

Q/S1010-2011

MODEL NO. : <u>TM235VFS01-00</u>

ISSUED DATE: <u>2011/1/13</u>

VERSION : <u>1.0</u>

Preliminary SpecificationFinal Product Specification

Customer :

Approved by	Notes

SHANGHAI AVIC Confirmed :

H A	Prepared by	Checked by	Approved by

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 1 of 28

Q/S1010-2011

TABLE OF CONTENTS

TABLE OF CONTENTS	2
RECORD OF REVISION	3
1. OUTLINE	4
1.1 STRUCTURE AND PRINCIPLE	4
1.2 APPLICATIONS	4
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	5
3. ABSOLUTE MAXIMUM RATINGS	6
4. BLOCK DIAGRAM	7
5. MECHANICAL SPECIFICATIONS	8
6. ELECTRICAL CHARACTERISTICS	8
6.1 DRIVING FOR LCD	8
6.2 DRIVING FOR BACKLIGHT	9
7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	10
7.1 LVDS	10
7.2 BACKLIGHT	11
7.3 POSITION OF PLUGS AND A SOCKET	11
7.4 CONNECTION BETWEEN RECEIVER AND TRANSMITTER FOR LVDS	11
8. DISPLAY COLORS AND INPUT DATA SIGNALS	13
9. INTERFACE TIMING	14
9.1 TIMING CHARACTERISTICS	14
9.2 INPUT SIGNAL TIMING MAPPING	14
9.3 POWER ON/OFF SEQUENCE	15
9.4. POWER SUPPLY VOLTAGE SEQUENCE	16
9.5.FUSE	16
10. OPTICS	17
11. MARKINGS	20
11.1 PRODUCT LABEL	20
11.2 INDICATION LOCATIONS	21
12. PACKING, TRANSPORTATION AND DELIVERY	22
13. PRECAUTIONS	24
14. OUTDRAWING	27

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 2 of 28

Q/S1010-2011

RECORD OF REVISION

Rev	Issued Date	Description	Editor
1.0	2011-1-13	Preliminary Release	Stephen Sun

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 3 of 28

Q/S1010-2011

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

TM236VFS01-00 module is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight. The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. PC, signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays. The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATIONS

• Monitor for PC

1.3 FEATURES

- a-Si TFT active matrix
- LVDS interface
- R.G.B input 8bit, 16.7 millions colors (6bit+Hi-FRC)
- Resolution WXGA+ (1,920× 1,080 pixels)
- Wide viewing angle 85°/85° (L/R); 80°/80° (U/D)
- High contrast ratio 1000 :1
- Module size 544.8 (H) ×320.5 (V) ×11.4 (D) mm
- Fast response time (Ton+ Toff= 5 ms)
- High gamut (68%)
- Edge light type backlight (White-LED)
- Inverter less
- RoHS compliance
- TCO'03 compliance

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 4 of 28

Q/S1010-2011

2. GENERAL SPECIFICATIONS

Display area	521.28 (H) × 293.22 (V) mm (typ.)
Diagonal size of display	60.0 cm (23.6 inches)
Drive system	a-Si TFT active matrix
Display color	16.7 M colors (6bit+ Hi-FRC)
Pixel	1,920 (H) × 1,080(V) pixels
Pixel arrangement	RGB vertical stripe
Dot pitch	0.2715 (H) × 0.2715(V) mm
Pixel pitch	0.0905 (H) × 0.2715 (V) mm
Module size	544.8 (H) ×320.5 (V) ×11.4 (D) mm
Weight	ТВО
Contrast ratio	1000 :1 (typ.)
Viewing angle	170°/ 160° (typ.)
Color gamut	68 % (typ.)
Response time	5 ms (typ.)
Luminance	250 cd/m ² (typ.)
Transmissive Mode	Normally White
Surface Treatment	Anti Glare
Signal system	LVDS 2port
Power supply voltage	LCD panel signal processing board: 5.0V
Backlight	White-LED
Power consumption	ТВД

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 5 of 28

Q/S1010-2011

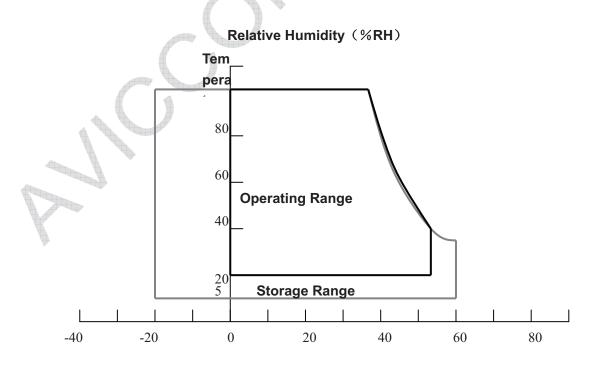
3. ABSOLUTE MAXIMUM RATINGS

F	Parameter	Symbol	Rating	Unit	Remarks
Power supply	Power voltage	VDD	-0.3 ~ +6.0	V	Ta = 25°C
voltage	Light bar voltage	V_{LED}	≤ 33	Vrms	Ta = 25°C
Input vo	ltage for signals	Vi	-0.3 ~ +3.3	V	Ta = 25°C
Light bar p	eak forward current	I _F	≤ 150	mArms	Note 3
Storag	ge temperature	Tst	-20 ~ +60	°C	Note 4
Operat	ing temperature	Тор	0 ~ +50	°C	Note 4, 5
Abso	olute humidity	AH	≤ 70	g/m ³	Ta > 50°C
Орен	ating altitude	-	≤ 4,850	m	0°C≤ Ta≤ 50°C
Stor	rage altitude	-	≤ 13,600	m	-20°C≤ Ta≤ 60°C

Note1: Display signals are DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-,

and CKB+/-.

Note2: Function signal is MSL.


Note3: Pulse width \leq 10msec, and duty \leq 1/10.

Note4: Temperature and relative humidity range is shown in the figure below.

(a) 90%RH Max. (Ta≤ 40°C)

- (b) Web-bulb temperature should be39°C Max. (Ta> 40°C)
- (c) No condensation.

Note5: The temperature of panel display surface area should be 0°C Min and 60°C Max.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 6 of 28

SHANGHAI AVIC OPTOELECTRONICS Q/S1010-2011 4. BLOCK DIAGRAM I/F LCD MODULE 100Ω ≹ DA0+ 100Ω ≶ DA0-DA1+ 100Ω ≶ Tming Controller DA1-DA2+ 100Ω ⋛ DA2-Receiver CKA+ 100Ω ≶ CKA-LVDS DA3+ DA3-100Ω ≹ DB0+ 100Ω ≥ Source Driver DB0-DB1+ 100Ω ≶ DB1-DB2+ 100Ω ⋛ LCD Panel DB2-Gate Driver H:1,920×3 (R,G,B) CKB+ 100Ω ⋛ V: 1,080 CKA-DB3+ DB3-Fuse VDD DC/DC Power Edge side backlight Converter V_{LED} 1/2 FG GND

Note: System ground (GND), FG (Frame ground) in the product should be connected together in customer equipment.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 7 of 28

Q/S1010-2011

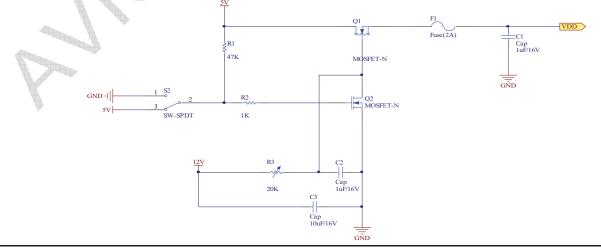
5. MECHANICAL SPECIFICATIONS

SHANGHAI AVIC OPTOELECTRONICS

Parameter	Specification	Unit
Module size	544.8± 0.5 (W) × 320.5 ± 0.5 (H) × 11.4 (D)	mm
Display area	521.28(H) × 293.22(V) mm (typ.), [60cm (23.6 inches)]	mm
Weight	TBD	g

6. ELECTRICAL CHARACTERISTICS

6.1 DRIVING FOR LCD


Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	4.5	5.0	5.5	V	25°C
Power supply current		IDD	-	900 Note1	1080 Note 2	mA	at VDD = 5.0V
Permissible ripple voltage		VRP	-		300	mV	25°C,Vp-p
Differential input voltage		Vid	100		600	mV	
Differential input threshold	Low	VTL	-100	-	-	mV	at VCM = 1.2V
voltage for LVDS receiver	High	VTH	-	-	100	mV	Note3
Input voltage width for receiver	LVDS	Vi	0	-	3.3	V	-
Terminating resistor		RT	-	100	-	Ω	-
Rush current		I _{rush}	-	-	2.5	А	Note4

Note 1: Checkered flag pattern (EIAJ ED-2522)

Note 2: 2H1V dot inverse pattern

Note 3: Common mode voltage for LVDS receiver

Note4: Measurement Conditions:

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 8 of 28

6.2 DRIVING FOR BACKLIGHT

Q/S1010-2011

(Ta=25°C) Note1 Unit Parameter Symbol min. Remarks typ. max. Light bar operation Operating with fixed voltage 25 33 Vrms V_{LED} driving current (for reference) Light bar 120 150 mArms Note1 **I**LED operation current (pin) Light bar Hr 30000 Hour ILED=120mA,Note3 _ operating lifetime

- Note1: The backlight of this product is made up of 1 light bar, LED to be 4014, 72pieces, 9 serials and 4*2 parallels.
- Note2: The light bar can work normally if the PWM dimming ratio range is from 0% to 100% and the operation current is 120mA.
- Note3: The operating lifetime is mean time to half-luminance. In case the product works under room temperature environment.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 9 of 28

Q/S1010-2011

7. CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

7.1 LVDS CONNECTOR

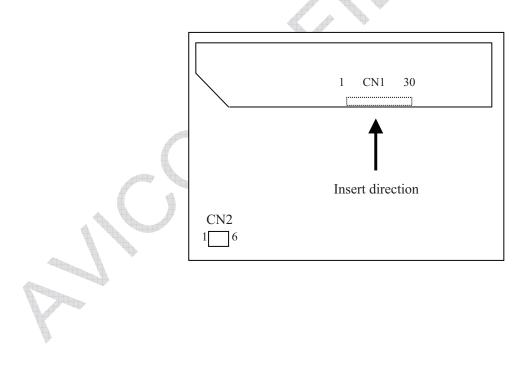
CN1: FI-XB30SSRLA-HF16 (Produced by JAE) or equivalent.

1 RX00- Negative LVDS differential data input. Channel O0 (odd) 2 RX00+ Positive LVDS differential data input. Channel O1 (odd) 3 RX01- Negative LVDS differential data input. Channel O1 (odd) 4 RX01+ Positive LVDS differential data input. Channel O1 (odd) 5 RX02- Negative LVDS differential data input. Channel O2 (odd) 6 RX02+ Positive LVDS differential data input. Channel O2 (odd) 7 GND Ground 8 RX0C- Negative LVDS differential clock input. (odd) 9 RX0C+ Positive LVDS differential data input. Channel O3 (odd) 10 RX03- Negative LVDS differential data input. Channel C3 (odd) 11 RXE0- Negative LVDS differential data input. Channel E0 (even) 13 RXE0- Negative LVDS differential data input. Channel E0 (even) 14 GND Ground Ground 15 RXE1- Negative LVDS differential data input. Channel E1 (even) 16 RXE2+ Positive LVDS differential data input. Channel E2 (even) 19 RXE2+ Positive LVDS differential clock input. (even) </th <th>Pin</th> <th>Name</th> <th>Description</th>	Pin	Name	Description
3 RX01- Negative LVDS differential data input. Channel O1 (odd) 4 RX01+ Positive LVDS differential data input. Channel O1 (odd) 5 RX02- Negative LVDS differential data input. Channel O2 (odd) 6 RX02+ Positive LVDS differential data input. Channel O2 (odd) 7 GND Ground 8 RXOC- Negative LVDS differential clock input. (odd) 9 RXO2+ Positive LVDS differential clock input. (odd) 10 RX03- Negative LVDS differential data input. Channel O3 (odd) 11 RX03+ Positive LVDS differential data input. Channel O3 (odd) 12 RXE0- Negative LVDS differential data input. Channel E0 (even) 13 RXE0+ Positive LVDS differential data input. Channel E0 (even) 14 GND Ground 15 RXE1- Negative LVDS differential data input. Channel E1 (even) 16 RXE1+ Positive LVDS differential data input. Channel E2 (even) 19 RXE2- Negative LVDS differential clock input. (even) 20 RXE2- Negative LVDS differential clock input. (even) 21 <td>1</td> <td>RXO0-</td> <td>Negative LVDS differential data input. Channel O0 (odd)</td>	1	RXO0-	Negative LVDS differential data input. Channel O0 (odd)
4RX01+Positive LVDS differential data input. Channel O1 (odd)5RX02-Negative LVDS differential data input. Channel O2 (odd)6RX02+Positive LVDS differential data input. Channel O2 (odd)7GNDGround8RXOC-Negative LVDS differential clock input. (odd)9RXOC+Positive LVDS differential clock input. (odd)10RX03-Negative LVDS differential data input. Channel O3(odd)11RX03+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply29VIN+5.0V power	2	RXO0+	Positive LVDS differential data input. Channel O0 (odd)
5 RX02- Negative LVDS differential data input. Channel O2 (odd) 6 RX02+ Positive LVDS differential data input. Channel O2 (odd) 7 GND Ground 8 RXOC- Negative LVDS differential clock input. (odd) 9 RXOC+ Positive LVDS differential clock input. (odd) 10 RX03- Negative LVDS differential data input. Channel O3(odd) 11 RX03+ Positive LVDS differential data input. Channel O3 (odd) 12 RXE0- Negative LVDS differential data input. Channel E0 (even) 13 RXE0+ Positive LVDS differential data input. Channel E0 (even) 14 GND Ground Ground 15 RXE1+ Positive LVDS differential data input. Channel E1 (even) 16 16 RXE2+ Negative LVDS differential data input. Channel E1 (even) 17 17 GND Ground 18 RXE2- Negative LVDS differential data input. Channel E2 (even) 19 RXE2+ Positive LVDS differential clock input. (even) 20 RXEC- Negative LVDS differential clock input. (even) 21 RXE3+ Positive LVDS differential data input. Channel E3 (even) 22	3	RXO1-	Negative LVDS differential data input. Channel O1 (odd)
6RXO2+Positive LVDS differential data input. Channel O2 (odd)7GNDGround8RXOC-Negative LVDS differential clock input. (odd)9RXOC+Positive LVDS differential clock input. (odd)10RXO3-Negative LVDS differential data input. Channel O3(odd)11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential clock input. (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	4	RXO1+	Positive LVDS differential data input. Channel O1 (odd)
7GNDGround8RXOC-Negative LVDS differential clock input. (odd)9RXOC+Positive LVDS differential clock input. (odd)10RXO3-Negative LVDS differential data input. Channel O3(odd)11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential clock input. (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	5	RXO2-	Negative LVDS differential data input. Channel O2 (odd)
8RXOC-Negative LVDS differential clock input. (odd)9RXOC+Positive LVDS differential clock input. (odd)10RXO3-Negative LVDS differential data input. Channel O3(odd)11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	6	RXO2+	Positive LVDS differential data input. Channel O2 (odd)
9RXOC+Positive LVDS differential clock input. (odd)10RXO3-Negative LVDS differential data input. Channel O3(odd)11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential clock input. (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	7	GND	Ground
10RXO3-Negative LVDS differential data input. Channel O3(odd)11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	8	RXOC-	Negative LVDS differential clock input. (odd)
11RXO3+Positive LVDS differential data input. Channel O3 (odd)12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	9	RXOC+	Positive LVDS differential clock input. (odd)
12RXE0-Negative LVDS differential data input. Channel E0 (even)13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	10	RXO3-	Negative LVDS differential data input. Channel O3(odd)
13RXE0+Positive LVDS differential data input. Channel E0 (even)14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	11	RXO3+	Positive LVDS differential data input. Channel O3 (odd)
14GNDGround15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	12	RXE0-	Negative LVDS differential data input. Channel E0 (even)
15RXE1-Negative LVDS differential data input. Channel E1 (even)16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	13	RXE0+	Positive LVDS differential data input. Channel E0 (even)
16RXE1+Positive LVDS differential data input. Channel E1 (even)17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	14	GND	Ground
17GNDGround18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	15	RXE1-	Negative LVDS differential data input. Channel E1 (even)
18RXE2-Negative LVDS differential data input. Channel E2 (even)19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	16	RXE1+	Positive LVDS differential data input. Channel E1 (even)
19RXE2+Positive LVDS differential data input. Channel E2 (even)20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	17	GND	Ground
20RXEC-Negative LVDS differential clock input. (even)21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	18	RXE2-	Negative LVDS differential data input. Channel E2 (even)
21RXEC+Positive LVDS differential clock input. (even)22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	19	RXE2+	Positive LVDS differential data input. Channel E2 (even)
22RXE3-Negative LVDS differential data input. Channel E3 (even)23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	20	RXEC-	Negative LVDS differential clock input. (even)
23RXE3+Positive LVDS differential data input. Channel E3 (even)24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	21	RXEC+	Positive LVDS differential clock input. (even)
24GNDGround25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	22	RXE3-	Negative LVDS differential data input. Channel E3 (even)
25GNDGround26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	23	RXE3+	Positive LVDS differential data input. Channel E3 (even)
26NCNot connection.27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	24	GND	Ground
27GNDGround28VIN+5.0V power supply29VIN+5.0V power supply	25	GND	Ground
28VIN+5.0V power supply29VIN+5.0V power supply	26	NC	Not connection.
29 VIN +5.0V power supply	27	GND	Ground
	28	VIN	+5.0V power supply
30 VIN +5.0V power supply	29	VIN	+5.0V power supply
	30	VIN	+5.0V power supply

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 10 of 28

SHANGHAI AVIC OPTOELECTRONICS 7.2 BACKLIGHT

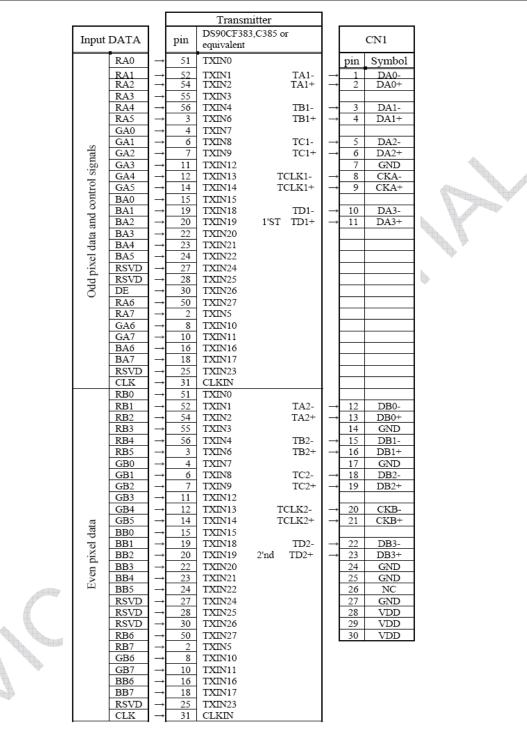

Q/S1010-2011

CN2:

Description	
Cathode of LED string	
Cathode of LED string	
VLED	
VLED	
Cathode of LED string	
Cathode of LED string	
	Cathode of LED string Cathode of LED string VLED VLED Cathode of LED string

Note1: The ports of VDD and GND should be all used. As for the input of LVDS, please use the twisted pair wire of the transmission impedance 100Ω .

7.4 CONNECTION BETWEEN RECEIVER AND TRANSMITTER FOR LVDS


The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 11 of 28

Q/S1010-2011

SHANGHAI AVIC OPTOELECTRONICS

Note1: The lowest bit (RA0, GA0, BA0, RB0, GB0, BB0), the most upper bit (RA7, GA7, BA7, RB7, GB7, BB7)

Note2:Connecting cable between LCD panel's connector and transmitter should use 100Ω twisted line. Note3: If only Hsync and Vsync, the product don't work. Make sure DE signal has been input.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 12 of 28

Q/S1010-2011

8. DISPLAY COLORS AND INPUT DATA SIGNALS

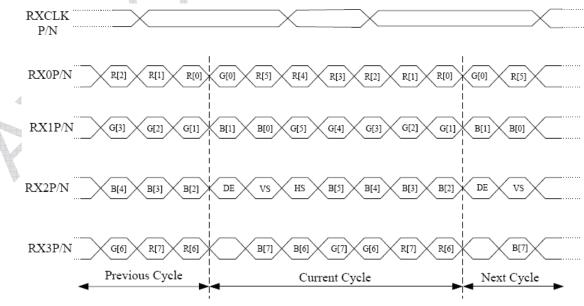
This product can display in equivalent to 16,777,216 colors in 256 scales. Also the relation between display colors and input data signals is as the following table.

[splay						D	ata	sig	nal	(():Lc	w I	eve	Ι,	1:H	ligh	Le	/el)	_					
		olors	R7	R6	R	5 F	R4	R3	R2	R1	G7	G6	G5	5 G	4 G	63	G2	G1	B7	B6	B5	В4	I	B3	B2	B1
		01013	R0								G0								B0							
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	<u>ب</u>	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Solo	Magent	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Basic Color	а																4			b .	Ŧ				
	Bas	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	d)		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red grayscale	Dark ♠	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	rays					:				\langle				:								:				
	d gı	↓ Bright				:			9		K	•		:								:				
	Re	Bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Red	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	ale	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	/sca	Dark ↑	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	Green grayscale					:																:				
	en	Bright		~	0	:	~	0	~	0	4	4	4	:		4	~	4	~	0	~	:	~	0	~	_
	Gre		0 0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0 0	0	0	0
		Green		0	0	0	0	0	0	0	1	1	·	1	1	1	1	0	0	0	0	0		0	0	0
		Black	0	0	0	0	0	0	0	0	1 0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		DIACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	e	Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	'sca	≜	0	0	0		0	0	0	0	0	0	0		0	0	0	0	0	0	0		0	0	1	0
	gray																									
	Blue grayscale	♦ Bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1.	1	1	0	1
	B	-	0	0	0	0		0	0	0	0					0					1	1		1	1	
		Blue	0	0	0	0	0 0	0	0	0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	1 1	1 1	1	1	1	1		0 1
			U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U	I	I	1	1	1	1	1	1

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 13 of 28

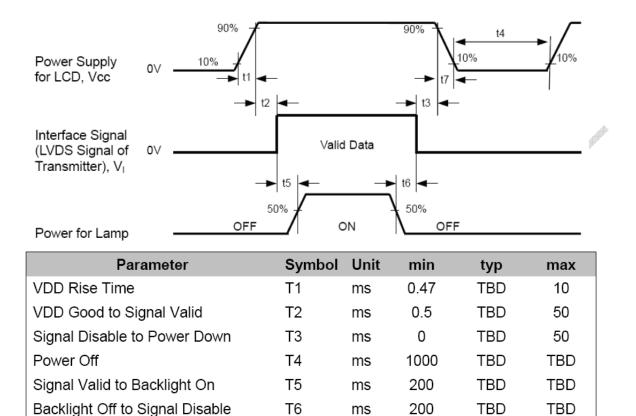
Q/S1010-2011


9. INTERFACE TIMING

9.1 TIMING CHARACTERISTICS

Р	Symbol	min.	typ.	max.	Unit	Remarks	
		1/tc	69.30	73.26	77.35	MHz	LVDS
Clock	Frequency	tc	14.43	13.65	12.93	ns	transmitter input
	Rise time, Fall time	-		er to the til teristics o	•	ns	
	Duty	-	t	ransmitte	<u>_</u> -	Note 1	
	Quela	415	14.8	18.0	26.5	μs	
Horizontal signals	Cycle	th	1050	1100	1150	CLK	55.5kHz(typ.)
Signals	Display period	thd		960	Carry		-
Vertical	Cycle	tv	13.3	16.67	20	ms	
Vertical signals	Cycle	ιv	1100	1110	1121	Н	60.0Hz(typ.)
signals	Display period	tvd		1080	- Andrew		-
	Setup time	-	Pofe	er to the ti	ns		
DE/Data	Hold time	-	charac	ns	Note 1		
DE/Dala	Rise time, Fall time			ransmitte	ns		

Note1: See the data sheet of LVDS transmitter.


The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 14 of 28

Q/S1010-2011

SHANGHAI AVIC OPTOELECTRONICS 9.3 Power On/Off Sequence

Note1: When VDD is on, but the value is lower than 4.5V, a protection circuit may work, then the module may not display.

ms

0

TBD

100

T7

Note2: The signal line is not connected with the module, at the end of cable the terminal resistor of 100Ω should be added.

Note3: Display signals (D0+/-, D1+/-, D2+/-, D3+/- and CK+/-) must be "0" voltage, exclude the VALID period (See above sequence diagram). If these signals are higher than 0.3 V, the internal circuit is damaged.

If some of display signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. If customer stops the display signals, they should cut VDD.

Note4: When VDD is on, it should be set above 4.0V.

VDD Fall Time

Note5: The backlight power supply voltage should be inputted within the valid period of display and function signals, in order to avoid unstable data display.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 15 of 28

SHANGHAI AVIC OPTOELECTRONICS 9.4 POWER SUPPLY VOLTAGE RIPPLE

Q/S1010-2011

When the power supply is designed, the next form can give the reference. If the voltage ripple is over the value in next form, the noise should be seen in display area.

Ripple (Measured at input terminal of power supply)

	VDD (5V to drive the panel)	1
Ripple voltage	≤300mVP-P(Including spike noise)	

9.5 Fuse

Deremeter	Fuse	9	Deting		Domorko
Parameter	Туре	Supplier	Rating	Fusing current	Remarks
VDD	F0603FA2000V032T	AEM	2A 32V	-	

Note1: There are different power supply systems from the power input terminal. The power supply capacity should be less than the fusing current. If the power supply capacity is above the fusing current, the fuse may blow in a short time, and then nasty smell, smoking and so on may occur.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 16 of 28

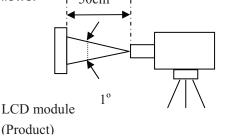
Q/S1010-2011

Note1,Note2

10. OPTICS

10.1 Optical characteristics

							NOLET,	
Parameter Note1		Condition	Symbol	min.	typ.	max.	Unit	Remarks
Luminance		White at center θR=0°, θL=0°, θU=0°, θD=0°	L	(200)	250	-	cd/ m ²	-
Contrast ratio		White/Black at center θR=0°, θL=0°, θU=0°, θD=0°	CR	(700)	1000	-	-	Note3
Luminance un	iformity	White θR=0°, θL=0°, θU=0°, θD=0	LU	-	1.25	(1.33)		Note4
	White	X coordinate	Wx	0.283	0.313	0.343	<u> </u>	
	vvnite	Y coordinate	Wy	0.299	0.329	0.359	-	
	Red	X coordinate	Rx	-	TBD	-	-	
Charactisity		Y coordinate	Ry	-	TBD	<u> </u>	-	
Chromaticity	Green	X coordinate	Gx	- /	TBD	-	-	Note5
		Y coordinate	Gy		TBD	-	-	
	Dhuo	X coordinate	Bx	<i>₽</i> .₽	TBD	-	-	
	Blue	Y coordinate	Ву	-	TBD	-	-	
Color gamut		θR=0°, θL=0°, θU=0°, θD=0 At center,against NTSC	С	-	68	-	%	
		White to black	Ton	-	1.3	(2.6)	ms	NotoG
Response time		Black to white	Toff	-	3.7	(7.4)	ms	Note6 Note7
		Ton+ Toff	-	-	5	(10)	ms	Note?
	Right	θU=0°, θD=0°, CR≥10	θR	(75)	85	-	o	
Viewing	Left	θU=0°, θD=0°, CR≥10	θL	(75)	85	-	o	Note9
angle	Up	θR=0°, θL=0°, CR≥10	θU	(70)	80	-	o	Note8
	Down	θR=0°, θL=0°, CR≥10	θD	(70)	80	-	o	
	4000							


Note1: The values in upper table are only initial characteristics.

Note2: Measurement conditions are as follows.

Ta= 25°C, VDD= 5.0V, IBL= 6.5mArms/lamp, Display mode: WXGA+,

Horizontal cycle=55.56KHz, Vertical cycle=60.0Hz

Optical characteristics are measured at luminance saturation after 30minutes from working the product in the dark room. Also measurement method for luminance is as follows.

Luminance Meter (TOPCON BM-5A) Spectroradiometer(TOPCON SR-3)

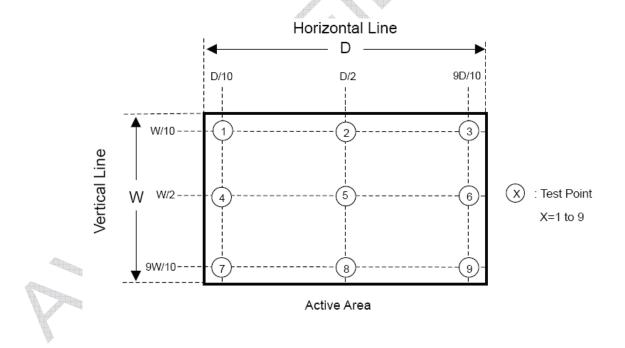
The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 17 of 28

Q/S1010-2011

SHANGHAI AVIC OPTOELECTRONICS

Note 3: See"**10.2 Definition of contrast ratio**". Note 4: See"**10.3 Definition of luminance uniformity**". Note 5: CIE 1931 Chromaticity Diagram Standard. Note 6: Product surface temperature: TopF = 33.0 °C Note 7: See "**10.4 Definition of response time**". Note 8: See "**10.5 Definition of viewing angle**".


10.2 Definition of contrast ratio

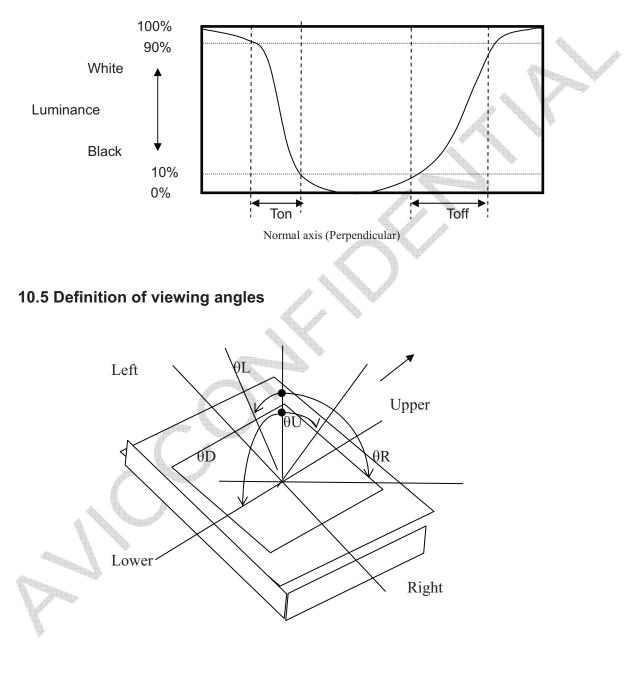
The contrast ratio is calculated by using the following formula. Contrast ratio (CR) = <u>Luminance of white screen</u> Luminance of black screen

10.3 Definition of luminance uniformity

The luminance uniformity is calculated by using the following formula. Luminance uniformity (LU) =<u>Maximum luminance from ① to ⑨</u> Minimum luminance from ① to ⑨

The luminance is measured at near the 9 points shown below.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.


Page 18 of 28

10.4 Definition of response times

Q/S1010-2011

Response time is measured, the luminance changes from "white" to "black", or "black" to "white" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 90% down to 10%. Also Toff is the time it takes the luminance change from 10% up to 90%. (See the following diagram.)

12 o'clock

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 19 of 28

屏库:全球液晶屏交易中心

SHANGHAI AVIC OPTOELECTRONICS

Q/S1010-2011

11. MARKINGS

The various markings are attached to this product. See "11.2 INDECATION LOCATIONS" for attachment positions.

11.1 PRODUCT LABEL

					Р	roduct lat	bel		/	UL M	ark	
T number M number	1	10.00 Mar. 10	002		01	001				RoHS 250878 CHINA		ROHS Mark
Note 1			0200		~12	3413	AIU	ZAU.	574	Note2		
Note1:	The mea	aning of	OEM nu	ımber, E	xample:	S236V0	01A12S	A1SA10)9A0374			
S23	36V0	1A	12)	S	SA1S	A1		09A		037	4
	ule Num		Source	e & Gate IC Code		ocation L			ate code	S	erial Num	
	t e code : Charac	: ter Year	Codes									
Month	2010	2011	2012	2013	2014	2015	2016	2017	2018	So on]	
Code	0	1	2	3	4	5	6	7	8		1	
2nc	d Charao	cter Mon	th Code	es	•	<u>.</u>				Ц	-	
Month	January	February	March	April	May	June	July	August	September	October	November	December
Code	1	2	3	4	5	6	7	8	9	А	В	С
3rd	Charac	ter Day	Codes		•						0	
Day	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th	11st	12nd
Code	1	2	3	4	5	6	7	8	9	А	В	С
				1.61	1.5.1	10.1	101	201			0.0.1	0.11
<u>`</u>	12.1	1.4.1	154		17th	18th	19th	20th	21st	22nd	23rd	24th
	13rd D	14th E	15th F	16th G	H	J	K	L	М	Ν	Р	Q
							K	L	М	N	Р	Q
]]]							K 31st X	L	М	N	Р	Q

Note2: Do not attach anything such as label and so on, on the product label! In case repair the product, AVIC needs the contents of product label such as the lot number, inspection date and so on, to identify the warranty period with individual product. If AVIC cannot decipher the contents of product label, such repair shall be entitled to charge. Also AVIC may give a new lot number to reconditioned products.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

SHANGHAI AVIC OPTOELECTRONICS 11.2 INDICATION LOCATIONS

Q/S1010-2011

Product rear side				
Disposal method i	narking	Barcode label	Product label	

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 21 of 28

Q/S1010-2011

12. PACKING, TRANSPORTATION AND DELIVERY

AVIC will pack products to deliver to customer in accordance with AVIC packing specifications, and will deliver products to customer in such a state that products will not suffer from a damage during transportation .The delivery conditions are as follows.

12.1 PACKING

- (1) Packing box
- 6 products are packed up with the maximum in a packing box(See "12.5 OUTLINE FIGURE FOR PACKING ").
- Products are put into a plastic bag for prevention of moisture with cushion, and then the bag is sealed up with heat sealing.

The type name and quality are shown on outside of the packing box, either labeling or printing.

(2) Pallet Packing (See"12.5 OUTLINE FIGURE FOR PACKING ")

- ① Packing boxes are tired on a cardboard pallet.(8 boxes×4 tiers maximum)
- ② Cardboard sleeve and top cap are attached to the packing boxes, then they are fixed by a band.

12.2 INSPECTION RECORD SHEET

Inspection record sheets are included in the packing box with delivery products to customer. It is summarized to a number of products for pass/fail assessment.

12.3 TRANSPORTATION

The product is transported by vehicle, aircraft or shipment in the state of pallet packing.

12.4 SIZE AND WEIGHT FOR PACKING BOX

	Parameter	Packing box	Unit
	Size	604 (L) × 274 (W) × 417 (H) (typ.)	mm
	Weight	TBD	kg
	Total weight	TBD	kg
V			

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 22 of 28

SHANGHAI AVIC OPTOELECTRONICS Q/S1010-2011 **12.5 OUTLINE FIGURE FOR PACKING** LCD Module PE Bag ******** LCD Module Cushion Bottom Cushion (Cover) Cushion (Vertical) ٨

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 23 of 28

Q/S1010-2011

13. PRECAUTIONS

13.1 MEANING OF CUTION SIGNS

The following caution signs have very important meaning .Be sure to read "9.2 CAUTIONS" and "9.3 ATTENTIONS", after understanding these contents!

This sign have the meaning that customer will be injured by himself or the product will sustain a damage, if customer has wrong operations.

This sign has the meaning that customer will get an electrical shock, if customer has wrong operations.

This sign has the meaning that customer will be injured by himself, if customer has wrong operations.

13.2 CAUTIONS

Do not touch lamp cables while turn on .Customers will be in danger of an electric shock

 * Do not touch the working backlight and IC. Customers will be in danger of burn injury.
 * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass.(shock :To be not greater 294m/s² and to be not greater 11ms, Pressure: To be not greater 19.6N)

13.3 ATTENTIONS

- 13.3.1 Handling of the product
- 1) Take hold of both ends without touch the circuit board when customer pulls out products (LCD modules) from inner packing box. If customer touches it, products may be broken down or out of adjustment, because of stress to mounting parts.
- ② Do not hook cables nor pull connection cables such as flexible cable and so on , for fear of damage.
- ③ If customer puts down the product temporarily, the product puts on flat subsoil as a display side turns down.
- ④ Take the measures of electrostatic discharge such as earth band, ionic shower and so on, when customer deal with the product, because products may be damaged by electrostatic.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 24 of 28

Q/S1010-2011

- ⁽⁵⁾ The torque for mounting screws must never exceed 0.34N-m. Higher torque values might result in distortion of the bezel.
- ⑥ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings).And do not add undue stress to any portion (such as bezel flat area) except mounting hole portion.
- ⑦ Bends or twist described above and undue stress to any portion except mounting hole portion may cause display un-uniformity.
- ⑧ Do not press or rub on the sensitive display surface .If customer clean on the panel surface, AVIC recommends using the cloth with ethanolic liquid such as screen cleaner for LCD.
- Do not push-pull the interface connectors while the product is working, because wrong power sequence may break down the product.
- Do not bend or unbend the lamp cable at the near part of the lamp holding rubber, to avoid the damage for high voltage side of the lamp. This damage may cause a lamp breaking and abnormal operation of high voltage circuit.

13.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in antistatic pouch in room temperature, because of avoidance for dusts and sunlight, if customer stores the product.
- ② In order to prevent dew condensation occurring by temperature difference, the product packing box must be opened after leave under the environment of an unpacking room temperature enough. Because a situation of dew condensation occurring is changed by the environment temperature and humidity, evaluate the leaving time sufficiently. (Recommendation leaving time: 6 hour or more with packing state)
- ③ Do not operate in a high magnetic field .Circuit boards may be broken down by it.
- ④ This product is not designed as radiation hardened.
- ⁽⁵⁾ Use an original protection sheet on the product surface (polarizer). Adhesive type protection sheet should be avoided, because it may change color or properties of the polarizer.

13.3.3 Characteristics

The following items are neither defects nor failures.

- ① ambient temperature.
- 2 The LCD may be seemed luminance non-uniformity, flicker, vertical seam or small spot by display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time ,and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- ④ Do not display the fixed pattern for a long time because it may cause image sticking .Use a screen saver, if the fixed pattern is displayed on the screen.
- ⁽⁵⁾ The display color may be changed by viewing angle because of the use of condenser sheet in the backlight.
- 6 Optical characteristics may be changed by input signal timings.

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

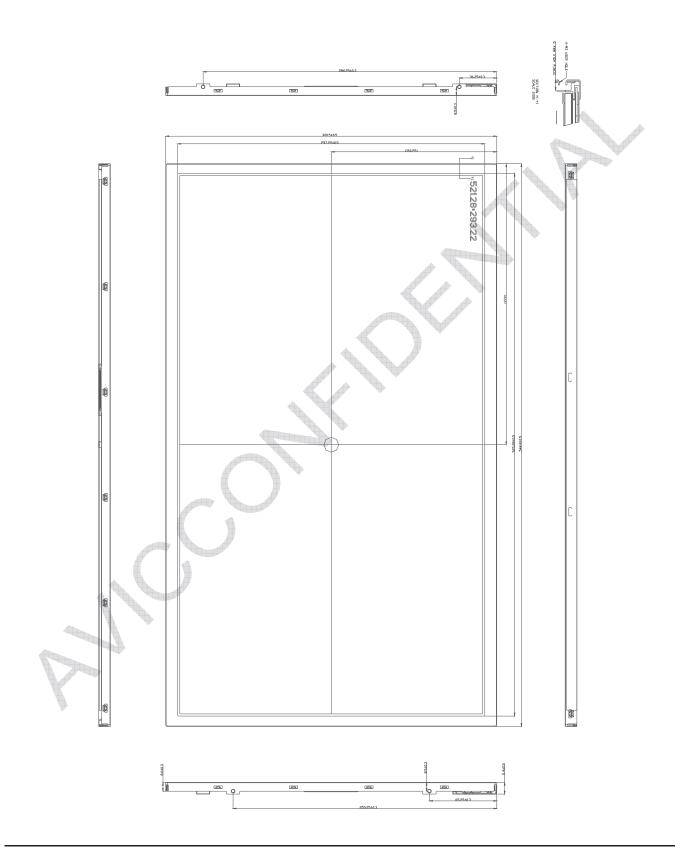
Page 25 of 28

Q/S1010-2011

⑦ The interference noise of input signal frequency for this product and luminance control frequency of customer's backlight inverter may appear on a display. Set up luminance control frequency of backlight inverter so that the interference noise doses not appear.

13.4 Other

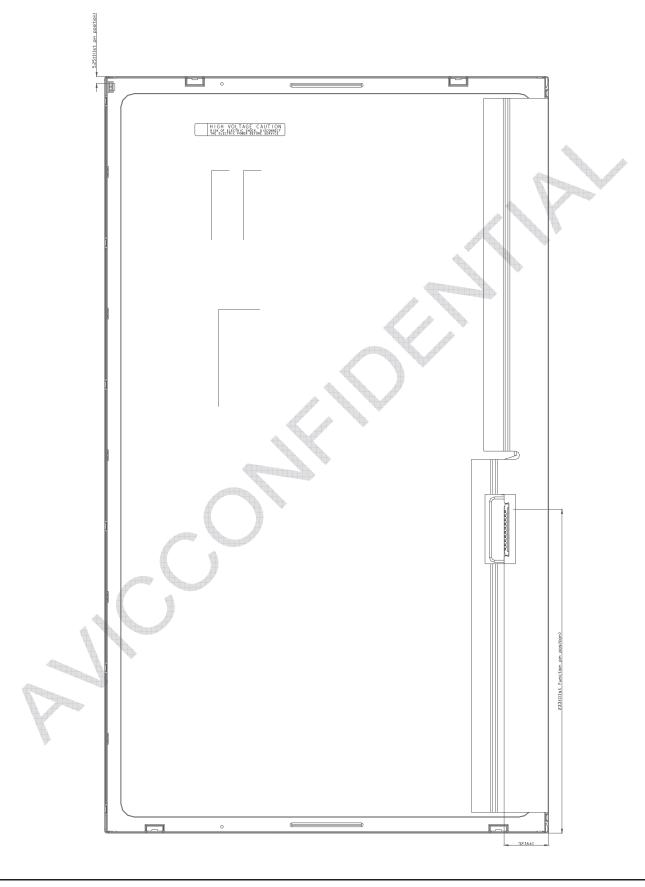
- ① All GND and VCC terminals should be used without a non-connected line.
- 2 Do not disassemble a product or adjust volume without permission of AVIC.
- ③ Pay attention not to insert waste materials inside of products, if customer uses screw nails.
- ④ Pack the product with original shipping package, because of avoidance of some damages during transportation, when customer returns it to AVIC for repair and so on .
- Solution Solution


The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 26 of 28

Q/S1010-2011

14.OUTDRAWING



The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 27 of 28

Q/S1010-2011

The information contained herein is the exclusive property of SHANGHAI AVIC OPTOELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI AVIC OPTOELECTRONICS Corporation.

Page 28 of 28