

TH8080

Single LIN Bus Transceiver

Features and Benefits

- □ Single wire LIN transceiver
- □ Compatible to LIN Protocol Specification, Rev. 1.1
- □ Compatible to ISO9141 functions
- □ Up to 20 kbps bus speed
- Low RFI due to slew rate control
- □ Fully integrated receiver filter
- Derivation Protection against load dump, jump start
- Bus terminals proof against short-circuits and transients in the automotive environment
- □ Very low (30 µA) typical power consumption in recessive state and therefore no sleep mode necessary
- Thermal overload and short circuit protection
- □ High impendance Bus pin in case of loss of ground and undervoltage condition
- □ 8-pin SOIC
- □ ±4kV ESD protection on Bus pin

Ordering Information

Part No.	Temperature Range	Package
TH8080 JDC	-40°C125°C	SOIC8, 150mil

General Description

The TH8080 is a physical layer device for a single wire data link capable of operating in applications where high data rate is not required and a lower data rate can achieve cost reductions in both the physical media components and in the microprocessor which use the network. The TH8080 is designed in accordance to the physical layer definition of the LIN Protocol Specification , Rev. 1.1 . The IC furthermore can be used in ISO9141 systems.

Because of the very low current consumption of the TH8080 in the recessive state it's particularly suitable for ECU applications with hard standby current requirements , whereby no sleep/wake up control due to the microprocessor is necessary.

Pin Diagram

SOIC8	NB	
RxD	1 8	N.C.
N.C.	2 T U0000 7	VS
vcc	TH8080	BUS
TxD	4 5	GND

Functional Diagram

Figure 1 - Block Diagram

Application Circuit

Figure 2 - Application Circuit

Electrical Specification

All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum ratings given in the table below are limiting values that do not lead to a permanent damage of the device but exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of the device. Reliable operation of the TH8080 is only specified within the limits shown in "Operating conditions".

Operating Conditions

Parameter	Symbol	Min	Max	Unit
Battery voltage	Vs	6	20	V
Supply voltage	V _{cc}	4.5	5.5	V
Operating ambient temperature	T _A	-40	+125	°C
Junction temperature ^[1]	T _{Jc}		+150	°C

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Max.	Unit
Batterry Supply Voltage	Vs		-0.3	+27	V
Supply Voltage	V _{cc}		-0.3	+7	V
Short-term supply voltage	$V_{\text{S.Id}}$	Load dump; t<500ms		+40	V
Transient supply voltage	V _{S.tr1}	ISO 7637/1 pulse 1 ^[1]	-150		V
Transient supply voltage	V _{S.tr2}	ISO 7637/1 pulses 2 ^[1]		+100	V
Transient supply voltage	V _{S.tr3}	ISO 7637/1 pulses 3A, 3B	-150	+150	V
BUS voltage	V_{BUS}		-40	+40	V
Transient bus voltage	V _{BUS.tr1}	ISO 7637/1 pulse 1 ^[2]	-150		V
Transient bus voltage	V _{BUS.tr2}	ISO 7637/1 pulses 2 ^[2]		+100	V
Transient bus voltage	V _{BUS.tr3}	ISO 7637/1 pulses 3A, 3B ^[2]	-150	+150	V
DC voltage on pins TxD, RxD	V _{DC}		-0.3	+7	V
ESD capability of pin BUS	ESD _{BUSHB}	Human body model, equivalent to discharge 100pF with $1.5k\Omega$	-4	+4	kV
ESD capability of any other pins	ESD _{HB}	Human body model, equivalent to discharge 100pF with $1.5k\Omega$	-2	+2	kV
Maximum latch – up free current at any Pin	I _{LATCH}		-500	+500	mA
Maximum power dissipation	P _{tot}	At T _{amb} = +125 °C		197	mW
Thermal impedance	Θ_{JA}	in free air		152	K/W
Storage temperature	T _{stg}		-55	+150	°C
Junction temperature	T _{vj}		-40	+150	°C

 $^{^{[1]}}$ ISO 7637 test pulses are applied to VS via a reverse polarity diode and >1uF blocking capacitor .

^[2] ISO 7637 test pulses are applied to BUS via a coupling capacitance of 1 nF.

Static Characteristics

 $(V_S = 6 \text{ to } 20V, V_{CC} = 4.5 \text{ to } 5.5V, T_A = -40 \text{ to } +125^{\circ}C, \text{ unless otherwise specified})$ All voltages are referenced to ground (GND), positive currents are flow into the IC.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
PIN VS,VCC						
Supply current, dominant	I _{Sd}	V _S = 16V,V _{CC} = 5.5V TxD=L		tbd	50	μA
Supply current, dominant	I _{CCd}	V _S = 16V,V _{CC} = 5.5V TxD=L		tbd	1	mA
Supply current, recessive	I _{Sr}	$V_{S} = 16V, V_{CC} = 5.5V TxD$ open		8	20	μA
Supply current, recessive	I _{CCr}	V_{S} = 16V, V_{CC} = 5.5V TxD open		20	30	μA
PIN BUS / TRANSMITTER						
Bus output voltage, dominant	V_{ol_BUS}	$TxD=L$, $I_{BUS} = 40mA$			1.2	V
Bus output voltage, recessive	V_{oh_BUS}	V _S = 818V, TxD open	0.8* V _S			V
Bus short circuit current	I _{BUS_SHORT}	TxD=L , V _{BUS} > 2.5V	40		130	mA
Bus input current, recessive	I _{BUS_leakp}	TxD open ,V _{BUS} = 18V	-20		20	μA
Bus reverse polarity current, re-	I _{BUS_leakn}	TxD open ,V _{BUS} = -18V	-1		1	mA
Bus pull up resistor	R _{BUS_pu}		20	30	47	kΩ
PIN BUS / RECEIVER						
Bus input threshold, recessive to dominant	V _{ihBUS_rd}	TxD open , -18V <v<sub>BUS < V_{ihBUS_rd}</v<sub>	0.4x V _s	0.45* V _s		V
Bus input threshold, dominant to recessive	V_{ihBUS_rd}	TxD open , V _{ihBUS_rd} <v<sub>BUS < 18V</v<sub>		0.55* V _s	0.6*V _S	V
Bus input hysteresis	$V_{\text{BUS_hys}}$		20			mV
PIN TXD					· · · · · · ·	
High level input voltage	V _{ih}	Rising edge			0.7* V _{CC}	V
Low level input voltage	V _{il}	Falling edge	0.3* V _{CC}			V
TxD pull up current, high level	I _{IH_TXD}	V _{TxD} = 4V	-125	-50	-25	μA
TxD pull up current, low level	I _{IH_TXD}	V _{TxD} = 1V	-500	-250	-100	μA
PIN RXD						
Low level output voltage	V _{ol_rxd}	I _{RxD} = 1.25mA			0.9	V
High level output voltage	V _{oh_rxd}	I _{RxD} = -250μA	V _{CC} -0.9			V
Thermal protection						
Thermal shutdown	T _{sd} ^[1]		150		180	°C
Hysteresis	T _{hys} ^[1]		5		25	°C

 $^{^{\}left[1
ight]}$ Thresholds not tested in production, guaranteed by design, only switch on/off tested .

Dynamic Characteristics

All dynamic values of the table below refer to the test-schematic schown in Figure - Timing Diagram (6V $\leq V_S \leq 20V$, -40°C $\leq T_A \leq 125$ °C, unless otherwise specified)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Slew rate falling edge	t _{SRF}	80% < VBUS < 20% , minimum & maximum bus load	-2.5	-1.7	-1	V/µs
Slew rate rising edge	t _{SRR}	20% < VBUS < 80% , minimum bus load ^[1]	1	1.7	2.5	V/µs
Propagation delay transmitter (TxD->BUS)	t _{trans_pdf}	TxD high to low transition ^[2]			4	μs
Propagation delay transmitter (TxD->BUS)	t _{trans_pdr}	TxD low to high transition ^[2]			4	μs
Propagation delay transmitter symmetry	t _{trans_sym}	Calculate t _{trans_pdf} - t _{trans_pdr}	-2		2	μs
Propagation delay receiver (BUS->RxD)	t _{rec_pdf}	BUS recessive to dominant ^[2]			6	μs
Propagation delay receiver (BUS->RxD)	t _{rec_pdr}	BUS dominant to recessive ^[2]			6	μs
Propagation delay receiver symmetry	t _{rec_sym}	Calculate t _{trans_pdf} - t _{trans_pdr}	-2		2	μs
Receiver debounce time	t _{rec_deb}	BUS rising & falling edge ^[3]	1.2		3.1	μs

 $^{^{\}left[1\right] }$ Minimum slew rate of the rising edge is determined by the network time constant

^[2] See timing diagram figure 3

^[3] See timing diagram figure 4

Timing Diagrams

Figure 3 - Input/Output Timing

Test Circuit for Dynamic Characteristics

Figure 5 - Test Circuit for Dynamic Characteristics

Pin Description

Pin	Name	I/O	Function
1	RXD	0	Receive data from BUS to core, LOW in dominant state
2	N.C.		
3	VCC		5V supply input
4	TXD	I	Transmit data from core to BUS, LOW in dominant state
5	GND		Ground
6	BUS	I/O	Single wire bus pin, LOW in dominant state
7	VS		Battery input voltage
8	N.C.		

Mechanical Specifications

8 Е Н Н Н -H 1 2 3 D 1**A1** Π Π Π α L b e

SOIC8 Package Dimensions

Small Outline Integrated Circiut (SOIC), SOIC 8, 150 mil

All Dimension in mr	n, coplana	rity < 0.1 r	nm						
	D	ш	н	Α	A1	е	b	L	α
min	4.8	3.80	10.00	5.80	0.10	4.07	0.33	0.40	0°
max	5.0	4.00	10.65	6.20	0.25	1.27	0.51	1.27	8°
All Dimension in inch, coplanarity < 0.004"									
min	0.189	0.150	0.228	0.053	0.004	0.050	0.013	0.016	0°
max	0.197	0.157	0.244	0.069	0.010	0.050	0.020	0.050	8°

For the latest version of this document, go to our website at:

www.melexis.com

Or for additional information contact Melexis direct:

■ Europ	е
Phone:	+32 13 67 04 95
E-mail:	sales_europe@melexis.com
All oth	her locations

Phone:	+1 603 223 2362
E-mail:	sales_usa@melexis.com

Important Notice

Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with Melexis for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-

sustaining equipment are specifically not recommended without additional processing by Melexis for each application. The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis' rendering of technical or other services.

© 2000 Melexis GmbH. All rights reserved.