

TM52F1732/16 *DATA SHEET Rev 0.92*

(Please read the precautions on the second page before use)

tenx reserves the right to change or discontinue the manual and online documentation to this product herein to improve reliability, function or design without further notice. **Tenx** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. **Tenx** products are not designed, intended, or authorized for use in life support appliances, devices, or systems. If Buyer purchases or uses **tenx** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **tenx** and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, cost, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use even if such claim alleges that **tenx** was negligent regarding the design or manufacture of the part.

PRECAUTIONS

1. Before entering Stop/Halt mode, system clock must be set to slow clock mode (SELFCK = 0).

AMENDMENT HISTORY

Version	Date	Description
V0.90	Nov, 2021	New release.
V0.91	May, 2022	 Halt mode description Disable LVR before IAP write
V0.92	Sep, 2022	 Halt mode description VBGOUT description The programming pin is limited to P30/P31 LEDHOLD limit can only be 0

CONTENTS

PRE	CAUTIONS	2
AME	ENDMENT HISTORY	3
TM5	52 F17xx FAMILY	7
GEN	ERAL DESCRIPTION	8
BLO	OCK DIAGRAM	8
	TURES	
	ASSIGNMENT	
	DESCRIPTION	
	SUMMERY	
FUN	CTIONAL DESCRIPTION	18
1.	CPU Core	18
	1.1 Accumulator (ACC)	18
	1.2 B Register (B)	
	1.3 Stack Pointer (SP)	
	1.4 Dual Data Pointer (DPTRs)	
-	1.5 Program Status Word (PSW)	
2.		
	2.1 Program Memory	
	2.1.1 Program Memory Functional Partition	
	2.1.2 Flash ICP Mode	
	2.1.3 Flash IAP Mode (EEPROM like)	
	2.1.4 IAP Mode Access Routines	
	2.2 Data Memory 2.2.1 IRAM	
	2.2.1 IKAM	
	2.2.2 ARAM	
3	LVR and LVD setting	
	-	
4.	Reset	
	4.1 Power on Reset.	
	4.2 External Pin Reset	
	4.3 Software Command Reset	
	4.4 Watchdog Timer Reset4.5 Low Voltage Reset	
5		
э.	Clock Circuitry & Operation Mode	
	5.1 System Clock	
	5.2 Operation Modes	
6.	Interrupt & Wake-up	36

	 6.1 Interrupt Enable and Priority Control 6.2 Suggestions on interrupting subroutines 6.3 Pin Interrupt and LVD interrupt 	36 41
	6.4 Idle mode Wake up and Interrupt6.5 Stop/Halt mode Wake up and Interrupt	
7	6.5 Stop/Halt mode Wake up and Interrupt I/O Ports	
7.		
	 7.1 Port1 & Port2 & Port 3 7.2 Port0 	
8.	Timers	
	8.1 Timer0 / Timer1	
	8.2 Timer2	61
	8.3 Timer38.4 TOO and T2O Output Control	
0	8.4 T0O and T2O Output Control UARTs	
	PWMs	
10.	10.1 16-bit PWM	
	10.1 10-bit PWM	
11.	ADC	73
	11.1 ADC Channels	74
	11.2 ADC Conversion Time	
12.	Touch Key (CTK)	77
13.	S/W Controller LCD Driver	80
14.	LED BiD (Bi-Direction) Mode	82
15.	Serial Peripheral Interface (SPI)	86
16.	Cyclic Redundancy Check (CRC)	91
17.	Multiplier and divider	92
18.	Master I ² C Interface	94
19.	Slave IC Interface	97
20.	In Circuit Emulation (ICE) Mode	00
SFR	& CFGW MAP1	.01
SFR	& CFGW DESCRIPTION1	.03
INST	RUCTION SET 1	18
ELE	CTRICAL CHARACTERISTICS1	21
1.	Absolute Maximum Ratings1	21
2.	DC Characteristics	22
3.	Clock Timing1	24
4.	Reset Timing Characteristics	24
5.	ADC Electrical Characteristics	24

6.	Characteristic Graphs 1	25
Packa	ge and Dice Information1	28

TM52 F17xx FAMILY

Common Feature

CPU	MTP/Flash Program memory	RAM bytes	Dual Clock	Operation Mode	Timer0 Timer1 Timer2	UART	Real-time Timer3	LVD	LVR
Fast 8051 (2T)	4K~32K with IAP, ISP, ICP	256 ~ 1024	SXT SRC FXT FRC	Fast Slow Idle Stop Halt	8051 St	andard	15-bit	16 level	8 level

Note: IAP, ISP only for Flash type program memory

Family Members Features

P/N	Program Memory	RAM Bytes	IO Pin	PWM	SAR ADC	Touch Key	LCD	LED	Interface
TM52-F1716 TM52-F1732	Flash 32Kbytes 64KBytes	1280	30	16-bit x3 8-bit x3	12-bit 16- ch	20-ch	8 com	Bid 4Cx6S	SPI UARTx2 I ² C

P/N	Operation		Operation	n Current	Max. System Clock (Hz)					
	Voltage	Fast FRC	Slow SRC	Idle SRC	Stop	SXT	SRC	FXT	FRC	
TM52-F1716 TM52-F1732	2.5~5.5V	3.5 mA	0.18 mA	0.15 mA	7uA@5V 1.4uA@3V	32K	80K	16M	14.7456M	

P/N	Operation		(Operation	Max. System Clock (Hz)					
	Voltage	Fast FRC	Slow SRC	Idle SRC	Stop	Halt	SXT	SRC	FXT	FRC
TM52-F1716 TM52-F1732	2.5~5.5V	3.5mA	0.18mA	0.15 mA	7uA@5V 1.4uA@3V	11uA@5V 4uA@3V	32K	80K	16M	14.7456M

GENERAL DESCRIPTION

TM52_{series} F1732/16 are versions of a new, fast 8051 architecture for an 8-bit microcontroller single chip with an instruction set fully compatible with industry standard 8051, and retains most 8051 peripheral's functional block. Typically, the TM52 executes instructions six times faster than the standard 8051 architecture.

The **TM52-F1732/16** provides improved performance, lower cost and fast time-to-market by integrating features on the chip, including 16K/32K Bytes Flash program memory, 1280 Bytes SRAM, Low Voltage Reset (LVR), Low Voltage Detector (LVD), dual clock power saving operation mode, 8051 standard UART and Timer0/1/2, real time clock Timer3, LCD/LED driver, 3 set 16-bit PWMs, 3 set 8-bit PWMs, 16 channels 12-bit A/D Convertor, 20 channels Touch Key, I²C/SPI interface and Watch Dog Timer. It's a high reliability and low power consumption feature can be widely applied in consumer and home appliance products.

BLOCK DIAGRAM

Note: 16K Bytes Flash program memory (TM52F1716) 32K Bytes Flash program memory (TM52F1732)

FEATURES

1. Standard 8051 Instruction set, fast machine cycle

• Executes instructions six times faster than the standard 8051.

2. Flash Program Memory

- 16K Bytes (TM52F1716)
- 32K Bytes (TM52F1732)
- Support IAP "In Application Programming" (EEPROM like)
- Code Protection Capability
- 10K erase times at least
- 10 years data retention at least

3. Total 1280 Bytes SRAM (IRAM + XRAM)

- 256 Bytes IRAM in the 8051 internal data memory area
- 1024 Bytes XRAM in the 8051 external data memory area (accessed by MOVX Instruction)

4. Four System Clock type selections

- Fast clock from 1~16MHz Crystal (FXT)
- Fast clock from Internal RC (FRC, 14.7456 MHz)
- Slow clock from 32768Hz Crystal (SXT)
- Slow clock from Internal RC (SRC,80 KHz)
- System Clock can be divided by 1/2/4/16 option

5. 8051 Standard Timer – Timer0/1/2

- 16-bit Timer0, also supports T0O clock output for Buzzer application
- 16-bit Timer1
- 16-bit Timer2, also supports T2O clock output for Buzzer application

6. 15-bit Timer3

- Clock source is Slow clock
- Interrupt period can be clock divided by 32768/16384/8192/128 option
- 7. UARTs
 - UART1, 8051 standard UART
 - UART2, the second UART, supports only mode1 and mode3

- 8. Three independent 16 bits PWMs with period-adjustment
- 9. Three independent 8 bits PWMs with prescaler/period-adjustment
- **10. SPI Interface**
 - Master or Slave mode selectable
 - Programmable transmit bit rate
 - Serial clock phase and polarity options
 - MSB-first or LSB-first selectable
- 11. I²C interface (Master / Slave)
- 12. 20-Channel Touch Key (CTK)
- 13. 12-bit ADC with 13 channels External Pin Input and 3 channels Internal Reference Voltage
 - Internal Reference Voltage: VBG 1.22V @V_{CC}=5V~3V, 25°C
 - Internal Reference Voltage: 1/4V_{CC}
 - Internal Reference Voltage: V_{TEMP}

14. LCD Driver

- 1/8 duty
- Software controlled COM0~7
- 1/2 LCD Bias

15. LED Controller/Driver

- Bidirection matrix mode (BiD): 4Cx6S, 10 pins up to 48 dots
- COM with Dead Time
- 3 groups, 8-level Brightness selection

16. 14 Sources, 4-level priority Interrupt

- Timer0/Timer1/Timer2/Timer3 Interrupt
- INT0~INT1 pin low level or falling edge Interrupt
- INT2~INT9 pin Falling-Edge Interrupt
- Port1 Pin Change Interrupt
- UART1/UART2 TX/RX Interrupt
- ADC/Touch Key Interrupt
- SPI Interrupt
- I²C interrupt
- PWM0/PWM1/PWM2 interrupt

17. Pin Interrupt can Wake up CPU from Power-Down (Stop/Halt) mode

- NT0~INT9 Interrupt & Wake-up
- Each Port1 pin can be defined as Interrupt & Wake-up pin (by pin change)

Note: Chip cannot enter Stop/Halt Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, n=0~9)

18. Max. 30 Programmable I/O pins

- CMOS Output
- Pseudo-Open-Drain, or Open-Drain Output
- Schmitt Trigger Input
- Pin Pull-up can be Enabled or Disabled
- All pin with High sink ($60mA@V_{CC}=5V$, $V_{OL}=0.1V_{CC}$)

19. Independent RC Oscillating Watch Dog Timer

• 400ms/200ms/100ms/50ms selectable WDT timeout options

20. Five types Reset

- Power on Reset
- Selectable External Pin Reset
- Selectable Watch Dog Reset
- Software Command Reset
- Selectable Low Voltage Reset

21. 16-level Low Voltage Detect

- 4.32V/4.2V/4.08V/3.96V/3.84V/3.72V/3.6V/3.48V/
 - 3.35V/3.23V/3.1V/2.99V/2.86V/2.74V/2.62V/2.52V

22. 8-level Low Voltage Reset

• 4.2V/3.96V/3.72V/3.48V/3.23V/2.99V/2.74V/2.52V

23. Five Power Operation Modes

• Fast/Slow/Idle/Stop/Halt mode

24. Integrated 16-bit Cyclic Redundancy Check function

25. Multiplication and division

- 8 bit Multiplier & Divider (standard 8051)
- 16 bits Multiplier & Divider
- 32 bits ÷ 16 bits Divider

26. On-chip Debug/ICE interface

- Use P3.0/P3.1 pin or P0.0/P0.1 pin
- Share with ICP programming pin

27. Writer interface

• Use P3.0/P3.1 pin

28. Operating Voltage and Current

- $V_{CC} = 2.5V \sim 5.5V @F_{SYSCLK} = 14.7456MHz$
- $I_{CC} = 7\mu A$ @Stop mode, $V_{CC} = 5V$
- $I_{CC} = 1.4 \mu A$ @Stop mode, $V_{CC} = 3V$
- $I_{CC} = 150 \mu A$ @Idle mode, $V_{CC} = 5V$

29. Operating Temperature Range

• $-40^{\circ}C \sim +85^{\circ}C$

30. Package Types

- SOP28 (300 mil)
- SOP32 (300 mil)
- QFN20 (3*3*0.75-0.4mm)
- QFN28 (4*4*0.75-0.4mm)
- QFN32 (4x4x0.75-0.4mm)
- LQFP32 (7x7x1.4mm)

PIN ASSIGNMENT

PIN DESCRIPTION

Name	In/Out	Pin Description
P0.0~P0.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull-up resistors are assignable by software.
P1.0~P1.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software. These pin's level change can interrupt/wake up CPU from Idle/Stop/Halt mode.
P2.0~P2.1	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
P2.2~P2.5	I/O	Bit-programmable I/O port for Schmitt-trigger input or CMOS push-pull output. Pull-up resistors are assignable by software.
P3.0~P3.2	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or " pseudo open drain " output. Pull-up resistors are assignable by software.
P3.3~P3.7	I/O	Bit-programmable I/O port for Schmitt-trigger input, CMOS push-pull output or "open-drain" output. Pull-up resistors are assignable by software.
INTO, INT1	Ι	External low level or falling edge Interrupt input, Idle/Stop/Halt mode wake up input.
INT2~9	Ι	External falling edge Interrupt input, Idle/Stop/Halt mode wake up input.
RXD	I/O	UART1 Mode0 transmit & receive data, Mode1/2/3 receive data
RXD2	I/O	UART2 Mode1/3 receive data
TXD	I/O	UART1 Mode0 transmit clock, Mode1/2/3 transmit data. In One Wire UART mode, this pin transmits and receives serial data.
TXD2	I/O	UART2 Mode1/3 transmit data.
T0, T1, T2	Ι	Timer0, Timer1, Timer2 event count pin input.
T2EX	Ι	Timer2 external trigger input.
T0O	0	Timer0 overflow divided by 64 output
T2O	0	Timer2 overflow divided by 2 output
СКО	0	System Clock divided by 2 output
VBGO	0	Bandgap voltage output
PWM0~PWM2	0	16 bit PWM output
PWM3~PWM5	0	8 bit PWM output
AD0~AD9 AD12~AD14	I	ADC input
TK0~TK19	Ι	Touch Key input
CLD	Ι	Touch Key charge collection capacitor connection pin
LCDC0~LCDC7	0	LCD 1/2 bias output
LEDC0~LEDC3	0	LED common output
LEDS0~LEDS5	0	LED segment output
MISO	I/O	SPI data input for master mode, data output for slave mode
MOSI	I/O I/O	SPI data output for master mode, data input for slave mode
SS	I	SPI active low slave select input for slave mode
SCK	I/O	SPI clock output for master or clock input for slave mode
SCL	I/O	I ² C SCL
SDA	I/O	I ² C SDA
RSTn	Ι	External active low reset input, Pull-up resistor is fixed enable.
XI, XO	_	Crystal/Resonator oscillator connection for System clock (FXT or SXT)
VCC, VSS	Р	Power input pin and ground

PIN SUMMERY

Pin #				Ι	npu	ıt	0	utp	ut		Alt	ern	ativ	e Fi	unc	tion		MISC
SOP-32	Pin Name	Type	Initial State	Pull-up Control	Wake up	Ext. Interrupt	CMOS P.P.	P.O.D.	0.D.	LCD/LED	ADC	Touch Key	UART	PWM	Timer	SPI	I^2C	
1	LCDC0/LEDC0/P0.0	I/O	Hi-Z	۲			•			٠								
2	LCDC1/LEDC1/P0.1	I/O	Hi-Z	۲			•			٠								
3	LCDC2/LEDC2/P0.2	I/O	Hi-Z	۲			•			٠								
4	LCDC3/LEDC3/TK16/P0.3	I/O	Hi-Z	۲			•			٠		•						
5	LEDS0/XI/P2.0	I/O	Hi-Z	0			•		٠	•								Crystal
6	LEDS1/XO/P2.1	I/O	Hi-Z	0			•		٠	٠								Crystal
7	LEDS2/RSTn/INT2/TK15/P3.7	I/O	PU	0	•	•	•		•	•		•						Reset
8	LEDS3/T0/INT4/TK13/P3.4		Hi-Z	0	•	•	•		•	•		•			٠			
9	LEDS4/T1/INT5/TK12/P3.5		Hi-Z	0	•	•	•		•	•		•			٠			
10	LEDS5/RXD2/INT6/TK11/P3.6		Hi-Z	0	٠	•	•		٠	•		•	•					
11	TXD2/TK10/P1.7	I/O	Hi-Z	ο	•		•		•			•	٠					
12	PWM2/TK9/P1.6		Hi-Z	ο	•		•		•			•		•				
13	AD9/TK14/P1.5		Hi-Z	0	٠		•		٠		•	•						
14	CKO/AD8/TK8/P1.4		Hi-Z	0	٠		•		٠		٠	•						СКО
15	SDA/MOSI/P2.2		Hi-Z	۲			•									•	٠	
16	PWM3/SCL/SCK/P2.3		Hi-Z	۲			•							•		•	•	
17	PWM4/MISO/P2.4		Hi-Z	۲			•							•		•		
18	PWM5/SS/P2.5		Hi-Z	۲			•							•		•		
19	PWM1/AD7/TK7/P1.3		Hi-Z	ο	٠		•		٠		٠	•		•				
20	PWM0/AD6/TK6/P1.2		Hi-Z	0	٠		•		٠		٠	•		•				
21	T2EX/INT9/AD5/TK5/P1.1		Hi-Z	0	٠	•	•		•		٠	•			•			
22	T2O/T2/INT8/AD4/TK4/P1.0		Hi-Z	0	•	•	•		•		٠	•			٠			T2O
23	RXD/INT7/AD3/TK3/P3.0		Hi-Z	0	•	•	•	•			•	•	•					
24	TXD/INT3/AD2/TK2/P3.1		Hi-Z	0	٠	•	•	٠			•	•	٠					
25	VBGO/INT0/AD1/TK1/P3.2		Hi-Z	0	٠	•	٠	٠			٠	٠						VBGO
26	INT1/AD0/TK0/P3.3		Hi-Z	0	•	•	•		•		٠	•						
27	LCDC7/AD12/TK19/P0.7		Hi-Z	۲			•			٠	٠	•						
28	LCDC6/AD14/TK18/P0.6		Hi-Z	۲			•			•	•	•						
29	LCDC5/AD13/TK17/P0.5		Hi-Z	۲			•			•	•	•						
30	LCDC4/CLD/P0.4		Hi-Z	۲			٠			٠								
31	VSS	Р																
32	VCC	Р																

Symbol:

P.P.: Push-Pull O.D: Open Drain P.O.D: Pseudo Open Drain PU: Pull up PS:

1. • Port1, P2.0, P2.1, Port3 these pins control Pull up resistor by operation modes

2. • Port0, P2.2~P2.5, control Pull up resistor while PxOE.n=0 and Px.n=1

FUNCTIONAL DESCRIPTION

1. CPU Core

In the 8051 architecture, the C programming language is used as a development platform. The TM52 device features a fast 8051 core in a highly integrated microcontroller, allowing designers to be able to achieve improved performance compared to a classic 8051 device. TM52 series microcontrollers provide a complete binary code with standard 8051 instruction set compatibility, ensuring an easy migration path to accelerate the development speed of system products. The CPU core includes an ALU, a program status word (PSW), an accumulator (ACC), a B register, a stack point (SP), DPTRs, a program counter, an instruction decoder, and core special function registers (SFRs).

1.1 Accumulator (ACC)

This register provides one of the operands for most ALU operations. Accumulators are generally referred to as A or Acc and sometimes referred to as Register A. In this document, the accumulator is represented as "A" or "ACC" including the instruction table. The accumulator, as its name suggests, is used as a general register to accumulate the intermediate results of a large number of instructions. The accumulator is the most important and frequently used register to complete arithmetic and logical operations. It holds the intermediate results of most arithmetic and logic operations and assists in data transportation.

SFR E0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

E0h.7~0 ACC: Accumulator

1.2 B Register (B)

The "B" register is very similar to the ACC and may hold a 1 Byte value. This register provides the second operand for multiply or divide instructions. Otherwise, it may be used as a scratch pad register. The B register is only used by two 8051 instructions, MUL and DIV. When A is to be multiplied or divided by another number, the other number is stored in B. For MUL and DIV instructions, it is necessary that the two operands are in A and B.

ex: DIV AB

When this instruction is executed, data inside A and B are divided, and the answer is stored in A.

SFR F0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
В	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F0h.7~0 **B:** B register

1.3 Stack Pointer (SP)

The SP register contains the Stack Pointer. The Stack Pointer is used to load the program counter into memory during LCALL and ACALL instructions and is used to retrieve the program counter from memory in RET and RETI instructions. The stack may also be saved or loaded using PUSH and POP instructions, which also increment and decrement the Stack Pointer.

SFR 81h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
SP		SP							
R/W		R/W							
Reset	0	0	0	0	0	1	1	1	

81h.7~0 **SP:** Stack Point

1.4 Dual Data Pointer (DPTRs)

TM52 device has two DPTRs, which share the same SFR address. Each DPTR is 16 bits in size and consists of two registers: the DPTR high byte (DPH) and the DPTR low byte (DPL). The DPTR is used for 16-bit-address external memory accesses, for offset code byte fetches, and for offset program jumps. Setting the DPSEL control bit allows the program code to switch between the two physical DPTRs.

SFR 82h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DPL	DPL							
R/W				R/	W			
Reset	0	0	0	0	0	0	0	0

82h.7~0 **DPL:** Data Point low byte

SFR 83h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
DPH		DPH								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

83h.7~0 **DPH:** Data Point high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.0 **DPSEL:** Active DPTR Select

1.5 Program Status Word (PSW)

This register contains status information resulting from CPU and ALU operations. The instructions that affect the PSW are listed below.

Instruction		Flag	
Instruction	С	OV	AC
ADD	Х	Х	Х
ADDC	Х	X	Х
SUBB	Х	Х	Х
MUL	0	X	
DIV	0	Х	
DA	Х		
RRC	Х		
RLC	Х		
SETB C	1		

Instruction	Flag							
mstruction	С	OV	AC					
CLR C	0							
CPL C	Х							
ANL C, bit	Х							
ANL C, /bit	Х							
ORL C, bit	Х							
ORL C, /bit	Х							
MOV C, bit	Х							
CJNE	Х							

A "0" means the flag is always cleared, a "1" means the flag is always set and an "X" means that the state of the flag depends on the result of the operation.

SFR D0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

D0h.7 **CY:** ALU carry flag

D0h.6 AC: ALU auxiliary carry flag

D0h.5 **F0:** General purpose user-definable flag

D0h.4~3 **RS1, RS0:** The contents of (RS1, RS0) enable the working register banks as:

- 00: Bank 0 (00h~07h)
- 01: Bank 1 (08h~0Fh)
- 10: Bank 2 (10h~17h)

11: Bank 3 (18h~1Fh)

- D0h.2 **OV:** ALU overflow flag
- D0h.1 **F1:** General purpose user-definable flag
- D0h.0 **P:** Parity flag. Set/cleared by hardware each instruction cycle to indicate odd/even number of "one" bits in the accumulator.

	PSW]									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W										
CY	AC	FO	RS1	RS0	OV	F1	Р										
-			,		$\overline{\ }$			-									_
											Reg	gister	· Bar	ık 3			1Fh
		-	01			n		18h	R0	R1	R2	R3	R4	R5	R6	R7	IFN
		ŀ	RS1	R	50	Ban					Register Bank 2			1.71			
			1	1		3		10h	R0	R1	R2	R3	R4	R5	R6	R 7	17h
			1	0)	2	_		Register Bank 1								
			0	1		1		08h	R0	R1	R2	R3	R4	R5	R6	R7	0Fh
			0	0)	0				-	Reg	gister	· Bar	nk O			1
									R0	R1	R2	R3	R4	R5	R6	R7	07h
								00h							1		J

2. Memory

2.1 Program Memory

The Chip has a 32K Bytes Flash program memory for **TM52F1732** and a 16K Bytes Flash program memory for **TM52F1716** which can support In Application Programming (IAP) function modes. The Flash write endurance is at least 100K cycles. The program memory address continuous space (0000h~7FFFh) is partitioned to several sectors for device operation.

2.1.1 Program Memory Functional Partition

The last bytes (7FFFh) of program memory is defined as chip Configuration Word (CFGW), which is loaded into the device control registers upon power on reset (POR). The 0000h~007Fh is occupied by Reset/Interrupt vectors as standard 8051 definition. For **TM52F1732/16**, the address space 7A00h~7DFFh is defined as the IAP area. In the in-circuit emulation (ICE) mode, user also needs to reserve the address space 6C00h~6FFFh for ICE System communication.CRC16H/L is the reserved area of the checksum. Tenx can provide a CRC verification subroutine. The user can calculate the checksum by the CRC verification subroutine to compare with CRC16H/L and check the validity of the ROM code.

2.1.2 Flash ICP Mode

The Flash memory can be programmed by the tenx proprietary writer (**TWR98/TWR99**), which needs at least four wires (VCC, VSS, P3.0 and P3.1) to connect to this chip. If user wants to program the Flash memory on the target circuit board (In Circuit Program, ICP), these pins must be reserved sufficient freedom to be connected to the Writer.

Writer wire number	Pin connection
4-Wire	VCC, VSS, P3.0, P3.1

2.1.3 Flash IAP Mode (EEPROM like)

The **F1732/16** has "In Application Program" (IAP) capability, which allows software to read/write data from/to the Flash memory during CPU run time.

There are two pages (7A00h~7BFFh and 7C00h~7DFF) can be IAP write and erase. When using IAP to write, you need to erase first and then write bytes. After erasing, each address can only be written once.

IAP erase operation will erase 512 bytes at a time from 7A00h~7BFFh or 7C00h~7DFF. When writing any value in address 7B2Dh, 512 bytes of 7A00h~7BFFh can be erased. Similarly, when writing any value in address 7D69h, 512 bytes of 7C00h~7DFFh can be erased.

Before IAP writing or erasing, there are two SFR, IAPWE and SWCMD, should be set as flowing table. After IAP writing or erasing, IAPWE and SWCMD should be cleared immediately.

Through the "MOVX @DPTR, A" instruction, IAP can be written and erased simply and IAP reading can be done easily by "MOVC" instruction.

SFR Setting	IAP Write	IAP page Erase (Erase 512 bytes)	IAP Disable
Address 7A00h ~ 7BFFh	SWCMD = 65h $IAPWE = 4Ah$	SWCMD = 65h $IAPWE = BAh$	SWCMD = 0h $IAPWE = 0h$
Address 7C00h ~ 7DFFh	SWCMD = 65h $IAPWE = 4Ch$	SWCMD = 65h $IAPWE = BCh$	SWCMD = 0h $IAPWE = 0h$

Address	Byte Write	Page Erase
0000h ~ 79FFh	Ν	Ν
7A00h ~ 7BFFh	Y Byte write	Y Page Erase
7C00h ~ 7DFFh	Y Byte write	Y Page Erase
7E00h ~ 7FFFh	N	Ν

2.1.4 IAP Mode Access Routines

Flash IAP Write is simply achieved by a "MOVX @DPTR, A" instruction while the DPTR contains the target Flash address from 7A00h to 7DFEh, and the ACC contains the data being written. The F1732/16 accepts IAP write commands only when IAPWE and SWCMD are set to appropriate values. Flash IAP writing one byte requires approximately 20 us and erasing one page requires approximately 2ms. While IAP writing or erasing the CPU stays in a waiting state, but all peripheral modules (Timers, LED, and others) continue running during the writing/erase time. The software must handle the pending interrupts after an IAP write. The **F1732/16** has a build-in IAP Time-out function for escaping write fail state. Flash IAP writing needs higher V_{CC} voltage, $V_{CC}>2.5V$.

Before IAP Write, the user should disable the LVR first.

How to erase page 7A00h~7BFFh

- (1) Set the DPTR to 7B2Dh
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to BAh
- (4) MOVX @DPTR, A (write any data to 7B2Dh to erase 7A00h~7BFFh)

; IAP example code

; need 2.5	$V < V_{\rm CC} < 5.5V$	
SETB	LVRPD	; Disable LVR
MOV	DPTR, #7B2Dh	; DPTR=7B2Dh=target IAP address
MOV	SWCMD, #65h	; IAP write enable
MOV	IAPWE, #BAh	; IAP 7A00h~7BFFh erase enable
MOVX	@DPTR, A	; write any data to 7B2Dh to erase 7A00h~7BFFh
		; 7A00h~7BFFh convert to '1' after IAP erase
		; 2ms H/W writing time, CPU wait
MOV	IAPWE, #00h	; IAP write disable, immediately after IAP write
CLR	LVRPD	; Enable LVR

How to erase page 7C00h~7DFFh

- (1) Set the DPTR to 7D69h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to BCh
- (4) MOVX @DPTR, A (write any data to 7D69h to erase 7C00h~7DFFh)

; IAP example code

; need 2.5	$5V < V_{CC} < 5.5V$	
SETB	LVRPD	; Disable LVR
MOV	DPTR, #7D69h	; DPTR=7D69h=target IAP address
MOV	SWCMD, #65h	; IAP write enable
MOV	IAPWE, #0BCh	; IAP 7C00h~7DFFh erase enable
MOVX	@DPTR, A	; write any data to 7D69h to erase 7C00h~7DFFh
		; 7C00h~7DFFh convert to '1' after IAP erase
		; 2ms H/W writing time, CPU wait
MOV	IAPWE, #00h	; IAP write disable, immediately after IAP write
CLR	LVRPD	; Enable LVR

How to write a byte in the range of 7A00h to 7BFFh

- (1) Set the DPTR to 7A00h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to 4Ah
- (4) MOVX @DPTR, A (write data to 7A00h)

; IAP example code

, 11 11 0/10	imple code	
; need 2.5	$5V < V_{CC} < 5.5V$	
SETB	LVRPD	; Disable LVR
MOV	DPTR, #7A00h	; DPTR=7A00h=target IAP address
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	SWCMD, #65h	; IAP write enable
MOV	IAPWE, #4Ah	; IAP write range 7A00h~7BFFh enable
MOVX	@DPTR, A	; Flash[7A00h] =5Ah, after IAP write
		; 20us H/W writing time, CPU wait
MOV	IAPWE, #00h	; IAP write disable, immediately after IAP write
CLR	А	; A=0
MOVC	A, @A+DPTR	; A=5Ah
CLR	LVRPD	; Enable LVR

How to write a byte in the range of 7C00h to 7DFFh

- (1) Set the DPTR to 7C00h
- (2) Set the SWCMD to 65h
- (3) Set the IAPWE to 4Ch
- (4) MOVX @DPTR, A (write data to 7C00h)
- ; IAP example code

; need 2.5	$V < V_{CC} < 5.5V$	
SETB	LVRPD	; Disable LVR
MOV	DPTR, #7C00h	; DPTR=7C00h=target IAP address
MOV	A, #5Ah	; A=5Ah=target IAP write data
MOV	SWCMD, #65h	; IAP write enable
MOV	IAPWE, #4Ch	; IAP write range 7C00h~7DFFh enable
MOVX	@DPTR, A	; Flash[7C00h] =5Ah, after IAP write
MOVX	@DPTR, A	; Flash[7C00h] =5Ah, after IAP write ; 20us H/W writing time, CPU wait
MOVX MOV	@DPTR, A IAPWE, #00h	
	,	; 20us H/W writing time, CPU wait
MOV	IAPWE, #00h	; 20us H/W writing time, CPU wait ; IAP write disable, immediately after IAP write
MOV CLR	IAPWE, #00h A	; 20us H/W writing time, CPU wait ; IAP write disable, immediately after IAP write ; A=0

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROTN	XRSTEN		LVRE		_	MVCLOCKN	FRCPSC

7FFFh.1 MVCLOCKN: If 0, the MOVC & MOVX cannot access address from 0000h to 01FFh.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SWCMD								
SWCMD			-	_			WDTO	IAPEN
R/W			V	V			R	R
Reset			-	_			0	0

97h.7~0 IAPEN (W):

Write 65h to enable IAP write/erase;

Write other value to disable IAP write/erase. It is recommended to clear it immediately after IAP access.

97h.0 IAPEN (R): Flag indicates Flash memory sectors can be accessed by IAP or not.

SFR C9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TADWE				IAP	WE					
IAPWE	IAPWE	IAPTO	- O							
R/W	R	R		W						
Reset	0	0								

C9h.7~0 IAPWE (W):

Write 4Ah to enable IAP one byte write to ROM[7A00~7BFF] Write 4Ch to enable IAP one byte write to ROM[7C00~7DFF] Write BAh to enable IAP ERASE 512 byte of ROM[7A00~7BFF] Write BCh to enable IAP ERASE 512 byte of ROM[7C00~7DFF] Write other value to disable IAP write/page erase

C9h.7 IAPWE (R):

0: IAP write/page erase disable

1: IAP write/page erase enable

C9h.6 **IAPTO (R):**

IAP Time-Out flag, Set by H/W when IAP Time-out occurs. Cleared by H/W when IAPWE=0.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WD	DTE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.2~1 **IAPTE:** IAP write watchdog timer enable

00: Disable

01: wait 0.8mS trigger watchdog time-out flag, and escape the write fail state

10: wait 3.2mS trigger watchdog time-out flag, and escape the write fail state

11: wait 6.4mS trigger watchdog time-out flag, and escape the write fail state

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.3 **LVRPD:** Low Voltage Reset function select

0: enable

1: disable

2.2 Data Memory

As the standard 8051, the Chip has both Internal and External Data Memory space. The Internal Data Memory space consists of 256 Bytes IRAM and SFRs, which are accessible through a rich instruction set. The External Data Memory space consists of 1024 Bytes XRAM, 6 Bytes LCD RAM, 10 Bytes ICE RAM and 1024byte IAP Flash shared with Program memory, which can be only accessed by MOVX instruction.

2.2.1 IRAM

IRAM is located in the 8051 internal data memory space. The whole 256 Bytes IRAM are accessible using indirect addressing but only the lower 128 Bytes are accessible using direct addressing. There are four directly addressable register banks (switching by PSW), which occupy IRAM space from 00h to 1Fh. The address 20h to 2Fh 16 Bytes IRAM space is bit-addressable. IRAM can be used as scratch pad registers or program stack.

2.2.2 XRAM

XRAM is located in the 8051 external data memory space (address from FC00h to FFFFh). The 1024 Bytes XRAM can be only accessed by "MOVX" instruction.

2.2.3 SFRs

All peripheral functional modules such as I/O ports, Timers and UART operations for the chip are accessed via Special Function Registers (SFRs). These registers occupy upper 128 Bytes of direct Data Memory space locations in the range 80h to FFh. There are 14 bit-addressable SFRs (which means that eight individual bits inside a single byte are addressable), such as ACC, B register, PSW, TCON, SCON, and others. The remaining SFRs are only byte addressable. SFRs provide control and data exchange with the resources and peripherals of the Chip. The TM52 series of microcontrollers provides complete binary code with standard 8051 instruction set compatibility. Beside the standard 8051 SFRs, the Chip implements additional SFRs used to configure and access subsystems such as the ADC/LCD, which are unique to the Chip.

	8/0	9/1	A/2	B/3	C/4	D/5	E/6	F/7
F8h	AUX1							
F0h	В	CRCDL	CRCDH	CRCIN		CFGBG	CFGWL	AUX2
E8h		SIADR	SICON	SIRCD1	SITXDRCD2			
E0h	ACC	MICON	MIDAT				EXA	EXB
D8h	CLKCON	PWM0PRDH	PWM0PRDL	PWM1PRDH	PWM1PRDL	PWM2PRDH	PWM2PRDL	
D0h	PSW	PWM0DH	PWM0DL	PWM1DH	PWM1DL	PWM2DH	PWM2DL	
C8h	T2CON	IAPWE	RCP2L	RCP2H	TL2	TH2	EXA2	EXA3
C0h								
B8h	IP	IPH	IP1	IP1H	SPCON	SPSTA	SPDAT	LVDS
B0h	P3	LEDCON	LEDCON2					
A8h	IE	INTE1	ADTKDT	ADCDH	TKDL	TKCON	CHSEL	POADIE
A0h	P2	PWMCON	P1MODL	P1MODH	P3MODL	P3MODH	PINMOD	TKCHS
98h	SCON	SBUF	PWMPRD	PWM3D	PWM4D	PWM5D	PWMOE	PWMCLR
90h	P1	POOE	POLOE	P2MOD	OPTION	INTFLG	P1WKUP	SWCMD
88h	TCON	TMOD	TL0	TL1	TH0	TH1	SCON2	SBUF2
80h	P0	SP	DPL	DPH	INTEX	INTEXF	INTPWM	PCON

3. LVR and LVD setting

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 8-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS. The SFR PWRSAV/LVRPD bits also affect LVR function as tables below.

Operation	SI	FR	CFGWH	LVR	Function	Current
Mode	LVRPD	PWRSAV	LVRE	LVK	Function	consumption
	0	Х	000	ON	LV Reset 2.52V	
	0	Х	001	ON	LV Reset 2.74V	
	0	Х	010	ON	LV Reset 2.99V	
Fast	0	Х	011	ON	LV Reset 3.23V	
Slow	0	Х	100	ON	LV Reset 3.48V	
	0	Х	101	ON	LV Reset 3.72V	
	0	Х	110	ON	LV Reset 3.96V	
	0	Х	111	ON	LV Reset 4.2V	
	0	0	000	ON	LV Reset 2.52V	
	0	0	001	ON	LV Reset 2.74V	
x 11	0	0	010	ON	LV Reset 2.99V	
Idle Halt	0	0	011	ON	LV Reset 3.23V	Idle: 160uA Halt: 55uA
Stop	0	0	100	ON	LV Reset 3.48V	Stop: 50uA
ыор	0	0	101	ON	LV Reset 3.72V	Stop. Sourt
	0	0	110	ON	LV Reset 3.96V	
	0	0	111	ON	LV Reset 4.2V	
Idle	0	1	XXX	ON	POR 2.5V	140uA
Halt Stop	0	1	XXX	OFF	-	Halt: 11uA Stop: 7uA
Fast Slow Idle	1	Х	XXX	ON	POR 2.5V	Idle: 140uA
Halt Stop	1	Х	XXX	OFF	-	Halt: 11uA Stop: 7uA

LVR and LVD function

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.5 **PWRSAV:** Power saving mode control

0: No power saving

1: Power saving, disable LVR in IDLE/HALT/STOP mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.3

.3 LVRPD: Low Voltage Reset function select

0: enable

1: disable

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDIE	LVDO	_	_		LV	'DS	
R/W	R/W	R	_	—	R/W	R/W	R/W	R/W
Reset	0	0		_	0	0	0	0
BFh.7	LVDIE: Lov	w Voltage De	etect interrup	t enable				
	0: Disable							
	1: Enable (note: EXLVI	DIE must be	1 at the same	time to gene	erate LVD in	terrupt)	
BFh.6	LVDO: Low	v Voltage De	tect output					
BFh.3~0	LVDS: Low	Voltage Det	ect select					
		LVD at 2.52V						
	0001: Set I	LVD at 2.62V	7					
	0010: Set I	LVD at 2.74V	1					
	0011: Set I	LVD at 2.86V	1					
	0100: Set I	LVD at 2.99V	1					
	0101: Set I	LVD at 3.1V						
	0110: Set I	LVD at 3.23	1					
	0111: Set I	LVD at 3.35V	1					
	1000: Set I	LVD at 3.48V	1					
	1001: Set I	LVD at 3.6V						
	1010: Set I	LVD at 3.72V	1					
	1011: Set I	LVD at 3.84V	1					
		LVD at 3.96V						
	1101: Set I	LVD at 4.08V	7					
	1110: Set I	LVD at 4.2V						
	1111: Set I	LVD at 4.32V	Ι					

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROTN	XRSTEN		LVRE		_	MVCLOCKN	FRCPSC

7FFFh.5~3 LVRE: Low Voltage Reset function select

000: Set LVR at 2.52V 001: Set LVR at 2.74V 010: Set LVR at 2.99V 011: Set LVR at 3.23V 100: Set LVR at 3.48V 101: Set LVR at 3.72V 110: Set LVR at 3.96V 111: Set LVR at 4.2V

4. Reset

The Chip has five types of reset methods. Resets can be caused by Power on Reset (POR), External Pin Reset (XRST), Software Command Reset (SWRST), Watchdog Timer Reset (WDTR), or Low Voltage Reset (LVR). The CFGWH controls the Reset functionality. The SFRs are returned to their default value after Reset.

4.1 Power on Reset

After Power on Reset, the device stays on Reset state for 40 ms as chip warm up time, then downloads the CFGW register from ROM's last six bytes. The Power on Reset needs VCC pin's voltage first discharge to near VSS level, then rise beyond 2.5V.

4.2 External Pin Reset

External Pin Reset is active low. It needs to keep at least 2 SRC clock cycle long to be seen by the Chip. External Pin Reset can be disabled or enabled by CFGW.

4.3 Software Command Reset

Software Reset is activated by writing the SFR 97h with data 56h.

4.4 Watchdog Timer Reset

WDT overflow Reset is disabled or enabled by SFR F7h. The WDT uses SRC as its counting time base. It runs in Fast/Slow mode and runs or stops in Idle/Stop/Halt mode. WDT overflow speed can be defined by WDTPSC SFR. WDT is cleared by device Reset or CLRWDT SFR bit.

4.5 Low Voltage Reset

The Chip provides LVR and Low Voltage Detection (LVD) functions. There are 8-level LVR can be selected by CFGWH and 16-level LVD can be selected by SFR LVDS.

Flash 7FFFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CFGWH	PROTN	XRSTEN		LVRE		_	MVCLOCKN	FRCPSC

7FFFh.6 XRSTEN: External Pin Reset control
0: Enable External Pin Reset
1: Disable External Pin Reset
7FFFh.5~3 LVRE: Low Voltage Reset function select
000: Set LVR at 2.52V
001: Set LVR at 2.74V
010: Set LVR at 2.99V
011: Set LVR at 3.23V
100: Set LVR at 3.48V
101: Set LVR at 3.72V
110: Set LVR at 3.96V
111: Set LVR at 4.2V

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	TKFJMP	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/	R/W		W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.5~4 WDTPSC: Watchdog Timer pre-scalar time select

00: 400ms WDT overflow rate

01: 200ms WDT overflow rate

10: 100ms WDT overflow rate

11: 50ms WDT overflow rate

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	—	TKIF	ADIF	—	—	P1IF	TF3
R/W	R/W		R/W	R/W			R/W	R/W
Reset	0		0	0			0	0

95h.7 LVDIF: Low Voltage Detect interrupt flag

Set by H/W. S/W writes 7Fh to INTFLG to clear this flag.

SFR 97h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SWCMD		IAPEN/SWRST									
R/W		W									
Reset			-	0							

97h.7~0 SWRST: Write 56h to generate S/W Reset

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.7~6 WDTE: Watchdog Timer Reset control

0x: Watchdog Timer Reset disable

10: Watchdog Timer Reset enable in Fast/Slow mode, disable in Idle/Stop/Halt mode

11: Watchdog Timer Reset always enable

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.7 CLRWDT: Set to clear WDT, H/W auto clear it at next clock cycle

F8h.3 **LVRPD:** Low Voltage Reset function select

0: enable

1: disable

5. Clock Circuitry & Operation Mode

5.1 System Clock

The Chip is designed with dual-clock system. During runtime, user can directly switch the System clock from fast to slow or from slow to fast. It also can directly select a clock divider of 1, 2, 4 or 16. The Fast clock can be selected as FXT (Fast Crystal, 1~16 MHz) or FRC (Fast Internal RC, 14.7456 MHz). The Slow clock can be selected as SXT (Slow Crystal, 32 KHz) or SRC (Slow Internal RC, 80 KHz). Fast mode and Slow mode are defined as the CPU running at Fast and Slow clock speeds.

After Reset, the device is running at Slow mode with 80 KHz SRC. S/W should select the proper clock rate for chip operation safety. The higher V_{CC} allows the chip to run at a higher System clock frequency. In a typical condition, a 16 MHz System clock rate requires V_{CC} > 2.5V.

The Chip has an external oscillators connected to the XI/XO pins. It relies on external circuitry for the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz crystal, or ceramic resonator. In Fast mode, the fast oscillator can be used in the range from 1~16 MHz. In Slow mode, the slow oscillator can only use a clock frequency of 32.768 KHz.

The **CLKCON** SFR controls the System clock operating. H/W automatically blocks the S/W abnormally setting for this register. S/W can only change the Slow clock type in Fast mode and change the Fast clock type in Slow mode. Never to write both STPFCK=1 & SELFCK=1. It is recommended to write this SFR bit by bit.

If user wants to switch Fsys from Slow clock to FXT, user should be following the step below

- 1. Set FCKTYPE (D8h.6)
- 2. Wait 2ms until FXT oscillation stable
- 3. Set SELFCK (D8h.2)

Clock Structure

Note: Because of the CLKPSC delay, it needs to wait for 16 clock cycles (max.) before switching Slow clock to Fast clock. Also refer to AP-TM52XXXXX_01S and AP-TM52XXXXX_02S about System Clock Application Note.

The chip can also output the "System clock divided by 2" signal (CKO) to P1.4 pin. CKO pin's output setting is controlled by TCOE SFR (*see section 7*).

		CLKCO	N (D8h)	
SYSCLK	bit7	bit6	bit3	bit2
	SCKTYPE	FCKTYPE	STPFCK	SELFCK
Fast FXT	0/1	1	0	1
Fast FRC	0/1	0	0	1
Slow SXT	1	0/1	0/1	0
Slow SRC	0	0/1	0/1	0
Fast type change	0/1	$0 \leftarrow \rightarrow 1$	0/1	0
Slow type change	$0 \leftrightarrow \rightarrow 1$	0/1	0	1
Stop FRC/FXT	0/1	0/1	$0 \rightarrow 1$	0
Switch to FRC/FXT	0/1	0/1	0	$0 \rightarrow 1$
Switch to SRC/SXT	0/1	0/1	0	$1 \rightarrow 0$

SFR F6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CFGWL	_				FRCF					
R/W	_		R/W							
Reset		—	—	—	—	_	—	—		

F6h.6~0 **FRCF:** FRC frequency adjustment

00h= lowest frequency, 7Fh=highest frequency.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W				
Reset	0	0	1	0	0	0	1	1				
D8h.7	SCKTYPE:	SCKTYPE: Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).										
	0: SRC											
	1: SXT, P2.0 and P2.1 are crystal pins											
D8h.6	FCKTYPE: Fast clock type. This bit can be changed only in Slow mode (SELFCK=0).											
	0: FRC											
	1: FXT, P2	1: FXT, P2.0 and P2.1 are crystal pins, oscillator gain is high for FXT										
D8h.5	STPSCK: S	et 1 to stop S	low clock aft	ter PD=1 (Ha	lt / Stop mod	le control)						
D8h.4	STPPCK: S	et 1 to stop U	JARTs/Time	r0/Timer1/Ti	mer2/ADC c	lock in Idle n	node for curr	ent				
	reducing. If s	set, only Tim	er3 and pin in	nterrupts are	alive in Idle	Mode.						
D8h.3			Fast clock for	power savin	g in Slow/Id	le mode. Thi	s bit can be c	changed only				
	in Slow mod											
D8h.2		•	source select	ion. This bit	can be chang	ed only when	n STPFCK=0).				
	0: Slow clo											
	1: Fast cloc											
D8h.1~0			1		•	les (Max.) de	lay.					
	•	clock is Fast		•	5							
	01: System clock is Fast/Slow clock divided by 4											
	10: System clock is Fast/Slow clock divided by 2											
	11: System	clock is Fast	Slow clock	divided by 1								

5.2 Operation Modes

There are four operation modes for this device. **Fast Mode** is defined as the CPU running at Fast clock speed. **Slow Mode** is defined as the CPU running at Slow clock speed. When the System clock speed is lower, the power consumption is lower.

Idle Mode is entered by setting the IDL bit in PCON SFR. Both Fast and Slow clock can be set as the System clock source in Idle Mode, but Slow clock is better for power saving. In Idle mode, the CPU puts itself to sleep while the on-chip peripherals stay active. The "STPPCK" bit in CLKCON SFR can be set to furthermore reduce Idle mode current. If STPPCK is set, only Timer3 and pin interrupts are alive in Idle Mode, others peripherals such as Timer0/1/2, UARTs and ADC are stop. The slower System clock rate also helps current saving. It can be achieved by setup the CLKPSC SFR to divide System clock frequency. Idle mode is terminated by Reset or enabled Interrupts wake up.

Stop Mode is entered by setting the PD bit in PCON SFR. This mode is the so-called "Power Down" mode in standard 8051. In Stop mode, all clocks stop except the WDT could be alive if it is enabled. Stop Mode is terminated by Reset or pin wake up. Must be set to slow clock mode (SELFCK=0) before entering Stop mode (PDOWN).

Halt Mode is entered by setting the PD bit in PCON SFR and STPSCK is cleared. In Halt mode, all clocks stop except the Timer3 and WDT could be alive if they are enabled. Halt Mode is terminated by Reset, pin wake up or Timer3 interrupt.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	_	_	—	GF1	GF0	PD	IDL
R/W	R/W	_	_	—	R/W	R/W	R/W	R/W
Reset	0		_	_	0	0	0	0

87h.1 **PD:** Power down control bit, set 1 to enter STOP/Halt mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WI	DTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/	W	R/W
Reset	0	0	0	0	0	0	0	0

F7h.4 **VBGOUT:** VBG voltage output to P3.2.

0: Disable

1: Enable, The additional condition VBGEN=1(AEh.1=1) should be set.

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1
D8h.7	D8h.7 SCKTYPE: Slow clock type. This bit can be changed only in Fast mode (SELFCK=1).							
	0: SRC 1: SXT							
D8h.6	D8h.6 FCKTYPE: Fast clock type. This bit can be changed only in Slow mode (SELFCK=0). 0: FRC 1: FXT							
D8h.5	STPSCK: Set 1 to stop Slow clock after PD=1 (Halt / Stop mode control)							
D8h.4	STPPCK: Set 1 to stop UART/Timer0/Timer1/Timer2/ADC clock in Idle mode for current reducing. If set, only Timer3 and pin interrupts are alive in Idle Mode.							
D8h.3	STPFCK: Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.							
D8h.2	 SELFCK: System clock source selection. This bit can be changed only when STPFCK=0. 0: Slow clock 1: Fast clock 							
D8h.1~0	 CLKPSC: System clock prescaler. Effective after 16 clock cycles (Max.) delay. 00: System clock is Fast/Slow clock divided by 16 01: System clock is Fast/Slow clock divided by 4 10: System clock is Fast/Slow clock divided by 2 11: System clock is Fast/Slow clock divided by 1 							

6. Interrupt & Wake-up

This Chip has a 14-source four-level priority interrupt structure. All enabled Interrupts can wake up CPU from Idle mode, but only the Pin Interrupts can wake up CPU from Stop mode. The Halt mode can be waked up by Time3 and Pin Interrupts. Each interrupt source has its own enable control bit. An interrupt event will set its individual Interrupt Flag, no matter whether its interrupt enable control bit is 0 or 1. The Interrupt vectors and flags are list below.

Vector	Flag	Description				
0003	IE0	INTO external pin Interrupt (can wake up Stop/Halt mode)				
000B	TF0	Timer0 Interrupt				
0013	IE1	INT1 external pin Interrupt (can wake up Stop/Halt mode)				
001B	TF1	Timer1 Interrupt				
0023	RI+TI	Serial Port (UART1) Interrupt				
002B	TF2+EXF2	Timer2 Interrupt				
0033	-	Reserved for ICE mode use				
003B	TF3	Timer3 Interrupt				
0043	P1IF	Port1 external pin change Interrupt (can wake up Stop/Halt mode)				
004B	IE2~IE9	INT2~INT9 external pin Interrupt (can wake up Stop/Halt mode)				
004D	LVDIF	LVD interrupt				
0053	ADIF+TKIF	ADC/Touch Key Interrupt				
005B	SPIF+WCOL+MODF	SPI Interrupt				
0063	RI2+TI2	Serial Port (UART2) Interrupt				
	MIIF					
006B	TXDF	I ² C interrupt Vector				
000B	RCD2F	i C interrupt vector				
	RCD1F					
	PWM0IF					
0073	PWM1IF	PWM0~2 Interrupt Vector				
	PWM2IF					

Interrupt Vector & Flag

6.1 Interrupt Enable and Priority Control

The IE and INTE1 SFRs decide whether the pending interrupt is serviced by CPU. The P1WKUP SFR controls the individual Port1 pin's wake-up and interrupt capability. The IP, IPH, IP1 and IP1H SFRs decide the interrupt priority. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

6.2 Suggestions on interrupting subroutines

The period and duty cycle of PWM are 16-bit operations. When writing and reading the high and low bytes of PWMxDH, PWMxDL, PWMxPRDH and PWMxPRDL, interrupts should be avoided. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEX	EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

84h.7~0 **EX9~EX2:** External INT9~INT2 pin Interrupt enable and Stop/Halt mode wake up enable.

0: Disable INTx pin Interrupt and Stop/Halt mode wake up

1: Enable INTx pin Interrupt and Stop/Halt mode wake up, it can wake up CPU from Stop/Halt mode no matter EA is 0 or 1. (note: EXLVDIE must be 1 at the same time to generate INTx interrupt and wake up)

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P1WKUP		P1WKUP									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

96h.7~0 **P1WKUP:** P1.7~P1.0 pin individual Wake-up / Interrupt enable control

0: Disable

1: Enable

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1IE	PWM0IE	PWM50E	PWM4OE	PWM3OE	PWM2OE	PWM10E	PWM0OE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

9Eh.7 **PWM1IE:** PWM1 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

9Eh.6 **PWM0IE:** PWM0 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCLR	PWM2IE	_	PWM5CLR	PWM4CLR	PWM3CLR	PWM2CLR	PWM1CLR	PWM0CLR
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0

9Fh.7 **PWM2IE:** PWM2 Interrupt Enable

0: disable

1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	_	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	_	0	0	0	0	0	0
A8h.7	EA: Global	interrupt enal	ole control.					
	0: Disable a	all Interrupts.						
	1: Each inte	errupt is enab	oled or disabl	ed by its indi	vidual interr	upt control b	it	
A8h.5	ET2: Timer2	2 interrupt en	able					
	0: Disable '	Timer2 interr	upt					
	1: Enable T	Timer2 interru	ıpt					
A8h.4	ES: Serial P	ort (UART1)	interrupt ena	ıble				
	0: Disable 3	Serial Port (U	JART1) inter	rupt				
	1: Enable S	erial Port (U	ART1) interr	rupt				
A8h.3	ET1: Timer	l interrupt en	able					
	0: Disable '	Timer1 interr	upt					
	1: Enable T	imer1 interru	ıpt					
A8h.2	EX1: Extern	al INT1 pin 1	Interrupt enal	ble and Stop/	Halt mode w	ake up enabl	e	
	0: Disable 1	INT1 pin Inte	errupt and Sto	op/Halt mode	e wake up			
				top/Halt mo	de wake up,	it can wake	up CPU fro	om Stop/Halt
	mode no m	atter EA is 0	or 1.					
A8h.1	ET0: Timer(-						
		Timer0 interr	-					
	1: Enable T	Timer0 interru	ıpt					
A8h.0	EX0: Extern	-	-	-		ake up enabl	e	
		INT0 pin Inte	-	-	-			
				top/Halt mo	de wake up,	it can wake	up CPU fro	om Stop/Halt
	mode no m	atter EA is 0	or 1.					

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
A9h.7	PWMIE: PV	WM0~PWM2	2 interrupt en	able				
	0: Disable	PWM0~PWN	M2 interrupt					
	1: Enable P	WM0~PWN	12 interrupt					
A9h.6	I2CE: I^2C (r		interrupt ena	ble				
		I ² C interrupt						
	1: Enable I	² C interrupt						
A9h.5	ES2: Serial l	Port (UART2	2) interrupt er	nable				
			JART2) inter	-				
	1: Enable S	erial Port (U	ART2) intern	rupt				
A9h.4	SPIE: SPI in	-						
		SPI interrupt						
		PI interrupt						
A9h.3	ADTKIE: A		• 1					
			Key interrup					
			Key interrupt					
A9h.2					•	d Stop/Halt n	node wake up	p enable
			pin Interrupt	and Stop/Hal	lt mode wake	e up		
		LVD interrup					_	
					Halt mode v	wake up, it	can wake uj	p CPU from
	-	LVD interrup	atter EA is 0	or 1.				
A9h.1		-		1. This hit d	and not offer	t the Dortl n	n'a Ston/Hal	lt mode wake
A911.1	up capability		merrupt enab	de. This bit d	oes not arrec	t the Porti pi	in s Stop/Hai	it mode wake
			nge interrupt					
		ort1 pin cha		•				
A9h.0	TM3IE: Tin	-	•	Halt mode w	ake un enabl	e		
11/11.0		1	rupt t and Ha			~		
			-		-	ake up CPU f	from Halt me	ode no matter
	EA is 0 or		er i una mu	· mode wake		and up of 0 1		

SFR B9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IPH	_	_	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

SFR B8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP	_	_	PT2	PS	PT1	PX1	PT0	PX0
R/W	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	_	0	0	0	0	0	0

B9h.5, B8h.5 **PT2H, PT2 :** Timer2 Interrupt Priority control. (PT2H, PT2) =

11: Level 3 (highest priority)

- 10: Level 2
- 01: Level 1

00: Level 0 (lowest priority)

B9h.4, B8h.4 **PSH, PS :** Serial Port (UART1) Interrupt Priority control. Definition as above.

B9h.3, B8h.3 **PT1H, PT1 :** Timer1 Interrupt Priority control. Definition as above.

B9h.2, B8h.2 **PX1H, PX1 :** External INT1 pin Interrupt Priority control. Definition as above.

B9h.1, B8h.1 **PT0H, PT0 :** Timer0 Interrupt Priority control. Definition as above.

B9h.0, B8h.0 **PX0H, PX0 :** External INTO pin Interrupt Priority control. Definition as above.

SFR BBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1H	PPWMH	PI2CH	PS2H	PSPIH	PADTKIH	PX2_9LVDH	PP1H	РТ3Н
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR BAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IP1	PPWM	PI2C	PS2	PSPI	PADTKI	PX2_9LVD	PP1	PT3
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

BBh.7, BAh.7 **PPWMH, PPWM:** PWM0~PWM2 Interrupt Priority control. Definition as above.

BBh.6, BAh.6 PI2CH, PI2C: I2C (Master/Slave) Interrupt Priority control. Definition as above.

BBh.5, BAh.5 **PS2H, PS2:** Serial Port (UART2) Interrupt Priority control. Definition as above.

BBh.4, BAh.4 PSPIH, PSPI: SPI Interrupt Priority control. Definition as above.

BBh.3, BAh.3 **PADTKIH, PADTKI:** ADC/Touch Key Interrupt Priority control. Definition as above.

BBh.2, BAh.2 **PX2_9LVDH, PX2_9LVD:** External INT2~INT9 pin and LVD Interrupt Priority control. Definition as above.

BBh.1, BAh.1 **PP1H, PP1:** Port1 Pin Change Interrupt Priority control. Definition as above.

BBh.0, BAh.0 **PT3H, PT3:** Timer3 Interrupt Priority control. Definition as above.

6.3 Pin Interrupt and LVD interrupt

Pin Interrupts include INT0~INT9 and Port1 Change. INT0~INT9 and Port1 also have the Stop/Halt mode wake up capability. INT0 and INT1 are falling edge or low level triggered as the 8051 standard. INT2~INT9 is falling edge triggered and Port1 Change Interrupt is triggered by Port1 state change. LVD interrupt can be used to detect the V_{CC} voltage level and generate an interrupt.

Pin interrup/Wake up & LVD interrupt

Note: Chip cannot enter Stop/Halt Mode if INTn pin is low and wakeup is enabled. (INTn=0 and EXn=1, n=0~9)

SFR 84h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEX	EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

84h.7~0 **EX9~EX2:** External INT9~INT2 pin Interrupt enable and Stop/Halt mode wake up enable.

0: Disable INTx pin Interrupt and Stop/Halt mode wake up

^{1:} Enable INTx pin Interrupt and Stop/Halt mode wake up, it can wake up CPU from Stop/Halt mode no matter EA is 0 or 1. (note: EXLVDIE must be 1 at the same time to generate INTx interrupt wake up)

SFR 85h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTEXF	IE9	IE8	IE7	IE6	IE5	IE4	IE3	IE2
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

85h.7~0 **IE9~2:** External Interrupt INT9~INT2 edge flag.

Set by H/W when an INTx pin falling edge is detected, no matter the EXx is 0 or 1. S/W Write 0 to clear interrupt flag, no automatic clear after the interrupt service routine.

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
88h.3	IE1: Externa	E1: External Interrupt 1 (INT1 pin) edge flag.										
	Set by H/W	Set by H/W when an INT1 pin falling edge is detected, no matter the EX1 is 0 or 1.										
	It is cleared	It is cleared automatically when the program performs the interrupt service routine.										
88h.2	IT1: External Interrupt 1 control bit											
	0: Low leve	el active (lev	el triggered)	for INT1 pin								
	1: Falling e	dge active (e	dge triggered	l) for INT1 p	in							
88h.1	IE0: Externa	l Interrupt 0	(INT0 pin) e	dge flag								
	Set by H/W	when an IN	T0 pin fallin	g edge is det	ected, no mat	ter the EX0 i	s 0 or 1.					
	It is cleared	l automatical	ly when the p	program perf	orms the inte	rrupt service	routine.					
88h.0	IT0: Externa	ITO: External Interrupt 0 control bit										
	0: Low leve	0: Low level active (level triggered) for INT0 pin										
	1: Falling e	dge active (e	dge triggered	l) for INT0 p	in							

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF	_	TKIF	ADIF	_	_	P1IF	TF3
R/W	R	—	R/W	R/W	_	—	R/W	R/W
Reset	-	—	0	0	_	_	0	0
95h.7	LVDIF: LV	D interrupt fl	ag					

Set by H/W, S/W can write 7Fh to INTFLG to clear this bit. 95h.1 **P1IF:** Port1 pin change interrupt flag

Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP).

P1IE does not affect this flag's setting.

It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit. (*Note1*)

Note1: S/W can write 0 to clear a flag in the INTFLG, but writing 1 has no effect.

A8h.2

SFR 96h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P1WKUP		P1WKUP									
R/W		R/W									
Reset	0	0 0 0 0 0 0 0 0									
96h.7~0	P1WKUP: I	21WKUP: P1.7~P1.0 pin Wake-up / Interrupt enable control									

0: Disable

1: Enable

SFR A8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IE	EA	—	ET2	ES	ET1	EX1	ET0	EX0
R/W	R/W	—	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

A8h.7 EA: Global interrupt enable control.

0: Disable all Interrupts.

1: Each interrupt is enabled or disabled by its individual interrupt control bit

EX1: External INT1 pin Interrupt enable and Stop/Halt mode wake up enable

0: Disable INT1 pin Interrupt and Stop/Halt mode wake up

1: Enable INT1 pin Interrupt and Stop/Halt mode wake up, it can wake up CPU from Stop/Halt mode no matter EA is 0 or 1.

A8h.0 EX0: External INTO pin Interrupt enable and Stop/Halt mode wake up enable

0: Disable INT0 pin Interrupt and Stop/Halt mode wake up

1: Enable INTO pin Interrupt and Stop/Halt mode wake up, it can wake up CPU from Stop/Halt mode no matter EA is 0 or 1.

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.2 EXLVDIE: External INT2~INT9 and LVD interrupt enable and Stop/Halt mode wake up enable 0: Disable INT2~INT9 pin Interrupt and Stop/Halt mode wake up

Disable LVD interrupt

1: Enable INT2~INT9 pin Interrupt and Stop/Halt mode wake up, it can wake up CPU from Stop/Halt mode no matter EA is 0 or 1.

Enable LVD interrupt.

SFR BFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVDS	LVDIE	LVDO	_	_		LV	DS	
R/W	R/W	R	_	—	R/W	R/W	R/W	R/W
Reset	0	0		—	0	0	0	0

BFh.7 LVDIE: Low Voltage Detect interrupt enable

0: Disable

1: Enable (note: EXLVDIE must be 1 at the same time to generate LVD interrupt)

BFh.3~0 LVDS: Low Voltage Detect select

0000: Set LVD at 2.52V 0001: Set LVD at 2.62V 0010: Set LVD at 2.74V 0011: Set LVD at 2.86V 0100: Set LVD at 2.99V 0101: Set LVD at 3.1V 0110: Set LVD at 3.23V 0111: Set LVD at 3.35V 1000: Set LVD at 3.48V 1001: Set LVD at 3.6V 1010: Set LVD at 3.72V 1011: Set LVD at 3.84V 1100: Set LVD at 3.96V 1101: Set LVD at 4.08V 1110: Set LVD at 4.2V 1111: Set LVD at 4.32V

6.4 Idle mode Wake up and Interrupt

Idle mode is waked up by enabled Interrupts, which means individual interrupt enable bit (ex: EX0) and EA bit must be both set to 1 to establish Idle mode wake up capability. All enabled Interrupts (Pins, Timers, ADC, TK, SPI and UARTs) can wake up CPU from Idle mode. Upon Idle wake-up, Interrupt service routine is entered immediately. "The first instruction behind IDL (PCON.0) setting" is executed after interrupt service routine return.

EA=EX0=1, Idle mode wake-up and Interrupt by P3.2 (INT0)

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD	—	_	_	GF1	GF0	PD	IDL
R/W	R/W	—	—	—	R/W	R/W	R/W	R/W
Reset	0	—	—	—	0	0	0	0
	~ ~					Ç	ů	ů

87h.1 **PD:** Power down control bit, set 1 to enter STOP/Halt mode.

87h.0 **IDL:** Idle mode control bit, set 1 to enter IDLE mode.

6.5 Stop/Halt mode Wake up and Interrupt

Stop/Halt mode wake up is simple, as long as the individual pin interrupt enable bit (ex: EX0) is set, the pin wake up capability is asserted. Set EX0~9/EXLVDIE can enable INT0 to INT9 pins' Stop/Halt mode wake up capability. Set P1WKUP bit 7~0 can enable P1.7~P1.0's Stop/Halt mode wake up capability. Upon Stop/Halt wake up, "the first instruction behind PD setting (PCON.1)" is executed immediately before Interrupt service. Interrupt entry requires EA=1 (P1WKUP also needs P1IE=1) and trigger state of the pin staying sufficiently long to be observed by the System clock. This feature allows CPU to enter or not enter Interrupt sub-routine after Stop/Halt mode wake up.

Note: It is recommended to place the NX1/NX2 with NOP Instruction in figures below.

INST. CODE	MOV PCON, #02h	NX1 INST. (> 2 Cycles) HOLD ————————————————————————————————————	RUN	INTERRUPT SUB-ROUTINE	RETI	NX2 INST.
INST. CODE	MOV PCON, #02h	NX1 INST. (2 Cycles) HOLD	NX2 INST.	INTERRUPT SUB-ROUTINE	RETI	NX3 INST.
SYSCLK			∩			Π.Γ
STOP		└──── <u>\</u>				
P3.2		/				
WARM		/				

EA=P1IE=P1WKUP=1, P1.0 change (not need clock sample), Stop/Halt mode wake-up and Interrupt

EX0=EXLVDIE=P1WKUP=P1IE=1, EA=0, Stop/Halt mode wake-up but not Interrupt

7. I/O Ports

The Chip has total 30 multi-function I/O pins. All I/O pins follow the standard 8051 "Read-Modify-Write" feature. The instructions that read the SFR rather than the Pin State are the ones that read a port or port bit value, possibly change it, and then rewrite it to the SFR (ex: ANL P1, A; INC P2; CPL P3.0).

7.1 Port1 & Port2 & Port 3

These pins can operate in four different modes as below.

Mode	Port1, P2.1~P2.0, P	ort3 pin function	Px.n SFR	Pin State	Resistor	Digital
mode	P3.0~P3.2	Others	data	1 III State	Pull-up	Input
Mode 0	Pseudo	Open Drein	0	Drive Low	Ν	Ν
Mode 0	Open Drain	Open Drain	1	Pull-up	Y	Y
Mode 1	Pseudo	Open Drein	0	Drive Low	Ν	Ν
widde 1	Open Drain	Open Drain	1	Hi-Z	Ν	Y
Mode 2	CMOSIC	lutout	0	Drive Low	Ν	Ν
Mode 2	CMOS C	Julpul	1	Drive High	Ν	Ν
Mode 3	Analog input for ADC, digital input		Х		Ν	Ν
wide 5	buffer is d	isabled	(don't care)	—	IN	ĨN

Port1, P2.1~P2.0, Port3 I/O Pin Function Table

Port2.5~P2.2 pin function	P2OE.n	P2.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innut	0	0	Hi-Z	Ν	Y
Input	0	1	Pull-up	Y	Y
CMOS Output	1	1 0 Drive Lo		Ν	Ν
CMOS Output	1	1	Drive High	Ν	N

P2.5~P2.2 I/O Pin Function Table

If a Port1, P2.1~P2.0 or Port3 pin is used for Schmitt-trigger input, S/W must set the I/O pin to Mode0 or Mode1 and set the corresponding Port Data SFR to 1 to disable the pin's output driving circuitry.

Beside I/O port function, each Port1, P2.1~P2.0 and Port3 pin has one or more alternative functions, such as LED, ADC and Touch Key. Most of the functions are activated by setting the individual pin mode control SFR to Mode3. Port1/Port3 pins have standard 8051 auxiliary definition such as INT0/1, T0/1/2, or RXD/TXD. These pin functions need to set the pin mode SFR to Mode0 or Mode1 and keep the P1.n/P3.n SFR at 1.

Pin Name	8051	Wake-up	СКО	ADC	TK	LCD/LED	others	Mode3
P1.0	T2	Y	T2O	AD4	TK4			AD4
P1.1	T2EX	Y		AD5	TK5			AD5
P1.2		Y		AD6	TK6		PWM0	AD6
P1.3		Y		AD7	TK7		PWM1	AD7
P1.4		Y	СКО	AD8	TK8			AD8
P1.5		Y		AD9	TK14			AD9
P1.6		Y			TK9		PWM2	
P1.7	TXD2	Y			TK10			
P3.0	RXD	Y		AD3	TK3			AD3
P3.1	TXD	Y		AD2	TK2			AD2
P3.2	INT0	Y		AD1	TK1		VBGO	AD1
P3.3	INT1	Y		AD0	TK0			AD0
P3.4	T0	Y	T0O		TK13	LEDS3		
P3.5	T1	Y			TK12	LEDS4		
P3.6	RXD2	Y			TK11	LEDS5		
P3.7	INT2	Y			TK15	LEDS2	RSTn	

Port1, Port3 multi-function Table

Pin Name	8051	Wake-up	СКО	ADC	TK	LCD/LED	others	Mode3
P2.0						LEDS0	XI	
P2.1						LEDS1	XO	
P2.2							MOSI/SDA	
P2.3							SCK/SCL PWM3	
P2.4							MISO PWM4	
P2.5							SS PWM5	

P2 multi-function Table

The necessary SFR setting for P2.5~P2.2 pin's alternative function is list below.

Alternative Function	P2OE.n	P2.n SFR data	Pin State	Other necessary SFR setting
SPI Master Mode MISO	0	0	SPI Data Input	SPCON
SPI Master Mode SCK, MOSI	1	Х	SPI Clock/Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode MISO	1	Х	SPI Data Output (CMOS Push-Pull)	SPCON
SPI Slave Mode SCK, MOSI	0	0	SPI Clock/Data Input	SPCON
SPI SS	0	0	SPI Chip Selection	SPCON
I ² C Master SCL	0	Х	I ² C Clock Output (Open Drain Output, Pull-up)	
I C Master SCL	1	Х	I ² C Clock Output (CMOS Push-Pull)	
I ² C Slave SCL	0	0	I ² C Clock Input (Hi-Z)	
I ² C Master/Slaver SDA	0	1	I ² C DATA (Pull-up)	

P2.5~P2.2 Alternative Function

Alternative Function	Mode	Px.n SFR data	Pin State	Other necessary SFR setting	
T0, T1, T2, T2EX,	0	1	Input with Pull-up		
INT0, INT1, INT2					
RXD, TXD	0	1	Input with Pull-up / Pseudo Open Drain Output		
KAD, IAD	1	1	Input / Pseudo Open Drain Output		
RXD2,TXD2	0	1	Input with Pull-up / Open Drain Output		
KAD2,1AD2	1	1	Input / Open Drain Output		
	0	Х	Clock Open Drain Output with Pull-up		
Т0О, Т2О, СКО	1	Х	Clock Open Drain Output	PINMOD	
	2	Х	Clock Output (CMOS Push-Pull)		
VBGO	X	Х	Bandgap Voltage output	VBGOUT VBGEN	
LEDS0~ LEDS5 (Note2)	X	Х	LED Waveform Output	LEDCON	
TK0~TK15	2	1	Touch Key (CMOS output high)	TKCHS	
AD0~AD14	3	Х	ADC Channel		
	0 X PWM Open Drain Output with Pull-up				
PWM0~PWM2 1 X PWM Open Drain Output		PWMOE			
2 X		Х	PWM Output (CMOS Push-Pull)	7	
XI, XO	0	1	Crystal oscillation	CLKCON	

The necessary SFR setting for Port1/P2.1~P2.0/Port3 pin's alternative function is list below.

Mode Setting for Port1, P2.1~P2.0, Port3 Alternative Function

or tables above, a "CMOS Output" pin means it can sink and drive at least 4 mA current. It is not recommended to use such pin as input function.

An "**Open Drain**" pin means it can sink at least 4 mA current but only drive a small current ($<20 \mu$ A). It can be used as input or output function and typically needs an external pull up resistor.

An 8051 standard pin is a "**Pseudo Open Drain**" pin. It can sink at least 4 mA current when output is at low level, and drives at least 4 mA current for 1~2 clock cycle when output transits from low to high, then keeps driving a small current (<20 μ A) to maintain the pin at high level. It can be used as input or output function.

Note2: for the necessary SFR setting above, LCD/LED pin has the highest priority. Therefore, if a pin is not used for Segment (ex: pin is I/O, ADC, TK, and SPI...), S/W must disable the LCD/LED function.

P1.2 Pin Structure

P3.0 Pin Structure

SFR 90h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

90h.7~0 **P1:** Port1 data

SFR A0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1

A0h.1~0 P2.7~P2.0: P2.7~P2.0 data

SFR B0h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

B0h.7~0 P3: Port1 data

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLK	PSC
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W
Reset	0	0	1	0	0	0	1	1

D8h.7 SCKTYPE: Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode

D8h.6 FCKTYPE: Set 1 to enable P2.0 and P2.1 pin's crystal oscillation mode

SFR A2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P1MODL	P1M			IOD2		IOD1	P1M				
R/W	R/W R/W		R/W		R/W						
Reset	0	1	0	1	0	1	0	1			
A2h.7~6	P1MOD3: P	1.3 pin contr	ol								
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3	1: Mode3, P1.3 is ADC input									
A2h.5~4	P1MOD2: P	IOD2: P1.2 pin control									
	00: Mode0	*									
	01: Mode1	1: Mode1									
	10: Mode2	0: Mode2									
	11: Mode3,	, P1.2 is ADO	C input								
A2h.3~2	P1MOD1: P	1.1 pin contr	ol								
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3,	, P1.1 is ADO	C input								
A2h.1~0	P1MOD0: P	1.0 pin contr	ol								
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3	, P1.0 is ADO	C input								
SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P1MODH	P1M	OD7	P1M	IOD6	P1M	IOD5	P1M	OD4			
R/W	R/	W	R	/W	R	/W	R /	W			

SFR A3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1MODH	P1M	P1MOD7		P1MOD6		P1MOD5		OD4
R/W	R/	R/W		R/W		W	R/	W
Reset	0	1	0	1	0	1	0	1

A3h.7~6 P1MOD7: P1.7 pin control

- 00: Mode0
 - 01: Mode1

10: Mode2

11: Mode3,

A3h.5~4 P1MOD6: P1.6 pin control

00: Mode0

- 01: Mode1
- 10: Mode2
- 11: Mode3,

A3h.3~2 P1MOD5: P1.5 pin control.

00: Mode0

01: Mode1

10: Mode2

11: Mode3, P1.5 is ADC input

A3h.1~0 **P1MOD4:** P1.4 pin control.

00: Mode0

01: Mode1

- 10: Mode2
- 11: Mode3, P1.4 is ADC input

SFR A4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
P3MODL	P3M	OD3	P3M	IOD2	P3M	IOD1	P3M	IOD0			
R/W	R/		R/	/W	R	/W		W			
Reset	0	1	0	1	0	1	0	1			
A4h.7~6	P3MOD3: P	MOD3: P3.3 pin control									
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3,	, P3.3 is AD0	C input								
A4h.5~4	P3MOD2: P	MOD2: P3.2 pin control									
	00: Mode0	0: Mode0									
	01: Mode1)1: Mode1									
	10: Mode2	10: Mode2									
	11: Mode3,	, P3.2 is AD0	C input								
A4h.3~2	P3MOD1: P	3.1 pin conti	ol.								
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3,	, P3.1 is AD0	C input								
A4h.1~0	P3MOD0: P	3.0 pin conti	ol.								
	00: Mode0										
	01: Mode1										
	10: Mode2										
	11: Mode3,	, P3.0 is AD0	C input								
SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
DIMODII						1005					

SFR A5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P3MODH	P3M	OD7	P3M	OD6	P3MOD5		P3M	OD4
R/W	R/	W	R/W		R/	W	R/	W
Reset	0	0	0	1	0	1	0	1

A5h.7~6 **P3MOD7:** P3.7 pin control

- 00: Mode0
 - 01: Mode1
 - 10: Mode2

11: Mode3

- 11. Modes
- A5h.5~4 P3MOD6: P3.6 pin control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3
- A5h.3~2 P3MOD5: P3.5 pin control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3
- A5h.1~0 P3MOD4: P3.4 pin control
 - 00: Mode0
 - 01: Mode1
 - 10: Mode2
 - 11: Mode3

SFR 93h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P2MOD	P2OE5	P2OE4	P2OE3	P2OE2	P2M	OD1	P2M	OD0
R/W	R/W	R/W	R/W	R/W	R/W		R/	W
Reset	0	0	0	0	0	1	0	1

93h.7~4 P2OEx: Port2.5~Port2.2 CMOS Push-Pull output enable control

0: Disable

1: Enable

- 93h.3~2 **P2MOD1:** P2.1 pin control 00: Mode0 01: Mode1
 - 10: Mode2

11: not defined

93h.1~0 **P2MOD0:** P2.0 pin control

- 00: Mode0
- 01: Mode1
- 10: Mode2
- 11: not defined

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	TRCSEL	TCOE	T2OE		PWMPSC		TOOE
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
	E <i>a a</i>							

A6h.5	TCOE: System clock signal output (CKO) control
	0: Disable "System clock divided by 2" output to P1.4 pin
	1: Enable "System clock divided by 2" output to P1.4 pin
A6h.4	T2OE: Timer2 signal output (T2O) control
	0: Disable "Timer2 overflow divided by 2" output to P1.0 pin
	1: Enable "Timer2 overflow divided by 2" output to P1.0 pin
A6h.0	TOOE: Timer0 signal output (T0O) control

0: Disable "Timer0 overflow divided by 64" output to P3.4 pin 1: Enable "Timer0 overflow divided by 64" output to P3.4 pin

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON	LEDEN		LEDPSC		LEDHOLD	LEDBRIT		
R/W	R/W		R/W		R/W	R/W		
Reset	0	0	0	0	0	1	0	0

B1h.7~6 **LEDEN:** LED Enable

00: LED disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically 11: LED 1/10 duty (COM0~3, SEG0~5), the LED pins' state will be controlled automatically

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SPCON	SPEN	MSTR	CPOL	CPHA	SSDIS	LSBF	SPCR	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

BCh.7 SPEN: SPI enable

0: SPI disable

1: SPI enable

BCh.3 **SSDIS:** SS pin disable

0: Enable SS pin

1: Disable SS pin

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WDTE		PWRSAV	VBGOUT	DIV32	IAPTE		MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.4 **VBGOUT:** Bandgap voltage output control

0: Disable

1: Bandgap voltage output to P3.2 pin, The additional condition VBGEN=1(AEh.1=1) should be set.

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMOE	PWM1IE	PWM0IE	PWM50E	PWM4OE	PWM3OE	PWM2OE	PWM10E	PWM0OE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
9Eh.5	PWM5OE:	PWM5 contr	ol					
	0: PWM5 d	lisable						
	1: PWM5 e	nable and sig	gnal output to	o P2.5				
9Eh.4	PWM4OE:	PWM4 contr	ol					
	0: PWM4 d	lisable						
	1: PWM4 e	nable and sig	gnal output to	o P2.4				
9Eh.3	PWM3OE:	PWM3 contr	rol					
	0: PWM3 d	lisable						
	1: PWM3 e	nable and sig	gnal output to	o P2.3				
9Eh.2	PWM2OE:	PWM2 contr	rol					
	0: PWM2 d	lisable						
	1: PWM2 e	nable and sig	gnal output to	o P1.6				
9Eh.1	PWM10E:	PWM1 contr	rol					
	0: PWM1 d	lisable						
	1: PWM1 e	nable and sig	gnal output to	o P1.3				
9Eh. 0	PWM0OE:	PWM0 contr	rol					
	0: PWM0 d	lisable						
	1: PWM0 e	nable and sig	gnal output to	o P1.2				

7.2 Port0

These pins are shared with TK, ADC and LCD/LED. If a Port0 is defined as I/O pin, it can be used as CMOS push-pull output or Schmitt-trigger input. The pin's pull up function is enable while SFR bit POOE.n=0 and P0.n=1.

Port0 pin function	P0OE.n	P0.n SFR data	Pin State	Resistor Pull-up	Digital Input
Innet	0	0	Hi-Z	Ν	Y
Input	0	1	Pull-up	Y	Y
CMOS Quitaut	1	0	Drive Low	Ν	Ν
CMOS Output	1	1	Drive High	Ν	Ν

Port0 Pin Function Table

Pin Name	Wake-up	ADC	TK	LCD	LED	Others
P0.0				LCDC0	LEDC0	
P0.1				LCDC1	LEDC1	
P0.2				LCDC2	LEDC2	
P0.3			TK16	LCDC3	LEDC3	
P0.4			CLD	LCDC4		
P0.5		AD13	TK17	LCDC5		
P0.6		AD14	TK18	LCDC6		
P0.7		AD12	TK19	LCDC7		

Port0 multi-function Table

The necessary SFR setting for Port0 pin's alternative function is list below.

Alternative Function	PxOE.n	Px.n SFR data	Pin State	other necessary SFR setting
LEDC0~ LEDC3	Х	Х	LED Waveform Output	LEDCON
LCDC0~ LCDC7	Х	Х	1/2 Bias Output	POLOE
AD12~AD14	Х	Х	ADC Channel	POADIE
CLD	1	0	Touch Key Capacitor Connection	
TK16~TK19	1	1	Touch Key (CMOS output high)	TKCHS

Mode Setting for Port0 Alternative Function Table

Note: POLOE and POADIE have higher priority than POOE.

P0.7 Pin Structure

SFR 80h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PO	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

80h.7~0 **P0:** Port0 data, also controls the P0.n pin's pull-up function. If the P0.n SFR data is "1" and the corresponding P0OE.n = 0 (input mode), the pull-up is enabled.

SFR 91h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
POOE	POOE								
R/W		R/W							
Reset	0	0	0	0	0	0	0	0	

91h.7~0 **POOE:** Port0 CMOS Push-Pull output enable control

0: Disable

1: Enable

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
POLOE		POLOE								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

92h.7~0 **POLOE:** Port0 LCD 1/2 bias output enable control

0: Disable

1: Enable

SFR AFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
POADIE		POADIE		_	_	—	—	_
R/W		R/W		_	_	—	—	—
Reset	0	0	0	_		—	—	_

AFh.7~4 **P0ADIE:** ADC channel input Enable

000: P0.7~P0.5 are digital input

1xx: P0.7 is ADC input

x1x: P0.6 is ADC input xx1: P0.5 is ADC input

SFR B1h Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 LEDCON LEDEN LEDPSC LEDHOLD LEDBRIT R/W R/W R/W R/W R/W 0 Reset 0 0 0 0 0 0

B1h.7~6 **LEDEN:** LED Enable

00: LED disable

01: LED 1/8 duty (COM0~3, SEG0~3), the LED pins' state will be controlled automatically 10: LED 1/9 duty (COM0~3, SEG0~4), the LED pins' state will be controlled automatically

11: LED 1/10 duty (COM0~3, SEG0~5) , the LED pins' state will be controlled automatically

8. Timers

Timer0, Timer1 and Timer2 are provided as standard 8051 compatible timer/counter. Compare to the traditional 12T 8051, the Chip's Timer0/1/2 use 2 System clock cycle as the time base unit. That is, in timer mode, these timers increase at every "2 System clock" rate; in counter mode, T0/T1/T2 pin input pulse must be wider than 2 System clock to be seen by this device. In addition to the standard 8051 timers function. The T0O pin can output the "Timer0 overflow divided by 64" signal, and the T2O pin can output the "Timer2 overflow divided by 2" signal. Timer3 is provided for a real-time clock count, when its time base is SXT.

8.1 Timer0 / Timer1

TCON and TMOD are used to set the mode of operation and to control the running and interrupt generation of the Timer0/1, with the timer/counter values stored in two pairs of 8-bit registers (TL0, TH0, and TL1, TH1).

Timer0 and Timer1 Structure

SFR 88h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
						DIL Z	DIL I				
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IEO	IT0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
88h.7	TF1: Timer1	IF1: Timer1 overflow flag									
	Set by H/W	when Time	r/Counter 1 c	overflows							
	Cleared by H/W when CPU vectors into the interrupt service routine.										
88h.6	TR1: Timer1 run control										
	0: Timer1 s	stops									
	1: Timer1 r	runs									
88h.5	TF0: Timer() overflow fla	ag								
		when Time	0	overflows							
	•	H/W when C			rupt service r	outine.					
88h.4	TR0: Timer				*						
· ·	0: Timer0 s	stops									
	1. T:0 .	1									

1: Timer0 runs

SFR 89h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
TMOD	GATE1	CT1N	TM	OD1	GATE0	CT0N	TM	OD0			
R/W	R/W	R/W	R/W		R/W	R/W	R/	W			
Reset	0	0	0	0	0	0	0	0			
89h.7	GATE1: Tir	ner1 gating c	ontrol bit								
	0: Timer1 e	0: Timer1 enable when TR1 bit is set									
	1: Timer1 enable only while the INT1 pin is high and TR1 bit is set										
89h.6	CT1N: Timer1 Counter/Timer select bit										
	0: Timer mode, Timer1 data increases at 2 System clock cycle rate										
	1: Counter mode, Timer1 data increases at T1 pin's negative edge										
89h.5~4	TMOD1: Ti	MOD1: Timer1 mode select									
	00: 8-bit tir	00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)									
	01: 16-bit t	01: 16-bit timer/counter									
	10: 8-bit au	to-reload tin	er/counter (7	TL1). Reload	ed from TH1	at overflow.					
	11: Timer1	stops									
89h.3	GATE0: Tir	ner0 gating c	ontrol bit								
	0: Timer0 e	enable when '	TR0 bit is set	t							
	1: Timer0 e	enable only w	hile the INT	0 pin is high	and TR0 bit	is set					
89h.2	CT0N: Time	er0 Counter/7	Timer select b	oit							
	0: Timer m	ode, Timer0	data increase	s at 2 System	n clock cycle	rate					
				ses at T0 pin	-						
89h.1~0	TMOD0: Ti	mer0 mode s	elect								
	00: 8-bit tir	ner/counter (TH0) and 5-1	oit prescaler	(TL0)						
		imer/counter									
	10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at overflow.										
	11: TL0 is an 8-bit timer/counter. TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.										
-						-					
SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			

SFR 8Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL0		TLO								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

8Ah.7~0 **TL0:** Timer0 data low byte

SFR 8Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL1		TL1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
001 7 0										

8Bh.7~0 **TL1:** Timer1 data low byte

SFR 8Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH0		TH0								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
8Ch 7 0	TUO: Timer data high huta									

8Ch.7~0 **TH0:** Timer0 data high byte

SFR 8Dh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH1		TH1								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

8Dh.7~0 **TH1:** Timer1 data high byte

Note: See also Chapter 6 for more information on Timer0/1 interrupt enable and priority. *Note:* See also Chapter 7 for details on TOO pin output settings.

8.2 Timer2

Timer2 is controlled through the TCON2 register with the low and high bytes of Timer/Counter2 stored in TL2 and TH2 and the low and high bytes of the Timer2 reload/capture registers stored in RCAP2L and RCAP2H.

Timer2 Structure

SFR C8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
C8h.7	TF2: Timer2 Set by H/W by S/W.		0	overflows unl	ess RCLK=1	or TCLK=1	. This bit m	ust be cleared			
C8h.6	EXF2: T2EX interrupt pin falling edge flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.										
C8h.5	0: Use Tim	RCLK: UART receive clock control bit 0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3 1: Use Timer2 overflow as receive clock for serial port in mode 1 or 3									
C8h.4	 TCLK: UART transmit clock control bit 0: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3 1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3 										
C8h.3	EXEN2: T2 0: T2EX pi 1: T2EX pi if RCLK=T	n disable in enable, it o		re or reload	when a negat	ive transition	ı on T2EX p	in is detected			
C8h.2	TR2: Timer2 0: Timer2 s 1: Timer2 r	stops									
C8h.1	CT2N: Timer2 Counter/Timer select bit 0: Timer mode, Timer2 data increases at 2 System clock cycle rate 1: Counter mode, Timer2 data increases at T2 pin's negative edge										
C8h.0	 Counter mode, Timer2 data increases at T2 pin's negative edge CPRL2N: Timer2 Capture/Reload control bit Reload mode, auto-reload on Timer2 overflows or negative transitions on T2EX pin if EXEN2=1. Capture mode, capture on negative transitions on T2EX pin if EXEN2=1. If RCLK=1 or TCLK=1, CPRL2N is ignored and timer is forced to auto-reload on Timer2 overflow. 										

SFR CAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2L		RCP2L								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								
C 41 7 0										

CAh.7~0 RCP2L: Timer2 reload/capture data low byte

SFR CBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
RCP2H		RCP2H								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CBh.7~0 RCP2H: Timer2 reload/capture data high byte

SFR CCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TL2		TL2								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

CCh.7~0 **TL2:** Timer2 data low byte

SFR CDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TH2		TH2								
R/W		R/W								
Reset	0	0 0 0 0 0 0 0 0								

CDh.7~0 **TH2:** Timer2 data high byte

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.2 T2SEL: Timer2 counter mode (CT2N=1) input select
0: P1.0 (T2) pin (8051standard)
1:Slow clock divide by 16 (SLOWCLK/16)
F8h.1 T1SEL: Timer1 counter mode (CT1N=1) input select

F8h.1 T1SEL: Timer1 counter mode (CT1N=1) input select
0: P3.5 (T1) pin (8051 standard)
1: Slow clock divide by 16 (SLOWCLK/16)

Note: See also Chapter 6 for more information on Timer2 interrupt enable and priority. *Note:* See also Chapter 7 for details on T2O pin output settings.

8.3 Timer3

Timer3 works as a time-base counter, which generates interrupts periodically. It generates an interrupt flag (TF3) with the clock divided by 32768, 16384, 8192, or 128 depending on the TM3PSC SFR. The Timer3 clock source is Slow clock (SRC or SXT). This is ideal for real-time-clock (RTC) functionality when the clock source is SXT.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	TKFJMP	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/	W	R/	W	R/	W
Reset	0	0	0	0	0	0	0	0

94h.1~0 **TM3PSC:** Timer3 Interrupt rate

00: Timer3 Interrupt rate is 32768 Slow clock cycle

01: Timer3 Interrupt rate is 16384 Slow clock cycle

10: Timer3 Interrupt rate is 8192 Slow clock cycle

11: Timer3 Interrupt rate is 128 Slow clock cycle

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF		TKIF	ADIF	—	_	P1IF	TF3
R/W	R		R/W	R/W	—	_	R/W	R/W
Reset	_		0	0	—	—	0	0

95h.0 **TF3:** Timer3 Interrupt Flag

Set by H/W when Timer3 reaches TM3PSC setting cycles. Cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit. (*Note1*)

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.6 **CLRTM3:** Set 1 to clear Timer3, H/W auto clear it at next clock cycle.

Note: also refer to Section 6 for more information about Timer3 Interrupt enable and priority.

8.4 T0O and T2O Output Control

This device can generate various frequency waveform pin output (in CMOS or Open-Drain format) for Buzzer. The TOO and T2O waveform is divided by Timer0/Timer2 overflow signal. The TOO waveform is Timer0 overflow divided by 64, and T2O waveform is Timer2 overflow divided by 2. User can control their frequency by Timers auto reload speed. Set TOOE and T2OE SFRs can output these waveforms.

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	TRCSEL	TCOE	T2OE	PWMPSC			TOOE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
L								

A6h.4 **T2OE:** Timer2 signal output (T2O) control

0: Disable Timer2 overflow divided by 2 output to P1.0

1: Enable Timer2 overflow divided by 2 output to P1.0

A6h.0 **T0OE:** Timer0 signal output (T0O) control

0: Disable Timer0 overflow divided by 64 output to P3.4

1: Enable Timer0 overflow divided by 64 output to P3.4

9. UARTs

This Chip has two UARTs, UART1 and UART2.

The **UART1** uses SCON and SBUF SFRs. SCON is the control register, SBUF is the data register. Data is written to SBUF for transmission and SBUF is read to obtain received data. The received data and transmitted data registers are completely independent. In addition to standard 8051's full duplex mode, this chip also provides one wire mode. If the UART1W bit is set, both transmit and receive data use P3.1 pin.

The **UART2** uses SCON2 and SBUF2 SFRs. SCON2 is the control register, SBUF2 is the data register. Data is written to SBUF2 for transmission and SBUF2 is read to obtain received data. The received data and transmitted data registers are completely independent. The UART2 supports most of the functions of UART, but it does not support Mode0 and Mode2, it also does not support Timer2 and one wire UART mode. On other hand, the option of SMOD is not use for UART2. UART2 double baud rate is always enabled.

SFR 87h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCON	SMOD				GF1	GF0	PD	IDL
R/W	R/W	_	_	_	R/W	R/W	R/W	R/W
Reset	0	_	_		0	0	0	0

87h.7 **SMOD:** UART1 double baud rate control bit

0: Disable UART1 double baud rate

1: Enable UART1 double baud rate

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	TKFJMP	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/W		R/W		R/	W
Reset	0	0	0	0	0	0	0	0

94h.7 UART1W: One wire UART1 mode enable, both TXD/RXD use P3.1 pin

^{1:} Enable one wire UART1 mode

SFR 98h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Rebet	Ū	v	Ũ	0	Ū	Ů	Ũ	v
98h.7~6	SM0,SM1: U	UART1 serial	l port mode s	elect bit 0,1				
	00: Mode0:	: 8 bit shift re	gister, Baud	Rate=F _{SYSCLI}	_K /2			
	01: Mode1:	: 8 bit UART	1, Baud Rate	is variable				
	10: Mode2:	: 9 bit UART	1, Baud Rate	=F _{SYSCLK} /32	or/64			
	11: Mode3:	: 9 bit UART	1, Baud Rate	is variable				
98h.5	SM2: Serial	port mode se	lect bit 2					
	follows. In received ni	Modes 2 &	3, if SM2 s 0. In Mod	is set then the the the the set the the set the the set of the set	ne received	interrupt wil	l not be ger	the above as herated if the nless a valid
98h.4	REN: UART	Γ1 reception e	enable					
	0: Disable 1	reception						
	1: Enable r	eception						
98h.3	TB8: Transn	nit Bit 8, the	ninth bit to b	e transmitted	in Mode 2 a	nd 3		
98h.2	RB8: Receiv	ve Bit 8, conta	ains the ninth	n bit that was	received in l	Mode 2 and 3	3 or the stop	bit is Mode 1

98h.2 **RB8:** Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 if SM2=0

^{0:} Disable one wire UART1 mode

98h.1 **TI:** Transmit interrupt flag

Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W.

98h.0 RI: Receive interrupt flagSet by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.

SFR 99h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF		SBUF									
R/W		R/W									
Reset	-	-	—	-	_	-	-	—			

99h.7~0 **SBUF:** UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

SFR 8Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SCON2	SM	—	—	REN2	TB82	RB82	TI2	RI2
R/W	R/W	_	_	R/W	R/W	R/W	R/W	R/W
Reset	0	—	—	0	0	0	0	0

8Eh.7 SM: UART2 Serial port mode select bit

0: Mode1: 8 bit UART2, Baud Rate is variable
1: Mode3: 9 bit UART2, Baud Rate is variable
(UART2 does not support Mode0/Mode2)

8Eh.4 REN2: UART2 reception enable

0: Disable reception
1: Enable reception
1: Enable reception

8Eh.3 TB82: Transmit Bit 8, the ninth bit to be transmitted in Mode 3

- 8Eh.2 **RB82:** Receive Bit 8, contains the ninth bit that was received in Mode3
- 8Eh.1 **TI2:** Transmit interrupt flag

Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.

8Eh.0 **RI2:** Receive interrupt flag

Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must be cleared by S/W.

SFR 8Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
SBUF2		SBUF2									
R/W		R/W									
Reset	-	—	-	—	—	-	-	—			

8Fh.7~0 **SBUF2:** UART2 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.

F_{SYSCLK} denotes System clock frequency, the UART baud rate is calculated as below.

- Mode 0: (UART2 invalid) Baud Rate=F_{SYSCLK}/2
- Mode 1, 3: if using Timer1 auto reload mode Baud Rate= (SMOD + 1) x F_{SYSCLK}/ (32 x 2 x (256 – TH1))
- Mode 1, 3: if using Timer2 (UART2 invalid) Baud Rate=Timer2 overflow rate/16 = F_{SYSCLK}/ (32 x (65536 – RCP2H, RCP2L))
- Mode 2: (UART2 invalid) Baud Rate= (SMOD + 1) x F_{SYSCLK}/64

Note: also refer to Section 6 for more information about UART Interrupt enable and priority. *Note:* also refer to Section 8 for more information about how Timer2 controls UART clock.

10. PWMs

10.1 16-bit PWM

The Chip has three independent 16-bit PWM modules PWM0, PWM1 and PWM2. PWM0~2 have the same operation structure. The following takes PWM0 as an example for description. The PWM can generate varies frequency waveform with 65536 duty resolution on the basis of the PWM clock. The PWM clock can select FRC double frequency (FRC x 2), FRC or F_{SYSCLK} as its clock source.

The pin mode SFR controls the PWM output waveform format. Model makes the PWM open drain output and Mode2 makes the PWM CMOS push-pull output. (*see section 7*)

The 16-bit PWM0PRD, PWM0D registers all have a low byte and high byte structure. The high bytes can be directly accessed, but the low bytes can only be accessed via an internal 8-bit buffer, reading or writing to these register pairs must be carried out in a specific way. The important point to notes is that data transfer to and from the 8-bit buffer and its related low byte only takes place when write or read operation to its corresponding high bytes is executed. *Briefly speaking, write low byte first and then high byte; read high byte first and then low byte*.

The PWM00E bit is used to select the output to PWM0. If PWM00E are cleared, the PWM0 will be cleared and stopped, otherwise the PWM0 is running. The PWM0CLR bit has the same function. When PWM0CLR bit is set, the PWM0 will be cleared and held, otherwise the PWM0 is running. The PWM0 structure is shown as follow. The PWM0 duty cycle can be changed by writing to PWM0DH and PWM0DL. The PWM0 output signal resets to a low level whenever the 16-bit base counter matches the 16-bit PWM0 duty register {PWM0DH, PWM0DL}. The PWM0 period can be set by writing the period value to the PWM0PRDH and PWM0PRDL registers. After writing the PWM0D or PWM0PRD register, the new values will immediately save to their own buffer. H/W will update these values at the end of current period or while PWM0 is cleared. PWM0~3 has a corresponding interrupt flag, and an interrupt flag is generated at the end of the period.

PWMxDH, PWMxDL, PWMxPRDH or PWMxPRDL is a 16-bit operation, and the program should avoid interrupts when writing and reading the high byte and low byte. If you are reading and writing these 16-bit SFRs in the meantime an interrupt occurs. And these SFRs are read and written in the interrupt. It is easy to cause read and write errors. For the 16-bit PWM period and duty to read and write, it is recommended to update the data only in the main program, or update the data only in the interrupt to avoid possible errors.

PWM0 Structure

10.2 8-bit PWM

The Chip has three groups of 8-bit PWM modules PWM3, PWM4 and PWM5. PWM3~5 are sharing period and clock source. The following takes PWM3 as an example for description. The PWM can generate varies frequency waveform with 256 duty resolution on the basis of the PWM clock. The PWM clock can select FRC or F_{SYSCLK} as its clock source.

The PWM3OE bit is used to select the output to PWM3. If PWM3OE are cleared, the PWM3 will be cleared and stopped, otherwise the PWM3 is running. The PWM3CLR bit has the same function. When PWM3CLR bit is set, the PWM3 will be cleared and held, otherwise the PWM3 is running. The PWM3 structure is shown as follow. The PWM3 duty cycle can be changed by writing to PWM3D. The PWM3 output signal resets to a low level whenever the 8-bit base counter matches the 8-bit PWM3 duty register PWM3D. The PWM3 period can be set by writing the period value to the PWMPRD registers.

PWM3 Structure

SFR 86h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTPWM	_	_	_	—	_	PWM2IF	PWM1IF	PWM0IF
R/W	_	_	_	—	_	R/W	R/W	R/W
Reset	_			_	_	0	0	0

86h.2 **PWM2IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.1 **PWM1IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

86h.0 **PWM0IF:**

0: S/W write 0 to clear it

1: Set by H/W at the end of the period

SFR 9Ah	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMPRD		PWMPRD							
R/W		R/W							
Reset	1	1	1	1	1	1	1	1	

9Ah.7~0 **PWMPRD:** PWM3/PWM4/PWM5 8-bit period register

SFR 9Bh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM3D		PWM3D						
R/W		PWM3D R/W						
Reset	1	0	0	0	0	0	0	0

9Bh.7~0 **PWM3D:** PWM3 duty register

SFR 9Ch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM4D		PWM4D							
R/W		R/W							
Reset	1	0	0	0	0	0	0	0	
								-	

9Ch.7~0 **PWM4D:** PWM4 duty register

			Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM5D	PWM5D						
R/W	R/W						
Reset 1	0	0	0	0	0	0	0

9Dh.7~0 **PWM5D:** PWM5 duty register

SFR 9Eh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMOE	PWM1IE	PWM0IE	PWM5OE	PWM4OE	PWM3OE	PWM2OE	PWM1OE	PWM0OE	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
9Eh.7	PWM1IE: F	WM1 Interr	upt Enable						
	0: disable								
				t the same tin	ne to generate	e PWM inter	rupt)		
9Eh.6	PWM0IE: F	WM0 Interr	upt Enable						
	0: disable								
	1: enable (r	ote: PWMIE	must be 1 at	t the same tin	ne to generate	e PWM inter	rupt)		
9Eh.5	PWM50E:								
	0: disable	1: PWM5 er	hable and sig	nal output to	P2.5 pin				
9Eh.4	PWM4OE:								
	0: disable	1: PWM4 er	hable and sig	nal output to	P2.4 pin				
9Eh.3	PWM3OE:								
	0: disable	1: PWM3 er	hable and sig	nal output to	P2.3 pin				
9Eh.2	PWM2OE:								
	0: disable	0: disable 1: PWM2 enable and signal output to P1.6 pin							
9Eh.1	PWM10E:								
	0: disable	1: PWM1 er	hable and sig	nal output to	P1.3 pin				
9Eh.0	PWM0OE:								
	0: disable	1: PWM0 er	hable and sig	nal output to	P1.2 pin				
SFR 9Fh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWMCLR	PWM2IE	_	PWM5CLR	PWM4CLR	PWM3CLR	PWM2CLR	PWM1CLR	PWM0CLF	
R/W	R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	_	0	0	0	0	0	0	
9Fh.7	PWM2IE: F	WM2 Interr	upt Enable						
	0: disable		1						
	1: enable (r	ote: PWMIE	must be 1 at	t the same tin	ne to generate	e PWM inter	rupt)		
9Fh.5	PWM5CLR				C		- /		
			: PWM5 is c	leared and h	neld				
9Fh.4	PWM4CLR	-							
	0: PWM4 is		: PWM4 is c	leared and h	neld				
9Fh 3	PWM3CLR	U							

9Fh.3 PWM3CLR:

0: PWM3 is running
9Fh.2 PWM2CLR:
0: PWM2 is running
1: PWM2 is cleared and held

9Fh.1 PWM1CLR:

0: PWM1 is running
1: PWM1 is cleared and held

9Fh.0 PWM0CLR:

0: PWM0 is running
1: PWM0 is cleared and held

SFR A1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWMCON	-	PWMCKS	PWM	2CKS	PWM	1CKS	PWM	OCKS
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	1	1	0	1	0	1	0
A1h.6	PWMCKS:	PWM3/PWM	A4/PWM5 C	lock source				
	0: F _{SYSCLK} 1: FRC							
A1h.5~4	PWM2CKS 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 1		ck source					
A1h.3~2	PWM1CKS 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 2		ck source					
A1h.1~0	PWM0CKS 00: F _{SYSCLK} 01: F _{SYSCLK} 10: FRC 11: FRC x 2		ck source					
SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		TDOOL	TICOT	THE OFF				TRACE

SFR A6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PINMOD	_	TRCSEL	TCOE	T2OE		PWMPSC		TOOE
R/W	_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	_	0	0	0	0	0	0	0

A6h.3~1 **PWMPSC:** PWM3/PWM4/PWM5 clock source pre-scalar select

0: divided by 1

1: divided by 2

2: divided by 4

...

7: divided by 128

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **PWMIE:** PWM0~2 interrupt enable

0: Disable PWM0~2 interrupt

1: Enable PWM0~2 interrupt

SFR D1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DH		PWM0DH						
R/W		R/W						
Reset	1	0	0	0	0	0	0	0

D1h.7~0 **PWM0DH:** PWM0 duty high byte write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM0DL		PWM0DL						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

D2h.7~0 **PWM0DL:** PWM0 duty low byte write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL

SFR D3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
PWM1DH		PWM1DH							
R/W				R/	W				
Reset	1	0	0	0	0	0	0	0	

D3h.7~0 **PWM1DH:** PWM1 duty high byte write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D4h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PWM1DL		PWM1DL						
R/W		R/W						
Reset	0	0	0	0	0	0	0	0

D4h.7~0 **PWM1DL:** PWM1 duty low byte write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL

SFR D5h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DH		PWM2DH									
R/W		R/W									
Reset	1	0	0	0	0	0	0	0			

D5h.7~0 **PWM2DH:** PWM2 duty high byte write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2DL		PWM2DL									
R/W		R/W									
Reset	0	0	0	0	0	0	0	0			

D6h.7~0 **PWM2DL:** PWM2 duty low byte write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL

SFR D9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
PWM0PRDH		PWM0PRDH								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

D9h.7~0 **PWM0PRDH:** PWM0 period high byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM0PRDL		PWM0PRDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

DAh.7~0 **PWM0PRDL:** PWM0 period low byte write sequence: PWM0PRDL then PWM0PRDH read sequence: PWM0PRDH then PWM0PRDL

SFR DBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1PRDH		PWM1PRDH									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			
	DDI 5.0. DUMIDDDU DUMI seried bisk hade										

DBh.7~0 **PWM1PRDH:** PWM1 period high byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM1PRDL		PWM1PRDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

DCh.7~0 **PWM1PRDL:** PWM1 period low byte write sequence: PWM1PRDL then PWM1PRDH read sequence: PWM1PRDH then PWM1PRDL

SFR DDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2PRDH		PWM2PRDH									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

DDh.7~0 **PWM2PRDH:** PWM2 period high byte write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

SFR DEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PWM2PRDL		PWM2PRDL									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			

DEh.7~0 **PWM2PRDL:** PWM2 period low byte write sequence: PWM2PRDL then PWM2PRDH read sequence: PWM2PRDH then PWM2PRDL

11. ADC

The Chip offers a 12-bit ADC consisting of a 16-channel analog input multiplexer, control register, clock generator, 12-bit successive approximation register, and output data register. To use the ADC, set the ADCKS bit first to choose a proper ADC clock frequency, which must be less than 1 MHz. Then, launch the ADC conversion by setting the ADSOC bit, and H/W will automatic clear it at the end of the conversion. After the end of the conversion, H/W will set the ADIF bit and generate an interrupt if an ADC interrupt is enabled. The ADIF bit can be cleared by writing 0 to this bit or 1 to the ADSOC bit. Because certain channels are shared with the Touch Key, the ADC channel must be configured differently from the Touch Key channel to avoid affecting the channel input sensitivity. The VREF of the ADC can be selected from the following four voltages: V_{CC} , 2.5V, 3V and 4V. When ADCHS is selected to VBG, ADCVREFS must be set to V_{CC} , otherwise ADC conversion will be invalid.

11.1 ADC Channels

The 12-bit ADC has a total of 16 channels, designated AD0~AD9, AD12~AD14, V_{TEMP} , VBG and $1/4V_{CC}$. The ADC channels are connected to the analog input pins via the analog switch multiplexer. The analog switch multiplexer is controlled by the ADCHS register. The Chip offers up to 13 analog input pins, designated AD0~AD9 and AD12~AD14. In addition, there are three analog input pins for voltage reference connections. VBG is an internal voltage reference at 1.22V. V_{TEMP} is a voltage which changes by temperature. When ADC channel select to VBG and V_{TEMP} , VBG generator will enable automatically. User can get more stable VBG voltage by setting SFR VBGEN=1 to always enable VBG generator. When ADCHS is selected to VBG, ADCVREFS must be set to V_{CC} , otherwise ADC conversion will be invalid.

11.2 ADC Conversion Time

The conversion time is the time required for the ADC to convert the voltage. The ADC requires two ADC clock cycles to convert each bit and several clock cycles to sample and hold the input voltage. A total of 50 ADC clock cycles are required to perform the complete conversion. When the conversion time is complete, the ADIF interrupt flag is set by H/W, and the result is loaded into the ADCDH and ADCDL registers of the 12-bit A/D result.

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	TKFJMP	WDT	ГРSC	ADCKS		TM3PSC	
R/W	R/W	R/W	R/	W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

94h.3~2 ADCKS: ADC clock rate select

00: F_{SYSCLK}/32 01: F_{SYSCLK}/16

10: $F_{SYSCLK}/8$

10: $F_{SYSCLK}/6$ 11: $F_{SYSCLK}/4$

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF		TKIF	ADIF		_	P1IF	TF3
R/W	R	_	R/W	R/W	_	_	R/W	R/W
Reset		_	0	0	_	_	0	0

95h.4 **ADIF:** ADC interrupt flag

Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag. (*Note1*)

SFR AAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADTKDT		ADO	CDL		TKDH			
R/W		ŀ	ર		R			
Reset	-	-	_	-	_		_	—

AAh.7~4 ADCDL: ADC data bit 3~0

SFR ABh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
ADCDH		ADCDH									
R/W		R									
Reset	_	_	—	_	_	-	-	—			

ABh.7~0 ADCDH: ADC data bit 11~4

SFR AEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CHSEL		ADCHS				/REFS	VBGEN	—
R/W		R/	W		R/W	R/W	R/W	—
Reset	1	1	1	1	0	0	0	-

AEh.7~4 ADCHS: ADC channel select

0000: AD0 (P3.3)
0001: AD1 (P3.2)
0010: AD2 (P3.1)
0011: AD3 (P3.0)
0100: AD4 (P1.0)
0101: AD5 (P1.1)
0110: AD6 (P1.2)
0111: AD7 (P1.3)
1000: AD8 (P1.4)
1001: AD9 (P1.5)
1010: V_{TEMP} (Voltage change by temperature)
1011: V _{BG} (Internal Bandgap Reference Voltage)
1100: AD12 (P0.7)
1101: AD13 (P0.5)
1110: AD14 (P0.6)
1111: 1/4 V _{CC}

AEh.3~2 ADCVREFS: ADC reference voltage. When ADCHS is selected to VBG, ADCVREFS must be set to V_{CC}, otherwise ADC conversion will be invalid

- 00: VCC 01: 2.5V
- 10: 3V
- 11: 4V

AEh.1 **VBGEN:** force VBG generator enable

0: VBG generator is automatically enable and disable

1: Force VBG generator enable included in IDLE mode but disabled in Stop/Halt mode

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.4 ADSOC: Start ADC conversion

Set the ADSOC bit to start ADC conversion, and the ADSOC bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

12. Touch Key (CTK)

The Touch Key offers an easy simple and reliable method to implement finger touch detection. During the key scan operation, it only requires an external capacitor component on CLD pin. The device support 20 channels touch key detection.

To use the Touch Key, user must setup the Pin Mode (*see Section 7*) correctly as below table. Setting Mode2 for an Idling Touch Key pin can CMOS output High and reduce the mutual interference between the adjacent keys.

Pin mode setting for TK0~TK19 & CLD	Pin state
Touch Key	Drive High (Mode2)
CLD	Drive Low (POOE.4=1 & P0.4=0)

In the CTK Mode, user assigns TKPD=0 to turn on the TK module, then set the TKSOC bit to start touch key conversion, the TKSOC bit can be automatically cleared while end of conversion. However, if the SYSCLK is too slow, H/W might fail to clear TKSOC due to clock sampling rate. TKEOC=0 means conversion is in process. TKEOC=1 means the conversion is finish, and the touch key counting result is stored into the 12 bits TK Data Counter TKDH and TKDL. After TKEOC=1, user must wait at least 50 μ s for next conversion. Reducing/increasing TKTMR can reduce/increase the TKDATA to accommodate the condition of the system.

The CTK has an internal built-in reference capacitor to simulate the KEY behavior. Set TKCHS=17H (TK23) and start the scanning can get the TK Data Count of this capacitor. Since the internal capacitor would not be affected by water or mobile phone, it is useful for comparing the environment background noise. Setting the TKFJMP, the frequency of Touch Key clock can be change automatically by H/W controlled. It may help to improve the ability to resist noise.

CTK Structure

SFR 94h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OPTION	UART1W	TKFJMP	WDTPSC		ADCKS		TM3PSC	
R/W	R/W	R/W	R/W		R/W		R/W	
Reset	0	0	0	0	0	0	0	0

94h.6 **TKFJMP:** Internal Touch Key clock frequency auto adjust option

0: Disable

1: Enable

SFR 95h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTFLG	LVDIF		TKIF	ADIF			P1IF	TF3
R/W	R		R/W	R/W			R/W	R/W
Reset			0	0			0	0

95h.5 **TKIF:** Touch Key Interrupt Flag

Set by H/W at the end of Touch Key conversion if SYSCLK is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag. (*Note1*)

ADTKDT ADCDL TI	TKDH			
R/W R	R			
Reset – – – – – –	—	—		

AAh.3~0 **TKDH:** Touch Key counter data bit 11~8

SFR ACh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
TKDL		TKDL								
R/W		R								
Reset	_	-	_	-	-	_	-	-		

ACh.7~0 **TKDL:** Touch Key counter data bit 7~0

SFR F8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

F8h.5 **TKSOC:** Touch Key Start of Conversion

Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.

Note: also refer to Section 6 for more information about Touch Key Interrupt enable and priority.

TKCONTKPDTKEOCTKSLOWR/WR/WRR/WR/WReset1100ADh.7TKPD: Touth Key power downTKPD: Touth Key power downTKPD: Touth Key power down	TKIVCS V R/W 0		TKTMR R/W								
Reset 1 1 0 0		1	R/W								
	0	1	R/W								
ADh.7 TKPD: Touch Key power down		1	0	0							
0: Touch Key enable	0: Touch Key enable										
1: Touch Key disable	1: Touch Key disable TKEOC: Touch Key end of conversion flag, TKEOC may have 3uS delay after TKSOC=1, so F/W must wait enough time before polling this Flag.										
0: Indicates conversion is in progress											
1: Indicates conversion is finished											
ADh.5 TKSLOW: Slow clock operation											
0: Touch Key clock											
1: Touch Key clock divide by 2											
ADh.4~3 TKIVCS: Touch Key operation voltage selec	t										
00: V _{CC}											
01: 2.8V											
10: 4V											
11: 3.2V											
ADh.2~0 TKTMR: Touch Key conversion time select											
TKTMR adjusts the value of Touch Key r			ue of TKTM	IR requires							
longer charging time, which can affect the se	ensitivity of to	ich sensing.									
000: Conversion time shortest											

111: Conversion time longest

SFR A7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TKCHS	JMPVAL			TKCHS					
R/W	R/W			R/W R/W					
Reset	0 0 1			1	1	1	1	1	

AEh.7~5 **JMPVAL :** Touch Key Clock frequency fine tune , only available in TKFJMP=0 0=frequency slowest, 7=frequency fastest

AEh.3~0 **TKCHS:** Touch Key channel select

00000: TK0 (P3.3)
00001: TK1 (P3.2)
00010: TK2 (P3.1)
00011: TK3 (P3.0)
00100: TK4 (P1.0)
00101: TK5 (P1.1)
00110: TK6 (P1.2)
00111: TK7 (P1.3)
01000: TK8 (P1.4)
01001: TK9 (P1.6)
01010: TK10 (P1.7)
01011: TK11 (P3.6)
01100: TK12 (P3.5)
01101: TK13 (P3.4)
01110: TK14 (P1.5)
01111: TK15 (P3.7)
10000: TK16 (P0.3)
10001: TK17 (P0.5)
10010: TK18 (P0.6)
10011: TK19 (P0.7)
10111: TK reference capacitor

13. S/W Controller LCD Driver

The chip supports an S/W controlled method to driving LCD. It is capable of driving the LCD panel with 176 dots (Max.) by 8 Commons (COM) and 22 Segments (SEG). The P0.0~P0.7 are used for Common pins COM0~COM7 and others pins can be used for Segment pins. COM0~COM7 are capable of driving 1/2 bias when P0.0~P0.7's P0LOE=1. Refer to the following figures.

LCD COM0~7 Circuit

The frequency of any repeating waveform output on the COM pin can be used to represent the LCD frame rate. The figure below shows an LCD frame.

SEG0

COM0 -

COM1 -

COM2 -

СОМ3 -

SEG1

1/4 Duty, 1/2 Bias Output Waveform

SEG2 SEG3

SFR 92h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
POLOE	POLOE									
R/W	R/W									
Reset	0	0	0	0	0	0	0	0		

92h.7~0 **P0LOE:** P0.7~P0.0 LCD 1/2 bias output enable control

0: Disable

1: Enable

14. LED BiD (Bi-Direction) Mode

The LED BiD mode can drive more number of LED pixels than the tradition matrix mode, when they use the same number of pins. In this mode, it provides maximum 10 pins (LEDC0~C3, LEDS0~S5) to drive a LED module with 48 pixels. All 10 pins have a high sink current for driving LED directly. This LED controller also provides 3 groups 8-level of brightness adjustment for all 10 pin. To avoid LED flicker when the common signal is changing, the chip provides a dead time control. In the dead time period, segment pins will output a short inactive signal instead of changing the signal immediately. To start the LED scanning, it only has to set the LEDEN. Then H/W will control the Pin mode automatically.

LEDEN	Duty	Matrix	Max pixels
0	Disable	-	-
1	1/8	4COM x 4SEG	32 (4x4x2)
2	1/9	4COM x 5SEG	40 (4x5x2)
3	1/10	4COM x 6SEG	48 (4x6x2)

Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
C800h	7	6	5	4	3	2	1	0
C801h	15	14	13	12	11	10	9	8
C802h	23	22	21	20	19	18	17	16
C803h	31	30	29	28	27	26	25	24
C804h	39	38	37	36	35	34	33	32
C805h	47	46	45	44	43	42	41	40

LED BiD matrix mode corresponding display configuration table

LED 4*6 BiD matrix

Note: LEDBRIT (B1h.2~0): LED number 0~31, 40~47 brightness control LEDBRIT1 (B2h.2~0): LED number 32, 34, 36, 38 brightness control LEDBRIT2 (B2h.6~4): LED number 33, 35, 37, 39 brightness control

Application Circuit: 4COM x 4SEG (1/8 Duty)

; LEDPSC = FRC/32

; Brightness=6

SFR B1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
LEDCON	LEDEN LEDPS		PSC	LEDHOLD		LEDBRIT					
R/W	R/	W	R/	W	R/W		R/W				
Reset	0	0	0	0	0	1	0	0			
B1h.7~6	LEDEN: LED enable and duty select										
	00: LED di	00: LED disable									
	01: LED 1/	01: LED 1/8 duty (4COM x 4SEG)									
	10: LED 1/9 duty (4COM x 5SEG)										
	11: LED 1/	10 duty (4C0	OM x 6SEG)								
B1h.5~4	LEDPSC: L	ED clock pre	escaler select								
	00: LED cl	ock is FRC d	livided by 64								
	01: LED cl	ock is FRC d	livided by 32								
	10: LED cl	ock is FRC d	livided by 16								
	11: LED cl	ock is FRC d	livided by 8								
B1h.3	LEDHOLD: Keep at 0, cannot be set to 1										
B1h.2~0	LEDBRIT:										
	BiD matrix mode: LED number 0~31, 40~47 brightness control										

000: Level 0 (Darkest)

111: Level 7 (Brightest)

SFR B2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LEDCON2	LEDSMDIS		LEDBRIT2		_	LEDBRIT1		
R/W	R/W		R/W			R/W		
Reset	0	1	0	0		1	0	0

B2h.7 **LEDSMDIS:** Brightness smooth control

0: Brightness smooth enable

1: Brightness smooth disable

B2h.6~4 LEDBRIT2:

. . .

BiD matrix mode: LED number 33, 35, 37, 39 brightness control 000: Level 0 (Darkest)

...

111: Level 7 (Brightest)

B2h.2~0 LEDBRIT1:

BiD matrix mode: LED number 32, 34, 36, 38 brightness control 000: Level 0 (Darkest)

•••

111: Level 7 (Brightest)

SFR D8h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLKPSC	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	1	0	0	0	1	1

D8h.3 **STPFCK:** Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit can be changed only in Slow mode.

15. Serial Peripheral Interface (SPI)

The Serial Peripheral Interface (SPI) module is capable of full-duplex, synchronous, serial communication between the MCU and peripheral devices. The peripheral devices can be other MCUs, A/D converter, sensors, or flash memory, etc. The SPI runs at a clock rate up to the system clock divided by two. Firmware can read the status flags, or the operation can be interrupt driven. Following figure shows the SPI system block diagram.

The features of the SPI module include:

- Master or Slave mode operation
- 3-wire or 4-wire mode operation
- Full-duplex operation
- Programmable transmit bit rate
- Single buffer receive
- Serial clock phase and polarity options
- MSB-first or LSB-first shifting selectable

Pin Mode Setting for SPI

The four signals used by SPI are described below. The MOSI signal is an output from a Master Device and an input to Slave Devices. The signal is an output when SPI is operating in Master mode and an input when SPI is operating in Slave mode. The MISO signal is an output from a Slave Device and an input to a Master Device. The signal is an input when SPI is operating in Master mode and an output when SPI is operating in Slave mode. Data is transferred most-significant bit (MSB) or least-significant bit (LSB) first by setting the LSBF bit. The SCK signal is an output from a Master Device and an input to Slave Devices. It is used to synchronize the data on the MOSI and MISO lines of Master and Slave. SPI generates the signal with eight programmable clock rates in Master mode. The SS signal is a low active slave select pin. In 4-wire Slave mode, the signal is ignored when the Slave is not selected (SS=1). The SS is ignored when the SSDIS in SPCON is set in both Master and Slave modes. In Slave mode and the SSDIS is clear, the SPI active when SS stay low. For multiple-slave mode, only one slave device is selected at a time to avoid bus collision on the MISO line. In Master mode and the SSDIS is cleared, the MODF in SPSTA is set when this signal is low. For multiple-master mode, enable SS line to avoid multiple driving on MOSI and SCK lines from multiple masters.

Master Mode

The SPI operates in Master mode by setting the MSTR bit in the SPCON. To start transmit, writing a data to the SPDAT. If the SPBSY bit is cleared, the data will be transferred to the shift register and starts shift out on the MOSI line. The data of the slave shift in from the MISO line at the same time. When the SPIF bit in the SPSTA becomes set at the end of the transfer, the receive data is written to receiver buffer and the RCVBF bit in the SPSTA is set. To prevent an overrun condition, software must read the SPDAT before next byte enters the shift register. The SPBSY bit will be set when writing a data to SPDAT to start transmit, and be cleared at the end of the eighth SCK period in Master mode.

Slave Mode

The SPI operates in Slave mode by clearing the MSTR bit in the SPCON. If the SSDIS is cleared, the transmission will start when the SS become low and remain low until the end of a data transfer. If the SSDIS is set, the transmission will start when the SPEN bit in the SPCON is set, and don't care the SS. The data from a master will shift into the shift register through the MOSI line, and shift out from the shift register on the MISO line. When a byte enters the shift register, the data will be transferred to receiver buffer if the RCVBF is cleared. If the RCVBF is set, the newer receive data will not be transferred to receiver buffer and the RCVOVF bit is set. After a byte enters the shift register, the SPIF and RCVBF bits are set. To prevent an overrun condition, software must read the SPDAT or write 0 to RCVBF before next byte enters the shift register. The maximum SCK frequency allowed in Slave mode is $F_{SYSCLK}/4$. In Slave mode, the SPBSY bit refers to the SS pin when the SSDIS bit is cleared, and refer to the SPEN bit when SSDIS bit is set.

Serial Clock

The SPI has four clock types by setting the CPOL and CPHA bits in the SPCON register. The CPOL bit defines the level of the SCK in SPI idle state. The level of the SCK in idle state is low when the CPOL bit is cleared, and is high when the CPOL bit is set. The CPHA bit defines the edges used to sample and shift data. The SPI sample data on the first edge of SCK period and shift data on the second edge of SCK period when the CPHA bit is cleared. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when the CPHA bit is cleared. The SPI sample data on the second edge of SCK period and shift data on first edge of SCK period when the CPHA bit is set. The figures below show the detail timing in Master and Slave modes. Both Master and Slave devices must be configured to use the same clock type before the SPEN bit is set. The SPCR controls the Master mode serial clock frequency. This register is ignored when operating in Slave mode. The SPI clock can select System clock divided by 2, 4, 8, or 16 in Master mode.

In both Master and Slave modes, the SPIF bit is set by H/W at the end of a data transfer and generates an interrupt if SPI interrupt is enabled. The SPIF bit is cleared automatically when the program performs the interrupt service routines. S/W can also write 0 to clear this flag. If write data to SPDAT when the SPBSY is set, the WCOL bit will be set by H/W and generates an interrupt if SPI interrupt is enabled. When this occurs, the data write to SPDAT will be ignored, and shift register will not be written. Write 0 to this bit or when SPBSY is cleared and rewrite data to SPDAT will clear this flag. The MODF bit is set when SSDIS is cleared and SS pin is pulled low in Master mode. If SPI interrupt is enabled, an interrupt will be generated. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W. Write 0 to this bit will clear this flag.

涑

SFR BCh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SPCON	SPEN	MSTR	CPOL	CPHA	SSDIS	LSBF	SP	CR				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/	W				
Reset	0	0	0	0	0	0	0	0				
BCh.7	SPEN: SPI enable											
	0: SPI disable 1: SPI enable											
BCh.6	MSTR: Mas	MSTR: Master mode enable										
		ode 1: Mast										
BCh.5	CPOL: SPI											
		ow in idle sta										
		igh in idle st	ate									
BCh.4	CPHA: SPI		1 0000									
		nple on first e										
		nple on secon	id edge of SC	CK period								
BCh.3	SSDIS: SS p											
BCh.2	U: Enable S	S pin 1: Di	sable 55 pin									
DCII.2	0: MSB first											
	1: LSB firs											
BCh.1~0	SPCR: SPI											
Den.i 0	00: F _{SYSCLK}											
	$00: F_{SYSCLK}$ $01: F_{SYSCLK}$											
	10: F _{SYSCLK}											
	11: F_{SYSCLK}											
	STREEM											
SFR BDh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SPSTA	SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	_	_				
R/W	R/W	R/W	R/W	R/W	R/W	R	_	_				

R/W	R/W	R/W	R/W	R/W	R/W	R		—			
Reset	0	0	0	0	0	0	—	—			
BDh.7	SPIF: SPI in	terrupt flag									
	This is set	by H/W at th	e end of a d	ata transfer. (Cleared by H	I/W when an	interrupt is v	vectored into.			
	Writing 0 to this bit will clear this flag.										
BDh.6	WCOL: Write collision interrupt flag										
	Set by H/W	if write data	a to SPDAT	when SPBSY	is set. Write	e 0 to this bit	or rewrite da	ta to SPDAT			
	when SPBS	SY is cleared	will clear thi	is flag.							
BDh.5	MODF: Mo										
	•			-	-			o this bit will			
	clear this fl	ag. When thi	s bit is set, th	e SPEN and	MSTR in SI	PCON will be	cleared by H	Η/W.			
BDh.4	RCVOVF: I			0							
	•			ansfer and R	CVBF is se	et. Write 0 to	this bit or	read SPDAT			
	-	l clear this fl	-								
BDh.3	RCVBF: Re		U								
	Set by H/W	V at the end	of a data tra	nsfer. Write) to this bit	or read SPDA	AT register v	will clear this			
	flag.										
BDh.2	SPBSY: SPI	busy flag									

Set by H/W when a SPI transfer is in progress.

SFR BEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SPDAT		SPDAT								
R/W		R/W								
Reset	0	0	0	0	0	0	0	0		

BEh.7~0 SPDAT: SPI transmit and receive data

The SPDAT register is used to transmit and receive data. Writing data to SPDAT place the data into shift register and start a transfer when in master mode. Reading SPDAT returns the contents of the receive buffer.

16. Cyclic Redundancy Check (CRC)

The chip supports an integrated 16-bit Cyclic Redundancy Check function. The Cyclic Redundancy Check (CRC) calculation unit is an error detection technique test algorithm and uses to verify data transmission or storage data correctness. The CRC calculation takes a 8-bit data stream or a block of data as input and generates a 16-bit output remainder. The data stream is calculated by the same generator polynomial.

CRC Block Diagram

The CRC generator provides the 16-bit CRC result calculation based on the CRC-16-IBM polynomial. In this CRC generator, there are only one polynomial available for the numeric values calculation. It can't support the 16-bit CRC calculations based on any other polynomials. Each write operation to the CRCIN register creates a combination of the previous CRC value stored in the CRCDH and CRCDL registers. It will take one MCU instruction cycle to calculate.

CRC-16-IBM (Modbus) Polynomial representation: X¹⁶ + X¹⁵ + X² + 1

SFR F1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
CRCDL		CRCDL								
R/W		R/W								
Reset	1	1	1	1	1	1	1	1		

F1h.7~0 **CRCDL:** 16-bit CRC checksum data bit 7~0

SFR F2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCDH		CRCDH									
R/W		R/W									
Reset	1	1	1	1	1	1	1	1			
	~~~~										

F2h.7~0 CRCDL: 16-bit CRC checksum data bit 15~8

SFR F3h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CRCIN		CRCIN									
W		W									
Reset		_	_	_	_	_	_				
F21 7 0	CD CD CD		• .								

F3h.7~0 **CRCIN:** CRC input data register



# **17. Multiplier and divider**

The chip provide multiplier and divider have the following functions. The 8 bit operation is fully compatible with industry standard 8051.

- 8 bits  $\times$  8 bits = 16 bit (standard 8051)
- 8 bits ÷ 8 bits = 8 bits, 8 bits remainder (standard 8051)
- 16 bits × 16 bits = 32 bit
- 16 bits  $\div$  16 bits = 16 bits, 16 bits remainder
- 32 bits  $\div$  16 bits = 32 bits, 16 bits remainder

No matter 8bit / 16bit / 32bit operation, it's easy to execute by MUL AB and DIV AB instruction. There is extra SFR EXA/EXA2/EXA3/EXB for 16bit / 32bit multiply and divide operation.

For 8 bit multiplier/divider operation, be sure SFR bit muldiv16=0 and div32=0.

For 16 bit multiplier operation, multiplicand, multiplier and product as follows. 16 bit multiplier takes 16 System clock cycles to execute.

Condition	S	SFR bit muldiv16=1 and div32=0									
Multiplication	Byte3	Byte2	Byte1	Byte0							
Multiplicand	-	-	EXA	А							
Multiplier	-	-	EXB	В							
Product	EXB	В	А	EXA							
OV	Product (EX	(B or B) !=0	-	-							

For 16 bit divider operation, dividend, divisor, quotient, remainder read as follows. 16 bit divider takes 16 System clock cycles to execute.

Condition	S	FR bit muldiv1	6=1 and div32=	=0					
Division	Byte3	Byte3 Byte2 Byte1							
Dividend	-	-	EXA	А					
Divisor	-	-	EXB	В					
Quotient	-	-	А	EXA					
Remainder	-	-	В	EXB					
OV		Divisor $EXB = B = 0$							

For 32 bits ÷ 16 bits operation, dividend, divisor, quotient, remainder read as follows. 32 bit divider takes 32 System clock cycles to execute.

Condition	S	FR bit muldiv1	6=1 and div32=	=1					
Division	Byte3								
Dividend	EXA3	EXA2	EXA	А					
Divisor	-	-	EXB	В					
Quotient	А	EXA	EXA2	EXA3					
Remainder	-	-	В	EXB					
OV		Divisor E	XB=B =0						



SFR CEh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA2		EXA2								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

CEh.7~0 **EXA2:** Expansion accumulator 2

SFR CFh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXA3		EXA3								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

CFh.7~0 EXA3: Expansion accumulator 3

SFR E6h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
EXA		EXA							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

E6h.7~0 **EXA:** Expansion accumulator

SFR E7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
EXB		EXB								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
E71 7 0	EVD E	·								

E7h.7~0 **EXB:** Expansion B register

SFR F7h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
AUX2	WE	DTE	PWRSAV	VBGOUT	DIV32	IAI	PTE	MULDIV16
R/W	R/W	R/W	R/W	R/W	R/W	R/W		R/W
Reset	0	0	0	0	0	0	0	0

F7h.3 **DIV32:** 

only active when MULDVI16 =1 0: instruction DIV as 16/16 bit division operation 1: instruction DIV as 32/16 bit division operation

#### F7h.0 **MULDIV16:**

0: instruction MUL/DIV as 8*8, 8/8 operation 1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation

ARITHMETIC									
Mnemonic	Description	byte	cycle	opcode					
MUL AB	Multiply A by B	1	8/16	A4					
DIV AB	Divide A by B	1	8/16/32	84					



# 18. Master I²C Interface

### Master I²C interface transmit mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and write MIDAT to start first data transmission. When MIIF convert to 1, data transfer to slave was complete. User can write MIDAT again to transfer next data to slave. Set MISTOP to finish transmit mode.

MISTART must remain at 1 for the next transfer. After the final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.



Master I²C Transmit flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- (3) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF
- (4) Write data to MIDAT to start next transfer (MISTART must remain at 1)
- (5) Wait until MIIF convert to 1 (interrupt will be issued according to the user's request) and Clear MIIF, Loop (4) ~(5) for next transfer.
- (6) Clear MISTART and set MISTOP to stop the I²C transfer

		> 1 SCL	
MISTART_		<u> </u>	
MISTOP-	7		
SCL —			
SDA —			l
MIDAT	A0 43 b6 b6		
MIIF			
	:: MIDAT 43h and b6h are firmware writes to MIDAT to begin the next MIIC transfer. :: MISTART should remain 0 longer than a SCL clock before starting the next Master I ² C Transfer protocol		

#### **Master Transmit Timing**

*Note: MISTART should remain* 0 *longer than a SCL period before starting the next Master*  $I^2C$  *protocol.* 



### Master I²C interface Receive mode:

At the beginning write slave address and direction bit to MIDAT and set MISTART. After the START condition (MISTART), the 7 bits slave address and one bit direction bit are sent. When MIIF convert to 1, address and direction bit transmission was complete. After sending the address and direction bit, user should clear MIIF and read MIDAT to start first receive data (The first reading of MIDAT does not represent the data returned by the slave). When MIIF convert to 1, data receive from slave was complete. User can read MIDAT to get data from slave, and start next receive. Set MISTOP to finish receive mode.

MISTART must remain at 1 for the next transfer. After final data transmit/receive, set MISTOP to finish transmit/receive protocol. MISTART should remain 0 longer than a SCL clock before starting the next Master I²C protocol. SCL clock can be adjusted via MICR.



Master I²C Receive flow:

- (1) Write slave address and direction bit to MIDAT
- (2) Clear MISTOP and set MISTART to start I²C transmission
- Wait until MIIF convert to 1 (interrupt will be issued according to the user's request), Clear MIIF
   Read MIDAT to start receiving data for the first time
- (receiving data has not been completed at this time, and the read MIDAT should be discarded)
  (5) Wait until MIIF convert to 1, Clear MIIF
- (6) Read slave data from MIDAT and Loop (5)  $\sim$ (6) to receive next data
- (7) Set MISTOP to stop the I²C transfer

	> 1 SCL
MISTART	
MISTOP-	
sci —	
SDA	
MIDAT <u>A1</u> <u>A6</u>	
MIIF	1
Note: MIDAT 25h and A6h are data from slave Note: MISTART should remain 0 longer than a SCL clock before starting the next Master I ² C Transfer protocol	

#### **Master Receive Timing**



I ² C Function Pin	P2OE.n P2.n SFR da		Pin State
I ² C Master SCL	0	Х	Clock Output (Open Drain Output)
FC Master SCL	1	Х	Clock Output (CMOS Push-Pull)
I ² C Master/Slaver SDA	0	1	DATA (Pull-up)

#### Pin Mode Setting for Master I²C

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **I2CE:** I²C interrupt enable

0: Disable I²C interrupt

1: Enable I²C interrupt

SFR E1h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MICON	MIEN	MIACKO	MIIF	MIACKI	MISTART	MISTOP	MI	CR
R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	1	0	0

E1h.7	MIEN:Mas	ster I ² C enable		
	0: disable	1: enable		

E1h.6	MIACKO: When Master	$\cdot$ I ² C receive data, send acknowledge to I ² C Bus
	0: ACK to slave device	1: NACK to slave device

E1h.5 **MIIF**: Master I²C Interrupt flag When the master I²C sends or receives a byte, it is set by H/W. Writing "0" to this bit will clear the flag

- E1h.4 **MIACKI**: When Master I²C transfer, acknowledgement form I²C bus (read only) 0: ACK received 1: NACK received
- E1h.3 **MISTART**: Master I²C Start bit 1: start I²C bus transfer
- E1h.2 **MISTOP**: Master I²C Stop bit
- 1: send STOP signal to stop  $I^2C$  bus
- E1h.1~0 **MICR:** Master I²C (SCL) clock frequency selection 00: Fsys/4 (ex. If Fsys=16MHz, I²C clock is 4M Hz)
  - 01: Fsys/16 (ex. If Fsys=16MHz, I²C clock is 1M Hz)
  - 10: Fsys/64 (ex. If Fsys=16MHz,  $I^2C$  clock is 250K Hz)
  - 11: Fsys/256 (ex. If Fsys=16MHz,  $I^2C$  clock is 62.5K Hz)

SFR E2h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
MIDAT		MIDAT								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

E2h.7~0 **MIDAT**: Master  $I^2C$  data shift register

(W):After Start and before Stop condition, write this register will resume transmission to  $I^2C$  bus (R): After Start and before Stop condition, read this register will resume receiving from  $I^2C$  bus

SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SICON	MIIE	TXDIE	RCD2IE	RCD1IE	_	TXDF	RCD2F	RCD1F
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		1	0	0

EAh.7 **MIIE:** I²C Master interrupt enable 0: disable 1: enable



# 19. Slave I²C Interface

The chip provides Slave I°C interface receive protocol as following. Slave I°C module allow to receive one or two byte data each time after start condition. Before receiving DATA1, be aware that RCD1F must be 0. After DATA1 reception is completed, RCD1F will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear RCD1F before receiving next DATA1 again. User can write RCD1F to 0 to clear RCD1F. DATA2 and RCD2F operate in the same way as DATA1 and RCD1. After DATA1 or DATA2 reception is completed, the Master side should restart the transfer protocol to transmit the next DATA1 and DATA2.



**Slave Receive Timing** 



The chip provides Slave I°C interface transmission protocol as following. Slave I°C module allow to transmit one byte data each time after start condition. Before data transmitting, be aware that TXDF must be 0. After data transmission is completed, TXDF will be converted to 1 and an interrupt will be issued according to the user's request. User can use firmware to clear TXDF before transmitting next data again. User can write TXDF to 0 to clear TXDF. After each transmission is completed, the host should restart the transmission protocol to transmit the next data.



#### **Slave Transmit Timing**

I ² C Function Pin	P2OE.n	P2.n SFR data	Pin State
I ² C Slave SCL	0	Х	Clock input
I ² C Master/Slaver SDA	0	1	DATA (Pull-up)

#### Pin Mode Setting for Slave I²C

SFR A9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE1	PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

A9h.6 **I2CE:** I²C interrupt enable

0: Disable I²C interrupt

1: Enable I²C interrupt

SFR E9h	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SIADR				SA				SIEN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	1	0	0	1	0	0

E9h.7~1 SA: Slave I²C address assigned

E9h.0 **SIEN:** Slave I²C enable

0: disable

1: enable



SFR EAh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
SICON	MIIE	TXDIE	RCD2IE	RCD1IE		TXDF	RCD2F	RCD1F				
R/W	R/W	R/W	R/W	R/W		R/W	R/W	R/W				
Reset	0	0	0	0		1	0	0				
EAh.6	TXDIE: Sla	<b>XDIE:</b> Slave I ² C transmission completed interrupt enable										
	0: disable											
	1: enable											
EAh.5	RCD2IE: SI	CD2IE: Slave I ² C DATA2(SITXRCD2) reception completed interrupt enable										
	0: disable			, <b>1</b>	-	1						
	1: enable											
EAh.4	RCD1IE: SI	ave I C DAT	A1(SIRCD1	) reception c	ompleted into	errupt enable						
	0: disable				-	-						
	1: enable											
EAh.2	TXDF: Slav	e I ² C transmi	ssion comple	eted interrupt	flag							
	Set by H/W		-	-	-	lear it						
EAh.1	RCD2F: Sla	ve I ² C DATA	A2(SITXRCI	D2) reception	completed i	nterrupt flag						
	Set by H/W			, <b>1</b>	-	1 0						
EAh.0	•			<i>,</i>	-	•						
		<b>RCD1F:</b> Slave I ² C DATA1(SIRCD1) reception completed interrupt flag Set by H/W when Slave I ² C DATA1(SIRCD1) reception complete, write 0 to clear it										

SFR EBh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3		Bit 1	Bit 0		
SIRCD1			SIRCD1							
R/W	R	R	R	R	R	R	R	R		
Reset	_	—	-	-	-	_	—	—		

EBh.7~0 SIRCD1: Slave I²C data receive register1 (DATA1)

SFR ECh	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
SITXRCD2			SITXRCD2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	_	_	_	_	_	_	_	-		

ECh.7~0 **SITXRCD2:** Slave I²C transmit and receive data register Read: Slave I²C data receive register2 (DATA2) Write: Slave I²C data transmission register (TXD)



# **20. In Circuit Emulation (ICE) Mode**

This device can support the In Circuit Emulation Mode. To use the ICE Mode, user just needs to connect P3.0 and P3.1 pin to the tenx proprietary EV Module. The benefit is that user can emulate the whole system without changing the on board target device. But there are some limits for the ICE mode as below.

- 1. The device must be un-protect.
- 2. The device's P3.0 and P3.1 pins must work in input Mode (P3MOD0 = 0/1 and P3MOD1=0/1).
- 3. The Program Memory's addressing space 6C00h~6FFFh and 0033h~003Ah are occupied by tenx EV module. So user Program cannot access these spaces.
- 4. The T-Link communication pin's function cannot be emulated.
- 5. The P3.0 and P3.1 pin's can be replaced by P0.0 and P0.1.

(P0.0/P0.1 can only support ICE function, not for Writer)

6. SFR PWRSAV (F7h.5) will be cleared when use T-Link module.





# SFR & CFGW MAP

Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
80h	0000-0000	-	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0			
	0000-0111	SP				SP							
	0000-0000						PL						
	0000-0000				1		PH						
	0000-0000		EX9	EX8	EX7	EX6	EX5	EX4	EX3	EX2			
	0000-0000		IE9	IE8	IE7	IE6	IE5	IE4	IE3	IE2			
	0xxx-x000	INTPWM	-	-	-	-	- CE1	PWM2IF	PWM1IF	PWM0IF			
	0000-0000		SMOD TF1	- TR1	- TF0	- TR0	GF1 IE1	GF0 IT1	PD IE0	IDL IT0			
	0000-0000		GATE1	CT1N	-	OD1	GATE0	CTON	-	OD0			
	0000-0000		GITTET	erm	1101		LO	CION	1101	000			
	0000-0000						L1						
8Ch	0000-0000	TH0					HO						
8Dh	0000-0000	TH1				T	H1						
8Eh	0100-0000	SCON2	SM	_	_	REN2	TB82	RB82	TI2	RI2			
8Fh	xxxx-xxxx	SBUF2				SB	UF2	-					
90h	1111-1111	P1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0			
	0000-0000						OE						
	0000-0000		DAGES	DAGE	DACES		LOE		DAT				
	0000-0101	P2MOD	P2OE5	P2OE4	P2OE3	P2OE2		IOD1		IOD0			
	0000-0000 xx00-x000		UART1W LVDIF	TKFJMP	TKIF	TPSC ADIF	AD _	CKS	P1IF	3PSC TF3			
	0000-0000		LVDI		1 KII ⁺		- KUP	_	L HIL.	115			
97h	xxxx-xx00					IAPEN / SW		)					
	0000-0000		SM0	SM1	SM2								
99h	XXXX-XXXX	SBUF			SBUF								
9Ah	1111-1111	PWMPRD		PWMPRD									
	1000-0000			PWM3D									
	1000-0000					PWM4D PWM5D							
	1000-0000				1								
	0000-0000		PWM1IE	PWM0IE	PWM50E	PWM4OE	PWM3OE	PWM2OE	PWM10E	PWM00E			
		PWMCLR	PWM2IE	- D2 (					PWM1CLR	PWM0CLR			
	0000-0011	P2 PWMCON	P2.7	P2.6 PWMCKS	P2.5	P2.4 2CKS	P2.3	P2.2	P2.1	P2.0 IOCKS			
		P1MODL	 P1M			IOD2		IOD1		IODR0			
		P1MODE	P1M			IOD2 IOD6		IOD1 IOD5		IOD4			
		P3MODL	P3M			IOD2		IOD1		IOD0			
A5h	0001-0101	P3MODH	P3M	OD7		IOD6	P3M	IOD5	P3MOD4				
A6h	0000-0000	PINMOD	-	TRCSEL	TCOE	T2OE		PWMPSC		TOOE			
	0011-1111	TKCHS		JMPVAL				TKCHS					
	0x00-0000		EA	-	ET2	ES	ET1	EX1	ET0	EX0			
	xx00-0000		PWMIE	I2CE	ES2	SPIE	ADTKIE	EXLVDIE	P1IE	TM3IE			
	XXXX-XXXX			ADO	CDL	1.54	עסי	TK	DH				
	XXXX-XXXX	ADCDH TKDL					DL						
	xxxx-xxxx 1100-0100		TKPD	TKEOC	TKSLOW	TKI			TKTMR				
	11100-0100 11111-000x	CHSEL			CHS	1.11		/REFS	VBGEN				
	000x-xxxx	POADIE		POADIE		_	-	-	-	_			
	1111-1111	P3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0			
		LEDCON	LEI			PSC	LEDHOLD		LEDBRIT				
		LEDCON2	LEDSMDIS		LEDBRIT2		-		LEDBRIT1				
	xx00-0000		_	_	PT2	PS	PT1	PX1	PT0	PX0			
	xx00-0000		-	-	PT2H	PSH	PT1H	PX1H	PT0H	PX0H			
BAh	xx00-0000	IP1	-	-	PS2	PSPI	PADTKI	PX2_9LVD	PP1	PT3			
BBh	xx00-0000	IP1H	_	-	PS2H	PSPIH	PADTKIH	PX2_9LVD H	PP1H	РТЗН			
	0000-0000		SPEN	MSTR	CPOL	CPHA	SSDIS	LSBF	SP	CR			
BDh	0000-0xxx	SPSTA	SPIF	WCOL	MODF	RCVOVF	RCVBF	SPBSY	-	-			



Adr	RST	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
BEh	0000-0000	SPDAT				SPI	DAT							
BFh	0xxx-0000	LVDS	LVDIE	LVDO	_	-		LV	'DS					
C8h	0000-0000	T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2N	CPRL2N				
C9h	00xx-xxxx	IAPWE				IAPWE	/ IAPTO	•						
CAh	0000-0000	RCP2L				RC	P2L							
CBh	0000-0000	RCP2H				RC	P2H							
CCh	0000-0000	TL2				T	L2							
CDh	0000-0000	TH2				TI	H2							
CEh	0000-0000	EXA2				EX	CA2							
CFh	0000-0000	EXA3				EX	CA3			-				
-	0000-0000		CY	AC	F0	RS1	Rbo	OV	F1	Р				
D1h	1000-0000	PWM0DH				PWN	10DH							
		PWM0DL					10DL							
		PWM1DH					11DH							
		PWM1DL					/IDL							
D5h	1000-0000	PWM2DH				PWN	12DH							
		PWM2DL					12DL		1					
D8h	00x0-0011	CLKCON	SCKTYPE	FCKTYPE	STPSCK	STPPCK	STPFCK	SELFCK	CLI	KPSC				
D9h	1111-1111	PWM0PRDH				PWM(	)PRDH							
		PWM0PRDL		PWM0PRDL										
DBh	1111-1111	PWM1PRDH				PWM	IPRDH							
		PWM1PRDL					IPRDL							
		PWM2PRDH				PWM2	2PRDH							
		PWM2PRDL		n	-		2PRDL	n	1					
	0000-0000	ACC	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0				
	000x-0100		MIEN	MIACKO	MIIF		MISTART	MISTOP	М	ICR				
	0000-0000	MIDAT					DAT							
-	0000-0000	EXA					XA							
-	0000-0000	EXB				EZ	XB							
	0110-1000	SIADR				SA	1			SIEN				
	0000-x100		MIIE	TXDIE	RCD2IE	RCD1IE	-	TXDF	RCD2F	RCD1F				
	XXXX-XXXX	SIRCD1					CD1							
		SITXRCD2	D 7	D.C.	D.5	SITX		D.A	<b>D</b> 1	D.O.				
-	0000-0000	B	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0				
	1111-1111	CRCDL					CDL							
	1111-1111	CRCDH				-	CDH							
	0000-0000	CRCIN				CR	CIN	DOTDDA						
-	XXXX-XXXX	CFGBG	-	-	-		EDGE	BGTRIM						
	XXXX-XXXX	CFGWL	-		DWDCAN	VDCOUT	FRCF	T 4 T	YTC .					
-	0000-1110	AUX2		DTE CLDTM2	PWRSAV	VBGOUT	DIV32	IAF		MULDIV16				
F8h	0000-0000	AUX1	CLRWDT	CLRTM3	TKSOC	ADSOC	LVRPD	T2SEL	T1SEL	DPSEL				

Flash Address	NAME	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
7FFFh	CFGWH	PROTN	XRSTEN		LVRE		-	MVCLOCKN	FRCPSC



# SFR & CFGW DESCRIPTION

Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
80h	<b>P0</b>	7~0	P0	R/W	00h	Port0 data
81h	SP	7~0	SP	R/W	07h	Stack Point
82h	DPL	7~0	DPL	R/W	00h	Data Point low byte
83h	DPH	7~0	DPH	R/W	00h	Data Point high byte
		7	EX9	R/W	0h	External INT9~INT2 pin Interrupt enable and Stop/Halt mode wake
		6	EX8	R/W	0h	up enable.
		5	EX7	R/W	0h	0: Disable INTx pin Interrupt and Stop/Halt mode wake up
84h	INTER	4	EX6	R/W	0h	1: Enable INTx pin Interrupt and Stop/Halt mode wake up, it can
8411	INTEX	3	EX5	R/W	0h	wake up CPU from Stop/Halt mode no matter EA is 0 or 1
		2	EX4	R/W	0h	
		1	EX3	R/W	0h	(note: EXLVDIE must be 1 at the same time to generate INTx
		0	EX2	R/W	0h	interrupt and wake up)
		7	IE9	R/W	0h	INT9 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		6	IE8	R/W	0h	INT8 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		5	IE7	R/W	0h	INT7 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
0.51		4	IE6	R/W	0h	INT6 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
85h	INTEXF	3	IE5	R/W	0h	INT5 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		2	IE4	R/W	0h	INT4 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		1	IE3	R/W	0h	INT3 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	IE2	R/W	0h	INT2 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		2	PWM2IF	R/W	0h	PWM2 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
86h	INTPWM	1	PWM1IF	R/W	0h	PWM1 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		0	PWM0IF	R/W	0h	PWM0 Interrupt Flag. 1: interrupt asserted, write 0 to clear int flag
		7	SMOD	R/W	0	Set 1 to enable UART1 double baud rate
		3	GF1	R/W	0	General purpose flag bit
87h	PCON	2	GF0	R/W	0	General purpose flag bit
		1	PD	R/W	0	Power down control bit, set 1 to enter STOP/Halt mode.
		0	IDL	R/W	0	Idle control bit, set 1 to enter IDLE mode
		7	TF1	R/W	0	Timer1 overflow flag Set by H/W when Timer/Counter 1 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		6	TR1	R/W	0	Timer1 run control. 1: timer runs; 0: timer stops
		5	TF0	R/W	0	Timer0 overflow flag Set by H/W when Timer/Counter 0 overflows. Cleared by H/W when CPU vectors into the interrupt service routine.
		4	TR0	R/W	0	Timer0 run control. 1:timer runs; 0:timer stops
88h	TCON	3	IE1	R/W	0	External Interrupt 1 (INT1 pin) edge flag Set by H/W when an INT1 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		2	IT1	R/W	0	External Interrupt 1 control bit 0: Low level active (level triggered) for INT1 pin 1: Falling edge active (edge triggered) for INT1 pin
		1	IE0	R/W	0	External Interrupt 0 (INT0 pin) edge flag Set by H/W when an INT0 pin falling edge is detected. Cleared by H/W when CPU vectors into the interrupt service routine.
		0	ІТО	R/W	0	External Interrupt 0 control bit 0: Low level active (level triggered) for INT0 pin 1: Falling edge active (edge triggered) for INT0 pin



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						Timer1 gating control bit
		7	GATE1	R/W	0	0: Timer1 enable when TR1 bit is set
						1: Timer1 enable only while the INT1 pin is high and TR1 bit is set
			CT1N	DAV	0	Timer1 Counter/Timer select bit
		6	CT1N	R/W	0	0: Timer mode, Timer1 data increases at 2 System clock cycle rate 1: Counter mode, Timer1 data increases at T1 pin's negative edge
						Timer1 mode select
						00: 8-bit timer/counter (TH1) and 5-bit prescaler (TL1)
						01: 16-bit timer/counter
		5~4	TMOD1	R/W	00	10: 8-bit auto-reload timer/counter (TL1). Reloaded from TH1 at
						overflow.
						11: Timer1 stops
89h	TMOD					Timer0 gating control bit
		3	GATE0	R/W	0	0: Timer0 enable when TR0 bit is set
						1: Timer0 enable only while the INT0 pin is high and TR0 bit is set
		2	CTON	DAV	0	Timer0 Counter/Timer select bit
		2	CT0N	R/W	0	0: Timer mode, Timer0 data increases at 2 System clock cycle rate 1: Counter mode, Timer0 data increases at T0 pin's negative edge
						Timer0 mode select
						00: 8-bit timer/counter (TH0) and 5-bit prescaler (TL0)
						01: 16-bit timer/counter
		1~0	TMOD0	R/W	00	10: 8-bit auto-reload timer/counter (TL0). Reloaded from TH0 at
						overflow.
						11: TL0 is an 8-bit timer/counter.
						TH0 is an 8-bit timer/counter using Timer1's TR1 and TF1 bits.
8Ah	TLO	7~0	TL0	R/W	00h	Timer0 data low byte
8Bh	TL1	7~0	TL1	R/W	00h	Timer1 data low byte
8Ch 8Dh	TH0 TH1	7~0 7~0	TH0 TH1	R/W R/W	00h 00h	Timer0 data high byte Timer1 data high byte
8011	111	/~0	111	K/W	0011	UART2 Serial port mode select bit
		7	SM	R/W	0	0: Mode1: 8 bit UART2, Baud Rate is variable
			5111	10	Ū	1: Mode3: 9 bit UART2, Baud Rate is variable
						UART2 reception enable
		4	REN2	R/W	0	0: Disable reception
						1: Enable reception
8Eh	SCON2	3	TB82	R/W	0	Transmit Bit 8, the ninth bit to be transmitted in Mode3
		2	RB82	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode3
		1	TIO	DAV	0	Transmit interrupt flag
		1	TI2	R/W	0	Set by H/W at the beginning of the stop bit in Mode 1 & 3. Must be cleared by S/W.
				<u> </u>		Receive interrupt flag
		0	RI2	R/W	0	Set by H/W at the sampling point of the stop bit in Mode 1 & 3. Must
						be cleared by S/W.
		1				UART2 transmit and receive data. Transmit data is written to this
8Fh	SBUF2	7~0	SBUF2	R/W	-	location and receive data is read from this location, but the paths are
90h	D1	7~0	P1	R/W	FFh	independent. Port1 data
9011	P1	/~0	ГІ	IX/ W	ггп	Port1 data Port0 CMOS Push-Pull output enable control
91h	POOE	7~0	POOE	R/W	00h	0: Disable
, in	10012		LOOL	10 11	0.011	1: Enable
		1 1		1		Port0 LCD 1/2 bias output enable control
92h	POLOE	7~0	POLOE	R/W	00h	0: Disable
		1		1		1: Enable



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	P2OE5	R/W	0	
		6	P2OE4	R/W	0	P2.5~P2.2 CMOS Push-Pull output enable control 0: Disable
		5	P2OE3	R/W	0	1: Enable
		4	P2OE2	R/W	0	
93h	P2MOD	3~2	P2MOD1	R/W	01	P2.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: not defined
		1~0	P2MOD0	R/W	01	P2.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: not defined
		7	UART1W	R/W	0	Set 1 to enable one wire UART1 mode, both TXD/RXD use P3.1 pin.
		6	TKFJMP	R/W	0	Internal Touch Key clock frequency auto adjust option 0: Disable 1: Enable auto adjust
		5~4	WDTPSC	R/W	00	Watchdog Timer pre-scalar time select 00: 480ms WDT overflow rate 01: 240ms WDT overflow rate 10: 120ms WDT overflow rate 11: 60ms WDT overflow rate
94h	OPTION	3~2	ADCKS	R/W	00	ADC clock rate select 00: F _{SYSCLK} /32 01: F _{SYSCLK} /16 10: F _{SYSCLK} /8 11: F _{SYSCLK} /4
		1~0	TM3PSC	R/W	00	Timer3 Interrupt rate 00: Timer3 Interrupt rate is 32768 Slow clock cycle 01: Timer3 Interrupt rate is 16384 Slow clock cycle 10: Timer3 Interrupt rate is 8192 Slow clock cycle 11: Timer3 Interrupt rate is 128 Slow clock cycle
		7	LVDIF	R	_	Low Voltage Detect flag Set by H/W when a low voltage occurs.
		5	TKIF	R/W	0	Touch Key Interrupt Flag Set by H/W at the end of TK conversion if SYSCLK is fast enough. S/W writes DFh to INTFLG or sets the TKSOC bit to clear this flag.
		4	ADIF	R/W	0	ADC interrupt flag Set by H/W at the end of ADC conversion. S/W writes EFh to INTFLG or sets the ADSOC bit to clear this flag.
95h	INTFLG	1	P1IF	R/W	0	Port1 pin change Interrupt flag Set by H/W when a Port1 pin state change is detected and its interrupt enable bit is set (P1WKUP). P1IE does not affect this flag's setting. It is cleared automatically when the program performs the interrupt service routine. S/W can write FDh to INTFLG to clear this bit.
		0	TF3	R/W	0	Timer3 Interrupt Flag Set by H/W when Timer3 reaches TM3PSC setting cycles. It is cleared automatically when the program performs the interrupt service routine. S/W can write FEh to INTFLG to clear this bit.
96h	P1WKUP	7~0	P1WKUP	R/W	00h	<ul><li>P1.7~P1.0 pin individual Wake-up/Interrupt enable control</li><li>0: Disable;</li><li>1: Enable.</li></ul>
		7~0	SWRST	W		Write 56h to generate S/W Reset
		7~0	IAPEN	W		Write 65h to set IAPEN control flag; Write other value to clear IAPEN flag. It is recommended to clear it immediately after IAP access.
97h	SWCMD	1	WDTO	R	0	WatchDog Time-Out flag
	-	0	IAPEN	R	0	Flag indicates Flash memory sectors can be accessed by IAP or not. This bit combines with MVCLOCK to define the accessible IAP area.

____



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	SM0	R/W	0	UART1 Serial port mode select bit 0, 1 (SM0, SM1) =
		6	SM1	R/W	0	<ul> <li>00: Mode0: 8 bit shift register, Baud Rate=F_{SYSCLK}/2</li> <li>01: Mode1: 8 bit UART1, Baud Rate is variable</li> <li>10: Mode2: 9 bit UART1, Baud Rate=F_{SYSCLK}/32 or /64</li> <li>11: Mode3: 9 bit UART1, Baud Rate is variable</li> </ul>
98h	SCON	5	SM2	R/W	0	Serial port mode select bit 2 SM2 enables multiprocessor communication over a single serial line and modifies the above as follows. In Modes 2 & 3, if SM2 is set then the received interrupt will not be generated if the received ninth data bit is 0. In Mode 1, the received interrupt will not be generated unless a valid stop bit is received. In Mode 0, SM2 should be 0.
		4	REN	R/W	0	Set 1 to enable UART1 Reception
		3	TB8	R/W	0	Transmitter bit 8, ninth bit to transmit in Modes 2 and 3
		2	RB8	R/W	0	Receive Bit 8, contains the ninth bit that was received in Mode 2 and 3 or the stop bit is Mode 1 if SM2=0
		1	TI	R/W	0	Transmit Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in other modes. Must be cleared by S/W
		0	RI	R/W	0	Receive Interrupt flag Set by H/W at the end of the eighth bit in Mode 0, or at the sampling point of the stop bit in other modes. Must be cleared by S/W.
99h	SBUF	7~0	SBUF	R/W	_	UART1 transmit and receive data. Transmit data is written to this location and receive data is read from this location, but the paths are independent.
9Ah	PWMPRD	7~0	PWMPRD	R/W	FFh	PWM3~PWM5 8-bit period register
9Bh	PWM3D	7~0	PWM3D	R/W	80h	PWM3 8-bit duty register
9Ch	PWM4D	7~0	PWM4D	R/W		PWM4 8-bit duty register
9Dh	PWM5D	7~0	PWM5D	R/W	80h	PWM5 8-bit duty register
		7	PWM1IE	R/W	0	<ul> <li>PWM1 Interrupt Enable.</li> <li>0: disable</li> <li>1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)</li> </ul>
		6	PWM0IE	R/W	0	<ul> <li>PWM0 Interrupt Enable</li> <li>0: disable</li> <li>1: enable (note: PWMIE must be 1 at the same time to generate PWM interrupt)</li> </ul>
		5	PWM5OE	R/W	0	PWM5 enable and signal output to P2.5 pin 0: disable 1: enable
9Eh	PWMOE	4	PWM4OE	R/W	0	PWM4 enable and signal output to P2.4 pin 0: disable 1: enable
		3	PWM3OE	R/W	0	PWM3 enable and signal output to P2.3 pin 0: disable 1: enable
		2	PWM2OE	R/W	0	PWM2 enable and signal output to P1.6 pin 0: disable 1: enable
			PWM10E	R/W	0	PWM1 enable and signal output to P1.3 pin 0: disable 1: enable
		0	PWM0OE	R/W	0	PWM0 enable and signal output to P1.2 pin 0: disable 1: enable



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
						PWM2 Interrupt Enable
		7	DWMAIE	R/W	0	0: disable
		/	PWM2IE	K/W	0	1: enable (note: PWMIE must be 1 at the same time to generate PWM
						interrupt)
						PWM5 clear enable
		5	PWM5CLR	R/W	0	0: PWM5 is running
						1: PWM5 is cleared and held
						PWM4 clear enable
		4	PWM4CLR	R/W	0	0: PWM4 is running
						1: PWM4 is cleared and held
9Fh	PWMCLR			_		PWM3 clear enable
	1 mileli	3	PWM3CLR	R/W	0	0: PWM3 is running
						1: PWM3 is cleared and held
		2		DAV		PWM2 clear enable
		2	PWM2CLR	R/W	0	0: PWM2 is running
						1: PWM2 is cleared and held PWM1 clear enable
		1	PWM1CLR	R/W	0	0: PWM1 is running
		1	IWWITCLK	IX/ VV	0	1: PWM1 is cleared and held
						PWM0 clear enable
		0	PWM0CLR	R/W	0	0: PWM0 is running
		Ŭ	1 White Chird	10	Ũ	1: PWM0 is cleared and held
		7~2	P2.7~P2.2	R/W	00h	P2.7~P2.2 data
A0h	P2	1~0	P2.1~P2.0	R/W	11	P2.1~P2.0 data
		1 0	1211 1210	10		PWM3~PWM5 clock source
		6	P2.1~P2.0 R	R/W	1	0: F _{SYSCLK}
						1: FRC
						PWM2 clock source
						00: F _{SYSCLK}
		5~4	PWM2CKS	R/W	10	01: F _{SYSCLK}
						10: FRC
						11: FRC x 2
A1h	PWMCON					PWM1 clock source
		2 2	DUDALOUG	DAV	10	00: F _{SYSCLK}
		3~2	PWM1CKS	R/W	10	01: F _{SYSCLK} 10: FRC
						10: FRC 11: FRC x 2
						PWM0 clock source
						00: F _{SYSCLK}
		1~0	PWM0CKS	R/W	10	01: F _{SYSCLK}
		Ē				10: FRC
						11: FRC x 2
					-	P1.3 Pin Control
		7~6	P1MOD3	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.3 is ADC input
						P1.2 Pin Control
		5~4	P1MOD2	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
A2h	P1MODL					11: Mode3, P1.2 is ADC input
11211	I IMODE					P1.1 Pin Control
		3~2	P1MOD1	R/W	01	00: Mode0; 01: Mode1; 10: Mode2
						11: Mode3, P1.1 is ADC input
		1 0	DIMODO	D/117	01	P1.0 Pin Control
		1~0	P1MOD0	R/W	01	00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.0 is ADC input
		1				



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
A3h	P1MODH	7~6	P1MOD7	R/W	01	P1.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3
		5~4	P1MOD6	R/W	01	P1.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3
		3~2	P1MOD5	R/W	01	P1.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.5 is ADC input
		1~0	P1MOD4	R/W	01	P1.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P1.4 is ADC input
A4h	P3MODL	7~6	P3MOD3	R/W	01	P3.3 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.3 is ADC input
		5~4	P3MOD2	R/W	01	P3.2 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.2 is ADC input
		3~2	P3MOD1	R/W	01	P3.1 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.1 is ADC input
		1~0	P3MOD0	R/W	01	P3.0 Pin Control 00: Mode0; 01: Mode1; 10: Mode2 11: Mode3, P3.0 is ADC input
A5h	P3MODH	7~6	P3MOD7	R/W	00	P3.7 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
		5~4	P3MOD6	R/W	01	P3.6 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
		3~2	P3MOD5	R/W	01	P3.5 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
		1~0	P3MOD4	R/W	01	P3.4 Pin Control 00: Mode0; 01: Mode1; 10: Mode2; 11: Mode3
A6h	PINMOD	6	TRCSEL	R/W	0	TK clock frequency jump range 0: select narrow range TK clock frequency jump 1: select wide range TK clock frequency jump
		5	TCOE	R/W	0	Set 1 to enable "System clock divided by 2" (CKO) output to P1.4 pin
		4	T2OE	R/W	0	Set 1 to enable "Timer2 overflow divided by 2" (T2O) output to P1.0 pin
		3~1	PWMPSC	R/W	0	PWM3/PWM4/PWM5 clock source pre-scalar select 0: divided by 1 1: divided by 2 2: divided by 4 
			TOOL	D.U.		7: divided by 128
		0	TOOE	R/W	0	Set 1 to enable "Timer0 overflow divided by 64" (T0O) output to P3.4 pin


Adr	SFR	Bit#	Bit Name	R/W	Rst	Description				
		7~5	JMPVAL	R/W	001	Touch Key Clock frequency fine tune , only available in TKFJMP=0				
A7h	TKCHS	4~0	TKCHS	R/W	1Fh	0=frequency slowest, 7=frequency fastest Touch Key channel select 00000: TK0 (P3.3) 00001: TK1 (P3.2) 00010: TK2 (P3.1) 00010: TK3 (P3.0) 00100: TK4 (P1.0) 00101: TK5 (P1.1) 00110: TK6 (P1.2) 00111: TK7 (P1.3) 01000: TK8 (P1.4) 01001: TK9 (P1.6) 01010: TK10 (P1.7) 01011: TK11 (P3.6) 01100: TK12 (P3.5) 01101: TK13 (P3.4) 01110: TK14 (P1.5) 01111: TK15 (P3.7) 10000: TK16 (P0.3) 10001: TK17 (P0.5) 10010: TK18 (P0.6) 10011: TK19 (P0.7) 10111: TK reference capacitor				
		7	EA	R/W	0	1: Each interrupt is enabled or disabled by its own interrupt control bit.				
			ET2	R/W	0	Set 1 to enable Timer2 interrupt				
A8h	IE	4	ES	R/W	0	Set 1 to enable Serial Port (UART1) Interrupt				
Aon	112	3	ET1	R/W	0	Set 1 to enable Timer1 Interrupt				
		2	EX1	R/W	0	Set 1 to enable external INT1 pin Interrupt & Stop/Halt mode wake up capability				
		1	ET0	R/W	0	Set 1 to enable Timer0 Interrupt				
		0	EX0	R/W	0	Set 1 to enable external INT0 pin Interrupt & Stop/Halt mode wake up capability				
		7	PWMIE	R/W	0	Set 1 to enable PWM0~PWM2 interrupt				
		6	I2CE	R/W	0	Set 1 to enable I ² C (master/slave) interrupt				
		5	ES2	R/W	0	Set 1 to enable Serial Port (UART2) interrupt				
4.01		4	SPIE	R/W	0	Set 1 to enable SPI interrupt				
A9h	INTE1	3	ADTKIE	R/W	0	Set 1 to enable ADC/Touch Key Interrupt				
		2	EXLVDIE	R/W	0	Set 1 to enable external INT2~INT9 pin Interrupt, Stop/Halt mode wake up capability and LVD interrupt.				
		1	P1IE	R/W	0	Set 1 to enable Port1 Pin Change Interrupt				
<u> </u>		0	TM3IE	R/W	0	Set 1 to enable Timer3 Interrupt and Halt mode wake up				
AAh	ADTKDT	7~4	ADCDL	R	-	ADC data bit 3~0				
		3~0	TKDH	R	-	Touch Key counter data bit 11~8				
ABh	ADCDH	7~0	ADCDH	R	-	ADC data bit 11~4				
ACh	TKDL	7~0	TKDL	R	-	ouch Key counter data bit 7~0				

____



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description	
		7	TKPD	R/W	1	Touch Key Power Down 0: Touch Key enable; 1: Touch Key disable	
	Dh         TKCON           Eh         CHSEL           Eh         POADIE	6	TKEOC	R	1	Touch Key end of conversion flag 0: Indicates conversion is in progress 1: Indicates conversion is finished	
		5~4	TKSLOW	R/W	00	Touch Key Slow clock operation 0: Touch Key clock 1: Touch Key clock divide by 2	
ADh	TKCON	4~3	TKIVCS	R/W	00	Touch Key operation voltage select 0: V _{CC} 1: 2.8V 10: 4V 11: 3.2V	
		2~0	TKTMR	R/W	100	Touch Key conversion time select TKTMR adjusts the value of Touch Key reference voltage. A larger value of TKTMR requires a longer charging time, which can affect the sensitivity of touch sensing. 000: Conversion time shortest 	
AEh	CHSEL	7~4	ADCHS	R/W	1111	111: Conversion time longest         ADC channel select         0000: AD0 (P3.3)         0001: AD1 (P3.2)         0010: AD2 (P3.1)         0011: AD3 (P3.0)         0100: AD4 (P1.0)         0101: AD5 (P1.1)         0110: AD6 (P1.2)	
	3~2		ADCVREFS	R/W	00	ADC reference voltage. When ADCHS is selected to VBG, ADCVREFS must be set to V _{CC} , otherwise ADC conversion will be invalid 00: VCC 01: 2.5V 10: 3V 11: 4V	
		1	VBGEN	R/W	0	force VBG generator enable 0: VBG generator is automatically enable and disable 1: Force VBG generator enable included in IDLE mode but disabled	
AFh	POADIE	7~5	P0ADIE	R/W	000	in Stop/Halt mode ADC channel input Enable 000: P0.7~P0.4 are digital input 1xx: P0.7 is ADC input x1x: P0.6 is ADC input xx1: P0.5 is ADC input	
B0h	P3	7~0	P3	R/W	FFh	Port3 data	

____



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
						LED enable and duty select		
		7 (	LEDEN	DAV	00	00: LED disable		
	LEDCON LENCON2 LINCON2	7~6	LEDEN	R/W	00	01: LED 1/8 duty (4COM x 4SEG) 10: LED 1/9 duty (4COM x 5SEG)		
						11: LED 1/10 duty (4COM x 6SEG)		
						LED clock prescaler select		
						00: LED clock is FRC divided by 64		
B1h	LEDCON	5~4	LEDPSC	R/W	00	01: LED clock is FRC divided by 32		
						10: LED clock is FRC divided by 16 11: LED clock is FRC divided by 8		
		3	LEDHOLD	R/W	0	Keep at 0, cannot be set to 1		
		-	LLDIIOLD	10.11		BiD matrix mode: LED number 0~31, 40~47 brightness control		
		2.0	LEDDDIT	DAV	100	000: Level 0 (Darkest)		
		2~0	LEDBRIT	R/W	100			
						111: Level 7 (Brightest)		
	,		LEDGMDIG	DAV	0	Brightness smooth control		
		7	LEDSMDIS	R/W	0	0: Brightness smooth enable 1: Brightness smooth disable		
						BiD matrix mode: LED number 33, 35, 37, 39 brightness control		
		<i>c</i> .	LEDDDITTO	D /117	100	000: Level 0 (Darkest)		
B2h	LENCON2	6~4	LEDBRIT2	R/W	100			
						111: Level 7 (Brightest)		
				R/W		BiD matrix mode: LED number 32, 34, 36, 38 brightness control 000: Level 0 (Darkest)		
		2~0	LEDBRIT1		100	000. Level 0 (Darkest)		
						111: Level 7 (Brightest)		
			PT2	R/W	0	Timer2 Interrupt Priority Low bit		
		4	PS	R/W	0	Serial Port (UART1) Interrupt Priority Low bit		
B8h	TD	3	PT1	R/W	0	Timer1 Interrupt Priority Low bit		
1001	ш	2	PX1	R/W	0	External INT1 Pin Interrupt Priority Low bit		
		1	PT0	R/W	0	Timer0 Interrupt Priority Low bit		
		0	PX0	R/W	0	External INTO Pin Interrupt Priority Low bit		
		5	PT2H	R/W	0	Timer2 Interrupt Priority High bit		
		4	PSH	R/W	0	Serial Port (UART1) Interrupt Priority High bit		
B9h	IPH	3	PT1H	R/W	0	Timer1 Interrupt Priority High bit		
	++	2	PX1H	R/W	0	External INT1 Pin Interrupt Priority High bit		
		1	PT0H	R/W	0	Timer0 Interrupt Priority High bit		
		0	PX0H	R/W	0	External INTO Pin Interrupt Priority High bit		
		7	PPWM	R/W	0	PWM Interrupt Priority Low bit		
		6	PI2C	R/W	0	I2C Interrupt Priority Low bit		
		5	PS2	R/W	0	Serial Port (UART2) interrupt priority low bit		
BAh	IP1	4	PSPI	R/W	0	SPI interrupt priority low bit		
		3	PADTKI	R/W	0	ADC/Touch Key Interrupt Priority Low bit		
		2	PX2_9LVD	R/W	0	External INT2~INT9 Pin Interrupt Priority Low bit		
		1	PP1	R/W	0	Port1 pin change Interrupt Priority Low bit		
		0	PT3	R/W	0	Timer3 Interrupt Priority Low bit		
		7	PPWMH PI2CH	R/W R/W	0	PWM Interrupt Priority High bit I2C Interrupt Priority High bit		
		6 5	PI2CH PS2H	R/W R/W	0	Serial Port (UART2) interrupt priority high bit		
		4	PS2H PSPIH	R/W	0	Serial Port (OAK12) interrupt priority high bit SPI interrupt priority high bit		
BBh	IP1H	4	PSPIH PADTKIH	R/W	0	ADC/Touch Key Interrupt Priority High bit		
		2	PADIKIH PX2_9LVDH	R/W	0	External INT2~INT9 Pin Interrupt Priority High bit		
		1	PA2_9LVDH PP1H	R/W	0	Port1 Interrupt Priority High bit		
		0		R/W	0			
		U	PT3H	K/ W	U	Timer3 Interrupt Priority High bit		

_____





Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
		7	SPEN	R/W	0	SPI enable 0: SPI disable		
		,	DI LIV	10 11	Ū	1: SPI enable		
						Master mode enable		
		6	MSTR	R/W	0	0: Slave mode		
	SPCON					1: Master mode		
		5	CPOL	R/W	0	SPI clock polarity 0: SCK is low in idle state		
		5	CFUL	K/ W	0			
		4	CPHA	R/W	0	0: Data sample on first edge of SCK period		
BCh	SPCON					1: Data sample on second edge of SCK period		
			GGDIG	D III	0			
		3	SSDIS	R/W	0	-		
	2							
			LSBF	R/W	0			
			LODI		0	1: LSB first		
						SPI clock rate		
	1		SPCR	R/W	00			
						11: FSYSCLK/16		
		7 SPII			0	This is set by H/W at the end of a data transfer. Cleared by H/W		
		/	SPIF	K/W	0	when an interrupt is vectored into. Writing 0 to this bit will clear this		
						Write collision interrupt flag		
		6	WCOL	R/W	0			
				1: Data sample on second edge of SCK period         SS pin disable         R/W       0         0: Enable SS pin         1: Disable SS pin         1: Disable SS pin         R/W       0         0: MSB first         1: LSB first         0: FSYSCLK/2         R/W       00         01: FSYSCLK/2         R/W       00         01: FSYSCLK/4         10: FSYSCLK/4         10: FSYSCLK/8         11: FSYSCLK/16         SPI interrupt flag         This is set by H/W at the end of a data transfer. Cleared by H/W         when an interrupt is vectored into. Writing 0 to this bit will clear this flag.         Write collision interrupt flag         Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to the set of the set				
						<ul> <li>This is set by H/W at the end of a data transfer. Cleared by H/W when an interrupt is vectored into. Writing 0 to this bit will clear this flag.</li> <li>Write collision interrupt flag</li> <li>Set by H/W if write data to SPDAT when SPBSY is set. Write 0 to this bit or rewrite data to SPDAT when SPBSY is cleared will clear this flag.</li> <li>Mode fault interrupt flag</li> <li>Set by H/W when SSDIS is cleared and SS pin is pulled low in Master mode. Write 0 to this bit will clear this flag. When this bit is set, the SPEN and MSTR in SPCON will be cleared by H/W.</li> <li>Received buffer overrun flag</li> </ul>		
DDI	CDC/T A	5	MODF	R/W	0			
BDh	SPSTA	5	MODI	10 11	0			
		4	RCVOVF	D/W	0			
		4	KC VOVI [*]	IX/ W	0			
			RCVBF	R/W	0			
						SPDAT register will clear this flag.		
		2	SPBSY	R	0			
BEh	SPDAT	7~0	SPDAT	R/W	0	data to SPDAT place the data into shift register and start a transfer		
						when in master mode. Reading SPDAT returns the contents of the		
						receive buffer.		



7       LVDIE       R/W       0       Low Voltage Detect interrupt enable         6       LVDO       R       -       Low Voltage Detect output         6       LVDO       R       -       Low Voltage Detect output         6       LVDO       R       -       Low Voltage Detect output         8       -       Low Voltage Detect select       0000: Set LVD at 2.52V         0001: Set LVD at 2.62V       0001: Set LVD at 2.62V       0010: Set LVD at 2.74V         0011: Set LVD at 2.86V       0100: Set LVD at 2.99V       0101: Set LVD at 3.1V         3~0       LVDS       R/W       0       0111: Set LVD at 3.23V	generate	
7       LVDIE       R/W       0       1: Enable (note: EXLVDIE must be 1 at the same time to LVD interrupt)         6       LVDO       R       -       Low Voltage Detect output         6       LVDO       R       -       Low Voltage Detect select 0000: Set LVD at 2.52V 0001: Set LVD at 2.62V 0010: Set LVD at 2.62V 0010: Set LVD at 2.62V 0011: Set LVD at 2.86V 0110: Set LVD at 2.86V 0100: Set LVD at 2.99V 0101: Set LVD at 3.1V 0110: Set LVD at 3.23V	generate	
BFh       LVDS       Image: Construct of the state of the st	generate	
6       LVDO       R       -       Low Voltage Detect output         6       LVDO       R       -       Low Voltage Detect output         Low Voltage Detect select       0000: Set LVD at 2.52V       0001: Set LVD at 2.62V         0010: Set LVD at 2.62V       0010: Set LVD at 2.74V         0011: Set LVD at 2.86V       0100: Set LVD at 2.99V         0101: Set LVD at 3.1V       0101: Set LVD at 3.23V		
BFh         LVDS         LVDS <thlvds< th=""> <thlvds< th=""> <thlvds< th="">         LVD</thlvds<></thlvds<></thlvds<>		
BFh         LVDS           0000: Set LVD at 2.52V           0001: Set LVD at 2.62V           0010: Set LVD at 2.74V           0011: Set LVD at 2.86V           0100: Set LVD at 2.99V           0101: Set LVD at 3.1V           0110: Set LVD at 3.23V		
BFh         LVDS         0001: Set LVD at 2.62V 0010: Set LVD at 2.74V 0011: Set LVD at 2.86V 0100: Set LVD at 2.99V 0101: Set LVD at 3.1V 0110: Set LVD at 3.23V		
BFh         LVDS         0010: Set LVD at 2.74V           0011: Set LVD at 2.86V         0010: Set LVD at 2.86V           0100: Set LVD at 2.99V         0101: Set LVD at 3.1V           0110: Set LVD at 3.1V         0110: Set LVD at 3.23V		
BFh         LVDS         0011: Set LVD at 2.86V         0100: Set LVD at 2.99V         0101: Set LVD at 3.1V         0101: Set LVD at 3.1V         0110: Set LVD at 3.23V		
BFh         LVDS         0100: Set LVD at 2.99V           0101: Set LVD at 3.1V         0101: Set LVD at 3.23V		
BFn         LVDS         0101: Set LVD at 3.1V           0110: Set LVD at 3.23V         0110: Set LVD at 3.23V		
0110: Set LVD at 3.23V		
$5\sim0$ LVDS K/W 0 0111. Set LVD at 5.55 V		
1100: Set LVD at 3.96V		
1101: Set LVD at 4.08V		
1110: Set LVD at 4.2V		
1111: Set LVD at 4.32V	0: Disable         1: Enable (note: EXLVDIE must be 1 at the same time to generate LVD interrupt)         Low Voltage Detect output         Low Voltage Detect select         0000: Set LVD at 2.52V         0001: Set LVD at 2.62V         0010: Set LVD at 2.74V         0011: Set LVD at 2.86V         0100: Set LVD at 3.48V         0101: Set LVD at 3.35V         1000: Set LVD at 3.35V         1000: Set LVD at 3.48V         1001: Set LVD at 3.48V         1001: Set LVD at 3.72V         1011: Set LVD at 3.6V         1010: Set LVD at 3.72V         1011: Set LVD at 3.6V         1010: Set LVD at 3.6V         1011: Set LVD at 4.08V         1110: Set LVD at 4.2V         1111: Set LVD at 4.32V         Timer2 overflow flag         Set by H/W when Timer/Counter 2 overflows unless RCLK=1 or TCLK=1. This bit must be cleared by S/W.         T2EX interrupt pin falling edge flag         Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. This bit must be cleared by S/W.         UART receive clock control bit         0: Use Timer1 overflow as receive clock for serial port in mode 1 or 3         1: Use Timer2 overflow as transmit clock for serial port in mode 1 or 3         1: Use Timer1 overflow as transmit clock for serial port in mode 1 or 3	
	CLK=1 or	
	ansition on	
	ansition on	
	ode 1 or 3	
	node 1 or 3	
C8h T2CON 1: T2EX pin enable, it cause a capture or reload when	a negative	
1:timer runs		
	ve euge	
	r negative	
transitions on T2EX pin if EXEN2=1.	-	
	2EX pin if	
	n in f 1	
	r is forced	
	FF]	
Write 4Ch to enable one byte IAP write to ROM[7C00~7D	FF]	
7~0 IAPWE W – Write BAh to enable ERASE 512 byte of ROM[7A00~7BI	F]	
	F]	
while other value to disable IAP while		
7 IAPWE R 0 0: IAP Write/Erase disable		

_____



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
						IAP (or EEPROM write) Time-Out flag		
C9h	IAPWE	6	IAPTO	R	0	Set by H/W when IAP (or EEPROM write) Time-out occurs.		
<u></u>			- CDAI		0.01	Cleared by H/W when IAPWE=0 (or EEPWE=0).		
CAh	RCP2L	7~0	RCP2L	R/W	00h	Timer2 reload/capture data low byte		
CBh	RCP2H	7~0	RCP2H	R/W	00h	Timer2 reload/capture data high byte		
CCh	TL2	7~0	TL2	R/W	00h	Timer2 data low byte Timer2 data high byte		
CDh	TH2	7~0 7~0	TH2	R/W	00h	Expansion accumulator 2		
CEh CFh	EXA2 EXA3	7~0 7~0	EXA2 EXA3	R/W R/W	00h 00h	*		
Сгп	ЕЛАЗ	7~0 7	CY	R/W	001	Expansion accumulator 3 ALU carry flag		
		6	AC	R/W	0	ALU auxiliary carry flag		
		5	F0	R/W	0	General purpose user-definable flag		
		$PSW = \begin{bmatrix} 3 & 10 & 10 & 0 & 0 \\ 4 & RS1 & R/W & 0 & Register Bank Select bit 1 \\ \hline 3 & RS0 & R/W & 0 & Register Bank Select bit 0 \end{bmatrix}$						
D0h	PSW			e e				
	2 OV 1 F1		R/W	0	ALU overflow flag			
				R/W	0	General purpose user-definable flag		
		0	P	R/W	0	Parity flag		
						PWM0 duty high byte		
D1h	<b>PWM0DH</b>	7~0	PWM0DH	R/W	80H	write sequence: PWM0DL then PWM0DH		
						read sequence: PWM0DH then PWM0DL		
Dal				DAU	0.011	PWM0 duty low byte		
D2h	PWM0DL	7~0	PWM0DL	R/W	00H	write sequence: PWM0DL then PWM0DH read sequence: PWM0DH then PWM0DL		
D3h	PWM1DH	7~0	PWM1DH	R/W	80H	write sequence: PWM1DL then PWM1DH		
						read sequence: PWM1DH then PWM1DL		
						PWM1 duty low byte		
D4h	PWM1DL	7~0	PWM1DL	R/W	00H	write sequence: PWM1DL then PWM1DH		
D5h	PWM2DH	7~0	PWM2DH	R/W	80H	PWM2 duty high byte		
Don	1 ////2011	, ,	1 // 1/121011	10 11	0011	write sequence: PWM2DL then PWM2DH		
						PWM2 duty low byte		
D6h	PWM2DL	7~0	PWM2DL	R/W	00H	PWM2 duty low byte write sequence: PWM2DL then PWM2DH		
		7	SCKTYPE	R/W	0			
						read sequence: PWM0DH then PWM0DL PWM1 duty high byte write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL PWM1 duty low byte write sequence: PWM1DL then PWM1DH read sequence: PWM1DH then PWM1DL PWM2 duty high byte write sequence: PWM2DL then PWM2DH read sequence: PWM2DH then PWM2DL PWM2 duty low byte		
						Fast clock type. This bit can be changed only in Slow mode		
					-			
		6	FCKTYPE	R/W	0			
		5	STPSCK	R/W	1			
D8h	CLKCON	4	STPPCK	R/W	0	Set 1 to stop UART/Timer0/1/2 clock in Idle mode for current reducing.		
		2			-	Set 1 to stop Fast clock for power saving in Slow/Idle mode. This bit		
		3	STPFCK	R/W	0	can be changed only in Slow mode.		
					_	System clock select. This bit can be changed only when STPFCK=0.		
		2	SELFCK	R/W	0	0: Slow clock		
		$\left  - \right $				1: Fast clock System clock prescaler. Effective after 16 clock cycles (Max.) delay.		
						00: System clock is Fast/Slow clock divided by 16		
		1~0	CLKPSC	R/W	11	01: System clock is Fast/Slow clock divided by 4		
					11	10: System clock is Fast/Slow clock divided by 2		
						11: System clock is Fast/Slow clock divided by 1		



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
						PWM0 period high byte		
D9h	<b>PWM0PRDH</b>	7~0	PWM0PRDH	R/W	FFH	write sequence: PWM0PRDL then PWM0PRDH		
DAh	PWM0PRDL	7~0	PWM0PRDL	R/W	FFH			
DDI		7 0		DAV	FH       WW10 period high byte         FH       write sequence: PWM0PRDL then PWM0PRDL         PWM0 period low byte       PWM1 period ligh byte         WFFH       write sequence: PWM0PRDL then PWM0PRDL         PWM1 period high byte       PWM1 period high byte         W       FFH       write sequence: PWM1PRDL then PWM1PRDH         read sequence: PWM1PRDL then PWM1PRDL       PWM1 period low byte         W       FFH       write sequence: PWM1PRDL then PWM1PRDL         PWM2 period low byte       PWM2 period low byte         W       FFH       write sequence: PWM2PRDL then PWM1PRDL         read sequence: PWM2PRDH then PWM2PRDL       PWM2 period low byte         W       FFH       write sequence: PWM2PRDL then PWM2PRDL         PWM2 period low byte       PWM2 period low byte       PWM2 period low byte         W       FFH       write sequence: PWM2PRDL then PWM2PRDL         WM2 period low byte       PWM2 period low byte       PWM2 period low byte         W       FFH       write sequence: PWM2PRDL then PWM2PRDL         W       Oh       Accumulator       Master 1 ⁷ C rable         0       O       Gacumulator       Gauster 1 ² C raceive data, send acknowledge to 1 ² C Bus         W       0       O       write Master 1 ² C raceive data, send a			
DBh	PWMIPRDH	/~0	PWM0PRDH       R/W       FFH       PWM0 period high byte         PWM0PRDL       FFH       write sequence: PWM0PRDL then PWM0PRDL         PWM0PRDL       R/W       FFH         write sequence: PWM0PRDL then PWM0PRDL       PWM0PRDL         PWM1PRDH       R/W       FFH         write sequence: PWM1PRDL then PWM1PRDH       read sequence: PWM1PRDL then PWM1PRDH         PWM1PRDL       R/W       FFH         Write sequence: PWM1PRDL then PWM1PRDH       read sequence: PWM1PRDH then PWM1PRDH         read sequence: PWM1PRDH then PWM1PRDH       read sequence: PWM1PRDH then PWM1PRDH         PWM2 period low byte       PWM2 period low byte         PWM2 period low byte       PWM2 period low byte         PWM2 period low byte       PWM2 period low byte         PWM2 PRDL       R/W       FFH         write sequence: PWM2PRDL then PWM2PRDL       PWM2 period low byte         PWM2 PRDL       R/W       Master I ² C enable         0       0. disable       1: enable         MIEN       R/W       0       0: acts device         MILF       R/W       0       0: write to clear it         1: NACK to slave device       1: start I ² C transfer, acknowledgement form I ² C bus (read only 0: or write to clear it         MILACKI       R					
DCh	DWM1DDDI	7~0		R/W	FEH			
DCII		/~0		IX/ W	1.1.11			
DDh	PWM2PRDH	7~0	PWM2PRDH	R/W	FFH			
221				10	RW       PWM0 period high byte         RW       FFH         write sequence: PWM0PRDL then PWM0PRDL         PWM0 period low byte         RW         FFH         write sequence: PWM0PRDL then PWM0PRDL         PWM1 period high byte         R/W         FFH         write sequence: PWM1PRDL then PWM1PRDH         read sequence: PWM2PRDL then PWM2PRDH         read sequence: PWM2PRDL then PWM2PRDH         read sequence: PWM2PRDL then PWM2PRDL         PWM2 period low byte         R/W         FFH         write sequence: PWM2PRDL then PWM2PRDL         PWM2 period low byte         R/W         GO         Accumulator         Master I ² C enable         0       0. disable         1: enable         When Master I ² C receive data, send acknowledge to I ² C Bus         R/W       0         0       0: disable         1: naster I ² C Iransfer one byte complete         1: Master I ² C Iransfer one byte complete         1: Master I ² C Start bit         1: st			
						PWM2 period low byte		
DEh	PWM2PRDL	7~0	PWM2PRDL	R/W	FFH			
						read sequence: PWM2PRDH then PWM2PRDL		
E0h	ACC	7~0	ACC	R/W	00h	Accumulator		
		7	MIEN	R/W	0	0: disable		
	6							
				R/W	0	When Master I ² C receive data, send acknowledge to I ² C Bus		
			MIACKO					
			5 MIIF	R/W	0			
E 11	MICON	4	MIACIZI	р				
E1h	MICON	4	MIACKI	к	_			
		3	MISTART	R/W	0			
		2	MISTOP	R/W	1			
						Master I ² C (SCL) clock frequency selection		
		1~0	MICR	R/W	00			
						10: Fsys/64 (ex. If Fsys=16MHz, I ² C clock is 250K Hz)		
						11: Fsys/256 (ex. If Fsys=16MHz, I ² C clock is 62.5K Hz)		
						Master I ² C data shift register		
E2h	MIDAT	7~0	MIDAT	R/W	00			
				resume receiving from I ² C bus				
E6h	EXA	7~0	EXA	R/W	00h	Expansion accumulator		
E7h	EXB	7~0	EXB	R/W	00h	Expansion B register		
		7~1	SA	R/W	64h	Slave I C address assigned		
E9h	SIADR					Slave I ² C enable		
E911	SIADK	0	SIEN	R/W	0	0: disable		
						1: enable		

_____



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description		
						I ² C Master interrupt enable		
		7	MIIE	R/W	0	0: disable		
		6	TXDIE	R/W	0			
		_	_ ~		-			
		5	RCD2IE	R/W	0			
EAh	SICON							
		2	TYDE	DAV	1			
		2	TXDF	K/W	1			
		1	RCD2F	R/W	0			
						Slave IC DATA1(SIRCD1) reception completed interrupt flag		
		0	RCD1F	R/WIf C Master interrupt enableR/W00: disable1: enableSlave IC transmission completed interrupt enable2:R/W00: disable1: enable1: enableSlave IC DATA2(SITXRCD2) reception completed interrupt enable2:R/W00: disable1: enable1: enableSlave IC DATA1(SIRCD1) reception completed interrupt enable2:R/W00: disable1: enable1: enable1: enable7:R/W00: write 0 to clear it1: Set by H/W when Slave IC transmission completed interrupt flag7:R/W00: write 0 to clear it1: Set by H/W when Slave IC DATA2(SITXRCD2) reception complete enable7:R/W01: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag7:R/W01: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag7:R/W01: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag7:R/W01: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag7:R/W09:Slave IC data receive register (DATA1)1: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag7:R/W09:Rise IC Cata bit 15-89:R/W9:Read: Slave IC data traceive register (DATA1)9:R/WFFh 16-bit CRC data bit 15-81: <td></td>				
		Ŭ	Rebli	10 11	0			
EBh	SIRCD1	7~0	SIRCD1	R	_			
EDI	SIRCE	, ,	SIRCET		- Slave IC transmit and receive data register			
ECh	SITXRCD2	7~0	-0 SITXRCD2	R/W	_			
Len	STIMCD2	, ,	SIIIIRCD2	10 11		Write: Slave $I^{\circ}$ data transmission register (TXD)		
F0h	В	7~0	В	R/W	00h			
F1h								
F2h								
F3h								
F5h								
гэп	CFGBG	3~0	DUTKIM	K/W	_			
F6h	CECWI	6 0	EDCE	DAV				
гоп	CrGWL	0~0	ГКСГ	K/ W	/W       0       Slave IC DATA2(SITXRCD2) reception completed interrupt flag         0       0: write 0 to clear it       1: Set by H/W when Slave IC DATA2(SITXRCD2) reception complete enable         /W       0       0: write 0 to clear it       1: Set by H/W when Slave IC DATA1(SIRCD1) reception completed interrupt flag         0: write 0 to clear it       1: Set by H/W when Slave IC DATA1(SIRCD1) reception complete         R       -       Slave IC data receive register1 (DATA1)         Slave IC transmit and receive data register       Read: Slave IC data receive register2 (DATA2)         Write: Slave IC data receive register2 (DATA2)       Write: Slave IC data transmission register (TXD)         /W       00       B register         /W       FFh       16-bit CRC data bit 7~0         /W       FFh       16-bit CRC data bit 15~8         W       -       CRC input data         /W       -       VBG trimming value (Chip Reserved)         /W       -       FRC frequency adjustment         /W       -       00h: lowest frequency         /W       -       Watchdog Timer Reset control         /W       -       0x: WDT disable         10: WDT enable in Fast/Slow mode, disable in Idle/Stop/Halt mode         11: WDT always enable       Power saving disable LVR in IDLE/HALT/STOP mode			
		7~6	WDTE	R/W	-			
		5	DWDCAV	D/W		0		
		5	FWKSAV	K/ W	_			
		4	VBGOUT	R/W	0			
F7h	ALIX2							
1.11	AUA2							
		2	DUZZ	D /117		-		
		5	DIV32	K/W	U			
				D/117	00			
		2~1	IAPTE	K/W	00			
		<u> </u>						
		0	MULDIV16	R/W	0			
						1: instruction MUL/DIV as 16*16, 16/16 or 32/16 operation		



Adr	SFR	Bit#	Bit Name	R/W	Rst	Description
		7	CLRWDT	R/W	0	Set 1 to clear WDT, H/W auto clear it at next clock cycle
		6	6 CLRTM3 R/W 0 Set 1 to clear Timer3, HW auto clear it at next clock c			
		7 CLRWDT R/W	0	Touch Key Start of Conversion Set 1 to start Touch Key conversion. If SYSCLK is fast enough, this bit will be cleared by H/W at the end of conversion. S/W can also write 0 to clear this flag.		
		4	ADSOC	R/W	ADC Start of Conversion	
F8h	AUX1	3	LVRPD	R/W	0	Low Voltage Reset function select 0: enable LVR 1: disable LVR
		2 T2SEL R/W 0 Timer2 counter mode (CT2N=1) input select 0: P1.0 (T2) pin (8051standard)				
		1	T1SEL	R/W	0	Timer1 counter mode (CT1N=1) input select 0: P3.5 (T1) pin (8051 standard) 1: Slow clock divide by 16 (SLOWCLK/16)
		0	DPSEL	R/W	0	Active DPTR Select

Adr	Flash	Bit#	Bit Name	Description
		7	PROTN	Flash Code Protect, 0=Protect
		6	XRSTEN	External Pin Reset enable, 0=enable.
				Low Voltage Reset function select
				000: Set LVR at 2.52V
				001: Set LVR at 2.74V
				010: Set LVR at 2.99V
		5~3	LVRE	011: Set LVR at 3.23V
7FFFh	CFGWH			100: Set LVR at 3.48V
				101: Set LVR at 3.72V
				110: Set LVR at 3.96V
				111: Set LVR at 4.2V
		1	MVCLOCKN	If 0, the MOVC & MOVX instruction's accessibility to MOVC-Lock area is limited.
				FRC frequency select
		0	FRCPSC	0: 7.3728MHz
				1: 14.7456MHz





# **INSTRUCTION SET**

Instructions are 1, 2 or 3 bytes long as listed in the 'byte' column below. Each instruction takes 1~8 System clock cycles to execute as listed in the 'cycle' column below.

	ARITHMETIC			
Mnemonic	Description	byte	cycle	opcode
ADD A,Rn	Add register to A	1	2	28-2F
ADD A,dir	Add direct byte to A	2	2	25
ADD A,@Ri	Add indirect memory to A	1	2	26-27
ADD A,#data	Add immediate to A	2	2	24
ADDC A,Rn	Add register to A with carry	1	2	38-3F
ADDC A,dir	Add direct byte to A with carry	2	2	35
ADDC A,@Ri	Add indirect memory to A with carry	1	2	36-37
ADDC A,#data	Add immediate to A with carry	2	2	34
SUBB A,Rn	Subtract register from A with borrow	1	2	98-9F
SUBB A,dir	Subtract direct byte from A with borrow	2	2	95
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2	96-97
SUBB A,#data	Subtract immediate from A with borrow	2	2	94
INC A	Increment A	1	2	04
INC Rn	Increment register	1	2	08-0F
INC dir	Increment direct byte	2	2	05
INC @Ri	Increment indirect memory	1	2	06-07
DEC A	Decrement A	1	2	14
DEC Rn	Decrement register	1	2	18-1F
DEC dir	Decrement direct byte	2	2	15
DEC @Ri	Decrement indirect memory	1	2	16-17
INC DPTR	Increment data pointer	1	4	A3
MUL AB	Multiply A by B	1	8/16	A4
DIV AB	Divide A by B	1	8/16/32	84
DA A	Decimal Adjust A	1	2	D4

	LOGICAL											
Mnemonic	Description	byte	cycle	opcode								
ANL A,Rn	AND register to A	1	2	58-5F								
ANL A,dir	AND direct byte to A	2	2	55								
ANL A,@Ri	AND indirect memory to A	1	2	56-57								
ANL A,#data	AND immediate to A	2	2	54								
ANL dir,A	AND A to direct byte	2	2	52								
ANL dir,#data	AND immediate to direct byte	3	4	53								
ORL A,Rn	OR register to A	1	2	48-4F								
ORL A,dir	OR direct byte to A	2	2	45								
ORL A,@Ri	OR indirect memory to A	1	2	46-47								
ORL A,#data	OR immediate to A	2	2	44								
ORL dir,A	OR A to direct byte	2	2	42								
ORL dir,#data	OR immediate to direct byte	3	4	43								
XRL A,Rn	Exclusive-OR register to A	1	2	68-6F								
XRL A,dir	Exclusive-OR direct byte to A	2	2	65								
XRL A, @Ri	Exclusive-OR indirect memory to A	1	2	66-67								
XRL A,#data	Exclusive-OR immediate to A	2	2	64								
XRL dir,A	Exclusive-OR A to direct byte	2	2	62								
XRL dir,#data	Exclusive-OR immediate to direct byte	3	4	63								
CLR A	Clear A	1	2	E4								
CPL A	Complement A	1	2	F4								
SWAP A	Swap Nibbles of A	1	2	C4								



LOGICAL						
Mnemonic	Description	byte	cycle	opcode		
RL A	Rotate A left	1	2	23		
RLC A	Rotate A left through carry	1	2	33		
RR A	Rotate A right	1	2	03		
RRC A	Rotate A right through carry	1	2	13		

	DATA TRANSFER						
Mnemonic	Description	byte	cycle	opcode			
MOV A,Rn	Move register to A	1	2	E8-EF			
MOV A,dir	Move direct byte to A	2	2	E5			
MOV A,@Ri	Move indirect memory to A	1	2	E6-E7			
MOV A,#data	Move immediate to A	2	2	74			
MOV Rn,A	Move A to register	1	2	F8-FF			
MOV Rn,dir	Move direct byte to register	2	4	A8-AF			
MOV Rn,#data	Move immediate to register	2	2	78-7F			
MOV dir,A	Move A to direct byte	2	2	F5			
MOV dir,Rn	Move register to direct byte	2	4	88-8F			
MOV dir,dir	Move direct byte to direct byte	3	4	85			
MOV dir,@Ri	Move indirect memory to direct byte	2	4	86-87			
MOV dir,#data	Move immediate to direct byte	3	4	75			
MOV @Ri,A	Move A to indirect memory	1	2	F6-F7			
MOV @Ri,dir	Move direct byte to indirect memory	2	4	A6-A7			
MOV @Ri,#data	Move immediate to indirect memory	2	2	76-77			
MOV DPTR,#data	Move immediate to data pointer	3	4	90			
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	4	93			
MOVC A,@A+PC	Move code byte relative PC to A	1	4	83			
MOVX A,@Ri	Move external data(A8) to A	1	4	E2-E3			
MOVX A,@DPTR	Move external data(A16) to A	1	4	E0			
MOVX @Ri,A	Move A to external data(A8)	1	4	F2-F3			
MOVX @DPTR,A	Move A to external data(A16)	1	4	F0			
PUSH dir	Push direct byte onto stack	2	4	C0			
POP dir	Pop direct byte from stack	2	4	D0			
XCH A,Rn	Exchange A and register	1	2	C8-CF			
XCH A,dir	Exchange A and direct byte	2	2	C5			
XCH A,@Ri	Exchange A and indirect memory	1	2	C6-C7			
XCHD A,@Ri	Exchange A and indirect memory nibble	1	2	D6-D7			

BOOLEAN						
Mnemonic	Description	byte	cycle	opcode		
CLR C	Clear carry	1	2	C3		
CLR bit	Clear direct bit	2	2	C2		
SETB C	Set carry	1	2	D3		
SETB bit	Set direct bit	2	2	D2		
CPL C	Complement carry	1	2	B3		
CPL bit	Complement direct bit	2	2	B2		
ANL C,bit	AND direct bit to carry	2	4	82		
ANL C,/bit	AND direct bit inverse to carry	2	4	B0		
ORL C,bit	OR direct bit to carry	2	4	72		
ORL C,/bit	OR direct bit inverse to carry	2	4	A0		
MOV C,bit	Move direct bit to carry	2	2	A2		
MOV bit,C	Move carry to direct bit	2	4	92		



BRANCHING						
Mnemonic	Description	byte	cycle	opcode		
ACALL addr 11	Absolute jump to subroutine	2	4	11-F1		
LCALL addr 16	Long jump to subroutine	3	4	12		
RET	Return from subroutine	1	4	22		
RETI	Return from interrupt	1	4	32		
AJMP addr 11	Absolute jump unconditional	2	4	01-E1		
LJMP addr 16	Long jump unconditional	3	4	02		
SJMP rel	Short jump (relative address)	2	4	80		
JC rel	Jump on carry $= 1$	2	4	40		
JNC rel	Jump on carry $= 0$	2	4	50		
JB bit,rel	Jump on direct bit $= 1$	3	4	20		
JNB bit,rel	Jump on direct bit $= 0$	3	4	30		
JBC bit,rel	Jump on direct bit $= 1$ and clear	3	4	10		
JMP @A+DPTR	Jump indirect relative DPTR	1	4	73		
JZ rel	Jump on accumulator $= 0$	2	4	60		
JNZ rel	Jump on accumulator≠0	2	4	70		
CJNE A, dir, rel	Compare A, direct, jump not equal relative	3	4	B5		
CJNE A,#data,rel	Compare A, immediate, jump not equal relative	3	4	B4		
CJNE Rn,#data,rel	Compare register, immediate, jump not equal relative	3	4	B8-BF		
CJNE @Ri,#data,rel	Compare indirect, immediate, jump not equal relative	3	4	B6-B7		
DJNZ Rn,rel	Decrement register, jump not zero relative	2	4	D8-DF		
DJNZ dir,rel	Decrement direct byte, jump not zero relative	3	4	D5		

MISCELLANEOUS					
Mnemonic	Description	byte	cycle	opcode	
NOP	No operation	1	2	00	

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as 11-F1 (for example), are used for absolute jumps and calls with the top 3 bits of the code being used to store the top three bits of the destination address.



# **ELECTRICAL CHARACTERISTICS**

### **1.** Absolute Maximum Ratings $(T_A=25^{\circ}C)$

Parameter	Rating	Unit
Supply voltage	$V_{SS}$ -0.3 ~ $V_{SS}$ +5.5	
Input voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	V
Output voltage	$V_{SS} - 0.3 \sim V_{CC} + 0.3$	
All pins output current high	-80	
All pins output current low	+150	mA
Maximum Operating Voltage	5.5	V
Operating temperature	-40 ~ +85	20
Storage temperature	-65 ~ +150	°C



### **2. DC Characteristics** ( $T_A=25$ °C, $V_{CC}=2.3V \sim 5.5V$ )

Parameter	Symbol	C	onditions	Min	Тур	Max	Unit		
Operating Voltage	V _{CC}	F _{SYSCLK}	=14.7456 MHz	2.5	_	5.5	V		
Input High	V	A 11 Termont	V _{CC} =5V	0.6V _{CC}	_	_	V		
Voltage	$V_{IH}$	All Input	V _{CC} =3V	0.6V _{CC}	_	_	V		
Input Louy Voltago	V	All Input	V _{CC} =5V	-	_	$0.2V_{CC}$	V		
Input Low Voltage	$V_{IL}$	All Input	V _{CC} =3V	-	_	$0.2V_{CC}$	V		
I/O Port Source	T	All Output	$V_{CC}$ =5V, $V_{OH}$ =0.9 $V_{CC}$	5.5	11	_			
Current	I _{OH}	All Output	$V_{CC}=3V,$ $V_{OH}=0.9V_{CC}$	2.5	5	_	mA		
I/O Port Sink	I _{OL}	All Output,	V _{CC} =5V, V _{OL} =0.1V _{CC}	40	60	_	mA		
Current	IOL	An Output,	V _{CC} =3V, V _{OL} =0.1V _{CC}	20	30	_			
		FAST mode V _{CC} =5V	FRC=14.7456 MHz	-	3.5	_			
		FAST mode V _{CC} =3V	FRC=14.7456 MHz	_	3	_	mA		
					V _{CC} =3V	_	0.15	—	
			SLOW mode	V _{CC} =5V	_	0.18	-		
		IDLE mode	SRC, V _{CC} =5V	_	160	_			
			PWRSAV=0	SRC, V _{CC} =3V	_	150	_	]	
	I _{DD}	nt I _{DD}	IDLE mode	V _{CC} =5V	_	150	_		
Supply Current			PWRSAV=1	V _{CC} =3V	-	140	_		
			STOP mode	V _{CC} =5V	-	50	_	]	
			PWRSAV=0	V _{CC} =3V	_	40	-		
		STOP mode	V _{CC} =5V	_	7	-	μA		
		PWRSAV=1	V _{CC} =3V	_	1.4	-			
		HALT mode	V _{CC} =5V	_	55	-			
		PWRSAV=0	V _{CC} =3V	_	45	_			
		HALT mode	V _{CC} =5V	_	11	_	1		
		PWRSAV=1	V _{CC} =3V	_	4	—			
System Clock Frequency	F _{SYSCLK}	$V_{CC}$ >LVR _{TH}	V _{CC} =2.5V	_		14.7456	MHz		
				_	4.2	_	_		
				_	3.96	_			
				_	3.72	_			
LVR Reference Voltage	V _{LVR}	г	$\Gamma_{\rm A}=25^{\circ}{\rm C}$	_	3.48	_	v		
	• LVR	1	A-25 C	_	3.23	_	×		
				_	2.99	_			
				_	2.74	_			
				-	2.52	-			
LVR Hysteresis Voltage	V _{HYST}	Т	C _A =25°C	-	±0.1	_	V		



Parameter	Symbol	С	onditions	Min	Тур	Max	Unit
			_	4.32	_		
				_	4.2	_	
				_	4.08	_	
				_	3.96	_	
				-	3.84	_	
				-	3.72	_	
				_	3.6	-	
LVD Reference Voltage	$V_{LVD}$	T _A =25°C		-	3.48	_	V
				_	3.35	-	
				-	3.23	_	
				-	3.1	_	
			_	2.99			
						-	
				-	2.74	_	
				_	2.62		
						-	
Low Voltage Detection time	t _{LVR}	T _A =25°C		100	_	-	μs
Pull-Up Resistor	D	V -0V	V _{CC} =5V		35		KΩ
r un-op Kesistor	кр	$R_P$ $V_{IN}=0V$ $V_{CC}=3V$		_	55	_	N32

____



# **3.** Clock Timing $(T_A = -40^{\circ}C \sim +85^{\circ}C)$

Parameter	Condition	Min	Тур	Max	Unit
	25°C, V _{CC} =5.0V	-1%	14.7456	+1%	
FRC Frequency	$0^{\circ}$ C ~ 50°C, V _{CC} =5.0V	-1.5%	14.7456	+1.5%	MHz
	$0^{\circ}$ C ~ 85°C, V _{CC} =3.0 ~ 5.0V	-6%	14.7456	+3.5%	

### 4. Reset Timing Characteristics ( $T_A = -40^{\circ}C \sim +85^{\circ}C$ )

Parameter	Conditions	Min	Тур	Max	Unit
RESET Input Low width	Input $V_{CC}$ =5V ± 10 %	30	-		μs
WDT webeen time	V _{CC} =5V, WDTPSC=11	-	55	-	
WDT wakeup time	V _{CC} =3V, WDTPSC=11	-	57	_	ms

# 5. ADC Electrical Characteristics ( $T_A = 25^{\circ}C$ , $V_{CC} = 3.0V \sim 5.5V$ , $V_{SS} = 0V$ )

Parameter	Co	onditions	Min	Тур	Max	Unit
Total Accuracy	V _5	12  V  V = 0  V	_	±2.5	±4	LSB
Integral Non-Linearity	$v_{\rm CC}=3$ .	$12 V, V_{SS} = 0V$	_	±3.2	±5	LOD
	Source impeda	ance (Rs < 10K omh)	-	-	2	
May Input Cleak (f )	Source impeda	ance (Rs < 20K omh)	-	-	1	MIL
Max Input Clock $(f_{ADC})$	Source impedance (Rs < 50K omh)		-	-	0.5	MHz
	Source is VBG (ADCHS=1011b)		-	-	0.5	
Conversion Time	F _{AD}	$D_{C} = 1 MHz$	-	50	_	μs
Bandgap Reference Voltage (V _{BG} )	-	V _{CC} =3V~5.5V -40°C ~85°C	-1.5%	1.22	+1.5%	
ADC Reference Voltage (V _{ADC} )	ADCVREFS=1	V _{CC} =3V~5.5V 40°C ~85°C	-1.5%	2.5	+1.5%	v
$V_{CC}/4$ Reference Voltage $(V_{1/4})$		V _{CC} =5V, 25°C	-0.8%	1.26	+0.8%	, v
	– V _{CC} =3.6V, 25°C	-0.8%	0.907	+0.8%		
Input Voltage	_		V _{SS}	_	V _{CC}	



### 6. Characteristic Graphs



















# Package and Dice Information

Please note that the package information provided is for reference only. Since this information is frequently updated, users can contact Sales to consult the latest package information and stocks.

### **Ordering information**

Ordering number	Package
TM52F1732-MTP	We feed Direct block white
TM52F1716-MTP	Wafer/Dice blank chip
TM52F1732-COD	Wafer/Dice with code
TM52F1716-COD	water/Dice with code
TM52F1732-MTP-23	SOP 28-pin (300 mil)
TM52F1716-MTP-23	30F 28-pm (300 mm)
TM52F1732-MTP-24	SOP 32-pin (300 mil)
TM52F1716-MTP-24	<b>30r</b> <i>32</i> -piii (300 iiiii)
TM52F1732-MTP-B6	QFN20-pin (3*3*0.75-0.4mm)
TM52F1716-MTP-B6	QF1120-pin (5 * 5 * 0.75-0.41111)
TM52F1732-MTP-C3	QFN28-pin (4*4*0.75-0.4mm)
TM52F1716-MTP-C3	QFN28-piii (4*4*0.75-0.4iiiiii)
TM52F1732-MTP-B0	OEN22 nin $(AxAx0.75.0.4mm)$
TM52F1716-MTP-B0	QFN32-pin (4x4x0.75-0.4mm)
TM52F1732-MTP-71	$I \cap ED22 \min(7x7x1.4mm)$
TM52F1716-MTP-71	LQFP32-pin (7x7x1.4mm)



#### **Package Information**

SOP-32 (300mil) Package Dimension



SYMBOL	DI	MENSION IN N	ИM	DIMENSION IN INCH			
STWBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
A1	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	20.32	20.53	20.73	0.8000	0.8080	0.8160	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	$0^{\circ}$	-	$8^{\circ}$	$0^{\circ}$	-	$8^{\circ}$	

* NOTES : DIMENSION * D " DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.15 MM ( 0.006 INCH ) PER SIDE.



#### SOP-28 ( 300mil ) Package Dimension



SYMBOL	DI	MENSION IN N	ſM	DIMENSION IN INCH			
	MIN	NOM	MAX	MIN	NOM	MAX	
А	2.35	2.50	2.65	0.0926	0.0985	0.1043	
Al	0.10	0.20	0.30	0.0040	0.0079	0.0118	
В	0.33	0.42	0.51	0.0130	0.0165	0.0200	
С	0.23	0.28	0.32	0.0091	0.0108	0.0125	
D	17.70	17.90	18.10	0.6969	0.7047	0.7125	
Е	10.00	10.33	10.65	0.3940	0.4425	0.4910	
E1	7.40	7.50	7.60	0.2914	0.2953	0.2992	
e	1.27 BSC			0.050 BSC			
h	0.25	0.50	0.75	0.0100	0.0195	0.0290	
L	0.40	0.84	1.27	0.0160	0.0330	0.0500	
θ	0°	$4^{\circ}$	$8^{\circ}$	0°	4°	8°	
JEDEC	MS-013 (AE)						

 $\underline{\mathbb{A}}$  * Notes : dimension  $\mathbb{V}$  does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall

NOT EXCEED 0.15 MM (0.006 INCH) PER SIDE.



### QFN 28pin (4x4x0.75-0.4mm) Package Dimension



EVMDOL	D	IMENSION IN M	DIMENSION IN INCH			
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX
А	0.7	0.75	0.8	0.028	0.030	0.031
A1	0	0.02	0.05	0	0.001	0.002
A3		0.203 REF		0.008 REF		
В	0.15	0.2	0.25	0.006	0.008	0.010
D	4 BSC			0.157		
E	4 BSC		0.157			
D2	2.2	2.3	2.4	0.087	0.091	0.094
E2	2.2	2,3	2.4	0.087	0.091	0.094
e	0.4 BSC			0.016		
Ľ	0.3	0.4	0.5	0.012	0.016	0.020
K	0.45 REF			0.018		
JEDEC	MO-220					



#### QFN 20 (3*3*0.75-0.4mm) Package Dimension



SYMBOL	DI	MENSION IN M	ſM	DIMENSION IN INCH			
SIMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
А	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00	0.02	0.05	0.000	0.001	0.002	
A3	0.203 REF.			0.008 REF.			
В	0.15	0.20	0.25	0.006	0.008	0.010	
D	3.00 BSC			0.118 BSC			
Е		3.00 BSC			0.118 BSC		
e		0.40 BSC			0.016 BSC		
K	0.20	-	-	0.008	-	-	
E2	1.60	1.65	1.70	0.063	0.065	0.067	
D2	1.60	1.65	1.70	0.063	0.065	0.067	
L	0.30	0.40	0.50	0.012	0.016	0.020	
JEDEC							

▲ * NOTES : 1. ALL DIMENSION ARE IN MILLIMETRS.

2. DIMENSION B APPLIES TO METALLLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION B SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.



#### QFN 32pin (4x4x0.75-0.4mm) Package Dimension



Е

E2

Ne

Κ

L

L1

L2

h

JEDEC

3.90

2.60

0.20

0.35

0.30

0.15

0.30

4.00

2.65

2.80 BSC

-

0.40

0.35

0.20

0.35

4.10

2.70

-

0.45

0.40

0.25

0.40

0.154

0.102

0.008

0.014

0.012

0.006

0.012

M0-220

0.157

0.104

0.110 BSC

-

0.016

0.014

0.008

0.014

0.161

0.106

-

0.018

0.016

0.010

0.016





#### LQFP-32 (7×7mm) Package Dimension







SYMBOL	DI	MENSION IN M	ſМ	DIMENSION IN INCH				
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX		
А	-	-	1.60	-	-	0.063		
A1	0.05	0.10	0.15	0.001	0.004	0.006		
A2	1.35	1.40	1.45	0.053	0.055	0.057		
В	0.30	0.38	0.45	0.012	0.015	0.018		
С	0.09	0.09	0.20	0.004	0.006	0.008		
D	9.00 BSC			0.354 BSC				
D1		7.00 BSC			0.276 BSC			
Е		9.00 BSC			0.354 BSC			
E1	7.00 BSC			0.276 BSC				
e		0.80 BSC			0.031 BSC			
L	0.45	0.60	0.75	0.018	0.027	0.035		
θ	$0^{\circ}$	3.5°	$7^{\circ}$	0°	3.5°	$7^{\circ}$		
JEDEC	MS-026 (BBA)							

 $\underline{\mathbb{A}}$  * Notes : dimension `` d1 '' and `` e1 '' do not include mold

PROTRUSIONS. ALLOWABLE PROTRUSIONS IS 0.25 mm PER SIDE.

``D1 <math display="inline">'' and ``E1 '' are maximum plastic body size dimensions including mold mismach.