

TM52FE8273/76 TM52FE8274/78 DATA SHEET Rev 0.96

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
V0.90	Mar, 2020	New Release.
V0.91	Apr, 2020	 Add ADC electrical characteristics description. Modify Timer3 description. Some error correction.
V0.92	Jul, 2020	 Add SOP16 package type. Remove the suffix T for package type. Some error correction.
V0.93	Jul, 2020	1. Modify QFN28 \ QFN20 package type.
V0.94	Nov, 2020	 Modify operating voltage @F_{SYSCLK}=7.3728 MHz. Modify the minimum of I/O port sink current. Some error correction.
V0.95	Dec, 2020	 Modify absolute maximum ratings Some error correction
V0.96	Jul, 2021	 Modify description about the chapter of LCD and LED Added description of ADC capacitor Some error correction

CONTENTS

AM	END	MENT HISTORY	2
TM	52 F82	32xx FAMILY	5
GEN	NERA	AL DESCRIPTION	6
BLC	OCK I	DIAGRAM	6
FEA	TUR	RES	7
PIN	ASSI	IGNMENT	11
PIN	DES	SCRIPTION	21
		/MERY	
		IONAL DESCRIPTION	
		U Core	
1.	1.1		
	1.2		
	1.3	-	
	1.4		
	1.5	Program Status Word (PSW)	25
2.	Mer	emory	26
	2.1	Program Memory	26
	2.2	EEPROM Memory	30
	2.3	Data Memory	32
3.	LVI	'R setting	34
4.	Res	set	35
	4.1	Power on Reset	35
	4.2	External Pin Reset	35
	4.3	Software Command Reset	35
	4.4	Watchdog Timer Reset	35
	4.5	Low Voltage Reset	35
5.	Clo	ock Circuitry & Operation Mode	37
	5.1	System Clock	37
	5.2	Operation Modes	39
6.	Inte	errupt & Wake-up	41
	6.1	Interrupt Enable and Priority Control	41
	6.2	Pin Interrupt	44
	6.3	Idle mode Wake up and Interrupt	45
	6.4	Stop mode Wake up and Interrupt	45

7. I/O Ports	7
7.1 Port1 & P2.1~P2.0 & Port 3	7
7.2 Port0	5
8. Timers	8
8.1 Timer0 / Timer1	8
8.2 Timer2	1
8.3 Timer3	
8.4 TOO and T2O Output Control	
9. UARTs	4
10. PWMs	6
11. ADC	0
11.1 ADC Channels7	1
11.2 ADC Conversion Time7	1
12. Touch Key (FE8276/78 only)7	4
13. S/W Controller LCD Driver7	8
14. LED Controller/Driver	1
15. Serial Peripheral Interface (SPI)	5
16. Cyclic Redundancy Check (CRC)9	0
17. In Circuit Emulation (ICE) Mode9	1
SFR & CFGW MAP9	3
SFR & CFGW DESCRIPTION9	5
INSTRUCTION SET	6
ELECTRICAL CHARACTERISTICS	9
1. Absolute Maximum Ratings10	9
2. DC Characteristics	0
3. Clock Timing11	1
4. Reset Timing Characteristics	1
5. ADC Electrical Characteristics	
6. Characteristic Graphs11	2
Package and Dice Information11	5

TM52 F82xx FAMILY

Common Feature

CPU	MTP/Flash Program memory	RAM bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LVD	LVR
Fast 8051 (2T)	4K~32K with IAP, ISP, ICP	256 ~ 1024	SXT SRC FXT FRC	Fast Slow Idle Stop Halt*	8051 St	andard	15-bit	2.7V*	2.3V ~ 4.1V

Note: IAP, ISP only for Flash type program memory

Note: TM52FE8273/76/74/78 without LVD function

Note: Only TM52FE8273/76/74/78 support Halt mode.

Family Members Features

P/N	Program Memory	Data Memory	RAM Bytes	IO Pin	PWM	SAR ADC	Touch Key	LCD	LED	SPI	Others
TM52-M8254	MTP		512	18	(8+2)-bit	12-bit	_	4com			
TM52-M8258	4K Bytes	_	312	18	x2	12-ch	15-ch	400111	_	_	_
TM52-M8264	MTP		512	18	(8+2)-bit	12-bit	-	4com			
TM52-M8268	8K Bytes		312	10	x2	12-ch	15-ch	400111			—
TM52-F8274	Flash	EEPROM	1024	26	(8+2)-bit	12-bit		8com	4Cx6S	Yes	UART2
TM52-F8278	8K Bytes	128 Bytes	1024	20	x3	14-ch	16-ch	800111	40,005	165	UAR12
TM52-F8273	Flash	EEPROM	1024	26	(8+2)-bit	12-bit	_	8com	4Cx6S	Yes	UART2
TM52-F8276	16K Bytes	128 Bytes	1024	20	x3	14-ch	16-ch	800111	40,700	105	UAR12
TM52-FE8274	Flash	EEPROM	1024	26	(8+2)-bit	12-bit	_	26com	4Cx6S	Yes	UART2
TM52-FE8278	8K Bytes	128 Bytes	1024	20	x3	14-ch	15-ch	200011	40,705	105	UAR12
TM52-FE8273	Flash	EEPROM	1024	26	(8+2)-bit	12-bit	_	26com	4Cx6S	Yes	UART2
TM52-FE8276	16K Bytes	128 Bytes	1024	20	x3	14-ch	15-ch	200011	40.305	168	UAR12

	Operation		Ope	eration Cur	rent		Ma	x. Systen	n Clock	(Hz)
P/N	Voltage	Fast FRC	Slow SRC	Idle SRC	Stop	Halt	SXT	SRC	FXT	FRC
TM52-M8254	2.3~5.5V	4.0mA	1.3mA	18µA	0.1		32K	68K	8M	12.28M/2
TM52-M8258	2.5~3.3 V	4.0111A	1.3IIIA	ΙομΑ	0.1µA	-	32 K	JON	0111	12.2011/2
TM52-M8264	2.3~5.5V	4.0mA	1.3mA	18µA	0.1		32K	68K	8M	12.28M/2
TM52-M8268	2.5~5.5 V	4.0111A	1.3IIIA	ΙομΑ	0.1µA	-	32 K	JON	0111	12.2011/2
TM52-F8274	2.3~5.5V	5.3mA	1.3mA	20µA	0.1		32K	68K	12M	12.902M
TM52-F8278	2.5~5.5 V	J.JIIA	1.3IIIA	20μΑ	0.1µA	-	32 K	JON	1 2111	12.90211
TM52-F8273	2.3~5.5V	5.3mA	1.3mA	20µA	0.1		32K	68K	12M	12.902M
TM52-F8276	2.5~5.5 V	J.JIIA	1.3IIIA	20μΑ	0.1µA	-	32 K	JON	1 2111	12.90211
TM52-FE8274	2.3~5.5V	5.9mA	1.8mA	20 4	0.1	5 ۸	32K	68K	16M	14.746M
TM52-FE8278	2.3~3.3 ₹	5.9IIIA	1.0IIIA	20μΑ	0.1µA	5μΑ	32 K	00K	10101	14.740101
TM52-FE8273	2.3~5.5V	5.9mA	1.8mA	20 4	0.1	5 ۸	32K	68K	16M	14.746M
TM52-FE8276	2.3~3.3 V	5.9IIIA	1.0IIIA	20μΑ	0.1µA	5μΑ	32 K	00K	10101	14.740101

GENERAL DESCRIPTION

TM52 series FE8273/76/74/78 are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the TM52 executes instructions six times faster than the standard 8051 architecture.

The **TM52-FE8273/76/74/78** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 8K/16K Bytes Flash program memory, 128 Bytes EEPROM data memory, 1024 Bytes SRAM, Low Voltage Reset (LVR), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD/LED driver, 3 set (8+2)-bit PWMs, 14 channels 12-bit A/D Convertor, 15 channels Touch Key (FE8276/78 only) and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

Note: 8K Bytes Flash program memory (TM52FE8274/78) 16K Bytes Flash program memory (TM52FE8273/76)

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 8K Bytes (TM52FE8274/78)
- 16K Bytes (TM52FE8273/76)
- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability
- 10K erase times at least
- 10 years data retention at least

3. 128 Bytes EEPROM Memory

- 50K erase times at least
- 10 years data retention at least

4. Total 1024 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 768 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

5. Four System Clock type selections

- Fast clock from 1~16MHz Crystal (FXT)
- Fast clock from Internal RC (FRC, 14.7456 MHz)
- Slow clock from 32768Hz Crystal (SXT)
- Slow clock from Internal RC (SRC, 68 KHz)
- System Clock can be divided by 1/2/4/16 option

6. 8051 Standard Timer – Timer0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1
- 16-bit Timer2, also supports T2O clock output for Buzzer application

7. 15-bit Timer3

- Clock source is Slow clock
- Interrupt period can be clock divided by 32768/16384/8192/4096/2048/1024/512/256 option
- 8. UARTs
 - UART1, 8051 standard UART, One Wire UART option can be used for ISP or other application
 - UART2, the second UART, supports only mode1 and mode3

9. Three independent ''8+2'' bits PWMs with prescaler/ period-adjustment

10. SPI Interface

- Master or Slave mode selectable
- Programmable transmit bit rate
- Serial clock phase and polarity options
- MSB-first or LSB-first selectable

11. 15-Channel Touch Key (FE8276/78 only)

- Internal reference key
- Touch Key clock Auto-change

12. 12-bit ADC with 14 channels External Pin Input and 2 channels Internal Reference Voltage

- Internal Reference Voltage (VBG): 1.22V±1%@V_{cc}=5V~3V, 25°C
- Internal Reference Voltage: Vcc/4
- ADC reference voltage = 2.5V / 3.0V / 4.0V / VCC

13. LCD Driver

- Software controlled COM00~07, COM10~17, COM20~21, COM30~37 (Max. 26 pins)
- 1/2 LCD Bias

14. LED Controller/Driver

- New Matrix mode function
- Max. 10 pins (4 COM x 4 SEG ~ 4 COM x 6 SEG)
- COM with Dead Time
- 3groups, 8-level Brightness with smooth option
- LED hold function

15. 12 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 pin Falling-Edge/Low-Level Interrupt
- Port1 Pin Change Interrupt
- UART1/UART2 TX/RX Interrupt
- P3.7 (INT2) pin Interrupt
- ADC/Touch Key Interrupt
- SPI Interrupt

16. Pin Interrupt can Wake up CPU from Power-Down (Stop) mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake-up
- P3.7 (INT2) Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

17. Max. 26 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled
- All pin with High sink ($80mA@V_{CC}=5V$, $V_{OL}=0.1V_{CC}$)

18. Independent RC Oscillating Watch Dog Timer

• 480ms/240ms/120ms/60ms selectable WDT timeout options

19. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

20. 8-level Low Voltage Reset

• 2.4V/2.7V/2.9V/3.2V/3.5V/3.8V/4.0V/4.3V (can be disabled)

21. Five Power Operation Modes

• Fast/Slow/Idle/Stop/Halt mode

22. Integrated 16-bit Cyclic Redundancy Check function

23. On-chip Debug/ICE interface

- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin

24. Operating Voltage and Current

- $V_{CC} = 3.8V \sim 5.5V @F_{SYSCLK} = 14.7456 MHz (-40°C ~ 85°C)$
- $V_{CC} = 3.2V \sim 5.5V @F_{SYSCLK} = 14.7456 MHz (25°C)$
- $V_{CC} = 2.4V \sim 5.5V @F_{SYSCLK} = 7.3728 MHz$
- $V_{CC} = 2.4V \sim 5.5V @F_{SYSCLK} = 3.6864MHz$
- $I_{CC} = 0.1 \mu A$ @Stop mode, PWRSAV=1, $V_{CC} = 3V$
- $I_{CC} = 10 \mu A$ @Idle mode, PWRSAV=1, $V_{CC} = 3V$

25. Operating Temperature Range

• $-40^{\circ}\text{C} \sim +85^{\circ}\text{C}$

26. Package Types

- 28-pin SOP (300 mil)
- 28-pin SSOP (150 mil)
- 28-pin QFN (4x4x0.75-0.4mm)
- 24-pin SOP (300mil)
- 24-pin QFN (4x4x0.75-0.5mm)
- 20-pin SOP (300 mil)
- 24-pin SSOP (150 mil)
- 20-pin TSSOP (173 mil)
- 20-pin DIP (300 mil)
- 20-pin QFN (3x3x0.75-0.4mm) (L=0.25mm)
- 16-pin SOP (150 mil)

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description
P0.0~P0.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull-up resistors are assignable by software.
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Stop/Halt mode.
P2.0~P2.1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or " pseudo open drain " output. Pull-up resistors are assignable by software.
P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
INT0, INT1	Ι	External low level or falling edge Interrupt input, Idle/Stop mode wake up input.
INT2	Ι	External falling edge Interrupt input, Idle/Stop mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
TXD2	I/O	UART2 Mode1/3 transmit data.
T0, T1, T2	Ι	Timer0, Timer1, Timer2 event count pin input.
T2EX	Ι	Timer2 external trigger input.
T0O	0	Timer0 overflow divided by 64 output
T2O	0	Timer2 overflow divided by 2 output
СКО	0	System Clock divided by 2 output
VBGO	0	Bandgap voltage output
PWM0~PWM2	0	8+2 bit PWM output
AD0~AD10 AD12~AD14	Ι	ADC input
TK0~TK14	Ι	Touch Key input (FE8276/78 only)
LCDC00~LCDC07 LCDC10~LCDC17 LCDC20~LCDC21 LCDC30~LCDC37	0	LCD 1/2 bias output
LEDC0~LEDC3	0	LED common output
LEDS0~LEDS5	0	LED segment output
MISO	I/O	SPI data input for master mode, data output for slave mode
MOSI	I/O	SPI data output for master mode, data input for slave mode
SS	Ι	SPI active low slave select input for slave mode
SCK	I/O	SPI clock output for master or clock input for slave mode
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable.
XI, XO	-	Crystal/Resonator oscillator connection for System clock (FXT or SXT)
VCC, VSS	Р	Power input pin and ground

PIN SUMMERY

	F	Pin	Nur	nbe	r]	[npu	ıt	0	utpu	ıt	А	lter	nati	ive]	Fun	ctic	on	MISC
SOP/SSOP-28	SOP/SSOP-24	SOP/TSSOP/DIP-20	SOP-16	QFN-28	QFN-24	QFN-20	Pin Name	Type	Pull-up Control	Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	0.D.	LCD/LED	ADC	Touch Key	UART	PWM	Timer	SPI	
1	1	1	15	1	1	1	LCDC00/LEDC0/P0.0	I/O	۲			•			•							
2	2	2	16	2	2	2	LCDC01/LEDC1/P0.1	I/O	۲			•			•							
3	3	3	-	3	3	3	LCDC02/LEDC2/P0.2	I/O	۲			•			•							
4	4	4	_	4	4	4	LCDC03/LEDC3/P0.3	I/O	۲			•			•							
5	5		-	5	5	_	LCDC20/LEDS4/XI/P2.0	I/O	0			•		•	•							Crystal
6	6	-	-	6	6	-	LCDC21/LEDS5/XO/P2.1	I/O	0			•		•	•							Crystal
7	7	5	1	7	7	5	LCDC37/LEDS2/RSTn/INT2/P3.7	I/O	0	•	•	•		•	•							Reset
8	8	6	2	8	8	6	LCDC34/LEDS3/SS/T0/TK13/P3.4	I/O	0			•		•	•		●			•	•	
9	9	7	3	9	9	7	LCDC35/LEDS0/MOSI/T1/P3.5	I/O	0			•		•	•					ullet	•	
10	10	8	4	10	10	8	LCDC36/LEDS1/SCK/RXD2/P3.6	I/O	0			•		•	•			•			•	
11	11	9	5	11	11	9	LCDC17/MISO/TXD2/P1.7	I/O	0	•		•		•	•			•			•	
12	12	10	-	12	12	10	LCDC16/PWM2/TK9/P1.6	I/O	0	•		•		•	•		٠		•			
13	_	-	-	13	-		LCDC15/AD9/TK14/P1.5	I/O	0	•		•		•	•	•	۲					
14	13	11	6	14	13	12	LCDC14/CKO/AD8/TK8/P1.4	I/O	0	•		•		•	•	•	•					СКО
15	14	12	7	15	14	11	LCDC13/PWM1/AD7/TK7/P1.3	I/O	0	•		•		•	•	•	●		•			
16	15	13	8	16	15	13	LCDC12/PWM0/AD6/TK6/P1.2	I/O	0	•		•		•	•	•	۲		•			
17	16		_	17	16	-	LCDC11/T2EX/AD5/TK5/P1.1	I/O	0	•		•		•	•	•	•			•		
18	17	-	-	18	17	-	LCDC10/T2O/T2/AD4/TK4/P1.0	I/O	0	•		•		•	•	•	٠			٠		T2O
19	18	14	9	19	18	14	LCDC30/RXD/AD3/TK3/P3.0	I/O	0			•	•		•	•	۲	٠				
20	19	15	10	20	19	15	LCDC31/TXD/AD2/TK2/P3.1	I/O	0			•	•		•	•	۲	•				
21	20	16	11	21	20	16	LCDC32/VBGO/INT0/AD1/TK1/P3.2	I/O	0	•	•	•	•		•	•	•					VBGO
22	21	17	12	22	21	17	LCDC33/INT1/AD0/TK0/P3.3	I/O	0	٠	•	•		•	•	•	•					
23	_	-	_	23	-	_	LCDC04/AD12/TK10/P0.4	I/O	۲			٠			•	•	•					
24	_	_	_	24	_	_	LCDC05/AD13/TK11/P0.5	I/O	۲			•			•	•	•					
25	_	-	_	25	-	_	LCDC06/AD14/TK12/P0.6	I/O	۲			•			•	•	•					
_	22				22			I/O	۲			•			•	•	•					
	23							Р														
28	24	20	13	27	23	19	VCC	Р														

Symbol:

P.P. = Push-Pull

- O.D. = Open Drain
- P.O.D. = Pseudo Open Drain

PS:

- 1. O Port1, P2.0, P2.1, Port3 these pins control Pull up resistor by operation modes
- 2. Port0 control Pull up resistor while POOE.n=0 and P0.n=1

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 ACC: Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SP				S	Р			
R/W				R/	W			
Reset	0	0	0	0	0	1	1	1

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPL				DI	PL			
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DPH		DPH									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag	
Instruction	С	OV	AC
ADD	Х	Х	Х
ADDC	Х	Х	Х
SUBB	Х	Х	Х
MUL	0	Х	
DIV	0	Х	
DA	Х		
RRC	Х		
RLC	Х		
SETB C	1		

Instruction		Flag	
instruction	С	OV	AC
CLR C	0		
CPL C	Х		
ANL C, bit	Х		
ANL C, /bit	Х		
ORL C, bit	Х		
ORL C, /bit	Х		
MOV C, bit	Х		
CJNE	Х		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

D0h.6 AC: ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

- 00: Bank 0 (00h~07h)
- 01: Bank 1 (08h~0Fh)
- 10: Bank 2 (10h~17h)

11: Bank 3 (18h~1Fh)

- D0h.2 **OV:** ALU overflow flag
- D0h.1 **F1:** General purpose user-definable flag
- D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

			PS	W				1									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W										
CY	AC	FO	RS1	RS0	OV	F1	Р										
					$\overline{\ }$			-									_
											Reg	gister	r Bar	ık 3	-	-	1F
		-	0.01					18h	R0	R1	R2	R3	R4	R5	R6	R7	
		ŀ	RS1	R	50	Ban	ĸ		Register Bank 2					17			
			1	1		3		10h	R0	R1	R2	R3	R4	R5	R6	R7	17ł
			1	0)	2			Register Bank 1								
			0	1		1		08h	R0	R1	R2	R3	R4	R5	R6	R7	0Fł
			0	0)	0	$- \langle$				Reg	gister	Bar	nk O		1	1
									R0	R1	R2	R3	R4	R5	R6	R7	07h
								00h			-			1	1	1	

2. Memory

2.1 Program Memory

The Chip has a 16K Bytes Flash program memory for **TM52FE8273/76**, and an 8K Bytes Flash program memory for **TM52FE8274/78** which can support In Circuit Programming (ICP), In Application Programming (IAP) and In System Programming (ISP) function modes. The Flash write endurance is at least 10K cycles. The program memory address continuous space (0000h~3FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 8 bytes (3FF8h~3FFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~006Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. For **TM52FE8273/76**, the address space 3000h~3FEFh is defined as the IAP area. For **TM52FE8274/78**, the address space 1000h~1FEFh is defined as the IAP area. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 2D00h~2FFFh for ICE System communication.CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

	16K Bytes program memory		8K Bytes program memory
0000h 006Fh	Reset / Interrupt Vector	0000h 006Fh	Reset / Interrupt Vector
0070h		0070h 0FFFh	User Code area
	User Code area	1000h 1FEFh	User Code or IAP area
		1FF0h	CRC16L
		1FF1h	CRC16H
2CFFh			tenx reserve area
2D00h 2FFFh	ICE mode reserve area	2D00h 2FFFh	ICE mode reserve area
3000h 3EFFh	User Code or IAP area		
3F00h 3FEFh	IAP-Free area		tenx reserve area
3FF0h	CRC16L		
3FF1h	CRC16H		
3FF2h 3FFAh	tenx reserve area	3FFAh	
3FFBh	CFGBG	3FFBh	CFGBG
3FFDh	CFGWL (FRC)	3FFDh	CFGWL (FRC)
3FFFh	CFGWH	3FFFh	CFGWH
-	TM52FE8273/76		TM52FE8274/78

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR99/TWR100**), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1
4-wite	VCC, VSS, P0.0, P0.1

2.1.3 Flash IAP Mode

The **FE8273/76/74/78** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **FE8273/76/74/78** does not need to erase one Flash page before write. The available IAP data space is 248 Bytes after chip reset, and can be re-defined by the "MVCLOCK" and "IAPALL" control register as shown below.

	16K Bytes Flash Program memory	Flash memory	MVCLOCK	IAPALL	MOVC Accessible	MOVX (IAP) Accessible
0000h			1	Х	No	No
	MOVC-Lock area	0000h~01FFh	0	0	Yes	No
01FFh			0	1	Yes	Yes
0200h	IAP-All area	0200h 2EEEh	Х	0	Yes	No
3EFFh	IAP-All alea	0200h~3EFFh	Х	1	Yes	Yes
3F00h 3FF7h	IAP-Free area	3F00h~3FF7h	Х	Х	Yes	Yes
3FF8h		2EE9h 2EEEh	Х	0	Yes	No
	CFGW area	3FF8h~3FFEh	Х	1	Yes	Yes
3FFFh		3FFFh	Х	Х	Yes	No

In IAP mode, the program Flash memory is separated into four sectors: MOVC-Lock area, IAP-All area, IAP-Free area, and CFGW area. These four sectors are regulated differently.

In the **MOVC-Lock area,** IAP read/write is limited by MVCLOCK bit, which can be set to control the accessibility of the MOVC and MOVX instructions to this area. The size of this area is 512 Bytes. The lock function is made to protect the main program code against unconsciously writing Flash memory in IAP mode. Locking or unlocking the function should be performed by the tenx TWR98/99 writing to the CFGW in Flash memory.

The **IAP-All area** is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 15616 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0200h to 3EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually better. The size of this area is 248 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. The **FE8273/76/74/78** has a true EEPROM memory. It has the wider writing voltage range and the better write endurance than Flash memory. It is recommended to use EEPROM memory to store application data first.

The **CFGW area** has 3 data bytes (CFGWH, CFGWL and CFGBG), which is located at the last 8 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGBG can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F6h and CFGBG is copied to the SFR F5h after power on reset, software then take over CFGWL's and CFGBG's control capability by modifying the SFR F6h and F5h.

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0000h~3FFEh), and the ACC contains the data being written. The **FE8273/76/74/78** accepts IAP write command only when IAPWE=1. Flash IAP writing one byte requires approximately 2 ms @V_{CC}=3.2V, 1 ms @V_{CC}=5V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. The **FE8273/76/74/78** has a build-in IAP Time-out function for escaping write fail state. Flash IAP writing needs higher V_{CC} voltage, V_{CC}>3.2V.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0000h~3FFEh area. A Flash IAP read does not require extra CPU wait time.

	mple code (ASM) $V < V_{DD} < 5.5V$	
MOV	DPTR, #3F00h	; DPTR=3F00h=target IAP address
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	IAPWE, #47h	; IAP write enable
MOV	AUX2, #02h	; IAP Time-Out function enable
MOVX	@DPTR, A	; Flash[3F00h] =5Ah, after IAP write
		; 1ms~2ms H/W writing time, CPU wait
MOV	IAPWE, #00h	; IAP write disable, immediately after IAP write
CLR	А	; A=0
MOVX	A, @DPTR	; A=5Ah
CLR	А	; A=0
MOVC	A, @A+DPTR	; A=5Ah
; need 3.2 unsigned c		t_0x2000 // 0x2000 = start address _0x2000 // 0x2000 = start address
IAPALL = IAPWE = 0		
PROM[0x0	02] = wdata; // write data	a into ROM[0x2002]
IAPWE =		
IAPALL =	0x00;	

rdata = CODE[0x105]; // read data from ROM[0x2105]

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE		LVRE		PREAD	MVCLOCK	FRCPSC

3FFFh.1 MVCLOCK: If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD				IAPALL	/SWRST			
SWCMD			-	_			WDTO	IAPALL
R/W			V	V			R	R
Reset			-	_			0	0

97h.7~0 **IAPALL (W):** Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.

97h.0 **IAPALL (R):** Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4Bit 3Bit 2Bit 1Bit 0					
IAPWE				IAPWE	EEPWE				
IAPWE	IAPWE	IAPTO	EEPWE			_			
R/W	R	R	R			W			
Reset	0	0	0			-			

C9h.7~0 **IAPWE (W):** Write 47h to set IAPWE control flag; Write E2h to set EEPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after IAP or EEPROM write.

C9h.7 IAPWE (R): Flag indicates Flash memory can be written by IAP or not, 1=IAP Write enable.

C9h.6 **IAPTO (R):** IAP (or EEPROM write) Time-Out flag, Set by H/W when IAP (or EEPROM write) Time-out occurs. Cleared by H/W when IAPWE=0 (or EEPWE=0).

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	_	IAI	PTE	LVRPD
R/W	R/W	R/W	R/W	R/W	_	R/	W	R/W
Reset	0	0	0	0	_	1	1	0

F7h.2~1 **IAPTE:** IAP (or EEPROM) write watchdog timer enable

00: Disable

01: wait 0.9mS trigger watchdog time-out flag, and escape the write fail state

10: wait 3.6mS trigger watchdog time-out flag, and escape the write fail state

11: wait 7.2mS trigger watchdog time-out flag, and escape the write fail state

2.1.5 Flash ISP Mode

The "In System Programming" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART/SPI or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

2.2 EEPROM Memory

The **FE8273/76/74/78** contains 128 bytes of data EEPROM memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 50K write/erase cycles.

(Only even addresses can be used, odd addresses are invalid)

The EEPROM Write usage is similar to Flash IAP mode. It is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target EEPROM address (EE00h~EEFEh, ADDR=ADDR+2), and the ACC contains the data being written. EEPROM writing requires approximately 2 ms @V_{CC}=3V, 1 ms @V_{CC}=5V. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing time. The software must handle the pending interrupts after an EEPROM write. The **FE8273/76/74/78** has a build-in EEPROM Time-out function shared with Flash IAP for escaping write fail state. EEPROM writing needs V_{CC}>3.0V.

The EEPROM Read can be performed by the "MOVX A, @DPTR" instruction as long as the target address points to the EE00h~EEFEh area. The EEPROM read does require approximately 300ns.

; EEPRO	M example code	
; need 3.0	$V < V_{DD} < 5.5V$	
MOV	DPTR, #0EE00h	; DPTR=EE00h=target EEPROM[0] address
MOV	A, #0A5h	; A=A5h=target EEPROM[0] write data
MOV	EEPWE, #0E2h	; EEPROM write enable
MOV	AUX2, #004h	; EEPROM Time-Out function enable
MOVX	@DPTR, A	; EEPROM[0]=A5h, after EEPROM write
		; 1ms~2ms H/W writing time, CPU wait
MOV	EEPWE, #000h	; EEPROM write disable, immediately after EEPROM write
CLR	А	; A=0
MOVX	A, @DPTR	; A=A5h

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				IAPWE/	EEPWE			
IAPWE	IAPWE	IAPTO	EEPWE			_		
R/W	R	R	R			W		
Reset	0	0	0			_		

C9h.7~0 **EEPWE (W):** Write 47h to set IAPWE control flag; Write E2h to set EEPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after IAP or EEPROM write.

C9h.5 **EEPWE (R):** Flag indicates EEPROM memory can be written or not, 1=EEPROM Write enable.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	—	IAF	Ϋ́E	LVRPD
R/W	R/W	R/W	R/W	R/W	—	R/	W	R/W
Reset	0	0	0	0	—	1	1	0

F7h.2~1 **IAPTE:** IAP (or EEPROM write) watchdog timer enable

00: Disable

01: wait 0.9mS trigger watchdog time-out flag, and escape the write fail state

10: wait 3.6mS trigger watchdog time-out flag, and escape the write fail state

11: wait 7.2mS trigger watchdog time-out flag, and escape the write fail state

C9h.6 **IAPTO (R):** IAP (or EEPROM write) Time-Out flag, Set by H/W when IAP (or EEPROM write) Time-out occurs. Cleared by H/W when IAPWE=0 (or EEPWE=0).

2.3 Data Memory

As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and 74 SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 768 Bytes XRAM, 6 Bytes LCD RAM, 128 Bytes EEPROM and IAP Flash, which can be only accessed by MOVX instruction.

2.3.1 IRAM

IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.3.2 XRAM

XRAM is located in the 8051 external data memory space (address from FD00h to FFFFh). The 768 Bytes XRAM can be only accessed by "MOVX" instruction.

2.3.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/LED/LCD, which are unique to the Chip.

_	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN		CFGBG	CFGWL	AUX2
E8h								AUX3
E0h	ACC							
D8h	CLKCON							
D0h	PSW	P1LOE	P2LOE	P3LOE				
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2		
C0h								
B8h	IP	IPH	IP1	IP1H	SPCON	SPSTA	SPDAT	
B0h	P3	LEDCON	LEDCON2		TKTMRL	TKCON2	ADCHS	
A8h	IE	INTE1	ADTKDT	ADCDH	TKDL	TKFREQ	TKCON	POADIE
A0h	P2	PWMCON	P1MODL	P1MODH	P3MODL	P3MODH	PINMOD	PWMCON2
98h	SCON	SBUF	PWM0PRD	PWM0DH	PWM1PRD	PWM1DH	PWM2PRD	PWM2DH
90h	P1	POOE	POLOE	P2MOD	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SCON2	SBUF2
80h	P0	SP	DPL	DPH				PCON

3. LVR setting

The Chip offers LVR functions. There are 8-level LVR can be selected by CFGWH. The SFR LVRPD and PWRSAV bits also affect LVR function as tables below.

Operation	S	FR	CFGWH	LVR	Function	Note
Mode	LVRPD	PWRSAV	LVRE	LVK	Function	Note
	0	Х	000	ON	LV Reset 2.4V	
	0	Х	001	ON	LV Reset 2.7V	
	0	X	010	ON	LV Reset 2.9V	
Fast	0	X	011	ON	LV Reset 3.2V	
Slow	0	Х	100	ON	LV Reset 3.5V	
	0	Х	101	ON	LV Reset 3.8V	
	0	X	110	ON	LV Reset 4.0V	
	0	Х	111	ON	LV Reset 4.3V	
	0	0	000	ON	LV Reset 2.4V	
	0	0	001	ON	LV Reset 2.7V	
	0	0	010	ON	LV Reset 2.9V	
Idle	0	0	011	ON	LV Reset 3.2V	Current consumption
Stop Halt	0	0	100	ON	LV Reset 3.5V	about 60uA
Tian	0	0	101	ON	LV Reset 3.8V	
	0	0	110	ON	LV Reset 4.0V	
	0	0	111	ON	LV Reset 4.3V	
Idle	0	1	XXX	ON	Disable LVR Enable POR 2.3V	Current consumption about 20uA
Stop Halt	0	1	XXX	OFF	Disable	Minimum Current consumption
Fast Slow Idle	1	Х	XXX	ON	Disable LVR Enable POR 2.3V	Current consumption about 20uA
Stop Halt	1	Х	XXX	OFF	Disable	Minimum Current consumption

Note: The current consumption of Halt mode is more than STOP mode about 2 ~ 5uA, because SRC is enabled.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	_	IAF	PTE	LVRPD
R/W	R/W	R/W	R/W	R/W	_	R/	W	R/W
Reset	0	0	0	0	_	1	1	0

F7h.5 **PWRSAV**: Power save

Set 1 to reduce the chip's power consumption at Idle, Stop and Halt Mode

^{1:} LVR disable

CECWH PROT XRSTE IVRE PREAD MUCLOCK ERCPS	Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Crown more whole the more of the more of the transmitter of the transm	CFGWH	PROT			LVRE		PREAD	MVCLOCK	FRCPSC

3FFFh.5~3 LVRE: Low Voltage Reset function select

000: Set LVR at 2.4V	100: Set LVR at 3.5V
001: Set LVR at 2.7V	101: Set LVR at 3.8V
010: Set LVR at 2.9V	110: Set LVR at 4.0V
011: Set LVR at 3.2V	111: Set LVR at 4.3V

F7h.0 **LVRPD:** LVR power down

^{0:} LVR enable

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from ROM's last six bytes. The Power on Reset needs VCC pin's voltage first discharge to near VSS level, then rise beyond 2.5V.

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The Chip offers 8 options for LVR function. The user can make a selection by CFGWH, let LVR voltages of 4.3V, 4.0V, 3.8V, 3.5V, 3.2V, 2.9V, 2.7V and 2.4V be selected separately.

System Clock frequency	14.7456MHz (-40°C ~85°C)	14.7456MHz (25°C)	7.3728MHz	4MHz	SRC
Minimum LVR level	LVR=3.8V	LVR=3.2V	LVR=2.4V	LVR=2.4V	LVR=2.4V

LVR setting table

Note: LVR must be enable, also refer to AP-TM52XXXX_02S for LVR setting information

Flash 3FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE		LVRE		PREAD	MVCLOCK	FRCPSC
3FFFh.6	XRSTE: Ex	ternal Pin Re	eset control					
	0: Disable	External Pin	Reset					
	1: Enable I	External Pin I	Reset					
3FFFh.5~3 LVRE: Low Voltage Reset function select								
	000: Set L'	VR at 2.4V	100: Set L	VR at 3.5V				
	001: Set L'	VR at 2.7V	101: Set LVR at 3.8V					
	010: Set L'	VR at 2.9V	110: Set L	VR at 4.0V				
	011: Set L'	VR at 3.2V	111: Set L	VR at 4.3V				
·								
SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	—	WDTPSC		ADCKS		—	_
R/W	R/W	—	R/W		R/W		—	_
Reset	0	-	0	0	0	0	—	_
9/h 5~/	WDTPSC · X	Vatchdog Tir	nor pro scala	r time select				

WDTPSC: Watchdog Timer pre-scalar time select 94h.5~4

00: 480ms WDT overflow rate

01: 240ms WDT overflow rate

10: 120ms WDT overflow rate

11: 60ms WDT overflow rate

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD	IAPALL/SWRST							
R/W	W					R/W	R/W	
Reset	_						-	0

97h.7~0 SWRST: Write 56h to generate S/W Reset

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	_	IAPTE		LVRPD
R/W	R/W	R/W	R/W	R/W		R/W		R/W
Reset	0	0	0	0		1	1	0

F7h.7~6 WDTE: Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Stop/Halt mode

11: Watchdog Timer Reset always enable

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.7 CLRWDT: Set to clear WDT, H/W auto clear it at next clock cycle

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~16 MHz) or FRC (Fast Internal RC, 14.7456 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 68 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 68 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 16 MHz System clock rate requires V_{CC} > 3.3V.

The Chip has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~16 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

If user wants to switch Fsys from Slow clock to FXT, user should be following the step below

- 1. Set FCKTYPE (D8h.6)
- 2. Wait 2ms until FXT oscillation stable
- 3. Set SELFCK (D8h.2)

Clock Structure

Flash 3FFDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_				FRCF			

3FFDh.6~0 **FRCF:** FRC frequency adjustment.

FRC is trimmed to 14.7456 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_		FRCF					
R/W	_		R/W					
Reset		-	_	-	-	-	-	—

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3		Bit 1	Bit 0
CLKCON	SCKTYPE		STPSCK	STPPCK	STPFC			
R/W	R/W	R/W	R/W	R/W	R/W		R/	
Reset	0	0	1	0	0	0	1	1
D8h.7	SCKTYPE: Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).0: SRC1: SXT, P2.0 and P2.1 are crystal pins							
D8h.6	FCKTYPE: Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).0: FRC1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT							
D8h.5		et 1 to stop S	• •		0	0		
D8h.4	STPPCK: S		ARTs/Timer	0/Timer1/Ti			e mode for curr	ent
D8h.3	STPFCK: Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.							
D8h.2	SELFCK: S 0: Slow clo 1: Fast cloc	ock	ource selecti	ion. This bit	can be cł	nanged only wh	nen STPFCK=0	
D8h.1~0	CLKPSC: System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16 01: System clock is Fast/Slow clock divided by 4 10: System clock is Fast/Slow clock divided by 2 11: System clock is Fast/Slow clock divided by 1							
					CLKCON	N (D8h)		
	SYS	SCLK	bit7	b	it6	bit3	bit2	
			SCKTY		ГҮРЕ	STPFCK	SELFCK	
	Fast	FXT	0/1		1	0	1	
		FRC	0/1		0	0	1	
		v SXT	1		/1	0/1	0	
	210V	v SRC	0	0	/1	0/1	0	

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock. Also refer to AP-TM52XXXXX_01S and AP-TM52XXXXX_02S about System Clock Application Note.

 $0 \leftarrow \rightarrow 1$

0/1

0/1

0/1

0/1

0/1

0

 $0 \rightarrow 1$

0

0

0

1

0

 $0 \rightarrow 1$

 $1 \rightarrow 0$

0/1

 $0 \leftarrow \rightarrow 1$

0/1

0/1

0/1

Fast type change Slow type change

Stop FRC/FXT

Switch to FRC/FXT

Switch to SRC/SXT

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by TCOE SFR (*see section 7*).

5.2 Operation Modes

There are five operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR and STPSCK is set. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up.

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt.

Note: Chip cannot enter Stop Mode if INTn pin is low and wakeup is enable. (INTn=0 and EXn=1, n=0,1,2) *Note:* FW must turn off Bandgap to obtain Tiny Current (VBGOUT=0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	—	—	GF1	GF0	PD	IDL
R/W	R/W	_	—	—	R/W	R/W	R/W	R/W
Reset	0		—	—	0	0	0	0
0.51 4				OTOD (TT 1.) 1			

87h.1	PD: Power down control bit, set 1 to enter STOP (or Halt) mode.

87h.0	IDL: Idle mode control bit, set I to enter IDLE mode.	

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1
D8h.7	SCKTYPE:	Slow clock t	ype. This bit	can be chang	ged only in F	ast mode (SE	ELFCK=1).	
	0: SRC 1:	SXT						
D8h.6	FCKTYPE:	Fast clock ty	pe. This bit	can be chang	ed only in Sl	ow mode (SE	ELFCK=0).	
	0: FRC 1:	FXT						
D8h.5	STPSCK: Se	et 1 to stop S	low clock in	Stop Mode.				
D8h.4	STPPCK: S	et 1 to stop U	ART/Timer)/Timer1/Tin	ner2/ADC cl	ock in Idle m	ode for curre	nt reducing.
	If set, only T	imer3 and pi	n interrupts a	re alive in Id	le Mode.			-
D8h.3	STPFCK: S	et 1 to stop H	Fast clock for	power savin	g in Slow/Id	le mode. Thi	s bit can be c	changed only
	in Slow mod	e.						
D8h.2	SELFCK: S	ystem clock	source select	ion. This bit	can be chang	ed only when	n STPFCK=0).
	0: Slow clo	ck 1: Fast cl	ock					
D8h.1~0	CLKPSC: S	ystem clock	prescaler. Eff	fective after 16	clock cycles	(Max.) delay.		
	00: System	clock is Fast	/Slow clock	divided by 10	5			
	01: System	clock is Fast	/Slow clock	divided by 4				
	10: System	clock is Fast	/Slow clock	divided by 2				

11: System clock is Fast/Slow clock divided by 1

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	_	IAF	PΤΕ	LVRPD
R/W	R/W	R/W	R/W	R/W	_	R/	W	R/W
Reset	0	0	0	0		1	1	0

VBGOUT: VBG voltage output to P3.2, when ADCHS = 1011b 0: Disable 1: Enable

6. Interrupt & Wake-up

This Chip has a 12-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INT0 external pin Interrupt (can wake up Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART1) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033	—	Reserved for ICE mode use
003B	TF3	Timer3 Interrupt
0043	P1IF	Port1 external pin change Interrupt (can wake up Stop mode)
004B	IE2	INT2 external pin Interrupt (can wake up Stop mode)
0053	ADIF+TKIF	ADC/Touch Key Interrupt
005B	SPIF+WCOL+MODF	SPI Interrupt
0063	RI2+TI2	Serial Port (UART2) Interrupt

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P1WKUP SFR controls the individual Port1 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1WKUP		P1WKUP						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

1: Enable

^{0:} Disable

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0
A8h.7	EA: Global i	interrupt ena	ble control.					
	0: Disable a	all Interrupts						
	1: Each inte	errupt is enal	oled or disabl	ed by its indi	vidual interr	upt control bi	it	
A8h.5	ET2: Timer2	2 interrupt en	able					
	0: Disable	Timer2 inter	rupt					
	1: Enable T	imer2 interr	upt					
A8h.4	ES: Serial Po	ort (UART1)	interrupt ena	ıble				
	0: Disable S	Serial Port (U	JART1) inter	rupt				
	1: Enable S	erial Port (U	ART1) intern	rupt				
A8h.3	ET1: Timer1	l interrupt en	able					
	0: Disable	Timer1 inter	rupt					
	1: Enable T	imer1 interr	upt					
A8h.2	EX1: Extern	al INT1 pin	Interrupt enal	ble and Stop	mode wake u	ıp enable		
		-	errupt and Sto	1	1			
	1: Enable 1 matter EA i	-	terrupt and S	top mode w	ake up, it ca	n wake up (CPU from S	top mode no
A8h.1	ET0: Timer() interrupt en	able					
	0: Disable 7	Timer0 inter	rupt					
	1: Enable T	imer0 interr	upt					
A8h.0	EX0: Extern	al INT0 pin	Interrupt enal	ole and Stop	mode wake u	ıp enable		
		-	errupt and Sto	1	1			
		1	terrupt and S	top mode w	ake up, it ca	in wake up (CPU from S	top mode no
	matter EA i	is 0 or 1.						
SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	_	_	ES2	SPIE	ADTKIE	EX2	P1IE	TM3IE
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

A9h.5	ES2: Serial Port (UART2) interrupt enable
	0: Disable Serial Port (UART2) interrupt
	1: Enable Serial Port (UART2) interrupt
A9h.4	SPIE: SPI interrupt enable
	0: Disable SPI interrupt
	1: Enable SPI interrupt
A9h.3	ADTKIE: ADC/Touch Key interrupt enable
	0: Disable ADC/Touch Key interrupt
	1: Enable ADC/Touch Key interrupt
A9h.2	EX2: External INT2 pin Interrupt enable and Stop mode wake up enable
	0: Disable INT2 pin Interrupt and Stop mode wake up
	1: Enable INT2 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.
A9h.1	P1IE: Port1 pin change interrupt enable. This bit does not affect the Port1 pin's Stop mode wake up capability.
	0: Disable Port1 pin change interrupt
	1: Enable Port1 pin change interrupt
A9h.0	TM3IE: Timer3 interrupt enable
	0: Disable Timer3 interrupt
	1: Enable Timer3 interrupt

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_		0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_		0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2 :** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

- 10: Level 2
- 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH, PS :** Serial Port (UART1) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1 :** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H, PX1 :** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0 :** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H, PX0 :** External INT0 pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	_	_	PS2H	PSPIH	PADTKIH	PX2H	PP1H	РТ3Н
R/W	_	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	_	_	PS2	PSPI	PADTKI	PX2	PP1	PT3
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

BBh.5, BAh.5 **PS2H, PS2 :** Serial Port (UART2) Interrupt Priority control. Definition as above.

BBh.4, BAh.4 **PSPIH,PSPI :** SPI Interrupt Priority control. Definition as above.

BBh.3, BAh.3 PADTKIH, PADTKI : ADC/Touch Key Interrupt Priority control. Definition as above.

BBh.2, BAh.2 **PX2H, PX2 :** External INT2 pin Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PP1H, PP1 :** Port1 Pin Change Interrupt Priority control. Definition as above.

BBh.0, BAh.0 **PT3H, PT3 :** Timer3 Interrupt Priority control. Definition as above.

6.2 Pin Interrupt

Pin Interrupts include INT0 (P3.2), INT1 (P3.3), INT2 (P3.7) and Port1 Change Interrupt. These pins also have the Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2 is falling edge triggered and Port1 Change Interrupt is triggered by any Port1 pin state change.

Pin Interrupt & Wake up

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
88h.3	IE1: Externa	l Interrupt 1	(INT1 pin) e	dge flag.								
	Set by H/W	when an IN	T1 pin fallin	g edge is det	ected, no mat	ter the EX1 i	s 0 or 1.					
	It is cleared	l automatical	ly when the j	program perf	forms the inte	rrupt service	routine.					
88h.2	IT1: External Interrupt 1 control bit											
	0: Low level active (level triggered) for INT1 pin											
	1: Falling e	dge active (e	dge triggered	d) for INT1 p	oin							
88h.1	IE0: Externa	l Interrupt 0	(INT0 pin) e	dge flag								
	Set by H/W	when an IN	T0 pin fallin	g edge is det	ected, no mat	ter the EX0 i	s 0 or 1.					
	It is cleared	l automatical	ly when the j	program perf	orms the inte	rrupt service	routine.					
88h.0	IT0: Externa	l Interrupt 0	control bit									
	0: Low leve	el active (lev	el triggered)	for INT0 pin	l							
	1: Falling e	dge active (e	dge triggered	d) for INT0 p	oin							

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	—	_	TKIF	ADIF	—	IE2	P1IF	TF3
R/W	—	_	R/W	R/W	_	R/W	R/W	R/W
Reset	—		0	0	_	0	0	0
95h.2	It is cleared	when a fall automatical	ing edge is de ly when the p	etected on the	orms the inte	o matter the l rrupt service		
95h.1	P1IE does 1	when a Por not affect this	rt1 pin state o s flag's settin	ıg.		interrupt ena		(P1WKUP).

It is cleared automatically when the program performs the interrupt service routine.

S/W can write FDh to INTFLG to clear this bit. (Note1)

Note1: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

6.3 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, ADC, TK, SPI and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	_	—	GF1	GF0	PD	IDL
R/W	R/W	—	_	—	R/W	R/W	R/W	R/W
Reset	0	_		—	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter STOP mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

6.4 Stop mode Wake up and Interrupt

Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1/EX2 can enable INT0/INT1/INT2 pins' Stop mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Stop mode wake up capability. Upon Stop wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 (P1WKUP also needs P1IE=1) and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Stop mode wake up.

Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.

INST. CODE	MOV PCON, #02h	NX1 INST. (> 2 Cycles) HOLD ————————————————————————————————————	RUN	INTERRUPT SUB-ROUTINE	RETI	NX2 INST.
INST. CODE	MOV PCON, #02h	NX1 INST. (2 Cycles) HOLD	NX2 INST.	INTERRUPT SUB-ROUTINE	RETI	NX3 INST.
SYSCLK			Л.Л			
STOP_		<u>`</u>				
P3.2		/				
WARM_		/				

EA=EX0=1, P3.2 (INT0) is sampled after warm-up, Stop mode wake-up and Interrupt

EA=P1IE=P1WKUP=1, P1.0 change (not need clock sample), Stop mode wake-up and Interrupt

EA=EX0=EX2=P1WKUP=1, P1IE=0, Stop mode wake-up but not Interrupt. P3.2/P3.7 pulse too narrow

EX0=EX2=P1WKUP=P1IE=1, EA=0, Stop mode wake-up but not Interrupt

7. I/O Ports

The Chip has total 26 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

7.1 Port1 & P2.1~P2.0 & Port 3

These pins can operate in four different modes as below.

Mode	Port1, P2.1~P2.0, Pc		Px.n SFR	Pin State	Resistor	Digital
	P3.0~P3.2	Others	data		Pull-up	Input
Mode 0	Pseudo	Open Drain	0	Drive Low	Ν	Ν
Mode 0	Open Drain	en Drain Open Drain		Pull-up	Y	Y
Mode 1	Pseudo	Pseudo Or an Drain		Drive Low	Ν	Ν
Mode 1	Open Drain	Open Drain	1	Hi-Z	Ν	Y
Mode 2	CMOS O	lutout	0	Drive Low	Ν	Ν
Mode 2	CIVIOS	ulpul	1	Drive High	Ν	Ν
Mode 3	Analog input for ADC, digital input		Х		Ν	Ν
wide 5	buffer is disabled		(don't care)	_	IN	IN

I/O Pin Function Table

If a Port1, P2.1~P2.0 or Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port1, P2.1~P2.0 and Port3 pin has one or more alternative functions, such as LCD, LED, ADC and Touch Key. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/1, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

Pin Name	8051	Wake-up	СКО	ADC	TK	LCD	LED	others	Mode3
P1.0	T2	Y	T2O	AD4	TK4	LCDC10			AD4
P1.1	T2EX	Y		AD5	TK5	LCDC11			AD5
P1.2		Y		AD6	TK6	LCDC12		PWM0	AD6
P1.3		Y		AD7	TK7	LCDC13		PWM1	AD7
P1.4		Y	СКО	AD8	TK8	LCDC14			AD8
P1.5		Y		AD9	TK14	LCDC15			AD9
P1.6		Y			TK9	LCDC16		PWM2	
P1.7	TXD2	Y				LCDC17		MISO	
P3.0	RXD			AD3	TK3	LCDC30			AD3
P3.1	TXD			AD2	TK2	LCDC31			AD2
P3.2	INT0	Y		AD1	TK1	LCDC32		VBGO	AD1
P3.3	INT1	Y		AD0	TK0	LCDC33			AD0
P3.4	T0		T0O		TK13	LCDC34	LEDS3	SS	
P3.5	T1					LCDC35	LEDS0	MOSI	
P3.6	RXD2					LCDC36	LEDS1	SCK	
P3.7	INT2	Y				LCDC37	LEDS2	RSTn	
P2.0						LCDC20	LEDS4	XI	
P2.1						LCDC21	LEDS5	XO	

Port1, P2.1~P2.0, Port3 multi-function Table

Alternative Function	Mode	Px.n SFR data	Pin State	Other necessary SFR setting
T0, T1, T2, T2EX,	0	1	Input with Pull-up	
INT0, INT1, INT2	1	1	Input	
DVD TVD	0	1	Input with Pull-up / Pseudo Open Drain Output	
RXD, TXD	1	1	Input / Pseudo Open Drain Output	
	0	1	Input with Pull-up / Open Drain Output	
RXD2,TXD2	1	1	Input / Open Drain Output	
	0	Х	Clock Open Drain Output with Pull-up	
T0O, T2O, CKO	1	Х	Clock Open Drain Output	PINMOD
	2	Х	Clock Output (CMOS Push-Pull)	
VBGO	X	Х	Bandgap Voltage output	VBGOUT ADCHS
LCDC10~ LCDC17 LCDC20~ LCDC21 LCDC30~ LCDC37	X	Х	1/2 Vcc Bias Output	P1LOE P2LOE P3LOE
LEDS0~ LEDS5 (Note2)	X	Х	LED Waveform Output	LEDCON
	0	1	Touch Key Idling, Pull-up	
TK0~TK14	U	1	Touch Key Scanning	TKCHS
1K0~1K14	2	Х	Touch Key Idling, CMOS Push-Pull	ткспъ
	2	Λ	Touch Key Scanning	
AD0~AD9	3	Х	ADC Channel	ADCHS
	0	Х	PWM Open Drain Output with Pull-up	
PWM0~PWM2	1	Х	PWM Open Drain Output	PINMOD PWMCON2
	2	Х	PWM Output (CMOS Push-Pull)	I WMCON2
SPI Master Mode MISO	1	1	SPI Data Input	SPCON
SPI Master Mode SCK, MOSI	2	Х	SPI Clock/Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode MISO	2	Х	SPI Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode SCK, MOSI	1	1	SPI Clock/Data Input	SPCON
SS	1	1	SPI Chip Selection	SPCON
XI, XO	0 1 Crystal oscillation			CLKCON

The necessary SFR setting for Port1/P2.1~P2.0/Port3 pin's alternative function is list below.

Mode Setting for Port1, P2.1~P2.0, Port3 Alternative Function

For tables above, a "**CMOS Output**" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current (<20 μ A). It can be used as input or output function and typically needs an external pull up resistor.

An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4 mA current when output is at low level, and drives at least 4 mA current for 1~2 clock cycle when output transits from low to high, then keeps driving a small current (<20 μ A) to maintain the pin at high level. It can be used as input or output function.

Note2: for the necessary SFR setting above, LCD/LED pin has the highest priority. Therefore, if a pin is not used for Segment (ex: pin is I/O, ADC, TK, and SPI...), S/W must disable the LCD/LED function.

P1.2 Pin Structure

P3.0 Pin Structure

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.1~0 P2.1~P2.0: P2.1~P2.0 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 P3: Port1 data

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.7 SCKTYPE: Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode

D8h.6 FCKTYPE: Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODL	P1M	IOD3	P1M	IOD2	P1M	IOD1	P1M	OD0
R/W	R/	W	R	/W	R	/W	R/	W
Reset	0	1	0	1	0	1	0	1
A2h.7~6	P1MOD3: P	P1.3 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3,	, P1.3 is AD0	C input					
A2h.5~4	P1MOD2: P	1.2 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3,	, P1.2 is AD0	C input					
A2h.3~2	P1MOD1: P	P1.1 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3,	, P1.1 is AD0	C input					
A2h.1~0	P1MOD0: P	1.0 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3,	, P1.0 is AD0	C input					
SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH		IOD7		IOD6		IOD5	P1M	
R/W	R/	W V	R	/W	R	/W	R/	W

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit I	Bit 0
P1MODH	P1M	OD7	P1M	OD6	P1MOD5		P1MOD4	
R/W	R/	W	R/	R/W		R/W		W
Reset	0	1	0 1		0	1	0	1

A3h.7~6 P1MOD7: P1.7 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A3h.5~4 P1MOD6: P1.6 pin control

00: Mode0

01: Mode1

10: Mode2

11: Mode3

A3h.3~2 P1MOD5: P1.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.5 is ADC input

A3h.1~0 **P1MOD4:** P1.4 pin control.

00: Mode0

01: Model

10: Mode2

11: Mode3, P1.4 is ADC input

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	IOD3	P3M	IOD2	P3M	IOD1	P3M	IOD0
R/W	R/	/W	R	/W	R/	W/W	R/	/W
Reset	0	1	0	1	0	1	0	1
A4h.7~6	P3MOD3: F	3.3 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.3 is ADO	C input					
A4h.5~4	P3MOD2: F	3.2 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.2 is AD0	C input					
A4h.3~2	P3MOD1: F	3.1 pin contr	ol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.1 is AD0	C input					
A4h.1~0	P3MOD0: F	3.0 pin contr	ol.					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: Mode3	, P3.0 is ADO	C input					
SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	IOD7	P3M	IOD6	P3M	OD5	P3M	IOD4

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3MOD6		P3MOD5		P3MOD4	
R/W	R/	W	R/W		R/	W	R/	W
Reset	0	1	0	1	0	1	0	1

A5h.7~6 **P3MOD7:** P3.7 pin control

- 00: Mode0
 - 01: Mode1
 - 10: Mode2

11: Mode3

- A5h.5~4 P3MOD6: P3.6 pin control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3

A5h.3~2 **P3MOD5:** P3.5 pin control

- 00: Mode0
- 01: Mode1
- 10: Mode2
- 11: Mode3

A5h.1~0 P3MOD4: P3.4 pin control

- 00: Mode0
- 01: Mode1
- 10: Mode2
- 11: Mode3

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2MOD	_	_	—	—	P2MOD1		P2MOD0	
R/W	_	_	—	—	R/W		R/	W
Reset	_	_	—	—	0	1	0	1

93h.3~2 **P2MOD1:** P2.1 pin control

- 00: Mode0
- 01: Mode1
- 10: Mode2
- 11: not defined
- 93h.1~0 **P2MOD0:** P2.0 pin control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: not defined

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PWM10E	PWM0OE	TCOE	T2OE	_	—	_	T0OE
R/W	R/W	R/W	R/W	R/W	_	—	_	R/W
Reset	0	0	0	0	_	_	_	0

A6h.7	PWM10E: PWM1 control
	0: PWM1 disable
	1: PWM1 enable and signal output to P1.3 pin
A6h.6	PWM00E: PWM0 control
	0: PWM0 disable
	1: PWM0 enable and signal output to P1.2 pin
A6h.5	TCOE: System clock signal output (CKO) control
	0: Disable "System clock divided by 2" output to P1.4 pin
	1: Enable "System clock divided by 2" output to P1.4 pin
A6h.4	T2OE: Timer2 signal output (T2O) control
	0: Disable "Timer2 overflow divided by 2" output to P1.0 pin
	1: Enable "Timer2 overflow divided by 2" output to P1.0 pin
A6h.0	TOOE: Timer0 signal output (T0O) control
	0: Disable "Timer0 overflow divided by 64" output to P3.4 pin
	1: Enable "Timer0 overflow divided by 64" output to P3.4 pin

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON2	_	_	_	PWM2OE	PWM2CKS		PWM2DL	
R/W	—			R/W	R/W		R/W	
Reset	_			0	1	0	0	0

A7h.4 **PWM2OE:** PWM2 control

0: PWM2 disable

1: PWM2 enable and signal output to P1.6 pin

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEI	LEDEN		LEDPSC		LEDBRIT		
R/W	R/	R/W		R/W		R/W		
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED Enable

00: LED disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically 11: LED 1/10 duty (COM0~3, SEG0~5), the LED pins' state will be controlled automatically

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	CPHA	SSDIS	LSBF	SP	CR
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

BCh.7 SPEN: SPI enable

0: SPI disable

1: SPI enable, P1.7, P3.5, P3.6 are SPI functional pins.

BCh.3 SSDIS: SS pin disable

0: Enable SS pin, P3.4 is SPI chip selection input.

1: Disable SS pin

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1LOE		P1LOE							
R/W				R/	W				
Reset	0	0 0 0 0 0 0 0 0							

D1h.7~0 P1LOE: Port1 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2LOE	_	—	—	—	_	—	P2L	.OE
R/W	_	—	_	—	_	_	R/	W
Reset		_	_	_	_	_	0	0

D2h.1~0 P2LOE: Port2 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3LOE		P3LOE						
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

D3h.7~0 P3LOE: Port3 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	_	IAF	PΤΕ	LVRPD
R/W	R/W	R/W	R/W	R/W	_	R/	W	R/W
Reset	0	0	0	0	_	1	1	0

F7h.4 VBGOUT: Bandgap voltage output control

0: Disable

1: Bandgap voltage output to P3.2 pin, when ADCHS=1011b

7.2 Port0

These pins are shared with TK, ADC, LCD/LED. If a Port0 is defined as I/O pin, it can be used as CMOS push-pull output or Schmitt-trigger input. The pin's pull up function is enable while SFR bit POOE.n=0 and P0.n=1.

Port0 pin function	P0OE.n	P0.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innut	0	0	Hi-Z	Ν	Y
Input	0	1	Pull-up	Y	Y
CMOS Quitaut	1	0	Drive Low	Ν	Ν
CMOS Output	1	1	Drive High	Ν	Ν

Port0 Pin Function Table

Pin Name	Wake-up	ADC	TK	LCD	LED	Others
P0.0				LCDC00	LEDC0	
P0.1				LCDC01	LEDC1	
P0.2				LCDC02	LEDC2	
P0.3				LCDC03	LEDC3	
P0.4		AD12	TK10	LCDC04		
P0.5		AD13	TK11	LCDC05		
P0.6		AD14	TK12	LCDC06		
P0.7		AD10		LCDC07		

Port0 multi-function Table

The necessary SFR setting for Port0 pin's alternative function is list below.

Alternative Function	PxOE.n	Px.n SFR data	Pin State	other necessary SFR setting
LEDC0~ LEDC3	Х	Х	LED Waveform Output	LEDCON
LCDC00~LCDC07	Х	Х	1/2 Bias Output	POLOE
AD10, AD12~AD14	Х	Х	ADC Channel	POADIE
	0	1	Touch Key Idling, Pull-up	
ТК0~ТК14	0	1	Touch Key Scanning	TKCHS
1K0~1K14	1	X	Touch Key Idling, CMOS Push-Pull	ткспэ
	1	Λ	Touch Key Scanning	

Mode Setting for Port0 Alternative Function Table

Note: POLOE and POADIE have higher priority than POOE.

P0.7 Pin Structure

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

80h.7~0 **P0:** Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n = 0 (input mode), the pull-up is enabled.

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POOE		POOE						
R/W				R/	W			
Reset	0	0 0 0 0 0 0 0 0						

91h.7~0 **POOE:** Port0 CMOS Push-Pull output enable control

0: Disable

1: Enable

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POLOE		POLOE							
R/W				R/	W				
Reset	0	0 0 0 0 0 0 0 0							

92h.7~0 **POLOE:** Port0 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POADIE		POADIE				_	_	_
R/W		R/	W		_	_	_	—
Reset	0	0	0	0	_	_	_	—

AFh.7~4 **P0ADIE:** ADC channel input Enable

0000: P0.7~P0.4 are digital input 1xxx: P0.7 is ADC input x1xx: P0.6 is ADC input xx1x: P0.5 is ADC input xxx1: P0.4 is ADC input

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEDEN		LEDPSC		LEDHOLD	LEDBRIT		
R/W	R/W		R/W		R/W	R/W		
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED Enable

00: LED disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically 11: LED 1/10 duty (COM0~3, SEG0~5), the LED pins' state will be controlled automatically

8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function. The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
0.01 7		, a a						

TF1: Timer1 overflow flag
Set by H/W when Timer/Counter 1 overflows
Cleared by H/W when CPU vectors into the interrupt service routine.
TR1: Timer1 run control
0: Timer1 stops
1: Timer1 runs
TF0: Timer0 overflow flag
Set by H/W when Timer/Counter 0 overflows
Cleared by H/W when CPU vectors into the interrupt service routine.
TR0: Timer0 run control
0: Timer0 stops
1: Timer0 runs

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N	TMO	OD0			
R/W	R/W	R/W	R/	W/W	R/W	R/W	R/	R/W			
Reset	0	0	0	0	0	0	0	0			
89h.7	GATE1: Tir	ner1 gating c	ontrol bit								
	0: Timer1 e	enable when '	TR1 bit is set	t							
	1: Timer1 e	enable only w	hile the INT	1 pin is high	and TR1 bit	is set					
89h.6	CT1N: Time	er1 Counter/7	Timer select l	oit							
	0: Timer m	ode, Timer1	data increase	es at 2 Syster	n clock cycle	rate					
	1: Counter	mode, Timer	1 data increa	ses at T1 pir	n's negative e	dge					
89h.5~4	TMOD1: Ti	mer1 mode s	elect								
	00: 8-bit tir	ner/counter (TH1) and 5-	bit prescaler	(TL1)						
	01: 16-bit t	imer/counter									
	10: 8-bit au	to-reload tin	er/counter (ГL1). Reload	led from TH1	at overflow.					
	11: Timer1	stops									
89h.3	GATE0: Tir	ner0 gating c	ontrol bit								
	0: Timer0 e	enable when '	TR0 bit is set	t							
		•		1 0	and TR0 bit	is set					
89h.2	CT0N: Time	er0 Counter/7	Timer select l	oit							
	0: Timer m	ode, Timer0	data increase	es at 2 System	n clock cycle	rate					
	1: Counter	mode, Timer	0 data increa	ses at T0 pi	n's negative e	dge					
89h.1~0	TMOD0: Ti	mer0 mode s	elect								
		ner/counter (bit prescaler	(TL0)						
		imer/counter									
			,	,	led from TH0						
	11: TL0 is a	an 8-bit time	r/counter. TH	10 is an 8-bit	timer/counte	r using Time	r1's TR1 and	l TF1 bits			

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL0		TLO								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
001 7 0	TT 1 TT 1	1 1 / 1 1								

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TH0		TH0									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									
8Ch 7 0	TUO. Timor	FUO: TimerO data high buta									

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0 0								

8Dh.7~0 **TH1:** Timer1 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.1 **T1SEL:** Timer1 Counter mode, T1 pin input select

0: P3.5 (T1)

1: Slow clock/16

Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority. *Note:* See also Chapter 7 for details on TOO pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
C8h.7	•		0	overflows un	less RCLK=1	or TCLK=1	. This bit m	ust be cleared
001 (by S/W.	· · · · ·	C 11 1	a				
C8h.6			reload is cau	-	ative transition	on on T2EX	pin if EXEN	I2=1. This bit
C8h.5		er1 overflow	as receive cl	lock for seria	l port in mod l port in mod			
C8h.4	TCLK: UAL 0: Use Tim	RT transmit o er1 overflow	clock control as transmit c	bit clock for seri	al port in mod	de 1 or 3		
C8h.3	EXEN2: T2 0: T2EX pi	EX pin enabl n disable n enable, it c	e		-		n on T2EX p	in is detected
C8h.2	TR2: Timer2 0: Timer2 s 1: Timer2 r	stops						
C8h.1		ode, Timer2	data increase	es at 2 System	n clock cycle a's negative e			
C8h.0	CPRL2N: T 0: Reload r 1: Capture	'imer2 Captu node, auto-re mode, captur	re/Reload con cload on Time re on negative	ntrol bit er2 overflows e transitions of	s or negative on T2EX pin	transitions of if EXEN2=1	•	if EXEN2=1. er2 overflow.

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2L		RCP2L								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
	DODAL T	0 1 1/	. 1.1	1.						

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL2		TL2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CDh.7~0 **TH2:** Timer2 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.2 **T2SEL:** Timer2 Counter mode, T2 pin input select 0: P1.0 (T2)

1: Slow clock/16

Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority. *Note:* See also Chapter 7 for details on T2O pin output settings.

8.3 Timer3

Timer3 works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 32768, 16384, 8192, ..., 256 depending on the TM3PSC SFR. The Timer3 clock source is Slow clock (SRC or SXT). This is ideal for real-time-clock (RTC) functionality when the clock source is SXT.

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	_		TKIF	ADIF		IE2	P1IF	TF3
R/W	_		R/W	R/W		R/W	R/W	R/W
Reset		_	0	0	_	0	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note1*)

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3	_	_		TM3PSC		VBGEN	ADCV	REFS
R/W		—	R/W			R/W	R/	W
Reset	_	—	0	0	0	0	0	0

EFh.5~3 TM3PSC: Timer3 Interrupt rate

000: Timer3 Interrupt rate is 32768 Slow clock cycle

001: Timer3 Interrupt rate is 16384 Slow clock cycle

010: Timer3 Interrupt rate is 8192 Slow clock cycle

011: Timer3 Interrupt rate is 4096 Slow clock cycle

100: Timer3 Interrupt rate is 2048 Slow clock cycle

101: Timer3 Interrupt rate is 1024 Slow clock cycle

110: Timer3 Interrupt rate is 512 Slow clock cycle

111: Timer3 Interrupt rate is 256 Slow clock cycle

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.6 **CLRTM3:** Set 1 to clear Timer3, H/W auto clear it at next clock cycle.

Note: also refer to Section 6 for more information about Timer3 Interrupt enable and priority.

8.4 T0O and T2O Output Control

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The TOO and T2O waveform is divided by Timer0/Timer2 overflow signal. The TOO waveform is Timer0 overflow divided by 64, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed. Set TOOE and T2OE SFRs can output these waveforms.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PINMOD	PWM10E	PWM0OE	TCOE	T2OE	_	_	_	TOOE	
R/W	R/W	R/W	R/W	R/W	—	_	_	R/W	
Reset	0	0	0	0	—			0	
A6h.4 T2OE: Timer2 signal output (T2O) control									

0: Disable Timer2 overflow divided by 2 output to P1.0

1: Enable Timer2 overflow divided by 2 output to P1.0

A6h.0 **TOOE:** Timer0 signal output (T0O) control 0: Disable Timer0 overflow divided by 64 output to P3.4 1: Enable Timer0 overflow divided by 64 output to P3.4

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The UART1 uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

The UART2 uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2, it also does not support Timer2 and one wire UART mode. On other hand, the option of SMOD is not use for UART2. UART2 double baud rate is always enabled.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	—	_	GF1	GF0	PD	IDL
R/W	R/W	—	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_		0	0	0	0

87h.7 **SMOD:** UART1 double baud rate control bit

0: Disable UART1 double baud rate

1: Enable UART1 double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADCKS		—	—
R/W	R/W	_	R/	R/W		R/W		_
Reset	0	_	0	0	0	0	_	_

94h.7 UART1W: One wire UART1 mode enable, both TXD/RXD use P3.1 pin

^{1:} Enable one wire UART1 mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

110501	Ŷ	9	•	0	Ŷ	Ŷ	Ŷ	Ű
98h.7~6	SM0,SM1: U	JART1 serial	l port mode s	select bit 0,1				
	00: Mode0:	8 bit shift re	gister, Baud	Rate=F _{SYSCLI}	_K /2			
	01: Mode1:	8 bit UART	1, Baud Rate	e is variable				
	10: Mode2:	9 bit UART	1, Baud Rate	=F _{SYSCLK} /32	or/64			
	11: Mode3:	9 bit UART	1, Baud Rate	e is variable				
98h.5	SM2: Serial	port mode se	lect bit 2					
	follows. In received nin	Modes 2 &	3, if SM2 is 0. In Mod	is set then the the set the set the set the set the set the set of	ne received	interrupt wil	l not be ger	the above as nerated if the inless a valid
98h.4	REN: UART	1 reception e	enable					
	0: Disable r	reception						
	1: Enable re	eception						
98h.3	TB8: Transm	nit Bit 8, the	ninth bit to b	e transmitted	in Mode 2 a	nd 3		
98h 2	RB8: Receiv	e Bit 8. conta	ains the ninth	h bit that was	received in l	Mode 2 and 3	3 or the stop	bit is Mode 1

RB8: Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 98h.2 if SM2=0

^{0:} Disable one wire UART1 mode

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W.

98h.0 RI: Receive interrupt flagSet by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF		SBUF							
R/W				R/	W				
Reset	-	-	—	-	_	-	_	—	

99h.7~0 **SBUF:** UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON2	SM	—	—	REN2	TB82	RB82	TI2	RI2
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
Reset	0	—	—	0	0	0	0	0

8Eh.7 SM: UART2 Serial port mode select bit

0: Mode1: 8 bit UART2, Baud Rate is variable
1: Mode3: 9 bit UART2, Baud Rate is variable
(UART2 does not support Mode0/Mode2)

8Eh.4 REN2: UART2 reception enable

0: Disable reception
1: Enable reception
1: Enable reception

8Eh.3 TB82: Transmit Bit 8, the ninth bit to be transmitted in Mode 3

- 8Eh.2 **RB82:** Receive Bit 8, contains the ninth bit that was received in Mode3
- 8Eh.1 **TI2:** Transmit interrupt flag

Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.

8Eh.0 **RI2:** Receive interrupt flag

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SBUF2		SBUF2							
R/W				R/	W				
Reset	-								

8Fh.7~0 **SBUF2:** UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

- Mode 0: (UART2 invalid) Baud Rate=F_{SYSCLK}/2
- Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD + 1) x F_{SYSCLK}/ (32 x 2 x (256 – TH1))
- Mode 1, 3: if using Timer2 (UART2 invalid) Baud Rate=Timer2 overflow rate/16 = F_{SYSCLK}/ (32 x (65536 – RCP2H, RCP2L))
- Mode 2: (UART2 invalid) Baud Rate= (SMOD + 1) x F_{SYSCLK}/64

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. *Note:* also refer to Section 8 for more information about how Timer2 controls UART clock.

10. PWMs

The Chip has three independent PWM modules, PWM0, PWM1 and PWM2. The PWM can generate a fixed frequency waveform with 1024 duty resolution on the basis of the PWM clock. The PWM clock can select FRC or F_{SYSCLK} divided by 1, 2, or 4 as its clock source. A spread LSB technique allows PWM to run its frequency at the "PWM clock divided by 256" instead of at the "PWM clock divided by 1024", which means the PWM is four times faster than normal. The advantage of a higher PWM frequency is that the post RC filter can transform the PWM signal to a more stable DC voltage level.

The PWM output signal resets to a low level whenever the 8-bit base counter matches the 8-bit MSB of the PWM duty register. When the base counter rolls over, the 2-bit LSB of the PWM duty register decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay. The PWM period can be set by writing the period value to the 8-bit PWM period register.

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (*see section 7*)

PWM0 Structure

Note3: the PWM1 and PWM2 are almost the same as the PWM0, except they have no clear control bit.

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRD		PWM0PRD								
R/W				R/	W					
Reset	1	1 1 1 1 1 1 1 1								

9Ah.7~0 **PWM0PRD:** PWM0 8-bit period register

SFR 9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM0DH		PWM0DH							
R/W				R/	W				
Reset	1	1 0 0 0 0 0 0 0							

9Bh.7~0 **PWM0DH:** bits 9~2 of the PWM0 10-bit duty register

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM1PRD		PWM1PRD								
R/W				R/	W					
Reset	1	1	1	1	1	1	1	1		

9Ch.7~0 PWM1PRD: PWM1 8-bit period register

SFR 9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DH		PWM1DH									
R/W		R/W									
Reset	1	1 0 0 0 0 0 0 0 0									
001 7 0											

9Dh.7~0 **PWM1DH:** bits 9~2 of the PWM1 10-bit duty register

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	PWM	PWM1CKS		PWM1DL		PWM0CKS		10DL
R/W	R/	W	R/W		R/	W	R/W	
Reset	1	0	0	0	1	0	0	0

A1h.7~6 **PWM1CKS:** PWM1 clock source

- 00: F_{SYSCLK}/4
- 01: $F_{SYSCLK}/2$
- 10: F_{SYSCLK}
- 11: FRC
- A1h.5~4 **PWM1DL:** bits 1~0 of the PWM1 10-bit duty register
- A1h.3~2 **PWM0CKS:** PWM0 clock source
 - 00: F_{SYSCLK}/4
 - 01: F_{SYSCLK}/2
 - 10: F_{SYSCLK}
 - 11: FRC

A1h.1~0 **PWM0DL:** bits 1~0 of the PWM0 10-bit duty register

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PWM10E	PWM0OE	TCOE	T2OE	_	_	_	TOOE
R/W	R/W	R/W	R/W	R/W	_	_	_	R/W
Reset	0	0	0	0				0

A6h.7 **PWM1OE:** PWM1 control 0: PWM1 disable

1: PWM1 enable and signal output to P1.3 pin

A6h.6 **PWM0OE:** PWM0 control

0: PWM0 disable

1: PWM0 enable and signal output to P1.2 pin

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.3 CLRPWM0: PWM0 clear enable

0: PWM0 is running

1: PWM0 is cleared and held

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2PRD		PWM2PRD								
R/W				R/	W					
Reset	1	1	1	1	1	1	1	1		

9Eh.7~0 **PWM2PRD:** PWM2 8-bit period register

SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM2DH		PWM2DH								
R/W		R/W								
Reset	1	1 0 0 0 0 0 0 0 0								

9Fh.7~0 **PWM2DH:** bits 9~2 of the PWM2 10-bit duty register

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON2	_	_		PWM2OE	PWM2CKS		PWM2DL	
R/W	_	_	_	R/W	R/W		R/	W
Reset				0	1	0	0	0

A7h.4 **PWM2OE:** PWM1 control

0: PWM2 disable

1: PWM2 enable and signal output to P1.6 pin

A7h.3~2 **PWM2CKS:** PWM2 clock source

- 00: F_{SYSCLK}/4
- 01: $F_{SYSCLK}/2$
- 10: F_{SYSCLK}
- 11: FRC

A7h.1~0 **PWM2DL:** bits 1~0 of the PWM2 10-bit duty register

PWM Waveform

11. ADC

The Chip offers a 12-bit ADC consisting of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit. Because certain channels are shared with the Touch Key, the ADC channel must be configured differently from the Touch Key channel to avoid affecting the channel input sensitivity. There are four ADC reference volts (V_{REFS}) can be selected by setting ADCVREFS. The analog input level must remain within the range from V_{SS} to V_{REFS} .

11.1 ADC Channels

The 12-bit ADC has a total of 16 channels, designated AD0~AD10, AD12~AD14, $V_{CC}/4$, and VBG. The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by the ADCHS register. The Chip offers up to 14 analog input pins, designated AD0~AD10 and AD12~AD14. In addition, there are two analog input pins for voltage reference connections. When ADCHS is set to 1111b, the analog input will connect to $V_{CC}/4$, and when ADCHS is set to 1011b, the analog input will connect to VBG. VBG is an internal voltage reference at 1.22V. After the ADCHS is set, the ADC module is connected to the I/O port through the selection of ADCHS. If the I/O port is used as Touch Key, it will affect the Touch Key function. Therefore, when the ADC is not in use, it is recommended to set the ADCHS to 1111b ($V_{CC}/4$) or 1011b (VBG) to disconnect the ADC module from the I/O port.

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 50 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	_	WDTPSC		ADCKS		_	_
R/W	R/W	_	R/W		R/	W	—	—
Reset	0	_	0	0	0	0	—	—

94h.3~2 **ADCKS:** ADC clock rate select

00: F_{SYSCLK}/32

01: F_{SYSCLK}/16

10: F_{SYSCLK}/8

11: F_{SYSCLK}/4

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVD	—	TKIF	ADIF	_	IE2	P1IF	TF3
R/W	R	—	R/W	R/W	_	R/W	R/W	R/W
Reset		—	0	0		0	0	0

95h.4

4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag. (*Note1*)

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADTKDT	ADCDL			TKDH				
R/W	R				R			
Reset	_	-	_	—			—	—

AAh.7~4 ADCDL: ADC data bit 3~0

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCDH	ADCDH							
R/W	R							
Reset	_	-	_	_	-	_	-	-

ABh.7~0 ADCDH: ADC data bit 11~4

SFR B6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCHS	_	_	_	—		AD	CHS	
R/W	_	_	_	—	R/W			
Reset				—	1	1	1	1

B6h.3~0 **ADCHS:** ADC channel select

0000: AD0 (P3.3)
0001: AD1 (P3.2)
0010: AD2 (P3.1)
0011: AD3 (P3.0)
0100: AD4 (P1.0)
0101: AD5 (P1.1)
0110: AD6 (P1.2)
0111: AD7 (P1.3)
1000: AD8 (P1.4)
1001: AD9 (P1.5)
1010: AD10 (P0.7)
1011: V _{BG} (Internal Bandgap Reference Voltage)
1100: AD12 (P0.4)
1101: AD13 (P0.5)
1110: AD14 (P0.6)
1111: V _{CC} /4

Note: FW must turn off Bandgap to obtain Tiny Current (ADCHS \neq 1011b)

SFR EFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX3	_	_	TM3PSC			VBGEN	ADCV	REFS
R/W	_	—		R/W			R/	W
Reset	_	—	0	0	0	0	0	0

EFh.1~0 ADCVREFS: ADC reference voltage (V_{REFS}) select

00: V_{CC}

01: 2.5V

10: 3V

11: 4V

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.4 ADSOC: Start ADC conversion

Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

12. Touch Key (FE8276/78 only)

The Touch Key offers an easy, simple and reliable method to implement finger touch detection. The device support 15 channels touch key detection.

To use the Touch Key, user must setup the Pin Mode (*see Section 7*) correctly as below table. Setting Mode2 for an Idling Touch Key pin can CMOS output Low and reduce the mutual interference between the adjacent keys.

POOEx / P1MODx / P3MODx setting for Touch Key	TK0~TK14
Pin is Touch Key, Idling	Drive Leve
Pin is Touch Key, Scanning	Drive Low

There are two oscillators: Reference Clock (RCK) and Touch Clock (TCK). They are connected to the Reference Counter and Data Counter respectively. The frequency of RCK can be adjusted by setting TKFREQ. Reference Counter is used to control conversion time. From starting touch key conversion to end, it will take 0 to 4096 RCK oscillation cycles by setting TKTMR. After end of conversion, user can get TKDATA (TKDH, TKDL) from Data counter. TKDATA is affected by finger touching. As finger touching TCK is getting slower, the value of TKDATA is smaller than the no finger touching. According to the difference of TKDATA, user can check if it is touched of not. The frequency of TCK will adjust automatically by setting TKFJMP=1, otherwise it can be adjusted by JMPVAL when TKFJMP=0.

Touch Key Structure

To start the Scanning, user assigns TKPD=0, then set the TKSOC bit to start touch key conversion, the TKSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the 12 bits TK Data Counter TKDH and TKDL.

When TKPD=0 and TKCHS is set, the Touch Key module is connected to the I/O port through the selection of TKCHS. If the I/O port is used as other functions, it must be affected. Therefore, when the Touch Key module is not in use, it is recommended to set TKPD =1 to disconnect the TK module from the I/O port.

74

♦ Example:

MOV	TKCON,#000h	; TKPD=0, TKCHS=0 (select TK0)
MOV	TKFREQ,#040h	; Set an appropriate value for TK scanning
MOV MOV	TKCON2,#084h TKTMRL,#000h	; TKFJMP=1 ; TKTMR=400h
MOV ORL ORL	INTFLG,#11011111b INTE1,#008h IE,#080h	; clear TKIF

SETB TKSOC

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	—	—	TKIF	ADIF		IE2	P1IF	TF3
R/W	—	_	R/W	R/W		R/W	R/W	R/W
Reset	_	—	0	0		0	0	0

95h.5 **TKIF:** Touch Key Interrupt Flag

Set by H/W at the end of Touch Key conversion if SYSCLK is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag. (*Note1*)

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ADTKDT		ADO	CDL		TKDH				
R/W		I	R			H	ર		
Reset		—	—	—	—	-	—	—	

AAh.3~0 **TKDH:** Touch Key counter data bit 10~8

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TKDL		TKDL									
R/W		R									
Reset	_										
) TVDI Touch Vou counter data hit 7 0										

ACh.7~0 **TKDL:** Touch Key counter data bit 7~0

SFR ADh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKFREQ	_		TKFREQ						
R/W	_		R/W						
Reset	_	1	0	0	0	0	0	0	

ADh.6~0 **TKFREQ:** Touch Key oscillation capacitor adjustment 00: TKDATA is smallest

7F: TKDATA is biggest

Note: FW must set TKFREQ to satisfy below requirement. If JMPVAL=000: TKDATA near to 1.81*TKTMR If JMPVAL=111: TKDATA near to 1.65*TKTMR

. . .

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TKCON	TKPD	TKEOC	I	_		TK	CHS	
R/W	R/W	R	_	—		R/	W	
Reset	1	0		_	1	1	1	1
AEh.7	TKPD: Tou	ch Key powe	r down					
	0: Touch K	ey enable						
	1: Touch K	ey disable						
AEh.6	TKEOC: To	ouch Key end	of conversion	on flag, TKE	OC may have	e 3uS delay a	fter TKSOC:	=1, so F/W
	must wait en				•	•		
	0: Indicates	s conversion i	is in progress	5				
	1: Indicates	s conversion i	is finished					
AEh.3~0	TKCHS: To	ouch Key cha	nnel select					
	0000: TK0							
	0001: TK1	(P3.2)						
	0010: TK2	(P3.1)						
	0011: TK3	(P3.0)						
	0100: TK4	(P1.0)						
	0101: TK5	` '						
	0110: TK6	` '						
	0111: TK7	· ,						
	1000: TK8	· ,						
	1001: TK9							
	1010: TK1							
	1011: TK1	· ,						
	1100: TK12	· /						
	1101: TK1							
	1110: TK14	· ,	_					
	1111: inter	nal reference	key					
	D:47	D'4 (D'4 5	D'4 4	D'4 2	D'(2	D'(1	D '(0

SFR B4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKTMRL		TKTMRL								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

B4h.7~0 **TKTMRL:** Touch Key reference counter LSB[7~0]

SFR B5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKCON2	TKFJMP		JMPVAL			TKTMRH				
R/W	R/W		R/W			R/	W			
Reset	0	1	0	0	0	0	0	0		

B5h.7 TKFJMP: Touch Key clock frequency auto-change selection
0: fix frequency
1: auto-change
B5h.6~4 JMPVAL: Touch Key clock frequency fine tune (only available in TKFJMP=0)

000: frequency slow

001~110: not valid

111: frequency fast

B5h.3~0 **TKTMRH:** Touch Key reference counter MSB[11~8]

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.5 **TKSOC:** Touch Key Start of Conversion

Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

Note: also refer to Section 6 for more information about Touch Key Interrupt enable and priority.

13. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. All of the IO pins can be the Common pins. User can flexibly adjust the Common pins and Segment pins. It is capable of driving the LCD panel with 169 dots (Max.) by 13 Commons (COM) and 13 Segments (SEG). The P0.0~P0.7 are used for Common pins COM00~COM07. The P1.0~P1.7 are used for Common pins COM10~COM17. The P2.0~P2.1 are used for Common pins COM20~COM21. The P3.0~P3.7 are used for Common pins COM30~COM37. Common pins are capable of driving 1/2 bias by setting the corresponding registers P0LOE, P1LOE, P2LOE or P3LOE. Refer to the following figures.

LCD COM00~07 Circuit

The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.

1/4 Duty, 1/2 Bias Output Waveform

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POLOE		POLOE							
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

92h.7~0 **POLOE:** P0.7~P0.0 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1LOE		P1LOE						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

D1h.7~0 **P1LOE:** P1.7~P1.0 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2LOE	_	_	_	—	_	—	P2L	.OE
R/W	_	_	_	—	_	—	R/	W
Reset				—		—	0	0

D2h.1~0 P2LOE: P2.1~P2.0 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3LOE	P3LOE							
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

D3h.7~0 **P3LOE:** P3.7~P3.0 LCD 1/2 bias output enable control

0: Disable

1: Enable

14. LED Controller/Driver

The chip supports a LED controller and driver by Matrix mode of operation. The LED Matrix mode can drive more number of LED pixels than the tradition mode, when they use the same number of pins. In this mode, it provides maximum 10 pins (LEDC0~C3, LEDS0~S5) to drive a LED module with 48 pixels. All 10 pins have a high sink current for driving LED directly. In the other hand, this LED controller also provides 3groups 8-level of brightness adjustment for all 10 pin. It can make the brightness smoother by setting the LEDSMDIS=0. To avoid LED flicker when the common signal is changing, the chip provides a dead time control. In the dead time period, segment pins will output a short inactive signal instead of changing the signal immediately. To start the LED scanning, it only has to set the LEDEN. Then H/W will control the Pin mode automatically. It also provides the scan hold function by setting LEDHOLD.

LEDEN	Duty	Matrix	Max pixels
0	Disable	-	-
1	1/8	4COM x 4SEG	32 (4x4x2)
2	1/9	4COM x 5SEG	40 (4x5x2)
3	1/10	4COM x 6SEG	48 (4x6x2)

Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
F000h	SEG3-COM0+	SEG2-COM0+	SEG1-COM0+	SEG0-COM0+	COM0-SEG3+	COM0-SEG2+	COM0-SEG1+	COM0-SEG0+
F001h	SEG3-COM1+	SEG2-COM1+	SEG1-COM1+	SEG0-COM1+	COM1-SEG3+	COM1-SEG2+	COM1-SEG1+	COM1-SEG0+
F002h	SEG3-COM2+	SEG2-COM2+	SEG1-COM2+	SEG0-COM2+	COM2-SEG3+	COM2-SEG2+	COM2-SEG1+	COM2-SEG0+
F003h	SEG3-COM3+	SEG2-COM3+	SEG1-COM3+	SEG0-COM3+	COM3-SEG3+	COM3-SEG2+	COM3-SEG1+	COM3-SEG0+
F004h	COM3-SEG5+	COM3-SEG4+	COM2-SEG5+	COM2-SEG4+	COM1-SEG5+	COM1-SEG4+	COM0-SEG5+	COM0-SEG4+
F005h	SEG5-COM3+	SEG5-COM2+	SEG5-COM1+	SEG5-COM0+	SEG4-COM3+	SEG4-COM2+	SEG4-COM1+	SEG4-COM0+

LRAM (External Data Memory)

Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
F000h	7	6	5	4	3	2	1	0
F001h	15	14	13	12	11	10	9	8
F002h	23	22	21	20	19	18	17	16
F003h	31	30	29	28	27	26	25	24
F004h	39	38	37	36	35	34	33	32
F005h	47	46	45	44	43	42	41	40

LED matrix mode corresponding display configuration table

LED 4*6 matrix mode

Note: LEDBRIT (B1h.2~0): LED number 0~31, 40~47 brightness control LEDBRIT1 (B2h.2~0): LED number 32, 34, 36, 38 brightness control LEDBRIT2 (B2h.6~4): LED number 33, 35, 37, 39 brightness control

Application Circuit: 4COM x 4SEG (1/8 Duty)

♦ Example:

MOV	DPTR,#0F000h	; LEDRAM0
MOV	A,#0FFh	
MOVX	@DPTR, A	; F000h = FFh
MOV	LEDCON,#056h	; LED duty = $1/8$
		; LEDPSC = $FRC/32$
		; Brightness=6

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
LEDCON	LED	DEN	LEDPSC		LEDHOLD		LEDBRIT		
R/W	R/	W	R/	W	R/W		R/W		
Reset	0	0	0	0	0	1	0	0	
B1h.7~6	LEDEN: LED enable and duty select								
	00: LED disable								
	01: LED 1/8 duty (4COM x 4SEG)								
	10: LED 1/	9 duty (4CO	M x 5SEG)						
	11: LED 1/	11: LED 1/10 duty (4COM x 6SEG)							
B1h.5~4	LEDPSC: LED clock prescaler select								
	00: LED clock is FRC divided by 64								
	01: LED cle	ock is FRC d	ivided by 32						
	10: LED cl	ock is FRC d	ivided by 16						
	11: LED clo	ock is FRC d	ivided by 8						
B1h.3	LEDHOLD:	LED hold f	unction						
	0:Release to	o run LED sc	anning						
	1: Hold LE	D scanning,	all LED pins	state are Hi-	Z				
B1h.2~0	LEDBRIT: LED COM0+ ~ COM3+ & SEG0+ ~ SEG3+ (LED number 0~31, 40~47) brightness								
	select								
	000: Level 0 (Darkest)								

111: Level 7 (Brightest)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON2	LEDSMDIS		LEDBRIT2			LEDBRIT1		
R/W	R/W		R/W			R/W		
Reset	0	1	1 0 0			1	0	0

B2h.7 **LEDSMDIS:** LED brightness smooth control 0: Brightness smooth enable

1: Brightness smooth disable

B2h.6~4 **LEDBRIT2:** LED SEG5+ (LED number 33, 35, 37, 39) brightness select 000: Level 0 (Darkest)

... 111: Level 7 (Brightest)

B2h.2~0 LEDBRIT1: LED SEG4+ (LED number 32, 34, 36, 38) brightness select 000: Level 0 (Darkest)

•••

111: Level 7 (Brightest)

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

15. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) module is capable of full-duplex, synchronous, serial communication between the MCU and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or flash memory, etc. The SPI runs at a clock rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven. Following figure shows the SPI system block diagram.

The features of the SPI module include:

- Master or Slave mode operation
- 3-wire or 4-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

SPI Function Pin	P1/P3 Mode	P1.n/P3.n SFR data
Master Mode, MISO	Mode1	1
Master Mode, SCK, MOSI	Mode2	Х
Slave Mode, MISO	Mode2	Х
Slave Mode, SCK, MOSI	Mode1	1
SS	Mode1	1

Pin Mode Setting for SPI

The four signals used by SPI are described below. The MOSI (P3.5) signal is an output from a Master Device and an input to Slave Devices. The signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO (P1.7) signal is an output from a Slave Device and an input to a Master Device. The signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred most-significant bit (MSB) or least-significant bit (LSB) first by setting the LSBF bit. The SCK (P3.6) signal is an output from a Master Device and an input to Slave Devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode. The SS (P3.4) signal is a low active slave select pin. In 4-wire Slave mode, the signal is ignored when the Slave modes. In Slave mode and the SSDIS is clear, the SPI active when SS stay low. For multiple-slave mode, only one slave device is selected at a time to avoid bus collision on the MISO line. In Master mode and the SSDIS is cleared, the MODF in SPSTA is set when this signal is low. For multiple-master mode, enable SS line to avoid multiple driving on MOSI and SCK lines from multiple masters.

Master Mode

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If the SPBSY bit is cleared, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the slave shift in from the MISO line at the same time. When the SPIF bit in the SPSTA becomes set at the end of the transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

Slave Mode

The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. If the SSDIS is cleared, the transmission will start when the SS become low and remain low until the end of a data transfer. If the SSDIS is set, the transmission will start when the SPEN bit in the SPCON is set, and don't care the SS. The data from a master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if the RCVBF is cleared. If the RCVBF is set, the newer receive data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{SYSCLK}/4$. In Slave mode, the SPBSY bit refers to the SS pin when the SSDIS bit is cleared, and refer to the SPEN bit when SSDIS bit is set.

Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when the CPOL bit is cleared, and is high when the CPOL bit is set. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when the CPHA bit is cleared. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when the CPHA bit is cleared. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when the CPHA bit is set. The figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.

Slave Mode Timing (CPHA=1)

In both Master and Slave modes, the SPIF bit is set by H/W at the end of a data transfer and generates an interrupt if SPI interrupt is enabled. The SPIF bit is cleared automatically when the program performs the interrupt service routines. S/W can also write 0 to clear this flag. If write data to SPDAT when the SPBSY is set, the WCOL bit will be set by H/W and generates an interrupt if SPI interrupt is enabled. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written. Write 0 to this bit or when SPBSY is cleared and rewrite data to SPDAT will clear this flag. The MODF bit is set when SSDIS is cleared and SS pin is pulled low in Master mode. If SPI interrupt is enabled, an interrupt will be generated. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W. Write 0 to this bit will clear this flag.

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SPCON	SPEN	MSTR	CPOL	CPHA	SSDIS	LSBF	SP	CR			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W/W			
Reset	0 0 0 0 0 0 0 0										
	SPEN: SPI enable 0: SPI disable 1: SPI enable MSTR: Master mode enable 0: Slave mode 1: Master mode										
BCh.5	CPOL: SPI clock polarity 0: SCK is low in idle state										
BCh.4	 SCK is high in idle state CPHA: SPI clock phase Data sample on first edge of SCK period Data sample on second edge of SCK period 										

涑

BCh.3	SSDIS: SS pin disable
	0: Enable SS pin
	1: Disable SS pin
BCh.2	LSBF: LSB first
	0: MSB first
	1: LSB first
BCh.1~0	SPCR: SPI clock rate
	00: $F_{SYSCLK}/2$
	01: $F_{SYSCLK}/4$
	10: $F_{SYSCLK}/8$
	11: F _{SYSCLK} /16

SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPSTA	SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	—	—		
R/W	R/W	R/W	R/W	R/W	R/W	R	—	—		
Reset	0	0	0	0	0	0	_			
BDh.7	SPIF: SPI in	terrupt flag								
	This is set	by H/W at th	e end of a da	ata transfer. (Cleared by H	/W when an	interrupt is v	vectored into.		
	Writing 0 to	o this bit will	clear this fla	ıg.						
BDh.6	WCOL: Wr	ite collision i	nterrupt flag							
					is set. Write	0 to this bit	or rewrite da	ta to SPDAT		
		SY is cleared		is flag.						
BDh.5	MODF: Mode fault interrupt flag									
	Set by H/W when SSDIS is cleared and SS pin is pulled low in Master mode. Write 0 to this bit will									
		0		e SPEN and	MSTR in SP	CON will be	cleared by H	I/W.		
BDh.4	RCVOVF: I			-						
	•			ansfer and R	CVBF is se	t. Write 0 to	o this bit or 1	read SPDAT		
	U	l clear this fl	0							
BDh.3	RCVBF: Re		U							
	•	v at the end	of a data trai	nsfer. Write () to this bit of	or read SPDA	AT register w	vill clear this		
	flag.	1 9								
BDh.2	SPBSY: SPI									
	Set by H/W	when a SPI	transfer is in	progress.						
CED DEL	D': 7	D'4 C	D'45	D'4 4	D'4 2	D'4 0	D'4 1	D'/ 0		

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SPDAT		SPDAT									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									

BEh.7~0 SPDAT: SPI transmit and receive data

The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.

16. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes a 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: X¹⁶ + X¹⁵ + X² + 1

SFR F1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCDL		CRCDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

F1h.7~0 CRCDL: 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCDH		CRCDH									
R/W		R/W									
Reset	1	1 1 1 1 1 1 1 1									
		I				I	I				

F2h.7~0 CRCDL: 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
CRCIN		CRCIN										
W		W										
Reset												
F21 7 0	CD CD CD	<u><u> </u></u>	•									

F3h.7~0 CRCIN: CRC input data register

17. In Circuit Emulation (ICE) Mode

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode (P3MOD0 = 0/1 and P3MOD1=0/1).
- 3. The Program Memory's addressing space 2D00h~2FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The T-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1.

Introduction to ICE tool option settings :

Flash Download Setup		Flash Download Setup	×
General No LCD Device Online check Device TM52FE8276 . Option Reset Option Make Config Word(hex) 0400 10 Don't Show ICE Message Don't Compile + Make *.tenx	Download Function Program Flash Verify Flash QTP Form Generator Make Version Info Show AP Message	Ger Smart Option 01. PROT [1:7] : Disable • 02. XRSTE [1:6] : Disable • 03. LVR [1:5"3] : LV Reset 2.4V • 04. PREAD [1:2] : Enable • 05. MVCLOCK [1:1] : MOVC Unlock • 06. FRCPSC [1:0] : FRC/1 • 07. IAP data reserve range [2:3"0] : No reserve range •	?×
Item Description 01. PROT (1:7) : 02. XRSTE (1:6) : 03. LVR (1:5-3) : 04. PREAD (1:2) : 05. MVCLOCK (1:1) : 06. FRCPSC (1:0) : 07. IAP data reserve range (2:3~0) : 08. ICE Mode(2:4) : 09. On Chip CRC16(2:5) :	Selected Function Disable Disable LV Reset 2.4V Enable MOVC Unlock FRC/1 No reserve range 4-Wire Disable	08. ICE Mode[2:4] : [4-Wire] 09. On Chip CRC16[2:5] : Disable] OK Cancel 0 0 0 0 0 0 0 1 1	*
	ОК	ОК	

No.	Item	Description
01	PROT	Enable: Flash code is protect, Writer cannot access the ROM code
01	FROI	Disable: Flash code is not protect, Writer can access the ROM code (default)
02	XRSTE	Enable: P3.7 is external reset pin
02	AKSTE	Disable: P3.7 is normal I/O pin (default)
		LV Reset 4.3V: LVR select 4.3V
		LV Reset 4.0V: LVR select 4.0V
		LV Reset 3.8V: LVR select 3.8V
03	LVRE	LV Reset 3.5V: LVR select 3.5V
03	LVKL	LV Reset 3.2V: LVR select 3.2V
		LV Reset 2.9V: LVR select 2.9V
		LV Reset 2.7V: LVR select 2.7V
		LV Reset 2.4V: LVR select 2.4V (default)
04	PREAD	Reserved
		MOVC Lock: the MOVC & MOVX instruction's accessibility to MOVC-Lock
05	MVCLOCK	area is limited.
05	MITCLOCK	MOVC Unlock: the MOVC & MOVX instruction's accessibility to MOVC-Lock
		area is unlimited. (default)
06	FRCPSC	Reserved
		No reserve range: ROM range is not provided for IAP data (default)
		16 bytes [3FE0~3FEF]: Reserve 16 bytes ROM range for IAP data use
		48 bytes [3FC0~3FEF]: Reserve 48 bytes ROM range for IAP data use
07	IAP data	240 bytes [3F00~3FEF]: Reserve 240 bytes ROM range for IAP data use
07	reserve range	496 bytes [3E00~3FEF]: Reserve 496 bytes ROM range for IAP data use
		1008 bytes [3C00~3FEF]: Reserve 1008 bytes ROM range for IAP data use
		2032 bytes [3800~3FEF]: Reserve 2032 bytes ROM range for IAP data use
		4080 bytes [3000~3FEF]: Reserve 4080 bytes ROM range for IAP data use
08	ICE Mode	Reserved
00	On Chin CDC14	Enable: On chip CRC-16 function enable
09	On Chip CRC16	Disable: On chip CRC-16 function disable (default)

SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
80h	0000-0000	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
81h	0000-0111	SP				S	Р			
82h	0000-0000	DPL				DI	PL			
83h	0000-0000	DPH				DI	PH			
87h	0xxx-0000	PCON	SMOD	—	-	-	GF1	GF0	PD	IDL
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO
	0000-0000	TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N	TM	OD0
	0000-0000	TL0					LO			
	0000-0000	TL1				T				
	0000-0000	TH0				TI				
	0000-0000	TH1				TI				
-	0100-0000	SCON2	SM	-	-	REN2	TB82	RB82	TI2	RI2
	XXXX-XXXX	SBUF2	54.5	74.4	24.4		UF2	54.6	54.4	51.0
	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
	0000-0000	POOE					OE			
	0000-0000	POLOE				POL		001	DOM	
	xxxx-0101 0x00-00xx	P2MOD	– UART1W	-	- WD	– TPSC	P2M AD0			IOD0
-	0x00-00xx xx00-x000	OPTION INTFLG	UARTIW	_	TKIF	ADIF	- AD	IE2	– P1IF	TF3
	0000-0000		_	-	ТКІГ		– TKUP	1122	гшг	113
	xxxx-xx00	SWCMD			T		RST / WDTO)		
	0000-0000	SCON	SM0	SM1	SM2	REN	1	RB8	TI	RI
	xxxx-xxxx	SBUF	51/10	51/11	51112		UF	1.00		
		PWM0PRD				PWM				
		PWM0DH					10DH			
		PWM1PRD				PWM				
9Dh	1000-0000	PWM1DH		PWM1DH						
9Eh	1111-1111	PWM2PRD		PWM2PRD						
9Fh	1000-0000	PWM2DH				PWN	12DH			
A0h	1111-1111	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
Alh	1000-1000	PWMCON	PWM	1CKS	PWN	/IDL	PWM	OCKS	PWN	40DL
		P1MODL	P1M	OD3	P1M	IOD2	P1M	OD1	P1M	IOD0
		P1MODH	P1M			IOD6	P1M			IOD4
	0101-0101		P3M			IOD2	P3M			IOD0
	0101-0101		P3M		-	IOD6	P3M			IOD4
		PINMOD	PWM1OE		TCOE	T2OE	-	-	-	TOOE
		PWMCON2	-	-	-	PWM2OE	PWM			A2DL
-	0x00-0000	IE DITE1	EA	_	ET2	ES	ET1	EX1	ET0	EX0
	xx00-0000	INTE1	_	-	ES2	SPIE	ADTKIE	EX2	PIE	TM3IE
	XXXX-XXXX XXXX-XXXX	ADTKDT ADCDH		ADO	JDL	100	CDH	1 K	DH	
	XXXX-XXXX	TKDL					DL			
	x100-0000	TKFREQ	_			1 K	TKFREQ			
	1xxx-1111	TKCON	TKPD	TKEOC	-	_		TK	CHS	
	0000-xxxx	POADIE	2	POA	DIE	1	_	-	_	-
	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
		LEDCON	LED			PSC	LEDHOLD		LEDBRIT	
		LEDCON2	LEDSMDIS		LEDBRIT2		-		LEDBRIT1	
B4h	1111-1111	TKTMRL				TKT	MRL			
B5h	0100-0000	TKCON2	TKFJMP		JMPVAL			TKT	MRH	
B6h	xxxx-1111	ADCHS	_	_	_	-		AD	CHS	
	xx00-0000	IP	-	-	PT2	PS	PT1	PX1	PT0	PX0
	xx00-0000	IPH	-	-	PT2H	PSH	PT1H	PX1H	РТОН	PX0H
	xx00-0000	IP1	-	-	PS2	PSPI	PADTKI	PX2	PP1	PT3
	xx00-0000	IP1H	_	-	PS2H	PSPIH	PADTKIH	PX2H	PP1H	PT3H
BCh			CDENT	MCTD	CPOL	CPHA	SSDIS	LSBF	SP	CR
	0000-0000	SPCON	SPEN	MSTR					51	
		SPCON SPSTA SPDAT	SPEN SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	-	_

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N	
C9h	000x-xxxx	IAPWE]	IAPWE / IAP	TO / EEPWE				
CAh	0000-0000	RCP2L		RCP2L							
CBh	0000-0000	RCP2H		RCP2H							
CCh	0000-0000	TL2		TL2							
CDh	0000-0000	TH2		TH2							
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV	F1	Р	
D1h	0000-0000	P1LOE				P1I	LOE				
D2h	xxxx-xx00	P2LOE	_	-	_	_	– – P2LOE				
D3h	0000-0000	P3LOE		P3LOE							
D8h	0010-0011	CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLF	XPSC .	
E0h	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	
EFh	xx00-0000	AUX3	—	_		TM3PSC		VBGEN	ADC	VERFS	
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	
F1h	1111-1111	CRCDL				CRO	CDL				
F2h	1111-1111	CRCDH				CRO	CDH				
F3h	0000-0000	CRCIN				CR	CIN				
F5h	xxxx-xxxx	CFGBG	-	-	-	-		BGT	RIM		
F6h	xxxx-xxxx	CFGWL	-				FRCF				
F7h	0000-0110	AUX2	WI	DTE	PWRSAV	VBGOUT	_	IAP	ΤE	LVRPD	
F8h	0000-0000	AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL	

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3FFBh	CFGBG	-	-	-	-	BGTRIM			
3FFDh	CFGWL	-		FRCF					
3FFFh	CFGWH	PROT	XRSTE		LVRE		PREAD	MVCLOCK	FRCPSC

SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
80h	P0	7~0	P0	R/W	00h	Port0 has no pin out, so P0 is used as general purpose register			
81h	SP	7~0	SP	R/W	07h	Stack Point			
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte			
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte			
		7	SMOD	R/W	0	Set 1 to enable UART1 double baud rate			
		3	GF1	R/W	0	General purpose flag bit			
87h	87h PCON		GF0	R/W	0	General purpose flag bit			
			PD	R/W	0	Power down control bit, set 1 to enter STOP mode			
		0	IDL	R/W	0	Idle control bit, set 1 to enter IDLE mode			
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.			
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops			
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.			
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops			
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.			
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin			
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.			
		0	ITO	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin			
		7	GATE1	R/W	0	Timer1 gating control bit 0: Timer1 enable when TR1 bit is set 1: Timer1 enable only while the INT1 pin is high and TR1 bit is set			
		6	CT1N	R/W	0	Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin's negative edge			
		5~4	TMOD1	R/W	00	Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops			
89h	TMOD	3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set			
		2	CT0N	R/W	0	Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge			
		1~0	TMOD0	R/W	00	 Timer0 mode select 00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow. 11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits. 			
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte			
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte			
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte			
8Dh	TH1	7~0	TH1	R/W	00h	Fimer1 data high byte			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description	
		7	CM	D/W	0	UART2 Serial port mode select bit	
		7	SM	R/W	0	0: Mode1: 8 bit UART2, Baud Rate is variable 1: Mode3: 9 bit UART2, Baud Rate is variable	
						UART2 reception enable	
		4	REN2	R/W	0	0: Disable reception	
	-		TB82	R/W	0	1: Enable reception Transmit Bit 8, the ninth bit to be transmitted in Mode3	
8Eh	SCON2	3	RB82	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode3	
		2	KD02	IX/ W	0	Transmit interrupt flag	
		1	TI2	R/W	0	Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.	
		0	RI2	R/W	0	Receive interrupt flag Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.	
8Fh	SBUF2	7~0	SBUF2	R/W	-	UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.	
90h	P1	7~0	P1	R/W	FFh	Port1 data	
					-	Port0 CMOS Push-Pull output enable control	
91h	POOE	7~0	POOE	R/W	00h	0: Disable 1: Enable	
				Port0 LCD 1/2 bias output enable control			
92h	1: Enable						
						1: Enable P2.1 Pin Control	
	P2MOD	3~2	P2MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2	
93h						11: not defined	
<i>,</i> 011		1~0	P2MOD0	R/W	01	P2.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2	
			1210000	IC/ W	01	11: not defined	
		7	UART1W	R/W	0	Set 1 to enable one wire UART1 mode, both TXD/RXD use P3.1 pin.	
							Watchdog Timer pre-scalar time select
		5-1	5~4 WDTPSC	R/W	00	00: 480ms WDT overflow rate 01: 240ms WDT overflow rate	
						10: 120ms WDT overflow rate	
94h	OPTION					11: 60ms WDT overflow rate	
						ADC clock rate select 00: F _{SYSCLK} /32	
		3~2	ADCKS	R/W	00	$01: F_{\text{SYSCLK}}/16$	
				10 11		10: F _{SYSCLK} /8	
						11: F _{SYSCLK} /4	
		5	TKIF	R/W	0	Touch Key Interrupt Flag Set by H/W at the end of TK conversion if SYSCLK is fast enough.	
		_			-	S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag.	
				DAV	_	ADC interrupt flag	
		4	ADIF	R/W	0	Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.	
						External Interrupt 2 (INT2 pin) edge flag	
						Set by H/W when a falling edge is detected on the INT2 pin, no	
		2	IE2	R/W	0	matter the EX2 is 0 or 1. It is cleared automatically when the	
95h	INTFLG					program performs the interrupt service routine. S/W can write FBh to INTFLG to clear this bit.	
					1	Port1 pin change Interrupt flag	
		1	DIT	D/117	_	Set by H/W when a Port1 pin state change is detected and its interrupt	
		1	P1IF	R/W	0	enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt	
						service routine. S/W can write FDh to INTFLG to clear this bit.	
						Timer3 Interrupt Flag	
		0	TF3	R/W	0	Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt	
			-			service routine. S/W can write FEh to INTFLG to clear this bit.	

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
0.01	DAILWIND	-	DINUUN	D (III	0.01	P1.7~P1.0 pin individual Wake-up/Interrupt enable control		
96h	P1WKUP	7~0	P1WKUP	R/W	00h	0: Disable; 1: Enable.		
		7~0	SWRST	W		Write 56h to generate S/W Reset		
		7~0	IAPALL	W		Write 65h to set IAPALL control flag; Write other value to clear IAPALL		
97h	SWCMD	1	WDTO	R	0	flag. It is recommended to clear it immediately after IAP access. WatchDog Time-Out flag		
						Flag indicates Flash memory sectors can be accessed by IAP or no		
		0	IAPALL	R	0	This bit combines with MVCLOCK to define the accessible IAP area.		
		7	SM0	R/W	0	UART1 Serial port mode select bit 0, 1 (SM0, SM1) = (2)		
						00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2 01: Mode1: 8 bit UART1, Baud Rate is variable		
		6	SM1	R/W	0	10: Mode2: 9 bit UART1, Baud Rate= $F_{SYSCLK}/32$ or /64		
						11: Mode3: 9 bit UART1, Baud Rate is variable		
						Serial port mode select bit 2 SM2 enables multiprocessor communication over a single serial line		
		-	61 (2)	D /III	0	and modifies the above as follows. In Modes 2 & 3, if SM2 is set		
		5	SM2	R/W	0	then the received interrupt will not be generated if the received ninth		
0.01						data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.		
98h	SCON	4	REN	R/W	0	Set 1 to enable UART1 Reception		
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3		
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and		
		2	KD0	IV W	0	3 or the stop bit is Mode 1 if SM2=0		
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the		
						beginning of the stop bit in other modes. Must be cleared by S/W		
			DI	D /IV	0	Receive Interrupt flag		
			RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.		
						UART1 transmit and receive data. Transmit data is written to this		
99h			location and receive data is read from this location, but the paths are					
9Ah	PWM0PRD	7~0	PWM0PRD	R/W	FFh	independent. PWM0 8-bit period register		
9Bh	PWM0DH	7~0	PWM0DH	R/W	80h	bits 9~2 of the PWM0 10-bit duty register		
9Ch	PWM1PRD	7~0	PWM1PRD	R/W	FFh	PWM1 8-bit period register		
9Dh	PWM1DH	7~0	PWM1DH	R/W	80h	bits 9~2 of the PWM1 10-bit duty register		
9Eh	PWM2PRD	7~0	PWM2PRD	R/W	FFh	PWM2 8-bit period register		
9Fh	PWM2DH	7~0	PWM2DH	R/W	80h	bits 9~2 of the PWM2 10-bit duty register		
A ()1	D2	7~2	P2.7~P2.2	R/W	3Fh	P2.7~P2.2 have no pin out, so these bits are used as general purpose		
A0h	P2	1~0	P2.1~P2.0	R/W	11	register P2.1~P2.0 data		
						PWM1 clock source		
			DUDALOVA	D /IV	10	00: F _{SYSCLK} /4		
		7~6	PWM1CKS	R/W	10	01: F _{SYSCLK} /2 10: F _{SYSCLK}		
						11: FRC		
A1h	PWMCON	5~4	PWM1DL	R/W	00	bits 1~0 of the PWM1 10-bit duty register		
						PWM0 clock source 00: F _{SYSCLK} /4		
		3~2	PWM0CKS	R/W	10	$01: F_{\text{SYSCLK}}/2$		
						10: F _{SYSCLK}		
		1~0	PWM0DL	R/W	00	11: FRC hits 1, 0 of the PW/M0 10 hit duty register		
		1~0	r wimudt	K/ W	00	bits 1~0 of the PWM0 10-bit duty register P1.3 Pin Control		
		7~6	P1MOD3	R/W	01	00: Mode0; 01: Mode1; 10: Mode2		
A2h	P1MODL					11: Mode3, P1.3 is ADC input		
		5~4	P1MOD2	R/W	01	P1.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2		
			P1MOD2	R/W	01	11: Mode3, P1.2 is ADC input		

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		2 2	DIMODI	DAV	01	P1.1 Pin Control
		3~2	P1MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.1 is ADC input
						P1.0 Pin Control
		1~0	P1MOD0	R/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.0 is ADC input
						P1.7 Pin Control
			P1MOD7	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3 P1.6 Pin Control
			P1MOD6	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
A3h	P1MODH					11: Mode3 P1.5 Pin Control
		3~2	P1MOD5	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.5 is ADC input
		1~0	P1MOD4	R/W	01	P1.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.4 is ADC input
		7~6	P3MOD3	R/W	01	P3.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2
		/0	150005	10/11	01	11: Mode3, P3.3 is ADC input
		5 1	P3MOD2	R/W	01	P3.2 Pin Control
	A4h P3MODL	5~4	P5MOD2	K/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.2 is ADC input
A4h						P3.1 Pin Control
		3~2	P3MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.1 is ADC input
						P3.0 Pin Control
		1~0	P3MOD0	R/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.0 is ADC input
						P3.7 Pin Control
		7~6	P3MOD7	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3 P3.6 Pin Control
		5~4	P3MOD6	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
A5h	P3MODH					11: Mode3 P3.5 Pin Control
		3~2	P3MOD5	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3 P3.4 Pin Control
		1~0	P3MOD4	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3
		7	PWM10E	R/W	0	PWM1 control 0: PWM1 disable
					-	1: PWM1 enable and signal output to P1.3 pin
		6	PWM0OE	R/W	0	PWM0 control 0: PWM0 disable
A6h	PINMOD	6	PWMUUE	K/ W	0	1: PWM0 enable and signal output to P1.2 pin
		5	TCOE	R/W	0	Set 1 to enable "System clock divided by 2" (CKO) output to P1.4 pin
		4	T2OE	R/W	0	Set 1 to enable "Timer2 overflow divided by 2" (T2O) output to P1.0 pin
		0	TOOE	R/W	0	Set 1 to enable "Timer0 overflow divided by 64" (T0O) output to P3.4 pin
		4	PWM2OE	R/W	0	PWM2 control 0: PWM2 disable
		+	1 WW120E	12/ 99	0	1: PWM2 enable and signal output to P1.6 pin
						PWM2 clock source
A7h	PWMCON2	3~2	PWM2CKS	R/W	10	$\begin{array}{l} 00: F_{\text{SYSCLK}}/4 \\ 01: F_{\text{SYSCLK}}/2 \end{array}$
					10	10: F _{SYSCLK}
		1.0	DUU (AD)	D/TY	0.0	11: FRC
		1~0	PWM2DL	R/W	00	bits 1~0 of the PWM2 10-bit duty register

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
		7	EA	R/W	0	Global interrupt enable control.0: Disable all Interrupts.1: Each interrupt is enabled or disabled by its own interrupt control bit.			
			ET2	R/W	0	Set 1 to enable Timer2 interrupt			
A8h	IE	4	ES	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt			
Aon	IL	3	ET1	R/W	0	Set 1 to enable Timer1 Interrupt			
		2	EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Stop mode wake up capability			
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt			
		0	EX0	R/W	0	Set 1 to enable external INTO pin Interrupt & Stop mode wake up capability			
		5	ES2	R/W	0	Set 1 to enable Serial Port (UART2) interrupt			
		4	SPIE	R/W	0	Set 1 to enable SPI interrupt			
		3	ADTKIE	R/W	0	Set 1 to enable ADC/Touch Key Interrupt			
A9h	INTE1	2	EX2	R/W	0	Set 1 to enable external INT2 pin Interrupt & Stop mode wake up capability			
		1	P1IE	R/W	0	Set 1 to enable Port1 Pin Change Interrupt			
		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt			
AAh	ADTKDT	7~4	4 ADCDL R – ADC data bit 3~0		ADC data bit 3~0				
71711	ADIADI	3~0	TKDH	R	—	Touch Key counter data bit 11~8			
ABh	ADCDH	7~0	ADCDH	R	-	ADC data bit 11~4			
ACh	TKDL	7~0	TKDL	R	-	Touch Key counter data bit 7~0 Touch Key oscillation capacitor adjustment			
ADh	TKFREQ	6~0	TKFREQ	R/W	40h	00: TKDATA is smallest 7F: TKDATA is biggest Note: FW must set TKFREQ to satisfy below requirement. If JMPVAL=000: TKDATA near to 1.81*TKTMR If JMPVAL=111: TKDATA near to 1.65*TKTMR			
		7	TKPD	R/W	1	Touch Key Power Down 0: Touch Key enable; 1: Touch Key disable			
		6	TKEOC	R	1	Touch Key end of conversion flag 0: Indicates conversion is in progress 1: Indicates conversion is finished			
AEh	AEh TKCON		TKCHS	R/W	1111	Touch Key channel select 0000: TK0 (P3.3) 0001: TK1 (P3.2) 0010: TK2 (P3.1) 0011: TK3 (P3.0) 0100: TK4 (P1.0) 0101: TK5 (P1.1) 0110: TK6 (P1.2) 0111: TK7 (P1.3) 1000: TK8 (P1.4) 1001: TK9 (P1.6) 1010: TK10 (P0.4) 1011: TK11 (P0.5) 1100: TK12 (P0.6) 1101: TK13 (P3.4) 1110: TK14 (P1.5) 1111: internal reference key			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description	
AFh	POADIE	7~4	P0ADIE	R/W	0000	ADC channel input Enable 0000: P0.7~P0.4 are digital input 1xxx: P0.7 is ADC input x1xx: P0.6 is ADC input xx1x: P0.5 is ADC input xxx1: P0.4 is ADC input	
B0h	P3	7~0	P3	R/W	FFh	Port3 data	
		7~6	LEDEN	R/W	00	LED enable and duty select 00: LED disable 01: LED 1/8 duty (4COM x 4SEG) 10: LED 1/9 duty (4COM x 5SEG) 11: LED 1/10 duty (4COM x 6SEG)	
B1h	LEDCON	5~4	LEDPSC	R/W	00	LED clock prescaler select 00: LED clock is FRC divided by 64 01: LED clock is FRC divided by 32 10: LED clock is FRC divided by 16 11: LED clock is FRC divided by 8	
		3	LEDHOLD	R/W	0	LED hold function 0:Release to run LED scanning 1: Hold LED scanning, all LED pins state are Hi-Z	
		2~0	LEDBRIT	R/W	100	LED COM0+ ~ COM3+ & SEG0+ ~ SEG3+ (LED number 0~31, 40~47) brightness select 000: Level 0 (Darkest) 	
		7	LEDSMDIS	R/W	0	111: Level 7 (Brightest) LED brightness smooth control 0: Brightness smooth enable 1: Brightness smooth disable	
B2h	LENCON2	6~4	LEDBRIT2	R/W	100	LED SEG5+ (LED number 33, 35, 37, 39) brightness select 000: Level 0 (Darkest) 111: Level 7 (Brightest)	
		2~0	LEDBRIT1	R/W	100	LED SEG4+ (LED number 32, 34, 36, 38) brightness select 000: Level 0 (Darkest) 111: Level 7 (Brightest)	
B4h	TKTMRL	7~0	TKTMRL	R/W	FFh	Touch Key reference counter LSB[7~0]	
		7	TKFJMP	R/W	0	Touch Key clock frequency auto-change selection 0: fix frequency 1: auto-change	
B5h	TKCON2	6~4	JMPVAL	R/W	100	Touch Key clock frequency fine tune (only available in TKFJMP=0) 000: frequency slow 001~110: not valid 111: frequency fast	
		3~0	TKTMRH	R/W	0	Touch Key reference counter MSB[11~8]	
		R/W	1111	ADC channel select 0000: AD0 (P3.3) 0001: AD1 (P3.2) 0010: AD2 (P3.1) 0011: AD3 (P3.0) 0100: AD4 (P1.0) 0101: AD5 (P1.1) 0110: AD6 (P1.2) 0111: AD7 (P1.3) 1000: AD8 (P1.4) 1001: AD9 (P1.5) 1010: AD10 (P0.7) 1011: V _{BG} (Internal Bandgap Reference Voltage) 1100: AD12 (P0.4) 1101: AD13 (P0.5) 1110: AD14 (P0.6) 1111: V _{CC} /4			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		5	PT2	R/W	0	Timer2 Interrupt Priority Low bit
		4	PS	R/W	0	Serial Port (UART1) Interrupt Priority Low bit
		3	PT1	R/W	0	Timer1 Interrupt Priority Low bit
B8h	IP	2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit
		4	PSH	R/W	0	Serial Port (UART1) Interrupt Priority High bit
		3	PT1H	R/W	0	Timer1 Interrupt Priority High bit
B9h	IPH	2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit
		1	PT0H	R/W	0	Timer0 Interrupt Priority High bit
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit
		5	PS2	R/W	0	Serial Port (UART2) interrupt priority low bit
		4	PSPI	R/W	0	SPI interrupt priority low bit
		3	PADTKI	R/W	0	ADC/Touch Key Interrupt Priority Low bit
BAh	IP1	2	PX2	R/W	0	External INT2 Pin Interrupt Priority Low bit
		1	PP1	R/W	0	Port1 pin change Interrupt Priority Low bit
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit
			PS2H	R/W	0	Serial Port (UART2) interrupt priority high bit
		4	PSPIH	R/W	0	SPI interrupt priority high bit
		3	PADTKIH	R/W	0	ADC/Touch Key Interrupt Priority High bit
BBh	IP1H	2	PX2H	R/W	0	External INT2 Pin Interrupt Priority High bit
		1	PP1H	R/W	0	Port1 Interrupt Priority High bit
		0	РТ3Н	R/W	0	Timer3 Interrupt Priority High bit
						SPI enable
		7	SPEN	R/W	0	0: SPI disable
						1: SPI enable Master mode enable
		6	MSTR	R/W	0	0: Slave mode
						1: Master mode
		5	CPOL	R/W	0	SPI clock polarity
						0: SCK is low in idle state 1: SCK is high in idle state
						SPI clock phase
		4	CPHA	R/W	0	0: Data sample on first edge of SCK period
BCh	SPCON					1: Data sample on second edge of SCK period
		3	SSDIS	R/W	0	SS pin disable 0: Enable SS pin
		5	55215	IV/ VV	Ū	1: Disable SS pin
						LSB first
		2	LSBF	R/W	0	0: MSB first
						1: LSB first SPI clock rate
						00: FSYSCLK/2
		1~0	SPCR	R/W	00	01: FSYSCLK/4
						10: FSYSCLK/8
						11: FSYSCLK/16 SPI interrupt flag
		7	SPIF	R/W	0	This is set by H/W at the end of a data transfer. Cleared by H/W
		/	2112		U	when an interrupt is vectored into. Writing 0 to this bit will clear this
BDh	SPSTA					flag. Write collision interrupt flag
			WGGT	D	c	Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to
		6	WCOL	R/W	0	this bit or rewrite data to SPDAT when SPBSY is cleared will clear
		1				this flag.

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
		5	MODF	R/W	0	Mode fault interrupt flag Set by H/W when SSDIS is cleared and SS pin is pulled low in Master mode. Write 0 to this bit will clear this flag. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W.			
		4	RCVOVF	R/W	0	Received buffer overrun flag Set by H/W at the end of a data transfer and RCVBF is set. Write 0 to this bit or read SPDAT register will clear this flag.			
	3		RCVBF	R/W	0	Receive buffer full flag Set by H/W at the end of a data transfer. Write 0 to this bit or read SPDAT register will clear this flag.			
		2	SPBSY	R	0	SPI busy flag Set by H/W when a SPI transfer is in progress.			
BEh	SPDAT	7~0	SPDAT	R/W	0	SPI transmit and receive data The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.			
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.			
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.			
		5	RCLK	R/W	0	UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3			
		4	TCLK	R/W	0	UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3			
C8h	T2CON	3	EXEN2	R/W	0	 T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0 			
		2	TR2	R/W	0	Timer2 run control 0:timer stops 1:timer runs			
		1	CT2N	R/W	0	Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin's negative edge			
		0	CPRL2N	R/W	0	 Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow. 			
		7~0	IAPWE	w	_	Write 47h to set IAPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after IAP write.			
		7~0	EEPWE	w	_	Write E2h to set EEPWE control flag; Write other value to clear IAPWE and EEPWE flag. It is recommended to clear it immediately after EEPROM write.			
C9h	IAPWE	7	IAPWE	R	0	Flag indicates Flash memory can be written by IAP or not 0: IAP Write disable 1: IAP Write enable			
		6	ΙΑΡΤΟ	R	0	IAP (or EEPROM write) Time-Out flag Set by H/W when IAP (or EEPROM write) Time-out occurs. Cleared by H/W when IAPWE=0 (or EEPWE=0).			
		5	EEPWE	R	0	Flag indicates EEPROM memory can be written or not 0: EEPROM Write disable 1: EEPROM Write enable			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description			
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte			
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte			
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte			
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte			
CDII	1112	7~0	CY	R/W	0	ALU carry flag			
		6	AC	R/W	0	ALU auxiliary carry flag			
		5	F0	R/W	0	General purpose user-definable flag			
	O0h PSW		RS1	R/W	0	Register Bank Select bit 1			
D0h			RS0	R/W	0	Register Bank Select bit 0			
		3	OV OV	R/W	0	ALU overflow flag			
		1		R/W	0	General purpose user-definable flag			
		1 0	P	R/W	0	Parity flag			
		0	P	K/ W	0				
D1h	P1LOE	7~0	P1LOE	R/W	00h	Port1 LCD 1/2 bias output enable control 0: Disable 1: Enable			
╞──┤		┟──┨			ļ	Port2 LCD 1/2 bias output enable control			
D2h	P2LOE	1~0	P2LOE	R/W					
						1: Enable			
			DAT 05			Port3 LCD 1/2 bias output enable control 0: Disable			
D3h	P3LOE	7~0	P3LOE	R/W	00h	0: Disable 1: Enable			
						Slow clock Type. This bit can be changed only in Fast mode			
		7	SCKTYPE	R/W	0	(SELFCK=1)			
			SUNTIPE	K/W	0	0: SRC			
						1: SXT, P2.0 and P2.1 are crystal pins Fast clock type. This bit can be changed only in Slow mode			
						(SELFCK=0).			
		6	FCKTYPE	R/W	0	0: FRC			
						1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for			
		5	STPSCK	R/W	1	FXT Set 1 to stop Slow clock in Stop Mode.			
						Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current			
D8h	CLKCON	4	STPPCK	R/W	0	reducing.			
		3	STPFCK	R/W	0	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.			
						System clock select. This bit can be changed only when STPFCK=0.			
		2	SELFCK	R/W	0	0: Slow clock			
						1: Fast clock			
						System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16			
		1~0	CLKPSC	R/W	11	01: System clock is Fast/Slow clock divided by 10			
		-				10: System clock is Fast/Slow clock divided by 2			
						11: System clock is Fast/Slow clock divided by 1			
E0h	ACC	7~0	ACC	R/W	00h	Accumulator			
						Timer3 Interrupt rate 000: Timer3 Interrupt rate is 32768 Slow clock cycle			
						000: Timer3 Interrupt rate is 16384 Slow clock cycle			
						010: Timer3 Interrupt rate is 8192 Slow clock cycle			
		5~3	TM3PSC	R/W	000	011: Timer3 Interrupt rate is 4096 Slow clock cycle			
						100: Timer3 Interrupt rate is 2048 Slow clock cycle 101: Timer3 Interrupt rate is 1024 Slow clock cycle			
EFh	AUX3	U X3				110: Timer3 Interrupt rate is 512 Slow clock cycle			
						111: Timer3 Interrupt rate is 256 Slow clock cycle			
						VBG enable control			
		2	VBGEN	R/W	0	0: VBG/VBGO disable at Idle and Stop mode 1: Force VBG/VBGO to be enabled, included in Idle mode, but			
				17/ 44		disabled in Stop mode			
						×			

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description	
		1~0	ADCVREFS	R/W	00	ADC reference voltage (V _{REFS}) select 00: V _{CC} 01: 2.5V 10: 3V 11: 4V	
F0h	В	7~0	В	R/W	00h	B register	
F1h	CRCDL	7~0	CRCDL	R/W	FFh	16-bit CRC data bit 7~0	
F2h	CRCDH	7~0	CRCDH	R/W	FFh	16-bit CRC data bit 15~8	
F3h	CRCIN	7~0	CRCIN	W	_	CRC input data	
F5h	CFGBG	3~0	BGTRIM	R/W	_	VBG trimming value	
F6h	CFGWL	6~0	FRCF	R/W	_	FRC frequency adjustment 00h: lowest frequency 7Fh: highest frequency	
			WDTE	R/W	_	Watchdog Timer Reset control 0x: WDT disable 10: WDT enable in Fast/Slow mode, disable in Idle/Stop mode 11: WDT always enable	
		5	PWRSAV	R/W	_	Set 1 to reduce the chip's power consumption at Idle and Stop Mode.	
		4	VBGOUT	R/W	0	Bandgap voltage output control 0: P3.2 as normal I/O 1: Bandgap voltage output to P3.2 pin, when ADCHS = 1011b	
F7h	AUX2	3	_	-	0	Reserved, Keep 0	
		2~1	IAPTE	R/W	11	IAP (or EEPROM write) watchdog timer enable 00: Disable 01: wait 0.9mS trigger watchdog time-out flag 10: wait 3.6mS trigger watchdog time-out flag 11: wait 7.2mS trigger watchdog time-out flag LVR power down	
		0	LVRPD	R/W	0	0: LVR enable 1: LVR disable	
		7	CLRWDT	R/W	0	Set 1 to clear WDT, H/W auto clear it at next clock cycle	
		6	CLRTM3	R/W	0	Set 1 to clear Timer3, HW auto clear it at next clock cycle.	
		5	TKSOC	R/W	0	Touch Key Start of Conversion Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.	
		4	ADSOC	R/W	0	ADC Start of Conversion Set 1 to start ADC conversion. Cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.	
F8h	AUX1	3	CLRPWM0	R/W	0	PWM0 clear enable 0: PWM0 is running 1: PWM0 is cleared and held	
		2	T2SEL	R/W	0	Timer2 Counter mode, T2 pin input select 0: P1.0 (T2) 1: Slow clock/16	
		1	T1SEL	R/W	0	Timer1 Counter mode, T1 pin input select 0: P3.5 (T1) 1: Slow clock/16	
			DPSEL	R/W	0	Active DPTR Select	

Adr	Flash	Bit#	Bit Name	Description						
3FFBh	CFGBG	3~0	BGTRIM	FRC frequency adjustment.						
_			_	VBG is trimmed to 1.22V in chip manufacturing. BGTRIM records the adjustment data.						
				FRC frequency adjustment.						
3FFDh	CFGWL	6~0	FRCF	FRC is trimmed to 14.7456 MHz in chip manufacturing. FRCF records the adjustme						
				data.						
		7	PROT	Flash Code Protect, 1=Protect						
		6	XRSTE	External Pin Reset enable, 1=enable.						
			LVRE	Low Voltage Reset function select						
				000: Set LVR at 2.4V 100: Set LVR at 3.5V						
	CECHUI	5~3		001: Set LVR at 2.7V 101: Set LVR at 3.8V						
3FFFh	CFGWH			010: Set LVR at 2.9V 110: Set LVR at 4.0V						
				011: Set LVR at 3.2V 111: Set LVR at 4.3V						
		2	PREAD	Reserved						
		1	MVCLOCK	If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.						
		0	FRCPSC	Reserved						

INSTRUCTION SET

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes 1~8 System clock cycles to execute as listed in the 'cycle' column below.

	ARITHMETIC			
Mnemonic	Description	byte	cycle	opcode
ADD A,Rn	Add register to A	1	2	28-2F
ADD A,dir	Add direct byte to A	2	2	25
ADD A,@Ri	Add indirect memory to A	1	2	26-27
ADD A,#data	Add immediate to A	2	2	24
ADDC A,Rn	Add register to A with carry	1	2	38-3F
ADDC A,dir	Add direct byte to A with carry	2	2	35
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37
ADDC A,#data	Add immediate to A with carry	2	2	34
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97
SUBB A,#data	Subtract immediate from A with borrow	2	2	94
INC A	Increment A	1	2	04
INC Rn	Increment register	1	2	08-0F
INC dir	Increment direct byte	2	2	05
INC @Ri	Increment indirect memory	1	2	06-07
DEC A	Decrement A	1	2	14
DEC Rn	Decrement register	1	2	18-1F
DEC dir	Decrement direct byte	2	2	15
DEC @Ri	Decrement indirect memory	1	2	16-17
INC DPTR	Increment data pointer	1	4	A3
MUL AB	Multiply A by B	1	8	A4
DIV AB	Divide A by B	1	8	84
DA A	Decimal Adjust A	1	2	D4

	LOGICAL				
Mnemonic	Description	byte	cycle	opcode	
ANL A,Rn	AND register to A	1	2	58-5F	
ANL A,dir	AND direct byte to A	2	2	55	
ANL A,@Ri	AND indirect memory to A	1	2	56-57	
ANL A,#data	AND immediate to A	2	2	54	
ANL dir,A	AND A to direct byte	2	2	52	
ANL dir,#data	AND immediate to direct byte	3	4	53	
ORL A,Rn	OR register to A	1	2	48-4F	
ORL A,dir	OR direct byte to A	2	2	45	
ORL A,@Ri	OR indirect memory to A	1	2	46-47	
ORL A,#data	OR immediate to A	2	2	44	
ORL dir,A	OR A to direct byte	2	2	42	
ORL dir,#data	OR immediate to direct byte	3	4	43	
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F	
XRL A,dir	Exclusive-OR direct byte to A	2	2	65	
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67	
XRL A,#data	Exclusive-OR immediate to A	2	2	64	
XRL dir,A	Exclusive-OR A to direct byte	2	2	62	
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63	
CLR A	Clear A	1	2	E4	
CPL A	Complement A	1	2	F4	
SWAP A	Swap Nibbles of A	1	2	C4	

LOGICAL				
Mnemonic	Description	byte	cycle	opcode
RL A	Rotate A left	1	2	23
RLC A	Rotate A left through carry	1	2	33
RR A	Rotate A right	1	2	03
RRC A	Rotate A right through carry	1	2	13

DATA TRANSFER				
Mnemonic	Description	byte	cycle	opcode
MOV A,Rn	Move register to A	1	2	E8-EF
MOV A,dir	Move direct byte to A	2	2	E5
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7
MOV A,#data	Move immediate to A	2	2	74
MOV Rn,A	Move A to register	1	2	F8-FF
MOV Rn,dir	Move direct byte to register	2	4	A8-AF
MOV Rn,#data	Move immediate to register	2	2	78-7F
MOV dir,A	Move A to direct byte	2	2	F5
MOV dir,Rn	Move register to direct byte	2	4	88-8F
MOV dir,dir	Move direct byte to direct byte	3	4	85
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87
MOV dir,#data	Move immediate to direct byte	3	4	75
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7
MOV @Ri,#data	Move immediate to indirect memory	2	2	76-77
MOV DPTR,#data	Move immediate to data pointer	3	4	90
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3
MOVX A,@DPTR	Move external data(A16) to A	1	4	E0
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0
PUSH dir	Push direct byte onto stack	2	4	C0
POP dir	Pop direct byte from stack	2	4	D0
XCH A,Rn	Exchange A and register	1	2	C8-CF
XCH A,dir	Exchange A and direct byte	2	2	C5
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7

BOOLEAN				
Mnemonic	Description	byte	cycle	opcode
CLR C	Clear carry	1	2	C3
CLR bit	Clear direct bit	2	2	C2
SETB C	Set carry	1	2	D3
SETB bit	Set direct bit	2	2	D2
CPL C	Complement carry	1	2	B3
CPL bit	Complement direct bit	2	2	B2
ANL C,bit	AND direct bit to carry	2	4	82
ANL C,/bit	AND direct bit inverse to carry	2	4	B0
ORL C,bit	OR direct bit to carry	2	4	72
ORL C,/bit	OR direct bit inverse to carry	2	4	A0
MOV C,bit	Move direct bit to carry	2	2	A2
MOV bit,C	Move carry to direct bit	2	4	92

BRANCHING				
Mnemonic	Description	byte	cycle	opcode
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1
LCALL addr 16	Long jump to subroutine	3	4	12
RET	Return from subroutine	1	4	22
RETI	Return from interrupt	1	4	32
AJMP addr 11	Absolute jump unconditional	2	4	01-E1
LJMP addr 16	Long jump unconditional	3	4	02
SJMP rel	Short jump (relative address)	2	4	80
JC rel	Jump on carry $= 1$	2	4	40
JNC rel	Jump on carry $= 0$	2	4	50
JB bit,rel	Jump on direct bit $= 1$	3	4	20
JNB bit,rel	Jump on direct bit $= 0$	3	4	30
JBC bit,rel	Jump on direct bit $= 1$ and clear	3	4	10
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73
JZ rel	Jump on accumulator $= 0$	2	4	60
JNZ rel	Jump on accumulator 0	2	4	70
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4	B5
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4	B4
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5

MISCELLANEOUS				
Mnemonic	Description	byte	cycle	opcode
NOP	No operation	1	2	00

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	$V_{SS} - 0.3 \sim V_{SS} + 5.5$	
Input voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	V
Output voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	
Output current high per all PIN	-80	
Output current low per all PIN	+150	mA
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +85	20
Storage temperature	-65 ~ +150	°C

2. DC Characteristics ($T_A=25$ °C, $V_{CC}=2.4V \sim 5.5V$)

Parameter	Symbol	С	onditions	Min	Тур	Max	Unit			
		F _{SYSCLK}	=14.7456 MHz	3.2	_	5.5				
Operating Voltage	V _{CC}		_x =7.3728 MHz	2.4	_	5.5	V			
		F _{SYSCLE}	_x =3.6864 MHz	2.4	_	5.5				
Input High	X 7		V _{CC} =5V	$0.6V_{CC}$	_	_	V			
Voltage	V_{IH}	All Input	V _{CC} =3V	0.6V _{CC}	_	_	V			
Terre d'Elle XV-14- elle	X 7		V _{CC} =5V	_	_	$0.2V_{CC}$	V			
Input Low Voltage	V_{IL}	All Input	V _{CC} =3V	_	_	$0.2V_{CC}$	V			
I/O Port Source	I _{OH}	All Output	V _{CC} =5V, V _{OH} =0.9V _{CC}	5	10	_	mA			
Current	IOH	All Output	V _{CC} =3V, V _{OH} =0.9V _{CC}	2.5	5	-	IIIA			
I/O Port Sink	I _{OL}	All Output,	$V_{CC}=5V,$ $V_{OL}=0.1V_{CC}$	64	80	_	mA			
Current	TOL	7 in Output,	$V_{CC}=3V,$ $V_{OL}=0.1V_{CC}$	32	40	_	IIII X			
			FXT=16 MHz	_	6	-				
		FAST mode	FRC=14.7456 MHz	-	5.9	_				
		V _{CC} =5V	FXT=8 MHz	-	4	_				
					FRC=7.3728 MHz	_	3.8	_		
		FAST mode V _{CC} =3V	FXT=16 MHz	_	3.6	_	mA			
			FRC=14.7456 MHz	_	3.5	_				
			FXT=8 MHz	_	2.5	_				
			FRC=7.3728 MHz	_	2.4	_				
Supply Current	T	SLOW mode	V _{CC} =3V	_	1.2	_				
Suppry Current	I _{DD}	IDD	IDD	IDD	SLOW Mode	V _{CC} =5V	_	1.8	_	
		IDLE mode	SRC, V _{CC} =5V	_	20	_				
		PWRSAV=1	SRC, V _{CC} =3V	_	10	_				
		IDLE mode	SRC,V _{CC} =5V	_	60	_				
		PWRSAV=0	SRC,V _{CC} =3V	_	45	_	μA			
		STOP mode	V _{CC} =5V	_	0.1	_	μл			
		STOT mode	V _{CC} =3V	_	0.1	_				
		Halt mode	V _{CC} =5V	-	5	-				
		Halt mode	V _{CC} =3V	-	2	_				
			V _{CC} =3.2V	_		14.7456				
System Clock Frequency	F _{SYSCLK}	V_{CC} >LVR _{TH}	$V_{CC}=2.4V$	_		7.3728	MHz			
Trequency			$V_{CC}=2.4V$	_		4				
				-	4.3	-				
				_	4.0	-				
				_	3.8	_				
LVR Reference	V		r _25°C	_	3.5	-	v			
Voltage	V_{LVR}		Γ _A =25°C	_	3.2	-	v			
				_	2.9	_	-			
				_	2.7	_				
				_	2.4	_				

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
LVR Hysteresis Voltage	V _{HYST}	T _A =25°C		_	±0.1	_	v
Low Voltage Detection time	t _{LVR}	T _A =25°C		100	_	_	μs
Dull Up Desistor	р	V -0V	V _{CC} =5V		40		ΚΩ
Pull-Up Resistor	R_P	V _{IN} =0V	V _{CC} =3V	_	75	—	κΩ

3. Clock Timing $(T_A = -40^{\circ}C \sim +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
	25°C, V _{CC} =5.0V	-1%	14.7456	+1%	
FRC Frequency	0° C ~ 85°C, V _{CC} =5.0V	-1.5%	14.7456	+1.5%	MHz
	-40° C ~ 85°C, V _{CC} =3.0 ~ 5.5V	-3%	14.7456	+3%	

4. Reset Timing Characteristics ($T_A = -40^{\circ}C \sim +85^{\circ}C$)

Parameter	Conditions		Тур	Max	Unit
RESET Input Low width	Input V_{CC} =5V ± 10 %	30	_	_	μs
WDT welcoup time	V _{CC} =5V, WDTPSC=11	-	60	_	
WDT wakeup time	V _{CC} =3V, WDTPSC=11	_	64	_	ms

5. ADC Electrical Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = 3.0V \sim 5.5V$, $V_{SS} = 0V$)

Parameter	Conditions	Min	Тур	Max	Unit
Total Accuracy		_	±2.5	±4	LSB
Integral Non-Linearity	V_{CC} =5.12 V, V_{SS} =0V	_	±3.2	±5	LSB
May Input Clock (f)	Source impedance (Rs < 10K omh)	-	1	_	MHz
Max Input Clock (f _{ADC})	Source impedance (Rs > 10K omh)	_	0.5	_	MHZ
Conversion Time	$F_{ADC} = 1 MHz$	-	50	_	μs
	$25^{\circ}C, V_{CC} = 5V \sim 3V$	-1%	1.22	+1%	V
BandGap Voltage Reference (VBG)	$25^{\circ}C \sim 85^{\circ}C, V_{CC} = 5V \sim 3V$	-1%	1.22	+1.5%	V
(100)	-20° C~85°C, V _{CC} = 5V~3V	-2%	1.22	+1.5%	V
ADC reference voltage (V _{REFS})	$25C$, $V_{CC} = 3V \sim 5.5V$,	-1.2%	2.5V	+1.2%	V
(ADCVREFS=01)	-20C~85C , V _{CC} =3V~5.5V,	-2.5%	2.5V	+2%	V
V _{CC} /4 reference voltage	25C, V _{CC} =3V~5.5V	-1%	$0.252*V_{CC}$	+1%	V
Input Voltage	_	V _{ss}	_	V _{CC}	V

6. Characteristic Graphs

Package and Dice Information

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

Ordering information

Ordering number	Package				
TM52FE8273-MTP					
TM52FE8276-MTP	Wafar/Dias blank shire				
TM52FE8274-MTP	Wafer/Dice blank chip				
TM52FE8278-MTP					
TM52FE8273-COD					
TM52FE8276-COD	Wafer/Dice with code				
TM52FE8274-COD	water/Dice with code				
TM52FE8278-COD					
TM52FE8273-MTP-23					
TM52FE8276-MTP-23	$\mathbf{SOP} \ 28 \ \min \ (200 \ \min)$				
TM52FE8274-MTP-23	SOP 28-pin (300 mil)				
TM52FE8278-MTP-23					
TM52FE8273-MTP-29					
TM52FE8276-MTP-29	$SSOD 29 \min(150 \text{ mil})$				
TM52FE8274-MTP-29	SSOP 28-pin (150 mil)				
TM52FE8278-MTP-29					
TM52FE8273-MTP-C3					
TM52FE8276-MTP-C3	QFN 28-pin (4x4x0.75-0.4 mm)				
TM52FE8274-MTP-C3	Q1 TV 20-pm (4x4x0.75-0.4 mm)				
TM52FE8278-MTP-C3					

-	十速

TM52FE8273-MTP-22	
TM52FE8276-MTP-22	SOP 24-pin (300 mil)
TM52FE8274-MTP-22	501 24-pin (500 min)
TM52FE8278-MTP-22	
TM52FE8273-MTP-28	
TM52FE8276-MTP-28	$SSOP 24 \min(150 \min)$
TM52FE8274-MTP-28	SSOP 24-pin (150 mil)
TM52FE8278-MTP-28	
TM52FE8273-MTP-C0	
TM52FE8276-MTP-C0	$OEN 24 \min (4x4x0.75.0.5 mm)$
TM52FE8274-MTP-C0	QFN 24-pin (4x4x0.75-0.5 mm)
TM52FE8278-MTP-C0	
TM52FE8273-MTP-21	
TM52FE8276-MTP-21	$SOP 20 \operatorname{pin} (200 \operatorname{mil})$
TM52FE8274-MTP-21	SOP 20-pin (300 mil)
TM52FE8278-MTP-21	
TM52FE8273-MTP-46	
TM52FE8276-MTP-46	TSSOP 20-pin (173 mil)
TM52FE8274-MTP-46	1550r 20-piii (175 iiiii)
TM52FE8278-MTP-46	
TM52FE8273-MTP-05	
TM52FE8276-MTP-05	DIP 20 pin (200 mil)
TM52FE8274-MTP-05	DIP 20-pin (300 mil)
TM52FE8278-MTP-05	

TM52FE8273-MTP-D1		
TM52FE8276-MTP-D1	QFN 20-pin (3x3x0.75-0.4 mm)	
TM52FE8274-MTP-D1	(L=0.25mm)	
TM52FE8278-MTP-D1		
TM52FE8273-MTP-16		
TM52FE8276-MTP-16	SOP 16-pin (150 mil)	
TM52FE8274-MTP-16	501 10-piii (150 liiii)	
TM52FE8278-MTP-16		

Package Information

SOP-28 (300mil) Package Dimension

SYMDOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	СН
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	2.35	2.50	2.65	0.0926	0.0985	0.1043
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.23	0.28	0.32	0.0091	0.0108	0.0125
D	17.70	17.90	18.10	0.6969	0.7047	0.7125
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992
e		1.27 BSC		0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC			MS-013	(AE)		

 $\underline{\mathbb{A}}$ * Notes : dimension \mathbb{V} does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall

MOLD FLASH, PROTRUSIONS AND GATE BURRS S NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

SSOP-28 (150mil) Package Dimension

SVD (DOI	DIMENSION IN MM			DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.50	1.65	1.80	0.06	0.06	0.07	
A1	0.102	0.176	0.249	0.004	0.007	0.010	
A2	1.40	1.475	1.55	0.06	0.06	0.06	
В	0.20	0.25	0.30	0.01	0.01	0.01	
С		0.2TYP			0.008TYP		
e		0.635TYP			0.025TYP		
D	9.804	9.881	9.957	0.386	0.389	0.392	
E	5.842	6.020	6.198	0.230	0.237	0.244	
E1	3.86	3.929	3.998	0.152	0.155	0.157	
L	0.406	0.648	0.889	0.016	0.026	0.035	
θ	0°	4°	8°	0°	4°	8°	
JEDEC		M0-137(AF)					

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.

▲ *NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD PROTRUSIONS OR GATE BURRS.

QFN-28 (4x4x0.75-0.4mm) Package Dimension

202.000	D	IMENSION IN M	IM	DI	MENSION IN IN	СН	
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.7	0.75	0.8	0.028	0.030	0.031	
A1	0	0.02	0.05	0	0.001	0.002	
A3		0.203 REF		0.008 REF			
В	0.15	0.2	0.25	0.006	0.008	0.010	
D		4 BSC			0,157		
E		4 BSC			0.157		
D2	2.2	2.3	2.4	0.087	0.091	0.094	
E2	2.2	2,3	2.4	0.087	0.091	0.094	
e		0.4 BSC			0.016		
Ľ	0.3	0.4	0.5	0.012	0.016	0.020	
K	0.45 REF				0.018		
JEDEC	MO-220						

DETAIL A

SOP-24 (300mil) Package Dimension

SVMDOL	DI	MENSION IN M	ſM	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	2.35	2.50	2.65	0.0926	0.0985	0.1043		
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118		
В	0.33	0.42	0.51	0.0130	0.0165	0.0200		
С	0.23	0.28	0.32	0.0091	0.0108	0.0125		
D	15.20	15.40	15.60	0.5985	0.6063	0.6141		
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910		
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992		
e		1.27 BSC		0.050 BSC				
h	0.25	0.50	0.75	0.0100	0.0195	0.0290		
L	0.40	0.84	1.27	0.0160	0.0330	0.0500		
θ	0°	4°	8°	0°	4°	8°		
JEDEC	MS-013 (AD)							

 \triangle *NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

SSOP-24 (150mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH			
5 I MIDUL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.053	0.061	0.069	
A1	0.10	0.18	0.25	0.004	0.007	0.010	
A2	-	-	1.50	-	-	0.059	
В	0.20	0.25	0.30	0.008	0.010	0.012	
С	0.18	0.22	0.25	0.007	0.009	0.010	
D	8.56	8.65	8.74	0.337	0.341	0.344	
Е	5.79	6.00	6.20	0.228	0.236	0.244	
E1	3.81	3.90	3.99	0.150	0.154	0.157	
e	0.635 BSC			0.025 BSC			
L	0.41	0.84	1.27	0.016	0.033	0.050	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	M0-137 (AE)						

▲ * NOTES : DIMENSION * D ″ DOES NOT INCLUDE MOLD PROTRUSIONS

OR GAT BURRS.

MOLD PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.

QFN-24 (4x4x0.75-0.5mm) Package Dimension

0.08 MAX C SEATING PLANE

بل بلات ت

e

→ B

П

* NOTES : DIMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL,

THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

SOP-20 (300mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH				
SINBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	2.35	2.50	2.65	0.0926	0.0985	0.1043		
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118		
В	0.33	0.42	0.51	0.0130	0.0165	0.0200		
С	0.23	0.28	0.32	0.0091	0.0108	0.0125		
D	12.60	12.80	13.00	0.4961	0.5040	0.5118		
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910		
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992		
e		1.27 BSC	•		0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290		
L	0.40	0.84	1.27	0.0160	0.0330	0.0500		
θ	0°	4°	8°	0°	4°	8°		
JEDEC		MS-013 (AC)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

TSSOP-20 (173mil) Package Dimension

010 mor	D	IMENSION IN M	IM	DD	MENSION IN I	NCH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А			1.2	()	*	0.047
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.8	0.93	1.05	0.031	0.036	0.041
В	0.19	-	0.3	0.007	(¥	0.012
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.55	0.246	0.252	0.258
EI	4.3	4.4	4.5	0.169	0.173	0,177
e		0.65 BSC			0.026 BSC	
L	0.45	0,60	0.75	0.018	0.024	0.030
θ	0 °		8 °	0 *		8 "
JEDEC	MO-153 AC REV.F					

Notes :

Notes : 1.DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. 2.DIMENSION "E1" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. 3.DIMENSION "B" DOES NOT INCLUDE DAMBAR PROTRUSION.ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08MM TOTAL IN EXCESS OF THE "B" DIMENSION AT MAXIMUM METERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07MM.

DIP-20 (300mil) Package Dimension

SYMBOL	DI	DIMENSION IN MM			DIMENSION IN INCH		
	MIN	NOM	MAX	MIN	NOM	MAX	
А	-	-	4.445	-	-	0.175	
A1	0.381	-	-	0.015	-	-	
A2	3.175	3.302	3.429	0.125	0.130	0.135	
D	25.705	26.061	26.416	1.012	1.026	1.040	
Е	7.620	7.747	7.874	0.300	0.305	0.310	
E1	6.223	6.350	6.477	0.245	0.250	0.255	
L	3.048	3.302	3.556	0.120	0.130	0.140	
е _В	8.509	9.017	9.525	0.335	0.355	0.375	
θ	0°	7.5°	15°	0°	7.5°	15°	
JEDEC	MS-001 (AD)						

NOTES :

1. "D", "EI" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

QFN-20 (3x3x0.75-0.4mm) (L=0.25mm) Package Dimension

200.000	D	IMENSION IN M	M	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.70	0.75	0.80	0.028	0.030	0.031	
Al	0.00	0.02	0.05	0.00	0.001	0.002	
A3		0,203 REF		0.008 REF			
В	0.15	0.20	0.25	0.006	0.008	0.010	
D	3 BSC			0.118 BSC			
Е		3 BSC			0.118 BSC		
D2	1.80	1.90	2.00	0.071	0.075	0.079	
E2	1.80	1.90	2.00	0.071	0.075	0.079	
e	0.40 BSC			0.016 BSC			
L	0.15	0.25	0.35	0.006	0.010	0.014	
К	0.30 REF				0.012 REF		
JEDEC	МО			-220			

SOP-16 (150mil) Package Dimension

SYMBOL	DI	MENSION IN M	ſM	DIN	MENSION IN IN	ICH	
5 I WIBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.35	1.55	1.75	0.0532	0.0610	0.0688	
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.19	0.22	0.25	0.0075	0.0087	0.0098	
D	9.80	9.90	10.00	0.3859	0.3898	0.3937	
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440	
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574	
e		1.27 BSC		0.050 BSC			
h	0.25	0.38	0.50	0.0099	0.0148	0.0196	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC	MS-012 (AC)						

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.