MODEL NO. : _	TM028LDH05
ISSUED DATE:	2010-04-26
VERSION :	Ver 1.0

Preliminary SpecificationFinal Product Specification

Customer :	
Approved by	Notes

SHANGHAI TIANMA Confirmed :

	Prepared by	Checked by	Approved by
-			

This technical specification is subjected to change without notice.

Table of Contents

Cov	oversheet	1
Tab	ble of Contents	2
Red	ecord of Revision	3
1	General Specifications	
2	Input/Output Terminals	
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	7
5	Timing Chart	10
6	Optical Characteristics	
7	Environmental / Reliability Test	
8	Mechanical Drawing	
9	Packing Drawing	
10		

Record of Revision

Rev	Issue Date	Description	Editor
1.0	2010-04-26	Preliminary release.	Qiuping Yang
4			

1 General Specifications

	Feature	Spec	
	Size	2.8 inch	
	Resolution	240(RGB) x 400	
	Interface	CPU 16/8 bit	
	Color Depth	262K/65K	
	Technology Type	a-Si	
Display Spec	Pixel Pitch (mm)	0.153 x 0.153	
	Pixel Configuration	R.G.B. Vertical Stripe	
	Display Mode	TM with Normally White	
	Surface Treatment	Clear type (3H)	
	Viewing Direction	6 o'clock	
	Gray Scale Inversion Direction	12 o'clock	
	LCM (W x H x D) (mm)	42.00×72.80×1.85	
Mechanical	Active Area(mm)	36.72×61.20	
Mechanical Characteristics	With /Without TSP	Without TSP	
Characteristics	Weight (g)	TBD	
	LED Numbers	4 LEDs	
Electronic	Driver IC	HX8352B	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: RoHS.

Note 3: LCM weight tolerance: +/- 5%.

2 Input/Output Terminals

2.1 TFT LCD Panel

No	Symbol	I/O	Description	Remark
1	NC	-	No connection	
2	NC(X+)	-	No connection	
3	NC(Y+)	-	No connection	
4	NC(X-)	-	No connection	
5	NC(Y-)	-	No connection	
6	GND	Р	Ground	
7	IOVCC	Р	Digital power supply	
8	VCC/VCI	Р	Analog power supply	
9	FMARK	0	Tearing effect output, if not used ,let it open	
10	CS		Chip select signal, low: chip can be accessed;	
11	RS	1	Command or parameter select signal; Low: command; High:	
-	_		parameter;	
12	WR		A write strobe signal and enables an	
			operation to write data when the signal is low.	
13	RD		A read strobe signal and enables an	
14	DB0		Data input/output	
15	DB1		Data input/output	
16	DB2		Data input/output	
17	DB3		Data input/output	
18	DB4		Data input/output	
19	DB5		Data input/output	
20	DB6		Data input/output	
21	DB7		Data input/output	
22	DB8		Data input/output	
23	DB9		Data input/output	
24	DB10		Data input/output	
25	DB11		Data input/output	
26	DB12		Data input/output	
27	DB13		Data input/output	
28	DB14		Data input/output	
29	DB15 💧		Data input/output	
30	RESET		Reset signal; Must be reset after power is supplied;	
31	GND	P	Ground	
32	A		LED Anode	
33	K1	<u> </u>	LED Cathode	
34	K2		LED Cathode	
35	K3		LED Cathode	
36	K4		LED Cathode	
	-		CPU I/F select pin.	
37	IMO	I	IM0=0,16bit; DB[15:0]	
1			IM0=1,8bit; DB[15:8]	

Note: I/O definition: I-----Input; O---Output; P----Power/Ground.

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

GND=0V, Ta=25°C

Item	Symbol	Min	Мах	Uni t	Remark
Analog Supply Voltage	VCC -0.3 4.6				
Logic Supply Voltage	IOVCC	-0.3	4.6	v	
Input Signal Voltage	CS,WR,RD,RS,RESET IM0,DB[15:0]	-0.3	VCC+0.3	V	
Back Light Forward Current	I _{LED}		25.0	mA	For each LED
Operating Temperature	T _{OPR}	-20	70	°C	
Storage Temperature	T _{STG}	-30	80	°C	

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

GND=0V, Ta=25℃

lten	า	Symbol	Min	Тур	Max	Unit	Remark
Analog S Volta		VCC	2.5	2.8	3.3	V	
Logic Supply	y Voltage	IOVCC	1.65	2.8	3.3	V	
Input Signal	Low Level	V _{IL}	0		0.2xIOVCC	V	CS,WR,RD,RS,RESET
Voltage	High Level	V _{IH}	0.8xIOVCC		IOVCC	V	IM0,DB[15:0]
Output	Low Level	Vol	0		0.2xIOVCC	V	EMADIZ
Signal Voltage	High Level	Vон	0.8xIOVCC		IOVCC	v	FMARK
		Black Mode		TBD		mW	Frame Rate:60Hz
(Panel+		8 color Mode		TBD		μW	
Power Cons	sumption	Sleeping Mode	-	TBD	-	μW	

TM028LDH05 V1.0

4.2 Driving Backlight

Ta=25℃

Item	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _F		15		mA	For each LED
Forward Voltage	V _F		3.2		V	
Power Consumption	W _{BL}		192		mW	
Operating Life Time		10000	(20000)		Hrs	

Note 1: The figure below shows the connection of backlight LED.

Note 2: One LED: I_F =15mA, V_F =3.2V.

Note 3:

 I_F is defined for one channel LED.

Optical performance should be evaluated at Ta=25 $^{\circ}$ C only.

If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.

Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

TM028LDH05 V1.0

4.3 Block Diagram

5 Timing Chart

5.1 Interface Characteristics

Figure 5.1 CPU Interface Characteristics

5.2 Interface Timing Parameters

Normal Write Mode

Signal	Symbol	Parameter		Spec.		Description	
Signal	Symbol	Parameter	Min.	Max.	Unit	Description	
RS	t _{AST}	Address setup time	10		20		
10	t _{AHT} 🤚	Address hold time(Write/Read)	10	-	ns	-	
	tснw	Chip select "H" pulse width	0				
	tcs	Chip select setup time (Write)	35				
CS	t RCSFM	Chip select setup time	355	-	ns	-	
	tcsr	Chip select wait time(Write/Read)	10				
	tсsн	Chip select hold time	10				
		Write cycle	100			IOVCC=1.65V	
WR	twc	Write cycle	77			IOVCC=2.8V	
VVIC	twrnt	Control pulse "H" duration	15	-	ns		
	WIRL	Control pulse "L" duration	15				
	t _{RCFM}	Read cycle (FM)	450				
RD(FM)	t _{RDHFM}	Control pulse "H" duration (FM)	90	-	ns	When read from	
	t _{RDLFM}	Control pulse "L" duration (FM)	355			GRAM	
	t DST	Data setup time	15	-		For maximum	
DB[15:0]	t dht	Data hold time	10	-	ne	$C_L=30pF$	
	t RATFM	Read access time	-	340(4)	ns		
	todh	Output disable time	20(4)	80(4)		For minimum C _L =8pF	

Table 5.1 CPU Interface Timing Parameters

5.3 Interface Register write/read timing

5.3.1 System Bus Interface Register Write Timing

5.4 GRAM write/read timing

5.4.1 16-bit Read/Write GRAM Data format(262K)

Figure 5.4.1 16-bit Data Bus GRAM Write/Read Data Format (16bit, 262k,IM0=0)

TM028LDH05 V1.0

5.4.3 8-bit Read/Write GRAM Data format(262K)

Figure 5.4.3 8-bit Data Bus GRAM Write/Read Data Format (8bit, 262k,IM0=1)

5.4.4 8-bit Read/Write GRAM Data Format(65K)

Figure 5.4.4 8-bit Data Bus GRAM Write/Read Data Format (8bit, 65k,IM0=1)

TM028LDH05 V1.0

5.5

5.5.1 Data Bus GRAM Write Timing

5.6 Reset Timing Characteristics

IOVCC=1.65~3.3V, VDD=2.3~3.3V

Figure 5.6.1 Reset Input Timing

Symbol	Parameter	Related	Spec.			Note	Unit
Symbol	Falameter	Pins	Min.	Тур.	Max.	NOLE	Onit
tRESW	Reset low pulse width	RESET	10			-	us
tREST	Reset complete	-	- <		10	When reset applied during STB mode	ms
IREST	time	-		+	120 When reset applied during STB mode		ms
tPRESH	Reset goes high level after Power on time	NRESET & IOVCC	7	-	-	Reset goes high level after Power on	ms
tPRESL	Reset goes low level in Power on time	NRESET & IOVCC	5	-	-	Reset goes low level in Power on	ms

Table 5.6 Reset Timing Parameters

Note:

RESET Pulse	Action			
Shorter than 5µs	Reset Rejected			
Longer than 10µs	Reset			
Between 5µs and 10µs	Reset Start			

5.7 Power ON/OFF Sequence

5.7.1 Power ON Sequence

5.7.2 Power OFF Sequence

Ta=25°C

Optical Characteristics Optical Specification

Itom	•	Symbol	Condition	Min	Tun	Max	Unit	Remark
ltem		-	Condition		Тур	IVIAX	Unit	Remark
View Angle		θΤ	CR≥10	45	50			
		θΒ		15	20		Degree	Note 2
		θL		40	45			
		θR		40	45			
Contrast Ratio		CR	θ=0°	400	450			Note1 Note3
Response Time		T _{ON}	२६ °⊖		20	30	mc	Note1
Response nin	le	T _{OFF}	25 ℃		20	30	ms	Note4
	White	x		0.250	0.300	0.350		
		у	Backlight is on	0.270	0.320	0.370		
	Red	х		0.550	0.600	0.650		
Chromaticity		у		0.300	0.350	0.400		Note1
Chromaticity	Green	x		0.290	0.340	0.390		Note5
		у		0.550	0.600	0.650		
	Blue	x		0.100	0.150	0.200		
		у		0.030	0.080	0.130		
Uniformity		U			80		%	Note1 Note6
NTSC					52		%	Note5
Luminance		R	>	180	200		nits	Note1 Note7

Test Conditions:

- 1. $V_F = 3.2V$, $I_F = 15$ mA(LED current), the ambient temperature is 25° C.
- 2. The test systems refer to Note1 and Note2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD is on the "White" state}{Luminance measured when LCD is on the "Black" state}$

"White state ": The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

 $V_{\text{white}}\text{: To be determined} \qquad V_{\text{black}}\text{: To be determined}.$

Note 4: Definition of response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

Note 6: Definition of luminance uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of luminance:

Measure the luminance of white state at center point.

7 Environmental / Reliability Test

No	Test Item	Condition	Remark
1	High Temperature Operation	Ts=+70℃, 240hrs	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta=-20℃, 240hrs	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta=+80℃, 240hrs	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta=-30℃, 240hrs	IEC60068-2-1 GB2423.1
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 240 hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (Non-operation)	-30℃ 30 min~+80℃ 30 min, Change time:5min, 20 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	Electro Static Discharge (Operation)	C=150pF, R=330Ω, 5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times; (Environment: 15℃~35℃, 30%~60%, 86Kpa~106Kpa).	IEC61000-4-2 GB/T17626.2
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)(Package condition)	IEC60068-2-6 GB/T2423.10
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:80 cm,1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8
11	Package Vibration Test	Random Vibration: 0.015GxG/Hz for 5-200Hz, -6dB/Octave from 200-500Hz 2 hours for each direction of X,Y,Z (6 hours for total)	IEC60068-2-34 GB/T2423.11

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

TM028LDH05 V1.0

8 Mechanical Drawing

TM028LDH05 V1.0

9 Packing Drawing

No	ltem	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM028LDH05	42.00×72.80×1.85	TBD	TBD	
2	Tray	PET(Transmit)	TBD	TBD	TBD	
3	EPE	EPE	TBD	TBD	TBD	
4	Desiccant	Desiccant	TBD	TBD	TBD	
5	Anti-static bag	PE	TBD	TBD	TBD	
6	BOX	Corrugated paper	TBD	TBD	TBD	
7	Carton	Corrugated paper	TBD	TBD	TBD	
8	Total Weight(Kg)		TBD			

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions:
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions:
- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- 10.2.3 Temperature: 0°C~40°C Relatively humidity: ≤80%
- 10.2.4 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions:

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.