# TOSHIBA

etA

# **CMOS 8-BIT MICROCONTROLLER**

# **TMP87P844N**

The 87P844 are 3 One-Time PROM microcontroller with low-power 64K bits (8K bytes) electrically programmable read only memory for the 87C444/844 system evaluation. The 87P844 is pin compatible with the 87C444/844. The operations possible with the 87C444/844 can be performed by writing programs to PROM. The 87P844 can write and verify in the same way as the TMM27256AD using an adaptor socket BM11108 and an EPROM programmer.

| 2 | PART No    | OTP        | RAM         | PACKAGE           | Adaptor socket |
|---|------------|------------|-------------|-------------------|----------------|
|   | TMP87P844N | 8K x 8-bit | 256 x 8-bit | SDIP42-P-600-1.78 | BM11108        |



#### **PIN FUNCTION**

The 87P844 have two modes: MCU and PROM.

#### (1) MCU mode

In this mode, the 87P844 is pin compatible with the 87C844/444 and the 87P844 are pin compatible with the 87C844/444 (fix the TEST pin at low level).

#### (2) PROM mode

| PIN NAME (PROM mode) | INPUT/OUTPUT | FUNCTIONS                                            | PIN NAME (MCU mode) |  |  |  |
|----------------------|--------------|------------------------------------------------------|---------------------|--|--|--|
| A14 ~ A7             |              |                                                      | P76 ~ P70           |  |  |  |
| A6 ~ A0              | Input        | PROM address inputs                                  | P67 ~ P60           |  |  |  |
| D7 ~ D0              | I/O          | PROM data input/outputs                              | P07 ~ P00           |  |  |  |
| CE                   | lamint       | Chip enable signal input (active low)                | P13                 |  |  |  |
| ŌĒ                   | Input        | Output enable signal input (active low)              | P14                 |  |  |  |
| VPP                  |              | + 12.5V / 5V (Program supply voltage)                | TEST                |  |  |  |
| vcc                  | Power supply | + 5V                                                 | VDD                 |  |  |  |
| GND                  |              | 0V VSS                                               |                     |  |  |  |
| P11                  |              |                                                      |                     |  |  |  |
| P36                  |              | PROM mode setting pins. Be fixed at high level.      |                     |  |  |  |
| P12                  |              |                                                      |                     |  |  |  |
| P10                  | I/O          |                                                      |                     |  |  |  |
| P17 ~ P15            |              |                                                      |                     |  |  |  |
| P37 , P35            |              | PROM mode setting pins. Be fixed at low level.       |                     |  |  |  |
| RESET                |              |                                                      |                     |  |  |  |
| XIN                  | Input        |                                                      |                     |  |  |  |
| XOUT                 | Output       | Connect an 8 MHz oscillator to stabilize the interna | I STATE.            |  |  |  |
| AVCC                 |              | + 5V                                                 |                     |  |  |  |
| AVSS                 | Power Supply | 0V (GND)                                             |                     |  |  |  |

## **OPERATIONAL DESCRIPTION**

The following explains the 87P844 hardware configuration and operation. The configuration and functions of the 87P844 are the same as those of the 87C444/844, except in that a one-time PROM is used instead of an on-chip mask ROM.

## 1. OPERATING MODE

The 87P844 have two modes: MCU and PROM.

## 1.1 MCU mode

The MCU mode is activated by fixing the TEST / VPP pin at low level.

In the MCU mode, operation is the same as with the 87C444/844 (the TEST / VPP pin cannot be used open because it has no built-in pull-down resistance).

#### 1.1.1 Program Memory

The 87P844 have a  $8K \times 8$ -bit (addresses  $E000_H$ -FFFF<sub>H</sub> in the MCU mode, addresses  $6000_H$ -7FFF<sub>H</sub> in the PROM mode) of program memory (OTP).

To use the 87P844 as the system evaluation for the 87C444/844, the program should be written to the program memory area as shown in Figure 1-1.



Figure 1-1. Program Memory Area

Note : Either write the data FFH to the unused area or set the PROM programmer to access only the program storage area.

## 1.1.2 Data Memory

The 87P844 have an on-chip 256  $\times$  8-bit data memory (static RAM).

## 1.1.3 Input/Output Circuitry

#### (1) Control pins

The control pins of the 87P844 are the same as those of the 87C444/844 except that the TEST pin has is no built-in pull-down resistance.



Figure 1-2. TEST pin

#### (2) I/O ports

The I/O circuitries of 87P844 I/O ports the are the same I/O circuitries of the 87C444/844.

## 1.2 PROM mode

The PROM mode is activated by setting the TEST, RESET pin and the ports P17-P10, P37-P35 and P77 as shown in Figure 1-2. The PROM mode is used to write and verify programs with a general-purpose PROM programmer. The high-speed programming mode can be used for program operation.

The 87P844 are not supported an *electric signature* mode, so the ROM type must be set to TC57256AD. Set the adaptor socket switch to "N".

Note : Please set the high-speed programming mode according to each manual of PROM programmer.



Figure 1-3. Setting for PROM Mode

## **1.2.1** Programming Flowchart (High-speed Programming Mode – I)

The high-speed programming mode is achieved by applying the program voltage (+ 12.5V) to the VPP pin when Vcc = 6V. After the address and input data are stable, the data is programmed by applying a single 1ms program pulse to the  $\overline{CE}$  input. The programmed data is verified. If incorrect, another 1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. Programming for one address is ended by applying additional program pulse with width 3 times that needed for initial programming (number of programmed times x 1ms). After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5V.



Figure 1-4. Flow Chart of High-speed Programming Mode -  $\,I$ 

### **1.2.2** Programming Flowchart (High-speed Programming Mode-II)

The high-speed programming mode is achieved by applying the program voltage (+ 12.75 V) to the Vpp pin when Vcc = 6.25 V. After the address and input data are stable, the data is programmed by applying a single 0.1ms program pulse to the  $\overline{CE}$  input. The programmed data is verified. If incorrect, another 0.1ms program pulse is applied and then the programmed data is verified. This process should be repeated (up to 25 times) until the program operates correctly. After that, change the address and input data, and program as before. When programming has been completed, the data in all addresses should be verified with Vcc = Vpp = 5 V.



Figure 1-5. Flowchart of High-speed Programming Mode -  ${
m II}$ 

# TOSHIBA

#### 1.2.3 Writing method for general-purpose PROM program

- (1) Adapters BM11108 : TMP87P844N
- (2) Adapter setting Switch (SW1) is set to side N.
- (3) PROM programmer specifying
  - i) PROM type is specified to TC57256AD. Writing voltage: 12.5 V (high-speed program I mode) 12.75 V (high-speed program II mode)
  - ii) Data transfer (copy) (note 1)

In TMP87P844, EPROM is within the addresses 6000 to 7FFFH. Data is required to be transferred (copied) to the addresses where it is possible to write. The program area in MCU mode and PROM mode is referred to "Program memory area" in figure 1-1.

Ex. In the block transfer (copy) mode, executed as below. ROM capacity of 8KB : transferred addresses E000 to FFFFH to addresses 6000 to 7FFFH

- iii) Writing address is specified. (note 1)
   Start address : 6000H
   End address : 7FFFH
- (4) Writing

Writing/Verifying is required to be executed in accordance with PROM programmer operating procedure.

Note 1: The specifying method is referred to the PROM programmer description. The data in addresses 0000 to 5FFFH must be specified to FFH.

- Note 2: When MCU is set to an adapter or the adapter is set to PROM programmer, a position of pin 1 must be adjusted. If the setting is reversed, MCU, the adapter and PROM program is damaged.
- Note 3 : TMP87P844 does not support the electric signature mode (hereinafter referred to as "signature"). If the signature is used in PROM program, a device is damaged due to applying  $12V \pm 0.5V$  to the address pin 9 (A9). The signature must not be used.

## **ELECTRICAL CHARACTERISTICS**

|  | ABSOLUTE MAXIMUM RATINGS | $(V_{SS} = 0V)$ |
|--|--------------------------|-----------------|
|--|--------------------------|-----------------|

| PARAMETER                        | SYMBOL             | PINS                                             | RATINGS                        | UNIT |
|----------------------------------|--------------------|--------------------------------------------------|--------------------------------|------|
| Supply Voltage                   | V <sub>DD</sub>    |                                                  | – 0.3 to 6.5                   | v    |
| Program Voltage                  | V <sub>PP</sub>    | TEST/VPP                                         | – 0.3 to 13.0                  | v    |
| Input Voltage                    | V <sub>IN</sub>    |                                                  | – 0.3 to V <sub>DD</sub> + 0.3 | v    |
| Output Voltage                   | V <sub>OUT1</sub>  | Except sink open drain pin, but include<br>RESET | – 0.3 to V <sub>DD</sub> + 0.3 | V    |
|                                  | V <sub>OUT2</sub>  | Sink open drain pin except RESET                 | – 0.3 to 5.5                   | V    |
| Output Current (Per 1 pin)       | I <sub>OUT1</sub>  | Ports P0, P1, P3, P6, P7                         | 3.2                            | mA   |
| Output Current (Total)           | Σl <sub>OUT1</sub> | Ports P0, P1, P3, P6, P7                         | 120                            | mA   |
| Power Dissipation [Topr = 70 °C] | PD                 |                                                  | 600                            | mW   |
| Soldering Temperature (time)     | Tsld               |                                                  | 260 (10 s)                     | °C   |
| Storage Temperature              | Tstg               |                                                  | – 55 to 125                    | °C   |
| Operating Temperature            | Topr               |                                                  | – 30 to 70                     | °C   |

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V, Topr = -30 \text{ to } 70 \text{ °C})$ 

| PARAMETER          | SYMBOL                                   | PINS                      | CONDITIONS        |                            | Min.                   | Max.                   | UNIT |
|--------------------|------------------------------------------|---------------------------|-------------------|----------------------------|------------------------|------------------------|------|
| Supply Voltage     | V <sub>DD</sub>                          |                           | fc = 8 MHz        |                            | 4 5                    | 5.5                    | v    |
| Supply Voltage     |                                          |                           |                   | IDLE mode                  | 4.5                    | 5.5                    | v    |
| Input High Voltage | V <sub>IH1</sub>                         | 1 Except hysteresis input |                   |                            |                        | V <sub>DD</sub>        | v    |
| Input High Voltage | V <sub>IH2</sub>                         | Hysteresis input          | $V_{DD} \ge 4.5V$ |                            | V <sub>DD</sub> × 0.75 | •00                    | v    |
|                    | V <sub>IL1</sub> Except hysteresis input |                           |                   |                            | 0                      | V <sub>DD</sub> × 0.30 | v    |
| Input Low Voltage  | V <sub>IL2</sub>                         | Hysteresis input          |                   | <sub>bD</sub> ≧4.5V        | •                      | $V_{DD} \times 0.25$   | v    |
| Clock Frequency    | fc                                       | XIN, XOUT                 | V <sub>DD</sub>   | V <sub>DD</sub> = 4.5~5.5V |                        | 8.0                    | MHz  |

| D.C. CHARACTERIST             | ics (v           | $T_{SS} = 0V, T_{opr} = -30 \text{ to } 70 \text{ °C}$ |                                                     |      |      |      |      |
|-------------------------------|------------------|--------------------------------------------------------|-----------------------------------------------------|------|------|------|------|
| PARAMETER                     | SYMBOL           | PINS                                                   | CONDITIONS                                          | Min. | Тур. | Max. | UNIT |
| Hysteresis Voltage            | V <sub>HS</sub>  | Hysteresis inputs                                      |                                                     | -    | 0.9  | -    | v    |
|                               | I <sub>IN1</sub> | TEST                                                   |                                                     |      |      |      |      |
| Input Current                 | I <sub>IN2</sub> | Open drain ports and<br>Tri-state ports                | V <sub>DD</sub> = 5.5V, V <sub>IN</sub> = 5.5V / 0V | -    | -    | ±2   | μA   |
| I <sub>IN3</sub>              |                  | RESET                                                  |                                                     |      |      |      |      |
|                               | R <sub>IN2</sub> | RESET                                                  |                                                     | 100  | 220  | 450  |      |
| Input Resistance              | R <sub>IN3</sub> | Port P7                                                |                                                     |      | 6    | 10   | kΩ   |
| Output Leakage                | I <sub>LO1</sub> | Open drain ports                                       | $V_{DD} = 5.5V, V_{OUT} = 5.5V$                     | -    | -    | 2    |      |
| Current                       | I <sub>LO2</sub> | Tri-state ports                                        | V <sub>DD</sub> = 5.5V, V <sub>OUT</sub> = 5.5V/0V  | -    | -    | ± 2  | μA   |
| Output High                   | V <sub>OH1</sub> | Tri- state ports                                       | V <sub>DD</sub> = 4.5V, I <sub>OH</sub> = -0.7 mA   |      |      |      |      |
| Voltage                       | V <sub>OH2</sub> | Port P7                                                | $V_{DD} = 4.5V, I_{OH} = -0.2 \text{ mA}$           | 4.1  | -    | -    |      |
| Output Low Voltage            | V <sub>OL</sub>  | Except XOUT                                            | $V_{DD} = 4.5V, I_{OL} = 1.6 \text{ mA}$            | -    | -    | 0.4  | v    |
| Supply Current in NORMAL mode |                  |                                                        | $V_{DD} = 5.5V$                                     | _    | 8    | 14   | mA   |
| Supply Current in IDLE mode   |                  |                                                        | $V_{IN} = 5.3V/0.2V$<br>fc = 8 MHz                  | _    | 4    | 6    | mA   |

Note 1: Typical values show those at  $T_{opr} = 25 \text{ °C}$ ,  $V_{DD} = 5V$ .

Note 2 : Input Current :  $I_{IN1}$ ,  $I_{IN3}$ ; The current through pull-up or pull-down resistor is not included.

Note 3 : I<sub>DD</sub> does not include I<sub>AREF</sub> / I<sub>DREF</sub>.

#### A/D CONVERSION CHARACTERISTICS

#### (Topr = -30 to 70 °C : V<sub>SS</sub> = V<sub>ASS</sub> = 0V)

| PARAMETER                | SYMBOL            | CONDITIONS                                  | Min.             | Тур. | Max.              | UNIT |
|--------------------------|-------------------|---------------------------------------------|------------------|------|-------------------|------|
| Analog Reference Voltage | V <sub>AREF</sub> | $V_{DD} = V_{AREF}$                         | 4.5              | -    | 5.5               | V    |
| Analog Input Voltage     | V <sub>AIN</sub>  |                                             | V <sub>ASS</sub> | -    | V <sub>AREF</sub> | V    |
| Analog Supply Current    | I <sub>AREF</sub> |                                             | -                | 0.5  | 1.0               | mA   |
| Nonlinearity Error       |                   |                                             | -                | -    | ±2                |      |
| Zero point Error         |                   | $V_{AREF} = V_{DD} = 5.000V$                | -                | -    | ±2                | LSB  |
| Full Scale Error         |                   | V <sub>ASS</sub> = V <sub>SS</sub> = 0.000V | -                | -    | ± 2               |      |
| Total Error              |                   |                                             | -                | -    | ± 3               |      |

| D/A CONVERSION CHARACTERISTICS  |                                                                                                                                     | $(V_{SS} = A_{VSS} = 0, V_{DD} = 4.5 \text{ to } 5.5 \text{V}, \text{ Topr} = -30 \text{ to } 70 \text{ °C})$                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PARAMETER                       | SYMBOL                                                                                                                              | CONDITIONS                                                                                                                                                                                                                                                                                        | Min.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Тур.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Max.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| eference Voltage                | A <sub>VCC</sub>                                                                                                                    |                                                                                                                                                                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>DD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| issipation                      | I <sub>DREF</sub>                                                                                                                   | No Loading, All channel operating                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| n                               |                                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Nonlinearity Error              |                                                                                                                                     | A <sub>VCC</sub> = 5.000V : A <sub>VSS</sub> = 0.000V                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Differential Nonlinearity Error |                                                                                                                                     | Monotonicity Guarantee (Note1)                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ± 3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| me                              | T <sub>SU</sub>                                                                                                                     | Loading condition : c = 15 pF                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| output Voltage Range            | N.                                                                                                                                  | No Loading                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A <sub>VCC</sub> – 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                 | VAO                                                                                                                                 | $I_{AO} = 1.2 \text{ mA} / I_{AO} = -200 \ \mu \text{A}$                                                                                                                                                                                                                                          | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A <sub>VCC</sub> – 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| output Drive Range              | I <sub>AO</sub>                                                                                                                     | A <sub>VCC</sub> – 0.5 to 0.5V                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 2/ – 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| a Capacitors connected to D/A   | c <sub>OL</sub>                                                                                                                     |                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                 | PARAMETER<br>efference Voltage<br>issipation<br>Nonlinearity Error<br>Differential Nonlinearity Error<br>me<br>output Voltage Range | PARAMETER     SYMBOL       eference Voltage     A <sub>VCC</sub> issipation     I <sub>DREF</sub> n     I       Nonlinearity Error     I       Differential Nonlinearity Error     I       me     T <sub>SU</sub> putput Voltage Range     V <sub>AO</sub> putput Drive Range     I <sub>AO</sub> | PARAMETERSYMBOLCONDITIONSPARAMETERSYMBOLCONDITIONSeference Voltage $A_{VCC}$ issipation $I_{DREF}$ No Loading, All channel operatingn $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ Nonlinearity Error $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ Differential Nonlinearity ErrorMonotonicity Guarantee (Note1)me $T_{SU}$ Loading condition : c = 15 pFputput Voltage Range $V_{AO}$ $No Loading$ utput Drive Range $I_{AO}$ $A_{VCC} = 0.5$ to $0.5V$ | PARAMETER       SYMBOL       CONDITIONS       Min.         efference Voltage $A_{VCC}$ 4.5         issipation $I_{DREF}$ No Loading, All channel operating         n $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ $-$ Nonlinearity Error $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ $-$ Differential Nonlinearity Error       Monotonicity Guarantee (Note1) $-$ me $T_{SU}$ Loading condition : c = 15 pF $-$ putput Voltage Range $V_{AO}$ No Loading $0.03$ nutput Drive Range $I_{AO}$ $A_{VCC} - 0.5$ to $0.5V$ $-$ | PARAMETERSYMBOLCONDITIONSMin.Typ.efference Voltage $A_{VCC}$ 4.5-issipation $I_{DREF}$ No Loading, All channel operating-n $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ -Nonlinearity Error $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ -Differential Nonlinearity ErrorMonotonicity Guarantee (Note1)-me $T_{SU}$ Loading condition : c = 15 pF-putput Voltage Range $V_{AO}$ $No Loading$ 0.03putput Drive Range $I_{AO}$ $A_{VCC} = 0.5$ to $0.5V$ -Loancitors connected to D/AII- | PARAMETERSYMBOLCONDITIONSMin.Typ.Max.efference Voltage $A_{VCC}$ 4.5- $V_{DD}$ issipation $I_{DREF}$ No Loading, All channel operating25n $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ - $\pm 2.0$ Differential Nonlinearity Error $A_{VCC} = 5.000V : A_{VSS} = 0.000V$ - $\pm 2.0$ Differential Nonlinearity ErrorMonotonicity Guarantee (Note1)- $\pm 3/4$ me $T_{SU}$ Loading condition : c = 15 pF-20putput Voltage Range $V_{AO}$ No Loading0.03 $A_{VCC} - 0.25$ putput Drive Range $I_{AO}$ $A_{VCC} - 0.5$ to $0.5V$ - $\pm 2/-1$ |  |  |

Note 1 : Differential nonlinearity error does not include quantizing error.

#### A.C. CHARACTERISTICS $(V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 5.5V, T_{opr} = -30 \text{ to } 70 \text{ °C})$

| PARAMETER                    | SYMBOL           | CONDITIONS                   | Min. | Тур. | Max. | UNIT |
|------------------------------|------------------|------------------------------|------|------|------|------|
| Mashina Cuela Tima           | tcy              | In NORMAL mode               | 0.5  | _    | Д    |      |
| Machine Cycle Time           | In NORMAL mode   |                              | 0.5  |      | 4    | μs   |
| High Level Clock Pulse Width | t <sub>WCH</sub> | For external clock operation | 62.5 | _    | _    |      |
| Low Level Clock Pulse Width  | t <sub>WCL</sub> | (XIN input) , fc = 8 MHz     | 02.5 |      |      | ns   |

**RECOMMENDED OSCILLATING CONDITION** ( $V_{SS} = 0V$ ,  $V_{DD} = 4.5$  to 5.5V,  $T_{opr} = -30$  to 70 °C)

|                |                    |           | RECOMMENDED<br>OSCILLATOR |             | RECOMN<br>CONDI |                       |
|----------------|--------------------|-----------|---------------------------|-------------|-----------------|-----------------------|
| PARAMETER      | OSCILLATOR         | FREQUENCY |                           |             | C <sub>1</sub>  | <b>C</b> <sub>2</sub> |
|                | Ceramic Resonator  | 8 MHz     | KYOCERA                   | KBR8.0M     | 30 pF           | 30 pF                 |
| High-frequency | Crystal Oscillator | 8 MHz     | тоуоком                   | 210B 8.0000 | 20 pF           | 20 pF                 |



Note: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, by CRT (Cathode Ray Tube).

D.C./A.C. CHARACTERISTICS (PROM mode) (V<sub>ss</sub> = 0V)

## (1) READ OPERATION

| PARAMETER                    | SYMBOL           | CONDITIONS                | Min.                  | Тур.          | Max.                   | UNIT |
|------------------------------|------------------|---------------------------|-----------------------|---------------|------------------------|------|
| Input High Voltage           | V <sub>IH4</sub> |                           | V <sub>CC</sub> × 0.7 | -             | V <sub>cc</sub>        | v    |
| Input Low Voltage            | V <sub>IL4</sub> |                           | 0                     | -             | V <sub>CC</sub> × 0.12 | V    |
| Power Supply Voltage         | ٧ <sub>CC</sub>  |                           | 4.75                  |               | 6.0                    | v    |
| Program Power Supply Voltage | V <sub>PP</sub>  |                           | 4.75                  | _             | 0.0                    | v    |
| Address Access Time          | t <sub>ACC</sub> | $V_{CC} = 5.0 \pm 0.25 V$ | -                     | 1.5tcyc + 300 | _                      | ns   |

Note : tcyc = 500ns at 8MHz



| PARAMETER                    | SYMBOL           | CONDITIONS                                                        | Min.                  | Тур. | Max.                   | UNIT |
|------------------------------|------------------|-------------------------------------------------------------------|-----------------------|------|------------------------|------|
| Input High Voltage           | V <sub>IH4</sub> |                                                                   | V <sub>CC</sub> × 0.7 | -    | V <sub>cc</sub>        | v    |
| Input Low Voltage            | V <sub>IL4</sub> |                                                                   | 0                     | -    | V <sub>CC</sub> × 0.12 | v    |
| Power Supply Voltage         | V <sub>CC</sub>  |                                                                   | 5.75                  | 6.0  | 6.25                   | v    |
| Program Power Supply Voltage | V <sub>PP</sub>  |                                                                   | 12.0                  | 12.5 | 13.0                   | v    |
| Initial Program Pulse Width  | t <sub>PW</sub>  | V <sub>CC</sub> = 6.0V ± 0.25V,<br>V <sub>pp</sub> = 12.5V ± 0.5V | 0.95                  | 1.0  | 1.05                   | ms   |

## (2) PROGRAM OPERATION (High speed write mode-I) (Topr = $25 \pm 5^{\circ}$ C)



| Caution 1: | When $V_{cc}$ power supply is turned on or after, $V_{pp}$ must be increased.                                                                                            |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | When $V_{cc}$ power supply is turned off or before, $V_{pp}$ must be decreased.                                                                                          |  |  |
| Caution 2: | The device must not be set to the EPROM programmer or picked up from it under applying the                                                                               |  |  |
|            | program voltage (12.5V $\pm$ 0.5V) to the V <sub>pp</sub> pin as the device is damaged.                                                                                  |  |  |
| Caution 3: | Be sure to execute the recommended programing mode with the recommended programing adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs. |  |  |

| PARAMETER                   | SYMBOL           | CONDITIONS                                                           | Min.                  | Тур.  | Max.                   | UNIT |
|-----------------------------|------------------|----------------------------------------------------------------------|-----------------------|-------|------------------------|------|
| Input High Voltage          | V <sub>IH4</sub> |                                                                      | V <sub>CC</sub> × 0.7 | -     | V <sub>cc</sub>        | v    |
| Input Low Voltage           | V <sub>IL4</sub> |                                                                      | 0                     | -     | V <sub>CC</sub> x 0.12 | ~    |
| Supply Voltage              | V <sub>CC</sub>  |                                                                      | 6.00                  | 6.25  | 6.50                   | v    |
| Program Supply Voltage      | V <sub>PP</sub>  |                                                                      | 12.50                 | 12.75 | 13.0                   | V    |
| Initial Program Pulse Width | t <sub>PW</sub>  | V <sub>CC</sub> = 6.25V ± 0.25V,<br>V <sub>pp</sub> = 12.75V ± 0.25V | 0.095                 | 0.1   | 0.105                  | ms   |

## (3) PROGRAM OPERATION (High speed write mode-II) (Topr = $25 \pm 5^{\circ}$ C)



| Caution 1: | When $V_{cc}$ power supply is turned on or after, $V_{pp}$ must be increased.                 |
|------------|-----------------------------------------------------------------------------------------------|
|            | When V <sub>cc</sub> power supply is turned off or before, V <sub>pp</sub> must be decreased. |
| Caution 2: | The device must not be set to the EPROM programmer or picked up from it under applying the    |
|            | program voltage (12.5V $\pm$ 0.5V) to the V <sub>pp</sub> pin as the device is damaged.       |
| Caution 3: | Be sure to execute the recommended programing mode with the recommended programing            |
|            | adaptor. If a mode or an adaptor except the above, the misoperation sometimes occurs.         |