TYPES TIL31B, TIL33B, TIL34B P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES

D1934, NOVEMBER 1974-REVISED FEBRUARY 1983

DESIGNED TO EMIT NEAR-INFRARED RADIATION WHEN FORWARD BIASED

- "B" Versions Especially Designed for Low Degradation and are Direct Replacements for the "A" Versions
- Spectrally and Mechanically Compatible with TIL81 and TIL99 Phototransistors
- Typical Applications Include Card Readers, Encoders, Intrusion Alarms, Sector Sensors, Level Indicators, and Beginning-of-Tape/End-of-Tape Indicators
- TIL31HR2* Includes High-Reliability Processing and Lot Acceptance (See Page 3-11 for Summary of Processing)

mechanical data

Each device is in a hermetically sealed welded case similar to JEDEC TO-18 with window. The TIL31B and TIL34B have convex lenses while that of the TIL33B is essentially flat. A coin header is used to increase dissipation capability. All TO-18 registration notes also apply to this outline. Approximate weight is 0.35 gram.

*On the original TIL31, TIL33, and TIL34, the anode was in electrical contact with the case. Lead 2, which had no internal connection, is omitted on the B-suffix versions.

absolute maximum ratings

Reverse Voltage at 25°C Case Temperature				 				73.			1		. 5 V	
Continuous Forward Current at 25°C Case														
Operating Case Temperature Range											-6	5°C	to 150°C	:
Storage Temperature Range				 		20					-6	5°C	to 150°C	;
Lead Temperature 1.6 mm (1/16 Inch) from													240°C	:

operating characteristics at 25°C case temperature

14				TIL31E	3		TIL33	В		UNIT		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Po	Radiant Power Output	I _F = 100 mA	3.3	6		2.5	5		2	3	erg and the	mW
λp	Wavelength at Peak Emission		915	940	975	915	940	975	915	940	975	nm
Δλ	Spectral Bandwidth			50	75		50	75		50	75	nm
θНΙ	Half-Intensity Beam Angle			10°			80°			10°	15	
VF	Static Forward Voltage		S STATE	1.4	1.75		1.4	1.75		1.4	1.75	٧
tr	Radiant Pulse Rise Time†	IFM = 100 mA,		600		633	600	100	50 A	600		ns
tf	Radiant Pulse Fall Time†	t _W ≥ 5 μs	77.72	350		1	350	3 18 19		350	137	113

^{*}All electrical and mechanical specifications for the TIL24 also apply for TIL24HR2.

NOTE 1: Derate linearly to 150°C case temperature at the rate of 1.6 mA/°C.

Copyright © 1983 by Texas Instruments Incorporated

[†]Radiant pulse rise time is the time required for a change in radiant intensity from 10% to % of its peak value for a step change in current; radiant pulse fall time is the time required for a change in radiant intensity from 90% to 10% of its peak value for a step change in current.