www.DataSheet4U.com

Hall-Effect IC with Analog Output

TLE 4910 G

Bipolar IC

Preliminary Data

Features

- Linear output characteristic
- Extended temperature range (-40 to 135 °C)
- Virtually independent of supply voltage and temperature fluctuations
- Reference voltage available (3 V)

Туре	Ordering Code	Package		
TLE 4910 G	Q67000-A9009	P-DSO-8 (SMD)		

The Hall-effect IC TLE 4910 G generates at its output a voltage referred to ground that is directly proportional to the magnetic flux density passing vertically through the chip. A positive magnetic field (i.e. magnetic south pole facing the surface of the chip = stamped side) causes the output voltage to increase. The device is fully functional without any wiring. According to the application, the zero point (pin 2, 3) and the sensitivity (pin 4) can be varied over a wide range by external circuitry.

Pin Configuration

Pin Definitions and Functions

Pin	Symbol	Function
1	GND	Ground
2	$+V_{Adj}$	+ Zero adjustment
3	$-V_{Adj}$	- Zero adjustment
4	S _{Adj}	Sensitivity adjustment
5	V _T	Temperature voltage
6	V _Q	Voltage output
7	Vs	Supply voltage
8	V _{REF}	Reference voltage

Block Diagram

Circuit Description

First a regulated voltage of 3 V is produced from the supply voltage. This voltage is brought out and feeds all parts of the circuitry whose accuracy is critical. The control current for the Hall generator is also derived from it. The Hall voltage is initially transformed by an transimpedance amplifier into a current referred to ground.

The zero point (offset) can be influenced from the exterior by way of the current balance (pin 2, 3). The signal is boosted further by a current amplifier and transformed back into a voltage on a resistor. An operational amplifier with variable gain produces a stable signal at the output.

The temperature voltage is derived from the 3 V reference voltage by subtracting two diode-forward voltages.

By adjusting the zero point:

- The manufacturing spread can be eliminated.
- The characteristic can be matched to the application so that both unipolar and bipolar magnetic fields can be detected with almost any conversion factors (magnetic field → voltage).

The circuit also provides

- a precise reference voltage of 3 V,
- a temperature-dependent voltage for measuring chip temperature.

11

The latter can be used for individual temperature compensation of the device if very high demands are made for temperature stability (pin 2, 3).

The output characteristic begins very close to 0 V (V_{Qmin} is typically 0.005 V), so that measurement can start practically at zero with just one supply voltage. The output voltage can be loaded with up to 5 mA without degrading the accuracy.

To minimize the piezoresistive effect (change in the zero point through mechanical tension) four Hall probes are configured in a suitable manner. Even after extreme temperature cycling (-65 to 150 °C), leading to changes in the tension of the chip, there are only slight shifts in the magnetic zero B_0 of maximally ± 3 mT.

The main areas of application are:

Magnetic-field measurement Floating current measurement Path measurement (moving permanent magnet) Pressure, level, position

Absolute Maximum Ratings

 $T_{\rm A} = -40 \,^{\circ}{\rm C}$ to 180 °C, $t < 50 \,{\rm h}$

Parameter		Lim		
	Symbol	min.	max.	Unit
Supply voltage	Vs	-0.8	30	V
Output current	IQ		10	mA
Current at reference (pin 8)	IVREF		10	mA
Zero-adjustment current	I _{Adj}	-1	1	mA
Junction temperature t < 3400 h t < 1000 h t < 75 h	Τ _i		150 170 210	°C C° C°
Thermal resistance	R _{th}		170	K/W

Operating Range

Supply voltage	Vs	4.75	18	V
Output current	IQ		5	mA
Ambient temperature	T _A	-40	150	°C

Characteristics

 $V_{\rm S} = 4.75 \le 15 \text{ V}, T_{\rm A} = -40 \,^{\circ}\text{C} \text{ to } 150 \,^{\circ}\text{C}$

	Symbol	Limit Values				Test
Parameter		min.	typ.	max.	Unit	Circuits
Total current $R_{\rm L} = 10 \text{ k}\Omega; B < -20 \text{ mT}$	Is			10	mA	1
Output voltage $R_L = 10 \text{ k}\Omega; B < -20 \text{ mT}$ $R_L = 10 \text{ k}\Omega; B > 300 \text{ mT}$	V _Q	V _S -2	5 V _S -1.5	20	mV V	1
Sensitivity $T_A = 25 ^{\circ}\text{C}$	S	22	30	38	V/T	1
Magnetic offset	B ₀	-20		20	mT	1
Reference voltage $T_{\rm A} = 25^{\circ}{\rm C}$	V _{REF}	2.9	3.0	3.1	V	1
w.Data						

Characteristics

 $V_{\rm S} = 4.75 \le 15$ V, $T_{\rm A} = -40$ °C to 150 °C

	Symbol	Limit Values				Test
Parameter		min.	typ.	max.	Unit	Circuits
Output voltage/adjustment current (pin 2, 3) $T_A = 25 ^{\circ}\text{C}$	V _Q /I _{Adj}		±0.3		V/μA	2
Voltage at pin 2, 3 $T_A = 25 ^{\circ}\text{C}$	V _{Adj}	50	70	90	mV	2
Temperature voltage $R = 5 \text{ k}\Omega; T_A = 25 \text{ °C}$	V _T	1.4		1.7	V	3
Temperature coefficient of $V_{\rm T}$ $R = 5 \rm k\Omega$	TCT	3.2	3.5	3.7	mV/K	3
Output impedance $V_{\rm S} = 5$ V; $I_{\rm Q} = 5$ mA	R _Q			10	Ω	1
Sensitivity change due to $V_{\rm S}$ changes $T_{\rm A} = 25 ^{\circ}{\rm C}$	$\Delta S / \Delta V_{S}$			0.2	%/V	1
Magnetic offset due to V _s changes	$\Delta B_0 / \Delta V_S$	-20		20	μΤ/V	1
Magnetic offset change after high temperature endurance test 1000 h / 150 °C	ΔB_0			±3	mT	
Thermal cycling -65°C / 150°C (1000 x)				±3	mT	
Humidity test 85 °C / 85%				±3	mT	

For temperature changes due to magnetic offset and sensitivity, see diagrams.

Hall ICs may change their magnetic offset slightly after climatic stress.

1

Test Circuit 1

Test Circuit 3

AES 00759

Test Circuit 2

AES 00759

Diagrams Position Characteristics of Sensitivity Adjustment

Siemens Aktiengesellschaft

Diagrams **Position Characteristics at Magnetic Offset**

Diagrams Temperature Dependence of Reference Voltage

TLE 4910 G

1

Diagrams Temperature Dependence of Zero Point and Sensitivity

Application Circuit 1 Measuring Positive Magnetic Field without Electrical Adjustment

Application Circuit 2 Measuring Positive Magnetic Field with Adjustment of Offset and Sensitivity

TLE 4910 G

Application Circuit 3 Measuring Bipolar Magnetic Field by Shifting "Starting Point" to Negative Field

AES 00767

1

Application Circuit 4 Application Circuit for Individual Compensation of B_0 Temperature Drift

TLE 4910 G

