $\bigcirc$              | decline       |                   |                                                               |                                   |                |  |
|            |                                      | $\sim$                    |                    |                   | $\mathcal{N}$           |               | XT1SEL            | VLD2USE                                                       | VLD1USE                           | <b>VLD0USE</b> |  |
|            | VLD<br>control<br>register           | 2 449H                    | $\rightarrow$      | 12                | $\sim$                  |               | R/W               | R/W                                                           | R/W                               | R/W            |  |
|            |                                      |                           |                    |                   | $\overline{\backslash}$ |               | 0                 | 0                                                             | 0                                 | 0              |  |
| VLDOTL     |                                      |                           |                    |                   | $\sim$                  |               | 0: Vcc drive      | 0: VLD no                                                     | 0: VLD no                         | 0: VLD no      |  |
|            |                                      |                           |                    | $\bigwedge$       |                         |               | 1: Vref drive     | use                                                           | use                               | use            |  |
|            | $\square$                            |                           |                    | $\Delta I$        |                         |               |                   | 1: VLD use                                                    | 1: VLD use                        | 1: VLD use     |  |
| $\land$    |                                      |                           | /                  | <u></u>           | TIM21                   | TIM20         | TIM11             | TIM10                                                         | TIM01                             | TIM00          |  |
|            | HPLT                                 | $\mathcal{V}$             | $\sim \sim \sim$   | R/W               | R/W                     | R/W           | R/W               | R/W                                                           | R/W                               | R/W            |  |
| HPCTST1    | function                             | 445H (                    | $\sum$             | ) þ               | 0                       | 0             | 0                 | 0                                                             | 0                                 | 0              |  |
| $\langle $ | register 1                           |                           | $\bigtriangledown$ | Always            | VL                      | .D2           | VL                | D1                                                            | VL                                | D0             |  |
|            |                                      |                           | $\langle \rangle$  | write 0           | sampling time           |               | sampling time     |                                                               | sampling time                     |                |  |
|            | HPLT<br>function<br>register 2       | 446H                      | - \                |                   | SAM 2                   | SAM 1         | SAM 0             | -                                                             | -                                 | -              |  |
|            |                                      |                           | R/W                | R/W               | R/W                     | R/W           | R/W               | R/W                                                           | R/W                               | R/W            |  |
|            |                                      |                           | 0                  | 0                 | 0                       | 0             | 0                 | 0                                                             | 0                                 | 0              |  |
|            |                                      |                           | Always             | Always            |                         |               |                   | Always                                                        | Always                            | Always         |  |
| HPCTST2    |                                      |                           | write 0            | write 0           |                         |               |                   | write 0                                                       | write 0                           | write 0        |  |
|            |                                      |                           | WINE U             | WINE U            | continually             | continually   | continually       | WINE U                                                        | WING U                            | WINE U         |  |
|            |                                      |                           |                    |                   | 1: Run                  | 1: Run        | 1: Run            |                                                               |                                   |                |  |
|            |                                      |                           |                    |                   | intermit-               | intermit-     | intermit-         |                                                               |                                   |                |  |
|            |                                      |                           |                    |                   | tently                  | tently        | tently            |                                                               |                                   |                |  |

#### Points of Note and Restrictions 6. (1) Notation a) The notation for built-in/I/O registers is as follows register symbol <Bit symbol> TA01RUN<TA0RUN> denotes bit TA0RUN of register TA01RUN. e.g.) b) Read-modify-write instructions An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction. 3, (TA01RUN) ... Set bit 3 of TA01RUN. Example 1) SET INC 1, (100H) ... Increment the data at 100H. Example 2) Examples of read-modify-write instructions on the TLCS-900 Exchange instruction EX (mem), R Arithmetic operations ADD (mem), R/# ADC (mem), R/ SUB (mem), R/# (mem), R/# SBC DEC #3, (mem) INC #3. (mem) Logic operations AND (mem), R/# OR (mem), R/# XOR (mem), R/# Bit manipulation operations #3/A, (mem)) RES STCF #3, (mem) SET #3, (mem) CHG #3, (mem) #3, (mem) TSET Rotate and shift operations RRC RLC (mem) (mem) RL(mem) RR(mem) SLA (mem) SRA (mem) SĹĹ (mem) SRL (mem) RLD RRD (mem) (mem)

fc, fs, fFPH, fSYS and one state

e)

The clock frequency input on ins X1 and 2 is called  $f_{OSCH}$ . The clock selected by DFMCR0<ACT1:0> is called fc.

The clock selected by SYSCR1<SYSCK> is called fFPH. The clock frequency give by fFPH divided by 2 is called fSYS.

One cycle of f<sub>SYS</sub> is referred to as one state.

- (2) Points to note
  - a) AM0 and AM1 pins

This pin is connected to the VCC or the VSS pin. Do not alter the level when the pin is active.

b) EMU0and EMU1

Open pins.

c) Reserved address areas

The TMP91C016 does not have any reserved areas.  $\langle$ 

d) HALT mode (IDLE1)

When IDLE1 mode is used (in which oscillator operation only occurs), set RTCCR<RTCRUN> to 0 stop the timer for the real-time clock before the HALT instructions is executed.

e) Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

f) Programmable pull-up resistance

The programmable pull-up resistor can be turned ON/OFF by a program when the ports are set for use as input ports. When the ports are set for use as output ports, they cannot be turned ON/OFF by a program.

The data registers (e.g., P5) are used to turn the pull-up/pull-down resistors on/off. Consequently read-modify-write instructions are prohibited

g) Watchdog timer

The watchdog timer starts operation immediately after a reset is released. When the watchdog timer is not to be used, disable it.

h) CPU (Micro DMA)

Only the LDC cr, r and LDC r, cr instructions can be used to access the control registers in the CPU (e.g., the transfer source address register (DMASn)).

i) Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

j) POP SR instruction

Please execute the POP SR instruction during DI condition.

k) Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts ( $\overline{\text{NMI}}$ , INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4, INTVLD0 to INTVLD2) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of fFPH) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt. 7. Package Dimensions

# LQFP100-P-1414-0.50F

