CMOS 4-BIT MICROCONTROLLER

TMP47C236AN, TMP47C336AN

The 47C236A/336A are based on the TLCS-47 CMOS series. The 47C236A/336A have on-screen display circuit (OSD) to display characters and marks which indicate channel or time on TV screen, A/D converter input, D/A converter output which is suitable for application to the digital tuning system such as TV.

PART No.	ROM	RAM	PACKAGE
TMP47C236AN	2048 x 8-bit	128 x 4-bit	20 (2) 2
TMP47C336AN	3072 x 8-bit	192 x 4-bit	30-SDIP

FEATURES

- ◆4-bit single chip microcomputer ◆Instruction execution time : 1.9µs (at 4.2 MHz) SDIP30 ♦89 basic instructions Table look-up instructions Subroutine nesting : 15 levels max. ♦6 interrupt sources (External : 2, Internal : 4) All sources have independent latches, and multiple interrupt control is available ◆I/O port (22 pins) is antippy with Input 2 ports 5 pins I/O 5ports 17 pins ◆Interval Timer Two 12-bit Timer/Counters Timer, event counter, and pulse width measurement mode Display on screen circuit. Number of characters TMP47C236AN 16 kinds TMP47C336AN • Number of characters displayed 3 columns Composition of a character 8 x 8 dots • Size of character 2 kinds • Color of character 3 kinds Display position Upper right corner Fadeout function Pulse width modulation output 6-bit resolution 1 channels. ◆3-bit A/D converter input Auto frequency control signal (S-shaped curve) detection Horizontal synchronous signal is detected by timer/counter
 - ◆Remote control signal preprocessing capability
 - ♦ High current outputs
 - LED direct drive capability (typ. 10mA x 4 bits)
 - ♦HOLD function
 - Battery/Capacitor back-up
 - ♦Real Time Emulator : BM47C336A

5-195

PIN ASSIGNMENT (TOP VIEW)

BLOCK DIAGRAM

PIN FUNCTION

PIN NAME	Input/Output	FUNC	TIONS	
K03 ~ K00	Input	4-bit input port		
R43 (DOUT0)		3-bit I/O port with latch.	OSD output	
R42 (VD)	I/O (Output)	When used as input port, D/A converter output pin and OSD output pin, the	Horizontal sync signal input	
R41 (PWM)		latch must be set to "1".	6-bit D/A converter output	
R51 (HD)	I/O (Input)	4-bit I/O port with latch. When used as input port, resonator	Horizontal sync signal input	
R50 (DOUT1)	I/O (Output)	connecting pin for and OSD output pin, the latch must be set to "1".	OSD output	
R63 ~ R60	1/O	4-bit I/O port with latch. When used as input port, the latch must be	e set to "1".	
R73 ~ R71	1/0	3-bit I/O port with latch. When used as input port, the latch must be	e set to "1".	
R83 (T1)		4-bit I/O port with latch.	Timer/Counter 1 external input	
R82 (INT1)		When used as input port, external	External interrupt 1 input	
R81 (T2)	I/O (Input)	interrupt and timer/counter input pin, the latch must be set to "1".	Timer/Counter 2 external input	
R80 (INTZ)			External interrupt 2 input	
CIN	I/O (Input)	Input pin	3-bit A/D converter input	
OSC1, OSC2	Input, Output	Resonator connecting pin of display on scr	een circuit	
XIN, XOUT	input, Output	Resonator connecting pin. For inputting external clock, XIN is used an	d XQUT is opened	
RESET	Input	Reset signal input		
HOLD (KEO)	Input (Input)	HOLD request/release signal input	Sense input	
TEST	Input	Test pin for out-going test. Be opened or fi	ixed to low level.	
VDD		+ 5V	······································	
VSS	Power supply	0V (GND)		

OPERATIONAL DESCRIPTION

Concerning the 47C236A/336A, the configuration and functions of hardwares are described.

As the description is provided with priority on those parts differing from the 47C200A/400A, the technical data sheets for the 47C200A shall also be referred to.

Note : The 47C236A/336A have no serial port, differing from the 47C200A/400A.

1. SYSTEM CONFIGURATION

- (1) Internal CPU Function Same as 47C200A/400A, except ROM and RAM capacity.
- (2) Peripheral Hardware Function
 - (i) I/O port
 - (2) Interval Timer

(3) Timer/Counter

- (5) A/D converter (comparator) input
- 6 D/A converter (Pulse Width Modulation) output
- (4) On-screen display (OSD) control circuit ⑦ Remote control signal pre-process circuit

This section describes functions of (4) to (7) and ROM \cdot RAM capacity.

2. INTERNAL CPU FUNCTION

2.1 Program Memory (ROM)

For the 47C236A, programs are stored to addresses 000-7FF_H (2048 × 8 bits). And for the 47C336A, programs are stored to addresses 000-BFF_H (3072 × 8 bits). Also, the table look-up instructions [LDH A,@DC +] and [LDL A, @DC] store to the accumulator the permanent data at addresses 000-7FF_H and 000-BFF_H. The 5-bit 8-bit data conversion instruction [OUTB @HL] can not be used.

Figure 2-1. Configuration of Program Memory (ROM)

2.2 Data memory (RAM)

TMP47C236A has 128×4 bits (address $00_{\rm H}$ through $0F_{\rm H}$ and $90_{\rm H}$ through $FF_{\rm H}$) of the data memory (RAM), and the 47C336A has 192×4 bits (addresses $00_{\rm H}$ through $7F_{\rm H}$ and $C0_{\rm H}$ through $FF_{\rm H}$).

Figure 2-2. Data Memory Capacity and Address Assignment

Note. With the 47C236A, the most significant bit of the RAM address is always regarded as "0", so that addresses 90_H-FF_H may be accessed as addresses 10_H-7F_H. However, programming should be performed assuming that the RAM is assigned to addresses 00_H- 0F_H and 90_H-FF_H as shown in Figure 2-2 (a) by considering the application software evaluation with a piggyback or development tools.

And with the 47C336A, the RAM at addresses CO_H-FF_H is accessed when addresses 80_H-BF_H are addressed by a program, but when creating programs for evaluating software for piggybacks or development tools, assign the data memory to addresses 00_H-7F_H or to addresses CO_H -FF_H, same as the 47C236A.

3. PERIPHERAL HARDWARE FUNCTION

3.1 I/O ports

Th

36A/336A	has 7	7 I/O Ports (24 Pins) e	ach as follow.
K0 port			
R4 port	;		(R42 pin is shared by OSD output. R41, R42 pins is shared by D/A converter output)
R5 port	;		(R53, R52 pins is shared by Resonator connecting pin for OSD R51, R50 pins is shared by I/O port)
R6 port	;	4-bit input/output	
R7 port	;	4-bit input/output	(R70 pins is shared by AFC comparator input)
R8 port			(shared by external interrupt input and timer/counter input)
KE port	;	1-bit sense input ((shared by hold request/release signal input)
	K0 port R4 port R5 port R6 port R7 port R8 port	K0 port ; R4 port ; R5 port ; R6 port ; R7 port ; R8 port ;	R4 port;3-bit input/outputR5 port;4-bit input/outputR6 port;4-bit input/outputR7 port;4-bit input/outputR8 port;4-bit input/output

This section describes ports of (2), (3), (5) which are changed from the 47C200A / 400A. The 47C236A/336A has no P1, P2 and R9, therefore 5-bit 8-bit data conversion instruction [OUTB @HL] can not use.

Table 3-1 lists the port address assignments and the I/O instructions that can access the ports.

	Port			Input/O	Input/Output instruction	ion		
Input (IP**)	Output (OP++)	IN %p, A IN %p, @HL	ОИТ А,%р ОИТ @HL,%p	OUT #k, %p	OUTB @HL	SET %p, b CLR %p, b	TEST %p,b TESTP %p,b	SET @L CLR @L TEST@L
		0	I	ł	1	ł	0	1
		1	I	I	ł	1	1	t
		I	I	ł	I	1	1	1
	1	ł	I	ł	I	ł	1	ł
R4 input port	R4 output port	0	0	0	ł	0	0	()
RS input port	R5 output port	0	0	0	I	0	0	0(
R6 input port	R6 output port	0	0	0	1	0	0	С
R7 input port	R7 output port	0	0	0	I	0	0	0
R8 input port	R8 output port	0	0	0	I	0	0	ι
		ł	I	ì	I	1	ı	I
	OSD data control register (1st digit)	1	0	0	I	I	ï	I
	OSD data control register (2nd digit)	I	0	0	I	I	1	I
	OSD data control register (3rd digit)	I	0	0	I	ł	1	ţ
Remote control count register	Remote control offset register	ł	0	0	ł	1	I	I
Status input	Remote control preprocess register	0	0	0	I	ţ	0	ı
		I	I	Ļ	1	ł	I	ł
	Hold operating mode control	1	0	1	1	I	1	ł
		1	ł	ł	I	I	ŝ	ł
_	Comparator input control	I	0	I	1	I	I	ł
		I	I	ı	I	ł	1	I
		I	ĩ	t	1	ı	I	ì
	Watchdog timer control	I	0	I	I	I	l	I
		ł	I	I	ı	I	ļ	I
	PWM buffer selector	I	0	I	I	1	ł	I
	PWM data transfer buffer	ł	0	I	I	1	ı	I
	Interval timer interrupt control	ı	0	I	ł	I	I	ł
	OSD control 1	I	0	ι	I	ı	t	I
	OSD control 2	1	0	I	ł	I	I	ı
-	Timer/Counter 1 control	ļ	0	I	I	ı	1	J
	Timer/Counter 2 control	1	0	1	I	I	J	I
		1	I	I	1	I	I	ı
	HD rounter control	I	С	1	1	J	1	I

TMP47C236A/336A

Table 3-1. Port Address Assignment and Input/Output Instructions

Note 1: "----" means the reserved state. Unavailable for the user programs.

(1) Port R4 (R43-R41)

3-bit I/O port with latch. When used as input port, the latch must be set to "1". The latch is initialized to "1".

This pin is used both as R43 for OSD output, and as R41 and R42 for D/A converter output. When used for OSD output, select DOUT0 to enable OSD. To use for D/A converter, set the latch to "1". Also, when this pin is used as R43 for OSD output, "1" is read at the R43 pin and the $\overline{\text{VD}}$ is read at the R42 pin, during the input instruction is executed. There is no R40 pin, but "1" is read in during the input instruction.

Port R4 (Port address OP04 / IP04)

Figure 3-1. Port R4

(2) Port R5 (R51-R50)

This is a 2-bit input/output port with latch. When used as an input port, set the latch to "1". The R50 pin is used to disable OSD display. The latch is initialized to "1" by resetting.

The R51 pin is also used as the HD (horizontal sync signal) input pin. When used as the HD input pin, set the latch to "1". Like the R43 pin, the R50 pin is also used as the OSD output pin. When an input instruction is executed with OSD display enabled, "1" is read at the R50 pin and VD is read at the R51 pin. There are no R53 or R52 pins but "1" is read when an input instruction is executed.

Figure 3-2. Port R5

(3) Port R7 (R73-R71) and CIN pin

Port R7 is 3-bit I/O ports with latch. When used as an input port, the latch should be set to "1". The latch is initialized to "1" during reset.

CIN pin is the A/D converter (comparator) input for the detection of AFC (Auto Frequency Control) signal. When used a comparator, the bit-3 of command register (OP12) is set to "1". CIN is the comparator input which has a programmable 3-bit D/A converter as a reference voltage source, and its data is read in the bit-0 of IP07.

Port R7 (Port address OP07 / IP07)

3.2 On-Screen Display (OSD) Circuit

This built-in on-screen display circuit displays characters and symbols on the TV screen. Display size is 3 columns x 1 line, with a choice of 16 character patterns. Fadeout is also possible when the display is turned off.

8 x 8 dots

upper right corner of the TV screen

3.2.1 OSD Circuit Function

- (1) Number of characters
- 16 kinds (2) Number of characters displayed 3 characters
- (3) Composition of a character
- ④ Size of character
- (5) Color of character
- 2 kinds 3 kinds
- (6) Display position variable
- ⑦ Fadeout function

3.2.2 OSD Circuit Configuration

Figure 3-4. OSD Circuit

3.2.3 Character Display and Data Table for Display

The 16 character types are stored in the character ROM and the user can set optional patterns as shown in Figure 3-7. The character ROM contains 16 characters (character codes 00-0FH) with an 8×8 dot configuration. Each character bit corresponds to one bit in the character ROM. "1" turns on the bit (dot) and "0" turns off the bit (dot).

When submitting programs, place the character data at address 1000_H and following (addresses 1000-107F_H). Figure 3-5 shows typical character (8 × 8 bits) addresses and data. Figure 3-6 shows the standard pattern hex list.

Address	000 _H	78	84	84	84	84	84	84	78	10	30	10	10	10	10	10	38
	010	78	84	04	08	10	20	40	FC	78	84	04	18	04	04	84	78
	020	18	28	48	88	88	FC	08	08	FC	80	80	F8	04	04	84	78
	030	78	84	80	F8	84	84	84	78	FC	04	04	08	10	20	20	20
	040	78	84	84	-78	84	84	84	78	78	84	84	7C	04	04	84	78
	050	10	28	44	82	FE	82	82	82	82	82	82	82	82	44	28	10
	060	02	04	08	10	10	20	40	80	7C	82	40	38	04	02	82	7C
	070	FC	82	82	FC	80	80	80	80	00	00	00	00	00	00	00	00

Figure 3-6. Example Character Data (address 2000_H~)

Note: Each character has an 8-byte data area. The starting address is the value of the character ROM address (00-0FH) contained by the upper 4 bits of the 7bit program area (00-7F_H).

3.2.7 Character ROM (Example Character) The character data consist of the characters and symbols shown in Figure 3-7 as Example patterns. Optional character patterns can also be set by the user.

Figure 3-7. Address of the Character ROM and Character Pattern

3.2.5 Control of OSD Circuit

The OSD circuit is controlled by command registers 1 and 2 (OP1A, OP1B) and character code control registers 1, 2 and 3 (OP0A, OP0B, OP0C). OP1A controls the OSD output pin and OP1B controls character size and the display off method (display normally off, fadeout). Character code control registers OP0A, OP0B and OP0C correspond to the first, second and third display characters, respectively.

When all settings are completed and bit 3 (EOSD) of OP1B is set to "1", the character data read from the character ROM address indicated by the character code control register is output to the DOUT pin.

3		2	1	0		
EOSD		EFOT	FTIM			
EOSD OSD display control						
		play disable play enable				
EFOT	Displ	ay OFF Con	trol			
	ormal adeou	ly display O t	FF			
FTIM	Selec	t fadeout ti	me			
0 : 10	6 T _{VD} 2 T _{VD}			/		
CS	Selec	ts character				
		haracter haracter		<i>.</i>		

Note. T_{VD}: The period of vertical synchronous signal

Figure 3-9. Character Code Control Register

(1) Display Start Position

The display always starts at the upper right corner of the screen. The display start position of the first character is shown below.

Notes. T_{HD} : The period of horizontal synchronous signal

T_{OSC} : The period of OSD clock oscillation

(2) Display Character Size

Two different character sizes can be selected for screen display, but not for individual characters. Large characters are selected by setting bit 0 (CS) of command register OP1B to "1" and small characters are selected by setting bit 0 to "0". Table 3-2 shows the display character sizes.

	small character	large character
dot size	2T _{HD} × 2T _{OSC}	4T _{HD} × 4T _{OSC}
character size	16T _{HD} × 16T _{OSC}	32T _{HD} x 32T _{OSC}

Table 3-2. Character Size

(3) Fadeout Function

The OSD circuit of the 47C236A/336A has a built-in fadeout function that gradually fades the display from the bottom when turned off. The fadeout functions is controlled by bits 3 and 2 (EOSD, EFOT) of command register OP18. The fadeout function is activated by setting bits 3 and 2 of command register OP18 to "01" in normal display status. The display is turned off normally by setting bits 3 and 2 to "00". The fadeout function is disabled when EOSD is "1".

Two different fadeout times can be selected by setting bit 1 (FTIM) of command register OP1B.

(4) Control of OSD Output and Color to Display

OSD output goes to the DOUT1 and DOUT0 pins, each of which can be enabled/disabled independently. Display is enabled by setting EDT1 and EDT2 when EOSD = 1. Since DOUT1 and DOUT0 are independent of each other, three colors can be output by using each for one color and both together for a composite color by connecting to the R, G and B pins. Figure 3-10 shows a typical TV screen image as an output example.

3.3 3-bit A/D Converter (Comparator) Input

Comparator input consists of a 3-bit D/A converter and a comparator. The AFC input voltage level can be detected in 8 stages by distinguishing bit 0 of IP07 while varying the comparison voltage (D/A converter output voltage) of the comparator with the command registe (OP12). The comparator is disabled after a reset.

3.3.1 Circuit Configuration

Figure 3-11 shows the comparator input circuit configuration.

Figure 3-11. Comparator Input Circuit

3.3.2 Control of Comparator Input

The comparison voltage of the comparator is set with the lower 3 bits of the command register (OP12). Table 3-3 shows the comparison voltage when Vdd = 5V.

C)P1	2	Reference
2	1	0	voltage [V]
0	0	0	0.62
0	0	1	1.25
0	1	0	1.87
0	1	1	2.50
1	0	0	3.12
1	0	1	3.75
1	1	0	4.37
1	1	1	5.00

Table 3-3. Reference Voltage

3.4 D/A Converter (PWM) Output

47C236A/336A have one built-in pulse width modulation (PWM) output channel. D/A converter output can easily be obtained by attaching a low-pass filter. PWM output goes to the R41 (PWM) port. When this port is used for PWM output, set the corresponding R41 output latch to "1". The R41 output latch is initialized to "1" during resets. PWM output is controlled by the buffer selector (OP17) and data transfer buffer (OP18). Writing "CH" to the buffer selector sends PWM data written to the data transfer buffer to the PWM data latch and switches to PWM output. The PWM data sent to the PWM data latch are held until overwritten.

The buffer selector, data transfer buffer and \overline{PWM} data latch are cleared to "0" (\overline{PWM} output at "1" level) during resets and holds.

3.4.1 Circuit Configuration

Figure 3-13 shows the pulse width modulation circuit configuration.

Figure 3-13. Pulse Width Modulation Circuit

3.4.2 Output Waveform of PWM Circuit

PWM Output

With 6-bit resolution PWM output, one cycle is TN = 27/fc [sec]. When 6-bit data are k (k = 0-63), the low level pulse width is k × t₀. Figure 3-14 shows the PWM output timing.

Figure 3-14. PWM Output Timing

3.4.3 Control of PWM Circuit (Data transfer)

PWM output is controlled by writing output data to the data transfer buffer (OP18). Output data are written in segments using the buffer selector (OP17). Buffer numbers are assigned to the segmented data transfer buffer and the data are written using the following procedure in accordance with the chart shown in Table 3-4.

- ① Write the numbers of the buffers to which data are to be written to the buffer selector (OP17).
- O Write the corresponding PWM data to the selected buffer (OP18).
- 3 Repeat steps 1 and 2 until all of the output data have been written to the transfer buffer.
- (4) When all of the output data have been written, write "C_H" to the buffer selector.

The previous PWM data are output while the next output data are being written to the transfer buffer. A maximum time of 29/fc[sec] (at 4MHz, 128 μ S) is required from the time "C_H" is written to the buffer selector until PWM output is switched.

Buffer Number (OP17)	Correspondenc (OP18)		Mode	PWM Output
6	Bit of PWM	3~0	Write	Preceding data
7	"	5~4	"	*
с	None		Transfer	Present data

Table 3-4. The Bit and Buffer Number of Data Transfer Buffer

3.5 Remote Control Pre-processor

The remote control pre-processor counts the edge-to-edge time of the input pulse and generates an interrupt request each time that the switching edge of an input pulse is detected. Remote control signal waveform which has been rectified by the receiver is inputed to the R80 (INT2) pin.

3.5.1 Circuit Configuration

Figure 3-15. Remote Control Pre-processor

3.5.2 Control of Remote Control Pre-processor

The remote control pre-processor is controlled by the command register (OPOE) Also, external interrupt 2 is used to interrupt source. At reset, INT2 is selected, so a remote control discrimination (REMO-CON) interrupt is selected by command. Interrupt enable master F/F (EIF) and interrupt enable register (EIR) are used to enable/disable remote control discrimination interrupt. The interrupt priority is the same as for external interrupt 2.

Figure 3-16. Command Register

(1) 8-bit preset counter

This is a binary counter which counts the time from edge to next edge. A value of offset value register (OPOD) are loaded to the lower 4 bits and the value of the upper 4 bits are stored to the count value register (IPOD).

Offset value is loaded in the following cases :

- ① When ELD (bit 0 of the OPOE) is set to "1".
- ③ When an edge is detected.

Count value is stored in the following cases :

- ① When the upper 4 bits are all "1".
- ② When an edge is detected.
- (2) Reference time and detection time

The reference time must be created before measuring the pulse width of the remote control signal waveform. Reference time is set the value shown in Table 3-5 by the count cycle of the preset counter selected with the OPOE and the offset value set to the OPOD. Therfore, the product of the reference time and the count value read from the IPOD becomes the detection time. However, a worst error of the detection time is equivalent to reference time.

Count clock cycle	Offset value (HEX)	Reference time (n = 0 to 15)
27/fc [sec]	0 to F	(2 ¹¹ – n x 2 ⁷) / fc [sec]
28/fc	0 to F	(2 ¹² – n x 2 ⁸) / fc

Table 3-5.	Set value of reference time
	set talue of tereferee three

(3) Remote control pre-processing operation

First, set the offset value for creating the reference time to the OPOD. The offset value is loaded to the lower 4 bits of preset counter by setting ELD to "1". ERM can also be set to "1" at the same time. Setting ERM starts counting. ELD is cleared after loading but it is automatically loaded during the count by an overflow of the lower 4 bits.

After storing the count value in the IPOD by detecting the switching edge (leading/trailing) of the input pulse, the preset counter again loads the offser value to the lower 4 bits, clears to "0" the upper 4 bits and restarts counting.

An interrupt request is genarated at this time. Therfore, read the count value in the interrupt service routine. The next interrupt is disabled until the stored count value is read. Switching edges can select in one by one using EDGE.

If the upper 4 bits of counter becomes " 1111_B " before the next edge is accepted, it is judged to be an overflow and the interrupt is generated.

In this case, IPOD is set to " F_H " and it can be identified to be the overflow interruption. The input pulse width of both "H" and "L" levels must be more than 192/fc [sec]. If any shorter pulse than 192/fc [sec] may be expected, put the dummy instruction [IN %IPOD, A] reading out from count value register in the main routine.

Even if ERM is "0", when an INT2 interrupt sourse is enabled (determined by EIF,EIR), an interrupt request is generated by a falling edge of input pulse.

Figure 3-17. shows the operation timing the remoto control pre-processor.

% Calculation of pulse width with the avobe program when the count value stored to the RAM [10_H] is "9".

When the clock frequency is $32\mu s$ (fc = 4.19MHz) and the offser value is "5", the refrence time will be as follows :

$$(2^{11} - 5 \times 2^4) / \text{fc} = 336 [\mu \text{s}]$$

Thus, the detection time (pulse width) will be $336 \times 9 = 3.02$ [ms] (including an error of 336μ s max.)

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS $(V_{55} = 0V)$

PARAME	TER	SYMBOL	PINS	RATING	UNIT
Supply Voltage		V _{DD}		- 0.3~7	V
Input Voltage		VIN		- 0.3~V _{DD} + 0.3	v
Output Voltage		V _{OUT1}	Except sink open drain pin	- 0.3~V _{DD} + 0.3	
		νουτ2	Sink open drain pin except R7 port	- 0.3~10	, v
	(per 1 pin)	^Ι ουτι	R6 port	10	mA
Output Voltage		ίουτε	R4, R5, R7, R8 port	3.2	
Output Current	(Total)	Σ Ι _{Ουτι}	R6 port	40	mA
Power Dissipation	[T _{opr} = 70°C]	PD		600	mW
Soldering Temperatu	re (time)	T _{sld}		260 (10sec)	°C
Storage Temperature		T _{stg}		- 55~125	°C
Operating Temperature		T _{opr}		- 20~70	°C

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$, Topr = $-20 \sim 70^{\circ}C$)

PARAMETER	SYNBOL	PINS	CONDITION	Min.	Max.	UNIT
			in the Normal mode	4.5		
Supply Voltage	VDD		in the HOLD mode	2.0	6.0	V
	Viita	Except Hysteresis Input		V _{DD} × 0.7		
Input High Voltage	V ₁₀₁₂	Hysteresis Input	V _{DD} ≥ 4.5V	V _{DD} × 0.75	V _{DD}	v
	V _{II13}		V _{DD} <4.5V	V _{DD} × 0.9		
	ViL1	Except Hysteresis Input		0	V _{DD} × 0.3	
Input Low Voltage	V _{IL2}	Hysteresis Input	V _{DD} ≥ 4.5V		V _{DD} x 0.25	│ ∨
	V _{IL3}		V _{DD} <4.5V		V _{DD} × 0.1	
	fc	XIN, XOUT		0.4	4.2	
Clock Frequency	fosc	OSC1, OSC2		6	10	MHz

Notes. Input Voltage V_{IH3}, V_{IL3} : in the HOLD mode

PARAMETER	SYMBOL	PINS	CONDITION	Min.	Тур.	Max.	UNIT
Hysteresis Voltage	V _{HS}	Hysteresis Input		-	0.7	-	v
Input Current	lin1	K0 port, TEST, RESET, HOLD	V _{DD} = 5.5V, V _{IN} = 5.5V/0V		_	± 2	μΑ
inputcurient	IN2	R port (open drain)					
Input Resistance	R _{IN1}	K0_port with pull-up			70	150	κΩ
	R _{IN2}	RESET		100	220	450	
Output Leakage Current	I _{LO}	Open drain port	V _{DD} = 5.5V, V _{OUT} = 5.5V	-	-	2	μΑ
Output High Voltage	V _{OH}	R6 Port	$V_{DD} = 4.5V, I_{OH} = -200 \mu A$	2.4	-	-	v
Output Low Voltage	V _{OL}	XOUTを除く	V _{DD} = 4.5V, I _{OL} = - 1.6mA	-	-	0.4	v
Output Low Current	lol	R6 port	V _{DD} = 4.5V, V _{OL} = 1.0V	-	10	-	mA
Supply Current (in the Normal mode)	IDD		V _{DD} = 5.5V, fc = 4MH _Z	-	3	6	mA
Supply Current (in the HOLD_mode.)	I _{DDH}		V _{DD} = 5.5V		0.5	10	μΑ

D.C. CHARACTERISTICS ($V_{SS} = 0V$, Topr = $-20 \sim 70^{\circ}C$)

Note 1. Typ. values show those at $T_{opr} = 25^{\circ}C$, $V_{DD} = 5V$.

Note 2. Input Current I_{IN1} : The current through resistor is not included, when the pullup /pull-down resistor is contained. :

Note 3. Supply Current

 $V_{IN}=5.3V/0.2V$ The KO port is open when the pull-up/pull-down resistor is contained. The voltage applied to the R port is within the valid range VIL or VIH.

A/D CONVERTER CHARACTERISTICS

PARAMETER	SYMBOL	PINS	CONDITION	Min.	Тур.	Max.	UNIT
Analog input voltage	V _{AIN}	CIN		Vss	_	V _{DD}	v
A/D conversion error	_			1	-	± 1/4	LSB

 $(V_{SS} = 0V, V_{DD} = 4.5 \sim 6.0V, T_{opr} = -20 \sim 70^{\circ}C)$ A.C. CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	Min.	Тур.	Max.	UNIT
Instruction Cycle time	t _{cy}		1.9	-	20	μs
High level Clock Pulse Width	t _{WCH}		80	-	-	
Low level Clock Pulse Width	twci	For external clock operation	00			ns

.

RECO	MMENDED OSCILLAT	ING CONDITION	$V_{SS} = 0V, V_{DD} = 4.5 \text{ to } 6$	5.0V, T _{opr} = - 30 to 70°C)
(1)	4MHz Ceramic Resonator CSA4.00MG KBR-4.00MS Crystal Oscillator 204B-6F 4.0000	(MURATA) (KYOCERA) (TOYOCOM)	$C_{XIN} = C_{XOUT} = 30pF$ $C_{XIN} = C_{XOUT} = 30pF$ $C_{XIN} = C_{XOUT} = 20pF$	
(2)	400KHz Ceramic Resonator CSB400B KBR-400B	(MURATA) (KYOCERA)	$C_{XIN} = C_{XOUT} = 220pF,$ $R_{XOUT} = 6.8K\Omega$ $C_{XIN} = C_{XOUT} = 100pF,$ $R_{XOUT} = 10K\Omega$	C _{XIN} C _{XIN} C _{XIN} C _{XOUT} C _{XOUT} C _{XOUT}

.

TYPICAL CHARACTERISTICS

Input/Output Circuitry

(1) Control pins

Input/output circuitries of the 47C236A/336A control pins are shown below.

CONTROL PIN	1/0	CIRCUITRY	REMARKS
XIN XOUT	Input Output	OSC. enable $R \neq R_{f} \neq R_{0}$	Resonator connecting pins $R = 1K\Omega (typ.)$ $R_f = 1.5M\Omega (typ.)$ $R_O = 2K\Omega (typ.)$
RESET	Input		Hysteresis input Contained pull-up resistor R _{IN} = 220KΩ (typ.) R = 1KΩ (typ.)
HOLD (REO)	Input (Input)		Hysteresis input (Sense input) R = 1KΩ (typ.)
TEST	input		Contained pull-down resistor R _{IN} = 70KΩ (typ.) R = 1KΩ (typ.)
OSC1 OSC2	Input Output	OSC. enable $R \neq R_1$ $R \neq R_2$ OSC1 OSC2	Oscilation terminals for DOS $R = 1K\Omega$ (typ.) $R_f = 1.5M\Omega$ (typ.) $R_0 = 2K\Omega$ (typ.)
ĤĎ VĐ	Input		Synchronous signal input Hysteresis input R = 1KΩ (typ)

(2) I/O port

The input/output circuitries of the 47C236A/336A I/O port are shown below, any one of the circuitries can be chosen by a code (PD-PF) as a mask option.

PORT	I/O	IN	REMARKS		
		PD	PE	PF	Pull-up/Pull-down
ко	Input				R _{IN} = 70kΩ (typ.) R = 1kΩ (typ.)
R4 R5	I/O		Sink open drain output Initial "Hi-Z" R = 1kΩ (typ.)		
R6	1/0		Push-pull output Initial "Low" High drive current output I _{OL} = 10mA (typ.) R = 1kΩ (typ.)		
R7	I/O		R71-R73	×	Sink open drain output Initial "Hi-Z" Comparater input (R70) R = 1kΩ (typ.)
R8	I/O				Sink open drain output initial "Hi-Z" Hysteresis input R = 1kΩ (typ.)