+速 TM57PT46/PA46 DATA SHEET Rev 1.0

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **Tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **Tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses tenx products for any such unintended or unauthorized application, Buyer shall indemnify and hold tenx and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that tenx was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V1.0	Aug, 2016	New release

CONTENTS

AME	NDMENT HISTORY	2
CON	FENTS	
FEAT	TURES	5
BLO	CK DIAGRAM	7
PIN A	ASSIGNMENT	
ΡΙΝ Γ	DESCRIPTIONS	
	UMMARY.	
	CTIONAL DESCRIPTION	
FUNC	CIUNAL DESCRIPTION	12
1.	CPU Core	
	1.1 Clock Scheme and Instruction Cycle	
	1.2 RAM Addressing Mode	
	1.3 Programming Counter (PC) and Stack	
	1.4 ALU and Working (W) Register	
	1.5 STATUS Register (F-Plane 03H)	
	1.6 Interrupt	
2	Chip Operation Mode	
	2.1 Reset	
	2.2 System Configuration Register (SYSCFG)	
	2.3 PROM Re-use ROM	
	2.4 Power-Down Mode	
	2.5 Dual System Clock	
	2.6 Dual System Clock Modes Transition	
3	Peripheral Functional Block	
	3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer	
	3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)	
	3.3 Timer1	
	3.4 PWM: (8+2) bits PWM	
	3.5 PPG (Programmable Pulse Generator)	
	3.6 Buzzer Output	
	3.7 Touch Key3.8 ADC: 12-bit Analog-to-Digital Converter	
	3.9 OPA/Comparators offset voltage trimming procedures3.10 System Clock Oscillator	
4	I/O Port	
4		
	4.1 PA0-2	
	4.2 PA3-6, PB0-4, PD0-7	
	4.3 PA7	

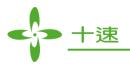
MEMORY MAP	77
F-Plane	77
R-Plane	82
INSTRUCTION SET	
ELECTRICAL CHARACTERISTICS	
1. Absolute Maximum Ratings	
2. DC Characteristics	
3. Clock Timing	
4. Reset Timing Characteristics	
5. OPA Electrical Characteristics	
6. COMPARATOR Electrical characteristics	
7. Characteristic Graphs	
PACKAGING INFORMATION	

FEATURES

1. Interrupt

- Three External Interrupt pins
 - 2 pins are falling edge wake-up triggered
 - 1 pin is rising or falling edge wake-up triggered
- Timer0/Timer1/WKT (wake-up) Interrupts
- ADC Interrupt
- CMP1 rising or falling triggered interrupt
- CMP2/CMP3 falling edge triggered interrupt
- CMP4 over current duration triggered interrupt
- 2. Port B individual pin low level wake up
- 3. Wake-up (WKT) Timer
 - Clocked by built-in RC oscillator with 4 adjustable Interrupt times
 - 1.1 ms/2.3 ms/36 ms/145 ms @5V, 1.4 ms/2.8 ms/46 ms/182 ms @3V
- 4. Watchdog Timer
 - Clocked by built-in RC oscillator with 4 adjustable Reset Times 145 ms/290 ms/1160 ms/2320 ms @5V, 180 ms/364 ms/1456 ms/2913 ms @3V Watchdog timer can be disabled/enabled in STOP mode (WDTSTP, (R0D.5))

5. 1 Independent PWM


- 8+2 bits, period-adjustable/duty-adjustable/Clear&Hold
- Clock source: FIRC 8 MHz and 16 MHz which double of FIRC
- 6. 12-bit ADC converter with 12 input channels
- 7. Programmable Pulse Generator (PPG) function for Induction Heating
- 8. 15 channel Touch Key (TM57PT46 only)
- 9. 1 Operational Amplifiers with output connect to CMP4 inverted terminal

10. 4 specified Comparators cooperate with PPG function

11. Reset Sources

- Power On Reset
- Watchdog Reset
- Low Voltage Reset
- External Pin Reset

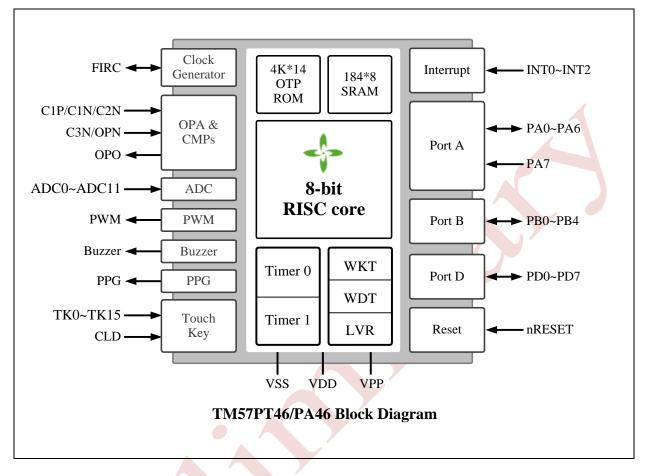
12. Low Voltage Reset Option: LVR2.1V, LVR2.1V disable in STOP mode, LVR3.1V, and disable

- 13. Operating Voltage: Low Voltage Reset Level to 5.5V
 - Fsys=4 MHz, 1.8V~5.5V
 - Fsys=8 MHz, 2.1V~5.5V
 - Fsys=16 MHz, 2.9V~5.5V
- 14. Enhanced Power Noise Rejection.
- 15. Operating Temperature Range: -40°C to +85°C
- **16. Instruction set: 38 Instructions**
- **17. Instruction Execution Time**
 - 2 oscillation clocks per instruction except branch

18. I/O ports: Maximum 21 programmable I/O pins

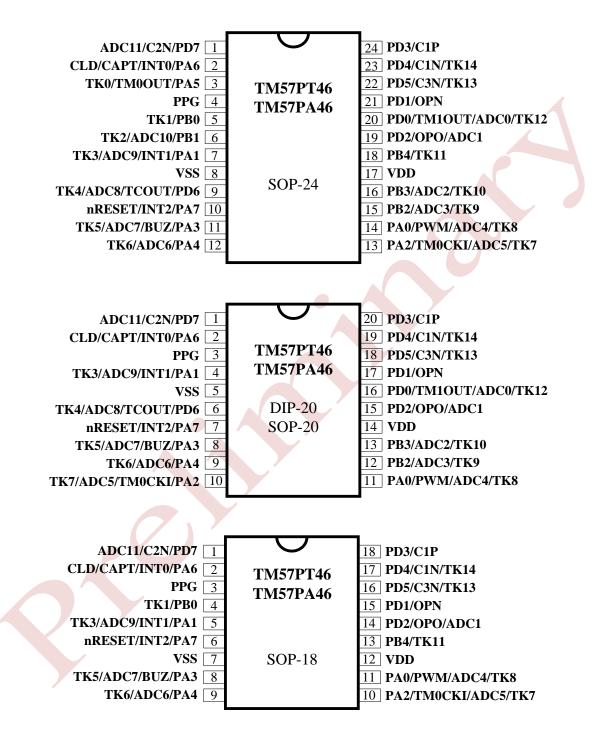
- Pseudo-Open-Drain Output
- Open-Drain Output
- CMOS Push-Pull Output
- Schmitt Trigger Input with pull-up resistor option

19. Package Types:


- 24-pin SOP (300 mil)
- 20-pin DIP (300 mil), SOP (300 mil)
- 18-pin SOP

20. Supported EV board on ICE

EV board: EV8203


BLOCK DIAGRAM

Note that Touch Key block is only for TM57PT46

PIN ASSIGNMENT

* Note that TM57PA46 doesn't have TK0~TK14 and CLD pins.

PIN DESCRIPTIONS

Name	In/Out	Pin Description
PA0–PA2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or " pseudo-open-drain " output. Pull-up resistors are assignable by software.
PA3–PA6 PB0–PB4 PD0–PD7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or " open-drain " output. Pull-up resistors are assignable by software.
PPG	0	PPG output
VPP/nRESET/ PA7	I/O	Schmitt-trigger input with pull-high configurable, External active low reset, normal stay to "high".
VDD, VSS	Р	Power Voltage input pin and ground
VPP	Ι	PROM programming high voltage input
INT0-INT2	Ι	External interrupt input
PWM	0	PWM outputs
TCOUT	0	Instruction cycle clock divided by N output. Where N is 1,2,4,8. The instruction clock frequency is system clock frequency divided by two (Fsys/2).
TM0CKI	Ι	Timer0's input in counter mode
САРТ	Ι	Timer0/Timer1 Capture input
BUZ	0	Buzzer output
TM0OUT	0	Timer0 overflow toggle output
TM1OUT	0	Timer1 overflow toggle output
ADC0~ADC11	Ι	A/D converter input
TK0~TK14	Ι	Touch Key input (for TM57PT46 only)
CLD	Ι	Touch Key capacitor input (for TM57PT46 only)
C1P, C1N	Ι	Synchronous comparator CMP1 Positive/Negative inputs
C2N	Ι	IGBT over-voltage comparator CMP2 Negative input
C3N	Ι	Power over-voltage comparator CMP3 Negative input
OPN	Ι	Negative terminal of OPA
ОРО	0	Outputs of OPA, also connects to Negative terminal of CMP4 (Over-current comparator).

PROGRAMMING PINS:

VDD/VSS/PA0/PA1/PA3/PA4/PA7 (VPP)

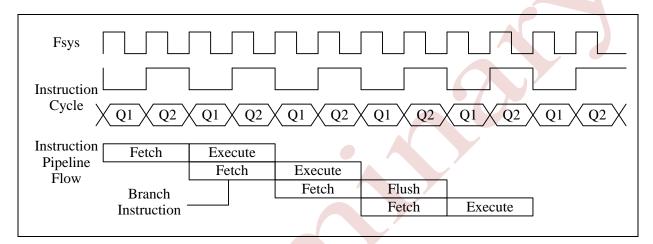
PIN SUMMARY

N	Pin umbe	er			GPIO					set		Alt	ernat	e Fun	ction
					Inj	put	(Dutpu	t	Re					
24-SOP /S-DIP	20-SOP/DIP	18-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0'D	P.O.D	ďď	Function After Reset	MMd	Touch Key	ADC	Ð	MISC
1	1	1	PD7	I/O	0		0		0	PD7					
2	2	2	CLD/CAPT INT0/PA6	I/O	0	0	0		0	PA6		0			CAPT
3			TK0/ TM0OUT/PA5	I/O	0		0		0	PA5	6	0	0		TM0OUT
4	3	3	PPG	0					0	PPG				0	
5		4	TK1/PB0	I/O	0		0		0	PB0		0			
6			TK2/PB1/ ADC10	I/O	0		0		0	PB1		0			
7	4	5	TK3/ADC9/ INT1/PA1	I/O	0	0		0	0	PA1		0	0		
8	5	7	VSS	Р						VSS					
9	6		TK4/ADC8/ TCOUT/PD6	I/O	0		0		0	PD6		0	0		TCOUT
10	7	6	nRESET/VPP INT2/PA7	I/O	0	0	0		0	*					VPP nRESET
11	8	8	TK5/ADC7/ BUZ/PA3	I/O	0		0		0	PA3		0	0		BUZ
12	9	9	TK6/ADC6/ PA4	I/O	0		0		0	PA4		0	0		
13	10	10	TK7/ADC5/ TM0CKI/PA2	I/O	0			0	0	PA2		0	0		TM0CKI
14	11	11	TK8/ADC4/ PWM/PA0	I/O	0			0	0	PA0	0	0	0		
15	12	Ĵ	TK9/ADC3/ PB2	I/O	0		0		0	PB2		0	0		
16	13		TK10/ADC2/ PB3	I/O	0		0		0	PB3		0	0		
17	14	12	VDD	Р				0		VDD					
18		13	TK11/PB4	I/O	0		0		0	PB4		0			
19	15	14	ADC1/OPO/ PD2	I/O	0		0		0	PD2			0	0	
20	16		TK12/ADC0/ TM1OUT/PD0	I/O	0		0		0	PD0		0	0		TM1OUT

N	Pin Jumbo	er				GPIO		Reset		Alternate Function							
Ь							Inj	out	(Dutpu	t	r Re					
24-SOP /S-DIP	20-SOP/DIP	18-SOP/DIP	Pin Name	Туре	Weak Pull-up	Ext. Interrupt	0.D	P.O.D	P.P	Function After	PWM	Touch Key	ADC	PPG	MISC		
21	17	15	OPN/PD1	I/O	0		0	0	0	PD1				0			
22	18	16	TK13/C3N/ PD5	I/O	0		0	0	0	PD5		0		0			
23	19	17	TK14/C1N/ PD4	I/O	0		0		0	PD4		0		0			
24	20	18	TK15/C1P/ PD3	I/O	0		0		0	PD3				0			

Symbol : P.P. = Push-Pull Output P.O.D. = Pseudo Open Drain O.D. = Open Drain

* Depends on XRSTE bit of Configword



FUNCTIONAL DESCRIPTION

1. CPU Core

1.1 Clock Scheme and Instruction Cycle

The system clock (Fsys) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle. Branch instructions take two cycles since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being fetched and then executed.

Terminology definitions:

Fsys: System clock. The main clock that drives the core logic and all peripherals. The clock source can be either Fast-clock or Slow-clock which can be set by registers.

Fast-clock: The clock source is from Fast Internal RC oscillator (FIRC).

Slow-clock: The clock source is from Slow Internal RC oscillator (SIRC).

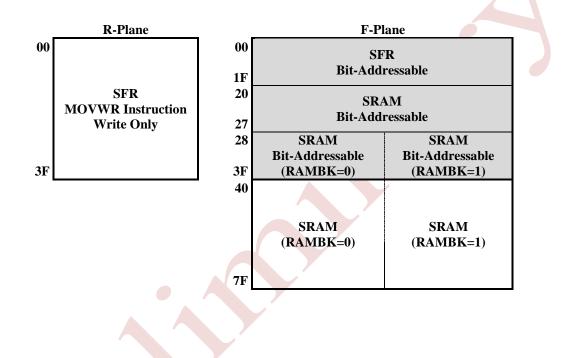
Instruction Cycle=Fsys/2

*FXT: Fast Crystal

FIRC: Fast Internal RC oscillator

*XRC: Fast or Slow External RC oscillator

*SXT: Slow Crystal (32 KHz)


SIRC: Slow Internal RC oscillator

* TM57PT46/PA46 don't support FXT/XRC/SXT modes.

1.2 RAM Addressing Mode

There are two Data Memory Planes in CPU, R-Plane and F-Plane. The registers in R-Plane are writeonly. The "MOVWR" instruction copy the W-register's content to R-Plane registers by direct addressing mode. The lower locations of F-Plane are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. F-Plane can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR (F04.6~0) register (FSR is a pointer). The first half of F-Plane is bit-addressable, while the second half of F-Plane is not bitaddressable. There are two RAM banks can be selected by RAMBK (F03.5).

⊘Example: V	Write immedia	te data into R-Plane regi	ister
	MOVLW	AAH	; Move immediate AAH into W register
	MOVWR	05H	; Move W value into R-Plane location 05H
⊘Example: V	Write immedia	te data into F-Plane regi	ster
	MOVLW	55H	; Move immediate 55H into W register
	MOVWF	20H	; Move W value into F-Plane location 20H
∕Eromalo, N	Mova E Diana	location 2011 data into V	Vinciator
Example: I		location 20H data into V	C
	MOVFW	20H	; To get a content of F-Plane location 20H to W
⇔Example: (Clear SRAM E	ank0 data by indirect ac	Idressing mode
	MOVLW	20H	; W=20H (SRAM start address)
	MOVWF	FSR	; Set start address of user SRAM into FSR register
	BCF	STATUS, 5	; Set RAMBK=0
LOOP:			
	MOVLW	00H	
	MOVWF	INDF	; Clear user SRAM data
	INCF	FSR, 1	; Increment the FSR for next address
	MOVLW	80H	; W=80H (SRAM end address)
	XORWF	FSR, 0	; Check the FSR is end address of user SRAM?
	BTFSS	STATUS, 2	; Check the Z flag
	GOTO	LOOP	; If Z=0, goto LOOP label
			; If Z=1, exit LOOP

1.3 Programming Counter (PC) and Stack

The Programming Counter is 12-bit wide capable of addressing a 4K x 14 OTP ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[11:8] keeps unchanged. Therefore, the data of a lookup table must be located with the same PC[11:8]. The STACK is 12-bit wide and 6-level in depth. The CALL instruction and hardware interrupt will push STACK level in order. While the RET/RETI/RETLW instructions pop the STACK level in order.

♦ Example: To look up the PROM data located "TABLE"

-	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
START:			
	MOVLW	00H	
	MOVWF	INDEX	; Set lookup table's address (INDEX)
LOOP:			
	MOVFW	INDEX	; Move INDEX value to W register
	CALL	TABLE	; To Lookup data (W=55H when INDEX=00H)
	INCF	INDEX, 1	; Increment the INDEX for next address
	GOTO	LOOP	; Goto LOOP label
	ORG	X00H	X = 1, 2, 3,, 6, 7
TABLE:			/
	ADDWF	PCL, 1	; (Addr=X00H) Add the W with PCL, the result
			; is stored back in PCL
	RETLW	55H	; W=55H when return
	RETLW	56H	; W=56H when return
	RETLW	58H	; W=58H when return

Note: TM57PT46/PA46 defines 256 ROM addresses as one page, so that TM57PT46/PA46 has 16 pages, 000H~0FFH, 100H~1FFH, 200H~2FFH, ..., and F00H~FFFH. On the other words, PC[11:8] can be defined as page. A lookup table must be located at the same page to avoid getting wrong data. Thus, the lookup table has maximum 255 data for above example with starting a lookup table at X00H (X=1, 2, 3, ..., 6, 7). If a lookup table has fewer data, it does not need to set the starting address at X00H, just only confirm all lookup table data are located at the same page.

1.4 ALU and Working (W) Register

The ALU is 8-bit wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a/Borrow and/Digit Borrow, respectively, in subtraction.

Note: /Borrow represents inverted of Borrow register.

/Digit Borrow represents inverted of Digit Borrow register.

1.5 STATUS Register (F-Plane 03H)

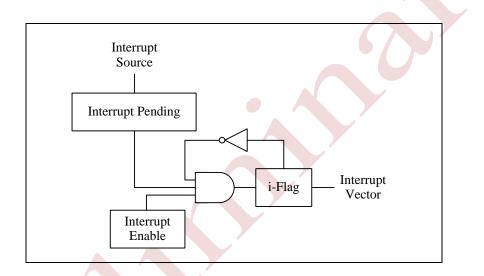
This register contains the arithmetic status of ALU, the reset status, and the voltage status. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect those bits. The RAMBK bit is used to the SRAM Bank selection.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Bit				Desci	ription			
7	GB0: Gene	ral Purpose	Bit 0					
6	GB1: Gene	ral Purpose	Bit 1					
5	RAMBK : \$ 0: SRAM 1: SRAM		Selection					
4				eset, or CLR	WDT/SLEE	P instruction	IS	
3	0: after P	Down Flag ower On Re LEEP instru	set, LVR Re ction	eset, or CLR	WDT instruc	ction		
2		ult of a logic	c operation is c operation is					
	DC: Decim	al Carry Fla	g or Decima	ll /Borrow F	lag			
		ADD in	struction			SUB in	struction	
1	0: no carry 1: a carry from the low nibble bits of the result occurs 0: a borrow from the low nibble bits of the result occurs 1: no borrow							
	C: Carry Fl	ag or /Borro	ow Flag					
0		ADD in	struction			SUB in	struction	
U	0: no carry 1: a carry o	ccurs from t	he MSB		0: a borrov 1: no borro	v occurs from	n the MSB	

MAIN:

.

⊘Example: W	Vrite immedia	te data into STATUS reg	gister
	MOVLW	00H	
	MOVWF	STATUS	; Clear STATUS register
⊘Example: E	Bit addressing	set and clear STATUS r	egister
	BSF	STATUS, C	; Set C=1
	BCF	STATUS, C	; Clear C=0
⇒Example: I	Determine the	C flag by BTFSS instruc	ction
-	BTFSS	STATUS, C	; Check the C flag
	GOTO	LABEL_1	; If C=0, goto LABEL_1 label
	GOTO	LABEL_2	; If C=1, goto LABEL_2 label
⇔Example: I LOOP:	Detect WDT ti	me out event occurrs	
	BTFSC	STATUS, TO	; Check the LVD flag
	GOTO	WDT_Timeout_Proc	; If TO=1, goto WDT_Timeout_Proc



1.6 Interrupt

The TM57PT46/PA46 has 1 level, 1 vector and 11 interrupt sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual pending flag; no matter its interrupt enable control bit is 0 or 1. Because TM57PT46/PA46 has only 1 vector, there is not an interrupt priority register. The interrupt priority is determined by F/W.

If the corresponding interrupt enable bit has been set (INTE), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, a "CALL 001" instruction is inserted to CPU, and i-flag is set to prevent recursive interrupt nesting.

The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is level triggered. F/W must clear the interrupt event register while serving the interrupt routine.

Example: Setup INT1 (PA1) interrupt request with rising edge trigger

	ORG	000H	; Reset Vector
	GOTO	START	; Goto user program address
	ORG	001H	; All interrupt vector
	GOTO	INT	; If INT1 (PA1) input occurred rising edge
	ORG	002H	
START:			
	MOVLW	xxxxxx 0 xB	
	MOVWR	PAPUN	; Select INT1 (PA1) pin mode pull-up enable
		1 D	
	MOVLW MOVWF	xxxxxx <u>1</u> xB PAD	· Deleger INT1 (DA1), it have not Schmitt trigger
	MOVWF	PAD	; Release INT1 (PA1), it becomes Schmitt-trigger ; input mode with input pull-up resistor
			, input mode with input pull-up resistor
	MOVLW	xxxxxx 0 xB	
	MOVWR	PAE	;Disable INT1(PA1) push-pull output
	MOVLW	xxxxxxx 1 B	
	MOVWR	ROB	; Set INT1 interrupt trigger as rising edge
	MOVLW	111111 <u>0</u> 1B	
	MOVWF	INTF 00000010P	; Clear INT1 interrupt request flag
	MOVLW MOVWF	000000 <u>1</u> 0B INTE	; Enable INT1 interrupt
MAIN:			, Enable III i meriupi
	GOTO	MAIN	
INT:			
	MOVWF	20H	; Store W data to SRAM 20H
	MOVFW MOVWF	STATUS 21H	; Get STATUS data ; Store STATUS data to SRAM 21H
	MOV WF	21П	, SIOLE STATUS data to SKAM 21H
	BTFSS	XINT1F	; Check XINT1F bit
	GOTO	EXIT_INT	; XINT1F=0, exit interrupt subroutine
			; INT1 interrupt service routine
	MOVLW	111111 0 1B	
	MOVWF	INTF	; Clear INT1 interrupt request flag
EXIT_INT		0111	
	MOVFW	21H	; Get SRAM 21H data
	MOVWF	STATUS 20H	; Restore STATUS data ; Restore W data
	MOVFW RETI	20Π	; Return from interrupt
	NL11		, Return nom menupt

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
F08.7	ADCIE: ADC interrupt enable 0: disable 1: enable									
F08.6	N/A									
F08.5	TM1IE: Timer1 interrupt enable 0: disable 1: enable									
F08.4	TM0IE : Tin 0: disable 1: enable	ner0 interrupt	enable							
F08.3	WKTIE: W 0: disable 1: enable	KT interrupt	enable							
F08.2	XINT2E: Ex 0: disable 1: enable	ternal pin X	INT2 (PA7) i	nterrupt enab	le					
F08.1	XINT1E: Ex 0: disable 1: enable	tternal pin XI	INT1 (PA1) i	nterrupt enab	le					
 F08.0 XINT0E: External pin XINT0 (PA6) interrupt enable 0: disable 1: enable 										

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.7 **ADCIF**: ADC interrupt event pending flag This bit is set by H/W while A/D conversion is completed, write 0 to this bit will clear this flag

F09.6 CMPIF: Comparators interrupt event pending flag This bit is set by H/W while CMP1IF or CMP2IF or CMP3IF or CMP4IF is/are set, write 0s to those bits will clear this flag.
Because of the output of comparators may change at power on, so the CMPIF may not be '0'. Make sure the comparators are all in stable state then clear CMP1IF to CMP4IF before use.

- F09.5 **TM1IF**: Timer1 interrupt event pending flag This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag
- F09.4 **TM0IF**: Timer0 interrupt event pending flag This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag
- F09.3 **WKTIF**: WKT interrupt event pending flag This bit is set by H/W while WKT overflows, write 0 to this bit will clear this flag
- F09.2 **XINT2F**: INT2 interrupt event pending flag This bit is set by H/W at INT2 pin's falling edge, write 0 to this bit will clear this flag
- F09.1 **XINT1F**: INT1 interrupt event pending flag This bit is set by H/W at INT1 pin's falling/rising edge, write 0 to this bit will clear this flag
- F09.0 **XINT0F**: INT0 interrupt event pending flag This bit is set by H/W at INT0 pin's falling edge, write 0 to this bit will clear this flag

FOE	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CMPIEF	CMP1IE	CMP2IE	CMP3IE	CMP4IE	CMP1IF	CMP2IF	CMP3IF	CMP4IF
R/W								
Reset	0	0	0	0	0	0	0	0

- FOE.7 CMP1IE: CMP1 interrupt enable
 0: disable
 1: enable
 FOE.6 CMP2IE: CMP2 interrupt enable
 0: disable
 1: enable
 FOE.5 CMP3IE: CMP3 interrupt enable
 0: disable
 - 1: enable
- F0E.4 CMP4IE: CMP4 interrupt enable 0: disable 1: enable

- F0E.3 **CMP1IF**: CMP1 interrupt event pending flag This bit is set by H/W while CMP1 output falling/rising is happened, write 0 to this bit will clear this flag
- F0E.2 **CMP2IF**: CMP2 interrupt event pending flag This bit is set by H/W while CMP2 output falling is happened, write 0 to this bits will clear this flag
- F0E.1 **CMP3IF**: CMP3 interrupt event pending flag This bit is set by H/W while CMP3 output falling is happened, write 0 to this bit will clear this flag
- F0E.0 **CMP4IF**: INTO interrupt event pending flag This bit is set by H/W while CMP4 output falling is happened, write 0 to this bit will clear this flag

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWM	PWMPSC		TM0OE	TM10E	TM1CKS	INT1EDG
R/W	W	W	W		W	W	W	W
Reset	0	0	0	0	0	0	0	0

R0B.0 **INT1EDG:** INT1 pin (PA1) edge interrupt event 0: falling edge to trigger 1: rising edge to trigger

2 Chip Operation Mode

2.1 Reset

The TM57PT46/PA46 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- External Pin Reset (PA7)
- Watchdog Reset (WDT)

After Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. The clock source, LVR level and chip operation mode are selected by the SYSCFG register value. The Low Voltage Reset features static reset when supply voltage is below a threshold level. There are two threshold levels can be selected. The LVR's operation mode is defined by the SYSCFG register.

There are two voltage selections for the LVR threshold level, one is higher level which is suitable for application with V_{DD} is more than 3V, the other one is suitable for application with V_{DD} is more than 2.1V. See the following LVR Selection Table; user must also consider the lowest operating voltage of operating frequency.

LVR Selection Table:

LVR Threshold Level	Consider the operating voltage to choose LVR
LVR2.1	$5.5V > V_{DD} > 2.2V$
LVR3.0	$5.5V > V_{DD} > 3.1V$

The External Pin Reset and Watchdog Reset can be disabled or enabled by the SYSCFG register. These two resets also set all the control registers to their default reset value.

2.2 System Configuration Register (SYSCFG)

The System Configuration Register (SYSCFG) is located at ROM address FFCh. The SYSCFG determines the option for initial condition of MCU. It is written by PROM Writer only. User can select LVR threshold voltage and chip operation mode by SYSCFG register. The default value of SYSCFG is 3FFFh. The 14th bit of SYSCFG is code protection selection bit. If this bit is 0, the data in PROM will be protected, when user reads PROM.

Bit		13~0								
Default Value		11111111111								
Bit		Description								
13	PROTECT : Co	ode protection selection								
	0	Enable								
	1	Disable								
12	REUSE: PROM	I Re-use control								
	0	Enable								
	1	Disable								
11-10	LVR: Low Vol	tage Reset Mode								
	00	LVR disable								
	01	LVR = 3.0V, always enable								
	10	LVR = 2.1V, disable at STOP mode								
	11	LVR = 2.1V; always enable								
9-8	N/A									
7	XRSTE : Extern	nal Pin (PA7) Reset Enable								
	0	Disable, PA7 as IO pin								
	1	Enable								
6	WDTE: WDT	Reset Enable								
	0	WDT Reset Disable								
	1	WDT Reset Always Enable								
5-0	Reserved									
	R									

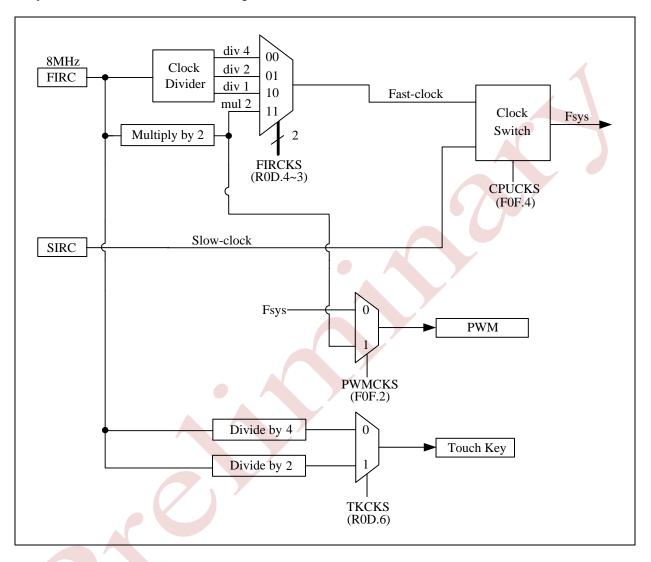
2.3 PROM Re-use ROM

The PROM of this device is 4K words. For some F/W program, the program size could be less than 2K words. To fully utilize the PROM, the device allows users to reuse the PROM. This feature is named as Two Time Programmable (TTP) ROM. While the first half of PROM is occupied by a useless program code and the second half of the PROM remains blank, users can re-write the PROM with the updated program code into the second half of the PROM. In the Re-use mode, the Reset Vector and Interrupt Vector are re-allocated at the beginning of the PROM's second half by the Assembly Compiler. Users simply choose the "REUSE" option in the ICE tool interface, and then the Compiler will move the object code to proper location. That is, the user's program still has reset vector at address 000h, but the compiled object code has reset vector at 800h. In the SYSCFG, if protect mode is enabled and not Re-use, the Code protection area is first half of PROM. This allows the Writer tool to write then verify the Code during the Re-use Code programming. After the Re-use Code being written into the PROM's second half, user should write "REUSE" control bit to "0". In the mean while, the Code protection area becomes the whole PROM except the Reserved Area.

-	PROM, not Re-use		PROM, Re-use	
000	Reset Vector	000		
001	Interrupt Vector	001		
		Code	Useless	
		Protect Area	Code	
		Alea		Code
7FF	User	7FF		Protect
800	Code	800	Reset Vector	Area
801		801	Interrupt Vector	
			User	
			Code	
FFB	Checksum 2	FFB	Checksum 2	
FFC	SYSCFG	FFC	SYSCFG	
FFD	Manufacturer	FFD	Manufacturer	
FFE	Reserved	FFE	Reserved	
FFF	Area	FFF	Area	

2.4 Power-Down Mode

The Power-down mode of TM57PT46/PA46 has only STOP Mode. It is activated by SLEEP instruction. During the Power-down mode, the system clock and peripherals stop to minimize power consumption. The WDT is working or not depends on SYSCFG. The WKT is working or not depends on WKTIE (MF08.3). The Power-down mode can be terminated by Reset, or enabled Interrupts (External pins and WKT) and PB0-4 pins low level wake up.


R03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWRDN		PWRDN							
R/W		W							
Reset	_	_	_	_	_	_	_	-	

R03.7~0 **PWRDN:** Write this register to enter Power Down (STOP) Mode

2.5 Dual System Clock

TM57PT46/PA46 is designed with dual-clock system. There are two kinds of clock source, SIRC (Slow Internal RC) Clock and FIRC (Fast Internal RC) Clock. Each clock source can be applied to CPU kernel as system clock source. Refer to the Figure as below.

FAST Mode:

After power-on or reset, TM57PT46/PA46 enters FAST mode at power on. In FAST mode, TM57PT46/PA46 use FIRC as its CPU clock. TM57PT46/PA46 enters FAST mode by setting the CPUCKS (F0F.4=0) when it is in SLOW mode. If user wants to change to SLOW mode, because Slow-clock is always enabled, then switch to Slow-clock as CPU clock (F0F.4=1).

In this mode, the program is executed using Fast-clock as system clock source. The Timer0 and Timer1 blocks are driven by Fast-clock. PWMs can be driven by Fast-clock or FIRC 16 MHz by setting PWMCKS (F0F.2).

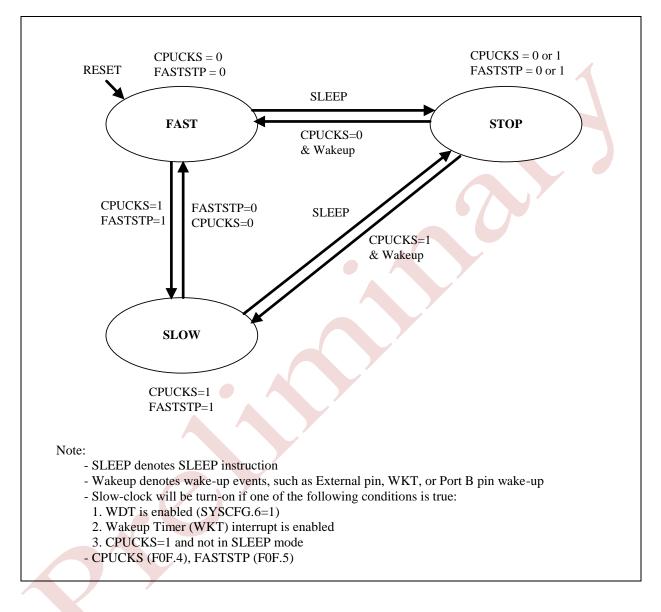
SLOW Mode:

TM57PT46/PA46 has only one type of Slow Clock, that is SIRC. User can select SIRC as its System clock by setting CPUCKS (F0F.4=1).

IDLE Mode:

The TM57PT46/PA46 does not support IDLE mode because there is no T2 exist in this model.

STOP Mode:


If Slow-clock is disabled, all blocks will be turned off and the TM57PT46/PA46 will enter the "STOP Mode" after executing the SLEEP instruction. STOP mode is similar to IDLE mode. The difference is all clock oscillators either Fast-clock or Slow-clock are stopped and no clocks are generated.

2.6 Dual System Clock Modes Transition

TM57PT46/PA46 is operated in one of three modes: FAST Mode, SLOW Mode, and STOP Mode.

Modes Transition Diagram:

Mode	Oscillator	Fsys	Fast-clock	Slow-clock	TM0	TM1	PWM	Wakeup event
FAST	FIRC	Fast-clock	Run	Run	Run	Run	Run	Х
SLOW	SIRC	Slow-clock	Run	Run	Run	Run	Run	Х
STOP	Stop	Stop	Stop	Stop	Stop	Stop	Stop	IO

FAST Mode transits to SLOW Mode:

The source clock of Slow-clock is Slow Internal RC (SIRC). The following steps are suggested to be executed by order when FAST mode transits to SLOW mode:

- (1) Switch system clock source to Slow-clock (CPUCKS=1)
- (2) Stop Fast-clock (FASTSTP=1)

 \Diamond Example: Switch operating mode from FAST mode to SLOW mode

BSF	CPUCKS	; Switch system clock source to Slow-clock
BSF	FASTSTP	; Stop Fast-clock

SLOW Mode transits to FAST Mode:

The source clock of Fast-clock is Fast Internal RC (FIRC). The following steps are suggested to be executed by order when SLOW mode transits to FAST mode:

- (1) Enable Fast-clock (FASTSTP=0)
- (2) Switch system clock source to Fast-clock (CPUCKS=0)

Example: Switch operating mode from SLOW mode to FAST mode with FXT

- ; Enable Fast-clock
- ; Switch system clock source to Fast-clock

STOP Mode Setting:

The STOP mode can be configured by following setting in order:

- (1) Stop Slow-clock (WDTE=0, WKTIE=0)
- (2) Execute SLEEP instruction

User must make sure all possibilities to make Slow Internal RC running are disabled. First, make sure WDT is not enabled. Second, WKT interrupt is not enabled.

STOP mode can be woken up by interrupt (INT0, INT1, INT2), WKT, or PB0-4 pins low level wake up.

♦ Example: Switch operating mode to STOP mode

SLEEP

; Enter STOP mode

IO setting notes in STOP mode:

Note: In STOP/IDLE mode, PA3 and PA4 must be set as input mode with internal pull-up enable to avoid floating state when select FXT or SXT mode. The PA3 and PA4 IO setting list is as below.

(Note that TM57PT46/PA46 doesn't support FXT and SXT oscillation mode.)

	Fast-clock	Slow-clock	PAE3	PAPUN3	PAD3	PAE4	PAPUN4	PAD4
1	FIRC	SIRC	*	*	*	*	*	*
2	FIRC	SXT	0	0	1	0	0	1
3	FXT	SIRC	0	0	1	0	0	1

il ∶ Don't care

FOF	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	BUZEN	ADST	FASTSTP	CPUCKS	PWMCLR	PWMCKS	OPAPD	OPACAL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	1	0

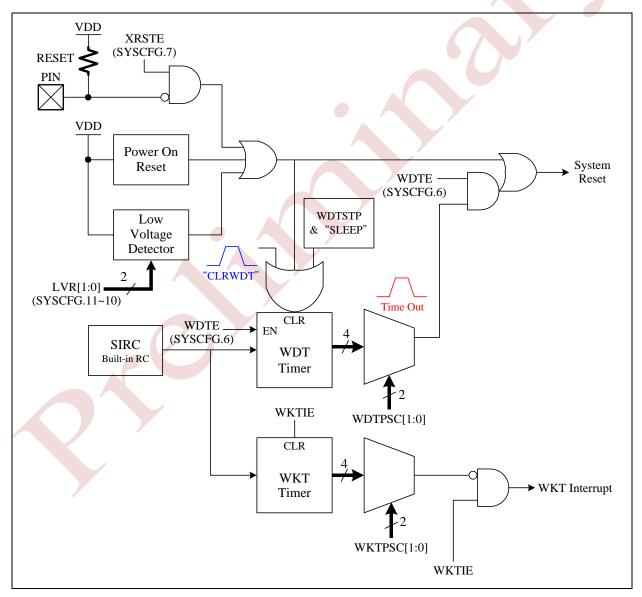
F0F.5 **FASTSTP**: Fast-clock Enable / Disable

0: enable

1: disable

F0F.4 CPUCKS: System clock source select 0: Fast-clock 1: Slow-clock

Warning: The CLKCTL (F0F) can't be set directly for CPU modes transition. It may cause the transition fail. Please refer the mentioned steps for transition in this chapter.



3 Peripheral Functional Block

3.1 Watchdog (WDT) Timer/Wakeup (WKT) Timer

The WDT and WKT share the same internal RC oscillator (SIRC). The overflow period of WDT, WKT can be selected by WDTPSC[1:0] and WKTPSC[1:0]. The WDT timer is cleared by the CLRWDT instruction. If the Watchdog is enabled (WDTE = 1), the WDT generates the chip reset signal when WDT overflows. Set WDTSTP (R0C.3) to '1' can let WDT timer stop counting after executing SLEEP instruction, i.e. WDTSTP=0 WDT timer always keeps counting even if the SLEEP instruction is executed.

The WKT timer is an interval timer, if WKT timer overflows, it will generate WKT Interrupt Flag (WKTIF). The WKT timer is cleared/stopped by WKTIE=0. Set WKTIE=1, the WKT timer will always count regardless at any CPU operating mode.

WDT/WKT Block Diagram

Mode	WDTE	WKTIE	WDTSTP	Internal SIRC Oscillator
	0	0		Stop
Normal Mode	0	1	0/1	
Normai wiode	1	0	0/1 0 0 0 0	Run
	1	1		
	0	0	0	Stop
	0	1	0	Run
	1	0	0	Run
Power Down Mode	1	1	0	Run
Power Down Mode	0	0	1	Stop
	0	1	1	Run
	1	0	1	Stop
	1	1	1	Run

The WDT and WKT's behavior in different Mode are shown as below table.

F03	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	GBIT1	GBIT0	RAMBK	ТО	PD	Z	DC	С
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F03.4 **TO:** WDT time out flag, read-only

0: after Power On Reset, LVR Reset, or CLRWDT/SLEEP instructions

1: WDT time out occurs

R04	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTCLR				WDT	CLR			
R/W		W						
Reset	_	-				_	_	-

R04.7~0 WDTCLR: Write this register to clear WDT

ROC	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WD1	FPSC	WDTSTP	TM1CM	FIR	CKS
R/W		W		W	W	W	W	W
Reset	-	0	0	0	0	0	1	0

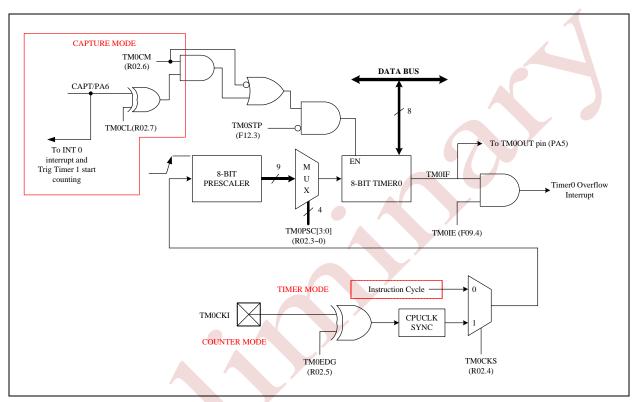
R0C.7~6 WKTPSC: WKT pre-scale select: (the time IS NOT precise enough for accurate timing applications)

Bit 1	Bit 0	5V	3V
0	0	1.1 ms	1.4 ms
0	1	2.2 ms	2.7 ms
1	0	36 ms	44 ms
1	1	143 ms	177 ms

R0C.5~4	WD	TPSC: WDT p	re-scale select	(the time IS NOT precise enough for accurate timing application)				
		Bit 1	Bit 0	5V	3V			
		Δ	Δ	140 ms	175 mg			

Bit 1	Bit 0	5V	3V
0	0	140 ms	175 ms
0	1	280 ms	355 ms
1	0	1140 ms	1440 ms
1	1	2280 ms	2880 ms

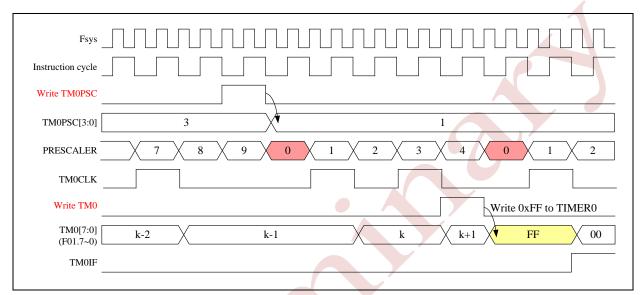
WDTSTP: WDT stops counting when in STOP mode R0C.3


0: WDT keeps counting when in STOP mode

1: WDT stops counting when in STOP mode

3.2 Timer0: 8-bit Timer/Counter with Pre-scale (PSC)

The Timer0 is an 8-bit wide register of F-Plane. It can be read or written as any other register of F-Plane. Besides, Timer0 increases itself periodically and automatically rolls over based on the pre-scaled clock source, which can be the instruction cycle or TM0CKI (PA2) rising/falling input. The Timer0's increasing rate is determined by the TM0PSC[3:0] (R02.3~0). The Timer0 can generate interrupt flag TM0IF (F09.4) when it rolls over. It generates Timer0 interrupt if the TM0IE (F08.4) bit is set. Timer0 can be stopped counting if the TM0STP (F12.3) bit is set.



Timer0 Block Diagram

The following timing diagram describes the Timer0 works in pure timer mode.

When the Timer0 prescaler (TM0PSC) is written, the internal 8-bit prescaler will be cleared to 0 to make the counting period correct at the first Timer0 count. TM0CLK is the internal signal that causes the Timer0 to increase by 1 at the end of TM0CLK. TM0WR is also the internal signal that indicates the Timer0 is directly written by instruction; meanwhile, the internal 8-bit prescaler will be cleared. When Timer0 counts from FFh to 00h, TM0IF (Timer0 Interrupt Flag) will be set to 1 and generate interrupt if TM0IE (Timer0 Interrupt Enable) is set.

Timer0 works in Timer mode

The equation of TM0OUT initial value is as following.

TM0OUT output frequency=Instruction cycle/TM0PSC/ (256-TM0)

TM0OUT output time period=1/TM0OUT output frequency.

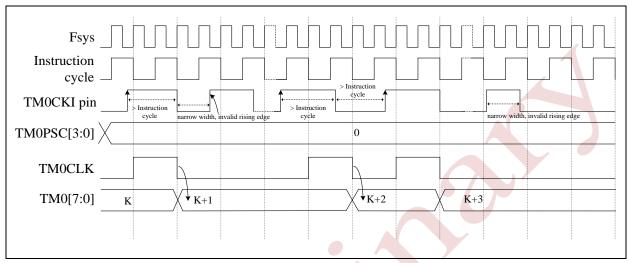
⊘Example:

Setup TM0 Work in Timer mode and counting overflow toggle output to TM0OUT (PA5) pin configuration.

; Setup TM0 clock source and divider.

MOVLW	0 0000101 B	
MOVWR	R02	; Setup TM0=Timer mode.
		; TM0 clock source=Instruction cycle.
		; Divided by 32
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
; Set TM0 timer.		
BSF	TM0STP	; Disable TM0 counting (Default "0").
MOVLW	156	
MOVWF	TM0	; Write 156 into TM0 register of F-Plane.
; Set TM0OUT pin f	unction.	
MOVLW	0000 <u>1</u> 000B	
MOVWR	ROC	; Enable TM0 match toggle output to TM0OUT (PA5).
; Enable TM0 timer a	and interrupt fun	ction.
MOVLW	11101111B	; Clear TM0 request interrupt flag

MOVW	F INTIF	
BSF	TM0IE	; Enable TM0 interrupt function.
BCF	TM0STP	; Enable TM0 counting (Default "0").


Example:

TM0 clock source is Fsys=4 MHz, Instruction cycle=2 MHz, TM0PSC=/32, TM0=156, TM0OUT output frequency=2 MHz/32/ (256-156) =2 MHz/32/100=312.5 Hz TM0OUT output time period=1/312.5 Hz=3.2 ms.

The following timing diagram describes the Timer0 works in counter mode.

TM0CKS=1 if Timer0 counter source clock is from TM0CKI pin. TM0CKI signal is synchronized by instruction cycle, which means the high/low time durations of TM0CKI must be longer than one instruction cycle time to guarantee each TM0CKI's change will be detected correctly by the synchronizer.

Timer0 works in Counter mode for TM0CKI (TM0EDG=0)

⊘Example:

Setup TM0 Work in counter mode and clock source from TM0CKI pin (PA2) configuration.

; Setup TM0 clock source from TM0CKI pin (PA2) and divider.

1	MOVLW 000 <u>1</u> 0000B	
	MOVWR R02	; Setup TM0=Counter mode.
		; Select TM0 prescaler counting edge=rising edge. ; TM0 clock source=TM0CKI pin (PA2) ; Divided by 1

; Set TM0 timer and stop TM0 counting.

unior unio	stop 1110 count	
BSF	TM0STP	; Disable TM0 counting (Default "0").
MOVLW	00H	
MOVWF	TM0	; Write 0 into TM0 register of F-Plane.
0 count and	d read TM0 cour	nt.
BCF	TM0STP	; Enable TM0 counting.
NOP		
NOP		
NOP		
BSF	TM0STP	; Disable TM0 counting (Default "0")
MOVFW	TM0	
	BSF MOVLW MOVWF 0 count and BCF NOP NOP NOP NOP BSF	MOVLW 00H MOVWF TM0 0 count and read TM0 cour BCF TM0STP NOP NOP NOP BSF TM0STP

F01	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0		TM0						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

F01.7~0 **TM0:** Timer0 content

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.4 **TM0IE**: Timer0 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.4 **TM0IF**: Timer0 interrupt event pending flag

This bit is set by H/W while Timer0 overflows, write 0 to this bit will clear this flag

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CALINDEX	TM1SET	TM1CLR	TM1STP	TM0STP	C1PPGEN	PPGEN	PPGSTB
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	0	0	0	0	0	0

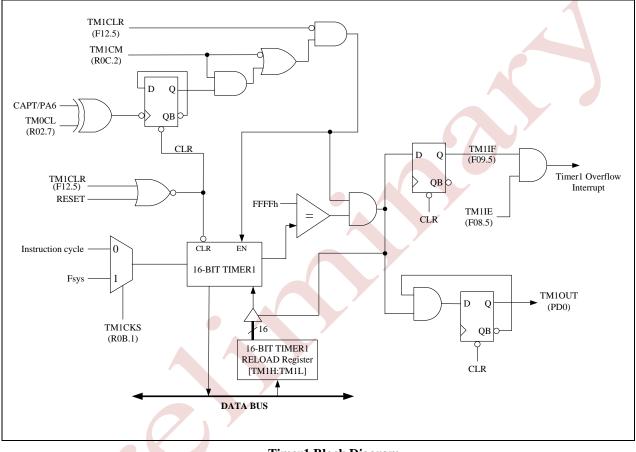
F12.3 **TM0STP**: Timer0 counter stop

0: Timer0 is counting

1: Timer0 stops counting

R02	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM0CTL	TM0CL	TM0CM	TM0EDG	TM0CKS		TMC	PSC	
R/W	W	W	W	W		V	V	
Reset	0	0	0	0	0	0	0	0

Reset	0	0	0	0	0	0	0
D02 7	THACE T						
R02.7	TM0CL: Ti	mer0 Capture	e Mode Level	l			
	0: CAPT pi	in high level	capture				
	1: CAPT pi	in low level c	apture				
R02.6	TM0CM: Ti	imer0 Mode S	Selection				
	0: Timer/Co	ounter Mode	, clock sourc	e from Instru	ction Cycle (Fsys/2) or TM	M0CKI
	1: Capture 1	Mode, counts	s CAPT pin le	evel duration			
R02.5	TM0EDG: 1	ГМОСКІ (РА	2) edge selec	ction for Time	er0 prescaler	count	
	0: TM0CK	I (PA2) rising	g edge for Tii	mer0 prescale	er count		
	1: TM0CK	I (PA2) fallin	g edge for Ti	imer0 prescal	er count		
R02.4	TM0CKS: 7	Fimer0 clock	source select				
	0: Instruction Cycle (Fsys/2) as Timer0 prescaler clock						
	1: TM0CKI (PA2) as Timer0 prescaler clock						



R02.3~0 **TM0PSC:** Timer0 prescaler. Timer0 clock source 0000: divided by 1 0001: divided by 2 0010: divided by 4 0011: divided by 8 0100: divided by 16 0101: divided by 32 0110: divided by 64 0111: divided by 128 1xxx: divided by 256

3.3 Timer1

Timer1 is a 16-bit counter used as Capture/Timer mode with 16-bit auto-reload register. Timer1 can only be accessed by reading F-Plane TM1H and TM1L. Writing TM1H and TM1L is actually writing to Timer1 reload registers. The clock sources of Timer1 are Fsys and Instruction cycle, selected by TM1CKS (R0B.1). Setting the bit TM1CLR (F12.5) will clear Timer1 and hold Timer1 on 0000h. Setting the TM1STP (F12.4) bit will stop Timer1 counting. TM1OUT is an output signal that toggles when Timer1 overflow.

Timer1 Block Diagram

Note that writing to TM1H and TM1L is actually writing to Timer1 reload register, while reading TM1H and TM1L is actually reading the Timer1 counter itself. That is, Timer1 counter and Timer1 reload register share two addresses (F0A, F0B) of F-Plane.

⊘Example:

Setup TM1 Work in Timer mode and counting overflow toggle output to TM1OUT (PD0) pin configuration.

; Setup TM1 clock source and divider.

MOVLW 0000 <u>1</u> 00 <u>1</u> B	; TM1OE=1 (Enable TM1OUT)
MOVWR R0C	; TM1CKS=1 (Fsys as Timer1 clock source)
MOVLW 0 <u>0</u> 01000B	; TM1CM=0 (Timer1 as timer mode)
MOVWR R0D	

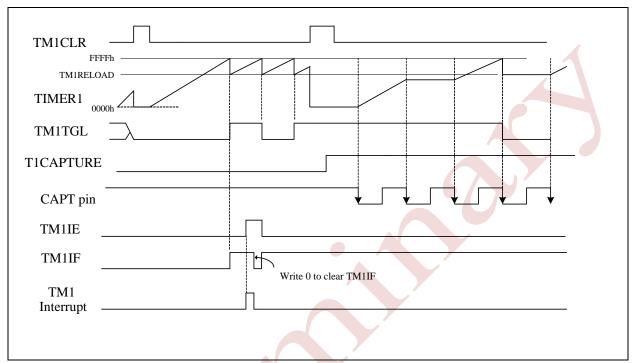
; Set TM1 timer.

BSF	TM1STP	; Stop TM1 counting (Default "0").
BCF	TM1SET	
BSF	TM1CLR	; Clear TM1 counter (Default "0").

MOVLW FFH MOVWF TM1H ; Write FFH into TM1 counting high byte. MOVLW 00H MOVWF TM1L ; Write 00H into TM1 counting low byte.

; Enable TM0 timer and interrupt function.

MOVLW	11011111B ; Clear TM1 request interrupt flag
MOVWF	INTIF
BSF	TM1IE ; Enable TM1 interrupt function.
BCF	TM1SET
BCF	TM1CLR

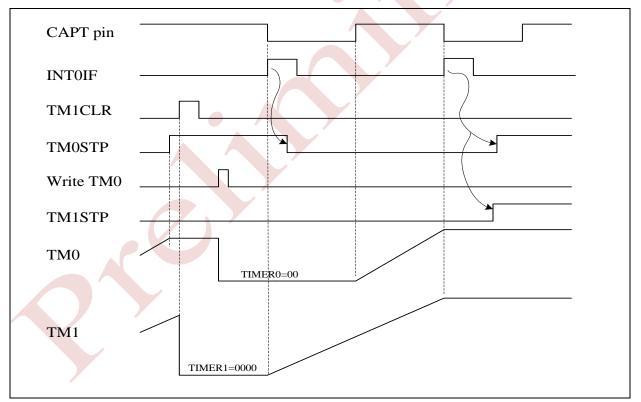

BCF	TM1STP	; Enable TM1 counting (Default "0").

Example:

TM1 clock source prescaler is Fsys=4 MHz, TM1 LSB=FFH, TM1 LSB=01H TM1OUT output frequency=2 MHz/ (FFFF–FF00) =2 MHz/256=7.8 KHz TM1OUT output time period=1/7.8 KHz=128 u

Timer1 can also works with Capture mode. When works in Capture mode, Timer1 will start counting when the TM1CLR bit is cleared and the first falling edge of CAPT pin (if TM0CL=0) is coming. When the 2nd falling edge of CAPT pin is coming, Timer1 stops counting and hold the value. When the 3rd falling edge of CAPT pin is coming, the Timer1 continues counting. The following figure shows the detail timing diagram.

Timer1 works in Capture mode (TM0CL=0, implies CAPT falling edge)

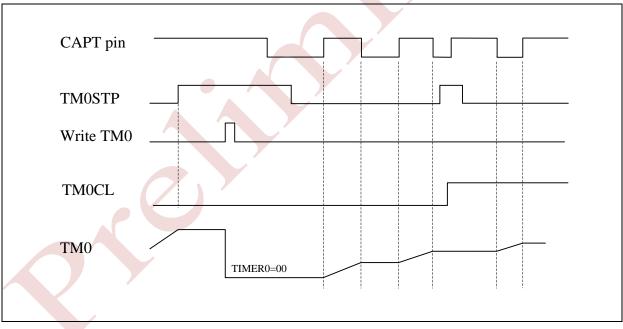


Timer0 and Timer1 are used for Pulse Width and Period Capture

Timer0 and Timer1 can cooperate to measure the signal period and duty cycle time. The key is multi-function of PA6 (CAPT, INT0). Suppose that:

- TM0CKS=0, Timer0 prescaler increases per instruction cycle.
- TM0CM=1, TM1CM=1. Timer0 and Timer1 work in Capture mode.
- PA6 pin (CAPT pin) interrupts every falling edge. TM0CL=0, Timer1 starts/holds in turn when PA6 pin (CAPT pin) falling edge is coming. Timer0 starts counting when PA6 pin (CAPT pin) is in logic '1' level, and holds the Timer0 value when PA6 pin (CAPT pin) is in logic '0' level.
- Timer1 is used to measure the signal period, Timer0 is used to measure the PA6 (CAPT pin) in logic '1' time (i.e. the duty cycle of the signal).

The following figure shows how to use Timer0 and Timer1 to measure the PA6 (CAPT pin) signal's period and duty cycle (TM0CL=0).


Timer0 and Timer1 are used to measure the signal on CAPT pin.

Follow the steps below to start measuring the CAPT pin's period and duty cycle.

- 1. Stop Timer0 by firmware (TM0STP=1, Timer0 will be stopped and hold)
- **2.** Clear Timer1 by firmware (TM1CLR=1)
- **3.** Clear Timer0 by directly write 00h to Timer0 (Timer0 is still hold). Once CAPT pin falling edge is coming, the Timer1 starts counting; meanwhile the PA6 interrupt is generated and clears the TM0STP by firmware. Now the Timer0 is ready to count when CAPT pin goes high.
- **4.** CAPT pin rising edge is coming, Timer0 starts counting until the CAPT pin returns to 0 and holds the counting value. Timer1 also stops counting and holds the value.
- **5.** PA6 interrupt is generated again, firmware stops Timer1 and Timer0 to read the period and duty cycle.

It is not necessary to use both Timer0 and Timer1. If only the duty cycle (CAPT high time) needs to be measured, there is no need to use Timer1 to measure the period. In such case, user can set the TM0CM=1 and TM1CM=0. Timer0 is counting up only when CAPT pin is '1'. Note that the internal prescaler will be kept to next Timer0 count, so it will not lose the counting accuracy.

Timer0 is used to measure the high (or low) time on CAPT pin

F08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIE	ADCIE	-	TM1IE	TM0IE	WKTIE	XINT2E	XINT1E	XINT0E
R/W	R/W	R/W						
Reset	0	0	0	0	0	0	0	0

F08.5 **TM1IE**: Timer1 interrupt enable

0: disable

1: enable

F09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTIF	ADCIF	CMPIF	TM1IF	TM0IF	WKTIF	XINT2F	XINT1F	XINT0F
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	-	0	0	0	0	0	0

F09.5 **TM1IF**: T2 interrupt event pending flag

This bit is set by H/W while Timer1 overflows, write 0 to this bit will clear this flag

F0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1L	TM1L							
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

F0A.7~0 **TM1L**: Timer1 counter low byte

Read TM1L will get the Timer1 counter low byte. Write TM1L will write the Timer1 reload register low byte.

FOB	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM1H	TM1H							
R/W	R/W							
Reset	0	0	0	0	0	0	0	0

F0B.7~0 TM1H: Timer1 counter high byte

Read TM1H will get the Timer1 counter high byte. Write TM1H will write the Timer1 reload register high byte.

F12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	CALINDEX	TM1SET	TM1CLR	TM1STP	TM0STP	C1PPGEN	PPGEN	PPGSTB
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	-	0	0	0	0	0	0	0
		1						

F12.4	TM1STP: Timer1 counter stop
	0: Timer1 is counting
	1: Timer1 stops counting
F12.5	TM1CLR: Timer1 counter clear
	0: Release Timer1 clear
	1: Clear Timer1 to '0000'h and hold
F12.6	TM1SET: Timer1 counter set to 'FFFF'h
	0: Release Timer1 set
	1: Set Timer1 to 'FFFF'

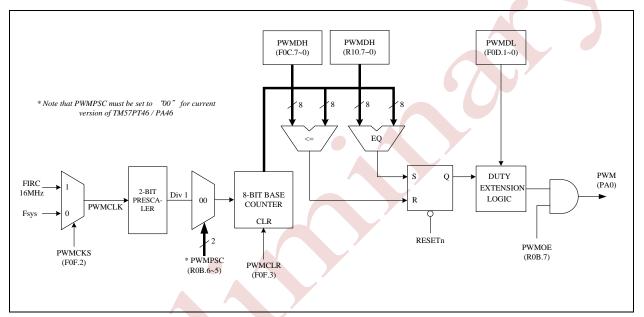
R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWMPSC		TCOE	TM0OE	TM1OE	TM1CKS	INT1EDG
R/W	W	W		W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

- R0B.2TM1OE: Timer1 overflow toggle output to PD00: disable output TM1OUT1: enable output TM1OUT
- R0B.1 **TM1CKS:** Timer1 clock source selection 0: Instruction cycle (Fsys/2) 1: System clock (Fsys)

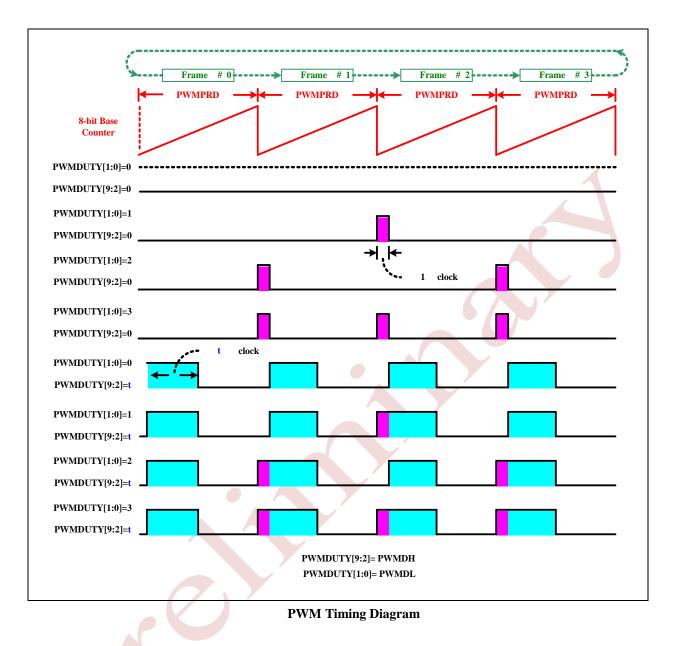
ROC	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0C	WK	TPSC	WDTPSC		WDTSTP	TM1CM	FIRCKS	
R/W	_	W		W	W	W	W	W
Reset	_	0	0	0	0	0	1	0

R0C.2 TM1CM: Timer1 Mode Selection

0: Timer1 in Timer Mode


1: Timer1 in Capture Mode to measure CAPT pin period time between successive rising or falling edges.

3.4 PWM: (8+2) bits PWM


The PWM can generate fix frequency waveform with 1024 duty resolution based on System Clock (Fsys) or FIRC 16MHz. A spread LSB technique allows PWM to run its frequency at "System Clock divided by 256" instead of "System Clock divided by 1024", which means the PWM is 4 times faster than normal. The advantage of higher PWM frequency is that the post RC filter can transform the PWM signal to more stable DC voltage level. The PWM output signal reset to low level whenever the 8-bit base counter matches the 8-bit MSB of PWM duty register PWMDH (F0C.7~0). When the base counter rolls over, the 2-bit LSB of PWM duty register PWMDL (F0D.1~0) decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay.

PWMPSC is not be implemented in this version, user must set PWMPSC to "00" to prevent malfunction.

PWM Block Diagram

Example:

[CPU running at Fast mode, Fsys=FIRC 8 MHz]

⊘Example:

	PWMCKS <u>1 00</u> 00000B	; PWM0 clock source = Fsys ; Fsys=8 MHz, PWMOE=1 ;
MOVLW MOVWR	80H PWMPRD	; Set PWM period=80H.
MOVLW MOVWF	000000 <u>00</u> B F0D	; Set PWMDL duty=00H
MOVLW MOVWF	20H PWMDH	; Set PWMDH duty=20H
BCF	PWMCLR	; Enable PWM0 counting

Example:

Fsys=8 MHz, PWMPRD=80H, PWMDL=00H, PWMDH=20H PWM output frequency=8 MHz/ (PWMPRD+1) =8 MHz/129=62 KHz. PWMP output duty=32:129=24.8%.

FOC	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMDH		PWMDH							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

F0C.7~0 **PWMDH**: PWM duty 8-bit MSB

F0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF0D	РСН				-	-	PWMDL	
R/W	R	R	R	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0D.1~0 **PWMDL**: PWM duty 2-bit LSB

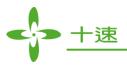
FOF	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCTL	BUZEN	ADST	FASTSTP	CPUCKS	PWMCLR	PWMCKS	OPAPD	OPACAL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	1	0	1	0

- F0F.3 **PWMCLR**: PWM clear and hold 0: PWM is running
 - 1: PWM is clear and hold
- F0F.2 **PWMCKS**: PWM clock selection
 - 0: Fsys as PWM clock source
 - 1: FIRC 16MHz as PWM clock source

R0B	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0B	PWMOE	PWMPSC		TCOE	TM0OE	TM10E	TM1CKS	INT1EDG
R/W	W	W	W		W	W	W	W
Reset	0	0	0	0	0	0	0	0

R0B.7 PWMOE: PWM output enable

0: disable PWM output


1: enable PWM output

R0B.6~5 **PWMPSC**: PWM clock source User code must set these 2 bits to "00" to prevent malfunction of PWM

R10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWMPRD		PWMPRD								
R/W		W								
Reset	1	1	1	1	1	1	1	1		

R10.7~0 **PWMPRD**: PWM period data

3.5 PPG (Programmable Pulse Generator)

The PPG function can generate a 9-bit precision wide low pulse which can be stop by 3 comparator (CMP2, CMP3, and CMP4) outputs and can be re-triggered by 1 comparator output (CMP1). The PPG block diagram is below.

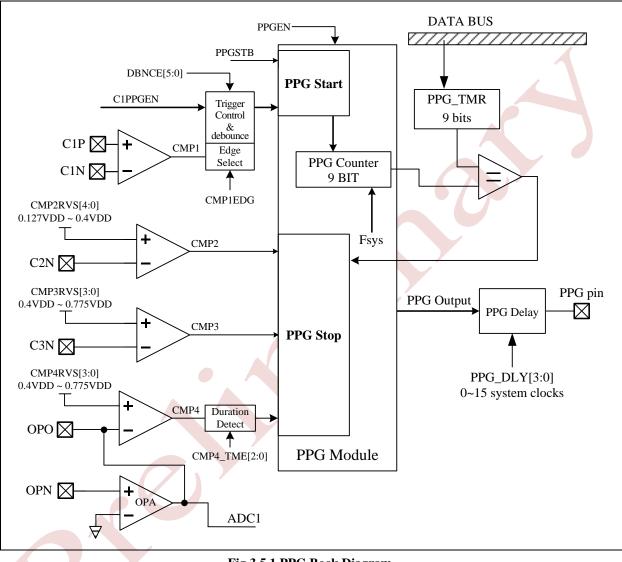


Fig 3.5.1 PPG Bock Diagram

The PPG pulse can be generated in 2 modes, Single Pulse Mode and Continuous Triggered Mode.

3.5.1 Single Pulse Mode

Single Pulse Mode is generated by software setting PPGSTB (F12.0) to 1 and clear to 0 immediately

BSF	PPGSTB		
BCF	PPGSTB		

After the executing the above 2 instructions, if C1PPGEN (F12.2) is 0, and PPGEN (F12.1) is 1, one PPG pulse will be generated whose pulse width is [PPG_TMR9, PPG_TMR] in the unit of (1/Fsys). Refer to the following diagram

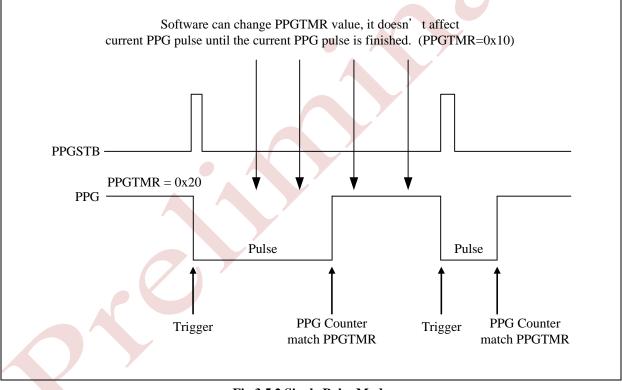


Fig 3.5.2 Single Pulse Mode

PPGTMR can be write any time even the current PPG pulse is active, but the current PPG pulse width will not be changed and it will be effective in the next PPG pulse.

3.5.2 Continuous Triggered Mode (CMP1, edge, debounce, PPG_DLY)

Another method to trigger PPG pulse is Continuous Triggered Mode which cooperate with CMP1. The positive and negative pin of CMP1 comparator is C1P and C1N, user can set CMP1EDG (R1D.6) to choose rising or falling trigger PPG pulse. In the Fig 3.5.3 we set the CMP1EDG to 0 (falling).

PPG1 also build in hardware debounce function. By setting DBNCE (R1D.5~0), if the output of CMP1 has Hi-Lo bounce within the time (DBNCE * 1/Fsys), the bounce will be cancelled and keep the CMP1 value as previous until the Hi-Lo bounce disappear.

User can set PPGDLY[4:0] (R1A.7~4)to delay the PPG pulse output both Single Pulse Mode and Continuous Triggered Mode.

Note that there are always 6 Fsys clocks delay since CMP1 trigger PPG output even PPGDLY equals to zero in the Continuous Triggered Mode.

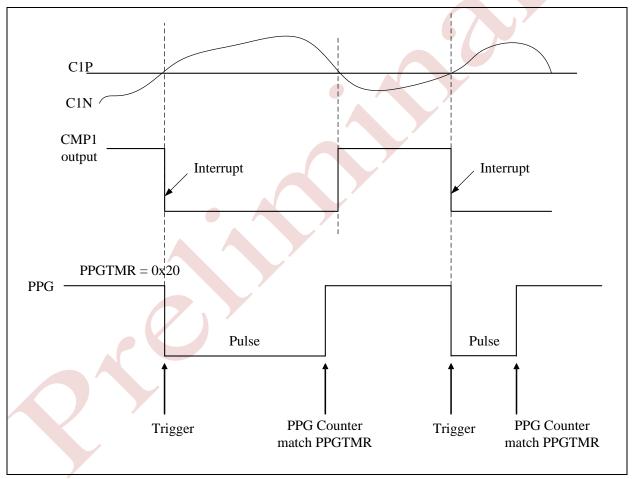


Fig 3.5.3 Continuous Triggered Mode

3.5.3 PPG Stop

PPG pulse will return to 1 when PPG counter reaches PPGTMR. In addition, there are 3 external events that generated by CMP2, CMP3, and CMP4 outputs falling to stop PPG pulse unconditionally and clear the C1PPGEN to '0' then it cannot be retriggered by CMP1 unless C1PPGEN to be set to '1' again.

The negative terminals of CMP2 and CMP3 are connected to outside voltage sources that the application want to observe, the positive terminals of CMP2 and CMP3 are connected to internal voltage divider that can be selected by CMP2RVS[4:0] and CMP3RVS[3:0]. Once the voltages of negative terminals larger than these internal reference voltages, the outputs of comparators will generate a falling edge to stop PPG pulse. Refer to Fig 3.5.4.

The negative terminal of CMP4 is directly connected to the output of OPA. The non-inverted terminal of OPA is connected to ground which means the OPA can only operate as an inverted amplifier with 2 feedback resistors. In other words, the OPA can only used to amplify a signal that all points below zero volt. Refer to Fig 3.5.5.

CMP4_TME is used to set the time duration that CMP4 must be then can generate a falling edge to stop PPG pulse. For example: if CMP4_TME = 011 (8 Fsys clocks, suppose that Fsys=8MHz), that means the CMP4 output low time should be longer than 1us to generate falling edge to stop PPG pulse.

In application, these 4 comparators can turn on hysteresis to prevent noise interfere the output of comparators. The typical value of hysteresis is about 30mV.

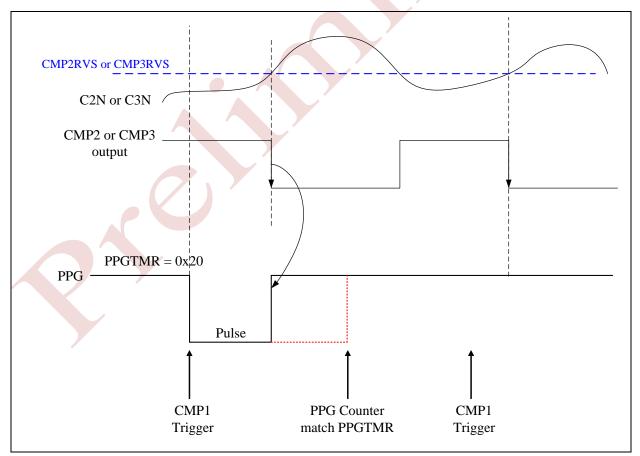
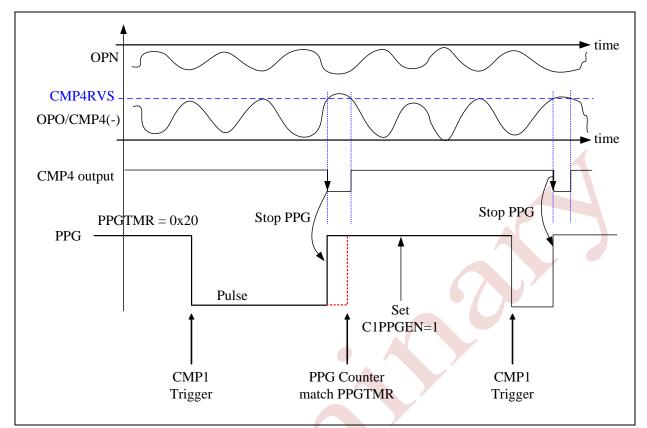
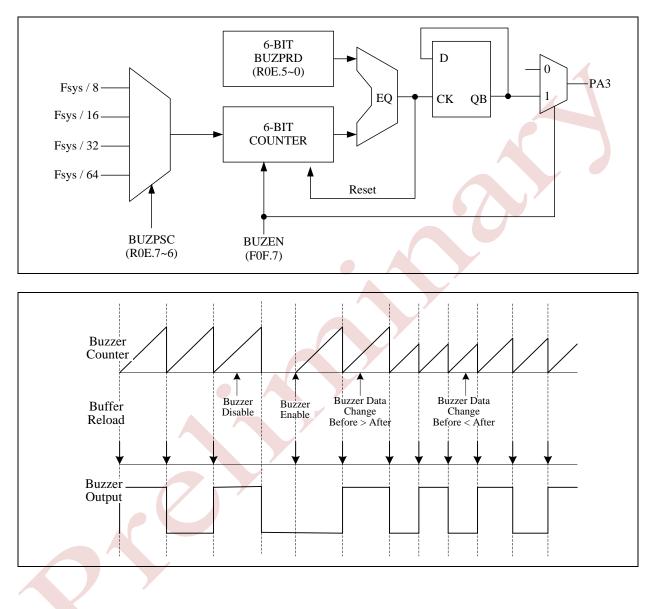


Fig 3.5.4 CMP2 and CMP3 stop PPG pulse




Fig 3.5.5 CMP4 and OPA stop PPG pulse

About the offset trimming of OPA and comparator please refer to corresponding chapters for details.

3.6 Buzzer Output

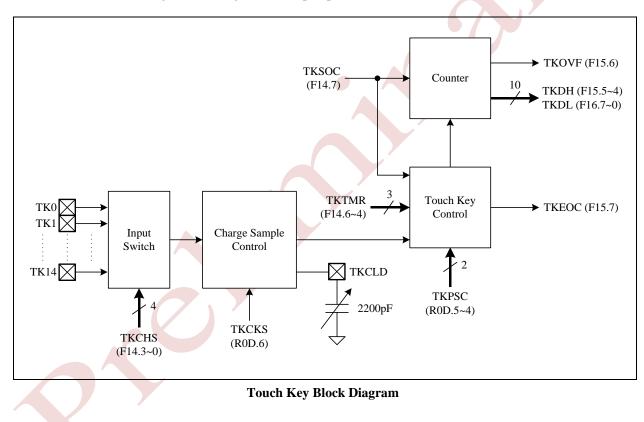
The Buzzer driver consists of 6-bit counter and a clock divider. It generates 50% duty square waveform with wide frequency range. To use the Buzzer function, user needs to set both the Buzzer enable control bit (BUZEN F0F.7)

Frequency calculation is as follows. F_{BZ} = (Fsys/BUZPSC) / (BUZPRD +1) /2

 F_{BZ} = (4 MHz/32) / (9+1) /2=6.25 KHz

Example: [CPU running in FAST mode, Fsys=4 MHz]

MOVLW	<u>1</u> 0001010B	
MOVWF	F0F	; F0F.7 (BUZEN) =1, enable Buzzer counting and output to PA3
MOVLW	<u>10 001001</u> B	; R0E.7~6 (BUZPSC) =Fsys/32
MOVWR	R0E	; R0E.5~0 (BUZPRD) =9



3.7 Touch Key

The Touch Key offers an easy, simple and reliable method to implement finger touch applications. For most applications, only requires an external capacitor component on TKCLD pin. The TKCKS default is 4 MHz is sufficient for general touch plane.

Setting the TKSOC (F14.7) bit to start touch key conversion, the TKSOC bit will be cleared by H/W while end of conversion. "TKEOC=0" means conversion is in process, while "TKEOC=1" means the conversion is finish. After TKEOC's (F15.7) edge rising, user must wait at least 10 us for next conversion. The touch key counting value is stored into TKDATA[9:0] (TKDH, TKDL). If TKOVF=1, it means the conversion has exceeded in period time, reduce TKTMR (F14.6~4) or increase TKPSC (R0D.5~4) to fit the range of TKDATA[9:0]. On the other hand, if TKOVF=0, but TKDATA[9:0] is too small, increase TKTMR or reduce TKPSC to adapting the system board circumstances. The more detailed information, refer to touch key application note.

TK15 is the standard weight that using the on-chip capacitor for software to calibration.

 \bigcirc Example: Touch key channel=TK10 (PB3).

	MOVLW MOVWR MOVWR	xxxx <u>0</u> xxxB PBE PBM	; disable PB3 push-pull output ; disable PB3 digital input
	MOVLW MOVWR	xxxx <u>1</u> xxxB PBPUN	; disable PB3 pull high
	MOVLW MOVWR	x <u>0</u> xxxxxB PAE	; Set PA6 as TKCLD for connecting capacitor
	MOVWR	PAM	; disable PA6(CLD) digital input
	MOVLW MOVWR	x <u>1</u> xxxxxB PAPUN	; disable PA6 pull high
	MOVLW	0 <u>100</u> 1010B	
	MOVWF	F14	; TKTMR=4, TKCHS=10 (TK10)
	MOVLW	<u>0 1 00</u> 0000B	; TKPD=0
	MOVWF	F13	; TKCKS=1 (4 MHz), TKPSC=00 (div1=4 MHz)
	:		
	:	TUROG	
	BSF	TKSOC	; touch key start conversion
	NOP NOP		
	NOP		*
	BCF	TKSOC	
	bei	INSOC	
WAIT_TK:			
	BTFSS	TKEOC	; wait touch key conversion finish
	GOTO	WAIT_TK	
	MOVFW	TKDH	; read TKDATA[9:8]
	MOVFW	TKDL	; read TKDATA[7:0]

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	TKPD	TKCKS	TK	PSC	-		ADCKS	-
R/W	R/W	R/W	R/W	_	R/W	W	W	W
Reset	1	1	0	0	0	0	0	0
R0D.7	TKPD:	Touch key po	ower down					
		ch key runnin						
	1: Touc	ch key power	down					
R0D.6		: Touch key	clock select					
	0: 2 MI							
	1:4 M	Hz						
R0D.5~4		: Touch key o	lata prescalei	r, touch key d	lata			
		ided by 1						
		ided by 2						
		ided by 4						
	11: div	ided by 8						
F14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF14	TKSOC		TKTMR			TK	CHS	1
R/W	R/W		R/W			R	/W	
Reset	0	1	0	0			0	
F147	TUROC	. T 1. 1						
F14.7		: Touch key		-	edge to start			
	H/W at	to cleared w	hile end of co	onversion	/			
F14.6~4		R: Touch key						

000: shortest

111: longest

0000: TK0 (PA5) 0001: TK1 (PB0) 0010: TK2 (PB1) 0011: TK3 (PA1) 0100: TK4 (PD6) 0101: TK5 (PA3) 0110: TK6 (PA4) 0111: TK7 (PA2) 1000: TK8 (PA0) 1001: TK9 (PB2) 1010: TK10 (PB3) 1011: TK11 (PB4) 1100: TK12 (PD0) 1101: TK13 (PD5) 1110: TK14 (PD4)

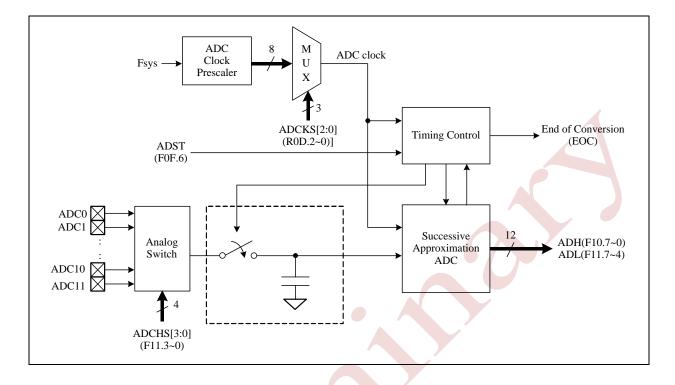
TKCHS: Touch key channel select

1111: TK15 (Standard weight channel)

. . .

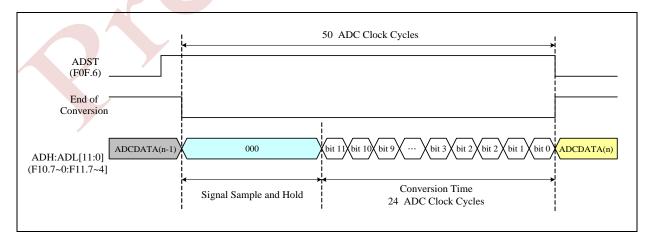
F14.3~0


F15	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCTL2	TKEOC	TKOVF	TKDH		TVOS1	TVOS2	TVOS3	TVOS4
R/W	R	R	R		R/W	R/W	R/W	R/W
Reset	1	0	(0		0	0	0


- F15.7 **TKEOC**: Touch key end of conversion 0: conversion is in process 1: end of conversion
- F15.6 **TKOVF**: Touch key counter overflow flag 0: not overflow 1: overflow
- F15.5~4 **TKDH**: Touch key data MSB [9~8]

F16	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKDL	TKDL							
R/W	R							
Reset	0	0	0	0	0	0	0	0

F16.7~0 **TKDL**: Touch key data LSB [7~0]



The 12-bit ADC (Analog to Digital Converter) consists of a 12-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, user needs to set ADCKS(R0D.2~0) to choose a proper ADC clock frequency, which must be less than 1 MHz. User then launches the ADC conversion by setting the ADST (F0F.6) control bit. After end of conversion, H/W automatic clears the ADST (F0F.6) bit. User can poll this bit to know the conversion status. The PAM (R12.7~0), PBM (R13.5~0), PDM (R14.7~0) control registers are used for ADC pin type setting, user can write the corresponding bit to "0" when the pin is used as an ADC input. The setting can disable the pin logical input path to save power consumption.

The A/D conversion timing diagram

Example:

[CPU running at Fast mode , Fsys=FIRC 8 MHz] ADC clock frequency=1 MHz, ADC channel=ADC5 (PA2).

⊘Example:

. . .

	MOVLW MOVWR	xxxxx <u>101</u> B R0D	; Fsys=8 MHz ; ADC clock prescaler/8
	MOVLW	11111 <u>0</u> 11B	
	MOVWR	PAM	; Enable PA2 pin (ADC2) analog input
	MOVLW	0000 <u>0101</u> B	
	MOVWF	F11	; ADC channel select ADC5 (PA2 pin)
	BSF	ADST	; ADC start conversion
WAIT_AI	DC:		
	BTFSC	ADST	; Wait ADC conversion
	GOTO	WAIT_ADC	
	MOVFW	ADH	; Read ADC value [11:4]
	MOVWE	ADC MSB	

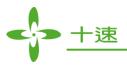
MOVWF ADC_MSB MOVFW F11 ; Read ADC value[3:0] ANDLW F0H MOVWF ADC_LSB

DS-TM57PT46_PA46_E

F10	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
ADH		ADH								
R/W		R								
Reset	0	0	0	0	0	0	0	0		

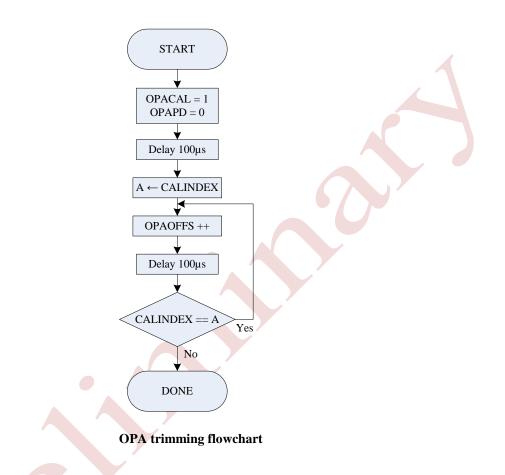
F10.7~0 **ADCDH**: ADC Output MSB[11:4]

F11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MF11	ADL			ADCHS				
R/W	R				R/	W		
Reset	0	0	0	0	0	0	0	0


F11.7~4 ADL: ADC output LSB[3:0]

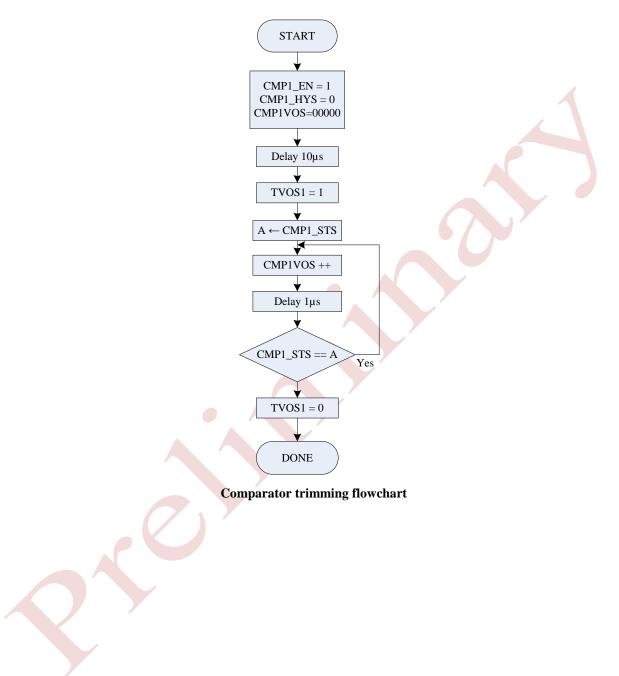
F11.3~0 **ADCHS**: ADC channel select 0000: ADC0 (PD0) 0001: ADC1 (PD2) 0010: ADC2 (PB3) 0011: ADC3 (PB2) 0100: ADC4 (PA0) 0101: ADC5 (PA2) 0110: ADC6 (PA4) 0111: ADC7 (PA3) 1000: ADC8 (PD6) 1001: ADC9 (PA1) 1010: ADC10 (PA5) 1011: ADC11 (PD7)

R0D	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MR0D	TKPD	TKCKS	TKPSC		_	ADCKS		
R/W	R/W	R/W	R/W	-	R/W	W	W	W
Reset	1	1	0	0	0	0	0	0

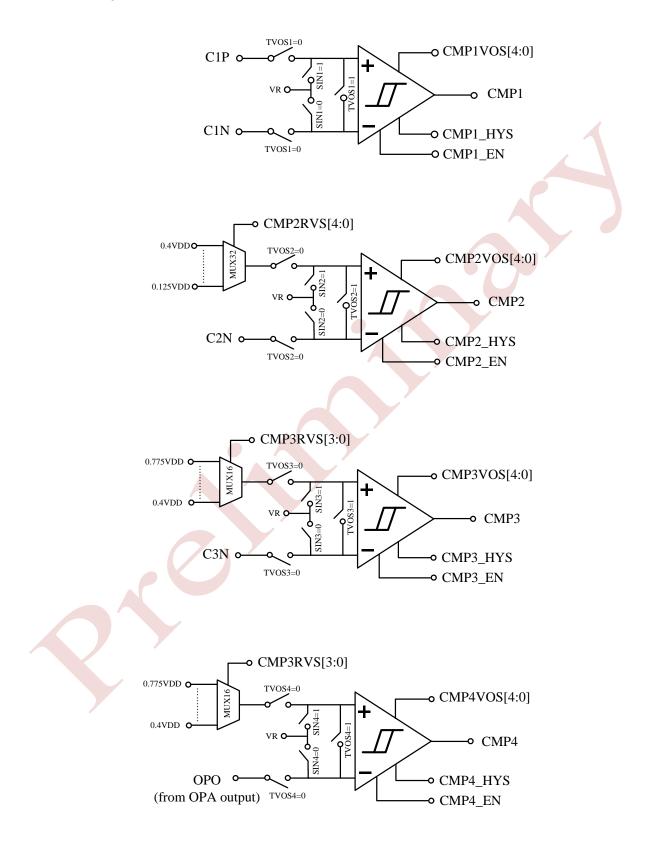

R0D.2~0 ADCKS: ADC clock selection

000: Fsys / 256 001: Fsys / 128 010: Fsys / 64 011: Fsys / 32 100: Fsys / 16 101: Fsys / 8 110: Fsys / 4 111: Fsys / 2

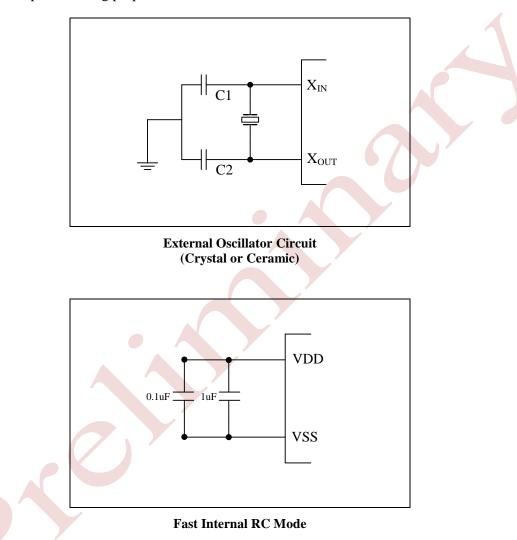
3.9 OPA/Comparators offset voltage trimming procedures


OPA must trim the offset voltage before use. The following flowchart states how to trim the offset voltage of the OPA. Note that the 100us delay time is required when OPA switch from power down mode to power on mode as well as every time the OPAOFFS is changed.

In general the trimming procedure needs to be performed once after power on.

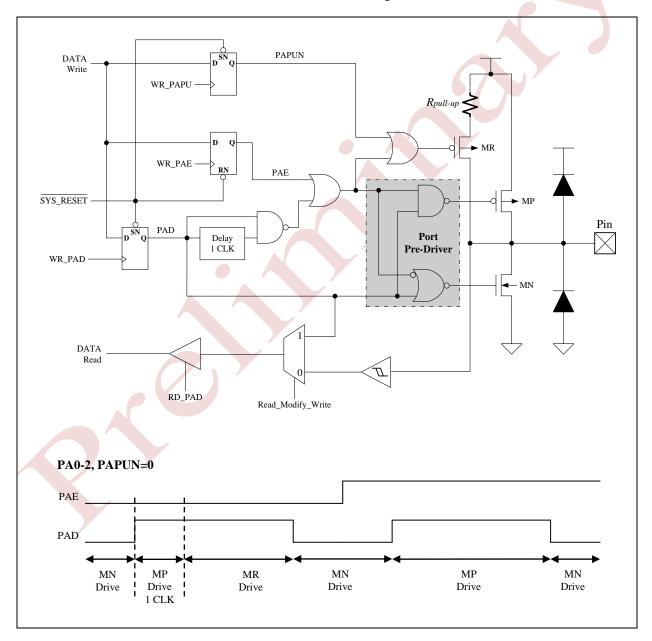

The comparators CMP1, CMP2, CMP3, and CMP4 must perform the trimming procedures before use. The following flowchart uses the name of CMP1, but the corresponding control registers of CMP2, CMP3, and CMP4 can be easily adapted.

The block diagram of CMP1, CMP2, CMP3, and CMP4 is below:



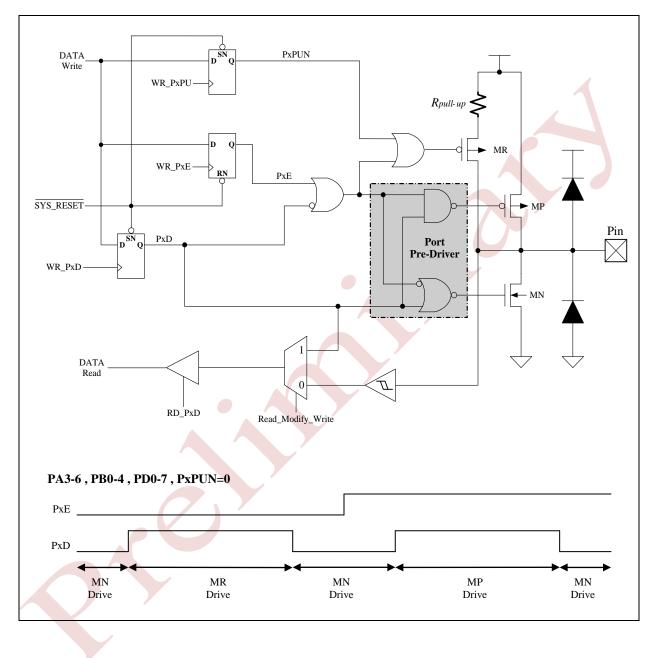
3.10 System Clock Oscillator

System clock can be operated in two different oscillation modes. Two oscillation modes are FIRC and SIRC, respectively. In the Fast Internal RC mode (FIRC), the on-chip oscillator generates 8 MHz system clock. Since power noise degrades the performance of Fast Internal Clock Oscillator, placing power supply bypass capacitors 1 uF and 0.1 uF very close to VDD/VSS pins to improve the stability of clock and the overall system. In the Slow Internal RC mode (SIRC), it provides a lower speed and accuracy of the oscillator for power saving purpose.


Note that TM57PT46/PA46 without XIN and XOUT pins.

4 I/O Port

4.1 PA0-2


These pins can be used as Schmitt-trigger input, CMOS push-pull output or "pseudo-open-drain" output. The pull-up resistor is assignable to each pin by S/W setting. To use the pin in Schmitt-trigger input mode, S/W needs to set the PAE=0 and PAD=1. To use the pin in pseudo-open-drain mode, S/W sets the PAE=0. The benefit of pseudo-open-drain structure is that the output rise time can be much faster than pure open-drain structure. S/W sets PAE=1 to use the pin in CMOS push-pull output mode. Reading the pin data (PAD) has different meaning. In "Read-Modify-Write" instruction, CPU actually reads the output data register. In the others instructions, CPU reads the pin state. The so-called "Read-Modify-Write" instruction includes BSF, BCF and all instructions using F-Plane as destination.

4.2 PA3-6, PB0-4, PD0-7

These pins are almost the same as PA0-2, except they do not support pseudo-open-drain mode. They can be used in pure open-drain mode, instead.

♦ Example: I/O mode selecting

MOVLW	FFH
MOVWF	PAD
MOVWF	PBD
MOVWF	PDD
MOVLW	00H
MOVWR	PAE
MOVWR	PBE
MOVWR	PDE

; Set all ports to be Schmitt-trigger input

♦ Example: Set PA0-2 as pseudo-open-drain mode

MOVLW xxxxx <u>000</u> B	
MOVWR PAE	; Set PA2-PA0 as pseudo-open-drain mode
MOVLW xxxxx <u>000</u> B	

; PA2~PA0 output low level

♦ Example: Set PA0-2 is CMOS push-pull output mode.

MOVLW xxxxx<u>111</u>B MOVWR PAE

; Set PA2-PA0 as CMOS push-pull output mode

 \bigcirc Example: Read data from input port.

MOVWF PAD

MOVFW PAD	; Read data from Port A
MOVFW PBD	; Read data from Port B
MOVFW PDD	; Read data from Port D

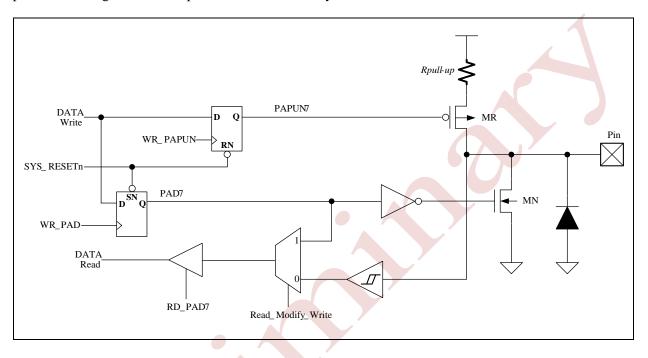
♦ Example: Write data to output port.

MOVLW	55H
MOVWF	PAD
MOVWF	PBD

; Write data 55H to Port A ; Write data 55H to Port B

 \bigcirc Example: Write one bit data to output port.

BCF	PAD,0	
BCF	PBD,1	
BCF	PDD,2 ; Set PA0, PB1 and PD2 to be "0"	
BSF	PAD,3	
BSF	PBD,4	
BSF	PDD,7 ; Set PA3, PB4 and PD7 to be "1"	



4.3 PA7

PA7 can be only used in Schmitt-trigger input mode. The pull-up resistor is controlled by PAPUN.7 bit and the default value is enabled (i.e. PAPUN.7=0) after system reset.

CAUTION: Before turning off the PA7 pull-up resistor (PAPUN.7=1), make sure the SYSCFG[7]: XRSTE bit is "0" that disable the external reset pin function. If XRSTE=1 and PAPUN.7=1, and the PA7 pin is in floating state, the chip will not work correctly.

 \bigcirc Example: Read state from PA7.

Condition: SYSCFG[7] is set to "0". If SYSCFG[7] = "1", then PA7 pin is external reset pin function.

BTFSS	PAD,7	
GOTO	LOOP_A	; If PA7=0.
GOTO	LOOP_B	; If PA7=1.

F05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAD	PAD7				PAD			
R/W	R/W				R/W			
Reset	1	1	1	1	1	1	1	1

F05.7 **PAD7:** PA7 data or pin mode control 0: PA7 is open-drain output mode and output low 1: PA7 is Schmitt-trigger input mode

- F05.6~0 **PAD:** PA6~PA0 data
 - 0: output low

1: output high or Schmitt-trigger input mode

F06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBD		-				PBD		
R/W	R	R	R			R/W		
Reset	0	0	0	1	1	1	1	1

F06.4~0 **PBD:** PB4~PB0 data

0: output low

1: output high or Schmitt-trigger input mode

F07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDD				PĹ	DD			
R/W				R/	W			
Reset	1	1	1	1	1	1	1	1

F07.1~0 **PDD:** PD7~PD0 data

0: output low

1: output high or Schmitt-trigger input mode

R05	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAE				PA	ΑE			
R/W				V	V			
Reset	0	0	0	0	0	0	0	0

R05.7~0 **PAE**: PA6~PA0 Pin CMOS output enable

0 : For PA2-PA0, the pins are Pseudo-open-drain output or Schmitt-trigger input.

For PA3-PA7, the pins are open-drain output or Schmitt-trigger input

1 : the pins are CMOS push-pull output except PA7. PA7 can only be open-drain output mode.

R06	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBE		_				PBE		
R/W	_	_	_			W		
Reset 🥖	-	—	-	0	0	0	0	0

R06.4~0 **PBE**: PB4~PB0 Pin CMOS output enable

0: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R07	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDE		PDE						
R/W				V	V			
Reset	0	0	0	0	0	0	0	0

R07.7~0 **PDE**: PD7~PD0 Pin CMOS output enable

0: the pins are open-drain output or Schmitt-trigger input

1: the pins are CMOS push-pull output.

R08	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAPUN		PAPUN						
R/W				V	V			
Reset	0	0	0	0	0	0	0	0

R08.7~0 **PAPUN**: PA7~PA0 pin pull-high enable

0 : the pins are pull-high

1: the pins are not pull-high

R09	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBPUN	-	_			PBP	PUN		
R/W	-	_			V	V		
Reset	0	0	1	1	1	1	1	1

R09.5~0 **PBPUN**: PB5~PB0 Pin pull-high enable

- 0 : the pins are pull-high
- 1: the pins are not pull-high.

R0A	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDPUN				PDI	PUN			
R/W				V	V			
Reset	1	1	1	1	1	1	1	1

R0A.7~0 PDPUN: PD7~PD0 Pin pull-high enable

- 0 : the pins are pull-high
- 1: the pins are not pull-high.

R11	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PAM			PAM					
R/W				V	V			
Reset	1	1	1	1	1	1	1	1

R11.7~0 **PAM**: PA7~PA0 pin mode

0 : the pins disable I/O digital input

1: the pins enable I/O digital input

R12	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBM	_	_	_			PBM		
R/W	_	_	_			W		
Reset	_	—	—	1	1	1	1	1

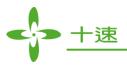
R12.4~0 **PBM**: PB4~PB0 pin mode

- 0 : the pins disable I/O digital input
- 1: the pins enable I/O digital input

R13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PDM		PDM									
R/W		W									
Reset	1	1	1	1	1	1	1	1			

R13.7~0 PDM: PD7~PD0 pin mode

0 : the pins disable I/O digital input


1: the pins enable I/O digital input

R14	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PBWKEN	—	—	-			PBWKEN		
R/W	_	_	_			W		
Reset	—	—	-	0	0	0	0	0

R14.4~0 **PBWKEN:** PB5~PB0 individual pin low level wake up control

0: disable

1: enable

MEMORY MAP

F-Plane

Name	Address	R/W	Rst	Description
(F00) INDF		-	Functi	on related to: RAM W/R
INDF	00.7~0	R/W	-	Not a physical register, addressing INDF actually point to the register whose address is contained in the FSR register
(F01) TM0			Functi	on related to: Timer0
TM0	01.7~0	R/W	0	Timer0 content
(F02) PCL			Funct	tion related to: Program Counter
PCL	02.7~0	R/W	0	Programming Counter LSB[7~0]
(F03) STAT	US		Functi	on related to: STATUS
GBIT1	03.7	R/W	0	General purpose bit 1
GBIT0	03.6	R/W	0	General purpose bit 0
RAMBK	03.5	R/W	0	SRAM Bank selection, 0: Bank0, 1: Bank1
ТО	03.4	R	0	WDT timeout flag
PD	03.3	R	0	Power-down mode flag
Ζ	03.2	R/W	0	Zero flag
DC	03.1	R/W	0	Decimal Carry flag or Decimal /Borrow flag
С	03.0	R/W	0	Carry flag or /Borrow flag
(F04) FSR			Functi	on related to: RAM W/R
GBIT2	04.7	R/W	0	General purpose bit 2
FSR	04.6~0	R/W	-	File Select Register, indirect address mode pointer
(F05) PAD			Functi	on related to: Port A
		R	-	PA7 pin or "data register" state
PAD7	05.7	W	1	0: PA7 is open-drain output mode
			-	1: PA7 is Schmitt-trigger input mode
PAD	05.6~0	R	-	Port A pin or "data register" state
		W	FF	Port A output data register
(F06) PBD		D	Funct	on related to: Port B
PBD	06.4~0	R	-	Port B pin or "data register" state
		W	1F	Port B output data register
(F07) PDD		P	Functi	on related to: Port D
PDD	07.7~0	R	-	Port D pin or "data register" state
		W	FF	Port D output data register

Name	Address	R/W	Rst	Description	
(F08) INTIE			Functi	on related to: Interrupt Enable	
				ADC interrupt enable	
ADCIE	08.7	R/W	0	0: disable	
				1: enable	
N/A	08.6	R/W	0	N/A	
				Timer1 interrupt enable	
TM1IE	08.5	R/W	0	0: disable	
				1: enable	
				Timer0 interrupt enable	
TM0IE	08.4	R/W	0	0: disable	
				1: enable	
				WKT interrupt enable	
WKTIE	08.3	R/W	0	0: disable	
				1: enable	
				INT2 (PA7) pin interrupt enable	
INT2IE	08.2	R/W	0	0: disable	
				1: enable	
				INT1 (PA1) pin interrupt enable	
INT1IE	08.1	R/W	0	0: disable	
				1: enable	
DITOIL	00.0		0	INTO (PA6) pin interrupt enable	
INTOIE	08.0	R/W	/ 0	0: disable	
			T	1: enable	
(F09) INTIF			Funcu	on related to: Interrupt Flag	
ADCIF	09.7	R W	-	ADC interrupt event pending flag, set by H/W while ADC complete 0: clear this flag	
ADCII	09.7		W	0	1: no action
				Comparators interrupt event pending flag, set by H/W while at least one of	
		R		CMP1, CMP2, CMP3, and CMP4 output trigger PPG pulse to stop	
CMPIF	09.6	9.6			No action. This bit is just the combinational logic of (CMP1IF or CMP2IF
		W	0	or CMP3IF or CMP4IF)	
		R	-	Timer1 interrupt event pending flag, set by H/W while Timer1 overflows	
TM1IF	09.5			0: clear this flag	
		W	0	1: no action	
		R	- 1	Timer0 interrupt event pending flag, set by H/W while Timer0 overflows	
TM0IF	09.4	XX.	0	0: clear this flag	
		W	0	1: no action	
		R	-	WKT interrupt event pending flag, set by H/W while WKT time out	
WKTIF	09.3	W	0	0: clear this flag	
		vv	0	1: no action	
	R	-	INT2 interrupt event pending flag, set by H/W at INT2 pin's falling edge		
INT2IF	09.2	W	0	0: clear this flag	
			U	1: no action	
		R	-	INT1 interrupt event pending flag, set by H/W at INT1 pin's falling edge	
INT1IF 09.1	W	0	0: clear this flag		
		• •		1: no action	
		R	_	INT0 interrupt event pending flag, set by H/W at INT0 pin's falling/rising	
INTOIF	09.0			edge	
	57.5	W	0	0: clear this flag	
			Ÿ	1: no action	

Name	Address	R/W	Rst	Description		
(F0A) TM1I			Functi	on related to: Timer1		
TM1L	0a.7~0	R/W	0	(Read) Timer1 counter low byte.		
		10/11	-	(Write) Timer1 reload low byte		
(F0B) TM1H	I		Functi	on related to: Timer1		
TM1H	0b.7~0	R/W	0	(Read) Timer1 counter high byte. (Write) Timer1 reload high byte		
(F0C) PWM	กม		Functi	on related to: PWM		
PWMDH	0c.7~0	R/W	0	PWM duty 8-bit MSB		
		K/ W	-			
(F0D) MF0I		D		tion related to: PWM, Program Counter		
PCH	0d.7~4	R	0	Program Counter high byte, i.e. PC11~PC8		
N/A	0d.3~2	R/W	0	Not used.		
PWMDL	0d.1~0	R/W	0	PWM duty 2-bit LSB		
(F0E) PWM	1DH	[Funct	tion related to: PWM1		
	0 7	DAV	0	CMP1 falling/rising interrupt enable		
CMP1IE	0e.7	R/W	0	0: disable 1: enable		
				CMP2 falling interrupt enable		
CMP2IE	0e.6	R/W	0	0: disable		
	00.0	10 11	Ŭ	1: enable		
				CMP3 falling interrupt enable		
CMP3IE	0e.5	R/W	0	0:disable		
				1: enable		
				CMP4 falling and remains low for CMP4_TME duration interrupt enable		
CMP4IE	0e.4	R/W	0	0: disable		
				1: enable		
CMP1IF	0e.3	R/W	0	CMP1 interrupt event pending flag, set by H/W when CMP1 output		
	-			falling/rising edge. Write '0' to clear.		
CMP2IF	0e.2	R/W	0	CMP2 interrupt event pending flag, set by H/W when CMP2 output falling edge. Write '0' to clear.		
				CMP3 interrupt event pending flag, set by H/W when CMP3 output falling		
CMP3IF	0e.1	R/W	0	edge. Write '0' to clear.		
				CMP4 interrupt event pending flag, set by H/W when CMP4 output falling		
CMP4IF	0e.0	R/W	0	edge and remains low level for CMP4_TME duration. Write '0' to clear.		
(F0F) MF0F	7		Funct	tion related to: Buzzer, ADC, CPU clock		
BUZEN	0f.7	R/W	0	Buzzer function, 1=enable, 0=disable		
ADST	Of 6	DAV	0	ADC start bit. 0 :H/W clear after end of conversion 1: ADC start		
ADSI	0f.6	R/W	0	conversion		
				Fast-clock Enable/Disable		
FASTSTP	0f.5	R/W	0	0: Enable		
				1: Disable		
CDUCKS	0f 4	DAV	0	System clock (Fsys) selection		
CPUCKS	0f.4	R/W	0	0: Fast-clock 1: Slow-clock		
PWMCLR	0f.3	R/W	1	PWM counter clear 0: Release 1: Clear and hold		
PWMCLR	01.5 0f.2	R/W	0			
				5		
OPAPD	0f.1	R/W	1	OPA power down 0: OPA is enabled 1: OPA is disabled		
OPACAL	0f.0	R/W	0	OPA offset calibration enable 0: Disable calibration, OPA in normal operating mode		
OF ACAL	01.0	IN/ VV	U	1: Enable calibration, OPA in offset voltage calibration mode		
(F10) ADCI	(F10) ADCDH Function related to: ADC					
ADCDH	10.7~0	R	Func	ADC output data MSB[11:4]		
АЛСЛИ	10.7~0	Л	-	ADC output uata MISD[11.4]		

Name	Address	R/W	Rst	Description
(F11) MF11			Funct	ion related to: ADC
ADCDL	11.7~4	R	-	ADC output data LSB [3:0]
ADCHS	11.3~0	R/W	0	ADC channel select 0000: ADC0 0110 : ADC6 0001: ADC1 0111 : ADC7 0010: ADC2 1000 : ADC8 0011: ADC3 1001 : ADC9 0100: ADC4 1010 : ADC10 0101: ADC5 1011 : ADC11
(F12) MF12			Func	tion related to: PWM0, PWM1, Timer0, Timer1
CALINDEX	12.7	R	-	OPA calibration index, observing this bit toggle when OPA in calibration mode.
TM1SET	12.6	R/W	0	Timer1 counter set 0: Release 1: Set to FFFFh and hold
TM1CLR	12.5	R/W	0	Timer1 counter clear 0: Release 1: Clear to 0000H and hold
TM1STP	12.4	R/W	0	Timer1 counter stop 0: Release 1: Stop counting
TM0STP	12.3	R/W	0	Timer0 counter stop 0: Release 1: Stop counting
C1PPGEN	12.2	R/W	0	Enable CMP1 output falling/rising to trigger PPG pulse. 0: disabled 1: enable
PPGEN	12.1	R/W	0	PPG output enable. 0: disabled 1: enabled. PPGEN is cleared to '0' when PPGSTB from high to low which finish one PPG Single Pulse Mode.
PPGSTB	12.0	R/W	0	Writing a '1' and a '0' to generate single PPG pulse with PPG_TMR width and the C1TGCNT will be cleared and start counting CMP1 toggle times.
(F13) MF13		_	Func	tion related to: OPA, Touch Key
CMP1_STS	13.7	R	-	CMP1 output status
CMP2_STS	13.6	R	-	CMP2 output status
CMP3_STS	13.5	R	_	CMP3 output status
CMP4_STS	13.4	R	-	CMP4 output status
OPAOFFS		R/W	0	OPA offset tuning bits. Totally 16 steps.
(F14) TKCT		-		on related to: Touch Key
TKSOC	14.7	R/W	0	Touch key start of conversion, rising edge to start
TKTMR	14.6~4	R/W	100	Touch key conversion time. 000=shortest, 111=longest
TKCHS	14.3~0	R/W	0	Touch key channel select, TKCHS[3:0]= 0000: TK0 0110: TK6 1100: TK12 0001: TK1 0111: TK7 1101: TK13 0010: TK2 1000: TK8 1110: TK14 0011: TK3 1001: TK9 1111: standard weight channel 0100: TK4 1010: TK10 0101: TK5 1011: TK11
(F15) TKCT	L2		Functi	on related to: Touch Key
ТКЕОС	15.7	R	1	Touch key end of conversion, 1: end of conversion 0: conversion is in process
TKOVF	15.6	R	0	Touch key counter overflow
TKDH	15.5~4	R	-	Touch key counter high byte TKDATA[9:8]
TVOS1	15.3	R/W	0	CMP1 0: Normal mode 1: Trim offset mode
TVOS2	15.2	R/W	0	CMP2 0: Normal mode 1: Trim offset mode
TVOS3	15.1	R/W	0	CMP3 0: Normal mode 1: Trim offset mode
TVOS4	15.0	R/W	0	CMP4 0: Normal mode 1: Trim offset mode

Name	Address	R/W	Rst	Description
(F16) TKDL			Funct	ion related to: Touch Key
TKDL	16.7~0	R	-	Touch key counter low byte TKDATA[7:0]
(F17) DPL			Funct	ion related to: Table read
DPL	17.7~0	R/W	00	Low byte of DPTR.DPTR will be increased automatically when TABRH is executed.
(F18) MF18			Funct	ion related to: Table read, PPG
DPH	18.3~0	R/W	0	Higher 4 bits of DPTR
PPG_TMR9	18.7	R/W	0	The bit 8 (9 th bit, MSb) of PPG_TMR
(F19) PPG_7	ГMR		Funct	ion related to: PPG
PPG_TMR	19.7~0	R/W	00	The lower 8 bits of PPG_TMR. PPG_TMR ranges from 0~511 in decimal.
(F1A) C1TG	CNT		Funct	ion related to: PPG
C1TGCNT	1a.7~0	R	00	CMP1 toggle counter. Set PPGSTB to 1 to clear this counter and start counting. The value will be held when reach 255.
User Data M	lemory			
	20~27	R/W	-	SRAM common area (8 bytes)
SRAM	28~7f	R/W	-	SRAM Bank0 area (RAMBK=0, 88 bytes)
	28~7f	R/W	-	SRAM Bank1 area (RAMBK=1, 88 bytes)

Note that the Touch Key function is always be power down when the body is TM57PA46, and all registers related to Touch Key functions would not affect the internal Touch Key function which is disabled permanently !

R-Plane

Name	Address	R/W	Rst	Description
(R02) TM0	CTL		Functi	on related to: Timer0
TM0CL	02.7	W	0	Timer0 Capture Mode Level 0: High level capture 1: Low level capture
TM0CM	02.6	W	0	Timer0 Mode 0: Timer / Counter Mode Clock source from TM0PSC (set R02.3~0) TM0CKI (set R02.4) 1: Capture Mode Clock source from CAPT pin
TM0EDG	02.5	W	0	Timer0 prescaler counting edge for TM0CKI pin 0: rising edge 1: falling edge
TM0CKS	02.4	W	0	Timer0 prescaler clock source 0: Instruction cycle 1: TM0CKI pin (PA2 pin)
TM0PSC	02.3~0	W	0	Timer0 prescaler. Timer0 prescaler clock source divided by 0000: /1 0001: /2 0010: /4 0011: /8 0100: /16 0101: /32 0110: /64 0111: /128 1xxx: /256
(R03) PWR	DN		Functi	on related to: POWER DOWN
PWRDN	03	W	-	Write this register to enter Power-down (STOP/IDLE) Mode
(R04) WDT	CLR		Functi	ion related to: WDT
WDTCLR	04	W	-	Write this register to clear WDT timer
(R05) PAE	1 -		Functi	ion related to: Port A
PAE	05.6~3 05.2~0	w w	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output Each bit controls its corresponding pin, if the bit is 0: the pin is pseudo-open-drain output or Schmitt-trigger input
				1: the pin is CMOS push-pull output
(R06) PBE			Functi	on related to: Port B
PBE	06.4~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output
(R07) PDE			Functi	ion related to: Port D
PDE	07.7~0	W	0	Each bit controls its corresponding pin, if the bit is 0: the pin is open-drain output or Schmitt-trigger input 1: the pin is CMOS push-pull output

Name	Address	R/W	Rst	Description
(R08) PAPUN	Ī	_	Functi	ion related to: Port A
PAPUN	08.7~0	W	7F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PAD) is 0 b. the pin's CMOS push-pull mode is chosen (PAE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R09) PBPUN	Ī		Functi	ion related to: Port B
PBPUN	09.4~0	W	3F	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PBD) is 0 b. the pin's CMOS push-pull mode is chosen (PBE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R0A) PDPUN	N	1	Functi	ion related to: Port D
PDPUN	0a.7~0	W	FF	Each bit controls its corresponding pin, if the bit is 0: the pin pull up resistor is enabled, except a. the pin's output data register (PDD) is 0 b. the pin's CMOS push-pull mode is chosen (PDE=1) c. the pin is working for FXT/SXT/PWMs/TM0OUT/TM1OUT/TCOUT/Buzzer output 1: the pin pull up resistor is disabled
(R0B) MR0B			Functi	ion related to: PWM,TM0, TM1, INT1, TCOUT
PWMOE	0b.7	W	0	0: PA0 as its function 1: enable PWM output to PA0 pin
PWMPSC	0b.6~5	W	0	PWM clock source is divided by User code must set these 2 bits to '00' to prevent malfunction of PWM.
TCOE	0b.4	w	0	Instruction cycle (Fsys/2) output to PD6 0: disable 1: enable
TM0OE	0b.3	W	0	Timer0 overflow toggle output to PA5 0: disable 1: enable
TM10E	0b.2	W	0	Timer1 overflow toggle output to PD0 0: disable 1: enable
TM1CKS	0b.1	w	0	Timer1 clock source 0: Fsys/2 (instruction cycle) 1: Fsys
INT1EDG	0b.0	W	0	0: INT1 pin falling edge to trigger interrupt event 1: INT1 pin rising edge to trigger interrupt event

Name	Address	R/W	Rst	Description
(R0C) MR0C		-	Functi	on related to: WDT/WKT/Timer0/Timer1/TCOUT
				WKT Period
				VDD=5V VDD=3V
				00 1.1 ms 1.4 ms
WKTPSC	0c.7~6	W	11	01 2.3 ms 2.8 ms
				10 36 ms 46 ms
				11 145 ms 182 ms
				WDT Period
				VDD=5V VDD=3V
				00 145 ms 180 ms
WDTPSC	0c.5~4	W	01	01 290 ms 364 ms
				10 1160 ms 1456 ms
				11 2320 ms 2913 ms
				WDT disable in STOP mode
				If WDTE=0, this bit is don't care.
WDTSTP	0c.3	W	0	0: stop counting WDT in STOP mode
				1: always counting WDT in STOP mode
				Timer1 Mode
				0:Timer Mode (source form TM1PSC clock out)
TM1CM	0c.2	W	0	1:Capture Mode (source from CAPT pin), measure CAPT pin period
				time
				between successive rising or falling edges
				FIRC clock selection
FID CIVC	0 1 0		10	00: 2 MHz
FIRCKS	0c.1~0	W	10	01: 4 MHz
				10: 8 MHz 11: 16 MHz
(R0D) MR0D			Functi	ion related to: Touch Key/ADC
TKPD	0d.7	W		
IKPD	00.7	W	1	Touch Key power down 0: power up 1: power down Touch key PWM clock select, "TK-clock" is
TKCKS	0d.6	w	1	0: 2 MHz 1: 4 MHz
		W		Touch key counter data prescaler. Touch key prescaler divided by
TKPSC	0d.5~4		00	0: TK-clock 1: TK-clock/2 2: TK-clock/4 3: TK-clock/8
N/A	0d.3		0	Not used
				ADC clock frequency selection
				000: Fsys / 256
				001: Fsys / 128
				010: Fsys / 64
ADCKS	0d.2~0	W	000	011: Fsys / 32
				100: Fsys / 16
				101: Fsys / 8
				110: Fsys / 4
				111: Fsys / 2
(R0E) BUZCT	Ľ		Functi	on related to: Buzzer
				Buzzer clock frequency selection
DUZDGC	0.7.6	117	00	00: Fsys/8
BUZPSC	0e.7~6	W	00	01: Fsys/16 10: Fsys/22
				10: Fsys/32 11: Fsys/64
	0.50	W	0	11: Fsys/64
BUZPRD	0e.5~0	w	0	Buzzer Period

Name	Address	R/W	Rst	Description
(R0F) Reserve	ed	-	Tenx	reserved
Reserved	0f.7~0	-	-	Tenx reserved register. Users do not write it.
(R10) PWMP	RD		Functi	on related to: PWM
PWMPRD	10.7~0	W	FF	PWM Period
(R11) PAM			Functi	ion related to: Port A
				Each bit control its corresponding pin
РАМ	11.7~0	W	FF	0: disable I/O digital input to save power when ADC channels are
PAM	11.7~0	vv	ГГ	selected
				1: enable I/O digital input
(R12) PBM	1	T	Funct	tion related to: Port B
				Each bit control its corresponding pin
PBM	12.4~0	W	3F	0: disable I/O digital input to save power when ADC channels are
				selected
(R13) PDM			Euro	1: enable I/O digital input tion related to Port D
(KIS) PDM		1	Func	Each bit control its corresponding pin
				0: disable I/O digital input to save power when ADC channels are
PDM	13.7~0	W	FF	selected
				1: enable I/O digital input
(R14) PBWKI	EN	1	Funct	tion related to: Wake up
NOISERJ	14.7	W	0	Enhance noise rejection 0: disable 1: enable
				PB4~PB0 low level wakeup
PBWKEN	14.4~0	W	00	0: disable
				1: enable
(R15)CMPCT	Ľ	•	Functi	ion related to: Comparator
	15 7		0	CMP1:
CMP1_EN	15.7	W	0	0: disable 1: enable
				CMP2 :
CMP2_EN	15.6	W	0	0: disable
	10.00	.,	Ů	1: enable
				CMP3 :
CMP3_EN	15.5	W	0	0: disable
				1: enable
				CMP4:
CMP4_EN	15.4	W	0	0: disable
				1: enable CMP1 hysteresis
CMP1_HYS	15.3	W	0	0: OFF
				1: ON
		1		CMP2 hysteresis
CMP2_HYS	15.2	W	0	0: OFF
	r			1: ON
	1.5.1			CMP3 hysteresis
CMP3_HYS	15.1	W	0	0: OFF
				1: ON CMP4 hysteresis
		•		UNIT + 11951010515
СМР4 НУС	15.0	W	0	
CMP4_HYS	15.0	W	0	0: OFF 1: ON

Name	Address	R/W	Rst	Description
(R16)CMP10	T	-	Functi	on related to: CMP1 Offset Trim
				When TVOS1=1, VR input to trim offset voltage from
SIN1	16.7	W	0	0: negative terminal
				1: positive terminal
CMP1VOS	16.4~0	W	00	CMP1 offset voltage adjustment 00000~11111
(R17)CMP2O	T	1	Functi	on related to: CMP2 Offset Trim
GDVA			0	When TVOS2=1, VR input to trim offset voltage from
SIN2	17.7	W	0	0: negative terminal
CMP2VOS	17.4~0	W	00	1: positive terminal CMP2 offset voltage adjustment 00000~11111
(R18)CMP30		vv		on related to: CMP3 Offset Trim
(KIð)CMP5U	/1		r uncu	When TVOS3=1, VR input to trim offset voltage from
SIN3	18.7	W	0	0: negative terminal
5113	10.7	••	U	1: positive terminal
CMP3VOS	18.4~0	W	00	CMP3 offset voltage adjustment 00000~11111
(R19)CMP40				ion related to: CMP4 Offset Trim
			1 uneu	When TVOS4=1, VR input to trim offset voltage from
SIN4	19.7	W	0	0: negative terminal
				1: positive terminal
CMP4VOS	19.4~0	W	00	CMP4 offset voltage adjustment 00000~11111
(R1A)MR1A			Functi	on related to: PPG, CMP3
				PPG output delay selection
				0000: direct output without delay
PPG_DLY	1a.7~4	W	0	0001: 1 Fsys clock
				 1111-15 Francisco de sta
				1111: 15 Fsys clocks CMP3 non-inverted terminal reference voltage selection.
CMP3RVS	1a.3~0	W	0	Ranges from 0.4VDD to 0.775VDD
(R1B)CMP2R	RVS	1	Functi	ion related to: CMP2
		w	00	CMP2 non-inverted terminal reference voltage selection.
CMP2RVS	1b.4~0	W	00	Ranges from 0.125VDD to 0.4VDD
(R1C)CMP4C	CTL		Functi	ion related to: CMP4
				CMP4 low level duration select. When CMP4 outputs low remains N
				system clock (Fsys), CMP4 interrupt is generated if interrupt is enabled.
				000: 1 Fsys
				001: 2 Fsys 010: 4 Fsys
CMP4_TME	1c.7~5	W	000	011: 8 Fsys
				100: 16 Fsys
				101: 32 Fsys
				110: 64 Fsys
				111: 128 Fsys
CMP4RVS	1c.3~0	W	0	CMP4 non-inverted terminal reference voltage selection.
				Ranges from 0.4VDD to 0.775VDD
(R1D)CMP1C			Functi	ion related to: CMP1
CMP1EDG	1d.6	W	0	CMP1 output trigger edge 0: falling
CMITIEDO	10.0	vv	0	1: rising
				CMP1 debounce setting. Setting the number of Tsys (1/Fsys) time to
DD1/CT			0.5	check the bounce of CMP1 output. If the CMP1 output changes twice
DBNCE	1d.5~0	W	00	within the DBNCE time, the bounce will be ignored and keep the
	1			previous CMP1 output value.

INSTRUCTION SET

Each instruction is a 14-bit word divided into an Op Code, which specifies the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" or "r" represents the address designator and "d" represents the destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field/Legend	Description
f	F-Plane Register File Address
r	R-Plane Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field, 0: Working register, 1: Register file
W	Working Register
Z	Zero Flag
С	Carry Flag or /Borrow Flag
DC	Decimal Carry Flag or Decimal /Borrow Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
•	Bit Field
В	Before
A	After
\leftarrow	Assign direction

Byte-Oriented File Register Instruction ADDWF f.d 00 0011 dfff ffff 1 C, DC, Z Add W and "f" ADDWF f.d 00 00101 dfff ffff 1 Z AND W with "f" CLRE f 00 0001 100 0000 1 Z Clear W COMF f.d 00 0011 dfff ffff 1 Z Clear W COMF f.d 00 0011 dfff ffff 1 Z Clear W ODDECE f.d 00 0011 dfff ffff 1 Z Decrement "f" DECE f.d 00 0110 dfff ffff 1 Z Increment "f" Skip if zero DCFSZ f.d 00 0100 dfff ffff 1 Z OR W with "f" MCEE f.d 00 0100 dfff ffff 1 - Move W to "f" MOVER f 00 0000 000 rffr fffff 1 C Rote Edit Fit' through carry SUBWF f.d 00 1100 dfff ffff 1 C Rote Tight "f" through carry SUBWF f.d 00 110	Mnemonic		Op Code	Cycle	Flag Affect	Description
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Byte-Oriented File Register Instruction				
CLRF f 00 0001 1fff ffff 1 Z Clear "f" CLRW 00 0001 1000 0000 1 Z Clear W COMF f.d 00 1001 dfff ffff 1 Z Complement "f" DECT f.d 00 1011 dfff ffff 1 Z Decrement "f" DECT f.d 00 1011 dfff ffff 1 or 2 - Decrement "f" DECT f.d 00 1010 dfff ffff 1 or 2 - Increment "f" DECT f.d 00 1010 dfff ffff 1 or 2 - Increment "f", skip if zero IDRWF f.d 00 1000 dfff ffff 1 or 2 OR W with "f" MOVWF f 00 1000 dfff ffff 1 or 4 Move W to "f" MOVWF f 00 0000 0rr rrr - Move W to "f" MOVWF f 00 100 dfff ffff 1 C Rotate left "f" through carry Subset f.d 00 110 dfff ffff 1 C Non bibles in "f" ELE f.d 00 1100 dfff ffff 1 C	ADDWF	f,d	00 0111 dfff ffff	1	C, DC, Z	Add W and "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CLRF	f	00 0001 1 fff ffff	1	Z	Clear "f"
DECF f.d 00 0011 dfff ffff 1 Z Decrement "f", skip if zero INCF f.d 00 1010 dfff ffff 1 7 Decrement "f", skip if zero INCFSZ f.d 00 0100 dfff ffff 1 7 Increment "f", skip if zero INCFSZ f.d 00 0100 dfff ffff 1 Z OR W with "f" MOVWF f.d 00 1000 0fff ffff 1 - Move W to "f" MOVWF f 00 1000 0fff ffff 1 - Move W to "r" RLF f.d 00 1101 dfff ffff 1 C Rotate left "f" though carry SUBWF f.d 00 1100 dfff ffff 1 C Rotate left "f" though carry SUBWF f.d 00 1100 dfff ffff 1 C Rotate left "f" though carry SUBWF f.d 00 1100 dfff ffff 1 C Rotate left "f" though carry SUBWF f.d 00 1001 dfff ffff 1 C NC particleT SUBWF f.d 00 10010 bbfff 1	CLRW		00 0001 0100 0000	1	Z	Clear W
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MOVFW	f	00 1000 0fff ffff	1	-	Move "f" to W
RLEf,d00 1101 dfff ffff1CRotate left "f" through carryRRFf,d00 0110 dfff ffff1CRotate right "f" through carrySUBWFf,d00 0010 dfff ffff1C, DC, ZSubtract W from "f"SWAPFf,d00 1100 dfff ffff1-Swap nibbles in "f"TESTZf00 1000 1 fff ffff1ZTest if "f" is zeroXORWFf,d00 1010 dfff ffff1ZXOR W with "f"Bit-Oriented File Register InstructionBCEf,b01 000b bbff ffff1-Set "b" bit of "f"BTFSCf,b01 010b bbff ffff1 or 2-Test "b" bit of "f", skip if clearBTFSSf,b01 010b bbff ffff1 or 2-Test "b" bit of "f", skip if setDLWk01 1100 kkkk kkk1C, DC, ZAdd Literal "k" and WADDLWk01 1100 kkkk kkk1C, DC, ZAdd Literal "k" with WCALLk10 kkkk kkkk1ZOR Uiteral "k" with WMOVLWk01 100 kkkk kkkk1ZOR Uiteral "k" with WMOVLWk01 100 kkkk kkkk1ZReturn from subroutineMOVLWk01 100 kkkk kkkk1ZOR Uiteral "k" with WMOVLWk01 100 kkkk kkkk1ZNo operationRET00 0000 0000 01001-No operationRET00 0000 0000 00002-Return from subroutine<	MOVWF	f	00 0000 1 fff ffff	1	-	Move W to "f"
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	MOVWR	r	00 0000 00rr rrrr	1	-	Move W to "r"
SUBWFf,d00 0010 dfff ffff1C, DC, ZSubtract W from "f"SWAPEf,d00 1110 dfff ffff1-Swap nibbles in "f"TESTZf00 1000 1fff ffff1ZTest if "f" is zeroXORWFf,d00 0110 dfff ffff1ZXOR W with "f"Bit-Oriented File Register InstructionBCFf,b01 000b bbff ffff1-Clear "b" bit of "f"BSFf,b01 001b bbff ffff1 or 2-Test "b" bit of "f", skip if clearBTFSCf,b01 010b bbff ffff1 or 2-Test "b" bit of "f", skip if setLiteral and Control InstructionADDLWk01 1100 kkkk kkkk1C, DC, ZAdd Literal "k" and WANDLWk01 1101 kkkk kkkk2-Call subroutine "k"CLRWDT00 0000 0000 01001TO, PDClear Watch Dog TimerGOTOk11 101 kkkk kkkk1ZOR Literal "k" with WMOVLWk01 1001 kkkk kkkk1-No operationRET00 0000 0000 01001-No operationRET00 0000 0000 00002-Return from interruptRET00 0000 0000 0002-Return from interruptRET00 0000 0000 00002-Return from interruptRET00 0000 0000 0002-Return from interruptRET00 0000 0000 0002-Return from interrupt<	RLF	f,d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RRF	f,d	00 1100 dfff ffff	1	С	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SUBWF	f,d	00 0010 dfff ffff	1	C, DC, Z	Subtract W from "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SWAPF	f,d	00 1110 dfff ffff	1		Swap nibbles in "f"
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		f	00 1000 1fff ffff	1	Z	Test if "f" is zero
BCF f,b 01 000b bbff ffff 1 - Clear "b" bit of "f" BSF f,b 01 001b bbff ffff 1 or 2 - Set "b" bit of "f" BTFSC f,b 01 010b bbff ffff 1 or 2 - Test "b" bit of "f", skip if clear BTFSS f,b 01 011b bbff ffff 1 or 2 - Test "b" bit of "f", skip if set ADDLW k 01 1100 kkkk kkkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" with W CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1001 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - No operation RET 00 0000 0000 0000 2 - Return from s	XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
BSF f,b 01 001b bbff ffff 1 - Set "b" bit of "f" BTFSC f,b 01 010b bbff ffff 1 or 2 - Test "b" bit of "f", skip if clear BTFSS f,b 01 011b bbff ffff 1 or 2 - Test "b" bit of "f", skip if set Literal and Control Instruction Literal "k" and W ADDLW k 01 1100 kkkk kkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" and W CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 101 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 2 - Return from subroutine RET1 00 00000 0110 0000<			Bit-Oriente	ed File Re	gister Instruc	tion
BTFSC f,b 01 010b bbff ffff 1 or 2 - Test "b" bit of "f", skip if clear BTFSS f,b 01 011b bbff ffff 1 or 2 - Test "b" bit of "f", skip if set Literal and Control Instruction Literal and Control Instruction ADDLW k 01 1100 kkkk kkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkk 1 Z AND Literal "k" with W CALL k 10 kkkk kkkk 2 - Call subroutine "k" GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z Nove Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from interrupt RETLW	BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BTFSS f,b 01 011b bbff ffff 1 or 2 Test "b" bit of "f", skip if set Literal and Control Instruction ADDLW k 01 1100 kkkk kkkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" with W CALL k 01 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 Z OR Literal "k" to W MOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from interrupt RET 00 0000 0100 0000 2 - Return from interrupt RETI 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation s	BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
Literal and Control Instruction ADDLW k 01 1100 kkkk kkkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" and W CALL k 01 kkkk kkkk 1 Z AND Literal "k" with W CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 2 - Return from subroutine RET 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 -	BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
ADDLW k 01 1100 kkkk kkkk 1 C, DC, Z Add Literal "k" and W ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" with W CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0100 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000	BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
ANDLW k 01 1101 kkkk kkkk 1 Z AND Literal "k" with W CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1001 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1001 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k <td></td> <td></td> <td>Literal a</td> <td>and Cont</td> <td>rol Instruction</td> <td>n</td>			Literal a	and Cont	rol Instruction	n
CALL k 10 kkkk kkkk 2 - Call subroutine "k" CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W	ADDLW	k	01 1100 kkkk kkkk	1	C, DC, Z	Add Literal "k" and W
CLRWDT 00 0000 0000 0100 1 TO, PD Clear Watch Dog Timer GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" with W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W	ANDLW	k	01 1101 kkkk kkkk	1	Z	AND Literal "k" with W
GOTO k 11 1010 kkkk kkkk 2 - Jump to branch "k" IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RET 00 0000 0110 0000 2 - Return from interrupt RETI 00 0000 0110 0000 2 - Return from interrupt SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
IORLW k 01 1010 kkkk kkkk 1 Z OR Literal "k" with W MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RET1 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	CLRWDT		00 0000 0000 0100	1	TO, PD	Clear Watch Dog Timer
MOVLW k 01 1001 kkkk kkkk 1 - Move Literal "k" to W NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	GOTO	k	11 1010 kkkk kkkk	2	-	Jump to branch "k"
NOP 00 0000 0000 0000 1 - No operation RET 00 0000 0100 0000 2 - Return from subroutine RET 00 0000 0110 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
RET 00 0000 0100 0000 2 - Return from subroutine RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
RETI 00 0000 0110 0000 2 - Return from interrupt RETLW k 01 1000 kkkk kkkk 2 - Return with Literal in W SLEEP 00 0000 0000 0011 1 TO, PD Go into Power-down mode, Clock oscillation stops XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	NOP		00 0000 0000 0000	1	-	No operation
RETLWk01 1000 kkkk kkkk2-Return with Literal in WSLEEP00 0000 0000 00111TO, PDGo into Power-down mode, Clock oscillation stopsXORLWk01 1111 kkkk kkkk1ZXOR Literal "k" with WTABRH00 0000 0101 10002-Lookup ROM high data to W	RET		00 0000 0100 0000	2	-	Return from subroutine
RETLWk01 1000 kkkk kkkk2-Return with Literal in WSLEEP00 0000 0000 00111TO, PDGo into Power-down mode, Clock oscillation stopsXORLWk01 1111 kkkk kkkk1ZXOR Literal "k" with WTABRH00 0000 0101 10002-Lookup ROM high data to W	RETI		00 0000 0110 0000	2	-	Return from interrupt
SLEEP00 0000 0000 00111TO, PDGo into Power-down mode, Clock oscillation stopsXORLWk01 1111 kkkk kkkk1ZXOR Literal "k" with WTABRH00 0000 0101 10002-Lookup ROM high data to W		k				*
XORLW k 01 1111 kkkk kkkk 1 Z XOR Literal "k" with W TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W			00 0000 0000 0011	1	TO, PD	
TABRH 00 0000 0101 1000 2 - Lookup ROM high data to W	XORLW	k	01 1111 kkkk kkkk	1	Z	
					-	
2 - 100 KU	TABRL		00 0000 0101 0000	2	-	Lookup ROM low data to W

ADDLW	Add Literal "k" and W	
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description	The contents of the W register placed in the W register.	r are added to the eight-bit literal 'k' and the result
Cycle	1	
Example	ADDLW 0x15	B: W = 0x10 A: W = 0x25
ADDWF	Add W and "f"	
Syntax Operands	ADDWF f [,d] f : 00h ~ 7Fh, d : 0, 1	
Operation	$(\text{destination}) \leftarrow (W) + (f)$	
Status Affected	(destination) \leftarrow (w) + (1) C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description		ister with register 'f'. If 'd' is 0, the result is stored
-		esult is stored back in register 'f'.
Cycle Example	ADDWF FSR, 0	B: W = 0x17, FSR = 0xC2
Example	ADD WF FSK, 0	A: W = 0x17, FSR = 0xC2 A: W = 0xD9, FSR = 0xC2
		$\mathbf{A} \cdot \mathbf{W} = 0\mathbf{X}\mathbf{D}9, 15\mathbf{K} = 0\mathbf{X}\mathbf{C}2$
ANDLW	Logical AND Literal "k	" with W
Syntax	ANDLW_k	
Operands	$k : 00h \sim FFh$	
Operation	$(W) \leftarrow (W) \text{ AND } k$	
Status Affected	Z	
OP-Code	01 1011 kkkk kkkk	
Description		e AND'ed with the eight-bit literal 'k'. The resul
2 •s•npuon	placed in the W register.	
Cycle		
Example	ANDLW 0x5F	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{A}3$
		A: W = 0x03
ANDWF	AND W with "f"	
Syntax	ANDWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) AND (f)	
Status Affected	Z	
OP-Code	00 0101 dfff ffff	
D	AND the W register with re	gister 'f'. If 'd' is 0, the result is stored in the
Description	register. If 'd' is 1 the result is	stored back in register 'f'.
Cycle	1	
Cycle Example		B : W = $0x17$, FSR = $0xC2$ A : W = $0x17$, FSR = $0x02$

BCF	Clear "b" bit of "f"	
Syntax	BCF f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	$(f.b) \leftarrow 0$	
Status Affected	-	
OP-Code	01 000b bbff ffff	
Description	Bit 'b' in register 'f' is cleared.	
Cycle	1	
Example	BCF FLAG_REG, 7	$B : FLAG_REG = 0xC7$
Example	Der TERO_REG, /	$A : FLAG_REG = 0x47$
		$A \cdot I LAO_RLO = 0 A + 7$
BSF	Set "b" bit of "f"	
Syntax	BSF f [,b]	
Operands	$f: 00h \sim 3Fh, b: 0 \sim 7$	
Operation	$(f.b) \leftarrow 1$	
Status Affected	-	
OP-Code	01 001b bbff ffff	
Description	Bit 'b' in register 'f' is set.	
Cycle	1	
Example	BSF FLAG_REG, 7	$B: FLAG_REG = 0x0A$
		$A : FLAG_REG = 0x8A$
BTFSC	Test "b" bit of "f", skip	if clear(0)
Syntax	BTFSC f [,b]	
Operands	f : 00h ~ 3Fh, b : 0 ~ 7	
Operation	Skip next instruction if $(f.b) = 0$	0
Status Affected	-	
OP-Code	01 010b bbff ffff	
Description		the next instruction is executed. If bit 'b' in regis
Description		ion is discarded, and a NOP is executed instead
	making this a 2nd cycle instruct	
Cuala		
Cycle	1 or 2	
Example	LABEL1 BTFSC FLAG, 1	B: PC = LABEL1
	TRUE GOTO SUB1	A : if $FLAG.1 = 0$, PC = $FALSE$
	FALSE	if $FLAG.1 = 1$, $PC = TRUE$
BTFSS	Test ''b'' bit of ''f'', skip	if set(1)
Syntax	BTFSS f [,b]	
Operands	$f: 00h \sim 3Fh, b: 0 \sim 7$	
Operation	Skip next instruction if $(f.b) =$	1
Status Affected	Skip liezt liisu ucuoli li $(1.0) =$	1
	-	
OP-Code	01 011b bbff ffff	
Description	6	the next instruction is executed. If bit 'b' in regis
		ion is discarded, and a NOP is executed instead
	making this a 2nd cycle instruc	tion.
Cycle	1 or 2	
Cycle Example	1 or 2 LABEL1 BTFSS FLAG, 1	B : PC = LABEL1
	LABEL1 BTFSS FLAG, 1	
		B : PC = LABEL1 A : if FLAG.1 = 0, PC = TRUE if FLAG.1 = 1, PC = FALSE

CALL	Call subroutine "k"	
Syntax	CALL k	
Operands	$k: 000h \sim FFFh$	11.0.1
Operation Status Affected	Operation: TOS \leftarrow (PC) + 1, PC	$.11 \sim 0 \leftarrow K$
OP-Code	- 10 kkkk kkkk kkkk	
Description		dress (PC+1) is pushed onto the stack. The 12-bit
Description	immediate address is loaded	into PC bits <11:0>. CALL is a two-cycle
Cruele	instruction. 2	
Cycle Example	LABEL1 CALL SUB1	B : PC = LABEL1
Example	EADELI CALL SUDI	A : PC = SUB1, TOS = LABEL1 + 1
CLRF	Clear ''f''	
Syntax	CLRF f	
Operands	f : 00h ~ 7Fh	
Operation	(f) \leftarrow 00h, Z \leftarrow 1	
Status Affected	Z	
OP-Code	00 0001 1fff ffff	
Description	The contents of register 'f' are cle	eared and the Z bit is set.
Cycle	1 CLDE ELAC DEC	$\mathbf{P} \cdot \mathbf{E} \mathbf{I} \mathbf{A} \mathbf{C} \mathbf{P} \mathbf{E} \mathbf{C} = 0 \mathbf{v} 5 \mathbf{A}$
Example	CLRF FLAG_REG	$B: FLAG_REG = 0x5A$ $A: FLAG_REG = 0x00, Z = 1$
		$\mathbf{A}:\mathbf{T}\mathbf{E}\mathbf{A}\mathbf{S}_{\mathbf{A}}\mathbf{E}\mathbf{S}=0,00,\mathbf{E}=1$
CLRW	Clear W	
Syntax	CLRW	/
Operands	-	
Operation	$(W) \leftarrow 00h, Z \leftarrow 1$	
Status Affected	Z	
OP-Code	00 0001 0100 0000	
Description Cycle	W register is cleared and Z bit is 1	set.
Example	CLRW	B: W = 0x5A
Елатріс	CLKW	A: W = 0x00, Z = 1
CLRWDT	Clear Watchdog Timer	
Syntax	CLRWDT	
Operands	-	
Operation	WDT/WKT Timer $\leftarrow 00h$	
Status Affected	TO, PD	
OP-Code	00 0000 0000 0100	
Description	CLRWDT instruction clears the	watchdog/wakeup Timer
Cycle	1 CLRWDT	B : WDT counter = ?
Example		A : WDT counter = $?$

COME		
COMF	Complement "f"	
Syntax	COMF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (\overline{f})	
Status Affected	Z	
OP-Code	00 1001 dfff ffff	
Description		omplemented. If 'd' is 0, the result is stored in W.
	If 'd' is 1, the result is stored bac	k in register 'f'.
Cycle	1	
Example	COMF REG1, 0	B: REG1 = 0x13
		A: REG1 = 0x13, W = 0xEC
DECE		
DECF	Decrement "f"	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	result is stored back in register 1	the result is stored in the W register. If 'd' is 1, the
Cycle	1	
Example	DECF CNT, 1	B: CNT = 0x01, Z = 0
1		A : $CNT = 0x00, Z = 1$
DECESZ	Degram and UfU Shin if 0	
DECFSZ	Decrement "f", Skip if 0	
Syntax	DECFSZ f [,d]	
Operands	$f: 00h \sim 7Fh, d: 0, 1$	instantion if month is 0
Operation Status Affected	(destination) \leftarrow (f) - 1, skip next	instruction if result is 0
OP-Code	- 00 1011 dfff ffff	
Description		ecremented. If 'd' is 0, the result is placed in the W
Description		laced back in register 'f'. If the result is 1, the next
		sult is 0, then a NOP is executed instead, making
	it a 2 cycle instruction.	suit is 0, then a 1001 is executed instead, making
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1	B : PC = LABEL1
Linumpie	GOTO LOOP	A:CNT = CNT - 1
	CONTINUE	if $CNT = 0$, $PC = CONTINUE$
	contintel	if $CNT \neq 0$, $PC = LABEL1 + 1$
GOTO	Unconditional Branch	
	- noonanonai branch	
	GOTO k	
Syntax	GOTO k k · 000h ~ FFFh	
Syntax Operands	k : 000h ~ FFFh	
Syntax Operands Operation		
Syntax Operands Operation Status Affected	k : 000h ~ FFFh PC.11~0 ← k -	
Syntax Operands Operation Status Affected OP-Code	k : 000h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk	ch. The 12-bit immediate value is loaded into PC
Syntax Operands Operation Status Affected	k : 000h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk	ch. The 12-bit immediate value is loaded into PC le instruction.
Syntax Operands Operation Status Affected OP-Code	k : 000h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional bran	

INCF	Increment "f"
Syntax	INCF f [,d]
Operands	f : 00h ~ 7Fh
Operation	$(destination) \leftarrow (f) + 1$
Status Affected	Z
OP-Code	00 1010 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	INCF CNT, 1 $B: CNT = 0xFF, Z = 0$
-	A : $CNT = 0x00, Z = 1$
INCFSZ	Increment "f", Skip if 0
Syntax	INCFSZ f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	$(destination) \leftarrow (f) + 1$, skip next instruction if result is 0
Status Affected	-
OP-Code	00 1111 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next
	instruction is executed. If the result is 0, a NOP is executed instead, making it a 2
	cycle instruction.
Cycle	1 or 2
Example	LABEL1 INCFSZ CNT, 1 $B : PC = LABEL1$
	GOTO LOOP $A: CNT = CNT + 1$
	CONTINUE
	if $CNT \neq 0$, $PC = LABEL1 + 1$
IORLW	Inclusive OR Literal with W

IORLW	Inclusive OR Literal with	h W
Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Ζ	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the W register a	are OR'ed with the eight-bit literal 'k'. The result is
	placed in the W register.	
Cycle	1	
Example	IORLW 0x35	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}9\mathbf{A}$
		A: W = 0xBF, Z = 0

IORWF	Inclusive OR W with	"f"
Syntax	IORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) OR k	
Status Affected	Z	
OP-Code	00 0100 dfff ffff	
Description		r with register 'f'. If 'd' is 0, the result is placed in the
	W register. If 'd' is 1, the res	ult is placed back in register 'f'.
Cycle	1	
Example	IORWF RESULT, 0	B : RESULT = 0x13, W = 0x91
		A : RESULT = $0x13$, W = $0x93$, Z = 0

MOVFW	Move "f" to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register 'f' a	re moved to W register.
Cycle	1	
Example	MOVFW FSR	B : FSR = 0xC2, W = ?
		A: FSR = 0xC2, W = 0xC2
MOVLW	Move Literal to W	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	-	aded into W register. The don't cares will assemble as
	0's.	
Cycle	1	
Example	MOVLW 0x5A	$\mathbf{B}:\mathbf{W}=?$
		$\mathbf{A}: \mathbf{W} = 0\mathbf{x}5\mathbf{A}$
MOVWF	Move W to "f"	
Syntax	MOVWF f	
Syntax Operands	MOVWF f f: 00h ~ 7Fh	
Syntax Operands Operation	MOVWF f	
Syntax Operands Operation Status Affected	$\begin{array}{c} \text{MOVWF f} \\ \text{f}: 00\text{h} \sim 7\text{Fh} \\ (\text{f}) \leftarrow (\text{W}) \end{array}$	
Syntax Operands Operation Status Affected OP-Code	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff	to register 'F'
Syntax Operands Operation Status Affected OP-Code Description	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register	to register 'f'.
Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1	-
Syntax Operands Operation Status Affected OP-Code Description	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1	-
Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	MOVWF f f: $00h \sim 7Fh$ (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh	$\mathbf{B} : \mathbf{REG1} = 0\mathbf{x}\mathbf{FF}, \mathbf{W} = 0\mathbf{x}\mathbf{4F}$
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation Status Affected OP-Code	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh (r) \leftarrow (W)	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation Status Affected	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh (r) \leftarrow (W) - 00 0000 00rr rrrr	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation Status Affected OP-Code Description	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh (r) \leftarrow (W) - 00 0000 00rr rrrr Move data from W register	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh (r) \leftarrow (W) - 00 0000 00rr rrrr Move data from W register 1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F
Syntax Operands Operation Status Affected OP-Code Description Cycle Example MOVWR Syntax Operands Operation Status Affected OP-Code Description Cycle	MOVWF f f: 00h ~ 7Fh (f) \leftarrow (W) - 00 0000 1fff ffff Move data from W register 1 MOVWF REG1 MOVWF REG1 MOVWR r r: 00h ~ 3Fh (r) \leftarrow (W) - 00 0000 00rr rrrr Move data from W register 1	B : REG1 = 0xFF, W = 0x4F A : REG1 = 0x4F, W = 0x4F to register 'r'. B : REG1 = 0xFF, W = 0x4F

NOP	No Operation
	NOP
Syntax Operands	NOP
Operation	- No Operation
Status Affected	
OP-Code	00 0000 0000 0000
Description	No Operation
Cycle	
Example	NOP -
DDD	
RET	Return from Subroutine
Syntax	RET
Operands	
Operation	$PC \leftarrow TOS$
Status Affected	
OP-Code	00 0000 0100 0000
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Cycle	2
Example	RET $A : PC = TOS$
RETI	Return from Interrupt
Syntax	RETI
Operands	_
Operation	$PC \leftarrow TOS, GIE \leftarrow 1$
Status Affected	
OP-Code	00 0000 0110 0000
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.
Cycle	2
Example	RETI $A : PC = TOS, GIE = 1$
RETLW	Return with Literal in W
	RETLW k
Syntax Operands	k: 00h ~ FFh
Operation	$PC \leftarrow TOS, (W) \leftarrow k$
Status Affected	$1 \subset -105, (W) \leftarrow K$
OP-Code	- 01 1000 kkkk kkkk
	The W register is loaded with the eight-bit literal 'k'. The program counter is
Description	loaded from the top of the stack (the return address). This is a two-cycle
	instruction.
Cycle	2
Example	CALL TABLE $B: W = 0x07$
ылатри	$\begin{array}{ccc} \text{CALL TABLE} & \text{B} : W = 0007 \\ \text{:} & \text{A} : W = \text{value of } k8 \end{array}$
	TABLE ADDWF PCL, 1
	RETLW k1
	RETLW k2
	RETLW kn

RLF	Rotate Left "f" through Carry
Syntax	RLF f [,d]
Operands	$f: 00h \sim 7Fh, d: 0, 1$
Operation	C Register f
Status Affected	C
OP-Code	00 1101 dfff ffff
Description	The contents of register 'f' are rotated one bit to the left through the Carry Flag. 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back register 'f'.
Cycle	1
Example	RLF REG1, 0 B : REG1 = 1110 0110, C = 0
·· I ·	A : REG1 = 1110 0110
	$W = 1100 \ 1100, C = 1$
RRF	Rotate Right "f" through Carry
Syntax	RRF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	C Register f
Status Affected	C
OP-Code	00 1100 dfff ffff
Description	The contents of register 'f' are rotated one bit to the right through the Carry Fla If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back
C 1	in register 'f'.
Cycle	$\frac{1}{10000000000000000000000000000000000$
Example	RRF REG1, 0 B : REG1 = 1110 0110, C = 0 A : REG1 = 1110 0110
	w = 01110011, C = 0
SLEEP	Go into Power-down mode, Clock oscillation stops
Syntax	SLEEP
Operands	
Operation	-
Status Affected	TO, PD
OP-Code	00 0000 0000 0011
Description	Go into Power-down mode with the oscillator stops.
Cycle	1
Example	SLEEP -

SUBWF	Subtract W from "f"	
Syntax	SUBWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description	· ·	hethod) W register from register 'f'. If 'd' is 0, the result f 'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	SUBWF REG1, 1	B : REG1 = 0x03, W = 0x02, C = ?, Z = ? A : REG1 = 0x01, W = 0x02, C = 1, Z = 0
	SUBWF REG1, 1	B : REG1 = 0x02, W = 0x02, C = ?, Z = ? A : REG1 = 0x00, W = 0x02, C = 1, Z = 1
	SUBWF REG1, 1	B : REG1 = $0x01$, W = $0x02$, C = ?, Z = ? A : REG1 = $0xFF$, W = $0x02$, C = 0 , Z = 0

SWAPF	Swap Nibbles in ''f''
Syntax	SWAPF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	$(destination, 7\sim 4) \leftarrow (f.3\sim 0), (destination. 3\sim 0) \leftarrow (f.7\sim 4)$
Status Affected	- · · · · · · · · · · · · · · · · · · ·
OP-Code	00 1110 dfff ffff
Description	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.
Cycle	î î
Example	SWAPF REG, 0 $B : REG1 = 0xA5$
-	A : REG1 = 0xA5, W = 0x5A

TESTZ	Test if "f" is zero	
Syntax	TESTZ f	
Operands	f : 00h ~ 7Fh	
Operation	Set Z flag if (f) is 0	
Status Affected	Z	
OP-Code	00 1000 1fff ffff	
Description	If the content of register	'f' is 0, Zero flag is set to 1.
Cycle	1	
Example	TESTZ REG1	B : REG1 = 0, Z = ?
		A : REG1 = 0, Z = 1

XORLW	Exclusive OR Liter	al with W
Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) \text{ XOR } k$	
Status Affected	Z	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W re	gister are XOR'ed with the eight-bit literal 'k'. The result
	is placed in the W registe	er.
Cycle	1	
Example	XORLW 0xAF	$\mathbf{B}: \mathbf{W} = 0\mathbf{x}\mathbf{B}5$
		A: W = 0x1A

XORWF	Exclusive OR W with	h ''f''
Syntax	XORWF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (W) XOR	(f)
Status Affected	Z	
OP-Code	00 0110 dfff ffff	
Description	Exclusive OR the contents	of the W register with register 'f'. If 'd' is 0, the result is
-	stored in the W register. If	'd' is 1, the result is stored back in register 'f'.
Cycle	1	
Example	XORWF REG, 1	B : REG = 0xAF, W = 0xB5
-		A: REG = 0x1A, W = 0xB5

TABRL	Return DPTR low byte to	W
Syntax	TABRL	
Operands	-	
Operation	(W) ← ROM[DPTR] low byte co After TABRL is executed, DPTR	intent, Where DPTR={DPH[max:8],DPL[7:0]} \leftarrow DPTR+1 automatically
Status Affected	-	
OP-Code	00 0000 0101 0000	
Description	The W register is loaded with low	byte of ROM[DPTR] . This is a two-cycle
	instruction.	
Cycle	2	
Example	:	
	:	
	MOVLW (TAB1&0xFF)	
	MOVWF DPL	; Where DPL is F-plane register
	MOVLW (TAB1>>8)&0xFF	
	MOVWF DPH	; Where DPH is F-plane register
		; DPTR=0234H
	TABRH	; W=0x37
	TABRL	; W=0x89, DPTR=0235H
	TABRH	; W=0x22
	TABRL	; W=0x77, DPTR=0236H
	ORG 0234H	ROM data 14 bits
	TAB1:	, KOM data 14 bits
	.DT 0x3789, 0x2277	

TABRH	Return DPTR high byte to W
Syntax	TABRH
Operands	-
Operation	(W) \leftarrow ROM[DPTR] high byte content, Where DPTR={DPH[max:8],DPL[7:0]}
Status Affected	-
OP-Code	00 0000 0101 1000
Description	The W register is loaded with high byte of ROM[DPTR]. This is a two-cycle
	instruction.
Cycle	2
-)	_

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings $(T_A=25^{\circ}C)$

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 to V_{SS} +6.5	
Input voltage	V_{SS} -0.3 to V_{DD} +0.3	V
Output voltage	V_{SS} -0.3 to V_{DD} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum operating voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	-65 to +150	-0

Parameter	Symbol	(Conditions	Min	Тур	Max	Unit	
		FAST mode	e, 25°C, Fsys=16 MHz	3.0	_	5.5		
Operating Voltage	V	FAST mode, 25°C, Fsys=8 MHz		2.3	_	5.5	v	
	V_{DD}	FAST mode, 25°C, Fsys=4 MHz		1.9	_	5.5		
		SLOW 1	mode, 25°C, SIRC	1.5	-	5.5		
		All Inputs,	V _{DD} =5V	$0.6V_{\text{DD}}$	-	-	V	
Input High	V_{IH}	except PA7	V _{DD} =3V	$0.6V_{\text{DD}}$	—	_	V	
Voltage	▼ IH	PA7	V _{DD} =5V	$0.7 V_{\text{DD}}$	_	-	V	
		14/	V _{DD} =3V	$0.7V_{DD}$	-		V	
Input Low Voltage	V_{IL}	All Inputs	V _{DD} =5V	-	-	$0.2 V_{\text{DD}}$	V	
Input Low Voltage	V IL	An inputs	V _{DD} =3V	_	-	$0.2V_{\text{DD}}$	V	
I/O Port Source	I _{OH}	All Outputs	$V_{DD}=5V, V_{OH}=0.9V_{DD}$	4	8	-	mA	
Current	TOH	7 m Outputs	$V_{DD}=3V, V_{OH}=0.9V_{DD}$	2	4	_	1112 ¥	
I/O Port Sink	I _{OL}	All Outputs	$V_{DD}=5V, V_{OL}=0.1V_{DD}$	10	20	_	mA	
Current	IOL	An Outputs	$V_{DD}=3V, V_{OL}=0.1V_{DD}$	5	10	_	IIIA	
Input Leakage Current (pin high)	I _{ILH}	All Inputs	V _{IN} =V _{DD}	-	_	1	μA	
Input Leakage Current (pin low)	I _{ILL}	All Inputs	V _{IN} =0V	_	_	-1	μπ	
	IVR enable WDT enable SLOW mode LVR enable STOP mode LVR enable	FAST mode, LVR enable, WDT enable	V _{DD} =5V, FIRC=8 MHz	-	2.8	-	mA	
			V _{DD} =3V, FIRC=8 MHz	-	1.3	-		
		SLOW mode,	V _{DD} =5 V, SIRC	-	139	-	μΑ	
Supply Current		LVR enable	V _{DD} =3 V, SIRC	-	44	-		
~~FF-)		STOP mode,	V _{DD} =5V	_	1.0	-		
		LVR enable	V _{DD} =3V	-	0.4	—		
				STOP mode,	V _{DD} =5V	-	_	0.1
		LVR disable	V _{DD} =3V	-	_	0.1		
System Clock	Fsys	$V_{DD} > LVR_{th}$	V _{DD} =3.0V	-	_	12	MHz	
Frequency	1 3 y 3	DD > L V Rth	V _{DD} =2.2V	-	_	8	WILL	
LVR Reference	V _{LVR}		T _A =25°C	_	2.1	-	V	
Voltage	• LVR	1 _A =25°C		-	3.0	-	V	
LVR Hysteresis Voltage	V _{HYST}	T _A =25°C		_	±0.1	_	V	
Low Voltage Detection time	t _{LVR}		T _A =25°C	100	_	_	μs	
		V _{IN} =0 V Port	V _{DD} =5V	_	62			
Pull-Up Resistor	R_{P}	A, B, D	V _{DD} =3V		113	_	ĸo	
	тр	V _{IN} =0 V PA7	V _{DD} =5V	_	53		ΚΩ	
		VIN-UVIA/	V _{DD} =3V	_	109			

2. DC Characteristics ($T_A=25$ °C, $V_{DD}=1.1V$ to 5.5V)

3. Clock Timing $(T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
Internal RC Frequency	25°C, V _{DD} =3 ~ 5.5V	7.75	8	8.25	
	25°C, V _{DD} =2.6 ~ 3V	7.6	8	8.4	MHz
	-40° C ~ 85°C, V _{DD} =2.6 ~ 5.5V	7.5	8	8.5	

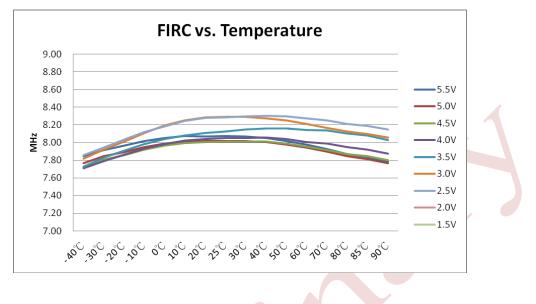
4. Reset Timing Characteristics ($T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD}=3V$ to 5V)

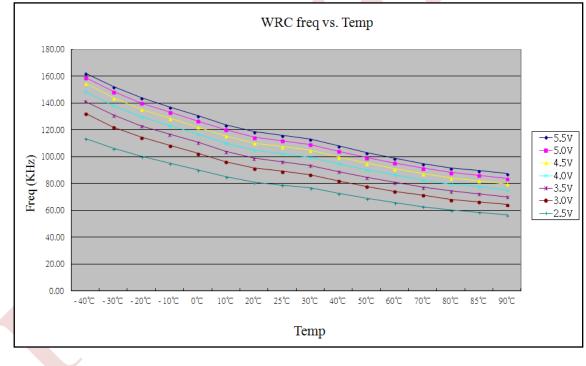
Parameter	Conditions	Min	Тур	Max	Unit	
RESET Input Low width	Input V_{DD} =5 V ±10 %	3		_	μs	
WDT wakeup time	V _{DD} =5V, WDTPSC=00	-	19	-	ma	
	V _{DD} =3V, WDTPSC=00		24	-	ms	
CPU start up time	V _{DD} =5V	-	19	-	ma	
	V _{DD} =3V	-	24	_	ms	

5. OPA Electrical Characteristics (VDD=5V TA = 25° C)

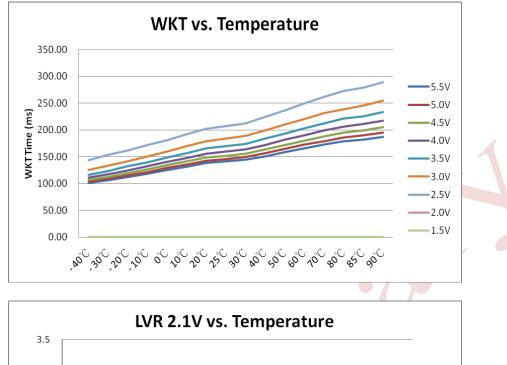
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
VOS1	Input Offset Voltage(Without calibration)				±10	mv
VOS2	Input Offset Voltage(By calibration)				±2	mv
AVOL	Large Signal Voltage Gain		60	80		dB
GBW	Gain Band Width Product	RL=1MΩ CL=100pF	0.6	2.2		MHz
CMRR	Common Mode Rejection Ratio		60	80		dB
PSRR	Power Supply Rejection Ratio		60	80		dB
SR	Slew Rate at Unity Gain	No load	0.6	1.8		V/µs

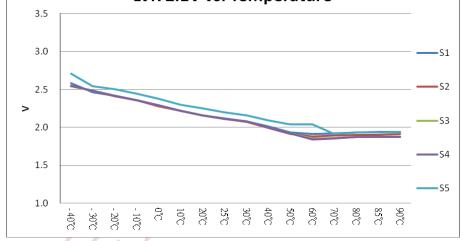
~ ~

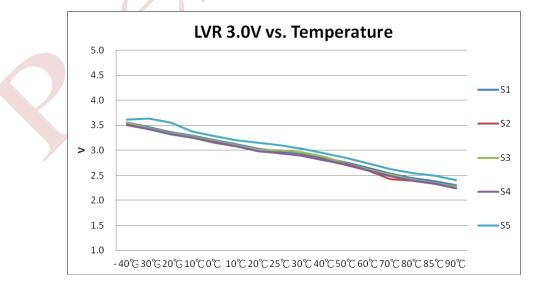



Symbol	Parameter	VDD	Condition	Min.	Typ.	Max.	Unit
	Operation Voltage	-	-	3	-	5.5	V
	Reference Voltage for Comparator	5V	-40~85 °C (±5%)	Тур. -5%	0.775* VDD	Typ. +5%	V
	Analog		By calibration	-2	-	+2	mV
Vos	Comparator Input Offset Voltage	5V	Without calibration SVOSn[4:0]=10000	-15mV	-	+15mV	mV
Vcm	Analog Comparator Common Mode Voltage Range	-	-	0		VDD -1	v
tpd	Analog Comparator Response Time	-	Analog Comparator Hysteresis Disable and With 10mV overdrive			2	uS
Vhys	Analog Comparator Hysteresis Width	5V	Analog Comparator Hysteresis Enable	20	40	60	mV
	Power Consumption	5V	One Comparator		160		uA

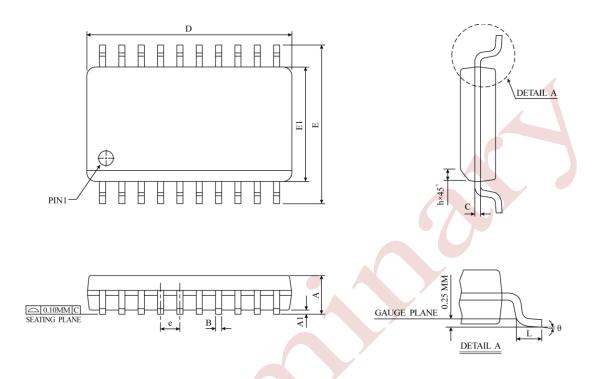
6. **COMPARATOR Electrical characteristics** (VDD=5V TA=25°C)




7. Characteristic Graphs

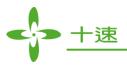


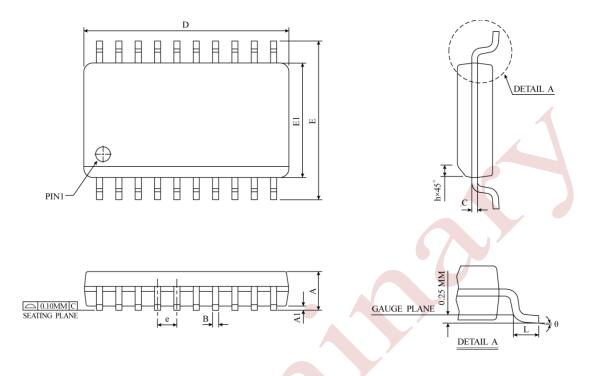
PACKAGING INFORMATION


The ordering information:

Ordering number	Package
TM57PT46-OTP	Wafer / Dice blank chip
TM57PT46-COD	Wafer / Dice with code
TM57PT46-OTP-20	SOP 18-pin (300mil)
TM57PT46-OTP-21	SOP 20-pin (300mil)
TM57PT46-OTP-05	DIP 20-pin (300mil)
TM57PT46-OTP-22	SOP 24-pin (300mil)
TM57PA46-OTP	Wafer/Dice blank chip
TM57PA46-COD	Wafer/Dice with code
TM57PA46-OTP-20	SOP 18-pin (300mil)
TM57PA46-OTP-21	SOP 20-pin (300mil)
TM57PA46-OTP-05	DIP 20-pin (300mil)
TM57PA46-OTP-22	SOP 24-pin (300mil)

Package Information

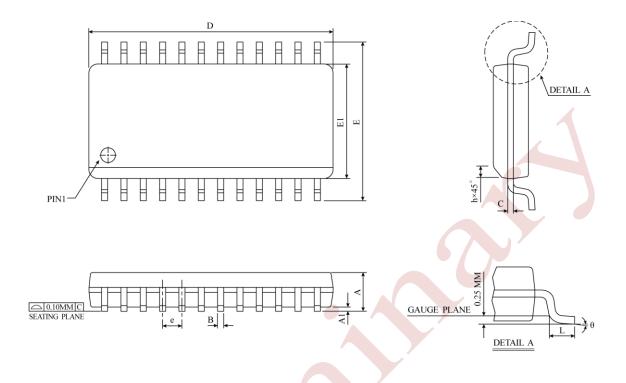

• SOP-18 (300mil) Package Dimension


SYMDOL	DI	MENSION IN M	1M	DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	12.60	12.80	13.00	0.4961	0.5040	0.5118
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
е	1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC			MS-01	3 (AC)		

 $\underline{\mathbb{A}}$ * Notes : dimension ``d'' does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall

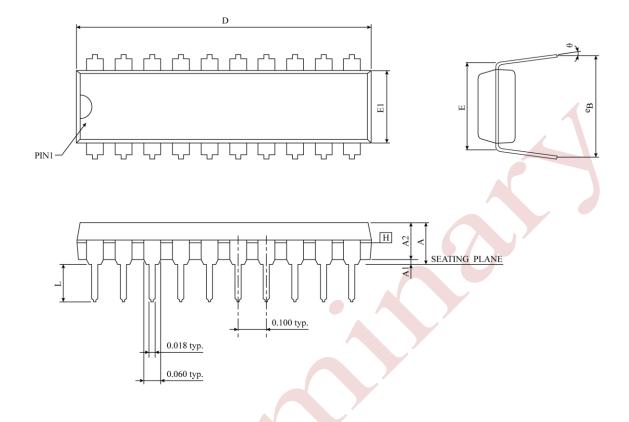
NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

• SOP-20 (300mil) Package Dimension


SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
е		1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-013 (AC)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

• SOP-24 (300mil) Package Dimension


SYMBOL	DI	MENSION IN M	ſM	DIMENSION IN INCH			
STWBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	15.20	15.40	15.60	0.5985	0.6063	0.6141	
E	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
е	e 1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	JEDEC MS-01						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

• DIP-20 (300 mil) Package Dimension

SVMDOL	DI	MENSION IN N	IM	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	-	-	4.445	-	-	0.175	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	25.705	26.061	26.416	1.012	1.026	1.040	
Е	7.620	7.747	7.874	0.300	0.305	0.310	
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	3.048	3.302	3.556	0.120	0.130	0.140	
eB	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC		-	MS-00	1 (AD)			

NOTES :

1. "D", "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.