P-SDIP42-600-1.78

THATTATATATA

TMP87CK43N

TMP87CM43N TMP87PM43N

CMOS 8-Bit Microcontroller

TMP87CK43N, TMP87CM43N

The 87CK43/M43 is the high speed and high performance 8-bit single chip microcomputer. This MCU contains CPU core, ROM, RAM, input/output ports, an A/D converter, six multi-function timer/counters, serial bus interface, and two clock generators on a chip.

Part No.	ROM	RAM	Package	OTP MCU	
TMP87CK43N	24 Kbytes	1 16 10 10 10 10			
TMP87CM43N	32 Kbytes	1 Kbytes	P-SDIP42-600-1.78	TMP87PM43N	

Features

- 8-bit single chip microcomputer TLCS-870 Series
- Instruction execution time: 0.5 μ s (at 8 MHz), 122 μ s (at 32.768kHz)
- 412 basic instructions
 - Multiplication and Division (8bits × 8bits, 16bits ÷ 8bits)
 - Bit manipulations
 - (Set/Clear/Complement/Load/Store/Test/Exclusive or)
 - 16-bit data operations
 - 1-byte jump/subroutine-call (Short relative jump / Vector call)
- 13 interrupt sources (External: 5, Internal: 8)
- All sources have independent latches each, and nested interrupt control is available.
- 3 edge-selectable external interrupts with noise reject
- High-speed task switching by register bank changeover
- 5 Input/Output ports (35 pins)
- Two 16-bit Timer/Counters
 - Timer, Event counter modes
- Two 8-bit Timer/Counters
 - Timer, Event counter, Capture (Pulse width/duty measurement) modes
- Time Base Timer (Interrupt frequency: 1 Hz to 16 kHz)
- Divider output function (frequency: 1 kHz to 8 kHz)
- Watchdog Timer
 - Interrupt source/reset output (programmable)
- Serial Bus Interface
 - I²C-Bus / 8-bit SIO modes
 - Selectable two I/O channels
- 8-bit successive approximate type A/D converter with sample and hold
 - 6 analog inputs
 - Conversion time: 23 μs at 8MHz

980910EBP1

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products Reliability Handbook.
- The products described in this document are subject to the foreign exchange and foreign trade laws. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

Purchase of TOSHIBA I² C components conveys a license under the Philips I² C Patent Rights to use these components in an I² C system, provided that the system conforms to the I² C Standard Specification as defined by

Philips.

TOSHIBA

PWM outputs

- 14-bit PWM output (1 channel)
- 7-bit PWM output (1 channel)
- Dual clock operation
 - Single/Dual-clock mode (option)
- Five Power saving operating modes
 - STOP mode: Oscillation stops. Battery/Capacitor back-up. Port output hold/High-impedance.
 - SLOW mode: Low power consumption operation using low-frequency clock (32.768 kHz).
 - IDLE1 mode: CPU stops, and Peripherals operate using high-frequency clock. Release by interrupts.
 - IDLE2 mode: CPU stops, and Peripherals operate using high and low frequency clock. Release by interrupts.
 - SLEEP mode: CPU stops, and Peripherals operate using low-frequency clock. Release by interrupts.
- ♦ Wide operating voltage: 4.5 to 5.5 V at 8 MHz, 2.7 to 5.5 V at 4.19 MHz/32.768 kHz
- ◆Emulation Pod: BM87CM43N0A

Pin Assignments (Top View)

P-SDIP42-600-1.78

Block Diagram

Pin Function

Pin Name	Input / Output	Func	tion		
P07 to P00	I/O	Two 8-bit programmable input/output ports (tri-state).			
P17, P16, P14	I/O	Each bit of these ports can be individually			
P15(TC2)	l/O (Input)	configured as an input or an output under software control.	Timer/Counter 2 input		
P13(DVO)	l/O (Output)	When used as an external interrupt input or a timer/counter input, these ports	Divider output		
P12(INT2/TC1)	l/O (Input/Input)	must be as inputs.	External interrupt input 2 or Timer/Counter 1 input		
P11(INT1)	I/O (Input)	When used as a divider output, the data and input/output control latch must be	External interrupt input 1		
P10(INT0)		set to "1".	External interrupt input 0		
P22 (XTOUT)	l/O (Output)	3-bit input/output port with latch.	Resonator connecting pins (32.768 kHz). For inputting external clock, XTIN is used		
P21 (XTIN) P20 (INT5 / STOP)	I/O (Input)	When used as an input port, the latch must be set to "1".	and XTOUT is opened. External interrupt input 5 or STOP mode		
P67 (PWM0)	I/O (Output)		release signal input 14-bit PWM output		
P66 (PWM1/ INT3/TC3)	l/O (Output/ Input/Input)	8-bit programmable input/output port. Each bit of the port can be individually configured as an input or an output	7-bit PWM output, External interrupt input 3 or Timer/Counter 3 input		
P65 (AIN5) to P60 (AIN0)	l/O (Input)	under software control. When used as a PWM output, the data and input/output control latch must be set to "1".	A/D converter analog inputs		
P77	I/O				
P76 (SO1)	I/O (Output)		Serial data output 1 (SIO)		
P75 (SDA1/SI1)	l/O (l or O/Input)	8-bit programmable input/output port.	Serial data input/output 1 (I ² C-BUS) / Serial data input 1 (SIO)		
P74(SCL1/SCK1)	I/O (I or O)	Each bit of the port can be individually configured as an input or an output under software control. When used as	Serial clock input/output 1 (I ² C-BUS/SIO)		
P73	1/0	output or I/O port of the Serial Bus Interface, the data and input/output control latch must be set to "1".			
P72 (SO0)	I/O (Output)		Serial data output 0 (SIO)		
P71 (SDA0/SI0)	l/O (l or O/Input)		Serial data input/output 0 (I ² C-BUS) /		
			Serial data input 0 (SIO)		
P70 (SCL0/SCK0)	I/O (I or O)		Serial clock input/output 0 (I ² C-BUS/SIO)		
XIN, XOUT	Input, Output	Resonator connecting pins for high-frequen For inputting external clock, XIN is used and	XOUT is opened.		
RESET	I/O	Reset signal input or watchdog timer outpreset output.	out/address-trap-reset output/system-clock-		
TEST	Input	Test pin for out-going test. Be tied to low.			
VDD, VSS	Power Supply	+ 5 V, 0 V (GND)			
VAREF	Power Supply	Analog reference voltage input			

OPERATIONAL DESCRIPTION

1. CPU CORE FUNCTIONS

The CPU core consists of a CPU, a system clock controller, an interrupt controller, and a watchdog timer. This section provides a description of the CPU core, the program memory (ROM), the data memory (RAM), and the reset circuit.

1.1 Memory Address Map

The TLCS-870 Series is capable of addressing 64K bytes of memory. Figure 1-1 shows the memory address maps of the 87CK43/M43. In the 87CK43/M43, the memory is organized 3 address spaces (ROM, RAM, and SFR). It uses a memory mapped I/O system, and all I/O registers are mapped in the SFR address spaces. There are 16 banks of general-purpose registers. The register banks are also assigned to the first 128 bytes of the RAM address space.

Figure 1-1. Memory Address Maps

Electrical Characteristics

Absolute Maximum Rat	ings	(V _{SS} = 0 V)		
Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V _{DD}		– 0.3 to 6.5	V
Input Voltage	V _{IN}		– 0.3 to V _{DD} + 0.3	V
Output Voltage	V _{OUT1}	Ports P0, P1, P21, P22, P60 to P65, RESET, XOUT	– 0.3 to V _{DD} + 0.3	
	V _{OUT2}	Ports P20, P66, P67, P7	– 0.3 to V _{DD} + 0.3	
Output Current (Per 1 pin)	I _{OUT1}	Ports P0, P1, P2, P6, P7	3.2	mA
Output Current (Total)	ΣI_{OUT1}	Ports P0, P1, P2, P6, P7	120	mA
Power Dissipation [Topr = 70°C]	PD		600	mW
Soldering Temperature (time)	Tsld		260 (10s)	°C
Storage Temperature	Tstg		– 55 to 125	°C
Operating Temperature	Topr		– 30 to 70	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended Operating Conditions $(V_{SS} = 0 \text{ V}, \text{ Topr} = -40 \text{ to } 85^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit
			f. 0.141-	NORMAL1, 2 mode	4.5	5.5	
			fc = 8 MHz	IDLE1, 2 mode	4.5		
Supply Voltage	V _{DD}		fs =	SLOW mode	2.7		v
			32.768 kHz	SLEEP mode	2.7		
				STOP mode	2.0		
	V _{IH1}	Except hysteresis input	$V_{DD} \ge 4.5 V$ $V_{DD} < 4.5 V$		$V_{DD} \times 0.70$		
Input High Voltage	V _{IH2}	Hysteresis input			V _{DD} x 0.75	V _{DD}	V
	V _{IH3}				V _{DD} x 0.90		
	V _{IL1}	Except hysteresis input				$V_{DD} \times 0.30$	
Input Low Voltage	V _{IL2}	Hysteresis input	V _{DD} ≧4.5 V		0	V _{DD} x 0.25	V
	V _{IL3}		V _{DD} <4.5 V			V _{DD} x 0.10	
	fc	XIN, XOUT	V _{DD} = 4.5 to 5.5 V		2.0	8.0	MHz
Clock Frequency	fs	XTIN, XTOUT	V _{DD} = 2.7 to 5.5 V		30.0	34.0	kHz

Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.

Note 2: fc: The condition of power supply voltage is limited to NORMAL1, NORMAL2, IDLE1, and IDLE2 mode.

D.C. Chai	racteristic	s (V _{SS} = 0 V, T	opr = – 30 to 70°C)				
Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis Voltage	V _{HS}	Hysteresis inputs		-	0.9	-	V
	I _{IN1}	TEST			_	± 2	
Input Current	I _{IN2}	Open drain ports and tri-state ports	V _{DD} = 5.5 V V _{IN} = 5.5 V / 0 V	-			μA
	I _{IN3}	RESET, STOP					
Input Resistance	R _{IN2}	RESET		100	220	450	kΩ
Output Leakage Current	I _{LO}	Open drain ports and tri-state ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	_	_	2	μA
Output High Voltage	V _{OH2}	Tri- state ports	$V_{DD} = 4.5 V, I_{OH} = -0.7 mA$	4.1	-	-	V
Output Low Voltage	V _{OL}	Except XOUT	$V_{DD} = 4.5 V, I_{OL} = 1.6 mA$	-	-	0.4	V
Supply Current in NORMAL 1 , 2 mode			V _{DD} = 5.5 V V _{IN} = 5.3 V / 0.2 V	_	10	16	mA
Supply Current in IDLE 1, 2 mode	I _{DD}		fc = 8 MHz fs = 32.768 kHz	-	4.5	6	mA
Supply Current in SLOW mode			V _{DD} = 3.0 V	-	30	60	μA
Supply Current in SLEEP mode			V _{IN} = 2.8 V / 0 .2 V fs = 32.768 kHz	-	15	30	μA
Supply Current in STOP mode			V _{DD} = 5.5 V V _{IN} = 5.3 V / 0 .2 V	_	0.5	10	μA

Note 1: Typical values show those at Topr = 25° C, $V_{DD} = 5 V$.

Note 2: Input Current ; The current through pull-up or pull-down resistor is not included.

A / D Conversion Characteristics		$(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$					
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit	
Analog Reference Voltage	V _{AREF}	$V_{DD} \ge 4.5 V, V_{SS} = 0 V$	V _{DD} -1.5	_	V _{DD}	V	
Analog Reference Voltage Range	ΔV_{AREF}		3.0	_	_	V	
Analog Input Voltage Range	V _{AIN}		V _{SS}	-	V _{AREF}	V	
Analog Supply Current	I _{REF}		-	0.5	1.0	mA	
Nonlinearity Error			-	-	± 1		
Zero Point Error		$V_{DD} = 5.0 V, V_{SS} = 0.000 V$	-	_	± 1		
Full Scale Error		V _{AREF} = 5.000 V	-	_	± 1	- LSB	
Total Error		1	-	_	± 2		
Note : $\Delta V_{AREF} = V_{AREF} - V_{SS}$							

ſ

A.C. Characteristi	CS	$(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, \text{Topr} = -30 \text{ to } 70^{\circ}\text{C})$				
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine Cycle Time		In NORMAL1, 2 modes	0.5		10	
		In IDLE1, 2 modes	0.5	_		
		In SLOW mode	117.6	-	133.3	μs
		In SLEEP mode	117.0			
High Level Clock Pulse Width	t _{WCH}	For external clock operation	50			
Low Level Clock Pulse Width t		(XIN input), fc = 8 MHz	50	-	_	ns
High Level Clock Pulse Width	t _{WSH}	For external clock operation	14.7			
Low Level Clock Pulse Width	t _{WSL}	(XTIN input), fs = 32.768 kHz	14.7	_	_	μS

 $(V_{SS} = 0 V, V_{DD} = 4.5 \text{ to } 5.5 V, \text{ Topr} = -30 \text{ to } 70^{\circ}\text{C})$ **Recommended Oscillating Condition**

Parameter	Oscillator	Frequency	Recommended Oscillator		Recommended Condition		
Farameter	Oscillator	Frequency			C ₁	C ₂	
High-frequency	Ceramic Resonator	8 MHz	KYOCERA	KBR8.0M	20 - 5	20 - 5	
		4 MHz	KYOCERA	KBR4.0MS	30 pF	30 pF	
		4 IVI HZ	MURATA	CSA4.00MG			
	Crystal Oscillator	8 MHz	точосом	210B 8.0000	20 pF	20 pF	
		4 MHz	тоуосом	204B 4.0000	20 pr	20 pr	
Low-frequency	Crystal Oscillator	32.768 kHz	NDK	MX-38T	15 pF	15 pF	

Note: An electrical shield by metal shield plate on the surface of the IC package should be recommendable in order to prevent the device from the high electric fieldstress applied from CRT (Cathode Ray Tube) for continuous reliable operation.