

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

AMENDMENT HISTORY

Version	Date	Description
0.90	Feb, 2017	New release.
0.91	Aug, 2017	 FRC accuracy & Temp. curve Add Tiny current description Other detail
0.92	May, 2018	 Add package DIP-20, QFN-20 CFGW descript update

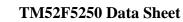
CONTENTS

AM	END	MENT HISTORY	2
TM	52 _{Serie}	s F52xx FAMILY	5
GEN	NERA	AL DESCRPTION	6
BLC)CK	DIAGRAM	6
FEA	TUR	ES	7
PIN	ASS	IGNMENT1	0
PIN	DES	CRIPTION1	1
PIN	SUM	IMARY1	2
FUN	ICTI	ONAL DESCRIPTION1	3
1.	CPU	J Core	3
	1.1	Accumulator (ACC)	3
	1.2	B Register (B)1	3
	1.3	Stack Pointer (SP)	
	1.4 1.5	Dual Data Pointer (DPTRs) 1 Program Status Word (PSW) 1	
2			
2.		nory1	
	2.1 2.2	Program Memory	
2		/er	
4.	Res	et2	
	4.1	Power on Reset	
	4.2 4.3	External Pin Reset	
	4.5 4.4	Watchdog Timer Reset	
	4.5	Low Voltage Reset	
5.	Clo	ck Circuitry and Operation Mode2	
	5.1	System Clock2	
	5.2	Operation Mode	27
6.	Inte	rrupt and Wake-up2	28
	6.1	Interrupt Enable and Priority Control	28
	6.2	Pin Interrupt	
	6.3	Idle Mode Wake up and Interrupt	
	6.4	Stop Mode Wake up and Interrupt	
7.	I/O	Ports	4
	7.1	Port1 & P2.1~P2.0 & P3.6~P3.0	
	7.2	P3.7	0

8.	Timers4	1
	8.1 Timer0/Timer1/Timer2	
9.	UART	6
10	. PWMs	8
11	ADC	1
	11.1 ADC Channels511.2 ADC Conversion Time511.3 VBG Voltage Conversion5	2
12	In Circuit Emulation (ICE) Mode	5
SFR	& CFGW MAP	5
SFR	& CFGW DESCRIPTION	8
INST	GRUCTION SET	7
	GRUCTION SET 6 CTRICAL CHARACTERISTICS 7	
		0
ELE	CTRICAL CHARACTERISTICS	0 0
ELE 1.	CTRICAL CHARACTERISTICS	0 0 0
ELE 1. 2.	CTRICAL CHARACTERISTICS	0 0 0
ELE 1. 2. 3.	CTRICAL CHARACTERISTICS	0 0 1 1
ELE 1. 2. 3. 4. 5.	CTRICAL CHARACTERISTICS 7 Absolute Maximum Ratings 7 DC Characteristics 7 Clock Timing 7 Reset Timing Characteristics 7	0 0 1 1 2
ELE 1. 2. 3. 4. 5. 6.	CTRICAL CHARACTERISTICS 7 Absolute Maximum Ratings 7 DC Characteristics 7 Clock Timing 7 Reset Timing Characteristics 7 ADC Electrical Characteristics 7	0 0 1 1 2 2
ELE 1. 2. 3. 4. 5. 6. PAC	CTRICAL CHARACTERISTICS 7 Absolute Maximum Ratings 7 DC Characteristics 7 Clock Timing 7 Reset Timing Characteristics 7 ADC Electrical Characteristics 7 Characteristics Graphs 7	0 0 1 1 2 5

TM52_{Series} F52xx FAMILY

Common Features

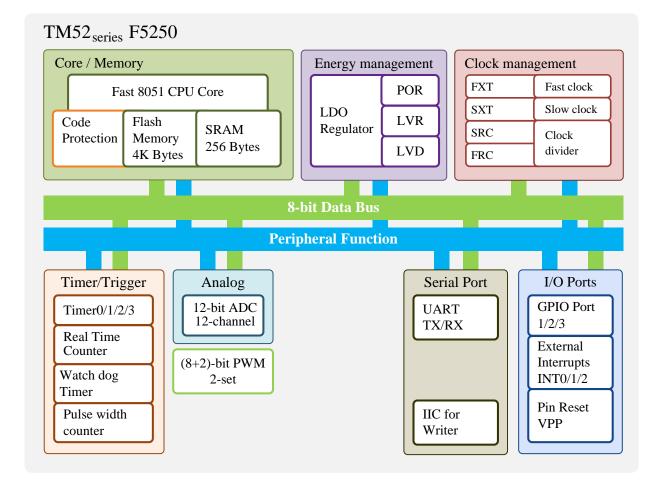

CPU	MTP/Flash Program Memory	RAM Bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LVD	LVR
Fast 8051 (2T)	4K~16K With IAP, ISP, ICP	256 ~ 768	SXT SRC FXT FRC	Fast Slow Idle Stop	8051 St	andard	15-bit	2.3V	1.8V 2.3V 2.9V

Note: IAP, ISP only for Flash type program memory

Family Members Features

P/N	Program Memory	RAM Bytes	IO Pin	PWM	SAR ADC	Touch Key	LCD	LED	SPI	Others
TM52-M5254	MTP	256	18	(8+2)-bit	12-bit	_				
TM52-M5258	4K Bytes	230	10	x2	12-ch	14-ch			_	_
TM52-M5250	Flash 4K Bytes	256	18	(8+2)-bit x2	12-bit 12-ch	_	_	_	_	_
TM52-F5264C	Flash	256	22	(8+2)-bit	12-bit	_			Yes	
TM52-F5268C	8K Bytes	230		x2	12-ch	14-ch	_		105	_
TM52-F5274C	Flash	510	20	(8+2)-bit	12-bit	_	4 10	4 10	\$7	
TM52-F5278C	8K Bytes	512	30	x2	12-ch	14-ch	4x18	4x18	Yes	_
TM52-F5273B	Flash	768	30	(8+2)-bit	12-bit	_	420	0-16	Vaa	
TM52-F5276B	16K Bytes	/08	30	x2	12-ch	16-ch	4x20	8x16	Yes	_
TM52-F5288C	Flash	510	42	(8+2)-bit	12-bit	_	920	020	Yes	
TM52-F5284C	16K Bytes	512	42	x2	12-ch	12-ch	8x20	8x20	res	_

P/N	Operation		peration Cur V=1, PWRS		Max. System Clock (Hz)				
F /1 N	Voltage	Fast FRC	Slow SRC	Idle SRC	Stop	SXT	SRC	FXT	FRC
TM52-M5254	1.9~5.5V	2.0mA	21 4	5 2 1	<0.1.u.A	32K	80K	6M	7.37M
TM52-M5258	1.9~J.J V	2.0IIIA	21µA	5.2µA	<0.1µA	32 K	OUK	UIVI	1.3/111
TM52-F5250	2.0~5.5V	3mA	1mA	6µA	3μΑ	32K	24K	14.74M	9.83M
TM52-F5264C	2.0~5.5V	2.5mA	12µA	611 Å	3µA	32K	24K	8M	7.37M
TM52-F5268C	2.0~J.J v	2.JIIIA	12µA	6µA	<i>σμΑ</i>	JZK	24 N	0111	7.37111
TM52-F5274C	2.0~5.5V	2.5mA	10 4	6.1. 1	2 1	32K	24K	8M	7.37M
TM52-F5278C	2.0~3.3 V	2.JIIIA	12µA	6µA	3μΑ	JZK	24 N	0171	1.3/111
TM52-F5273B	105517	0 5 mm A	10 4	6 A	2 4	2017	2412	101/	0.021/
TM52-F5276B	1.8~5.5V	2.5mA	12µA	6µA	3μΑ	32K	24K	10M	9.83M
TM52-F5288C	1055	2.2mm A	22 4	1 5 1	< 0.1. A	2017	90V	8M	7 27 1
TM52-F5284C	1.9~5.5V	2.3mA	22μΑ	4.5µA	$< 0.1 \mu A$	32K	80K	OIVI	7.37M



GENERAL DESCRPTION

 $TM52_{Series}$ F5250 are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, C language development platform, and retains most 8051 peripheral function block. Typically, the TM52 executes instructions six times faster than the traditional 8051 architecture.

The **TM52-F5250** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 4K Bytes Flash program memory, 256 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time Timer3, 2 set (8+2)-bit PWMs, 12 channels 12-bit A/D Convertor and Watchdog Timer. Its high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the traditional 8051

2. 4K Bytes Flash Program Memory

- Support "In Circuit Programming" (ICP) or "In System Programming" (ISP) for the Flash code
- Byte Write "In Application Programming" (IAP) mode is convenient as Data EEPROM access
- Code Protection Capability

3. Total 256 Bytes SRAM

• 256 Bytes IRAM in the 8051 internal data memory area

4. Four System Clock type Selections

- Fast clock from 1~14.746 MHz Crystal
- Fast clock from Internal RC (9.83 MHz)
- Slow clock from 32768 Hz Crystal
- Slow clock from Internal RC (24 KHz)
- System clock can be divided by 1/2/4/16 option

5. 8051 Standard Timer – Timer0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1, also supports Slow clock/16 input counting
- 16-bit Timer2, also supports Slow clock/16 input counting and T2O clock output

6. 15-bit Time3

- Clock source is Slow clock
- Interrupt period can be clock divided by 32768/16384/8192/128 option

7. 8051 Standard UART

• One Wire UART option can be used for ISP or other application

8. Two independent "8+2" bits PWMs with prescaler/period-adjustment

9. 12-bit ADC with 10 Channels External Pin Input and 2 Channels Internal Reference Voltage

10. 10 Sources, 4-level Priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0/INT1 Falling-Edge/Low-Level Interrupt
- Port1 Pin Change Interrupt
- UART TX/RX Interrupt
- P3.7 (INT2) Interrupt
- ADC Interrupt

11. Pin Interrupt can Wake up CPU from Power-Down (Stop) mode

- P3.2/P3.3 (INT0/INT1) Interrupt & Wake-up
- P3.7 (INT2) Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

12. Max. 18 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enable or Disable

13. Independent RC Oscillating Watchdog Timer

• 360ms/180ms/90ms/45ms Selectable WDT Timeout options

14. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Software Command Reset
- Selectable Watchdog Timer Reset
- Selectable Low Voltage Reset

15. 4-level Low Voltage Reset

• 2.0V/2.3V/2.9V/3.5V

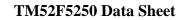
16. 1-level Low Voltage Detect

• 2.3V (can be disabled)

17. Four Operation Modes

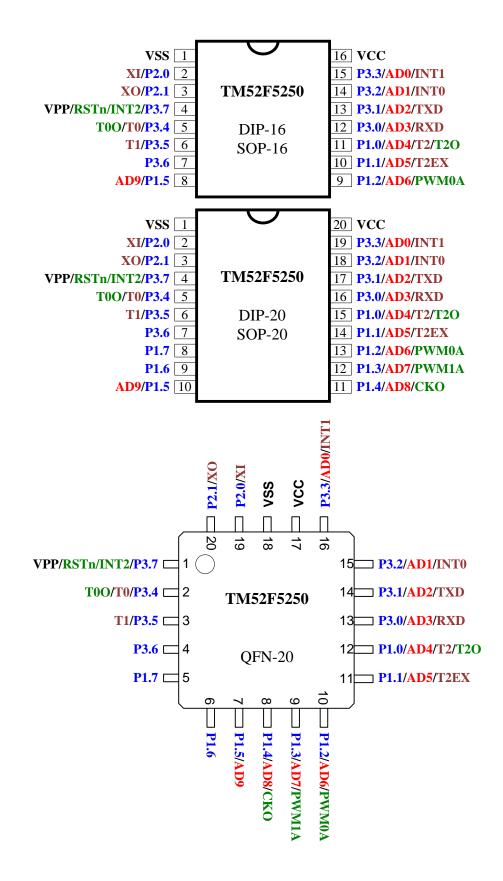
• Fast/Slow/Idle/Stop Mode

18. Operating Voltage and Current


- $V_{CC}=3.5V \sim 5.5V @ F_{SYSCLK}=14.746 MHz$
- $V_{CC}=2.9V \sim 5.5V @ F_{SYSCLK}=9.8 MHz$
- $V_{CC}=2.3V \sim 5.5V @F_{SYSCLK}=5 MHz$
- $V_{CC}=2.0V \sim 5.5V @F_{SYSCLK}=2.5 MHz$
- I_{CC}=4mA @Fast mode, F_{SYSCLK}=9.8 MHz, V_{CC}=5V
- I_{CC}=1mA @Slow mode, F_{SYSCLK}=32 KHz, V_{CC}=3V
- $I_{CC}=6\mu A$ @Idle mode, $F_{SYSCLK}=32$ KHz, $V_{CC}=3V$
- $I_{CC}=3\mu A$ @Stop mode, $V_{CC}=3V$

19. Operating Temperature Range

• -40°C ~ +85°C


20. Package Types

- DIP 16-pin (300 mil)
- SOP 16-pin (150 mil)
- DIP 20-pin (300 mil)
- SOP 20-pin (300 mil)
- QFN-20 (4*4*0.75-0.5mm)

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can wake up CPU from Idle/Stop mode.
P2.0~P2.1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "pseudo open drain" output. Pull-up resistors are assignable by software.
P3.3~P3.6	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or "open-drain" output. Pull-up resistor is fix enable.
INT0, INT1	Ι	External low level or falling edge Interrupt input, Idle/Stop mode wake up input.
INT2	Ι	External falling edge Interrupt input, Idle/Stop mode wake up input.
RXD	I/O	UART Mode0 transmit & receive data, Mode1/2/3 receive data
TXD	I/O	UART Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
T0, T1, T2	Ι	Timer0, Timer1, Timer2 event count pin input
TOO	0	Timer0 overflow divided by 64 output
T2O	0	Timer2 overflow divided by 2 output
СКО	0	System Clock divided by 2 output
T2EX	Ι	Timer2 external trigger input
PWM0 PWM1	0	8+2 bit PWM output
AD0~AD9	Ι	ADC input
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable
XI, XO	_	Crystal/Resonator oscillator connection for system clock
VPP	Ι	Flash programming high voltage input
VCC, VSS	Р	Power input pin and ground

PIN SUMMARY

TM52F5250

Pin	Num	ber				Input		(Dutpu	t	Alte	rnate	Func	ction	Misc
SOP/DIP-20	DIP/SOP-16	QFN-20	Pin Name	Type	Pull-up Control	Wake up	Ext. Interrupt	P.P.	P.O.D.	0.D.	ADC	UART	PWM	Timer	
1	1	18	VSS	Р											
2	2	19	XI/P2.0	I/O	0			•		•					Crystal
3	3	20	XO/P2.1	I/O	0			•		•					Crystal
4	4	1	VPP/RSTn/INT2/P3.7	I/O	\odot	•	•			•					Reset
5	5	2	T0/T0O P3.4	I/O	0			٠		•				•	
6	6	3	T1/P3.5	I/O	0			•		•				•	
7	7	4	РЗ.6	I/O	0			•		•					
8	_	5	P1.7	I/O	0	•		•		•					
9	_	6	P1.6	I/O	0	•		•		•					
10	8	7	AD9/P1.5	I/O	0	•		•		•	•				
11	_	8	CKO/AD8/P1.4	I/O	0	•		•		•	•				
12	_	9	PWM1/AD7/P1.3	I/O	0	•		•		•	•		•		
13	9	10	PWM0/AD6/P1.2	I/O	0	•		•		•			•		
14	10	11	T2EX/AD5/P1.1	I/O	0	•		•		•	•			•	
15	11	12	T2/T2O/AD4/P1.0	I/O	0	•		•		•	•			•	
16	12	13	RXD/AD3/P3.0	I/O	0			•	•		•	•			
17	13	14	TXD/AD2/P3.1	I/O	0			•	•		•	•			
18	14	15	INT0/AD1/P3.2	I/O	0	•	•	•	•		•				
19	15	16	INT1/AD0/P3.3	I/O	0	•	•	•		•	•				
20	16	17	VCC	Р											

Symbol:

P.P. = Push-Pull Output

O.D. = Open Drain

P.O.D. = Pseudo Open Drain

PS:

1. \odot 3.7 Pull up resistor is fix enable

2. O Port1, P2.0, P2.1, Port3 these pins control Pull up resistor by operation modes

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a programming counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC," including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 ACC: Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer. The Stack Pointer points to the top location of the stack.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SP		SP										
R/W		R/W										
Reset	0	0 0 0 0 0 1 1 1										
011 7 0												

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
DPL		DPL										
R/W		R/W										
Reset	0	0 0 0 0 0 0 0 0										
00h 7 0	DDI . Data I	oint low but										

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
DPH		DPH											
R/W		R/W											
Reset	0	0	0	0	0	0	0	0					
021 7 0	DDU D I												

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The PSW affected by instructions is listed below.

Instruction		Flag	
instruction	С	OV	AC
ADD	Х	Х	Х
ADDC	Х	Х	Х
SUBB	Х	Х	Х
MUL	0	Х	
DIV	0	Х	
DA	Х		
RRC	Х		
RLC	Х		
SETB C	1		

Instruction		Flag	
Instruction	С	OV	AC
CLR C	0		
CPL C	Х		
ANL C, bit	Х		
ANL C, /bit	Х		
ORL C, bit	Х		
ORL C, /bit	Х		
MOV C, bit	Х		
CJNE	Х		

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

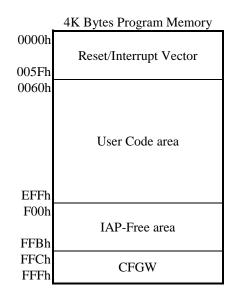
D0h.7 **CY:** ALU carry flag

D0h.6 AC: ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

- D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:
 - 00: Bank 0 (00h~07h)
 - 01: Bank 1 (08h~0Fh)
 - 10: Bank 2 (10h~17h)
 - 11: Bank 3 (18h~1Fh)
- D0h.2 **OV:** ALU overflow flag
- D0h.1 **F1:** General purpose user-definable flag
- D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

			PS	W													
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W										
CY	AC	FO	RS1	RS0	OV	F1	Р										
			-		$\overline{\ }$												_
											Reş	gister	: Baı	ık 3			1F
	RS1 RS0					18h	R0	R1	R2	R3	R4	R5	R6	R7			
						Ban					Reg	gister	·Baı	nk 2			1.71
			1	1		3	-	10h	R0	R1	R2	R3	R4	R5	R6	R7	171
			1	0)	2	\rightarrow				Reg	gister	Baı	nk 1			
		_	0	1		1		08h	R0	R1	R2	R3	R4	R5	R6	R7	0Fł
			0	0)	0	$ \bot $				Reg	gister	Baı	nk O			
									R0	R1	R2	R3	R4	R5	R6	R7	071
								00h									1
								0011									


2. Memory

2.1 Program Memory

The **F5250** has a 4K Bytes Flash program memory, which can support in-circuit program (ICP), in-application program (IAP) and in-system program (ISP) function modes. The Flash write endurance is at least 50K cycles. The program memory address continuous space (0000h~FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last 4 bytes (FFCh~FFFh) of program memory is defined as chip Configuration Word (CFGW). Two of them are loaded into the device control registers upon power on reset (POR). The address space F00h~FFBh is the IAP free area, while the 0000h~005Fh is occupied by Reset/Interrupt vectors as standard 8051 definition.

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VCC, VSS, P3.0 and P3.1 pins) to connect to this chip. To shorten the programming time, it is recommended to connect Writer with an additional fifth wire, which is the VPP (P3.7) pin. If the user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer. More pins connected to Writer ensure more writing efficiency and speed.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1
5-Wire	VCC, VSS, P3.0, P3.1, VPP
7-Wire	VCC, VSS, P3.0, P3.1, VPP, P3.3, P1.2 <i>Note:</i> P3.2 output FRC/4 and P3.5 always output Low in this mode

2.1.3 Flash IAP Mode

The **F5250** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time as conveniently as data EEPROM access. The IAP function is byte writable, meaning that the **F5250** does not need to erase one Flash page before write. The available IAP data space is 252 Bytes after chip reset, and can be re-defined by the "MVCLOCK" and "IAPALL" control register as shown below.

_	4K Bytes Flash Program memory	Flash memory	MVCLOCK	IAPALL	MOVC Accessible	MOVX (IAP) Accessible
000h			1	Х	No	No
	MOVC-Lock area	000h~1FFh	0	0	Yes	No
1FFh			0	1	Yes	Yes
200h	IAP-All area	200h~EFFh	Х	0	Yes	No
EFFh	IAP-All alea	20011~EFFII	Х	1	Yes	Yes
F00h FFBh	IAP-Free area	F00h~FFBh	Х	Х	Yes	Yes
FFCh		EECh EECh	Х	0	Yes	No
	CFGW area	FFCh~FFEh	Х	1	Yes	Yes
FFFh		FFFh	Х	Х	Yes	No

In IAP mode, the program Flash memory is separated into four sectors: MOVC-Lock area, IAP-All area, IAP-Free area, and CFGW area. These four sectors are regulated differently.

In the **MOVC-Lock area**, IAP read/write is limited by MVCLOCK bit, which can be set to control the accessibility of the MOVC and MOVX instructions to this area. The size of this area is 512 Bytes. The lock function is made to protect the main program code against unconsciously writing Flash memory in IAP mode. Locking or unlocking the function should be performed by the tenx TWR98/99 writing to the CFGW in Flash memory.

The **IAP-All area** is protected by the IAPALL register to prevent IAP mode from writing application data to the program area, resulting in a program code error that cannot be repaired. The size of this area is 3328 Bytes. Enabling IAPALL requires writing 65h to SFR SWCMD 97h to set the IAPALL control flag. Then, software can use MOVX instructions to write application data to flash memory from 0200h to EFFh. If user wants to disable IAPALL function, user can write other values to SFR SWCMD 97h to clear the IAPALL control flag. User must be careful not to overwrite program code which is already resided on the same Flash memory area.

The **IAP-Free area** has no control bit to protect. It can be used to reliably store system application data that needs to be programmed once or periodically during system operation. Other areas of Flash memory can be used to store data, but this area is usually the best. The size of this area is 252 Bytes, equivalent to an EEPROM, and Flash memory can provide byte access to read and write commands. In the past, storage of configuration data required an additional EEPROM or the other storage device. However, this functionality can now be provided by on-chip Flash, reducing the chip count of embedded applications. An external EEPROM or SRAM may not be needed.

The **CFGW area** has 4 data bytes (CFGWH, CFGWL and CFGWRx), which is located at the last 4 addresses of Flash memory. The CFGWH is not accessible to IAP, while the CFGWL and CFGWR can be read or written by IAP in case the IAPALL flag is set. CFGWL is copied to the SFR F7h after power on reset, software then take over CFGWL's control capability by modifying the SFR F7h.

TAD

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address (0000h~FFEh), and the ACC contains the data being written. The F5250 accepts IAP write command only when IAPWE=1. Flash IAP writing requires approximately 200~500 μ s. Meanwhile, the CPU stays in a waiting state, but all peripheral modules (Timers and others) continue running during the writing time. The software must handle the pending interrupts after an IAP write. Flash IAP writing needs higher V_{CC} voltage, V_{CC} > 2.8V.

Because the Program memory and the IAP data space share the same entity, a **Flash IAP Read** can be performed by the "MOVX A, @DPTR" or "MOVC" instruction as long as the target address points to the 0000h~FFEh area. A Flash IAP read does not require extra CPU wait time.

; IAP exa	ample code	
; need	$2.8V < V_{DD} < 3.6V$	
MOV	DPTR, #F00h	; DPTR=F00h=target IAP address
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	C9h, #47h	; IAPWE=1
MOVX	@DPTR, A	; Flash[F00h]=5Ah, after IAP write
		; 200µs~500µs H/W writing time, CPU wait
MOV	C9h, #00h	; IAPWE=0 immediately after IAP write
CLR	А	; A=0
MOVX	A, @DPTR	; A=5Ah
CLR	А	; A=0
MOVC	A, @A+DPTR	; A=5Ah

Flash FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	LV	RE	VCCFLT	PWRSAV	MVCLOCK	_

FFFh.1 MVCLOCK: If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.

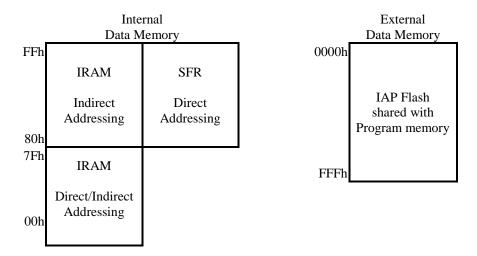
SFR 97h	Bit 7	Bit 6	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1									
SWCMD		IAPALL/SWRST										
R/W		W										
Reset		_										
97h.7~0	IAPALL (W): Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is											

recommended to clear it immediately after IAP access.
97h.0 IAPALL (R): Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
IAPWE		IAPWE										
R/W	R/W		W									
Reset	0		_									

C9h.7~0 **IAPWE (W):** Write 47h to set IAPWE control flag; Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.

C9h.7 IAPWE (R): Flag indicates Flash memory can be written by IAP or not, 1=IAP Write enable.

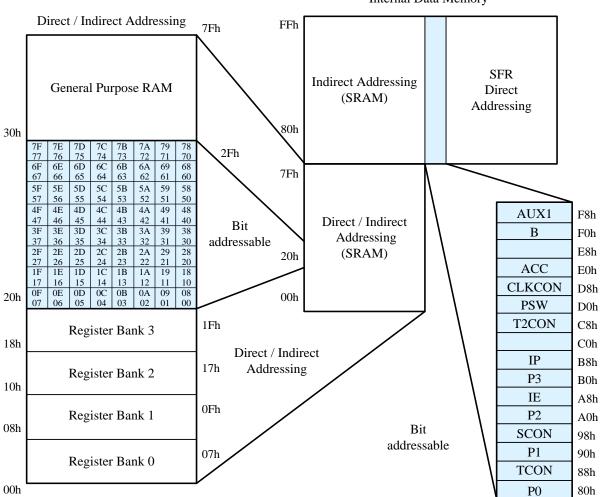

2.1.5 Flash ISP Mode

The "In System Program" (ISP) usage is similar to IAP, except the purpose is to refresh the Program code. User can use UART or other method to get new Program code from external host, then writes code as the same way as IAP. ISP operation is complicated; basically it needs to assign a Boot code area to the Flash which does not change during the ISP process.

2.2 Data Memory

As the standard 8051, the **F5250** has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and 52 SFRs, which are accessible through a rich instruction set.

2.2.1 IRAM


IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.2.2 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the **F5250**. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the **F5250** implements additional SFRs used to configure and access subsystems such as the ADC, which are unique to the **F5250**.

	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В							CFGWL
E8h								
E0h	ACC							
D8h	CLKCON							
D0h	PSW							
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2		
C0h								
B8h	IP	IPH	IP1	IP1H				
B0h	P3							
A8h	IE	INTE1	ADTKDT	ADCDH			CHSEL	
A0h	P2	PWMCON	P1MODL	P1MODH	P3MODL	P3MODH	PINMOD	
98h	SCON	SBUF	PWM0PRD	PWM0DH	PWM1PRD	PWM1DH		
90h	P1			P2MOD	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1		
80h	P0	SP	DPL	DPH				PCON

3. Power

The **F5250** has a built-in internal low dropout regulator. When MODE3V=0, the voltage regulator outputs 3.3V power to the internal chip circuit. When MODE3V=1, the LDO is turned off, and the internal circuit receives a power supply directly from the VCC pin. Because the LDO consumes 150 μ A for operation, turning off LDO by setting MODE3V=1 can reduce the chip current consumption. However, setting MODE3V=1 is only valid for an operating condition of V_{CC} <3.6V. The PWRSAV also control the LDO. When MODE3V=0 and PWRSAV=1, the LDO is turned off in Stop mode for saving power consumption. In addition, set PWRSAV will affect the LVR/LVD setting.

MODE3V=0

Operation	CF	GW	Tiny	LDO	LVD	LVD	E
Mode	PWRSAV	LVRE	Current	LDO	LVR	LVD	Function
	Х	00	-	ON	ON	_	LV Reset 2.9V
Fast Slow	Х	01	-	ON	ON	-	LV Reset 2.3V
Idle	Х	10	-	ON	ON	-	LV Reset 3.5V
idic	Х	11	-	ON	ON	ON	LV Reset 2.0V
	0	00	_	ON	ON	-	LV Reset 2.9V
	0	01	-	ON	ON	-	LV Reset 2.3V
	0	10	_	ON	ON	-	LV Reset 3.5V
Stop	0	11	-	ON	ON	-	LV Reset 2.0V
Stop	1	00	Y	OFF	ON	-	LV Reset 2.0V
	1	01	Y	OFF	ON	-	LV Reset 2.0V
	1	10	Y	OFF	ON	-	LV Reset 2.0V
	1	11	Y	OFF	ON	-	LV Reset 2.0V

MODE3V=1

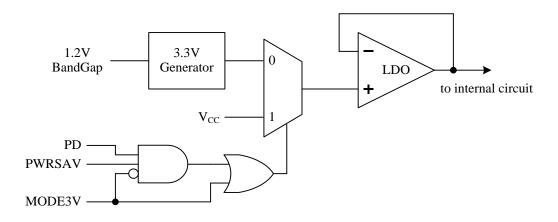
Operation	CF	GW	Tiny	I DO	LVD	IVD	Enn ett on
Mode	PWRSAV	LVRE	Current	LDO	LVR	LVD	Function
	0	00	_	OFF	ON	_	LV Reset 2.9V
	0	01	_	OFF	ON	_	LV Reset 2.3V
F (0	10	-	OFF	ON	_	LV Reset 3.5V
Fast Slow	0	11	-	OFF	ON	ON	LV Reset 2.0V
Idle	1	00	Idle	OFF	ON	-	LV Reset 2.0V
idic	1	01	Idle	OFF	ON	-	LV Reset 2.0V
	1	10	Idle	OFF	ON	-	LV Reset 2.0V
	1	11	Idle	OFF	ON	_	LV Reset 2.0V
	0	00	_	OFF	ON	-	LV Reset 2.9V
	0	01	-	OFF	ON	-	LV Reset 2.3V
	0	10	-	OFF	ON	-	LV Reset 3.5V
Stor	0	11	Y	OFF	ON	-	LV Reset 2.0V
Stop	1	00	Y	OFF	ON	_	LV Reset 2.0V
	1	01	Y	OFF	ON	-	LV Reset 2.0V
	1	10	Y	OFF	ON	_	LV Reset 2.0V
	1	11	Y	OFF	ON	_	LV Reset 2.0V

Note: Typical Tiny current of F5250 are Idle=5uA and Stop=3uA @VCC=3V, 32KHz *Note:* FW must turn off Bandgap to obtain Tiny Current (ADCHS \neq 0b1011)

Flash FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	LV	RE	VCCFLT	PWRSAV	MVCLOCK	_

FFFh.3 VCCFLT: Set 1 to enhance the chip's power noise immunity FFFh.2

PWRSAV: Power save function control bit


0: Disable Power save function

1: Enable Power save function

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
OPTION	UART1W	MODE3V	WDT	TPSC	ADO	CKS	TM3	SPSC		
R/W	R/W	R/W	R/	W	R/W		R/W			
Reset	0	0	0	0	0	0	0	0		
94h.6	94h.6 MODE3V: 3V mode selection control bit									

MODE3V: 3V mode selection control bit

If this bit is set, the chip can be only operated in the condition of $V_{CC} < 3.6V$, and LDO is turned off to save current

4. Reset

The **F5250** has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGW controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from Flash's last two bytes (Other Reset will not reload the CFGW). The Power on Reset needs VCC pin's voltage first discharge to near VSS level, then rise beyond 2.1V.

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Stop mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The **F5250** offers four options for LVR and Low Voltage Detection (LVD) functions. The user can make a selection by CFGW, let LVR voltages of 3.5V, 2.9V, 2.3V, and 2.0V be selected separately, and let LVD be 2.3V only. If the LVR is selected as 2.0V, the 2.3V LVD flag is available for LVD. If LVR is selected as 2.3V, 2.9V or 3.5V, the LVD flag cannot be used.

System Clock frequency	14.74MHz	9.8MHz	5MHz	2.5MHz
Minimum LVR level	LVR=3.5V	LVR=2.9V	LVR=2.3V	LVR=2.0V

LVR setting table

Note: LVR must be enable, also refer to AP-TM52XXXX_02S for LVR setting information

Flash FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROT	XRSTE	LV	RE	VCCFLT	PWRSAV	MVCLOCK	_

FFFh.6XRSTE: External Pin Reset control0: Disable External Pin Reset1: Enable External Pin ResetFFFh.5~4LVRE: Low Voltage Reset function select00: Set LVR at 2.9V01: Set LVR at 2.3V10: Set LVR at 3.5V11: Set LVR at 2.0V and LVD at 2.3V

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CFGWL	WI	WDTE		FRCF						
R/W	R/	W	—	R/W						
Reset	_	_	—	_	_	—	—	_		

F7h.7~6 **WDTE:** Watchdog Timer Reset control. It is automatically loaded with Flash's FFEh data at power on reset and can be read/written as any other SFR register in normal mode. So the WDT can be changed on CPU run time by S/W.

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Stop mode

11: Watchdog Timer Reset always enable

Note: FW should not change FRCF while writing WDTE

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
OPTION	UART1W	MODE3V	WDT	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/	W	R/	W	R/	W	
Reset	0	0	0	0	0	0	0	0	

94h.5~4 WDTPSC: Watchdog Timer pre-scalar time select

00: 360ms WDT overflow rate

01: 180ms WDT overflow rate

10: 90ms WDT overflow rate

11: 45ms WDT overflow rate

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVD	—	_	ADIF	—	IE2	P1IF	TF3
R/W	R	—	_	R/W	—	R/W	R/W	R/W
Reset	_	—	—	0	—	0	0	0

95h.7 **LVD:** Low Voltage Detect flag

Set by H/W when a low voltage occurs. The flag is valid when LVR is 2.0V. This flag is disabled if MODE3V=1 and PWRSAV=1.

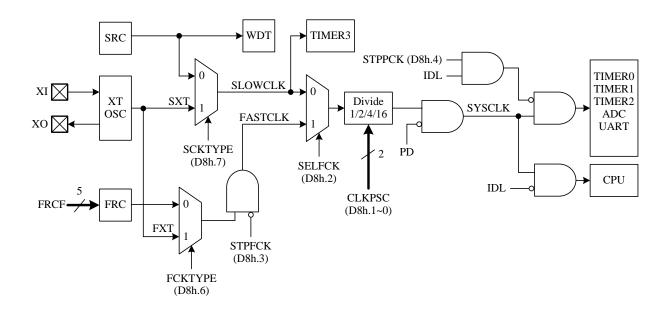
SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SWCMD		IAPALL/SWRST									
R/W		W									
Reset		_									
0.51 5 0	aupar w		C ALL I								

97h.7~0 **SWRST:** Write 56h to generate S/W Reset

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	—	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

F8h.7 **CLRWDT:** Set to clear WDT, H/W auto clear it at next clock cycle

5. Clock Circuitry and Operation Mode


5.1 System Clock

The **F5250** is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~14.746 MHz) or FRC (Fast Internal RC, 9.83 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 24 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 24 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 9.8 MHz System clock rate requires $V_{CC} > 2.9V$.

The **F5250** has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~14.746 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

Flash FFEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWL	_	_	_			FRCF		

FFEh.4~0 **FRCF:** FRC frequency adjustment.

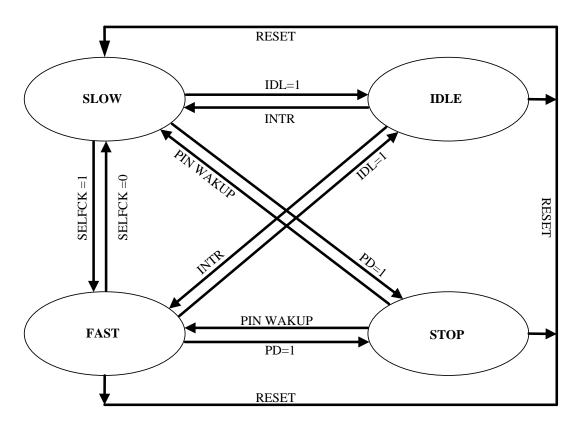
FRC is trimmed to 9.83 MHz in chip manufacturing. FRCF records the adjustment data.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CFGWL	WDTE		—		FRCF					
R/W	R/W		—	R/W						
Reset		—	—	-	-	—	—	-		

F7h.4~0 **FRCF:** FRC frequency adjustment. It is automatically loaded with Flash's FFEh data at power on reset and can be read/written as any other SFR register in normal mode. So the FRC clock speed can be changed on CPU run time by S/W.

00h=central frequency, 0Fh=highest frequency, 10h=lowest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
CLKCON	SCKTYPE	FCKTYPE		STPPCK	STPFCK	SELFCK	CLK	PSC				
R/W	R/W	R/W		R/W	R/W	R/W	R/	R/W				
Reset	0	0		0	0	0	1	1				
D8h.7	SCKTYPE: Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).											
	0: SRC											
	1: SXT											
D8h.6	FCKTYPE: Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).											
	0: FRC	0: FRC										
	1: FXT											
	STPPCK: S	-					ode					
D8h.3	STPFCK: S	1		1 .	g in Slow/Idl	e mode.						
		be changed										
D8h.2		•	source select	ion. This bit	can be chang	ed only when	n STPFCK=0					
	0: Slow clo											
	1: Fast cloc											
D8h.1~0	CLKPSC: S	•	-		-							
	•			divided by 16)							
		clock is Fast										
	10: System clock is Fast/Slow clock divided by 2											
	11: System clock is Fast/Slow clock divided by 1											
<i>Note:</i> also refer to AP-TM52XXXXX_01S and AP-TM52XXXXX_02S about System Clock Application Note.												



5.2 Operation Mode

There are four operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK=1, Timer0/1/2, ADC and UART are stopped in Idle mode. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT is alive if it is enabled. Stop mode can be terminated by Reset or pin wake up.

Operation Mode Transition

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	—	—	GF1	GF0	PD	IDL
R/W	R/W	—	—	—	R/W	R/W	R/W	R/W
Reset	0	—	—	—	0	0	0	0
071 1		IC 1 G	1 .	1				

87h.1 **PD:** Stop bit. If 1 Stop mode is entered.

87h.0 **IDL:** Idle bit. If 1, Idle mode is entered.

6. Interrupt and Wake-up

This **F5250** has a 10-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Stop mode. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description
0003	IE0	INT0 external pin Interrupt (can wake up Stop mode)
000B	TF0	Timer0 Interrupt
0013	IE1	INT1 external pin Interrupt (can wake up Stop mode)
001B	TF1	Timer1 Interrupt
0023	RI+TI	Serial Port (UART) Interrupt
002B	TF2+EXF2	Timer2 Interrupt
0033	-	Reserved
003B	TF3	Timer3 Interrupt
0043	P1IF	Port1 external pin change Interrupt (can wake up Stop mode)
004B	IE2	INT2 external pin Interrupt (can wake up Stop mode)
0053	ADIF	ADC Interrupt

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P1WKUP		P1WKUP									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake up/Interrupt enable control

0: Disable

1: Enable

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0	
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	
A8h.7	EA: Global interrupt enable								

EA: Global interrupt enable 0: Disable all interrupts

1: Each interrupt is enabled or disabled by its individual interrupt control bit

ET2: Timer2 interrupt enable

0: Disable Timer2 interrupt

1: Enable Timer2 interrupt

A8h.4 **ES:** Serial Port (UART) interrupt enable

0: Disable Serial Port (UART) interrupt

1: Enable Serial Port (UART) interrupt

A8h.5

A8h.3	ET1: Timer1 interrupt enable
	0: Disable Timer1 interrupt
	1: Enable Timer1 interrupt
A8h.2	EX1: INT1 pin Interrupt enable and Stop mode wake up enable
	0: Disable INT1 pin Interrupt and Stop mode wake up
	1: Enable INT1 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no
	matter EA is 0 or 1.
A8h.1	ET0: Timer0 interrupt enable
	0: Disable Timer0 interrupt
	1: Enable Timer0 interrupt
A8h.0	EX0: INT0 pin Interrupt enable and Stop mode wake up enable
	0: Disable INT0 pin Interrupt and Stop mode wake up

1: Enable INT0 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTE1	—	—	—	—	ADIE	EX2	P1IE	TM3IE		
R/W	—	_	_	_	R/W	R/W	R/W	R/W		
Reset	_	—	—	—	0	0	0	0		
A0h 2	ADIE: ADC interrupt angle									

A9h.3	ADIE: ADC interrupt enable	
	0: Disable ADC interrupt	
	1: Enable ADC interrupt	
A9h.2	EX2: INT2 pin Interrupt enable and Stop mode wake up enable	
	0: Disable INT2 pin Interrupt and Stop mode wake up	
	1: Enable INT2 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no	
	matter EA is 0 or 1.	
A9h.1	P1IE: Port1 pin change interrupt enable	
	0: Disable Port1 pin change interrupt	
	1: Enable Port1 pin change interrupt	
A9h.0	TM3IE: Timer3 interrupt enable	
	0: Disable Timer3 interrupt	
	1: Enable Timer3 interrupt	

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	—	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	—	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2:** Timer2 interrupt priority control. (PT2H, PT2) =

00: Level 0 (lowest priority)

- 01: Level 1
- 10: Level 2

11: Level 3 (highest priority)

B9h.4, B8h.4 **PSH, PS:** Serial Port (UART) interrupt priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1:** Timer1 interrupt priority control. Definition as above.

B9h.2, B8h.2 **PX1H, PX1:** INT1 pin interrupt priority control. Definition as above.

B9h.1, B8h.1 PT0H, PT0: Timer0 interrupt priority control. Definition as above.

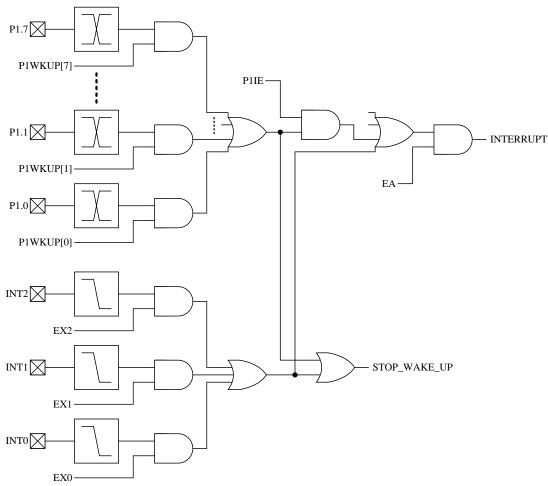
B9h.0, B8h.0 **PX0H**, **PX0**: INTO pin interrupt priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	_	_	—	_	PADIH	PX2H	PP1H	РТ3Н
R/W	_	_	—	—	R/W	R/W	R/W	R/W
Reset		_	—	—	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	_	—	—	—	PADI	PX2	PP1	PT3
R/W	_	—	—	—	R/W	R/W	R/W	R/W
Reset	_	_	_	_	0	0	0	0

BBh.3, BAh.3 PADIH, PADI: ADC interrupt priority control. Definition as above.

BBh.2, BAh.2 PX2H, PX2: INT2 pin interrupt priority control. Definition as above.


BBh.1, BAh.1 **PP1H, PP1:** Port1 pin change interrupt priority control. Definition as above.

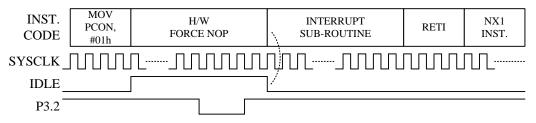
BBh.0, BAh.0 PT3, PT3: Timer3 interrupt priority control. Definition as above.

6.2 Pin Interrupt

Pin Interrupts include INT0 (P3.2), INT1 (P3.3), INT2 (P3.7) and Port1 Change Interrupt. These pins also have the Stop mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2 is falling edge triggered, while Port1 Change Interrupt is triggered by any Port1 pin state change.

Pin Interrupt & Wake up

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
88h.3	IE1: Externa	l Interrupt 1	(INT1 pin) e	dge flag					
	Set by H/W	when an IN	T1 pin falling	g edge is dete	ected, no mat	ter the EX1 is	s 0 or 1.		
	It is cleared automatically when the program performs the interrupt service routine.								
88h.2	IT1: Externa	l Interrupt 1	control bit						
	0: Low leve	el active (leve	el triggered) t	for INT1 pin					
	1: Falling e	dge active (e	dge triggered	l) for INT1 p	in				
88h.1	IE0: Externa								
	Set by H/W	when an IN	T0 pin falling	g edge is dete	ected, no mat	ter the EX0 is	s 0 or 1.		
	It is cleared	automatical	ly when the p	program perf	orms the inter	rrupt service	routine.		
88h.0	IT0: Externa	l Interrupt 0	control bit						
	0: Low level active (level triggered) for INT0 pin								
	1: Falling e	dge active (e	dge triggered	l) for INT0 p	in				



SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
INTFLG	LVD	—	—	ADIF	—	IE2	P1IF	TF3	
R/W	R			R/W		R/W	R/W	R/W	
Reset	_			0		0	0	0	
95h.2	95h.2 IE2: External Interrupt 2 (INT2 pin) edge flag								
	Set by H/W when a falling edge is detected on the INT2 pin state, no matter the EX2 is 0 or 1.								
	It is cleared	automatical	y when the p	orogram perfo	orms the inter	rrupt service	routine.		
	S/W can wr	rite FBh to IN	NTFLG to cle	ear this bit. (N	Note2)				
95h.1	P1IF: Port1	pin change ii	nterrupt flag						
	Set by H/W	when a P1 p	oin state chan	ge is detected	l, and its inte	errupt enable	bit is set (P1)	WKUP).	
	P1IE does r	not affect this	flag's settin	g.					
	It is cleared	automatical	y when the p	orogram perfo	orms the inter	rrupt service	routine.		
	S/W can write FDh to INTFLG to clear this bit. (Note2)								

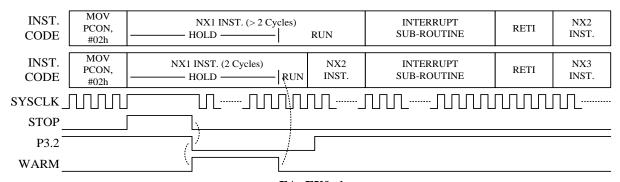
Note2: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

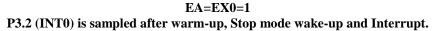
6.3 Idle Mode Wake up and Interrupt

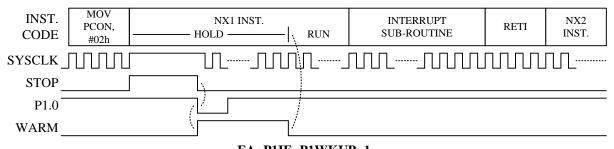
Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, ADC and UART) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

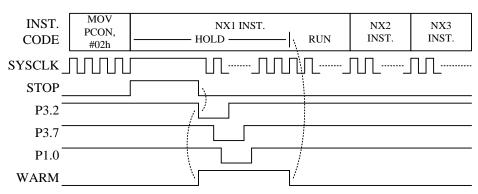
SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	—	—	GF1	GF0	PD	IDL
R/W	R/W	_	—	—	R/W	R/W	R/W	R/W
Reset	0		—	—	0	0	0	0

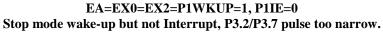

87h.1 **PD:** Stop bit. If 1, Stop mode is entered.


87h.0 **IDL:** Idle bit. If 1, Idle mode is entered.


6.4 Stop Mode Wake up and Interrupt

Stop mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0/EX1/EX2 can enable INT0/INT1/INT2 pins' Stop mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Stop mode wake up capability. Upon Stop wake up, "the first instruction behind PD (PCON.1) setting" is executed immediately before Interrupt service. Interrupt entry needs EA=1 (P1WKUP also needs P1IE=1) and the trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Stop mode wake up.







EA=P1IE=P1WKUP=1 P1.0 change (not need clock sample), Stop mode wake-up and Interrupt.

EX0=EX2=P1WKUP=1=P11E=1, EA=0 Stop mode wake-up but not Interrupt.

7. I/O Ports

The **F5250** has total 18 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR. (ex: ANL P1, A; INC P2; CPL P3.0)

7.1 Port1 & P2.1~P2.0 & P3.6~P3.0

These pins can operate in four different modes as below.

Mode	Port1, P2.1~P2.0, P3 P3.2~P3.0	.6~P3.0 pin function Others	Px.n SFR data	Pin State	Resistor Pull-up	Digital Input
Mode 0	Pseudo	Onen Drein	0	Drive Low	Ν	Ν
Widde 0	Open Drain	Open Drain	1	Pull-up	Y	Y
Mode 1	Node 1 Pseudo		0	Drive Low	Ν	Ν
Mode 1	Open Drain	Open Drain	1	Hi-Z	Ν	Y
Mode 2	CMOS	CMOS Output		Drive Low	Ν	Ν
Mode 2	CMOS	Output	1	Drive High	Ν	Ν
Mode 3	Alternative Funct	ion, such as ADC	X (don't care)		Ν	Ν

Port1, P2.1~P2.0, P3.6~P3.0 I/O Pin Function Table

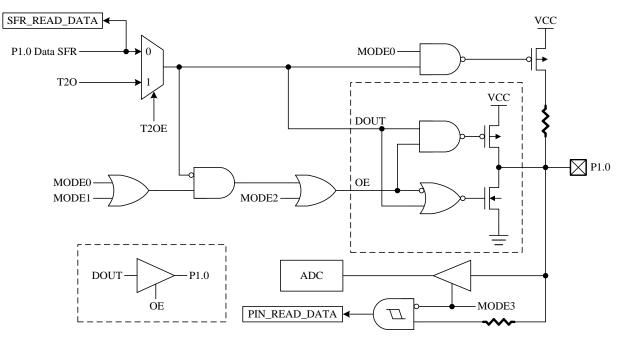
If a Port1, P2.1~P2.0 or P3.6~P3.0 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port1, P2.1~P2.0 and P3.6~P3.0 pin has one or more alternative functions, such as ADC. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/1, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

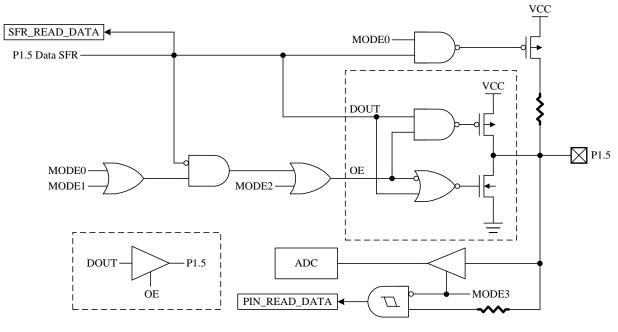
Pin Name	8051	Wake-up	СКО	ADC	others	Mode3
P1.0	T2	Y	T2O	AD4		AD4
P1.1	T2EX	Y		AD5		AD5
P1.2		Y		AD6	PWM0	AD6
P1.3		Y		AD7	PWM1	AD7
P1.4		Y	СКО	AD8		AD8
P1.5		Y		AD9		AD9
P1.6		Y				
P1.7		Y				
P3.0	RXD			AD3		AD3
P3.1	TXD			AD2		AD2
P3.2	INT0	Y		AD1		AD1
P3.3	INT1	Y		AD0		AD0
P3.4	Т0		T0O			
P3.5	T1					
P3.6						
P2.0					XI	
P2.1					XO	

Alternative Function	Mode	Px.n SFR data	Pin State	Other necessary SFR setting
T0, T1, T2, T2EX, 0 1		1	Input with Pull-up	
INT0, INT1	1	1	Input	
DVD TVD	0	1	Input with Pull-up/Pseudo Open Drain Output	
RXD, TXD	1	1	Input/Pseudo Open Drain Output	
	0	Х	Clock Open Drain Output with Pull-up	
T0O, T2O, CKO	1	Х	Clock Open Drain Output	PINMOD P3MODH
	2	Х	Clock Output (CMOS Push-Pull)	rswodn
AD0~AD9	3	Х	ADC Channel	
	0	Х	PWM Open Drain Output with Pull-up	
PWM0, PWM1	1	Х	PWM Open Drain Output	PINMOD
	2	Х	PWM Output (CMOS Push-Pull)	
XI, XO	0	1	Crystal oscillation	CLKCON

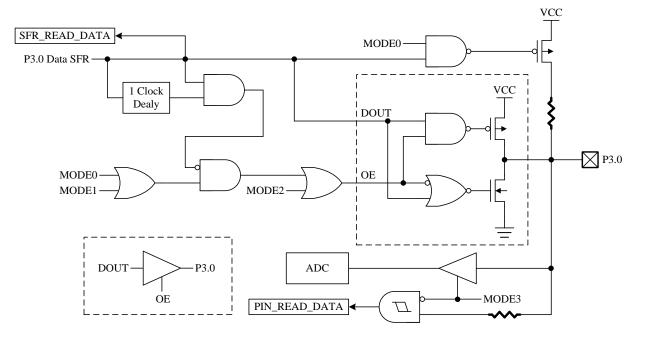
The necessary SFR setting for Port1/P2.1~P2.0/P3.6~P3.0 pin's alternative function is list below.


Mode Setting for Port1, P2.1~P2.0, P3.6~P3.0 Alternative Function

For tables above, a **"COMS Output"** pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.


An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current ($<20\mu$ A). It can be used as input or output function and typically needs an external pull up resistor.

An 8051 standard pin is a **"Pseudo Open Drain"** pin. It can sink at least 4 mA current when output is at low level, and drives at least 4 mA current for $1\sim2$ clock cycle when output transits from low to high, then keeps driving a small current (<20µA) to maintain the pin at high level. It can be used as input or output function.



P1.0 Pin Structure

P1.5 Pin Structure

P3.0 Pin Structure

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
$P0h \in 0$	D2 6 D2 0.1	$D_2 \in D_2 \cap d_{0}$	to					

B0h.6~0 **P3.6~P3.0:** P3.6~P3.0 data

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

A0h.1~0 P2.1~P2.0: P2.1~P2.0 data

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODL	P1M	OD3	P1M	IOD2	P1M	IOD1	P1M	OD0
R/W	R/	W	R	/W	R	/W	R/	W
Reset	0	0	0	0	0	0	0	0
A2h.7~6	P1MOD3: P	1.3 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
		P1.3 is ADC						
A2h.5~4	P1MOD2: P	1.2 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2		.					
		P1.2 is ADC						
A2h.3~2	P1MOD1: P 00: Mode0	1.1 pin conti	:01					
	00: Mode0 01: Mode1							
	10: Mode2							
		P1.1 is ADC	[¬] input					
A2h.1~0	P1MOD0: P							
11211.1 0	00: Mode0	1.0 phi cond	.01					
	01: Mode1							
	10: Mode2							
	11: Mode3,	P1.0 is ADC	C input					
			-					
SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH	P1M	OD7	P1M	IOD6	P1M	IOD5	P1M	OD4
R/W	R/	W	R	/W	R	/W	R/	W
Reset	0	0	0	0	0	0	0	0
A3h.7~6	P1MOD7: P	1.7 pin contr	ol					
	00: Mode0							
	01: Mode1							

	01: Mode1
	10: Mode2
	11: not defined
A3h.5~4	P1MOD6: P1.6 pin control
	00: Mode0
	01: Mode1
	10: Mode2
	11: not defined
A3h.3~2	P1MOD5: P1.5 pin control
	00: Mode0
	01: Mode1
	10: Mode2
	11: Mode3, P1.5 is ADC input
A3h.1~0	P1MOD4: P1.4 pin control
	00: Mode0
	01: Mode1
	10: Mode2
	11: Mode3, P1.4 is ADC input

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODL	P3M	OD3	P3M	IOD2	P3M	IOD1	P3M	OD0
R/W	R/	W	R/	/W	R	/W	R/	W
Reset	0	1	0	1	0	1	0	1
A4h.7~6	P3MOD3: P	3.3 pin contr	rol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
		P3.3 is ADC						
A4h.5~4	P3MOD2: P	3.2 pin cont	rol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
		P3.2 is ADC	1					
A4h.3~2	P3MOD1: P	3.1 pin conti	rol					
	00: Mode0							
	01: Mode1							
	10: Mode2		~ •					
A 41 1 0		P3.1 is ADO						
A4h.1~0	P3MOD0: P	3.0 pin conti	:01					
	00: Mode0							
	01: Mode1							
	10: Mode2	$\mathbf{D}^{2} \mathbf{O} := \mathbf{A} \mathbf{D} \mathbf{O}$	7 :					
	11: Mode3,	P3.0 is AD0	_ input					
SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	TOOE		P3M	IOD6	P3M	IOD5	P3M	OD4

SFR A5h	Bit /	B1t 6	Bit 5	B1t 4	Bit 3	Bit 2	Bit I	Bit 0
P3MODH	TOOE	_	P3M	OD6	P3M	OD5	P3M	OD4
R/W	R/W	_	R/W 0 0		R/W		R/W	
Reset	0		0	0	0	0	0	0
A5h.7	TOOE: Time	er0 signal out	put (T0O) co	ontrol				
	0: Disable	Гimer0 overf	low divided l	by 64 output	to P3.4			
	1: Enable T	'imer0 overfl	ow divided b	y 64 output t	o P3.4			
A5h.5~4	P3MOD6: P	3.6 pin contr	ol					

- 4 **P3MOD6:** P3.6 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: not defined
- A5h.3~2 **P3MOD5:** P3.5 pin control
 - 00: Mode0
 - 00: Mode0 01: Mode1
 - 10: Mode2
 - 11: not defined
- A5h.1~0 **P3MOD4:** P3.4 pin control 00: Mode0 01: Mode1
 - 10: Mode2 11: not defined

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2MOD		P2	OE		P2M	OD1	P2M	OD0
R/W		R/	W		R/	W	R/	W
Reset	0	0	0	0	0	1	0	1
93h.3~2	P2MOD1: P	2.1 pin contr	ol					
	00: Mode0							
	01: Mode1							
	10: Mode2							
	11: not defi							
93h.1~0	P2MOD0: P							
	00: Mode0	01: Mod	e1 10: N	Iode2 11	: not defined	l		
	D'4 7	Diec	D:4 5	D'4 4	D'4 2	D'/ 2	D'/ 1	D'4 0
SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PWM1AOE	—	PWM0AOE	—	TCOE	T2OE	—	_
R/W	R/W		R/W	—	R/W	R/W	—	_
Reset	0		0	_	0	0	—	_
A6h.7	PWM1AOE							
			output to P1					
			output to P1.					
A6h.5	PWM0AOE							
			output to P1					
A6h.3	TCOE: Syst		output to P1.					
A011.5			divided by 2		4			
			divided by 2					
A6h.2	T2OE: Time				.+			
A011.2			low divided b		P1 0			
			ow divided b					
	1. Lindole 1			<i>y 2</i> output to	1 1.0			
	D': 7	D'+ (D • • •	721.0	51.0	751.4	

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	_	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	_	R/W	R/W	R/W	R/	W
Reset	0	0	_	0	0	0	1	1
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							

D8h.7 SCKTYPE: Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).
 0: SRC, P2.1~P2.0 are I/O pins
 1: SXT, P2.1~P2.0 are crystal pins
 D8h.6 FCKTYPE: Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).
 0: FRC, P2.1~P2.0 are I/O pins

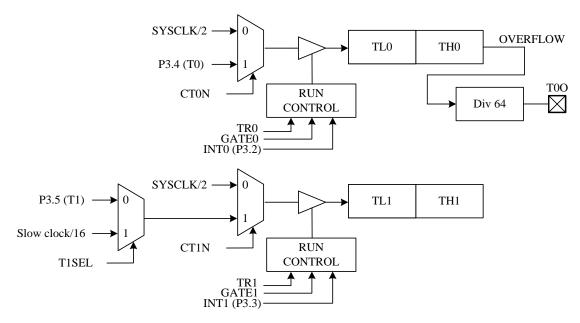
1: FXT, P2.1~P2.0 are crystal pins

7.2 P3.7

P3.7 can be only used as Schmitt-trigger input or open-drain output, with pull-up resistor always enable. P3.7 pin is shared with RSTn, INT2 and Flash VPP function.

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7 **P3.7:** P3.7 data, also controls the P3.7 pin's I/O mode. If the P3.7 SFR data is "1", the P3.7 is assigned as Schmitt-trigger input mode; otherwise, it is assigned as open-drain output mode.



8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0/Timer1/Timer2

Compare to the traditional 12T 8051, the chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function, SLOWCLK/16 can replace P3.5 (T1) and P1.0 (T2) pins as the Timer1 and Timer2 counter mode input. The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal.

Timer0 and Timer1 Structure

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	ITO
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
88h.7	TF1: Timer1	overflow fla	ıg					
	Set by H/W	when Timer	Counter 1 o	verflows.				
	Cleared by	H/W when C	PU vectors i	nto the interr	upt service r	outine.		
88h.6	TR1: Timer	l run control						
	0: Timer1 s	stops						
	1: Timer1 r	uns						
88h.5	TF0: Timer() overflow fla	ıg					
	Set by H/W	when Timer	Counter 0 o	verflows.				
	Cleared by	H/W when C	PU vectors i	nto the interr	upt service r	outine.		
88h.4	TR0: Timer	0 run control						
	0: Timer0 s	tops						
	1: Timer0 r	uns						

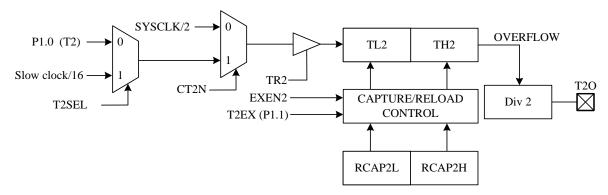
SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TMOD	GATE1	CT1N	ТМ	TMOD1GATE0CT0NTMOD0R/WR/WR/WR/W						
R/W	R/W	R/W	R/	W	R/W	R/W	R/	W		
Reset	0	0	0	0	0	0	0	0		
89h.7	GATE1: Tir									
	0: Timer1 e	nable when [FR1 bit is set	:						
					and TR1 bit i	is set				
89h.6	CT1N: Time									
					n clock cycle					
0.01 - 4				ses at T1 pin	or SLOWCL	LK/16 falling	edge			
89h.5~4	TMOD1: Ti									
		ner/counter (THI) and $5-$	of prescaler	(TLI)					
	011 10 010 0	mer/counter			- J. f TII1					
			er/counter ()	LI). Reload	ed from TH1	at overnow.				
89h.3	11: Timer1 GATE0: Tim		ontrol hit							
0711.5		nable when								
					and TR0 bit i	is set				
89h.2	CT0N: Time	•			and The on	15 500				
0,1112					n clock cycle	rate				
				•	's negative ed					
89h.1~0	TMOD0: Ti			1	e	U				
	00: 8-bit tin	ner/counter (TH0) and 5-1	oit prescaler	(TL0)					
		mer/counter								
	10: 8-bit au	to-reload tim	er/counter (]	TL0). Reload	ed from TH0	at overflow.				
	11: TL0 is a	an 8-bit timer	counter. TH	IO is an 8-bit	timer/counter	r using Time	r1's TR1 and	TF1 bits.		

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL0		TL0								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
8Bh.7~0	TL1: Timer1	L1: Timer1 data low byte								

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TH0		THO									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									
8Ch 7.0	THO: Timer() data high byte										


8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

8Dh.7~0 **TH1:** Timer1 data high byte

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter 2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
C8h.7	TF2: Timer2	2 overflow fl	ag									
	Set by H/W	/ when Time	r/Counter 2 of	overflows un	less RCLK=1	or TCLK=	1. This bit m	ust be cleared				
	by S/W.											
C8h.6	EXF2: T2EX interrupt pin falling edge flag											
	Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit											
	must be cleared by S/W.											
C8h.5	RCLK: UART receive clock control bit											
	0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3											
C01 4					l port in mod	e I or 3						
C8h.4	TCLK: UA				1	1.1.2						
					al port in mo							
C8h.3	EXEN2: T2			clock for seri	al port in mo	the 1 or 5						
Coll.5	0: T2EX pi	-	ic									
	-		ause a cantu	e or reload v	when a negativ	ve transition	on T2FX nit	n is detected				
		TCLK=0	ause a captur	e of feload v	vnen a negati	ve transition	on rzez pi	ii is detected				
C8h.2	TR2: Timer											
	0: Timer2 s											
	1: Timer2 r	1										
C8h.1	CT2N: Time	er2 Counter/	Fimer select l	oit								
	0: Timer m	ode, Timer2	data increase	s at 2 System	n clock cycle	rate						
	1: Counter	mode, Timer	2 data increa	ses at T2 pin	or SLOWCI	LK/16 falling	g edge					
C8h.0	CPRL2N: T											
		0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1										
					on T2EX pin							
	If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow											

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2L		RCP2L								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

CAh.7~0 **RCP2L:** Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
CBh.7~0	CBh.7~0 RCP2H: Timer2 reload/capture data high byte									

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TL2		TL2									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									
CCh 7 = 0	TI 2. Timer data low byte										

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
CD1 7 0										

CDh.7~0 **TH2:** Timer2 data high byte

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The TOO waveform is Timer0 overflow divided by 64, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed. Set TOOE and T2OE SFRs can output these waveforms.

The Time1 and Timer2's SLOWCLK/16 counter mode input makes the Timer usage more flexible. Set T1SEL and T2SEL SFRs can enable this function.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PWM1AOE		PWM0AOE		TCOE	T2OE	_	_
R/W	R/W		R/W		R/W	R/W		—
Reset	0	_	0		0	0	_	_

A6h.2 **T2OE:** Timer2 signal output (T2O) control

0: Disable Timer2 overflow divided by 2 output to $\ensuremath{\text{P1.0}}$

1: Enable Timer2 overflow divided by 2 output to P1.0

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	TOOE		P3MOD6		P3MOD5		P3MOD4	
R/W	R/W		R/	R/W		R/W		W
Reset	0		0	0	0	0	0	0

A5h.7 **TOOE:** Timer0 signal output (TOO) control

0: Disable Timer0 overflow divided by 64 output to P3.4

1: Enable Timer0 overflow divided by 64 output to P3.4

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0	_	0	0	0	0	0

F8h.2	T2SEL: Timer2 counter mode (CT2N=1) input select
	0: P1.0 (T2) pin (8051standard)
	1:Slow clock divide by 16 (SLOWCLK/16)
F8h.1	T1SEL: Timer1 counter mode (CT1N=1) input select
	0: P3.5 (T1) pin (8051 standard)
	1: Slow clock divide by 16 (SLOWCLK/16)

8.2 Timer3

Timer3 of **F5250** works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 32768, 16384, 8192, or 128 depending on the TM3PSC bits. The Timer3 clock source is Slow clock (SRC or SXT). This is ideal for real-time-clock (RTC) functionality when the clock source SXT.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	MODE3V	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/	R/W		R/W		W
Reset	0	0	0	0	0	0	0	0

94h.1~0 **TM3PSC:** Timer3 interrupt rate control select

00: Interrupt rate is 32768 Slow clock cycle

01: Interrupt rate is 16384 Slow clock cycle

10: Interrupt rate is 8192 Slow clock cycle

11: Interrupt rate is 128 Slow clock cycle

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVD	—	—	ADIF	—	IE2	P1IF	TF3
R/W	R	—	_	R/W	—	R/W	R/W	R/W
Reset		_	_	0	_	0	0	0

95h.0 **TF3:** Timer 3 interrupt flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note2*)

Note2: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	_	R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

F8h.6 **CLRTM3:** Set to clear Timer3, H/W auto clear it at next clock cycle

Note: also refer to Section 6 for more information about Timer0/1/2/3 Interrupt enable and priority.

9. UART

The UART uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	—	—	GF1	GF0	PD	IDL
R/W	R/W			—	R/W	R/W	R/W	R/W
Reset	0			—	0	0	0	0

87h.7 **SMOD:** UART double baud rate control bit

0: Disable UART double baud rate

1: Enable UART double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	MODE3V	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/W		R/W		R/W	
Reset	0	0	0	0 0		0	0	0

94h.7 UART1W: One wire UART mode enable, both TXD/RXD use P3.1 pin

0: Disable one wire UART mode

1: Enable one wire UART mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

98h.7~6	SM0,SM1: Serial port mode select bit 0,1
	00: Mode0: 8 bit shift register, Baud Rate=F _{SYSCLK} /2
	01: Mode1: 8 bit UART, Baud Rate is variable
	10: Mode2: 9 bit UART, Baud Rate=F _{SYSCLK} /32 or /64
	11: Mode3: 9 bit UART, Baud Rate is variable
98h.5	SM2: Serial port mode select bit 2
	SM2 enables multiprocessor communication over a single serial line and modifies the above as
	follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the
	received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop
	bit is received. In Mode 0, SM2 should be 0.
98h.4	REN: UART reception enable
	0: Disable reception
	1: Enable reception
98h.3	TB8: Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3
98h.2	RB8: Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit in Mode 1
	if SM2=0
98h.1	TI: Transmit interrupt flag
	Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes.
	Must be cleared by S/W.
98h.0	RI: Receive interrupt flag
	Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other
	modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF		SBUF									
R/W		R/W									
Reset	-										
00h7.0	SRUE. UAE	PT transmit a	nd receive d	ata Transmit	data is write	ton to this lo	cation and re	caiva data is			

99h.7~0 **SBUF:** UART transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency.

- Mode 0:
 - Baud Rate=F_{SYSCLK}/2
- Mode 1, 3: if using Timer1 auto reload mode

Baud Rate= (SMOD+1) xF_{SYSCLK} / (32x2x (256–TH1))

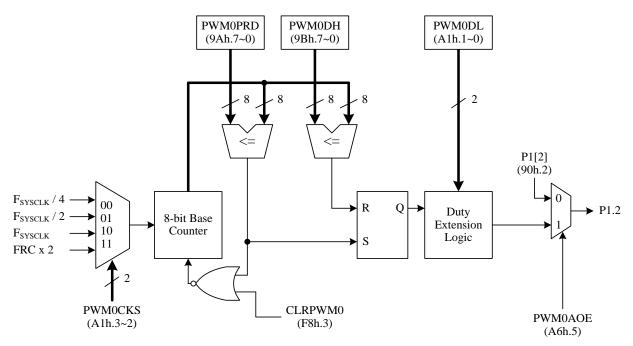
• Mode 1, 3: if using Timer2

Baud Rate=Timer2 overflow rate/16=F_{SYSCLK}/ (32 x (65536–RCP2H, RCP2L))

• Mode 2:

Baud Rate= (SMOD+1) x F_{SYSCLK}/64

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. *Note:* also refer to Section 8 for more information about how Timer2 controls UART clock.



10. PWMs

The **F5250** has two independent PWM modules, PWM0 and PWM1. The PWM can generate a fixed frequency waveform with 1024 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRCx2) or F_{SYSCLK} divided by 1, 2, or 4 as its clock source. A spread LSB technique allows PWM to run its frequency at the "PWM clock divided by 256" instead of at the "PWM clock divided by 1024", which means the PWM is four times faster than normal. The advantage of a higher PWM frequency is that the post RC filter can transform the PWM signal to a more stable DC voltage level.

The PWM output signal resets to a low level whenever the 8-bit base counter matches the 8-bit MSB of the PWM duty register. When the base counter rolls over, the 2-bit LSB of the PWM duty register decides whether to set the PWM output signal high immediately or set it high after one clock cycle delay. The PWM period can be set by writing the period value to the 8-bit PWM period register.

The pin mode SFR controls the PWM output waveform format. Mode1 makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (*see section 7*)

PWM Structure

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0PRD		PWM0PRD									
R/W				R/	W						
Reset	1	1 1 1 1 1 1 1 1									

9Ah.7~0 **PWM0PRD:** PWM0 8-bit period register

SFR 9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0DH		PWM0DH									
R/W				R/	W						
Reset	1	1 0 0 0 0 0 0 0 0									
0 D1 = 0			DUD (0.10								

9Bh.7~0 **PWM0DH:** bits 9~2 of the PWM0 10-bit duty register

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1PRD		PWM1PRD									
R/W				R/	W						
Reset	1	1 1 1 1 1 1 1 1									
		BIT B 64 8 4									

9Ch.7~0 **PWM1PRD:** PWM1 8-bit period register

SFR 9Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1DH		PWM1DH									
R/W		R/W									
Reset	1	1 0 0 0 0 0 0 0 0									

9Dh.7~0 **PWM1DH:** bits 9~2 of the PWM1 10-bit duty register

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	PWM	1CKS	PWM1DL		PWM0CKS		PWM0DL	
R/W	R/	R/W		R/W		W	R/W	
Reset	1	0	0	0	1	0	0	0

A1h.7~6 **PWM1CKS:** PWM1 clock source

00: F_{SYSCLK}/4

01: $F_{SYSCLK}/2$

10: F_{SYSCLK}

11: FRCx2

A1h.5~4 **PWM1DL:** bits 1~0 of the PWM1 10-bit duty register

- A1h.3~2 **PWM0CKS:** PWM0 clock source
 - 00: F_{SYSCLK}/4
 - $01{:}\;F_{SYSCLK}/2$

10: F_{SYSCLK}

11: FRCx2

A1h.1~0 **PWM0DL:** bits 1~0 of the PWM0 10-bit duty register

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	PWM1AOE	_	PWM0AOE	_	TCOE	T2OE	—	—
R/W	R/W	_	R/W		R/W	R/W	—	—
Reset	0	_	0		0	0		

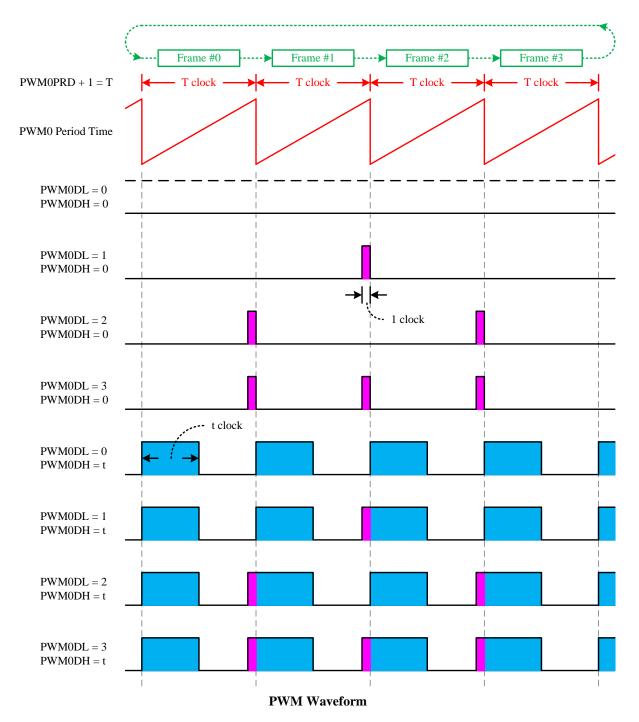
A6h.7 **PWM1AOE:** PWM1 signal output enable

- 0: Disable PWM1 signal output to P1.3
- 1: Enable PWM1 signal output to P1.3

A6h.5 **PWM0AOE:** PWM0 signal output enable

0: Disable PWM0 signal output to P1.2

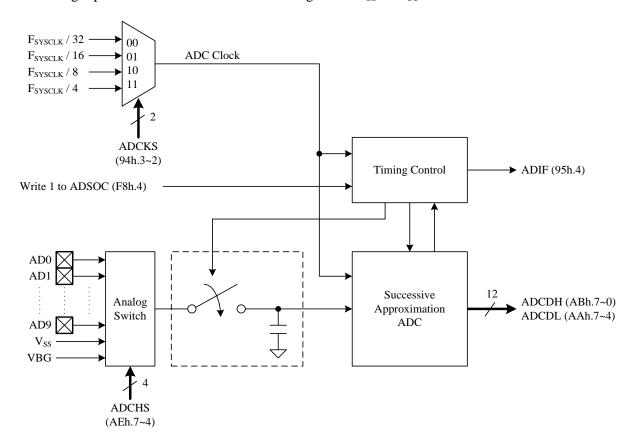
1: Enable PWM0 signal output to P1.2


SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	_	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

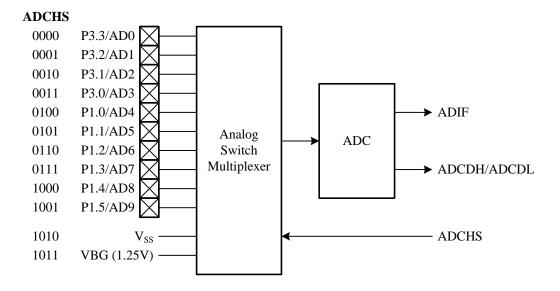
F8h.3 CLRPWM0: PWM0 clear enable

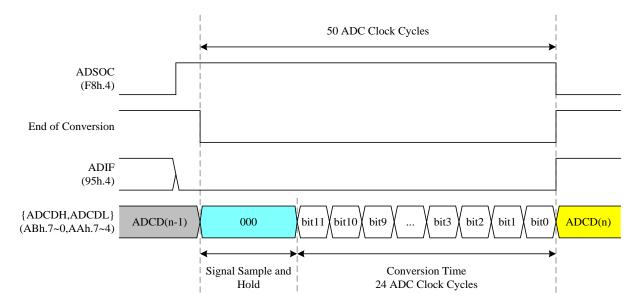
0: PWM0 is running

1: PWM0 is cleared and held



11. ADC


The **F5250** offers a 12-bit ADC consisting of a 12-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit. The analog input level must remain within the range from V_{SS} to V_{CC} .


11.1 ADC Channels

The 12-bit ADC has a total of 12 channels, designated AD0~AD9, V_{SS} , and VBG. The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by the ADCHS register. **F5250** offers up to 10 analog input pins, designated AD0~AD9. In addition, there are two analog input pins for voltage reference connections. When ADCHS is set to 1010b, the analog input will connect to V_{SS} , and when ADCHS is set to 1011b, the analog input will connect to VBG. VBG is an internal voltage reference at 1.25V.

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 50 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

11.3 VBG Voltage Conversion

The VBG voltage is measured by ADC and the convert result (ADC data bit 7~0, @VCC=5V) is stored to Flash FFCh in chip manufacturing. User can refer the data to obtain the actual Bandgap voltage.

SFR 94h	Bit 7	Bit 6	Bit 5 Bit 4		Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	MODE3V	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/	W	R/W		R/	W
Reset	0	0	0	0	0	0	0	0

94h.3~2 **ADCKS:** ADC clock rate select

- 00: F_{SYSCLK}/32
- 01: $F_{SYSCLK}/16$
- 10: $F_{SYSCLK}/8$
- 11: $F_{SYSCLK}/4$

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVD	—	—	ADIF		IE2	P1IF	TF3
R/W	R	—	—	R/W		R/W	R/W	R/W
Reset		—	—	0	_	0	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADTKDT		ADO	CDL			—	—	
R/W		I	ર		_	_	—	_
Reset		—		—		—	—	_
1 Ab 7.4		DC data hit 3						

AAh.7~4 ADCDL: ADC data bit 3~0

SFR ABh	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0										
ADCDH		ADCDH										
R/W		R										
Reset	-											
ABh 7~0	ADCDH· A	ADCDH: ADC data bit 11~4										

ABh.7~0 **ADCDH:** ADC data bit 11~4

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CHSEL		ADCHS				—	_	_
R/W		R/	W		—	—	_	_
Reset	1	1	1	1	_	_		_

AEh.7~4 ADCHS: ADC channel select

0000: ADC0 (P3.3)
0001: ADC1 (P3.2)
0010: ADC2 (P3.1)
0011: ADC3 (P3.0)
0100: ADC4 (P1.0)
0101: ADC5 (P1.1)
0110: ADC6 (P1.2)
0111: ADC7 (P1.3)
1000: ADC8 (P1.4)
1001: ADC9 (P1.5)
1010: V _{SS}
1011: VBG (internal Bandgap reference voltage)
11xx: Undefined

Note: FW must turn off Bandgap to obtain Tiny Current (ADCHS \neq 0b1011)

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3		ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W		R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0

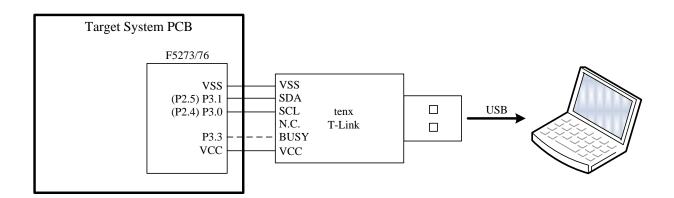
F8h.4 **ADSOC:** Start ADC conversion

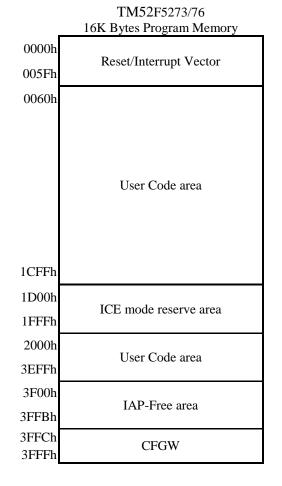
Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

Flash FFCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWR1				VE	3G			

FFCh.7~0 VBG: Bandgap voltage.

ADC convert data bit 7~0 for VBG, @VCC=5V and ADCHS=1011b


Note: also refer to Section 6 for more information about ADC Interrupt enable and priority. *Note:* also refer to Section 7 for more information about ADC pin input setting.


12. In Circuit Emulation (ICE) Mode

This device is not support ICE mode but it can use F5273/76 to simulate F5250. When using F5273/67 to simulate F5250, there are some different from F5250 should be notice such as program memory area, CFGW area and IAP area. Please see DS-TM52F5273_76 for more F5273/76 ICE mode detail.

Note: When using F5273/67 to simulate F5250, User should take care about different from the **program memory**, **CFGW area** and **IAP area** arrangement. For example Using F5273/67 to simulate F5250, Programming IAP area F00h~FFbh have to set SFR IAPALL, but F5250 real chip doesn't need to set SFR IAPALL.

	TM52F5250 4K Bytes Program Memory
0000h	
005Fh	Reset/Interrupt Vector
0060h	
	User Code area
EFFh	
F00h	IAP-Free area
FFBh	IAF-Free alea
FFCh	CFGW
FFFh	CrOw

SFR & CFGW MAP

Adr	Rst	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
80h	1111-1111	P0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0			
81h	0000-0111	SP				S	Р						
82h	0000-0000	DPL				D	PL						
83h	0000-0000	DPH				DI	PH	Н					
87h	0xxx-0000	PCON	SMOD	-	-	-	GF1	GF0	PD	IDL			
88h	0000-0000	TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0			
89h	0000-0000	TMOD	GATE1	CT1N	TM	DD1	GATE0	CT0N	TM	OD0			
8Ah	0000-0000	TL0				T	LO						
8Bh	0000-0000	TL1				T	L1						
8Ch	0000-0000	TH0				TI	HO						
8Dh	0000-0000	TH1				TI	H1						
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0			
93h	0000-0101	P2MOD	_	-	_	_	P2M	IOD1	P2M	IOD0			
94h	0000-0000	OPTION	UART1W	MODE3V	WDT	TPSC	AD	CKS	TM.	3PSC			
95h	xx00-x000	INTFLG	LVDO	-	-	ADIF	-	IE2	P1IF	TF3			
96h	0000-0000	P1WKUP				P1W	KUP						
97h	xxxx-xxx0	SWCMD				IAPALL	/ SWRST						
98h	0000-0000	SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI			
99h	xxxx-xxxx	SBUF			SBUF								
9Ah	1111-1111	PWM0PRD		PWM0PRD									
9Bh	1000-0000	PWM0DH		PWM0DH									
9Ch	1111-1111	PWM1PRD		PWM1PRD									
9Dh	1000-0000	PWM1DH			PWM1DH								
A0h	1111-1111	P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0			
A1h	1000-1000	PWMCON	PWM	1CKS	PWN	11DL	PWM	IOCKS	PWN	40DL			
A2h	0000-0000	P1MODL	P1M	OD3	P1M	OD2	P1M	IOD1	P1M	IOD0			
A3h	0000-0000	P1MODH	P1M	OD7	P1M	OD6	P1M	IOD5	P1M	IOD4			
A4h	0101-0101	P3MODL	P3M	OD3	P3M	OD2	P3M	IOD1	P3M	IOD0			
A5h	0x00-0000	P3MODH	T0OE	-	P3M	OD6	P3M	IOD5	P3MOD4				
A6h	0000-0000	PINMOD	PWM1AOE	-	PWM0AOE	-	TCOE	T2OE	-	-			
A8h	0x00-0000	IE	EA	-	ET2	ES	ET1	EX1	ET0	EX0			
A9h	xxx0-0000	INTE1	-	-	-	-	ADIE	EX2	P1IE	TM3IE			
AAh	xxxx-xxxx	ADTKDT		AD	CDL		_	-	-	_			
ABh	xxxx-xxxx	ADCDH				ADO	CDH						
AEh	1111-1111	CHSEL		AD	CHS		-	-	-	-			
B0h	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0			
B8h	xx00-0000	IP		_	PT2	PS	PT1	PX1	PT0	PX0			
B9h	xx00-0000	IPH		_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H			
BAh	xxx0-0000	IP1	_	_	_	_	PADI	PX2	PP1	PT3			
BBh	xxx0-0000	IP1H	-	_	-	_	PADIH	PX2H	PP1H	РТ3Н			
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N			
C9h	0xxx-xxxx	IAPWE				IAP	WE						
CAh	0000-0000	RCP2L				RC	P2L						
CBh	0000-0000	RCP2H				RC	P2H						
CCh	0000-0000	TL2				T	L2						
CDh	0000-0000	TH2				TI	H2						
D0h	0000-0000	PSW	CY	AC	F0	RS1	RS0	OV F1		Р			
D8h	00x0-0011	CLKCON	SCKTYPE	FCKTYPE	-	STPPCK	STPFCK	SELFCK	CLF	CPSC			

Adr	Rst	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
F0h	0000-0000	В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	
F7h	xxxx-xxxx	CFGWL	WDTE		-	FRCF					
F8h	0000-0000	AUX1	CLRWDT	CLRTM3	-	ADSOC	CLRPWM0	T2SEL	T1SEL	DPSEL	

Flash Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
FFCh	CFGWR1		<u>VBG@5.0v</u>									
FFDh	CFGWR2		_									
FFEh	CFGWL	-	-	-			FRCF					
FFFh	CFGWH	PROT	XRSTE	LV	RE	VCCFLT	PWRSAV	MVCLOCK	-			

SFR & CFGW DESCRIPTION

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
80h	Р0	7~0	PO	R/W	FFh	Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n=0 (input mode), the pull-up is enabled.
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
		7	SMOD	R/W	0	UART double baud rate control bit 0: Disable UART double baud rate 1: Enable UART double baud rate
87h	PCON	3	GF1	R/W	0	General purpose flag bit
		2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Stop bit. If 1 Stop mode is entered.
		0	IDL	R/W	0	Idle bit. If 1, Idle mode is entered.
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control 0: Timer1 stops 1: Timer1 runs
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control 0: Timer0 stops 1: Timer0 runs
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected, no matter the EX0 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine.
		0	ITO	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin
		7	GATE1	R/W	0	Timer1 gating control bit0: Timer1 enable when TR1 bit is set1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
89h	TMOD	6	CT1N	R/W	0	 Timer1 Counter/Timer select bit 0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin or SLOWCLK/16 falling edge

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
		5~4	TMOD1	R/W	00	 Timer1 mode select 00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at overflow. 11: Timer1 stops
		3	GATE0	R/W	0	Timer0 gating control bit 0: Timer0 enable when TR0 bit is set 1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
89h	TMOD	2	CT0N	R/W	0	 Timer0 Counter/Timer select bit 0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge
		1~0	TMOD0	R/W	00	 Timer0 mode select 00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0) 01: 16-bit timer/counter 10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow. 11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TL0	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch	TH0	7~0	TH0	R/W	00h	Timer0 data high byte
8Dh	TH1	7~0	TH1	R/W	00h	Timer1 data high byte
90h	P1	7~0	P1	R/W	FFh	Port1 data
		3~2	P2MOD1	R/W	01h	P2.1 pin control
93h	P2MOD	1~0	P2MOD0	R/W	01h	P2.0 pin control
		7	UART1W	R/W	0	One wire UART mode enable, both TXD/RXD use P3.1 pin 0: Disable one wire UART mode 1: Enable one wire UART mode
		6	MODE3V	R/W	0	3V mode selection control bit If this bit is set, the chip can be only operated in the condition of V _{CC} <3.6V, and LDO is turned off to save current
94h	OPTION	5~4	WDTPSC	R/W	00	Watchdog Timer pre-scalar time select 00: 360ms WDT overflow rate 01: 180ms WDT overflow rate 10: 90ms WDT overflow rate 11: 45ms WDT overflow rate
		3~2	ADCKS	R/W	00	ADC clock rate select 00: F _{SYSCLK} /32 01: F _{SYSCLK} /16 10: F _{SYSCLK} /8 11: F _{SYSCLK} /4
		1~0	TM3PSC	R/W	00	Timer3 interrupt rate control select 00: Interrupt rate is 32768 Slow clock cycle 01: Interrupt rate is 16384 Slow clock cycle 10: Interrupt rate is 8192 Slow clock cycle 11: Interrupt rate is 128 Slow clock cycle

59

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
		7	LVDO	R		Low Voltage Detect flag Set by H/W when a low voltage occurs. The flag is valid when LVR is 2.0V. This flag is disabled if MODE3V=1 and PWRSAV=1.
	95h INTFLG	4	ADIF	R/W	0	ADC interrupt flag Set by H/W at the end of conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.
95h		2	IE2	R/W	0	External Interrupt 2 (INT2 pin) edge flag Set by H/W when a falling edge is detected on the INT2 pin state, no matter the EX2 is 0 or 1. It is cleared automatically when the program performs the interrupt service routine. S/W can write FBh to INTFLG to clear this bit.
		1	P1IF	R/W	0	Port1 pin change interrupt flag Set by H/W when a P1 pin state change is detected, and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit.
		0	TF3	R/W	0	Timer 3 interrupt flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.
96h	P1WKUP	7~0	P1WKUP	R/W	00h	P1.7~P1.0 pin individual Wake up/Interrupt enable control0: Disable1: Enable
		7~0	SWRST	W		Write 56h to generate S/W Reset
97h	SWCMD	7~0	IAPALL	W		Write 65h to set IAPALL control flag; Write other value to clear IAPALL flag. It is recommended to clear it immediately after IAP access.
		0	IAPALL	R	0	Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
Au						Serial port mode select bit 0,1
		7	SM0	R/W	0	00: Mode0: 8 bit shift register, Baud Rate= $F_{SYSCLK}/2$
						01: Mode1: 8 bit UART, Baud Rate is variable
		6	SM1	R/W	0	10: Mode2: 9 bit UART, Baud Rate= $F_{SYSCLK}/32$ or /64
						11: Mode3: 9 bit UART, Baud Rate is variable Serial port mode select bit 2
						SM2 enables multiprocessor communication over a single
						serial line and modifies the above as follows. In Modes 2
		5	SM2	R/W	0	& 3, if SM2 is set then the received interrupt will not be
						generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid
						stop bit is received. In Mode 0, SM2 should be 0.
						UART reception enable
98h	SCON	4	REN	R/W	0	0: Disable reception
						1: Enable reception
		3	TB8	R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode 2 and 3
		-	DD0	D ///		Receive Bit 8, contains the ninth bit that was received in
		2	RB8	R/W	0	Mode 2 and 3 or the stop bit in Mode 1 if SM2=0
						Transmit interrupt flag
		1	TI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at
						the beginning of the stop bit in other modes. Must be cleared by S/W.
						Receive interrupt flag
		0	RI	R/W	0	Set by H/W at the end of the eighth bit in Mode 0, or at
		Ŭ		10.11	Ū	the sampling point of the stop bit in other modes. Must be characterized by S/W
						cleared by S/W. UART transmit and receive data. Transmit data is written
99h	SBUF	7~0	SBUF	R/W		to this location and receive data is read from this location,
						but the paths are independent.
	PWM0PRD	7~0	PWM0PRD	R/W	FFh	PWM0 8-bit period register
	PWM0DH	7~0	PWM0DH	R/W	80h	bits 9~2 of the PWM0 10-bit duty register
	PWM1PRD	7~0	PWM1PRD	R/W	FFh	PWM1 8-bit period register
9Dh A0h	PWM1DH P2	7~0 7~0	PWM1DH P2	R/W R/W	80h FFh	bits 9~2 of the PWM1 10-bit duty register Port2 data
A011	Γ∠	/~0	Γ Δ	IX/ VV	TTH	PWM1 clock source
						00: F _{SYSCLK} /4
		7~6	PWM1CKS	R/W	10	01: $F_{SYSCLK}/2$
						10: F _{SYSCLK}
		5~4	PWM1DL	R/W	00	11: FRCx2 bits 1~0 of the PWM1 10-bit duty register
A1h	PWMCON	5~4		IV/ W	00	PWM0 clock source
						00: F _{SYSCLK} /4
		3~2	PWM0CKS	R/W	10	01: $F_{SYSCLK}/2$
						10: F _{SYSCLK}
		1~0	PWM0DL	R/W	00	11: FRCx2 bits 1~0 of the PWM0 10-bit duty register
┝──╂		7~6	P1MOD3	R/W	00	P1.3 pin control
	D41 6055	5~4	P1MOD2	R/W	00	P1.2 pin control
A2h	P1MODL	3~2	P1MOD1	R/W	00	P1.1 pin control
1 1		1~0	P1MOD0	R/W	00	P1.0 pin control

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
		7~6	P1MOD7	R/W	00	P1.7 pin control
A3h	P1MODH	5~4	P1MOD6	R/W	00	P1.6 pin control
ASII	PIMODH	3~2	P1MOD5	R/W	00	P1.5 pin control
		1~0	P1MOD4	R/W	00	P1.4 pin control
		7~6	P3MOD3	R/W	01h	P3.3 pin control
A4h	P3MODL	5~4	P3MOD2	R/W	01h	P3.2 pin control
A4II	FSMODL	3~2	P3MOD1	R/W	01h	P3.1 pin control
		1~0	P3MOD0	R/W	01h	P3.0 pin control
		7	TOOE	R/W	0	Timer0 signal output (T0O) control 0: Disable Timer0 overflow divided by 64 output to P3.4 1: Enable Timer0 overflow divided by 64 output to P3.4
A5h	P3MODH	5~4	P3MOD6	R/W	00	P3.6 pin control
		3~2	P3MOD5	R/W	00	P3.5 pin control
		1~0	P3MOD4	R/W	00	P3.4 pin control
						PWM1 signal output enable
		7	PWM1AOE	R/W	0	0: Disable PWM1 signal output to P1.3
						1: Enable PWM1 signal output to P1.3
		5	DWMOAOE	R/W	0	PWM0 signal output enable 0: Disable PWM0 signal output to P1.2
		5	PWM0AOE	K/ W	0	1: Enable PWM0 signal output to P1.2
A6h	A6h PINMOD					TCOE: System clock signal output (CKO) control
		3	TCOE	R/W	0	0: Disable System clock divided by 2 output to P1.4
						1: Enable System clock divided by 2 output to P1.4
						Timer2 signal output (T2O) enable
		2 T2OE	R/W	0	0: Disable Timer2 overflow divided by 2 output to P1.0	
						1: Enable Timer2 overflow divided by 2 output to P1.0
					0	Global interrupt enable 0: Disable all interrupts
		7	EA	R/W		1: Each interrupt is enabled or disabled by its individual
						interrupt control bit
						Timer2 interrupt enable
		5	ET2	R/W	0	0: Disable Timer2 interrupt
						1: Enable Timer2 interrupt
		4	EC	DAV	0	Serial Port (UART) interrupt enable
		4	ES	R/W	0	0: Disable Serial Port (UART) interrupt 1: Enable Serial Port (UART) interrupt
						Timer1 interrupt enable
		3	ET1	R/W	0	0: Disable Timer1 interrupt
A8h	IE					1: Enable Timer1 interrupt
Aon	IE					INT1 pin Interrupt enable and Stop mode wake up enable
		_			_	0: Disable INT1 pin Interrupt and Stop mode wake up
		2	EX1	R/W	0	1: Enable INT1 pin Interrupt and Stop mode wake up, it
						can wake up CPU from Stop mode no matter EA is 0 or 1.
		1			1	Timer0 interrupt enable
		1	ET0	R/W	0	0: Disable Timer0 interrupt
		-			-	1: Enable Timer0 interrupt
						INT0 pin Interrupt enable and Stop mode wake up enable
		_				0: Disable INT0 pin Interrupt and Stop mode wake up
		0	EX0	R/W	0	1: Enable INTO pin Interrupt and Stop mode wake up, it
						can wake up CPU from Stop mode no matter EA is 0 or
						1.

SFR	SFR Name	Bit #	Bit Name	R/W	Rst	Description
Adr	ST K Hame	DIC //	Dit Hank	1., .,	Kot	-
		2		DAV	0	ADC interrupt enable
		3	ADIE	R/W	0	0: Disable ADC interrupt 1: Enable ADC interrupt
						INT2 pin Interrupt enable and Stop mode wake up enable 0: Disable INT2 pin Interrupt and Stop mode wake up
A9h	INTE1	2	EX2	R/W	0	1: Enable INT2 pin Interrupt and Stop mode wake up, it can wake up CPU from Stop mode no matter EA is 0 or
						1. Port1 pin change interrupt enable
		1	P1IE	R/W	0	0: Disable Port1 pin change interrupt
					-	1: Enable Port1 pin change interrupt
						Timer3 interrupt enable
		0	TM3IE	R/W	0	0: Disable Timer3 interrupt
AAb	ADTVDT	7~4		D		1: Enable Timer3 interrupt ADC data bit 3~0
AAh ABh	ADTKDT ADCDH	7~4 7~0	ADCDL ADCDH	R R		ADC data bit 3~0
ADII	ADCDH	/~0	ADCDH	К		ADC data bit 11~4 ADC channel select
						0000: ADC0 (P3.3)
						0001: ADC1 (P3.2)
						0010: ADC2 (P3.1)
						0011: ADC3 (P3.0)
						0100: ADC4 (P1.0)
AEh	CHSEL	7~4	ADCHS	R/W	1111	0101: ADC5 (P1.1)
						0110: ADC6 (P1.2) 0111: ADC7 (P1.2)
						0111: ADC7 (P1.3) 1000: ADC8 (P1.4)
						1001: ADC9 (P1.5)
						$1010: V_{SS}$
						1011: VBG (internal Bandgap reference voltage)
						11xx: Undefined
B0h	P3	7~0	P3	R/W	FFh	Port3 data
		5	PT2	R/W	0	Timer2 interrupt priority low bit
		4	PS	R/W	0	Serial Port interrupt priority low bit
B8h	IP	3	PT1	R/W	0	Timer1 interrupt priority low bit
		2	PX1	R/W	0	INT1 interrupt priority low bit
		1	PT0	R/W	0	Timer0 interrupt priority low bit
		0 5	PX0	R/W	0	INTO interrupt priority low bit
		5 4	PT2H PSH	R/W R/W	0	Timer2 interrupt priority high bit Serial Port interrupt priority high bit
		4	PT1H	R/W	0	Timer1 interrupt priority high bit
B9h	IPH	2	PX1H	R/W	0	INT1 interrupt priority high bit
		1	PTOH	R/W	0	Timer0 interrupt priority high bit
		0	PX0H	R/W	0	INTO interrupt priority high bit
		3	PADI	R/W	0	ADC interrupt priority low bit
		2	PX2	R/W	0	INT2 interrupt priority low bit
BAh	IP1	1	PP1	R/W	0	Port1 pin change interrupt priority low bit
		0	PT3	R/W	0	Timer3 interrupt priority low bit
		3	PADIH	R/W	0	ADC interrupt priority high bit
		2	PX2H	R/W	0	INT2 interrupt priority high bit
BBh	IP1H	1	PP1H	R/W	0	Port1 interrupt priority high bit
		0	PT3H	R/W	0	Timer3 interrupt priority high bit

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
		7	TF2	R/W	0	Timer2 overflow flag Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.
		6	EXF2	R/W	0	T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.
		5	RCLK	R/W	0	 UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3
		4	TCLK	R/W	0	 UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3
C8h	C8h T2CON	3	EXEN2	R/W	0	 T2EX pin enable 0: T2EX pin disable 1: T2EX pin enable, it cause a capture or reload when a negative transition on T2EX pin is detected if RCLK=TCLK=0
		2	TR2	R/W	0	Timer2 run control 0: Timer2 stops 1: Timer2 runs
		1	CT2N	R/W	0	 Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin or SLOWCLK/16 falling edge
		0	CPRL2N	R/W	0	 Timer2 Capture/Reload control bit 0: Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1 1: Capture mode, capture on negative transitions on T2EX pin if EXEN2=1 If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow
C9h	IAPWE	7~0	IAPWE	W		Write 47h to set IAPWE control flag; Write other value to clear IAPWE flag. It is recommended to clear it immediately after IAP write.
		7	IAPWE	R	0	Flag indicates Flash memory can be written by IAP or not, 1=IAP Write enable.
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte
CDh	TH2	7~0	TH2	R/W	00h	Timer2 data high byte

SFR						
Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description
		7	CY	R/W	0	ALU carry flag
		6	AC	R/W	0	ALU auxiliary carry flag
		5	F0	R/W	0	General purpose user-definable flag
						The contents of (RS1, RS0) enable the working register
		4	RS1	R/W	0	banks as:
						00: Bank 0 (00h~07h)
D0h	PSW	3	RS0	R/W	0	01: Bank 1 (08h~0Fh) 10: Bank 2 (10h~17h)
		3	K30	K/ W	0	10. Bank 2 $(10h^{-1}/h)$ 11: Bank 3 $(18h^{-1}Fh)$
		2	OV	R/W	0	ALU overflow flag
		1	F1	R/W	0	General purpose user-definable flag
					-	Parity flag. Set/cleared by hardware each instruction cycle
		0	Р	R/W	0	to indicate odd/even number of "one" bits in the
						accumulator.
						Slow clock type. This bit can be changed only in Fast mode
		7	SCKTYPE	R/W	0	(SELFCK=1).
						0: SRC 1: SXT
						Fast clock type. This bit can be changed only in Slow mode
		(FORTADE	DAV	0	(SELFCK=0).
		6	FCKTYPE	R/W	0	0: FRC
						1: FXT
		4	STPPCK	R/W	0	Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in
D8h	CLKCON					Idle mode Set 1 to stop Fast clock for power saving in Slow/Idle
Don	CLICON	3	STPFCK	R/W	0	mode. This bit can be changed only in Slow mode.
						System clock source selection. This bit can be changed
		2	SELFCK	R/W	0	only when STPFCK=0.
		2	SELICK	IX/ VV		0: Slow clock
						1: Fast clock
						System clock prescaler. 00: System clock is Fast/Slow clock divided by 16
		1~0	CLKPSC	R/W	11	01: System clock is Fast/Slow clock divided by 10
		10	elli se	10		10: System clock is Fast/Slow clock divided by 2
						11: System clock is Fast/Slow clock divided by 1
E0h	ACC	7~0	ACC	R/W	00h	Accumulator
F0h	В	7~0	В	R/W	00h	B register
						Watchdog Timer Reset control
		7~6	WDTE	R/W		0x: Watchdog Timer Reset disable
		/~0	WDIE	IV/ VV		10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Stop mode
F7h	CFGWL					11: Watchdog Timer Reset always enable
						FRC frequency adjustment
		4~0	FRCF	R/W		00h=central frequency, 0Fh=highest frequency,
						10h=lowest frequency.

SFR Adr	SFR Name	Bit #	Bit Name	R/W	Rst	Description	
		7	CLRWDT	R/W	0	Set to clear WDT, H/W auto clear it at next clock cycle	
		6	CLRTM3	R/W	0	Set to clear Timer3, H/W auto clear it at next clock cycle	
		4	4 ADSOC R/W 0 Start ADC conversion ADSOC bit to start ADC conversion, ADSOC bit will be cleared by H/W at the end conversion. S/W can also write 0 to clear this				
F8h	AUX1	3	CLRPWM0	R/W	0	PWM0 clear enable 0: PWM0 is running 1: PWM0 is cleared and held	
		2	T2SEL	R/W	0	Timer2 counter mode (CT2N=1) input select 0: P1.0 (T2) pin (8051standard) 1:Slow clock divide by 16 (SLOWCLK/16)	
		1	T1SEL	R/W	0	Timer1 counter mode (CT1N=1) input select 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)	
		0	DPSEL	R/W	0	Active DPTR Select	

Flash Adr	Bit #	Name	Description
FFCh	7~0	CFGWR1	ADC convert data bit 7~0 for VBG, @VCC=5.0V and ADCHS=1011b If Bit 7~0 in 00H~3FH, ADC convert data is 400H~43FH If Bit 7~0 in C0H~FFH, ADC convert data is 3C0H~3FFH
FFDh	7~0	CFGWR2	Reserved
FFEh	4~0	FRCF	FRC frequency adjustment. FRC is trimmed to 9.83 MHz in chip manufacturing. FRCF records the adjustment data.
	7	PROT	Flash Memory Code Protect 0: Disable protect 1: Enable protect
	6	XRSTE	External Pin Reset control 0: Disable External Pin Reset 1: Enable External Pin Reset
FFFh	5~4	LVRE	Low Voltage Reset function select 00: Set LVR at 2.9V 01: Set LVR at 2.3V 10: Set LVR at 3.5V 11: Set LVR at 2.0V and LVD at 2.3V
	3	VCCFLT	Set 1 to enhance the chip's power noise immunity
	2	PWRSAV	Power save function control bit 0: Disable Power save function 1: Enable Power save function
	1	MVCLOCK	If 1, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.

INSTRUCTION SET

Instructions are 1, 2 or 3 Bytes long as listed in the 'byte' column below. Each instruction takes 2~8 System clock cycles to execute as listed in the 'cycle' column below.

ARITHMETIC							
Mnemonic	Description	byte	cycle	opcode			
ADD A,Rn	Add register to A	1	2	28-2F			
ADD A,dir	Add direct byte to A	2	2	25			
ADD A,@Ri	Add indirect memory to A	1	2	26-27			
ADD A,#data	Add immediate to A	2	2	24			
ADDC A,Rn	Add register to A with carry	1	2	38-3F			
ADDC A,dir	Add direct byte to A with carry	2	2	35			
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37			
ADDC A,#data	Add immediate to A with carry	2	2	34			
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F			
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95			
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97			
SUBB A,#data	Subtract immediate from A with borrow	2	2	94			
INC A	Increment A	1	2	04			
INC Rn	Increment register	1	2	08-0F			
INC dir	Increment direct byte	2	2	05			
INC @Ri	Increment indirect memory	1	2	06-07			
DEC A	Decrement A	1	2	14			
DEC Rn	Decrement register	1	2	18-1F			
DEC dir	Decrement direct byte	2	2	15			
DEC @Ri	Decrement indirect memory	1	2	16-17			
INC DPTR	Increment data pointer	1	4	A3			
MUL AB	Multiply A by B	1	8	A4			
DIV AB	Divide A by B	1	8	84			
DA A	Decimal Adjust A	1	2	D4			

	LOGICAL						
Mnemonic	Description	byte	cycle	opcode			
ANL A,Rn	AND register to A	1	2	58-5F			
ANL A,dir	AND direct byte to A	2	2	55			
ANL A,@Ri	AND indirect memory to A	1	2	56-57			
ANL A,#data	AND immediate to A	2	2	54			
ANL dir,A	AND A to direct byte	2	2	52			
ANL dir,#data	AND immediate to direct byte	3	4	53			
ORL A,Rn	OR register to A	1	2	48-4F			
ORL A,dir	OR direct byte to A	2	2	45			
ORL A,@Ri	OR indirect memory to A	1	2	46-47			
ORL A,#data	OR immediate to A	2	2	44			
ORL dir,A	OR A to direct byte	2	2	42			
ORL dir,#data	OR immediate to direct byte	3	4	43			
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F			
XRL A,dir	Exclusive-OR direct byte to A	2	2	65			
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67			
XRL A,#data	Exclusive-OR immediate to A	2	2	64			
XRL dir,A	Exclusive-OR A to direct byte	2	2	62			
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63			
CLR A	Clear A	1	2	E4			
CPL A	Complement A	1	2	F4			
SWAP A	Swap Nibbles of A	1	2	C4			
RL A	Rotate A left	1	2	23			

LOGICAL							
Mnemonic	Description	byte	cycle	opcode			
RLC A	Rotate A left through carry	1	2	33			
RR A	Rotate A right	1	2	03			
RRC A	Rotate A right through carry	1	2	13			

DATA TRANSFER							
Mnemonic	Description	byte	cycle	opcode			
MOV A,Rn	Move register to A	1	2	E8-EF			
MOV A,dir	Move direct byte to A	2	2	E5			
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7			
MOV A,#data	Move immediate to A	2	2	74			
MOV Rn,A	Move A to register	1	2	F8-FF			
MOV Rn,dir	Move direct byte to register	2	4	A8-AF			
MOV Rn,#data	Move immediate to register	2	2	78-7F			
MOV dir,A	Move A to direct byte	2 2 3	2	F5			
MOV dir,Rn	Move register to direct byte	2	4	88-8F			
MOV dir,dir	Move direct byte to direct byte		4	85			
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87			
MOV dir,#data	Move immediate to direct byte	3	4	75			
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7			
MOV @Ri,dir	Move direct byte to indirect memory	2 2	4	A6-A7			
MOV @Ri,#data	Move immediate to indirect memory		2	76-77			
MOV DPTR,#data	Move immediate to data pointer	3	4	90			
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93			
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83			
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3			
MOVX A,@DPTR	Move external data(A16) to A	1	4	EO			
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3			
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0			
PUSH dir	Push direct byte onto stack	2	4	C0			
POP dir	Pop direct byte from stack	2	4	D0			
XCH A,Rn	Exchange A and register	1	2	C8-CF			
XCH A,dir	Exchange A and direct byte	2	2	C5			
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7			
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7			

BOOLEAN							
Mnemonic	byte	cycle	opcode				
CLR C	Clear carry	1	2	C3			
CLR bit	Clear direct bit	2	2	C2			
SETB C	Set carry	1	2	D3			
SETB bit	Set direct bit	2	2	D2			
CPL C	Complement carry	1	2	B3			
CPL bit	Complement direct bit	2	2	B2			
ANL C,bit	AND direct bit to carry	2	4	82			
ANL C,/bit	AND direct bit inverse to carry	2	4	B0			
ORL C,bit	OR direct bit to carry	2	4	72			
ORL C,/bit	OR direct bit inverse to carry	2	4	A0			
MOV C,bit	Move direct bit to carry	2	2	A2			
MOV bit,C	Move carry to direct bit	2	4	92			

BRANCHING						
Mnemonic	Description	byte	cycle	opcode		
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1		
LCALL addr 16	Long jump to subroutine	3	4	12		
RET	Return from subroutine	1	4	22		
RETI	Return from interrupt	1	4	32		
AJMP addr 11	Absolute jump unconditional	2	4	01-E1		
LJMP addr 16	Long jump unconditional	3	4	02		
SJMP rel	Short jump (relative address)	2	4	80		
JC rel	Jump on carry=1	2	4	40		
JNC rel	Jump on carry=0	2	4	50		
JB bit,rel	Jump on direct bit=1	3	4	20		
JNB bit,rel	Jump on direct bit=0	3	4	30		
JBC bit,rel	Jump on direct bit=1 and clear	3	4	10		
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73		
JZ rel	Jump on accumulator=0	2	4	60		
JNZ rel	Jump on accumulator 0	2	4	70		
CJNE A,dir,rel	Compare A, direct, jump not equal relative	3	4	B5		
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4	B4		
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF		
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7		
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF		
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5		

MISCELLANEOUS						
Mnemonic	Description	byte	cycle	opcode		
NOP	No operation	1	2	00		

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings (T_A=25°C)

Parameter	Rating	Unit
Supply voltage	V_{SS} -0.3 ~ V_{SS} +5.5	
Input voltage	V_{SS} -0.3 ~ V_{CC} +0.3	V
Output voltage	V_{SS} -0.3 ~ V_{CC} +0.3	
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	A
Output current low per 1 PIN	+30	mA
Output current low per all PIN	+150	
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +85	°C
Storage temperature	-65 ~ +150	-0

2. DC Characteristics ($T_A=25^{\circ}C$, $V_{CC}=2.0V \sim 5.5V$)

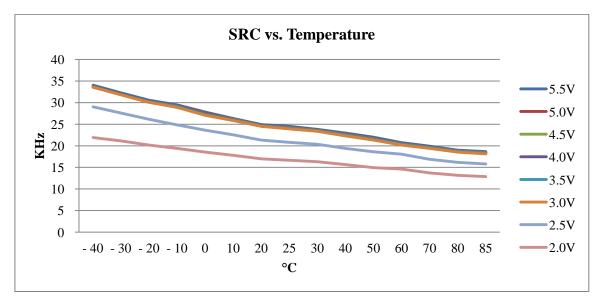
Parameter	Symbol	Con	ditions	Min.	Typ.	Max.	Unit	
		Fast mode, F _{SYSCLK} =14.74 MHz Fast mode, F _{SYSCLK} =9.8 MHz		3.5	_	5.5		
Operating				2.9	_	5.5		
Operating Voltage Input High Voltage Input Low Voltage	V _{CC}	Fast mode, F	Sysclk=5 MHz	2.3	_	5.5	V	
C			_{WSCLK} =2.5 MHz	2.0	_	5.5		
		Slow m	ode, SRC	2.0	_	5.5		
		All Input, except	V _{CC} =5V	$0.6V_{CC}$	_	—		
	V	P3.7, P2.1	V _{CC} =3V	$0.6V_{\text{CC}}$	_	-	v	
Voltage	V _{IH}	P3.7, P2.1	V _{CC} =5V	$0.8V_{\rm CC}$	_	-	v	
		F3.7, F2.1	V _{CC} =3V	$0.8V_{CC}$	_	_		
Input Low	V	All Input	V _{CC} =5V	-	_	$0.2 V_{CC}$	V	
Voltage	V _{IL}	_ All Input	V _{CC} =3V	_	_	$0.2V_{CC}$	v	
I/O Port Source	I _{OH}	T	All Output, except	$V_{CC}=5V$ $V_{OH}=0.9V_{CC}$	5	10	_	mA
Current		P3.7	$V_{CC}=3V$ $V_{OH}=0.9V_{CC}$	2.5	5	-	IIIA	
I/O Port Sink	т	L All Output	$V_{CC}=5V$ $V_{OL}=0.1V_{CC}$	9	18	-	mA	
Current	I _{OL}	All Output	$V_{CC}=3V$ $V_{OL}=0.1V_{CC}$	5	10	-	IIIA	
Input Leakage Current (pin high)	I _{ILH}	All Input	$V_{in} = V_{CC}$	_	_	1	۸	
Input Leakage Current (pin low)	I _{IILL}	All Input	V _{in} =0V	_	_	-1	μA	

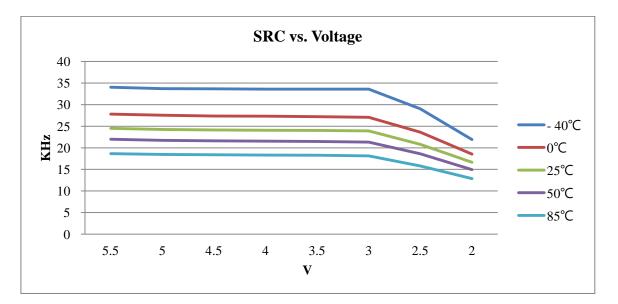
Parameter	Symbol	Cone	ditions	Min.	Тур.	Max.	Unit
			FXT=8 MHz	-	4	_	
		Fast, V _{CC} =5V MODE3V=0	FRC=9.83 MHz	_	4	_	mA
		WODES V=0	FRC=4.92 MHz	_	3	_	
		Slow, V _{CC} =5V	SXT=32 KHz	-	2	_	
		MODE3V=0	SRC=24 KHz	-	2	—	
Supply Current	I _{CC}	Slow, V _{CC} =3V	SXT=32 KHz	-	1.3	—	
Supply Culton	10	MODE3V=1 PWRSAV=1	SRC=24 KHz	-	1.3	—	
		Idle, V _{CC} =3V	SXT=32 KHz	-	5	—	
		MODE3V=1 PWRSAV=1	SRC=24 KHz	-	4	-	μA
		Stop, V _{CC} =3V	PWRSAV=0	-	40	_	μΠ
		MODE3V=1	PWRSAV=1	-	3	_	
	F _{sysclk}		V _{CC} =3.5V	-	-	14.74	MHz
System Clock		$\begin{array}{c} V_{CC} \! > \! LVR_{th} \\ T_A \! = \! 25^{\circ}C \end{array}$	V _{CC} =2.9V	-		9.8	
Frequency			V _{CC} =2.3V			5	
		V _{CC} =2.0V		-	-	2.5	
				_	3.5	_	
LVR Reference	V _{LVR}	Т.=	=25°C	_	2.9	_	v
Voltage	• LVR	1 _A -25 C		_	2.3	-	
				-	2.0	—	
LVR Hysteresis Voltage	V _{HYST}	T _A =	=25°C	-	±0.1	_	V
LVD Reference Voltage	V_{LVD}	T _A =	=25°C	-	2.3	_	v
Low Voltage Detection time	t _{LVR}	T _A =25°C		100	_	_	μs
		V _{IN} =0V	V _{CC} =5V		120		
Dull Up Desister	р	All except P3.7	V _{CC} =3V	1 -	240	—	VO
Pull-Up Resistor	R _P	V _{IN} =0V	V _{CC} =5V		160		KΩ
		P3.7	V _{CC} =3V	_	160	—	

3. Clock Timing $(T_A = -40^{\circ}C \sim +85^{\circ}C, V_{CC} = 3.0 \sim 5.5V)$

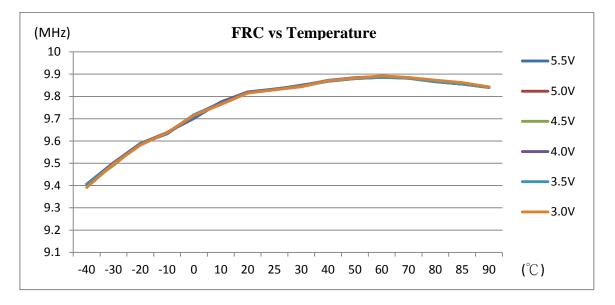
Parameter	Conditions	Min.	Тур.	Max.	Unit
	25°C, V _{CC} =5.0V	-1.2%	9.83	+1.2%	
Internal RC Frequency	0°C ~ 70°C, V _{CC} =3.0 ~ 5.5V	-2.5%	9.83	+2.5%	MHz
	-40° C ~ 85°C, V _{CC} =3.0 ~ 5.5V	-7.0%	9.83	+2.5%	

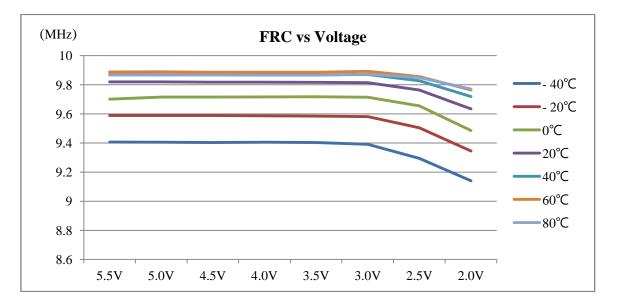
4. Reset Timing Characteristics ($T_A = -40^{\circ}C \sim +85^{\circ}C$, $V_{CC} = 3.0V \sim 5.0V$)

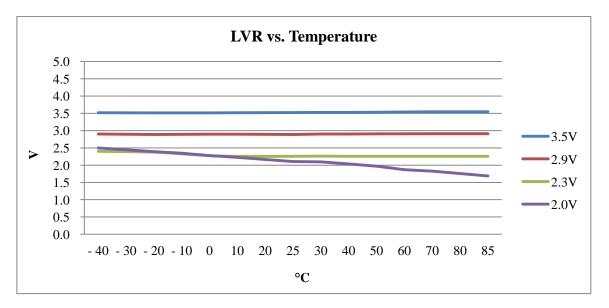

Parameter	Conditions	Min.	Тур.	Max.	Unit
RESET Input Low width	Input V _{CC} = $5.0V \pm 10\%$	90	_	_	μs
	V _{CC} =5.0V, WDTPSC=11	-	40	-	
WDT wakeup time	V _{CC} =3.0V, WDTPSC=11	-	40	_	ms

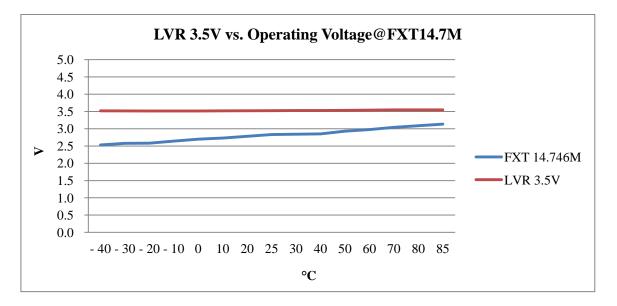


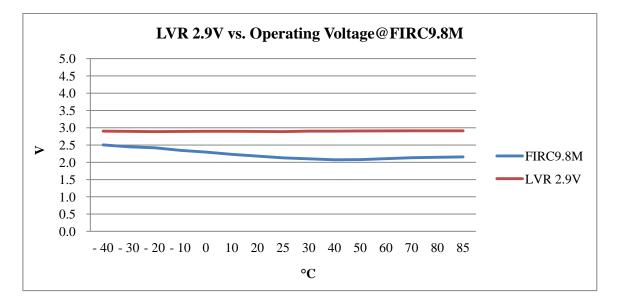
Parameter	Conditions	Min.	Тур.	Max.	Unit
Total Accuracy	V -5 12V V -0V	_	±2.5	±4	LSB
Integral Non-Linearity	V_{CC} =5.12V, V_{SS} =0V	_	±3.2	±5	LOD
Max Input Clock (f _{ADC})	_	_	_	1	MHz
Conversion Time	f _{ADC} =1 MHz	-	50	_	μs
BandGap Voltage	V _{CC} =5V	-8%	1.25	+8%	V
Input Voltage	_	V _{SS}		V _{CC}	V


5. ADC Electrical Characteristics ($T_A=25^{\circ}C$, $V_{CC}=3.0V \sim 5.5V$, $V_{SS}=0V$)

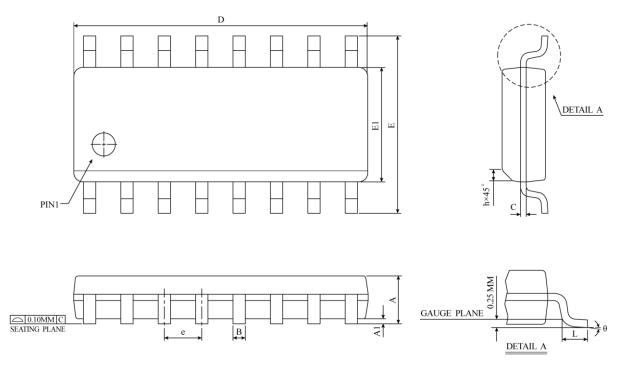

6. Characteristics Graphs







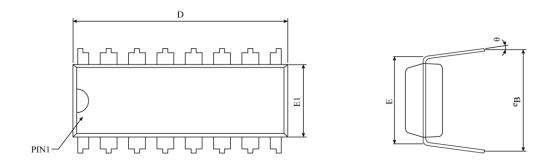
PACKAGE INFORMATION

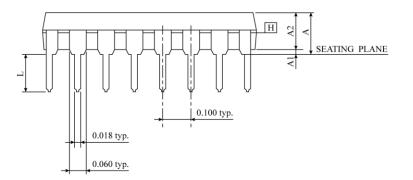

Ordering Information

Ordering Number	Package
TM52F5250-OTP	Wafer/Dice blank chip
TM52F5250COD	Wafer/Dice blank chip
TM52F5250-MTP-16	SOP 16-pin (150mil)
TM52F5250-MTP-03	DIP 16-pin (300mil)
TM52F5250-MTP-21	SOP 20-pin (300mil)
TM52F5250-MTP-05	DIP 20-pin (300mil)
TM52F5250-MTP-97	QFN 20-pin (4*4*0.75 - 0.5mm)

Package Information

SOP-16 (150mil) Package Dimension

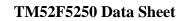

SYMBOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	СН
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	1.35	1.55	1.75	0.0532	0.0610	0.0688
A1	0.10	0.18	0.25	0.0040	0.0069	0.0098
В	0.33	0.42	0.51	0.0130	0.0165	0.0200
С	0.19	0.22	0.25	0.0075	0.0087	0.0098
D	9.80	9.90	10.00	0.3859	0.3898	0.3937
Е	5.80	6.00	6.20	0.2284	0.2362	0.2440
E1	3.80	3.90	4.00	0.1497	0.1536	0.1574
e		1.27 BSC			0.050 BSC	
h	0.25	0.38	0.50	0.0099	0.0148	0.0196
L	0.40	0.84	1.27	0.0160	0.0330	0.0500
θ	0°	4°	8°	0°	4°	8°
JEDEC		MS-012 (AC)				


* NOTES : DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DIP-16 (300mil) Package Dimension

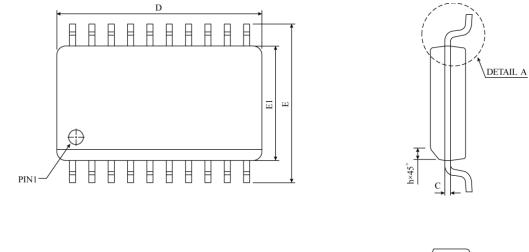
SYMBOL	DI	MENSION IN M	ſМ	DIN	MENSION IN IN	ICH
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	-	-	4.369	-	-	0.172
A1	0.381	0.673	0.965	0.015	0.027	0.038
A2	3.175	3.302	3.429	0.125	0.130	0.135
D	18.669	19.177	19.685	0.735	0.755	0.775
Е	7.620 BSC			0.300 BSC		
E1	6.223	6.350	6.477	0.245	0.250	0.255
L	2.921	3.366	3.810	0.115	0.133	0.150
е _В	8.509	9.017	9.525	0.335	0.355	0.375
θ	0°	7.5°	15°	0°	7.5°	15°
JEDEC		MS-001 (BB)				

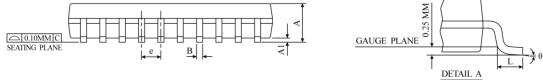
NOTES :


1. ${}^{\rm ``D''}$, ${}^{\rm ``E1''}$ dimensions do not include mold flash or protrusions. Mold flash or protrusions shall notexceed .010 inch.

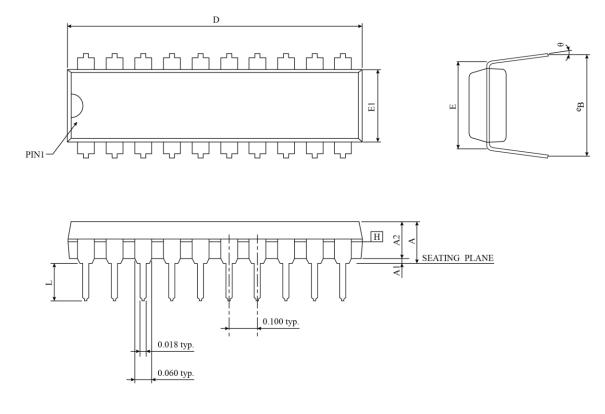
2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.


4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.


5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

SOP-20 (300mil) Package Dimension



SYMBOL	DI	MENSION IN M	ſM	DIN	DIMENSION IN INCH		
STNBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	12.60	12.80	13.00	0.4961	0.5040	0.5118	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
е		1.27 BSC			0.050 BSC		
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	4°	8°	0°	4°	8°	
JEDEC			MS-01	3 (AC)			

* NOTES : DIMENSION " D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.

DIP-20 (300mil) Package Dimension

SYMDOL	DIMENSIO	N IN MM	DIMENSION	N IN INCH		
SYMBOL	MIN	MAX	MIN	MAX		
А	-	4.445	-	0.175		
Al	0.381	-	0.015	-		
A2	3.175	3.429	0.125	0.135		
D	25.705	26.416	1.012	1.040		
Е	7.620	7.874	0.300	0.310		
E1	6.223	6.477	0.245	0.255		
L	3.048	3.556	0.120	0.140		
eB	8.509	9.525	0.335	0.375		
θ	0°	15°	0°	15°		
JEDEC	MS-001 (AD)					

NOTES :

1. "D", "E1" DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR

PROTRUSIONS SHALL NOTEXCEED .010 INCH.

2. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.

3. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTION.

4. DISTANCE BETWEEN LEADS INCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.

5. DATUM PLANE I COINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.

QFN 20 (4*4*0.75-0.5mm) Package Dimension

SVMDOI	DI	DIMENSION IN MM			DIMENSION IN INCH		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00	0.03	0.05	0.000	0.001	0.002	
A3		0.20 REF.			0.008 REF.		
В	0.20	0.25	0.30	0.008	0.001	0.012	
D		4.00 BSC			0.157 BSC		
Е		4.00 BSC			0.157 BSC		
e		0.50 BSC			0.020 BSC		
K	0.20	-	-	0.008	-	-	
E2	2.40	2.48	2.55	0.094	0.097	0.100	
D2	2.40	2.48	2.55	0.094	0.097	0.100	
L	0.35	0.45	0.55	0.014	0.018	0.022	
JEDEC	W(V) GGD-11						

* NOTES : DIMENSION B APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.