

### **Product Overview**

Qorvo's TGM2635–CP is a packaged X-band, high power amplifier fabricated on Qorvo's production 0.25um GaN on SiC process. The TGM2635–CP operates from 7.9–11 GHz and provides 100 W of saturated output power with 22.5 dB of large signal gain and greater than 35 % power–added efficiency.

The TGM2635-CP is packaged in a 10-lead 19.05 x 19.05 mm bolt-down package with a pure Cu base for superior thermal management. Both RF ports are internally DC blocked and matched to 50 ohms allowing for simple system integration.

The TGM2635-CP is ideally suited for both commercial and military X-Band radar systems, satellite communications systems, and data links.

RoHS compliant.



### **Key Features**

• Frequency Range: 7.9 – 11 GHz

• Psat: 50 dBm (Pin = 28 dBm)

• PAE: 35% (P<sub>IN</sub> = 28 dBm)

Large Signal Gain: 22 dB (P<sub>IN</sub> = 28 dBm)

Small Signal Gain: 26 dB

• Bias: V<sub>D</sub> = 28 V, I<sub>DQ</sub> = 1.3 A

• Package Dimensions: 19.05 x 19.05 x 4.52 mm

• Performance Under Pulsed Operation

### **Functional Block Diagram**



### **Applications**

- X-band Radar
- Satellite Communications
- Data Links

### **Ordering Information**

| Part       | Description                      |  |
|------------|----------------------------------|--|
| TGM2635-CP | X-band 100 W GaN Power Amplifier |  |



### **Absolute Maximum Ratings**

| Parameter                                                                                     | Rating                           |
|-----------------------------------------------------------------------------------------------|----------------------------------|
| Drain Voltage (V <sub>D</sub> )                                                               | 40 V                             |
| Gate Voltage Range (V <sub>G</sub> )                                                          | -8 to -0 V                       |
| Drain Current (I <sub>D</sub> )                                                               | 16 A                             |
| Gate Current (I <sub>G</sub> )                                                                | See plot page 9                  |
| Power Dissipation (P <sub>DISS</sub> ), 85°C, Pulsed;<br>PW = 100 us, DC = 10%                | 316 W                            |
| Input Power (P <sub>IN</sub> ), 50 $\Omega$ , 85°C , VD = 28 V, Pulsed; PW = 100 us, DC = 10% | 33 dBm                           |
| Input Power (PI <sub>N</sub> ), 85°C, VSWR 3:1, VD = 28 V, Pulsed; PW = 100 us, DC = 10%      | 33 dBm                           |
| Mounting Temperature                                                                          | Refer to Assembly Notes, page 13 |
| Storage Temperature                                                                           | −55 to 150 °C                    |

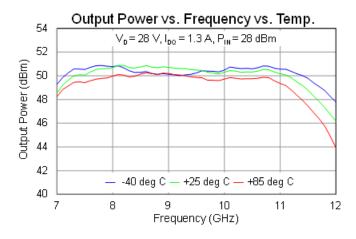
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

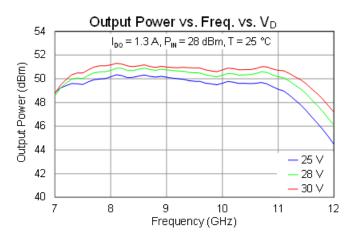
### **Recommended Operating Conditions**

| Parameter                               | Value/Range       |
|-----------------------------------------|-------------------|
| Drain Voltage (V <sub>D</sub> )         | 28 V              |
| Drain Current (I <sub>DQ</sub> , total) | 1.3 A             |
| Drain Current (Under drive, ID_TOTAL)   | See plots pg. 3-5 |
| Operating Temperature Range             | −40 to +85 °C     |

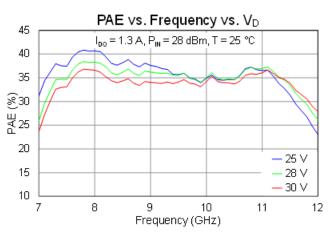
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

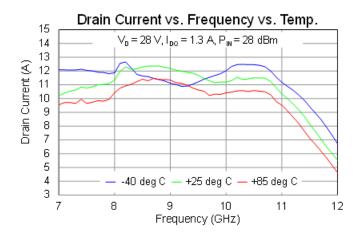
### **Electrical Specifications**

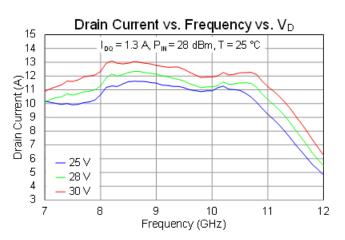

| Parameter                            | Conditions (1)                                  | Min   | Тур    | Max  | Units |
|--------------------------------------|-------------------------------------------------|-------|--------|------|-------|
| Frequency Range                      |                                                 | 7.9   |        | 11.0 | GHz   |
|                                      | P <sub>IN</sub> = 28 dBm, Pulsed                |       |        |      |       |
| _                                    | 8 GHz                                           | 50.0  | 51.0   |      |       |
| Output Power                         | 9 GHz                                           | 50.0  | 51.0   |      | dBm   |
|                                      | 10 GHz                                          | 49.5  | 51.0   |      |       |
|                                      | 11 GHz                                          | 49.5  | 51.0   |      |       |
|                                      | P <sub>IN</sub> = 28 dBm, Pulsed                |       |        |      |       |
|                                      | 8 GHz                                           | 37    | 41     |      |       |
| Power Added Efficiency               | 9 GHz                                           | 33    | 41     |      | %     |
|                                      | 10 GHz                                          | 35    | 41     |      |       |
|                                      | 11 GHz                                          | 33    | 41     |      |       |
| Power Gain                           | P <sub>IN</sub> = 28 dBm, Pulsed                |       | 23     |      | dB    |
| Output Power Temperature Coefficient | Temp: 25 °C to 85 °C, P <sub>IN</sub> = 28 dBm) |       | -0.010 |      | dB/°C |
| Input Return Loss                    |                                                 |       | 12     |      | dB    |
| Output Return Loss                   |                                                 |       | 12     |      | dB    |
| Small Signal Gain                    |                                                 |       | 26     |      | dB    |
| Recommended Operating Voltage        |                                                 | 20    | 28     | 30   | V     |
| Gate Leakage Current                 | $V_D = =10 \text{ V}, V_G = -3.7 \text{ V}$     | -58.1 |        |      | mA    |


#### Notes:


<sup>1.</sup> Test conditions unless otherwise noted: 25 °C ,  $V_D = 28$  V,  $I_{DQ} = 1.3$  A, PW = 100 us, Duty Cycle = 10%

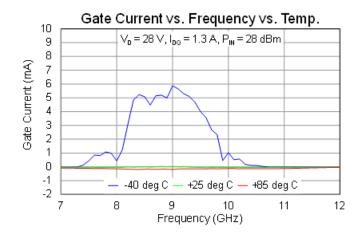


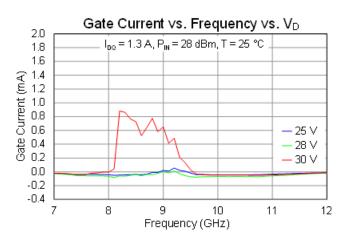


### Performance Plots - Large Signal (Pulsed)

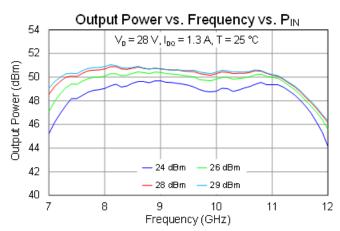


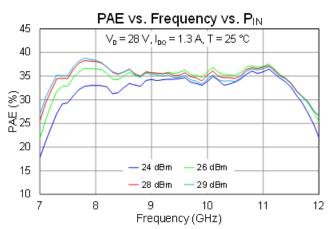


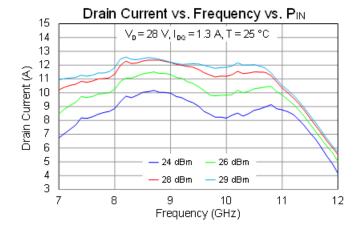


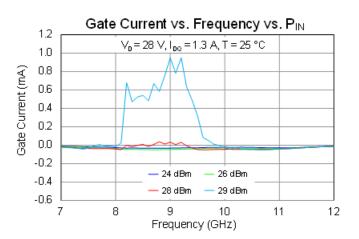



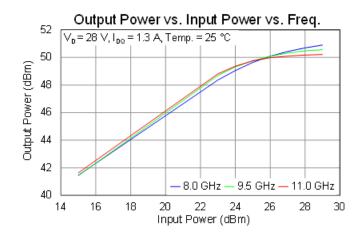



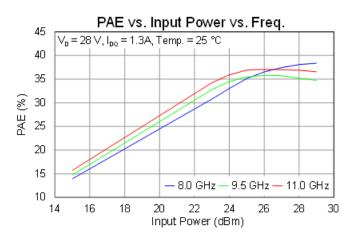



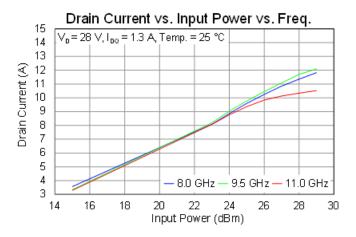


### Performance Plots - Large Signal (Pulsed)

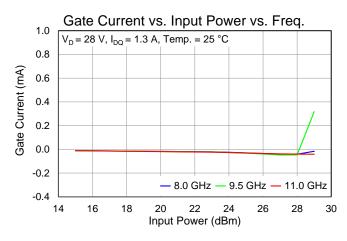




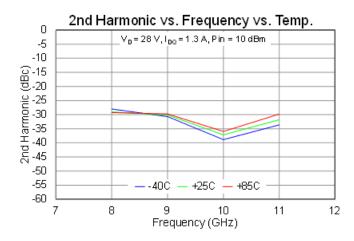



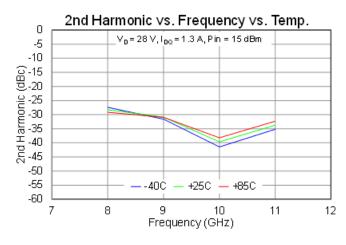



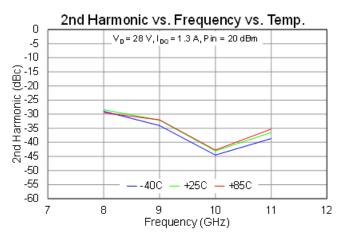



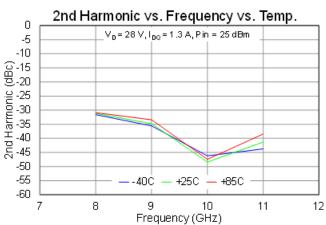



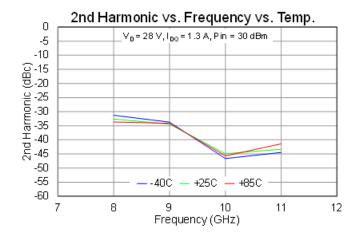

### Performance Plots - Large Signal (Pulsed)

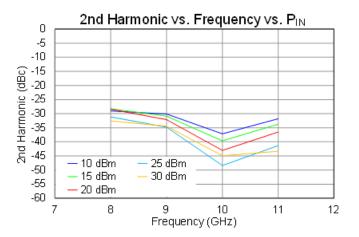


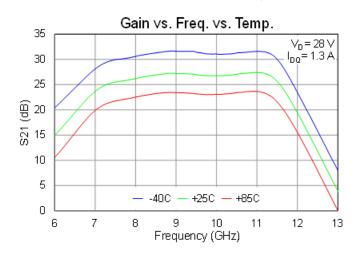


### Performance Plots - Large Signal (Pulsed)

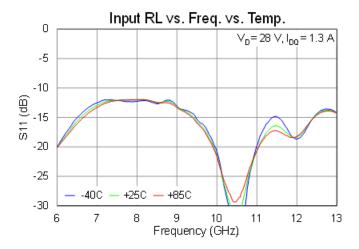


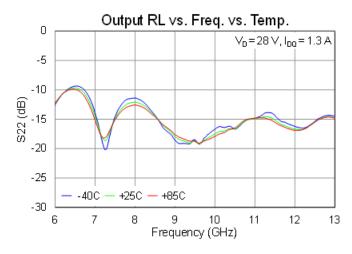


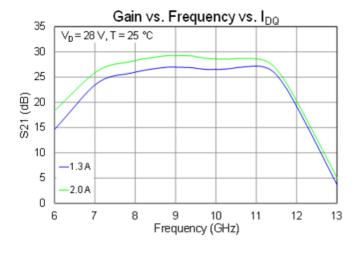


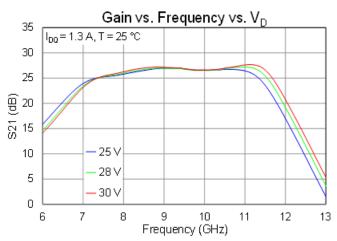


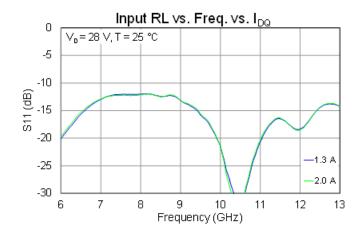


### Performance Plots - Small Signal (CW)

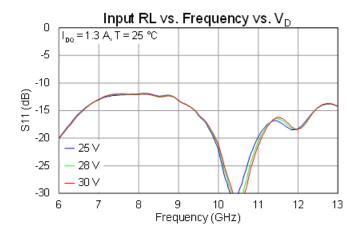

Test conditions unless otherwise noted:  $25 \, ^{\circ}\text{C}$ ,  $V_D = 28 \, \text{V}$ 

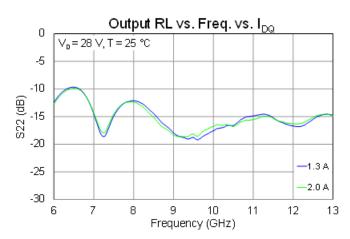


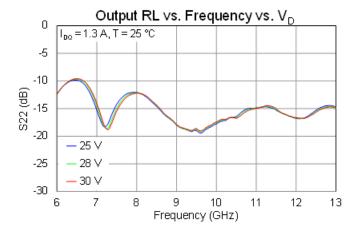








### Performance Plots - Small Signal (CW)

Test conditions unless otherwise noted:  $25 \, ^{\circ}\text{C}$ ,  $V_D = 28 \, \text{V}$ 

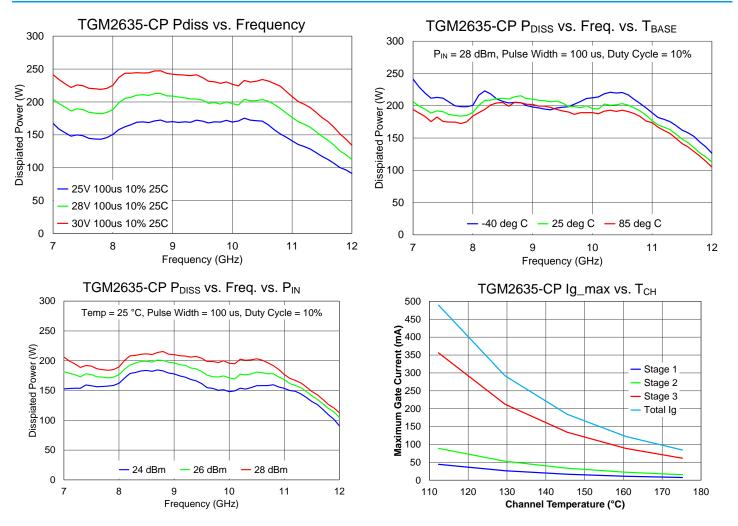




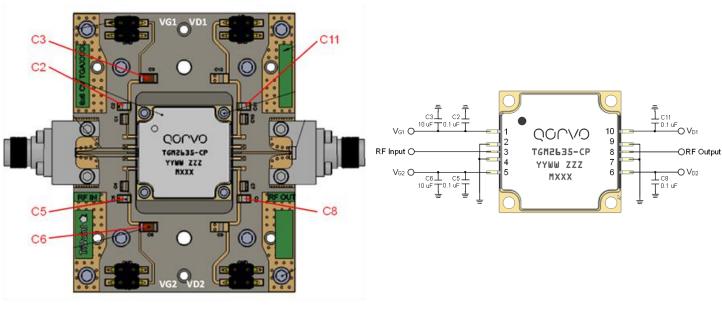







### **Thermal and Reliability Information**

| Parameter Test Conditions                              |                                                                                                                                                                                   | Value | Units |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Thermal Resistance (θ <sub>JC</sub> ) <sup>(1)</sup>   | T <sub>Base</sub> = 85 °C, V <sub>D</sub> = 28 V, I <sub>DQ</sub> = 1.3 A, P <sub>DISS</sub> = 36.4 W                                                                             | 0.302 | °C/W  |
| Channel Temperature, T <sub>CH</sub> (No RF drive) (2) | 1 Base = 03 C, VD = 20 V, IDQ = 1.3 A, FDISS = 30.4 W                                                                                                                             | 96.0  | °C    |
| Thermal Resistance (θ <sub>JC</sub> ) <sup>(1)</sup>   | T <sub>Base</sub> = 85 °C, V <sub>D</sub> = 28 V, I <sub>DQ</sub> = 1.3 A, Freq = 8.7 GHz, I <sub>D_Drive</sub> = 11.47 A, P <sub>IN</sub> = 28 dBm, P <sub>OUT</sub> = 50.2 dBm, | 0.226 | °C/W  |
| Channel Temperature, T <sub>CH</sub> (Under RF) (2)    | P <sub>DISS</sub> = 205.4 W, PW = 100 us, DC = 10%                                                                                                                                | 131.5 | °C    |


#### Notes:

- 1. Thermal resistance measured at back of package.
- 2. IR Scan equivalent channel temperature. Refer to the following document: <u>GaN Device Channel Temperature, Thermal Resistance</u>, and Reliability Estimates

### **Power Dissipation and Maximum Gate Current**



### **Evaluation Board (EVB) and Application Circuit**



#### Notes:

- 1. See Evaluation Board PCB Information for material and stack up.
- 2. Part requires V<sub>D</sub> and V<sub>G</sub> biasing from both sides of the EVB.
- 3. EVB is not suitable for long pulse/high duty cycle or CW operation.

### **Bill of Material**

| Ref. Des. Value |                                 | Description                  | Manuf.                 | Part Number |  |
|-----------------|---------------------------------|------------------------------|------------------------|-------------|--|
| C3, C6          | 10 uF, ±20 %, 50 V (1206), X5R  | Surface Mount Cap            | Various                |             |  |
| C2, C5, C8, C11 | 0.1 uF, ±10 %, 50 V (0805), X7R | Surface Mount Cap            | Various                |             |  |
| J1, J2          | 2.92 mm                         | 2.92 mm End Launch Connector | Southwest<br>Microwave | 1092-02A-5  |  |

### **Bias-Up Procedure**

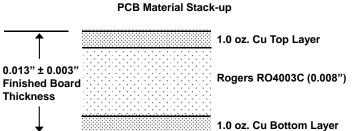
| 1. Set I <sub>D</sub> limit to 16 A, I <sub>G</sub> limit to 124 mA  |  |
|----------------------------------------------------------------------|--|
| 2. Set V <sub>G</sub> to -5.0 V                                      |  |
| 3. Set V <sub>D</sub> +28 V                                          |  |
| 4. Adjust V <sub>G</sub> more positive until I <sub>DQ</sub> = 1.3 A |  |
| 5. Apply RF signal                                                   |  |

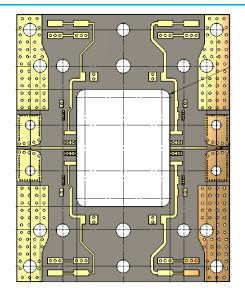
### **Bias-Down Procedure**

| 1. Turn off RF signal                                           |  |
|-----------------------------------------------------------------|--|
| 2. Reduce V <sub>G</sub> to −5.0V. Ensure I <sub>DQ</sub> ~ 0mA |  |
| 3. Set V <sub>D</sub> to 0V                                     |  |
| 4. Turn off V <sub>D</sub> supply                               |  |
| 5. Turn off V <sub>G</sub> supply                               |  |



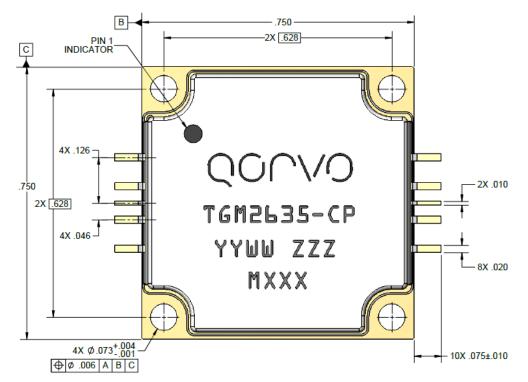
### **Pad Configuration and Description**





Top View

| Pad No.    | Label           | Description                                                                             |  |
|------------|-----------------|-----------------------------------------------------------------------------------------|--|
| 1          | V <sub>G1</sub> | Gate voltage stage 1. Bias network is required; see Application Circuit as an example   |  |
| 2, 4, 7, 9 | GND             | F Ground                                                                                |  |
| 3          | RF Input        | RF Input; matched to 50Ω; DC Blocked                                                    |  |
| 5          | V <sub>G2</sub> | ate voltage stage 2. Bias network is required; see Application Circuit as an example    |  |
| 6          | V <sub>D2</sub> | Orain voltage stage 2. Bias network is required; see Application Circuit as an example. |  |
| 8          | RF Output       | RF Output; matched to 50Ω; DC Blocked, DC Shorted                                       |  |
| 10         | V <sub>D1</sub> | Drain voltage stage 1. Bias network is required; see Application Circuit as an example  |  |

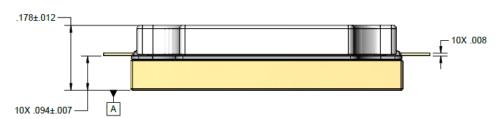
### **Evaluation Board PCB Information**


### **EVB PC Board Layout**







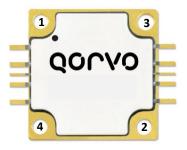

### **Package Marking and Dimensions**



#### NOTES:

1. MATERIALS
PACKAGE BASE: COPPER
LEADS: ALLOY 194
LID: PLASTIC
FINISH: GOLD

- 2. PART IS EPOXY SEALED
- 3. UNITS: INCHES
- 4. TOLERANCES (UNLESS NOTED): .XX = ± .01 .XXX = ± .005
- 5. MARKINGS
  PART NUMBER: TGM2635-CP
  WORK YEAR: YY
  WORK WEEK: WW
  SERIAL NUMBER: ZZZ
  BATCH ID: MXXX




### **Assembly Notes**

- 1. Carefully clean the PC board and package leads with alcohol. Allow it to dry fully.
- To improve the thermal and RF performance, Qorvo recommends attaching a heat sink to the bottom of the PCB and apply either a thermal compound (Arctic Silver 5 recommended) or a 4 mil indium shim between the heat sink and the package.
- 3. The component leads should be manually soldered. Apply a low residue solder alloy meeting J-STD-001 (ROL0, ROL1 or equivalent) with a liquidus temperature below 220 °C to each pin of the QPM2212. The use of low residue/no-clean flux (ROL0, ROL1) is recommended. Adding flux during hand soldering of the component leads with localized spot cleaning is acceptable. Soldering irons meeting the requirements of J-STD-001, Appendix A are acceptable.
- 4. The leads should be soldered in a staggered or star pattern from side to side, and never solder two adjacent leads. This allows the heat to dissipate on each lead, and not cause the adjacent leads to become de-soldered and damaged or displaced. Solder connection should be completed within 2 seconds.



- 5. The packaged part should not be subjected to conventional SMT automated solder reflow processes.
- 6. (The following is for information only. There are many variables in a second level assembly that Qorvo does not control, so Qorvo does not recommend an absolute torque value.) Use screws to attach the component to the heat sink. A suggested final torque value is 16 in-oz. for a 0-80 screw. Start with screws finger tight, then torque to 8 in-oz., then torque to final value. Use the following tightening pattern:





### **Handling Precautions**

| Parameter                        | Rating   | Standard                   |
|----------------------------------|----------|----------------------------|
| ESD – Human Body Model (HBM)     | Class 0B | ANSI / ESDA / JEDEC JS-001 |
| ESD – Charged Device Model (CDM) | Class C3 | ANSI / ESDA / JEDEC JS-002 |
| MSL – Moisture Sensitivity Level | N/A      |                            |



Caution! ESD-Sensitive Device

### **Solderability**

The component leads should be manually soldered, and the package cannot be subjected to conventional reflow processes. The use of no-clean solder to avoid washing after soldering is recommended.

### **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- PFOS Free
- SVHC Free

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@qorvo.com

### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2022 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.