SLOS372 - JUNE 2001

- Wide Range of Supply Voltages; Single Supply . . . 3 V to 36 V, or Dual Supplies
- Class AB Output Stage
- High-Impedance N-Channel-JFET Input Stage . . . 10¹² Ω Typ
- Internal Frequency Compensation
- Short-Circuit Protection
- Input Common Mode Includes V_{CC}
- Low Input Offset Current . . . 50 pA
- Low Input Bias Current . . . 200 pA Typ

description

The TL092 JFET-input operational amplifier is similar in performance to the MC3403 family, but with much higher input impedance derived from a FET input stage. The N-channel-JFET input stage allows a common-mode input voltage range that includes the negative supply voltage and offers a typical input impedance of $10^{12} \Omega$, a typical input offset current of 50 pA, and a typical input bias current of 200 pA. This device is designed to operate from a single supply over a range of 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. Output voltage range is from V_{CC-} to V_{CC+} – 1.3 V, with a load resistor to V_{CC-}.

The TL092 is characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

	PACKAGED DEVICE				
Тд	PLASTIC				
'A	SMALL OUTLINE				
	(PS)				
0°C to 70°C	TL092CPSR				
	-				

The PS package is only available taped and reeled. Add the suffix R to device type for ordering (e.g., TL092CPSR).

symbol

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2001, Texas Instruments Incorporated

SLOS372 - JUNE 2001

schematic

SLOS372 - JUNE 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage: V _{CC+} (see Note 1)	18 V
V _{CC} (see Note 1)	18 V
V _{CC+} with respect to V _{CC-}	36 V
Differential input voltage, VID (see Note 2)	±36 V
Input voltage, V _I (see Notes 1 and 3)	±18 V
Package thermal impedance, θ_{JA} (see Notes 4 and 5)	95°C/W
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. Differential voltages are at the noninverting input with respect to the inverting input.
- 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} 0.3 V.
- 4. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC±}	Supply voltage	3	36	V
ТĄ	Operating free-air temperature range	0	70	°C

SLOS372 - JUNE 2001

electrical characteristics at specified free-air temperature, $V_{CC\pm} = \pm 15 V$ (all characteristics are specified under open-loop conditions, unless otherwise noted)

	PARAMETER	TES	ST CONDITIONS	TA	MIN	TYP†	MAX	UNIT
V	Input offect voltage	Po = 50.0		25°C		5	15	
VIO	Input offset voltage	R _S = 50 Ω		Full range			20	mV
^{αV} IO	Temperature coefficient of input offset voltage			25°C		10		μV/°C
. +	Input offeet ourrent			25°C		50	200	pА
۱ _Ю ‡	Input offset current			Full range			5	nA
. +				25°C		200	400	pА
IIB‡	Input bias current			Full range			10	nA
VICR	Common-mode input voltage range			25°C	V _{CC} - to 12	V _{CC} _ to 13		V
	Peak output voltage swing	$R_L = 2 k\Omega$		25°C	±10	±13		
VO(PP)		$R_L = 10 \ k\Omega$		25°C	±12	±13.5		V
		$R_L = 2 k\Omega$		Full range	±10			
A 10	Large-signal differential	$R_1 = 2 k\Omega$,	V _O = ±10 V	25°C	20	200		V/mV
AVD	voltage amplification	KL = 2 KS2,	$AO = \pm 10 A$	Full range	15			v/IIIv
BOM	Maximum output swing bandwidth	$\begin{array}{l} R_{L} = 2 \; k \Omega, \\ A_{VD} = 1, \end{array}$	V _{O(PP)} = 20 V, THD < 5%	25°C		9		kHz
B ₁	Unity gain bandwidth	$R_L = 10 \text{ k}\Omega$,	V _O = 50 mV	25°C		1		MHz
[¢] m	Phase margin	$R_L = 2 k\Omega$,	C _L = 200 pF	25°C		60°		
r _i	Input resistance	f = 20 Hz		25°C		1012		Ω
r _O	Output resistance	f = 20 Hz		25°C		75		Ω
CMRR	Common-mode rejection ratio	R _S = 50 Ω,	$V_{IC} = V_{ICR}$	25°C	70	90		dB
kSVR	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	R _S = 50 Ω,	$V_{CC\pm}$ = ±3 V to ±15 V	25°C	75	90		dB
los	Short-circuit output current			25°C		40		mA
ICC	Supply current (per amplifier)	$V_{O} = 0,$	No load	25°C		1.5	2.5	mA

[†] All typical values are at $T_A = 25^{\circ}C$.

[‡] Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive. Pulse techniques that maintain the junction temperature as close to the ambient temperature as possible must be used.

electrical characteristics at specified free-air temperature, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25° C (unless otherwise noted)

PARAMETER		Т	TEST CONDITIONS			MAX	UNIT
VIO	Input offset voltage	R _S = 50 Ω,	V _O = 2.5 V		5	15	mV
١O	Input offset current	V _O = 2.5 V			50	200	pА
I _{IB}	Input bias current	V _O = 2.5 V			200	400	pА
	Peak output voltage swing	$R_L = 10 \ k\Omega$		3.3	3.5		V
VO(PP)		$R_L = 10 \text{ k}\Omega$,	$V_{CC+} = 5 V \text{ to } 30 V$	V _{CC+} -1.7			V
AVD	Large-signal differential voltage amplification	$R_L = 2 k\Omega$,	ΔV _O =1.6 V	20	200		V/mV
k SVR	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	R _S = 50 Ω,	$V_{CC\pm}$ = ±3 V to ±15 V	75			dB
ICC	Supply current (per amplifier)	V _O = 2.5 V,	No load		1.5	2.5	mA
V ₀₁ /V ₀₂	Channel separation	f = 1 kHz to 20	kHz		120		dB

[†] All typical values are at $T_A = 25^{\circ}C$.

SLOS372 - JUNE 2001

PARAMETER		TEST CONDITIONS				TYP	MAX	UNIT
SR	Slew rate at unity gain	$V_I = \pm 10 V$ (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.6		V/µs
tr	Rise time	ΔV_{O} = 50 mV (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.2		μs
t _f	Fall time	ΔV_{O} = 50 mV (see Figure 1),	C _L = 100 pF,	$R_L = 2 k\Omega$		0.2		μs
	Overshoot factor	$\Delta V_{O} = 50 \text{ mV} \text{ (see Figure 1)},$	C _L = 100 pF,	$R_L = 2 k\Omega$		20%		
	Crossover distortion	$V_{IPP} = 30 \text{ mV}, V_{O(PP)} = 2 \text{ V},$	f = 10 kHz			1%		
v _n	Equivalent input noise voltage	R _S = 100 Ω,	f = 1 kHz			34		nV/√Hz

operating characteristics, $V_{CC\pm} = \pm 15 V$, $T_A = 25^{\circ}C$

PARAMETER MEASUREMENT INFORMATION

Figure 1. Unity-Gain Amplifier

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated