CMOS 8-Bit Microcontroller TMP88PU74F

The TMP88PU74 are the high-speed and high performance 8-bit single chip microcomputers which built in a program storage area (96 Kbytes) and the One-Time PROM of bector table storage area (256 bytes). The TMP88PU74 is pin compatible with the TMP88CU74. The operations possible with the TMP88PU74 can be performed by writing programs to PROM. The TMP88PU74 can write and verify in the same way as the TC571000 an EPROM programmer.

Product No.	OTP	RAM	Package	Adaptor Socket
TMP88PU74F	96 Kbytes + 256 bytes	2 Kbytes	P-QFP80-1420-0.80B	BM11131

000707EBP1

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most

recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment are industrial robotics, domestic applications applications (computer, personal neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or attempting the there is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or attempting to the there is a subject to the there i others

The information contained herein is subject to change without notice.

Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Pin Assignments (Top View)

P-QFP80-1420-0.80B

Pin Function

The TMP88PU74 has two modes: MCU and PROM.

(1) MCU mode

In this mode, the TMP88PU74 is pin compatible with the TMP88CU74 (fix the TEST pin at low level).

(2) PROM mode

Pin Name (PROM mode)	Input/ Output	Functions	Pin Name (MCU mode)			
A16			P60			
A15 to A8	Input	PROM address inputs	P05, P32 to 30, P53 to 50			
A7 to A0			P47 to P40			
D7 to D0	I/O	PROM data input/outputs	P17 to P10			
CE		Chip enable signal input (active low)	P03			
ŌĒ	Input	Output enable signal input (active low)	P04			
PGM		Program mode single input	P02			
VPP	Power	+12.75 V/5 V (Program supply voltage)	TEST			
VCC	supply	+ 6.25 V/5 V	VDD			
GND	Supply	0 V	VSS			
P37 to P30		Pull-up with resistance for input processing				
P47 to P41						
P54 to P50						
P01	Input	PPOM mode patting pip. Po fixed at high lavel				
P21	input	PROM mode setting pin. Be fixed at high level.				
P07, P06, P00						
P22, P20		PROM mode setting pin. Be fixed at low level.				
RESET						
P67 to P61						
P77 to P70						
P87 to P80	Output	Open				
P97 to P90						
PD4 to PD0						
XIN	Input	Connect an 10 MHz oscillator to stabilize the internal sta				
XOUT	Output		ale.			
VAREF	Power	0 V (GND)				
VASS						
VKK	supply	Open				

Operational Description

The configuration and functions of the TMP88PU74 are the same as those of the TMP88CU74, except in that a one-time PROM is used instead of an on-chip mask ROM.

1. Operating Mode

The TMP88PU74 has two modes: MCU and PROM.

1.1 MCU Mode

The MCU mode is activated by fixing the TEST/VPP pin at low level.

In the MCU mode, operation is the same as with the TMP88CU74 (the TEST/VPP pin cannot be used open because it has no built-in pull-down resistance).

1.1.1 Program Memory

The TMP88PU74 has a 96 Kbytes (addresses 04000H to 1BFFFH in the MCU mode, addresses 00000H to 17FFFH in the PROM mode) of program storage area and 256 byte (addresses FFF00 to FFFFFH in the MCU mode, addresses 1FF00 to 1FFFFH in the PROM mode) one-time PROM of vector table storage area.

Figure 1.1.1 Program Storage Area

Electrical Characteristics

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V _{DD}		-0.3 to 6.5	
Program Voltage	V _{PP}	TEST/VPP	-0.3 to 13.0	
Input Voltage	VIN		-0.3 to V _{DD} + 0.3	V
	V _{OUT1}	P2, P3 (at open drain)	-0.3 to V _{DD} + 0.3	
Input Voltage Output Voltage Output Current (Per 1 pin)	V _{OUT2}	P6, P7, P8, P9, PD	V_{DD} – 40 to V_{DD} + 0.3	
Output Current	I _{OUT1}	P0, P1, P2, P4, P5	3.2	
(Per 1 pin)	I _{OUT2}	P6, P7, P8, P9, PD	-25	
(ΣI_{OUT1}	P0, P1, P3, P4, P5	-40	mA
Output Current (Total)	ΣI_{OUT2}	P0, P1, P2, P3, P4, P5	120	
(Per 1 pin) Output Current (Total) Power Dissipation	ΣI_{OUT3}	P6, P7, P8, P9, PD	-160	
Power Dissipation [Topr =25°C]	PD (Note 2)		1200	mW
Soldering Temperature (time)	Tsld		260 (10 s)	20
Storage Temperature	Tstg		-55 to + 125	°C
Operating Temperature	Topr		-30 to 70	

Absolute Maximum Ratings $(V_{SS} = 0 V)$

- Note 1: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.
- Note 2: Power Dissipation (PD); For PD, it is necessary to decrease 14.3 mW/°C. (Reference to TMP88CU74)

Parameter	Symbol	Pins	Conditions			Min	Max	Unit
Supply Voltage			fc =	NORMAL1,	2 modes	4.5		
			12.5 MHz	IDLE1, 2	modes			
	V_{DD}		fs =	SLOW	modes	2.7	5.5	
			32.768 KHz	SLEEP	modes			
				STOP	modes	2.0		
	V _{IH1}	Except hysteresis input	$V_{DD} \ge 4.5 V$ $V_{DD} < 4.5 V$			$V_{DD} imes 0.70$	V _{DD}	V
Input High Voltage	V _{IH2}	Hysteresis input				$V_{DD} imes 0.75$		
	V _{IH3}					$V_{DD} imes 0.90$		
	V _{IL1}	Except hysteresis input	,	V _{DD} ≥ 4.5 \	/		$V_{\text{DD}} \times 0.30$	
Input Low Voltage	V _{IL2}	Hysteresis input		VDD ≥ 4.5 V	'	0	$V_{\text{DD}} \times 0.25$	
	V _{IL3}		N	V _{DD} < 4.5 ∖	1		$V_{DD} imes 0.10$	
	fa	XIN, XOUT	V _{DD} = 4.5	5 to 5.5 V ((Note 2)	8	12.5	MHz
Clock Frequency	fc	XTIN, XTOUT	VDD	c = 2.7 to 5.	.5 V	30.0	34.0	kHz

Recommended Operating Conditions $(V_{SS} = 0 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$

- Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.
- Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL 1/2 mode and IDLE 1/2 mode.

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis input		_	0.9		V
	I _{IN1}	TEST					
Input Current	I _{IN2}	Open drain ports, Tri-state ports	$V_{DD} = 5.5 V$ $V_{IN} = 5.5 V/0 V$	—	—	±2	μA
	I _{IN3}	RESET, STOP					
Input Resistance	R _{IN3}	RESET		100	220	450	kΩ
Pull-down Resistance	R _K	Source open drain ports	$V_{DD} = 5.5 \text{ V}, V_{KK} = -30 \text{ V}$	50	80	110	K32
	I _{LO1}	Sink open drain ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V}$	_	_	2	
Output Leakage	I _{LO2}	Source open drain ports	$\begin{array}{l} V_{DD}=5.5 \ V, \ V_{OUT}=-32 \\ V \end{array}$	_	_	-2	μA
Current	I _{LO3}	Tri-state ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V/ 0V	_	_	2	
Output High Voltage	V _{OH}	Tri-state ports	$V_{DD} = 4.5 \text{ V},$ $I_{OH} = -0.7 \text{ mA}$	4.1	_	_	V
Output Low Voltage	V _{OL}	Except XOUT	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	_	_	0.4	
Output High current	I _{OH}	P6, P7, P8, P9, PD port	$V_{DD} = 4.5 \text{ V}, V_{OH} = 2.4 \text{ V}$	_	-20	_	
Supply Current in NORMAL 1, 2 modes			V _{DD} = 5.5 V V _{IN} = 5.3 V/0.2 V	_	13.5	20	mA
Supply Current in IDLE 1, 2 modes			fc = 12.5 MHz fs = 32.768 kHz	_	5.5	8.5	
Supply Current in SLOW mode	I _{DD}		$V_{DD} = 3.0 V$		30	60	
Supply Current in SLEEP mode			V _{IN} = 2.8 V/0.2 V fs = 32.768 kHz		15	30	μA
Supply Current in STOP mode			V _{DD} = 5.5 V V _{IN} = 5.3 V/0.2 V		0.5	10	

DC Characteristics	$(V_{SS} = 0 V,$	Topr = -30 to 70° C)
---------------------------	------------------	---------------------------------

Note 1: Typical values show those at Topr = 25° C, VDD = 5 V.

Note 2: Input Current IIN3; The current through resistor is not included, when the input resistor (pull-up/pull-down) is contained.

AD Conversion Characteristics	$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ to } 5.5 \text{ V}, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$
-------------------------------	---

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog Deference Veltage	VAREF		4.5	—	V _{DD}	
Analog Reference Voltage	V _{ASS}			V _{SS}		V
Analog Reference Voltage Range	V _{AIN}		V _{ASS}	_	V _{AREF}	v
Analog Input Voltage	I _{REF}	V _{AREF} = 5.5 V, V _{ASS} = 0.0 V	—	0.5	1.0	mA
Nonlinearity Error			_	—	±1	
Zero Point Error		V _{DD} = 5.0 V, V _{SS} = 0.0 V V _{AREF} = 5.000 V	_	_	±1	LSB
Full Scale Error		VAREF = 5.000 V VASS = 0.000 V	—	—	±1	LOD
Total Error		VASS - 0.000 V	—	—	±2	

Note: Quantizing error is not contained in those errors.

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
		In NORMAL1, 2 modes In IDLE1, 2 modes	0.32	_	0.5	
Machine Cycle Time	tcy In SLOW mode 117.6		_	133.3	μs	
High Level Clock Pulse Width Low Level Clock Pulse Width	t _{WCH}	For external clock operation (XIN input), fc = 12.5 MHz	33.75	_	_	ns
High Level Clock Pulse Width Low Level Clock Pulse Width	t _{WSH} t _{WSL}	For external clock operation (XTIN input), fs = 32.768 kHz	14.7	_	_	μS

AC Characteristics $(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$

Recommended Oscillating Conditions ($V_{SS} = 0 V$, $V_{DD} = 4.5$ to 5.5 V, Topr = -30 to 70°C)

Parameter	Oscillator	Oscillation	Recommended Oscillator	Recommended Constant	
		Frequency		C ₁	C ₂
	Osmula Deservator	12.5 MHz	Murata CSA12.5MTZ	30 pF	30 pF
High-frequency Oscillation	Ceramic Resonator	8 MHz	Murata CSA8.00MTZ	30 pF	30 pF
Oscillation	Crystal Oscillator	12.5 MHz	NDK AT-51	10 pF	10 pF
Low-frequency Oscillation	Crystal Oscillator	32.768 KHz	NDK MX-38T	15 pF	15 pF

(1) High-frequency Oscillation

- Note 1: An electrical shield by metal shied plate on the IC package should be recommend able in order to prevent the device from the high electric fieldstress applied for continuous reliable operation.
- Note 2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;

http://www.murata.co.jp/search/index.html

DC/AC Characteristics (PROM mode) $(V_{SS} = 0 V)$

(1) Read operation (VDD = 5.0 ± 0.25 V, Topr = $25 \pm 5^{\circ}$ C)

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage (A0 to A16, CE , OE , PGM)	V _{IH4}		$V_{DD} imes 0.7$	_	V _{DD}	
Input Low Voltage (A0 to A16, CE , OE , PGM)	V _{IL4}		0	_	0.8	V
Program Power Supply Voltage	V _{PP}		4.75	5.0	5.25	
Address Access Time	tACC		_	1.5tcyc + 300	_	ns

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Input High Voltage (D0 to D7, A0 to A16 \overline{CE} , \overline{OE} , \overline{PGM})	V _{IH4}		$V_{DD} \times 0.7$	Ι	V _{DD}	
Input Low Voltage (D0 to D7, A0 to A16, \overline{CE} , \overline{OE} , \overline{PGM})	V _{IL4}		0	-	0.8	V
Program Power Supply Voltage	V _{PP}		12.5	12.75	13.0	
Initial Program Pulse Width	t _{PW}	V _{DD} = 6.0 V	0.095	0.1	0.105	ms

(2) High-speed programming operation (Topr = $25 \pm 5^{\circ}$ C, VDD = 6.25 ± 0.25 V)

High-program

- Note 1: When V_{CC} power supply is turned on or after, V_{PP} must be increased. When V_{CC} power supply is turned off or before, V_{PP} must be decreased.
- Note 2: The device must not be set to the EPROM programmer or picked up from it under applying the program voltage (12.75 V \pm 0.5 V) to the V_{PP} pin as the device is damaged.
- Note 3: Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.